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Abstract

We propose a series representation for the Virasoro fusion and modular kernels at any
irrational central charge. Two distinct, yet closely related formulas are needed for the
cases c ∈ C\(−∞, 1] and c < 1. Our proposal for c < 1 agrees numerically with the fu-
sion transformation of the four-point spherical conformal blocks, whereas our proposal
for c ∈ C\(−∞, 1] agrees numerically with Ponsot and Teschner’s integral formula for
the fusion kernel. The case of the modular kernel is studied as a special case of the fusion
kernel.
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1 Introduction and main results

1.1 Introduction

Virasoro conformal blocks play a fundamental role in the conformal bootstrap approach to
Conformal Field Theory in two dimensions. They are parts of correlation functions which are
entirely determined by conformal symmetry. Consequently, they are special functions deter-
mined by representation theory of the Virasoro algebra.

On a given Riemann surface, Virasoro conformal blocks form certain bases for the solution
space of the Virasoro Ward identities [22]. There exist linear transformations relating different
bases of this space called crossing transformations. In general, they are integral transforma-
tions whose kernels are called Virasoro crossing kernels. A prototypical example is a special
case where the crossing transformations on the four-point Riemann sphere reduce to the well-
known connection formulas for the Gauss hypergeometric function [9].

Of special importance is the case of the four-point Riemann sphere and of the one-point
torus, because these two cases generate the set of all crossing kernels. The corresponding
crossing kernels are denoted Virasoro fusion kernel and Virasoro modular kernels, respectively.
Understanding the crossing properties of conformal blocks on these surfaces is primordial in
the conformal bootstrap approach, since for instance the crossing symmetry equations for the
correlation functions can be written in terms of the crossing kernels only [22]. For a recent
review of Virasoro conformal blocks, their crossing properties and connections to other areas
of physics and mathematics, the reader is referred to [3,22].

Let us now describe more precisely the different objects at play. We will use the following
parametrization of the conformal dimensions and central charge:

∆(P) =
Q2

4
+ P2 , c = 1+ 6Q2 , Q = b+

1
b

.

In the case c ∈ C\(−∞, 1], the Virasoro fusion kernel F is defined by the following relation:

F (b)Ps

�P2 P3

P1 P4

�

(z) =

∫

R
dPt F(b)Ps ,Pt

�P2 P3

P1 P4

�

F (b)Pt

�P2 P3

P1 P4

�

(1− z) , (1)

where z is the cross-ratio of four points on the Riemann sphere, and where the conformal
blocks F are defined in the natural normalization

F (b)Ps

�P2 P3

P1 P4

�

(z) = z∆(Ps)−∆(P1)−∆(P2) (1+O(z)) , as z→ 0 . (2)

The AGT correspondence [1] provides an explicit power series representation in z for F . There
also exist recursion relations for F due to Zamolodchikov [36,37]which converge much faster
than the AGT formula (see also [22, section 2.4.2]).
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Throughout the paper we introduce the convention s(a ± b) = s(a + b)s(a − b). F admits
the following integral formula due to Ponsot and Teschner [20,21]:

F(b)Ps ,Pt

�P2 P3

P1 P4

�

=
1
2
Γb(Q± 2iPs)
Γb(±2iPt)

Γb(
Q
2 − iP2 ± iP3 ± iPt)Γb(

Q
2 + iP4 ± iP1 ± iPt)

Γb(
Q
2 − iP2 ± iP1 ± iPs)Γb(

Q
2 + iP4 ± iP3 ± iPs)

×
∫

iR
du

Sb(
Q
4 − iP2 ± iP1 + u)Sb(

Q
4 + iP4 ± iP3 + u)

Sb(
3Q
4 − iP2 + iP4 ± iPt + u)Sb(

3Q
4 ± iPs + u)

. (3)

Here we use the standard notation for Barnes’ double Gamma function Γb(x), and the double
Sine function Sb(x) =

Γb(x)
Γb(Q−x) , see [3, Appendix B] for a review of their properties.

It is well known that the Ponsot-Teschner formula (3) satisfies a set of shift equations in its
momenta which originates from the pentagon relation [3,27]. Eberhardt showed in [3] that for
c /∈Q and c ∈ C\(−∞, 1], F is the unique solution of the shift equations that is meromorphic
in all of its parameters. However, F does not admit an analytic continuation to c ≤ 1, since the
function Γb is not defined in this region. Interestingly, Ribault and Tsiares discovered in [26]
a transformation, the Virasoro-Wick rotation, which maps the unique meromorphic solution
of the shift equations in the regime c ∈ C\(−∞, 1] to the unique meromorphic solution for
c ∈ C\[25,∞). However, the image of F under this transformation is an odd function of Ps
and Pt , hence it cannot be the physical fusion kernel for c < 1 since the conformal blocks are
even. In view of Eberhardt’s uniqueness result, Ribault and Tsiares were led to the conclusion
that F̂ must have weaker analyticity properties than F.

In what follows, we denote by F̂ the Virasoro fusion kernel for c ≤ 1, or, equivalently, for
b ∈ iR. It will be convenient to describe it in terms of another set of parameters

β = i b , p = iP , Q̂ = β +
1
β

. (4)

Then, we define F̂ to be such that

F (b)Ps

�P2 P3

P1 P4

�

(z) =

∫

iR+Λ
dpt F̂(β)ps ,pt

�p2 p3
p1 p4

�

F (b)Pt

�P2 P3

P1 P4

�

(1− z) . (5)

The choice of parameter dependence for F̂ will be justified in section 2. Note that in this case
we are forced to shift the contour of integration by Λ ∈ R∗ [25, 26] because the conformal
blocks on the right-hand side have poles at

p(m,n)
t =

i
2
(mβ + nβ−1) , m, n ∈ N∗ , (6)

hence the poles lie on the imaginary axis for β ∈ R. Moreover, the result of the integral should
not depend on Λ.

Finally, we define the Virasoro modular kernels M and M̂ to be the following special cases
of F and F̂ [10]:

M(b)Ps ,Pt
[P0] =

p
2 256P2

t −P2
s F(
p

2b)p
2Ps ,
p

2Pt

� P0p
2

i b
2
p

2

i b
2
p

2
i b

2
p

2

�

, (7)

M̂(β)ps ,pt
[p0] =

p
2 256−p2

t+p2
s F̂(
p

2β)p
2ps ,
p

2pt

� p0p
2

iβ
2
p

2

iβ
2
p

2
iβ

2
p

2

�

. (8)

This originates from the fact that the one-point toric conformal blocks are special cases of the
four-point spherical conformal blocks [4,19].
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1.2 Main results

In this paper, we propose a series representation for both F and F̂ as well as for the modular
kernels M and M̂. The idea that led to the proposals for F and F̂ is essentially to write a
convenient ansatz for the series and solve the shift equations (see Section 2.1 for more details).
We emphasize that, by construction, the proposals for F and F̂ satisfy the same shift equations,
however, the two are not related by analytic continuation. This is very analogous to the case
of the structure constants of Liouville theory for c > 25 and c < 1 studied by Zamolodchikov
in [38]. Moreover, seeking series solutions of the shift equations was initiated by Nemkov
in [15] in the case of M, building on earlier works [6,17] (see also [16] for ideas related to F).
It would be interesting to relate Nemkov’s results for M to our proposal.

As a matter of convenience for the reader, all formulas are gathered below.

1.2.1 The fusion kernels

Our proposals for F and F̂ are as follows:

F(b)Ps ,Pt

�P2 P3

P1 P4

�

=
1
2

�

F+,(b)
Ps ,Pt

�P2 P3

P1 P4

�

+ F−,(b)
Ps ,Pt

�P2 P3

P1 P4

��

, (9)

F̂(β)ps ,pt

�p2 p3
p1 p4

�

=
1
2

�

F̂+,(β)
ps ,pt

�p2 p3
p1 p4

�

+ F̂−,(β)
ps ,pt

�p2 p3
p1 p4

�

�

, (10)

where F−,(b)
Ps ,Pt

= F+,(b)
−Ps ,Pt

, F̂−,(β)
ps ,pt

= F̂+,(β)
−ps ,pt

, and where F+ and F̂+ take the form

F+,(b)
Ps ,Pt

�P2 P3

P1 P4

�

= K(b)Ps ,Pt

�P2 P3

P1 P4

�

f (b)Ps ,Pt

�P2 P3

P1 P4

�

, (11)

F̂+,(β)
ps ,pt

�p2 p3
p1 p4

�

= K̂(β)ps ,pt

�p2 p3
p1 p4

�

f (β)ps ,pt

�p2 p3
p1 p4

�

. (12)

The factors K and K̂ are given by

K(b)Ps ,Pt

�P2 P3

P1 P4

�

= e
iπ
�

P2
1+P2

2+P2
3+P2

4+
1+b2+b−2

4

�

(13)

×
Γb(2iPs)Γb(Q+ 2iPs)
Γb(−2iPt)Γb(Q− 2iPt)

Γb(
Q
2 − iPt ± iP2 ± iP3)Γb(

Q
2 − iPt ± iP1 ± iP4)

Γb(
Q
2 + iPs ± iP2 ± iP1)Γb(

Q
2 + iPs ± iP3 ± iP4)

,

K̂(β)ps ,pt

�p2 p3
p1 p4

�

= −ie
iπ
�

p2
1+p2

2+p2
3+p2

4+
1+β2+β−2

4

�

(14)

×
Γβ(2ipt +

1
β )Γβ(2ipt + β)

Γβ(−2ips +
1
β )Γβ(−2ips + β)

Γβ(
Q̂
2 − ips ± ip2 ± ip1)Γβ(

Q̂
2 − ips ± ip3 ± ip4)

Γβ(
Q̂
2 + ipt ± ip2 ± ip3)Γβ(

Q̂
2 + ipt ± ip1 ± ip4)

.

It remains to describe f which is an infinite series of the form

f (b)Ps ,Pt

�P2 P3

P1 P4

�

:= e2iπPs Pt

�∞
∑

k=0

αk(b, Ps)e
−2πbkPt

��∞
∑

l=0

αl(
1
b , Ps)e

− 2πl Pt
b

�

. (15)

We provide a recursive representation for the coefficients αn:

αn(b, Ps) = δn,0 +
n
∑

l=1

e−πb(Ps+
l i b
2 )

�

φln(P1, P2, P3, P4)

sinh(πb(Ps +
l i b
2 ))
−
φln(P1, P2 +

i
2b , P3 +

i
2b , P4)

cosh(πb(Ps +
l i b
2 ))

�

. (16)

The coefficients φnn, n> 0 have the explicit form

φnn(P1, P2, P3, P4) =
i22n−1(−1)n+1

sin(nπb2)
∏n−1

l=1 sin(lπb2)2
(17)

×
n
∏

l=1

cosh
�

πb
�

± P1 + P2 + i b
�

l − n+1
2

� ��

cosh
�

πb
�

P3 ± P4 + i b(l − n+1
2

� ��

,
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whereas the coefficients φln for 0< l ≤ n have the semi-explicit form

φln(P1, P2, P3, P4) = φl l(P1, P2, P3, P4) αn−l

�

b,
l i b
2

�

. (18)

For instance, α1 explicitly reads

α1(b, Ps) =
2ie−πb(Ps+

i b
2 )

sin(πb2)
(19)

×
�

cosh(πb(P2 ± P1)) cosh(πb(P3 ± P4))

sinh(πb(Ps +
i b
2 ))

−
sinh(πb(P2 ± P1)) sinh(πb(P3 ± P4))

cosh(πb(Ps +
i b
2 ))

�

.

More generally, utilizing (16) inductively, φln can be expressed only in terms of
φmm(P1, P2, P3, P4) and φmm(P1, P2 +

i
2b , P3 +

i
2b , P4) for m= 1, ..., n− l.

1.2.2 The modular kernels

We now proceed with the case of the modular kernels. We verified numerically that the for-
mulas below for M and M̂ satisfy (7) and (8), respectively. We have

M(b)Ps ,Pt
[P0] =

1
2

�

M+,(b)
Ps ,Pt
[P0] +M−,(b)

Ps ,Pt
[P0]
�

, (20)

M̂(β)ps ,pt
[p0] =

1
2

�

M̂+,(β)
ps ,pt
[p0] + M̂−,(β)

ps ,pt
[p0]
�

, (21)

where M−,(b)
Ps ,Pt

=M+,(b)
−Ps ,Pt

, M̂−,(β)
ps ,pt

= M̂+,(β)
−ps ,pt

, and

M+,(b)
Ps ,Pt
[p0] = L(b)Ps ,Pt

[P0] g(b)Ps ,Pt
[P0] , (22)

M̂+,(β)
ps ,pt
[p0] = L̂(β)ps ,pt

[p0] g(β)ps ,pt
[p0] . (23)

The factors L and L̂ read

L(b)Ps ,Pt
[P0] =

p
2 e

iπ
2 (

Q2

4 +P2
0 )
Γb(2iPs)Γb(Q+ 2iPs)
Γb(−2iPt)Γb(Q− 2iPt)

Γb(
Q
2 ± iP0 − 2iPt)

Γb(
Q
2 ± iP0 + 2iPs)

, (24)

L̂(β)ps ,pt
[p0] = −i

p
2e

iπ
2 (

Q̂2

4 +p2
0)
Γβ(2ipt +

1
β )Γβ(2ipt + β)

Γβ(−2ips +
1
β )Γβ(−2ips + β)

Γβ(
Q̂
2 ± ip0 − 2ips)

Γβ(
Q̂
2 ± ip0 + 2ipt)

. (25)

Finally, the series is of the form

g(b)Ps ,Pt
[P0] = e4iπPs Pt

∞
∑

k=0

∞
∑

l=0

µk(b, Ps)µl(
1
b , Ps)e

−4πbkPt e−
4πl Pt

b , (26)

and the coefficients µk have an explicit form in terms of q-Pochhammer symbols. More pre-
cisely, let

(a, q)n =
n−1
∏

k=0

(1− aqk) , (27)

and denote α0 := Q
2 + iP0. Then, we have

µn(b, Ps) =
n
∑

l=0

�

e2iπbα0; e2iπb2
�

l
�

e2iπb2; e2iπb2
�

l

�

e−2πb(2Ps+iα0); e−2iπb2
�

l
�

e−2πb(2Ps+i b); e−2iπb2
�

l

�

e−2iπbα0; e2iπb2
�

n−l
�

e2iπb2; e2iπb2
�

n−l

e2iπbα0(n−l) . (28)
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1.3 Numerical tests

The details of the numerical tests described in this section can be found in the ancillary Jupyter
notebook, or in the GitLab repository [28].

1.3.1 The fusion transformation for c < 1

We performed a test of the fusion transformation (5) with the following values of the param-
eters:











β

p1
p2
p3
p4











=











0.6
0.4i
0.6i
0.3i
0.5i











, ps = 0.35i , z = 0.5 , Λ= 0.5 . (29)

We used the publicly available GitLab repository [24] developed by Ribault to compute values
of the function Γb and of the conformal blocks.

The accuracy of the computations is controlled by three parameters (T, L, Nmax).1 The
parameter T represents the truncation of the two series in f (15) at order T . L represents the
truncation of the infinite integration line iR + Λ to i[−L, L] + Λ. Finally, Nmax corresponds
to the truncation of Zamolodchikov’s recursion relation for the conformal blocks [24]. At the
values (29), the left-hand side of (5) is real-valued and equals approximatively 1.08. Then,
we made the following verifications:

(T, Nmax, L) |l.h.s - r.h.s of (5)|
(0,10,1) 1.2

(1,12,2) 0.3

(2,14,3) 0.01

(3,16,4) 1.5 ×10−5

(4,18,5) 8.6 ×10−10

(6,20,6) 8.6 ×10−16

(8,25,8) 3.2 ×10−16

Notice that we chose Λ = 0.5 to stay sufficiently far away from the poles of the integrand
which lie on the imaginary axis. This has the effect of reducing the amplitude of the peaks and
the oscillations of the integrand in (5), thereby increasing accuracy.

We were also able to test the fusion transformation (5)2 for Λ= 0.05 and with parameters
(T, Nmax, L) = (8, 20,2): the first six digits of the left and right-hand sides agree. It appears
challenging to increase accuracy in this case, because the integrand has rather high oscillations.
As an illustration, the real parts of the integrand (5) for Λ = 0.5 and Λ = 0.05 are shown in
Figure 1.

Finally, we also verified numerically that the components F̂+ and F̂− individually verify
the fusion transformation (5).3 This implies that the integration of the t-channel conformal
blocks against F̂+ − F̂− vanishes. This is an important consistency check, since the s-channel
conformal blocks are even in Ps.

1To reach an accuracy of ∼ 10−16 we also decreased slighlty the value of the parameters epsabs and epsrel of
the Python method quad. We do not mention it in the main text for convenience.

2In this case we could not use the quad method due to high oscillations of the integrand. We used the method
CubicSpline.integrate instead.

3We thank Ioannis Tsiares for suggesting us to perform this check.
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(a) Λ= 0.05. (b) Λ= 0.5.

Figure 1: Plot of the real part of the integrand in (5) with pt = i x +Λ.

1.3.2 Comparing F with Ponsot and Teschner’s formula

We also compared the proposal (9) and Ponsot-Teschner’s formula (3) for the following values
of the parameters:











b
P1
P2
P3
P4











=











0.77
0.5i
0.6i

0.18i
0.31i











, Ps = 0.35 , Pt = 0.65 .

In this case, the only parameter which controls the accuracy is the truncation order T of the
series. At these values of the parameters, the Ponsot-Teschner formula gives approximatively
0.154 + 2.61×10−22i. We then performed the following calculations:

T |(9)− (3)|
0 1.7 ×10−2

1 6.9 ×10−4

3 2.9 ×10−6

5 8.3 ×10−9

7 1.5 ×10−11

9 2.6 ×10−14

12 4.5 ×10−16

1.4 Relation to earlier works of Ruijsenaars

The shift operators diagonalized by the fusion (resp. modular) kernels correspond to rank one,
quantum relativistic Calogero-Moser Hamiltonians with a hyperbolic potential and associated
with the root system BC1 (resp. A1) [27]. Ruijsenaars’ R and R-functions [29,35] (which, up
to normalization, are equal to the fusion and modular kernels [27]), were constructed as joint
eigenfunctions of these Hamiltonians and then interpreted as kernels of a unitary eigenfunction
transform [32,35].

Ruijsenaars derived a rigorous series representation for the R-function in [31], and our
proposal (20) for M is essentially a rewriting of his findings. In particular, he already wrote
the series (26) in [31, Equations (2.4), (2.59)], however, he admittedly treated it as a formal
series and did not study its analytic properties.
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Ruijsenaars obtained the series (26) indirectly by first considering the case

P0 = P(m,n)
0 =

iQ
2
− inb−

im
b

, n, m ∈ Z . (30)

For this special case, he constructed in [30] explicit series solutions of the shift equations which,
as opposed to (26), are finite series. Then, since for b2 irrational the set of values (30) is dense
in the imaginary line, he calculated the interpolation limit in [31] and arrived to the formal
series (26). He also provided similar ideas in the case of the R-function in [34], however, he
did not write explicit formulas due to their higher complexity.

The novelty of the present article as opposed to Ruijsenaars’ works is the introduction of the
kernels F̂ and M̂, and their interpretation as kernels of the fusion and modular transformations
for c < 1. It would be interesting to understand how Ruijsenaars’ construction of unitary
eigenfunction transforms involving F and M as kernels generalize to the case of F̂ and M̂, and
how conformal blocks (which do not appear in his works) fit into this framework.

1.5 Discussion and outlook

Below, we mention several other directions that deserve further investigation.

1. It is important to understand better the analytic properties of the series f (15), and to
verify that the ones of F are inherited from those of f . To this end, it would be helpful to
relate f to known objects. In fact, it was showed in [14, Theorem 4.2] that in the special
case Ps =

iQ
2 + P1 + P2 + inb where n ∈ Z≥0, the Virasoro fusion kernel reduces to the

celebrated Askey-Wilson polynomials with a quantum deformation parameter q = e2iπb2
.

These polynomials are essentially a basic q-hypergeometric series 4φ3 [12]. This leads
us to expect that the series,

∞
∑

k=0

αk(b, Ps)e
−2πbkPt , (31)

can also be related to a basic q-hypergeometric series n+1φn for some n, and where
q = e2iπb2

. We plan to resort to this question in the future.

2. The limit (7) implies that the coefficients αn in (16) reduce to µn (28). This is highly
nontrivial and suggests that there exists a simpler, fully explicit representation for αn in
terms of q-Pochhammer symbols.

3. In [7], Ghosal, Remy, Sun and Sun provided a rigorous probabilistic construction of
the four-point spherical conformal blocks and proved the fusion transformation (1) for
c > 25 in a certain region of the parameter space. The case of the one-point toric
conformal blocks was also proved in [8]. It would be interesting to obtain our formulas
for F and M within their framework.

2 Formal derivation of the result and some properties

In this section we show that the proposals (9) for F(b)Ps ,Pt

�P2 P3

P1 P4

�

and (10) for F̂(i b)iPs ,iPt

�iP2 iP3

iP1 iP4

�

satisfy the same expected shift equations in Ps and Pt , and we discuss some of their properties.
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2.1 Solving the renormalized shift equations

The Virasoro fusion kernel is known to satisfy two pairs of shift equations in Ps and Pt [27].
More precisely, define the shift operators

H(b)Ps

�P2 P3

P1 P4

�

:= h(Ps)e
i b∂Ps + h(−Ps)e

−i b∂Ps + VPs

�P2 P3

P1 P4

�

, (32)

H̃(b)Pt

�P2 P3

P1 P4

�

:= h̃(Pt)e
i b∂Pt + h̃(−Pt)e

−i b∂Pt + VPt

�P2 P1

P3 P4

�

, (33)

with e±i b∂Ps y(Ps) := y(Ps ± i b) and where

h(Ps) = 4π2
Γ
�

1+ 2b2 − 2i bPs

�

Γ
�

b2 − 2i bPs

�

Γ (−2i bPs) Γ
�

1+ b2 − 2i bPs

�

∏

ε,ε′=±1 Γ
�

bQ
2 − i b(Ps + εP3 + ε′P4)

�

Γ
�

bQ
2 − i b(Ps + εP1 + ε′P2)

� ,

h̃(Pt) = 4π2
Γ
�

1− b2 + 2i bPt

�

Γ (1+ 2i bPt)Γ
�

2i bPt − 2b2
�

Γ
�

2i bPt − b2
�

∏

ε,ε′=± Γ
�

1−b2

2 + i b
�

Pt + εP1 + ε′P4

�

�

Γ
�

1−b2

2 + i b (Pt + εP3 + ε′P2)
� ,

and

VPs

�P2 P3

P1 P4

�

= −2cosh (2πb(P2 + P3 +
i b
2 )) (34)

+ 4
∑

k=±

∏

ε=± cosh (πb(εP4 −
i b
2 − P3 − kPs)) cosh (πb(εP1 −

i b
2 − P2 − kPs))

sinh
�

2πb(kPs +
i b
2 )
�

sinh (2πbkPs)
.

Then, the Virasoro fusion kernel satisfies [27]

H(b
±1)

Ps
F(b)Ps ,Pt

= 2cosh(2πb±1Pt)F
(b)
Ps ,Pt

, (35)

H̃(b
±1)

Pt
F(b)Ps ,Pt

= 2cosh(2πb±1Ps)F
(b)
Ps ,Pt

. (36)

Ribault and Tsiares found in [26] that the image of F under the Virasoro-Wick rotation,

RF(b)Ps ,Pt

�P2 P3

P1 P4

�

:=
Pt

Ps
F(i b)iPt ,iPs

�iP2 iP1

iP3 iP4

�

, (37)

satisfies the same shift equations. As described in the introduction, the issue is that RF is odd
in Ps and Pt , hence it is a nonphysical solution of the shift equations.

We now show that both the proposals (9) and (10) satisfy the shift equations (35) and (36).
By evenness of the equations in Ps, this is equivalent to showing that both F+,(b)

Ps ,Pt

�P2 P3

P1 P4

�

(11)

and F̂+,(β)
ps ,pt

�p2 p3
p1 p4

�

(12) satisfy (35) and (36). We start by observing that the following equalities
between shift operators hold:

K(b)Ps ,Pt

�P2 P3

P1 P4

�

D(b)Ps

�P2 P3

P1 P4

��

K(b)Ps ,Pt

�P2 P3

P1 P4

��−1
= H(b)Ps

�P2 P3

P1 P4

�

, (38)

K(b)Ps ,Pt

�P2 P3

P1 P4

�

D̃(b)Pt

�P2 P3

P1 P4

��

K(b)Ps ,Pt

�P2 P3

P1 P4

��−1
= H̃(b)Pt

�P2 P3

P1 P4

�

, (39)

as well as

K̂(i b)iPs ,iPt

�iP2 iP3

iP1 iP4

�

D(b)Ps

�P2 P3

P1 P4

��

K̂(i b)iPs ,iPt

�iP2 iP3

iP1 iP4

��−1
= H(b)Ps

�P2 P3

P1 P4

�

, (40)

K̂(i b)iPs ,iPt

�iP2 iP3

iP1 iP4

�

D̃(b)Pt

�P2 P3

P1 P4

��

K̂(i b)iPs ,iPt

�iP2 iP3

iP1 iP4

��−1
= H̃(b)Pt

�P2 P3

P1 P4

�

, (41)
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where D and D̃ are given by4

D(b)Ps

�P2 P3

P1 P4

�

:= e−i b∂Ps + A(b)Ps

�P2 P3

P1 P4

�

ei b∂Ps + V (b)Ps

�P2 P3

P1 P4

�

, (42)

D̃(b)Pt

�P2 P3

P1 P4

�

:= D(b)Pt

�P2 P1

P3 P4

�

, (43)

with

A(b)Ps

�P2 P3

P1 P4

�

=
16cosh(πb(Ps ± P1 ± P2 +

i b
2 )) cosh(πb(Ps ± P3 ± P4 +

i b
2 ))

sinh(2πbPs) sinh(2πb(Ps +
i b
2 ))2 sinh(2πb(Ps + i b))

. (44)

These identities can be verified utilizing the shift identities for the double Gamma function

Γb(z + b)
Γb(z)

=
p

2π bbz− 1
2

Γ (bz)
, (b→ b−1) . (45)

Next, (38) and (39) can be used to rewrite the shift equations (35) and (36) for F+,(b)
Ps ,Pt

�P2 P3

P1 P4

�

in terms of shift equations for the series f :

D(b
±1)

Ps

�P2 P3

P1 P4

�

f (b)Ps ,Pt

�P2 P3

P1 P4

�

= 2cosh(2πb±1Pt) f
(b)
Ps ,Pt

�P2 P3

P1 P4

�

, (46)

D̃(b
±1)

Pt

�P2 P3

P1 P4

�

f (b)Ps ,Pt

�P2 P3

P1 P4

�

= 2cosh(2πb±1Ps) f
(b)
Ps ,Pt

�P2 P3

P1 P4

�

. (47)

Similarly, (40) and (41) imply that (35) and (36) for F̂+,(β)
ps ,pt

�p2 p3
p1 p4

�

are equivalent to

D(b
±1)

Ps

�P2 P3

P1 P4

�

f (i b)iPs ,iPt

�iP2 iP3

iP1 iP4

�

= 2cosh(2πb±1Pt) f
(i b)
iPs ,iPt

�iP2 iP3

iP1 iP4

�

, (48)

D̃(b
±1)

Pt

�P2 P3

P1 P4

�

f (i b)iPs ,iPt

�iP2 iP3

iP1 iP4

�

= 2cosh(2πb±1Ps) f
(i b)
iPs ,iPt

�iP2 iP3

iP1 iP4

�

. (49)

It is now readily seen that (46) and (47) imply (48) and (49), because the shift operatorsD and
D̃ are invariant under the transformations b→ i b and Pj → iPj , j = 1,2, 3,4, s, t. It then re-
mains to show that (46) and (47) hold. Notice from (16) that e±i b∂Psαl(b−1, Ps) = αl(b−1, Ps).
Then, substitution of (15) into (46) with the plus sign leads to

e2iπPs Pt

∞
∑

k=0

∞
∑

l=0

αl(b
−1, Ps)
�

αk+1(b, Ps − i b) +αk−1(b, Ps + i b)A(b)Ps

+αk(b, Ps)V
(b)
Ps
−αk−1(b, Ps)−αk+1(b, Ps)

�

e−2πkbPt e−
2πl Pt

b = 0 .

We now claim that the family of coefficients αn defined in (16) is the unique solution of the
shift-recurrence relation

αk+1(b, Ps − i b) +αk−1(b, Ps + i b)A(b)Ps
+αk(b, Ps)V

(b)
Ps
−αk−1(b, Ps)−αk+1(b, Ps) = 0 , (50)

which satisfies αn(b, Ps)→ 0 as Re (Ps)→ +∞. We conclude that the series f satisfies the two
shift equations (46), since f is invariant under b → b−1. Finally, we verified numerically in
the domain of convergence of the series that

f (b)Ps ,Pt

�P2 P3

P1 P4

�

= f (b)Pt ,Ps

�P2 P1

P3 P4

�

. (51)

Therefore, f also verifies (47). Let us remark that we do not have an analytic proof that αn
in (16) satisfies (50), however, we verified it numerically up to k = 50.

4The shift operators D and D̃ were first introduced by Ruijsenaars in [33].
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Finally, Ruijsenaars rigorously proved in [33] the leading asymptotics of of the R-function
(which is essentially F [27]) as Re Pt → +∞. By evenness in Pt , the case Re Pt → −∞
obviously follows. We added a phase in (13) (which does not affect the shift equations) so
that our formula (9) reduces exactly to Ruijsenaars’ asymptotic result when only the first term
in the series f is kept. We believe this requirement eliminates the need to study the shift
equations in the external momenta satisfied by the fusion kernel [3]. Moreover, we added a
similar phase and a factor -i in (14) so that our proposals behave under Virasoro-Wick rotations
just like in (37).

2.2 The Virasoro-Wick rotation

Our proposals (9) and (10) for the Virasoro fusion kernels at c > 25 and c < 1 resemble each
other. In fact, the components F± and F̂± are related by a Virasoro-Wick rotation (37). More
precisely, in this section we show that for j = ± we have

RF j,(b)
Ps ,Pt

�P2 P3

P1 P4

�

= − jiF̂ j,(β)
ps ,pt

�p2 p3
p1 p4

�

. (52)

The case j = + is straightforward, because thanks to the identity (51) the two series cancel
each other. It then suffices to handle the ratios of Γi b functions by using the shift identity (45).
The case j = − necessitates an extra step. More precisely, we have

RF−,(b)
Ps ,Pt

�P2 P3

P1 P4

�

iF̂−,(β)
ps ,pt

�p2 p3
p1 p4

�
=

pt

ps

K(β)−pt ,ps

�p2 p1
p3 p4

�

K̂(β)−ps ,pt

�p2 p3
p1 p4

�

f (β)−pt ,ps

�p2 p1
p3 p4

�

f (β)−ps ,pt

�p2 p3
p1 p4

�
. (53)

We then use the identity (67) as well as the definition Sβ(z) = Γβ(z)/Γβ(Q̂−z). The remaining
part of the computation is straightforward: the resulting ratio of functions Γβ simplifies nicely
thanks to (45).

2.3 Domain of convergence of the series f

We now formulate a conjecture regarding the convergence of the series (31). A similar con-
jecture can be formulated for the series entering the modular kernel.

Conjecture 1 Let b2 /∈Q and such that b2 is not a Liouville number, that is,

∃m, q0 ∈ N , ∀(p, q) ∈ Z×Z≥q0
,

�

�

�

�

b2 −
p
q

�

�

�

�

>
1

qm
. (54)

Then, the series (31) has a positive radius of convergence whose value depends on
b, Ps, P1, P2, P3, P4.

The motivation for this conjecture originates from the expectation that the series (31) can be
related to a basic q-hypergeometric series with q = e2iπb2

(see the beginning of Section 1.5).
In fact, it was showed in [18] that if b2 is irrational and not a Liouville number, then basic
q-hypergeometric series of type n+1φn with |q| = |e2iπb2

| = 1 have a positive radius of con-
vergence which depends on its parameters. If such conditions on b are not met, n+1φn may
diverge. Finally, we notice that the assumptions on b2 in Conjecture 1 appear natural because,
recalling the definition (16) of the coefficients αn, the assumption that b2 /∈ Q implies that
sin(nπb2) ̸= 0, whereas the assumption that b2 is not a Liouville number implies that 1

sin(nπb2)
admits a polynomial bound as n→∞ [23].5

5We thank Sylvain Ribault for suggesting the importance of b2 not being a Liouville number.
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The assumption on b2 cannot be realized numerically. Instead, we conducted numerical
tests of convergence by choosing b2 = M/N with M and N coprime integers and with M , N
sufficiently large. We could always find a pair (b, Pt) such that |exp(−2πbPt)| is small enough
and so that the series converges quickly. However, whenever |exp(−2πbPt)| ≥ 1 the series
does not seem to converge. This suggests that the radius of convergence of the series is always
smaller than 1. In particular, one assumption which seems necessary for convergence is that
Re(Pt)> 0.

In the cases β ∈ R and pt , ps ∈ iR (which are relevant for Liouville theory with c ≤ 1 [25]),
we have |exp(−2πβ±1pt)| = 1, and the series f (β)ps ,pt

�p2 p3
p1 p4

�

apparently diverges. However, in
the fusion transformation (5) a nonzero real value Λ is added to pt . We can choose it to be
positive and large enough so that the series converges.

Ribault and Tsiares’ conjecture [26]

On the first hand, if Conjecture 1 is true, it is likely to imply that there exists a region in the
parameter space for which the series f is absolutely convergent and meromorphic. On the
other hand, Ribault and Tsiares conjectured in [26] that the physical fusion kernel for c < 1 is
a distribution. This seems to lead to a contradiction. However, we believe that these two facts
are consistent with each other for the following reason (see also [26] for a similar discussion).

The relation between our series representation (9) for F and Ruijsenaars’ asymptotic re-
sult [33] (see Section 2.1) strongly suggests that (9) should be understood as a complete
asymptotic expansion of the Ponsot-Teschner formula (3) as Re Pt > δ and for some suffi-
ciently large δ. By analogy with the case of F, it could well be that there exists a distribution
which is manifestly even in Pt and whose asymptotic expansion for Re(Pt) > δ corresponds
to (10).

Uniqueness of the solutions of the shift equations for c /∈Q and c ∈ C\(−∞, 1]

On the first hand, for c /∈ Q and c ∈ C\(−∞, 1] the solution space of the shift equations con-
sisting of meromorphic functions forms a one-dimensional vector space over C and is spanned
by F [3]. On the other hand, we observed that both the components F+ and F− satisfy the shift
equations and can be used as integral kernels in (1). This observation does not contradict
the results of [3], since F± do not belong to the solution space of [3]. Indeed, while F± are
certainly not meromorphic for Re(Pt) < 0, one crucial assumption of [3] is that, as functions
of Pt , the solutions are meromorphic across the entire complex plane.

2.4 The limit b2 rational

If b2 = M
N with M and N coprime integers, then it can be seen from (17) that the coefficients

φnn (and, therefore, αn(b, Ps)) diverge for n ≥ N . Similarly, in this case we also have that
αn(b−1, Ps) diverges for n ≥ M . However, rather surprisingly, it might well be that the series
f itself has a well-defined limit as b2→ M

N .6 For instance, in the case b2 = 1 we observed that
the first two terms in the series, namely,

α1(b, Ps)e
−2πbPt +α1(b

−1, Ps)e
−2πb−1Pt ,

α2(b, Ps)e
−4πbPt +α2(b

−1, Ps)e
−4πb−1Pt +α1(b, Ps)α1(b

−1, Ps)e
−2πbPt e−2πb−1Pt ,

have a well-defined limit as b→ 1. Moreover, the numerical tests of the fusion transformation
(5) were performed for β2 = 9

25 . This indicate that the apparent divergence of the series f at
rational values of β2 is merely an artifact of the formulas, and the limit should be well-defined.

6A similar observation was made by Ruijsenaars in the case of the series g entering M [31].
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We then conjecture that the limit β2 rational of f is well-defined. If true, it would mean
that the limits of F as c → 25 and of F̂ as c → 1 are well-defined. It would be interesting
to compare such limits with the known fusion kernels. At c = 1, it is proportional to the
connection constant for the Painlevé VI tau function [5,11], whereas at c = 25 a non-integral
representation was recently constructed by Ribault and Tsiares in [26].

2.5 W (D4) invariance of f

It was observed in [13] that the Virasoro conformal blocks possess discrete symmetries under
three flips si : Pi →−Pi for i = 1,2, 3 and under the so-called Regge-Okamoto transformation
sδ : Pi → Pi − δ with δ = 1

2

∑4
i=1 Pi . These four transformations generate the Weyl group

W (D4) of the Lie algebra of type D4 (notice that the fourth flip s4 is a certain product of the
generators [13]).

It can readily be observed that the shift operators D and D̃ in (42) and (43) – which admit
the series f as a joint eigenfunction – are W (D4)-invariant (this was noticed first by Ruijsenaars
in [33]). Although this does not necessarily imply that f also has this invariance, we expect
it to be true. In fact, the coefficient α1 in (19) is clearly W (D4)-invariant, and we verified
numerically that all αn up to high order n also have this invariance.

3 Consistency checks

3.1 The cases c = 1 and c = 25 with special external momenta

We now show that for special external momenta, namely ∆(Pi) =
15
16 (resp. ∆(Pi) =

1
16), the

fusion kernels F for c → 25 (resp. F̂ for c → 1) have well defined limits which correspond to
the known formulas [26]. More precisely, we have

lim
b→1

F±,(b)
Ps ,Pt

� i b
4

i b
4

i b
4

i
2b−

i b
4

�

= ∓i
Pt

Ps
16P2

s −P2
t e±2iπPs Pt , (55)

lim
β→1

F̂±,(β)
ps ,pt

�

iβ
4

iβ
4

iβ
4

i
2β −

iβ
4

�

= 16p2
t−p2

s e±2iπps pt , (56)

which implies that

lim
b→1

F(b)Ps ,Pt

� i b
4

i b
4

i b
4

i b
4 −

i
2b

�

=
Pt

Ps
16P2

s −P2
t sin(2πPsPt) , (57)

lim
β→1

F̂(β)ps ,pt

�

iβ
4

iβ
4

iβ
4

i
2β −

iβ
4

�

= 16p2
t−p2

s cos(2πpspt) . (58)

The cases c = 25 and c = 1 are proved in the same way, hence let us focus on c = 25. Notice
that it is a priori puzzling that we do not send all Pi ’s to i b/4. The key is that by continuity,
it should not matter how we approach the values Pi = i/4. However, we observed that the
way (57) approaches the limit makes the computation trivial, as we see below.

We consider the limit (57) of F+,(b), since the case of F−,(b) consists of sending Ps → −Ps.
The crucial observation is that all coefficientsφnn(P1, P2, P3, P4) andφnn(P1, P2+

i
2b , P3+

i
2b , P4),

as well as their b→ b−1 counterparts, vanish for all n> 0 at P1 = P2 = P3 =
i b
4 and P4 =

i b
4 −

i
2b .

This implies that at these values α>0(b, Ps) = α>0(b−1, Ps) = 0. Therefore, only the terms
k = l = 0 in the sum (15) are nonzero and we obtain

f (b)Ps ,Pt

� i b
4

i b
4

i b
4

i b
4 −

i
2b

�

= e2iπPs Pt . (59)
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It remains to compute the limit of the prefactor K . Utilizing the identity

Γ1(z) =
(2π)

z−1
2

G(z)
, (60)

where G(z) is the Barnes G-function, we obtain

lim
b→1

K(b)Ps ,Pt

� i b
4

i b
4

i b
4

i b
4 −

i
2b

�

= i(2π)−2i(Ps+Pt )
G(2− 2iPt)G(−2iPt)
G(2+ 2iPs)G(2iPs)

G(1
2 + iPs)2G(1+ iPs)4G(3

2 + iPs)2

G(1
2 − iPt)2G(1− iPt)4G(3

2 − iPt)2
.

Thanks to the doubling identity

G(2z) = C 22z(z−1)(2π)−zG(
1
2
+ z)2G(1+ z)G(z) , (61)

where C is an unimportant constant, as well as G(1+ z) = Γ (z)G(z) and Γ (1+ z) = zΓ (z), we
arrive at

lim
b→1

K(b)Ps ,Pt

� i b
4

i b
4

i b
4

i b
4 −

i
2b

�

= i16P2
s −P2

t
G(1+ iPs)2

G(2+ iPs)G(iPs)
G(2− iPt)G(−iPt)

G(1− iPt)2
(62)

= i16P2
s −P2

t
Γ (iPs)
Γ (1+ iPs)

Γ (1− iPt)
Γ (−iPt)

= −i16P2
s −P2

t
Pt

Ps
,

which leads to the desired result.

3.2 Crossing symmetry of Liouville theory

In this section we show that each component F± and F̂± individually satisfies the crossing
symmetry equations of Liouville theory on the four-point Riemann sphere. This is perhaps not
surprising, since we verified numerically that each component individually satisfies the fusion
transformation.

There exists a normalization of the primary fields in which the two and three-point corre-
lation functions of Liouville theory for c ∈ C\(−∞, 1] are [22]

B(b)P =
∏

±
Γb(±2iP)Γb(Q± 2iP) , C (b)P1,P2,P3

=
∏

±,±,±
Γb(

Q
2 ± iP1 ± iP2 ± iP3) . (63)

Similarly, for c ≤ 1 we have

B̂(b)P =
1

4P2B(i b)iP

, Ĉ (b)P1,P2,P3
=

1

C (i b)iP1,iP2,iP3

. (64)

The crossing symmetry equations for the four-point correlation function on the sphere for
c ∈ C\(−∞, 1] and c ≤ 1 can then be recasted in terms of the fusion kernels:

C (b)P1,P2,Ps
C (b)Ps ,P3,P4

B(b)Ps

F(b)Ps ,Pt

�P2 P3

P1 P4

�

=
C (b)P2,P3,Pt

C (b)P1,P4,Pt

B(b)Pt

F(b)Pt ,Ps

�P2 P1

P3 P4

�

, (65)

Ĉ (b)P1,P2,Ps
Ĉ (b)Ps ,P3,P4

B̂(b)Ps

F̂(i b)iPs ,iPt

�iP2 iP3

iP1 iP4

�

=
Ĉ (b)P2,P3,Pt

Ĉ (b)P1,P4,Pt

B̂(b)Pt

F̂(i b)iPt ,iPs

�iP2 iP1

iP3 iP4

�

. (66)
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Thanks to the duality (51), it can readily be verified that F+ and F̂+ satisfy (65) and (66),
respectively (note that for the latter we also need the shift identity (45)). It then remains to
show that F− and F̂− satisfy the same equations. However, in this case the series do not trivially
cancel. Keeping track of all factors, we find that F− and F̂− respectively satisfy (65) and (66)
if the series f satisfies

f (b)−Ps ,Pt

�P2 P3

P1 P4

�

f (b)−Pt ,Ps

�P2 P1

P3 P4

� = u(b)Ps

�P2 P3

P1 P4

�

u(b)−Pt

�P2 P1

P3 P4

�

, (67)

where

u(b)Ps

�P2 P3

P1 P4

�

=
Sb(Q+ 2iPs)
Sb(Q− 2iPs)

Sb(
Q
2 − iP1 ± iP2 − iPs)Sb(

Q
2 − iP3 ± iP4 − iPs)

Sb(
Q
2 − iP1 ± iP2 + iPs)Sb(

Q
2 − iP3 ± iP4 + iPs)

.

We verified this identity numerically up to high order in the domain of convergence of the
series. Let us finally mention that an identity similar to (67) in the case of the one-point torus
satisfied by the series g (26) was proved by Ruijsenaars, see [31, Equation (2.29)].

3.3 Pairwise identical external operators with exchange of the identity in the
S-channel

In the case of pairwise identical external operators with exchange of the identity in the S-
channel, that is, P1 = P2, P3 = P4 and Ps =

iQ
2 , it is well-known [2,3] that the Virasoro fusion

kernel reduces to a renormalized version of the structure constants (63) of Liouville theory
with c > 25. More precisely, denoting

C0(P1, P2, P3) :=
1
p

2

Γb(2Q)
Γb(Q)3

C (b)P1,P2,P3
∏3

j=1 Γb(Q± 2iPj)
, (68)

ρ0(P) :=
p

2
Sb(2iP)Sb(−2iP)

= 4
p

2 sinh(2πbP) sinh(2πb−1P) . (69)

We have7

2F(b)iQ
2 ,Pt

�P1 P4

P1 P4

�

= C0(P1, P4, Pt)ρ0(Pt) . (70)

We verified numerically that our proposal satisfies this identity. More specifically, the series f
entering F± appear to be well-defined in this limit, however, F+ vanishes because the prefactor
K has a zero coming from Γb-functions. Therefore, our proposal satisfies (70) provided that

F(b),−iQ
2 ,Pt

�P1 P4

P1 P4

�

= C0(P1, P4, Pt)ρ0(Pt) . (71)

This boils down to yet another mysterious identity satisfied by f

f (b)
− iQ

2 ,Pt

�P1 P4

P1 P4

�

= e−2iπ(Q2−1
8 +P2

1+P2
4 )Sb(Q− 2iPt)Sb

�Q
2 ± iP1 ± iP4 + iPt

�

, (72)

that we verified numerically in its domain of convergence.

7There is a factor 2 in the left-hand side because we defined F as the kernel of the fusion transformation (1)
where the integral is taken on R and not R+.
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3.4 The modular S matrix for the Virasoro characters

When the external field is the identity field, that is P0 =
iQ
2 , the Virasoro modular kernel M

becomes proportional to the modular S matrix for the Virasoro characters [2]. We now verify
that the formula (20) satisfies this limit. In fact, when P0 =

iQ
2 (that is, α0 = 0) the coefficients

µ in (28) satisfy µ≥1 = 0. A straightforward computation then shows that

M±,(b)
Ps ,Pt

�

iQ
2

�

=
p

2 e±4iπPs Pt , (73)

hence we have

M(b)Ps ,Pt

�

iQ
2

�

=
p

2 cos(4πPsPt) , (74)

as expected from [2].
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