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Abstract

In the field of superconducting electronics, the on-chip generation of AC radiation is
essential for further advancements. Although a Josephson junction can emit AC radiation
from a purely DC voltage bias, the coherence of this radiation is significantly limited
by Johnson-Nyquist noise. We relate this limitation to the thermodynamic uncertainty
relation (TUR) in the field of stochastic thermodynamics. Recent findings indicate that
the thermodynamic uncertainty relation can be broken by a classical pendulum clock. We
demonstrate how the violation of the TUR can be used as a design principle for radiation
sources by showing that a superconducting clock circuit emits coherent AC radiation
from a DC bias.
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1 Introduction

In recent years, there has been growing interest in superconducting circuits with a high char-
acteristic impedance above the quantum resistance Z0 ≳ RQ = 2πħh/(2e)2 = 6.45kΩ, where ħh
is the reduced Planck constant and e is the electron charge. These devices have potential appli-
cations in quantum information processing, where they can be used in novel designs of robust
qubits such as the fluxonium [1–3] and the 0-π qubit [4–6] as well as in quantum metrology,
where high impedance circuits are used to create Dual Shapiro steps [7–10]. While metrolog-
ical precision is yet to be achieved, these steps are a promising candidate for completing the
long-attempted redefinition of electrical units by connecting current to frequency [7]. In all of
these applications, the supply of AC signals to the circuit is an essential requirement. However,
it turns out that an external AC supply has to overcome major experimental challenges. The
impedance mismatch between the device and the low-impedance biasing lines leads to a loss
of power as well as a distortion of the driving pulses [11]. In addition, the biasing circuitry
introduces stray capacitances that can destroy the required high-impedance environment al-
together [12]. Furthermore, superconducting quantum processors require a large overhead
of external AC lines, which poses challenges for scalability and miniaturization. A possible
solution to these problems is the use of coherent on-chip radiation sources that only require
an external DC bias [13]. Development in recent years brought forth a variety of on-chip
microwave sources based on Josephson junctions that are coupled to a resonator. The im-
plementations range from bright single photon sources [14, 15] to continuous wave devices
which are based on either using a Josephson junction to pump a laser [16,17] or the coherent
self-synchronization of Josephson oscillations [18,19].

The AC Josephson effect [20] is a natural contender for an AC source since the current-to-
phase relation I(Y ) = Ic sin(Y ) of a Josephson junction produces sinusoidal current oscillations
with an amplitude given by the critical current Ic under a constant voltage bias V = ħhẎ /2e.
However, as a consequence of thermal fluctuations, a real voltage source—modeled by an ideal
current bias I0 in parallel with a large conductance G—produces Johnson-Nyquist noise that
strongly limits the coherence of the resulting radiation [21–23]. It has been understood for
a long time that the limited stability of the resulting radiation does not allow for the use of a
bare junction as a stable on-chip source in practical applications. At fixed bias current I0 and
finite temperature T , the dephasing rate ΓJ of the Josephson oscillations fulfills [22,23]

ΓJ = 〈〈Y 2(t)〉〉/t =
�

2e
ħh

�2

2kB TR2
d

I0

V0
, (1)
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with Boltzmann’s constant kB, the DC voltage drop V0 across the junction, and the resulting
differential resistance Rd = dV0/dI0. We denote the variance (mean) of Y with respect to the
thermal fluctuations by 〈〈Y 2〉〉 (〈Y 〉). For any bias current above the critical current I0 > Ic , the
differential resistance is larger than the Ohmic resistance of the biasing conductance Rd G ≥ 1.
As a result, ΓJ is larger than the dephasing rate Γ0 = 8e2kB T/(ħh2G) for free diffusion across
the bare Ohmic conductance. With the oscillation frequency ω0 = 2eV0/ħh, this results in an
upper bound Q0 =ω0/Γ0 = ħhω0GRQ/(4πkB T ) for the quality factor of Josephson oscillations.

This limitation can be viewed as a direct result of the Thermodynamic Uncertainty Relation
(TUR) [24] from the field of stochastic thermodynamics. The TUR describes a trade-off be-
tween the precision of general integrated currents and the entropy production of a Markovian
system in a non-equilibrium steady state. The statement of the TUR is given by

〈〈Y 2(t)〉〉
〈Y (t)〉2

σt ≥ 2kB , (2)

with the entropy production rate σ as a measure of the energetic cost required to maintain
the corresponding non-equilibrium steady state. In the case of a current bias, the entropy
production rate of a steady state is determined by the average power output of the source
which is dissipated into the heat bath σ = ħhI0〈Y (t)〉/(2eT t). This consideration is analogous
to the one presented in [25].

While originally formulated for systems with discrete states [26], the TUR is also applicable
to overdamped Langevin equations [27, 28] which are the common framework to describe
Josephson radiation. While local violations of the TUR can be achieved through a phase locking
to an external signal [29], as used to create Shapiro steps [30,31], a self-sustained oscillation
with high precision is not possible for overdamped systems. However, it was recently shown
that the TUR does not hold for underdamped systems since it can be broken by a classical
pendulum clock [25].

In this paper, we present a superconducting clock circuit that functions as a coherent self-
sustained oscillator based on the AC Josephson effect. The minimal model of a pendulum clock
presented in [25] consists of a counter and an oscillator, which are coupled by an escapement.
The escapement is the crucial component of pendulum clocks since it provides an effective
protection against environmental disturbance that established the pendulum clock as the pre-
cision standard in timekeeping for centuries [32]. We show that the circuit in Fig. 1 realizes
a pendulum clock with a simple escapement potential. Starting from a quantum mechanical
description of the oscillator, we perform the classical limit of large photon numbers to derive
an effective model in terms of Adler-type equations. Similar to [33], we identify the result-
ing synchronization as the origin of the TUR violation of the counter. Finally, we identify a
parameter that allows for increased coherence of the oscillator compared to a bare Josephson
junction which allows for usage of the circuit as a stable on-chip radiation source.

2 Classical model

In a minimal setting, a pendulum clock requires two degrees of freedom—an underdamped
oscillator X that supplies a stable periodic motion and an overdamped counter Y that moves
at a constant velocity determined by the frequency of the oscillation. The crucial property of
a clock is the fact that it produces stable oscillations at the frequency of the oscillator with-
out relying on an external signal. This can be achieved through an escapement potential1

1In [25], the escapement potential is of the form Vc(X , Y ) = κ[X − sin(Y )]2/2. This potential acts like a spring
that enforces the motion of the clock along a trajectory X (Y ) that corresponds to a pendulum clock. However,
the most important term for this is the coupling term corresponding to our escapement potential. The other terms
mostly renormalize the frequency of the oscillator and the counting velocity which for the most part just complicates
the analytical treatment of the problem as well as the construction of an appropriate circuit.
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Figure 1: Superconducting clock circuit consisting of a Josephson junction with a
real voltage bias that is coupled to an RLC-resonator via a second identical Josephson
junction. At half a magnetic flux quantum threaded through the resulting loop, the
circuit realizes an escapement coupling.

Vc(X , Y ) = −κX sin Y with a coupling parameter κ that fulfills a twofold purpose [25]. On the
one hand, it translates a linear motion of the counter to a periodic drive on the oscillator which
is necessary to maintain a steady oscillation. On the other hand, it regulates the velocity of
the counter through a constant force caused by a down-conversion of the oscillation.

A minimal model for a classical pendulum clock with a counter Y and an oscillator X is
given by [25]

Γ Ẏ = f + κX cos Y , Ẍ + γẊ +ω2
0X = κ sin Y , (3)

where the counter performs an overdamped motion with a damping constant Γ and a constant
force f provided by an energy supply akin to the motion of a weight in a grandfather clock that
is pulled down by gravity. The resulting terminal velocity enables to relate the position of the
counter to the time that has passed. In the presence of thermal fluctuations arising from the
dissipation, the constant force obtains a stochastic component that limits the accuracy of the
counter according to the TUR. To allow for more precise timekeeping, the counter is coupled
to an underdamped oscillator with frequencyω0 and a small damping constant γ≪ω0 corre-
sponding to a pendulum. The inertia of the oscillator Ẍ allows the clock to achieve precision
beyond the TUR since it only holds for overdamped dynamics.

The essential dynamics of the clock can be captured by the ansatz of a regulated linear
motion Y = ω0 t + θ (t) for the counter and an oscillation with a time-dependent amplitude
and phase for the oscillator X = Re[A(t)e−i(ω0 t+ϕ(t))]. The external force can be adjusted to
achieve a synchronization between the counter and the oscillator, where the phase variables
become constant in time with θ̇ = ϕ̇ = 0. The resulting counting velocity is determined by
the frequency of the oscillator with Ẏ = ω0 leading to a resonant drive. This yields a stable
oscillation with frequency ω0 and a steady state amplitude κ/(ω0γ) that does not require an
external periodic drive.

3 Circuit setup

In Fig. 1, we present a superconducting circuit that implements the model of a pendulum
clock. It consists of a real voltage source with a bias current I0 and a biasing conductance G
that is coupled to a parallel RLC-resonator with inductance L, capacitance C , and conductance
Gx that models the photon loss from the resonator. The counting degree of freedom is given
by the superconducting phase Y that corresponds to the integrated voltage drop across the
conductance with V0 = ħhẎ /(2e). The oscillating degree of freedom is the superconducting
phase X at the resonator. The bare oscillations have a natural frequency ω0 =

p
LC
−1

with a
typical amplitude given by the light-matter coupling constant r = πZ0/RQ that compares the
impedance of the resonator Z0 =

p

L/C to the quantum resistance.
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We realize the escapement coupling through a pair of Josephson junctions with equal crit-
ical currents Ic , one in parallel with the biasing conductance and the other in series with the
resonator. By threading an external magnetic flux Φext through the resulting loop, we realize
a tunable coupling potential

Vc = −
Φ0 Ic

2π

�

cos
�

Y − 2π
Φext

Φ0

�

+ cos(Y − X )
�

, (4)

where Φ0 =
h
2e is the superconducting flux quantum. By tuning the external flux to half a

flux quantum,2 we realize a coupling potential that corresponds to the escapement potential
in Eq. (3) for small oscillation amplitudes X ≪ 2π. A similar circuit has been studied as an
on-chip spectrometer [35, 36] that also exhibits a clock-like resonance within its absorption
lines.

4 Quantum description

In the regime of an underdamped oscillator γ = ω0Z0Gx ≪ ω0, a description of the system
needs to account for quantum effects. In App. A.1, we derive a Hamiltonian action for the
circuit that allows for a quantum mechanical treatment of the system without the resistive
elements. Since a Hamiltonian description cannot account for the dissipative dynamics of the
circuit, we extend it to a Keldysh path integral in App. A.2.

We can obtain effective equations of motion for the circuit by making a rotating-wave
ansatz for the oscillator X̂ =

p
r(âe−iω0 t + â†eiω0 t), where the variations of the photon anni-

hilation operator of the resonator â are slow on the scale of ω0. In the rotating-wave approx-
imation, the state ρ̂ of the oscillator evolves according to a Lindblad equation

˙̂ρ = −
i
ħh
[ĤRW, ρ̂] + γ(n0 + 1)J [â](ρ̂) + γn0J [â†](ρ̂) , (5)

with photon emission and absorption processes described by jump operators
J [Ô](ρ̂) = Ôρ̂Ô† − 1

2{Ô
†Ô, ρ̂}. In the case without coupling, the dissipation enforces a ther-

mal equilibrium state with a Bose-Einstein occupation n0 = 1/{exp[ħhω0/(kB T )] − 1}. We
describe the escapement coupling by a rotating-wave Hamiltonian ĤRW that depends on the
state of the counter with a detailed derivation given in App. A.3.

For the description of the overdamped counter, we consider the regime of localized phase
with RQG ≫ 1 where the quantum fluctuations of the counter Ŷ lie far below 2π [12, 37].
In this regime, the motion is well described by a Langevin equation for the expectation value
Y = 〈Ŷ 〉. Motivated by our classical intuition for a clock, we expect linear growth for the
counter with a velocity regulated by the oscillator. We make the ansatz Y (t) =ω0 t +θ (t). In
the regime of small junction capacitances with C ′/C ≪ 1 andω0C ′≪ G, which we also discuss
in App. A.3, the deviation θ (t) from the resonant counting motion follows an overdamped
Langevin equation

θ̇ =∆ω−
2ω0r
ħhΓ

Tr
�

∂ ĤRW

∂ θ
ρ̂

�

+ ξ(t) , (6)

with a damping rate Γ = ω0Z0G and a stochastic force ξ(t) that arises from the fluctuation
dissipation theorem with 〈ξ(t)ξ(t ′)〉 = 4kB Tω0r/(ħhΓ )δ(t − t ′). Note that the density ma-
trix ρ̂ also depends on the trajectory of the stochastic force since the coupling Hamiltonian
is conditioned on the state of the counter. The bias current corresponds to a constant force

2Note that while an external magnetic field can break the requirements for the TUR [34] this does not happen
at Φext modΦ0 = 1/2 since half a flux quantum preserves the time-reversal symmetry of the system.
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Figure 2: Resulting IV curves for varying light-matter coupling r with effective pa-
rameters κ/ω2

0 = 0.01, γ/ω0 = 0.1, and Γ/ω0 = 10−3. The curves show a pro-
nounced voltage plateau at a voltage corresponding toω0 with a hysteretic behavior
in the plateau region. At r = 10−4 (solid) the numerics match the analytical result for
the classical limit (black dashed) up to the unstable solution in the hysteretic region
(gray dashed).

f =ω0r I0/e that enters into the frequency mismatch∆ω= f /Γ −ω0. The coupling Hamilto-
nian realizes a conservative force that depends on the state of the oscillator. For large photon
numbers 〈n〉ρ = Tr(â†âρ̂) ≫ 1 and small light-matter coupling r〈n〉ρ ≪ 1, we can approxi-
mate the Hamiltonian by

ĤRW

ħh
= i

κ

4ω0
p

r
(âeiθ (t) − â†e−iθ (t)) , (7)

with a coupling parameter κ = ω0r Ic/e. Note that the expectation value with respect to the
density matrix of the oscillator 〈.〉ρ is still conditioned on the thermal fluctuations ξ. The linear
form of the Hamiltonian leads to closed equations of motion for the expectation values of the
photon operators which we present in more detail in App. A.4. On resonance, the steady state
photon number is given by 〈n〉ρ = n0 + ncoh with the coherent contribution

ncoh =
κ2

4rω2
0γ

2
. (8)

To verify the validity of our approximation, we simulate the voltage drop of the counter,
as a function of the external force f , solving Eq. (5) and Eq. (6) with the full rotating-
rotating-wave Hamiltonian given by Eq.(A.11) in App. A.3 at zero temperature with varying
light-matter coupling r. We compare the simulation to our analytical results for the clas-
sical limit with small r and large photon numbers. To achieve a proper classical limit, we
rescale the circuit parameters with r to keep the effective parameters at a constant value of
κ/ω2

0 = 0.01, γ/ω0 = 0.1, and Γ/ω0 = 10−3. According to Eq. (8), the photon number in-
creases with decreasing r. In Fig. 2, we show the resulting IV curves. For all values of r, the
curves exhibit a voltage plateau corresponding to resonance with the oscillator, with hysteretic
features in the plateau region indicating a competition between resonance with the oscillator
and an Ohmic behavior of the counter. At r = 10−4, the photon number is sufficiently large for
the full model to reproduce the analytical results for the classical limit. For increasing r, the
width of the synchronization plateau is increased. We attribute this to a stronger interaction
between the photons in the resonator and the counter, which facilitates stronger synchroniza-
tion effects.

6
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5 Synchronization

At sufficiently small temperatures rn0 ≪ κ2/(ω0γ)2, we can describe the oscillator by a co-
herent state with a complex amplitude 2

p
r Tr(âρ̂) = Ae−iϕ. In this state, the oscillating su-

perconducting phase follows a trajectory Tr(X̂ ρ̂) = Re[Ae−i(ω0 t+ϕ)]. In this regime, the circuit
is described by a set of Adler-type equations

θ̇ =∆ω+
κ

2Γ
Acos(ϕ − θ ) + ξ(t) , Ȧ+ iϕ̇A= −

γ

2
A−

κ

2ω0
e−i(ϕ−θ ) , (9)

which, up to the noise term ξ(t), can also be derived from the purely classical model of a
pendulum clock as we show in App. B.1. This shows that the circuit reproduces the model of
a classical pendulum clock.

Eq. (9) illustrates that the key feature of the clock is a synchronization between the motion
of the counter and the oscillator with a phase locking ϕ(t) − θ (t) = ϕ0 − θ0. Note that the
individual phases ϕ and θ do not need to be slow variables of the scale of ω0 as long as their
difference is slow. This allows for substantial deviations from the bare frequency even within
the rotating-wave approximation. The steady state solutions are given by

A0 = −
κ

γω0

p

1+χ2
, θ̇ = ϕ̇ = −

γ

2
χ , (10)

where χ = tan(ϕ0 − θ0) fulfills the synchronization condition

(χ + 2∆ω/γ)(χ2 + 1) =
κ2

ω0Γγ2
= 2β . (11)

The synchronization strength β determines the range of bias currents, where the deviation
from the resonance is small χ ≪ 1 and the oscillator enforces its frequencyω0 on the counter.
This corresponds to a voltage plateau for the counter with V0 ≈ ħhω0/(2e). For β > 4/

p
27,

Eq. (11) allows for multivalued solutions that, similar to a Duffing oscillator, lead to a hysteretic
behavior of the circuit. For the additional stable solution in the plateau region, the velocity of
the counter remains unaffected by the oscillator which exhibits a small amplitude due to the
resulting off-resonant drive. This behavior also occurs naturally outside the plateau region.

6 TUR violation

As the resonance plateau in the IV curve corresponds to a differential resistance much smaller
than the biasing resistance, analogy with Eq. (1) suggests a strong TUR violation for the
counter. Furthermore, we expect the oscillations of X to be especially stable on resonance. We
numerically analyze the behavior of the circuit at finite temperature
ε/ω0 = 4kB Tr/(ħhΓ ) = 5 × 10−4 to show an explicit violation of the TUR for the counter
and an increase in coherence for the oscillator. We consider the classical limit of large photon
numbers with the same circuit parameters as in Fig. 2. In Fig. 3(a) and Fig. 3(b), we show the
resulting IV curve along with the resulting differential resistance Rd and the uncertainty prod-
uct 〈〈Y 2(t)〉〉σt/〈Y (t)〉2 in comparison with an Ohmic resistance. As for the bare junction, the
uncertainty product is proportional to the square of the differential resistance. As the lower
bound for the variance given by the TUR corresponds to an Ohmic resistance, the plateau
exhibits a violation of the TUR that gets stronger with a decreasing slope, while the TUR is
recovered out of resonance. The circuit also exhibits a second small violation of the TUR that
we attribute to a synchronization at half frequency. In the classical limit, we can obtain ana-
lytical insight into the circuit properties from Eq. (9), see App. B.2 for the detailed calculation.
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Figure 3: (a) IV curve (solid) in the classical limit at finite temperature
ε/ω0 = 4kB Tr/(ħhΓ ) = 5 × 10−4. The circuit parameters are the same parameters
as in Fig. 2 resulting in β = 5. On resonance, the curve deviates from an Ohmic
characteristic (dashed). (b) The resulting uncertainty product in units of kB (solid)
and the square of the differential resistance (dash-dotted) along the IV curve. Both
curves coincide with one another, which shows that the uncertainty product is closely
related to the differential resistance. Therefore, at differential resistances below the
biasing resistance (dashed), the TUR (dashed) is violated with a new lower bound
of 2kBγ/(βω0) (dotted). (c) Quality factor Q of the emitted radiation (solid). Off
resonance, Q is of the order of 10−9 (not shown) and on resonance, it gets close to
the maximum value Q0 (dashed) given by the TUR which it exceeds by about two
orders of magnitude roughly corresponding to a factor of (1+ β)2 (dotted).

For β ≫ 1, we obtain an estimate for the minimal long-time value of the uncertainty product
given by

〈〈Y 2(t)〉〉
〈Y (t)〉2

σt ≳ 2kB
γ

βω0
, (12)

that is determined by the synchronization strength β and the quality factor of the resonator
ω0/γ, which is in good accordance with the numerical uncertainty product shown in Fig. 3(b).
Therefore, the counter produces a DC voltage with stability that is not limited by the TUR.

To assess the stability of the radiation emitted from the clock circuit, we consider the
dephasing rate of the oscillator ΓC = 〈〈ϕ2(t)〉〉/t. Together with the oscillation frequency
ω = 2eV0/ħh along the IV curve, it yields a quality factor QC = ω/ΓC . In Fig 3(c), we show
the numerical results for QC . Away from resonance, QC is much smaller than the maximum
quality factor Q0 at frequency ω0 that is imposed by the TUR. However, at a resonant bias,
the quality factor increases up to two orders of magnitude compared to Q0. From Eq. (9), we
obtain an estimate of the maximum quality factor given by

QC ≲Q0(1+ β)
2 , (13)

which is in accordance with the numerical results in Fig. 3(c). This shows that the clock
circuit can be used as an on-chip radiation source with a coherence beyond the limits of the
TUR where the coherence increases with the square of the synchronization strength β .
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7 Experimental parameters

In order to increase coherence, we have to increase the synchronization strength in a way
that is consistent with the classical regime of large photon numbers and small light-matter
coupling. Using β = 2rncohω0/Γ , we can obtain higher coherence in the classical regime by
increasing the ratio ω0/Γ without leaving the overdamped regime ω0/Γ ≪ r−1. We achieve
an improvement of 1≪ β ≲ ncoh under the condition of r−1 ≫ ncoh ≫ GRQ ≫ 1. Since the
diffusion constant ε also increases with ω0/Γ , the overall quality factor increases linearly in
ω0/Γ = 1/(Z0G). Since G can not be made arbitrarily small in the overdamped regime, the
vital parameter for coherence in the classical regime is the impedance Z0 of the resonator.

At currently achievable impedances of Z0 ≈ 5Ω,3 the resulting light-matter coupling is too
large to obtain coherence properties comparable to [18] in the fully classical regime with small
non-linearities. Instead, the currently implementable devices can operate at the border of the
validity of our approximations. As shown in Fig. 2, the voltage plateau corresponding to the
synchronization physics and the TUR violation is robust even outside the classical regime. At
increased light-matter coupling, the IV curves even exhibit a flatter, more pronounced voltage
plateau. This indicates a potential use as an alteration of the single photon source presented
in [14] where the thermal fluctuations of the bias voltage can be suppressed in order to in-
crease coherence. Therefore, we expect the analytical results for the classical case to hold
up reasonably well at their border of validity. In terms of the circuit parameters the overall
maximum quality factor is given by

QC ≈Q0β
2 =
ħhω0

4kB T

G3
Q

GG4
x Z2

0

�

πIc

ω0e

�4

, (14)

with an output power

P ≈ ħhω0ncohγ=
I2
c

2Gx
. (15)

By increasing the load impedance G−1
x , both the quality factor of the radiation and the output

power are increased. This shows that our circuit is a promising candidate for an on-chip
source in high-impedance experiments. While the results also suggest that an improvement
of the critical current would be very beneficial for the operation of the circuit, they rely on a
controlled photon number which increases too strongly with the critical current. We consider
a set of feasible parameters at the borderline of rncoh = 1 with Ic = 0.2µA, G−1 = 1kΩ,
G−1

x = 50Ω and a resonator with ω0 = 2π×5 GHz and Z0 = 5Ω at a temperature T = 10mK.
Note that we use a load impedance of 50Ω for better comparison with sources used in a typical
RF setting. For these parameters, we obtain a linewidth of δω = ω0/QC = 2π× 4 kHz at an
output power of 1pW. While the linewidth is the same as for the source in [18], the output
power is reduced by one order of magnitude. We expect however, that further improvements
could arise from an increased critical current which is at a value of Ic = 10µA in [18].

In our analysis of the escapement potential, we have relied on equal critical currents Ic
for both Josephson junctions. While this is not exactly fulfilled in an experimental setting, the
clock-like resonances in the experiments of [35] indicate that the escapement should remain
functional within experimental accuracy. In App. C, we show that the circuit retains a smaller
clock-like resonance even at a mismatch of 10% between the critical currents. If necessary,
one junction can also be replaced by a SQUID to enforce symmetric critical currents.

3S. Lotkhov and F. Kaap, private communications.
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8 Conclusion

We have proposed a source of coherent Josephson radiation based on a classical pendulum
clock. Based on the insight that the limitation on the linewidth of the radiation emitted from
the AC Josephson effect originates from the TUR, we utilize the fact that the TUR can be
broken by underdamped systems like a pendulum clock. We have designed a superconducting
clock circuit that realizes the crucial escapement potential to implement a simple model of
a pendulum clock. From a fully quantum mechanical description of the circuit, we derived
effective classical equations of motion that showcase a synchronization of the counting and
oscillating degrees of freedom. At resonance, the IV curve of the device exhibits a voltage
plateau similar to the device presented in [18]. We related this plateau to a violation of the TUR
which allows the coherence of the emitted radiation to exceed the limitations of the TUR. The
clock circuit is capable of emitting highly coherent AC radiation from a purely DC bias with a
coherence and output power that are comparable to other state-of-the-art single-frequency on-
chip sources in different material platforms [18]. Furthermore, due to a parallel configuration
of the load and the resonator, the properties of the radiation improve with the load impedance
which makes the clock circuit a good candidate for on-chip driving in superconducting high-
impedance electronics.

Throughout this work, we have focused on the regime, where the non-linear deviations
from the ideal escapement coupling can be neglected. A study of those deviations could offer
a more complete perspective on the different applications of the clock circuit which might
include use as a coherent single photon source. Furthermore, the relation of the TUR to the
coherence of Josephson radiation offers a new perspective on on-chip sources which could be
an interesting avenue for future research.
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A Effective description of the circuit

In this appendix, we present the derivation of the effective circuit model used for our simu-
lations. We derive the hybrid description of the clock circuit in terms of a Langevin equation
for the counter and a Lindblad equation for the oscillator from a Keldysh path integral de-
scription of the circuit presented in Fig. 4. Furthermore, we present the resulting equations of
motion in the classical limit which allow to show the suppression of fast rotating terms by the
escapement.
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Figure 4: Clock circuit with added junction capacitances C ′. By including the junc-
tion capacitances we can derive a Hamiltonian description of the circuit without the
dissipative elements. We can then include the resistive elements in our model by
using a Keldysh path integral approach.

A.1 Circuit Hamiltonian

The circuit has two degrees of freedom given by the flux variables X and Y together with the
conjugate charges

QX = (C + C ′)Ẋ − C ′Ẏ , QY = 2C ′Ẏ − C ′Ẋ . (A.1)

Note that the junction capacitances are essential for a consistent Hamiltonian description of
the circuit without the resistors as they turn Y into a dynamical variable [39]. We introduce
the canonical commutators [X̂ , Q̂X ] = [Ŷ , Q̂Y ] = iħh and the transformation

X̂ =

√

√ħhZ0

2
(â† + â) , Q̂X = i

√

√ ħh
2Z0
(â† − â) , (A.2)

with the impedance Z0 =
p

L/(C + C ′/2) and the ladder operators â and â† of the har-
monic oscillator that fulfill [â, â†] = 1, as well as a rescaling of the operators Ŷ , Q̂Y via
ŷ = 2πŶ /Φ0, q̂ = Q̂Y /2e with [ ŷ , q̂] = i, where Φ0 = 2πħh/2e is the superconducting flux

quantum. With the oscillator frequency ω0 =
p

L(C + C ′/2)
−1

and the rescaled external flux
ϕext = 2πΦext/Φ0, we obtain a transformed Hamiltonian given by

Ĥ = ħhω0

�

â†â+
1
2

�

+ i
ħhω0

2

p
r(â† − â)q̂+

ħhω0

4
(r + g)q̂2

− EJ

�

cos( ŷ −ϕext) + cos( ŷ −
p

r(â† + â))
�

−
ħhI0

2e
ŷ ,

with the Josephson energy EJ = ħhIc/2e and dimensionless parameters r = πZ0/RQ and
g = π/(ω0RQC ′) where RQ = 2πħh/4e2 is the quantum resistance. We can obtain a normal
ordered Hamiltonian by normal ordering the cosine term using the Baker Campbell Hausdorff
formula to obtain

cos( ŷ −
p

r(â† + â)) =
e−

r
2

2

�

ei ŷ e−i
p

r â†
e−i
p

r â +H.c.
�

. (A.3)

With the normal ordered Hamiltonian, we can write down the action for a path integral that
combines a coherent state path integral for X with a standard path integral in y and q for Y .
The resulting action is given by

S
ħh
=

∫

d t
¦

q ẏ + iᾱα̇−ω0|α|2 −
iω0

2

p
r(ᾱ−α)q−

ω0

4
(r + g)q2

+
I0

2e
y +

Ic

2e

�

cos(y −ϕext) + e−
r
2 cos(y −

p
r(ᾱ+α))
�

©

, (A.4)
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where the second line corresponds to the potential V (y) see below. Note that the characteristic
impedance Z0 and frequencyω0 used in this action go over to the definitions used in the main
text in the limit of small junction capacitances C ′/C ≪ 1.

A.2 Effect of resistive elements

Going over to classical and quantum variables for the y degree of freedom with y± = y c±yq/2,
we obtain the Keldysh action where we perform a quadratic expansion in the quantum vari-
ables to obtain

SK

ħh
≈
∫

d t
§

qq
�

ẏ c −
iω0

4

p
r(ᾱ+ + ᾱ− −α+ −α−)−

ω0

2
(r + g)qc
�

(A.5)

− yq
�

q̇c −
I0

2e
+

Ic

2e

�

sin(y c −ϕext) +
1
2 e−

r
2
�

sin(y c − 2
p

r Reα+) + sin(y c − 2
p

r Reα−)
�

�

�

+ iᾱ+α̇+ − iᾱ−α̇− −ω0(|α+|2 − |α−|2)− iω0
p

r[ᾱ+ − ᾱ− − (α+ −α−)]qc

−
Ic

2e
e−

r
2
�

cos(y c − 2
p

r Reα+)− cos(y c − 2
p

r Reα−)
�

ª

.

We include two separate environments for the x and y degrees of freedom as independent
actions

SG,y

ħh
= −
∫

d td t ′
�

yq(t)
Yy(t − t ′)

2πGQ
ẏ c(t ′)−

i
2

yq(t)
Ky(t − t ′)

2πGQ
yq(t ′)
�

,

SG,x

ħh
= −
∫

d td t ′
�

1
2
(αq(t) + ᾱq(t))Z0Yx(t − t ′)(α̇c(t ′) + ˙̄αc(t ′))

−
i
4
(αq(t) + ᾱq(t))Z0Kx(t − t ′)(αq(t ′) + ᾱq(t ′))

�

,

with the quantum conductance GQ = R−1
Q and with the time dependent admittance Y (t) and a

correlator K(t) =
∫

(dω/2π)ωRe Yω(2nω+1)e−iωt where Yω is the Fourier transform of Y (t)
and nω = (exp(ħhω/kB T ) − 1)−1 is the Bose-Einstein occupation. We consider Ohmic baths
with Yω,i = Gi that lead to a time local action for both environments.

A.3 Equations of motion

In the regime of small damping of the oscillator Z0Gx ≪ 1, we expect the oscillator dynamics
to occur at the natural frequencyω0. We perform a rotating-wave approximation of the action
with α(t) 7→ α(t)e−iω0 t and ᾱ(t) 7→ ᾱ(t)eiω0 t , where α and ᾱ are slow on the scale of ω0. By
first neglecting the obvious fast-rotating terms we simplify the action to

SK

ħh
≈
∫

d t
§

qq
h

ẏ c −
ω0

2
(r + g)qc
i

− yq
�

q̇c −
I0

2e
(A.6)

+
Ic

2e

�

sin(y c −ϕext) +
1
2 e−

r
2
�

sin(y c−2
p

rRe(α+e−iω0 t)) + sin(y c−2
p

rRe(α−e−iω0 t))
�

�

�

+iᾱ+α̇+−iᾱ−α̇−−
Ic

2e
e−

r
2

�

cos(y c − 2
p

rRe(α+e−iω0 t))− cos(y c − 2
p

rRe(α−e−iω0 t))
�

ª

,

where we also expanded in the quantum variable of the counter to quadratic order. This is
justified in the regime of large damping Gy = G≫ GQ of the counter, where the potential,

V (y) =
ħh
2e

¦

I0 y + Ic

�

cos(y −ϕext) + e−
r
2 cos(y − 2

p
r Reα)
�©

, (A.7)
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fulfils |V ′′′(y)| ≪ G|V ′(y)|/(2πGQ) [12, 37, 40]. For strong damping in the y-degree of free-
dom, we expect y c to be dominated by a linear growth in time. We make the ansatz

y c =ω0 t + θ , (A.8)

with a slow phase variable θ that fulfills θ̇ ≪ ω0. Note that we neglected any fast rotating
contribution to y c , which, as we show later on, is valid at an external magnetic flux of half
a flux quantum in the regime of small r. Due to this, sin(y c −ϕext) only gives a fast-rotating
contribution to the action and can be neglected. In addition, we introduce a shifted classical
momentum

qc =
2

r + g
+ pc . (A.9)

Using a Jacobi-Anger expansion, this ansatz allows for the clear identification of the remaining
fast-rotating terms resulting in

sin(y c − 2
p

r Re(αe−iω0 t))≈ −J1(2
p

r|α|) cos(θ −ϕ) ,

cos(y c − 2
p

r Re(αe−iω0 t))≈ J1(2
p

r|α|) sin(θ −ϕ) ,

with the Bessel function J1 of the first kind and α = |α|e−iϕ. Note that this only requires the
phase difference θ−ϕ to be a slow variable and not the individual phases. The resulting action
is given by

SK

ħh
≈
∫

d t
§

qq
h

θ̇−
ω0

2
(r + g)pc
i

− yq
�

ṗc−
I0

2e
+

1
ħh
∂

∂ θ

�

HRW(α
+, ᾱ+,θ ) +HRW(α

−, ᾱ−,θ )
�

�

+ iᾱ+α̇+ − iᾱ−α̇− −HRW(α
+, ᾱ+,θ ) +HRW(α

−, ᾱ−,θ )
ª

. (A.10)

With a rotating-wave Hamiltonian function HRW(α, ᾱ,θ )

HRW(α, ᾱ,θ )
ħh

= i
Ic

2e
e−

r
2

J1(2
p

r|α|)
2|α|
�

αeiθ − ᾱe−iθ
�

,

from which we can obtain the rotating-wave Hamiltonian by reinserting the ladder operators.
We obtain

ĤRW(θ )
ħh

= i
Ic

4e
e−

r
2 :

J1(2
p

r â†â)
p

â†â
(âeiθ − â†e−iθ ): , (A.11)

where : · : denotes the normal ordering of the ladder operators. With this form and the envi-
ronmental action of the oscillator

SG,x

ħh
≈ iγ

∫

d t
�

− n0ᾱ
+α− − (n0 + 1)ᾱ−α+ + (n0 +

1
2)(|α

+|2 + |α−|2)
�

,

the reduced density matrix ρ of the harmonic oscillator follows the Lindblad equation [41,42]
given in Eq. (5) with a small damping constant γ = ω0Z0Gx ≪ ω0 and the Bose-Einstein oc-
cupation n0 at frequencyω0. We rewrite the environmental action of the y-degree of freedom
as

SG,y

ħh
=

∫

d t yq(t)
�

ξ(t)−
G

2πGQ
(ω0 + θ̇ (t))
�

, (A.12)

using a Hubbard-Stratonovich transform to introduce the Gaussian random variable ξ with
〈ξ(t)〉 = 0 and 〈ξ(t)ξ(t ′)〉 = kB T Gδ(t − t ′)/(πħhGQ). Integrating over the quantum variables
for y yields a Langevin equation [40]

2
ω0(r + g)

θ̈ +
G

2πGQ
(ω0 + θ̇ ) =

I0

2e
−

1
ħh

­

∂ ĤRW(θ )
∂ θ

·

ρ
+ ξ(t) , (A.13)
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where 〈Ô〉ρ = tr[Ôρ̂] denotes the expectation value with respect to the density matrix of the
harmonic oscillator that is still conditioned on the random force ξ. When solving the coupled
Lindblad and Langevin equation, we integrate both equations for a given noise trajectory by
updating ρ̂ and θ in each time step and then average over the noise ξ in the end. In the
path integral setting, this corresponds to first integrating out the quantum variables for y and
then integrating both the classical variables for y and the x-variables in each time step. The
integral over the noise ξ is performed last. In the limit of small Junction capacitances g ≫ 1,
the equation becomes overdamped and we obtain Eq. (6) by a multiplication of both sides
with 2ω0r.

A.4 Adler-type equations in the classical limit

In the regime of large photon numbers and small light-matter coupling, we can simplify the
Bessel function to obtain the linear Hamiltonian given in Eq. (7). This linear form allows us
to formulate a closed set of equations for the expectation values of the ladder operators of the
oscillator. For the annihilation operators we obtain

d
d t
〈â〉ρ = −

γ

2
〈â〉ρ −

κ

4
p

rω0
e−iθ ,

d
d t
〈â2〉ρ = −γ〈â2〉ρ −

κ

2
p

rω0
〈â〉ρe−iθ ,

with the conjugate equations for the creation operators and an equation

d
d t
〈n̂〉ρ = −γ〈n̂〉ρ + γn0 −

κ

4
p

rω0
(〈â〉ρeiθ + 〈â†〉ρe−iθ ) , (A.14)

for the photon number. In the steady state, we obtain

〈â2〉ρ =
κ2

4rω2
0γ

2
e2iθ , (A.15)

which is proportional to the maximum coherent photon number in the steady state given by
Eq. (8). Therefore r〈â2〉ρ ≪ 1 holds provided that the circuit is in the regime of weak light
matter coupling rncoh = κ2/(4ω2

0γ
2)≪ 1. In order to analyze the dynamics of the circuit we

make the ansatz 2
p

r〈â〉ρ = 2
p

r〈â†〉∗ρ = A(t)e−iϕ(t) with slow real variables A and ϕ to obtain
the classical set of Adler-type equations given in Eq. (9).

A.5 Suppression of fast rotating terms

In addition to the Langevin equation at zero frequency, we obtain an equation at frequency
ω0, which may lead to a fast rotating contribution of the counter y c which we denote by θ f .
In first order perturbation theory, we obtain

θ̇ f =
κ

Γ

�

sin(ω0 t + θ −ϕext) + e−
r
2



:J0(2
p

r â†â):
�

ρ
sin(ω0 t + θ )

+ ie−
r
2

­

:
J2(2
p

r â†â)
â†â

(â2e−i(ω0 t−θ ) −H.c.):
·

ρ

�

,

where we neglected the noise terms at frequency ±ω0, since they have no contribution on
average. We make the ansatz θ f = − Im[Be−i(ω0 t+ψ)] with slow and real amplitude B and
phase ψ. In the regime of small light matter coupling 〈r â†â〉ρ ≪ 1 we expand the Bessel
functions up to linear order in r to obtain

Be−iψ =
κ

Γω0

�

(1+ eiϕext)e−iθ + 2ir〈â2〉ρeiθ
�

. (A.16)
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At φext = ±π/2, we can suppress the leading contribution to the oscillation to realize an es-
capement coupling. This corresponds to a DC-SQUID with maximum frustration which exhibits
no Josephson oscillations. The first non-zero correction is suppressed provided that r〈â2〉ρ is
small, which is fulfilled for the classical regime. Therefore, in the classical regime, the counter
exhibits linear growth in time without a substantial oscillating behavior.

B Classical equations in the small impedance regime

In this appendix, we show how the Adler-type equations without noise arise from the classical
model of a pendulum clock. Furthermore, we include the thermal noise in the synchronization
regime to calculate the variances of the counter and the oscillator phase.

B.1 Adler-type equations from the classical model

In order to show the equivalence between our minimal model of a classical pendulum clock
and the clock circuit, we show that the classical equations of motion

Γ Ẏ = f + κX cos Y , Ẍ + γẊ +ω2
0X = κ sin Y , (B.1)

can be used to derive the effective Adler-type equations for the phase dynamics up to the
thermal noise term ξ. We insert the ansatz of a regulated linear motion Y =ω0 t+θ (t) for the
counter and an oscillation with a slow time-dependent amplitude and phase Ȧ, ϕ̇≪ω0 for the
oscillator X = Re[A(t)e−i(ω0 t+ϕ(t))]. From this, we perform a rotating-wave approximation,
where we neglect the fast-rotating terms in the equation of the counter. In the equation for
the oscillator, we obtain many terms that include the small quantities Ȧ, ϕ̇ and γ. We only
consider the dominant contributions that also include a factor ω0 to obtain

θ̇ =∆ω+
κ

2Γ
Acos(ϕ − θ ) , Ȧ+ iϕ̇A= −

γ

2
A−

κ

2ω0
e−i(ϕ−θ ) , (B.2)

as for the clock circuit without thermal noise.

B.2 Phase synchronization with thermal noise

In the case of synchronization, the phase difference ϕ−θ becomes independent of time, which
allows us to neglect the contribution from Ȧ to obtain the steady state solution without noise
presented in Eq. (10). To account for the effects of the thermal fluctuations, we consider small
perturbations δϕ, δθ and δA which fulfill

δθ̇ =
κ

2Γ
[cos(ϕ0 − θ0)δA− A0 sin(ϕ0 − θ0)(δϕ −δθ )] + ξ ,

δϕ̇A0 + ϕ̇0δA=
κ

2ω0
cos(ϕ0 − θ0)(δϕ −δθ ) ,

δȦ= −
γ

2
δA+

κ

2ω0
sin(ϕ0 − θ0)(δϕ −δθ ) .

In the regime of small light-matter coupling, the perturbations of the Amplitude relax fast and
can be neglected. We therefore consider the regime of constant amplitude A = A0, in which
the reduced equations are given by

�

δθ̇

δϕ̇

�

=
γ

2

�

−β β

1 −1

��

δθ

δϕ

�

+

�

ξ(t)
0

�

. (B.3)
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The homogeneous part of the equation is solved by
�

δθ

δϕ

�

= c1

�

1
1

�

+ c2e−
γ
2 (1+β)t

�

−β
1

�

, (B.4)

where c1 and c2 are integration constants. By solving the inhomogeneous equation via varia-
tion of constants, we determine the variance of the light phase 〈〈δϕ2〉〉 and the variance of the
counter 〈〈δθ2〉〉. We obtain

〈〈δϕ2〉〉= 〈c2
1〉+ 2〈c1c2〉e−

γ
2 (1+β)t + 〈c2

2〉e
−γ(1+β)t ,

〈〈δθ2〉〉= 〈c2
1〉 − 2β〈c1c2〉e−

γ
2 (1+β)t + β2〈c2

2〉e
−γ(1+β)t ,

where parameters c1 and c2 are defined by

c1 =

∫

ξ(t)
1+ β

d t , and c2 = −
∫

ξ(t)
1+ β

e
γ
2 (1+β)t d t .

We calculate the expectation values using the correlator 〈ξ(t)ξ(t ′)〉= εδ(t − t ′) and consider
only the terms that increase with time which yields

〈c2
1〉=

εt
(1+ β)2

, 〈c2
2〉=

ε

γ(1+ β)3
�

eγ(1+β)t − 1
�

, 〈c1c2〉= −
2ε

γ(1+ β)3
�

e
γ
2 (1+β)t − 1
�

.

The variances 〈〈ϕ2〉〉 and 〈〈θ2〉〉 are therefore given by

〈〈ϕ2〉〉=
ε

γ(1+ β)3
¦

γ(1+ β)t −
�

3+ e−γ(1+β)t − 4e−
γ
2 (1+β)t
�©

,

〈〈θ2〉〉=
ε

γ(1+ β)3
¦

γ(1+ β)t + β
�

4− 4e−
γ
2 (1+β)t + β − βe−γ(1+β)t

�©

.
(B.5)

In the limit of long times γ(1+β)t ≫ 1, the linearly growing terms yield the estimates for the
TUR and the quality factor of the radiation given in the main text.

C Asymmetric critical current

The escapement coupling, we implemented with our circuit, relies on the fact that the zeroth
order contributions in X cancel at an external flux of half a flux quantum for the potential
shown in Eq. (4). This full cancellation however can only occur if both junctions have the
same critical current Ic . In case of an experimental implementation this exact match in critical
currents cannot be guaranteed. In order to analyze the effect of asymmetric critical currents,
we consider the classical equations with a modified escapement potential

Vc = −κ[(1+δ) cos(Y − X )− cos(Y )] , (C.1)

where the critical current of the junction connected to the oscillator deviates from Ic by a
factor of (1 + δ). In Fig. 5, we show the numerical IV-curves resulting from the classical
equations of motion with the modified escapement potential with the same circuit parameters
as for Fig. 3. Since the lowest order contribution does not cancel anymore, the curves with
asymmetric critical current exhibit an additional supercurrent region similar to the one of a
single Josephson junction. This added supercurrent region competes with the synchroniza-
tion plateau, which decreases the size of the synchronization region while also increasing the
corresponding differential resistance. Since we expect a direct correspondence between the
differential resistance on the synchronization plateau and the breaking of the TUR, we expect
that the coherence of the resulting radiation will also be reduced. The curves show that up
to a deviation of δ = ±0.1, the circuit still exhibits a clock resonance with a flat plateau that
likely also corresponds to highly coherent radiation.
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Figure 5: IV-curves with an asymmetric critical current, where the critical current of
the junction connected to the oscillator is given by I ′c = (1+ δ)Ic . The other circuit
parameters are the same as the ones used in Fig. 3. While there is an additional
supercurrent region arising that competes with the plateau of clock resonance. The
clock resonance is still present with a steeper plateau even up to δ = 0.1. From this,
we conclude that the circuit will likely still emit radiation with a coherence that is
increased above the limit set by the TUR.
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