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Boundary chaos: Spectral form factor
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Abstract

Random matrix spectral correlations is a defining feature of quantum chaos. Here, we
study such correlations in a minimal model of chaotic many-body quantum dynamics
where interactions are confined to the system’s boundary, dubbed boundary chaos, in
terms of the spectral form factor and its fluctuations. We exactly calculate the latter in the
limit of large local Hilbert space dimension q for different classes of random boundary
interactions and find it to coincide with random matrix theory, possibly after a non-zero
Thouless time. The latter effect is due to a drastic enhancement of the spectral form
factor, when integer time and system size fulfill a resonance condition. We compare
our semiclassical (large q) results with numerics at small local Hilbert space dimension
(q = 2, 3) and observe qualitatively similar features as in the semiclassical regime.
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1 Introduction

The notion of chaos in quantum systems is intimately tied to random matrix theory [1–5],
most prominently on the level of spectral statistics [6–8]. A hallmark feature of chaotic sys-
tems and the corresponding random matrix ensembles is the presence of correlations in their
spectra. Those are conveniently described by the spectral form factor (SFF) [4], which probes
correlations in the spectrum on all energy scales and which has recently received a lot of at-
tention in various fields, including, e.g., high-energy physics [9–12] and condensed-matter
theory [13–33]. Historically, the SFF has first been shown to agree with the random matrix
result for quantum systems with an underlying chaotic classical limit by means of semiclassi-
cal methods [34–37]. Henceforth, random matrix spectral correlations have become a widely
accepted definition of quantum chaos also in the absence of a classical limit, including for
instance lattice systems with only a few states per local site, e.g., spin-chains. To similarly
link spectral correlations of such systems with random matrix theory, novel tools had to be
developed. They led to the introduction of several exactly solvable models for many-body
quantum chaos. Most notably, this includes quantum circuit models which allow for explicitly
obtaining the SFF either in the limit of large local Hilbert space dimension [17–21] or in the
thermodynamic limit [13–16]. Exact results in such models are not limited to spectral statis-
tics, but also include the computation of correlation functions [17, 38–41], aspects of (deep)
thermalization [42–45] as well as the growth of entanglement of states [17,46–53] and local
operators [54,55] and hence provide valuable insight into the dynamics of generic many-body
quantum systems.

A particularly simple solvable model, recently introduced by the present authors and
dubbed boundary chaos, is built from a non-interacting, free quantum circuit, in which chaos
and ergodicity is induced by locally perturbing the system with an interacting gate (impu-
rity interaction) at its boundary [56]. This setting can be interpreted as a minimal model
for integrability breaking due to local perturbations. Such scenarios have been intensively
studied in case of interacting integrable systems in the Hamiltonian setting, in which per-
turbations lead to, e.g., a crossover of spectral statistics [57–65] or the onset of thermaliza-
tion [59,60,63,64,66–68]. In contrast to those results, the underlying unperturbed model here
is free, i.e., non-interacting, and even non-dispersive, and yet for suitable choices of the impu-
rity interaction, this setting exhibits random-matrix spectral statistics, ergodic dynamics [56]
as well as entanglement growth at maximum speed for both initial product states and local
operators [69]. This indicates, that it is the local perturbation, which restores ergodicity and
induces chaos, whereas interactions in the unperturbed model are not a necessary condition
for this to occur. As the free dynamics of the unperturbed model survives in the bulk, it can
be integrated out analytically. This allows for exact results as it reduces the dimensionality
and complexity of the problem in analogy to the concept of a Poincaré surface of section in
classical dynamics [70] and the associated quantum transfer operator [71,72].
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In the present paper, we demonstrate, that the system is indeed chaotic in the sense of
spectral statistics. More precisely, we study the SFF and show its agreement with the corre-
sponding random matrix result. As indicated above, we reduce the many-body problem to an
effective two-body problem, which allows for obtaining the SFF and all its moments exactly in
the so-called semiclassical limit of large local Hilbert space dimension. For different classes of
impurity interactions, i.e., either generic (Haar random) two-qudit gates or T-dual gates [73],
which remain unitary under partial transpose, we find the SFF and all its moments to agree
with random matrix theory in this limit. In case of generic impurity interactions this holds
on all time scales, whereas for T-dual impurity interactions the random matrix result is ap-
proached only after some non-universal initial time scale, the so called (many-body) Thouless
time. Non-zero Thouless time turns out to be a consequence of a strong enhancement of the
SFF if time and system size obey a resonance condition. The latter refers to them sharing
a large common factor. We contrast the semiclassical results with numerical results at small
local Hilbert space dimension. Surprisingly, many of the observed features in the latter case
coincide with the semiclassical results. In particular, the SFF as well as its moments agree
with the random matrix result after some initial time, demonstrating that the system is indeed
quantum chaotic also far away from the above semiclassical limit. Moreover, the enhancement
of the SFF when time and system size are in resonance, i.e, they have a large common factor,
persists also for small local Hilbert space dimension for T-dual impurity interactions. In case
of generic impurity interaction we observe such enhancement as well, when time is an integer
multiple of system size, which is in contrast with the semiclassical results. That is, at small lo-
cal Hilbert space dimension, we observe a non-zero Thouless time for both classes of impurity
interactions, which scales at most linearly with the system size.

In the following we first briefly introduce the SFF in Sec. 2 as well as the boundary chaos
circuit in Sec 3. Subsequently, we present the exact semiclassical results in Sec. 4 and discuss
numerical results in Sec. 5 before concluding in Sec. 6

2 Spectral form factor

The SFF K(t) is a well established measure of spectral correlations in complex quantum sys-
tems, which is, in contrast to other spectral statistics, e.g., the level spacing distribution, well
suited for an analytical treatment. In the past, this allowed for establishing the quantum chaos
conjecture by explicitly computing the SFF from periodic orbits in an underlying chaotic clas-
sical system [34–37]. While in recent years the focus shifted to the many-body setting, often
without an underlying classical limit, the significance of the SFF persists, as it is amenable to
analytic calculations in certain solvable models of many-body quantum chaos [13–21]. There,
it illustrates the emergence of universal random matrix behavior in structured many-body sys-
tems, e.g. spatially extended systems subject to local interactions. Moreover, the SFF probes
spectral correlations on all (quasi-)energy scales and is therefore a more sensitive indicator of
quantum chaos.

The SFF is obtained from the connected two-point correlation function of the spectral den-
sity via Fourier transform with respect to the (quasi-)energy difference between two levels.
This renders the SFF a time-dependent quantity, whose value at time t indicates the strength
of correlations between levels with (quasi-)energy difference ∼ 2π/t. While for autonomous
systems the time variable t takes continueous values, Floquet dynamics require discrete, inte-
ger times. In this work we focuss on the latter only. There, the SFF has a convenient repre-
sentation in terms of the time evolution operator U of the system under consideration given
by

K(t) =
¬
�

�tr
�

U t
��

�

2 ¶− N2δt0 =
¬

tr
�

U t
�

tr
�

U−t
�

¶

− N2δt0 . (1)
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Here, the brackets indicate an average of an ensemble of similar systems, which is necessary
due to the lack of self averaging of the SFF [74]. For convenience we take Eq. (1) as the defi-
nition of the SFF. As it involves the average over an ensemble, one might study the distribution
of the SFF in terms of its moments Km(t) given by

Km(t) =
¬
�

�tr
�

U t
��

�

2m ¶− N2mδt0 . (2)

For Floquet systems which lack time-reversal invariance or any other anti-unitary symmetry,
the appropriate random matrix ensemble to compare with is the circular unitary ensemble
CUE(N) given by the unitary group U(N) equipped with the normalized Haar measure. For
the CUE(N) the SFF reads [4]

K(t) =min{t, N} , (3)

and is exponentially distributed with moments [75]

Km(t) = m!K(t)m . (4)

The plateau K(t) = N for times larger than the Heisenberg time t = N signals the fact, that
the spectrum is finite. It is present for uncorrelated Poissonian spectra as well. In contrast
the initial linear ramp K(t) = t indicates correlations in the spectrum. Hence the presence of
this linear ramp in a physical system indicates random-matrix like spectral correlations and
consequently justifies calling the system (quantum) chaotic. For most chaotic physical systems
the linear ramp is approached only after some initial non-universal dynamics depending on the
details of the system. The time after which the SFF coincides with the linear ramp and which
marks the onset of universal random-matrix dynamics is called the (many-body) Thouless
time tTh.

3 Boundary chaos circuit

In this section we introduce the model studied in this work. We moreover explain how the
computation of the SFF in this interacting many-body system can be reduced to an effective
two-body problem. We consider a Floquet system with unitary evolution operator U given
by a brickwork quantum circuit U = U2U1 built from two layers U1 and U2. The circuit acts
on a chain of qudits, i.e., q-level systems of length L + 1. The q-dimensional local Hilbert
space at lattice site x is Hx

∼= Cq while the total Hilbert space H = ⊗L
x=0Hx

∼= CN is of
dimension N = qL+1. The individual layers are mostly composed from swap gates P which
are non-interacting and give rise to free dynamics, whereas a single impurity interaction U ,
i.e., an interacting two-qudit gate at the boundary renders the system quantum chaotic. More
precisely the layers of the circuit read

U1 =
⌊L/2⌋
∏

i=1

P2i−1,2i , and U2 = U0,1

⌊(L−1)/2⌋
∏

i=1

P2i,2i+1 . (5)

Here Gi, j denotes the 2-qudit gate G = U , P acting at sites i, j. A diagrammatic representation
of the circuit is given by

U =

0 2 4 L − 2 L
x

(6)

where the wires carry the q-dimensional Hilbert space Cq and the local gates are

P = , and U = . (7)
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The above diagrammatic representation of U allows for reducing the many-body problem
of computing tr

�

U t
�

, occurring in Eq. (1), to an effective two-body problem. This is best
illustrated by the diagrammatic expression

tr
�

U t
�

= (8)

depicted here for L = 5 and t = 4. There, the upper left leg of the impurity interaction at
time step r is connected to the lower left leg of the impurity interaction at time step r + 1. In
contrast, the upper right leg of the impurity interaction at time step r is connected to the lower
left leg of the impurity interaction at time step (r + L)mod t. The latter is a consequence of
the wires in the non-interacting bulk traversing the system twice, once in forward and once
in backward spatial direction, during a time interval of length L, and the periodicity in t is
due to taking the trace. This fully captures the free bulk dynamics and one might think of this
as integrating out the latter and to reduce the dimensionality of the problem from (1+ 1) to
(0+1) dimensions, which bears some analogy with the concept of Poincaré surface of section
in classical dynamics, e.g., in billiard systems. To express this more formally, we denote the
canonical product basis in H by |i0i1 · · · iL〉 and the corresponding basis in the bipartite system
H0⊗H1 by |i j〉 with i, j ∈ {0,1, . . . , q−1}. The diagrammatic argument above then translates
into

tr
�

U t
�

=
∑

i0,...,iL

〈i0 · · · iL|U t |i0 · · · iL〉=
∑

i1, j1,...,it , jt

t−1
∏

s=0

〈is js|U |is+1 js+L〉 . (9)

The second equality follows from inserting t − 1 resolutions of identity between each of the t
factors U and using the definition of the swap gates. A compact notation of the right hand side
of the above equation can be obtained by the replica trick, i.e., by interpreting the product as
a matrix element of the unitary operator U⊗t acting on a lattice in time, i.e., the Hilbert space
(H0 ⊗H1)

⊗t ∼= H⊗t
0 ⊗H⊗t

1 . We denote the canonical product basis of H⊗t
l by |i〉 = |i1 · · · it〉

and |j〉 = | j1 · · · jt〉 for l = 0 and l = 1, respectively, and write |ij〉 for the product basis in
H⊗t

0 ⊗H⊗t
1 . To further simplify notation, we consider the representation of the symmetric

group on t elements St , which permutes tensor factors in H⊗t
l (l = 1,0). We denote the action

of σ ∈ St on a basis vector |i〉 by |σ(i)〉 Moreover, the periodic shift (mod t) by x is denoted
by ηx ∈ St . The above definitions allow for rewriting Eq. (9) and an analogous equation for
tr
�

U−t
�

as

tr
�

U t
�

=
∑

i,j

〈i j|U⊗t |η1(i)ηL(j)〉 , and tr
�

U−t
�

=
∑

k,l

〈k l| (U⋆)⊗t |η1(k)ηL(l)〉 , (10)

with U⋆ being the complex conjugate matrix of U after possibly reordering tensor factors in
H⊗t

i . Consequently, we obtain

�

�tr
�

U t
� �

�

2
=
∑

i,j,k,l

〈i j|U⊗t |η1(i)ηL(j)〉 〈k l| (U⋆)⊗t |η1(k)ηL(l)〉 , (11)

whose ensemble average (over ensembles of impurity interactions U defined below) yields
the SFF. The above expression is well suited for further analytical treatment as it essentially
constitutes a two-body problem. In contrast, evaluating the expression numerically requires
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exponential memory in t and is not suitable for numerical simulations as all but the shortest
time scales are not accessible. Furthermore, an interesting observation from the above expres-
sion is the periodicity in L for fixed time t following from ηL = ηL+t . This implies that the
SFF at time t for arbitrary system size L is given by the SFF at time t for system size L mod t.
However, this does not allow to simplify the computation of the SFF on the time scales t > L
one is typically interested in.

4 Exact SFF in the semiclassical limit

The reduction to an effective two-body problem resulting in Eq. (11) allows for computing
the SFF in the semiclassical limit of large local Hilbert space dimension q →∞ for suitable
ensembles of impurity interactions. A natural choice is to take the latter to be a Haar random
unitary from U

�

q2
�

. Another choice of impurity interactions is to choose them T-dual [73],
meaning their partial transpose remains unitary. Both classes lead to ergodic dynamcis [56]
and we consider them both in this section. We only state and discuss our results in the following
and refer to App. A for an explicit derivation.

4.1 A toy model

We start, however, with the trivial example of a non-interacting impurity given by U = u⊗ v
as this provides some intuition for the interacting case. Here u and v are two independent
Haar-random single qudit gates drawn from U(q). In this situation the trace

tr
�

U t
�

= tr
�

ut
� �

tr
�

v t/n
��n

, (12)

factorizes with n= gcd(t, L). This can be seen from Eq. (10) and by noting that the sum over
the basis staes i on the site 0 produces tr

�

ut
�

. The second factor follows from the permutation
ηL being a product of n disjoint cycles of length t/n. Each of the n cycles produces a factor
of tr
�

v t/n
�

in the sum over the basis states j. An analogous factorization occurs for tr
�

U−t
�

as well. Computing the Haar average over the two unitaries u and v in Eq. (11) subsequently
determines the SFF for this non-interacting toy model. The boundary’s contribution (the aver-
age over u) to the total SFF is the random matrix SFF K(t) = t of a single particle system with
Hilbert space dimension q, whereas the bulk of the system (the average over v) contributes
with higher moments of the SFF Kn(t/n) = n!(t/n)n of such a single particle system, but at a
reduced time t/n. The above considerations thus yield the SFF as

K(t) =
n!
nn

tn+1 , (13)

for times t ≤ q. Noting that n!(t/n)n > t if t > 2n, the SFF of the toy model will be enhanced
compared to both the random matrix result for a single large CUE ensemble, K(t) = t, and to
that of two independent CUE, K(t) = t2. Furthermore, for fixed t > 2 the term n!(t/n)n is
monotonically increasing in n, implying that the enhancement of the SFF is more pronounced,
if t and L share a large common factor. Hence, the SFF will be largest for times t, which are
integer multiples of system size, i.e. n= L. The above statement could readily be generalized
to higher moments Km(t), yielding the same phenomenology. Moreover, these arguments
indicate an intricate interplay of spectral correlations and the common factors of t and L.
Stressing once again the analogy to classical Poincaré sections this might be interpreted as a
resonance condition between the free bulk dynamics and the dynamics along the boundary.
The fate of these observations, when replacing the non-interacting impurity with an interacting
one, remains to be investigated in the following. The enhancement described above will turn
out to be present in most cases accessible by either analytical or numerical methods.
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4.2 Haar random impurity interactions

We start with the only exception to the previous statement, which is the SFF for Haar random
impurity interactions in the semiclassical limit. That is, the average in Eq. (1) is taken over
U
�

q2
�

with respect to the Haar measure. By linearity of the expectation value we might take
the average of each term in the 4t-fold (4mt-fold in case of the m-th moment) sum in Eq. (11)
individually. For such terms, i.e., monomials of degree 2t (2tm) in the matrix elements of U
and U⋆ there exists a general theory of integration with respect to the Haar measure based on
the representation theory of both the symmetric group St (Stm) and U (N) which yields the
Haar average in terms of Weingarten functions Wg [76, 77]. The later are functions defined
on the symmetric group and for fixed σ ∈ St its value Wg(σ) is a rational function of N with
known asymptotics for large N [76–78]. Here, N = q2 and the large q asymptotics has been
used to compute the SFF in the random phase circuit of Ref. [17, 18] and the random matrix
ensembles of Ref. [21]. Adapting those methods to the case at hand is straitghtforward and
carried out in more detail in App. A.1. Here we only state the results. In the semiclassical limit
q→∞ at fixed time t we find both the SFF K(t) = K1(t) and all its moments Km(t) to follow
the random matrix result for the CUE. That is, we have

Km(t) = m!tm , (14)

for all times t and all m and independent of n= gcd(L, t). In particular the free bulk dynamics
of the system has no effect on the spectral correlations in this limit. Note that the plateau
of the SFF for times larger than the Heisenberg time cannot be reproduced in this limit as
Heisenberg time diverges as qL+1 in the semiclassical limit. In fact, at finite q those results
should be expected to give the leading contribution to the spectral form factor only up to time
scales t < q [21].

The random matrix SFF for all time scales at large q, i.e., the system being fully chaotic
in the sense of spectral statistics, is in contrast with persistent revivals of correlation functions
between local observables [56] implying slow thermalization as well as with slow growth of
(local operator) entanglement [69]. Note, however, that those results are obtained in different
limits: q → ∞ and arbitrary finite L for the SFF and L → ∞ for arbitrary finite q for the
dynamics of correlation functions and entanglement.

4.3 T-dual impurity interactions

In the following we also compute the SFF and its moments in the semiclassical limit q→∞
for T-dual impurity interactions as well. That is, we choose two-qudit gates U which remain
unitary under computing its partial transpose with respect to either the first or the second
qudit. An ensemble of such gates can be parameterized by [39,56]

U = V (J) (u0 ⊗ u1) , (15)

with V (J) a random diagonal two-qudit gate as well as local single qudit gates u0 and u1. More
precisely, V (J) mediates the interaction and has matrix elements

V (J)kl
i j = exp(iJξi j)δikδ jl , (16)

in the product basis. The real parameter J governs the interaction strength and the ξi j are
i.i.d. random variables with zero mean. The local unitaries u0 and u1 are taken to be inde-
pendent Haar random unitaries from U(q). The SFF is then defined by the average over both
the local unitaries and the random phases ξi j . This choice of gates correspond to the random
matrix ensembles introduced in Ref. [79] and with the local gates in the random phase circuit
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introduced in Ref. [18]. We adapt the computation of the SFF and its moments in theses mod-
els outlined in Refs. [18,20,21] to the boundary chaos setting. The details of the computation
can be found in App. A.2 and we only state the results here. The Haar average over u0 and
u1 can again be expressed in terms of Weingarten functions as in the case of generic impurity
interactions. While at J = 0 the model reduces to the toy model of Sec. 4.1, for non-zero
interaction J the average over the phases ξ leads to non-trivial modifications of the factorized
result in the toy model. To capture the influence of the interaction, let us denote by

χ(J) =



eiJξ
�

ξ
, (17)

the characteristic function of the random phases, where 〈·〉ξ is the average over the distribution
of the phases. Following Ref. [21], and keeping the interpretation of the boundary contributing
the m-th moment of the SFF for a single particle system and the bulk contributing the mn-th
moment at reduced time t/n this allows for expressing the SFF and its moments as

Km(t) = m!tm
mn
∑

k=0

Ak

� t
n

�

|χ(J)|2mt(1− k
mn) , (18)

where again n= gcd(L, t). The Ak(x) are polynomials in x of degree mn and are given by [21]

Ak(x) =
mn
∑

l=k

�

mn
l

��

l
k

�

[!(mn− l)] xmn−l(x − 1)l−k . (19)

Here [!y] is the subfactorial. The polynomials obey the normalization condition
∑

k Ak(x) = [(mn)!] xmn such that at the non-interacting point J = 0, and hence χ(J) = 1,
Eq. (18) reproduces the SFF (13) of the non-interacting toy model as well as its moments.
In fact the first term m!tm in Eq. (18) can be interpreted as the boundary’s contribution to
the full m-th moment of the SFF. On the other hand, the second term, i.e., the sum

∑

k(. . .),
represents the contribution from the bulk, which in the presence of non-zero interaction J
gets suppressed compared to the toy model. More precisely, for nonzero J and typical choices
for the distribution of phases, one has |χ(J)| < 1 causing all the terms in Eq. (18) except
the term for k = nm to be exponentially suppressed at late times. As moreover Amn = 1
one has Km(t) ≈ m!tm for sufficiently large times implying that the SFF and its moments ap-
proach the random matrix result for the CUE after some non-universal initial dynamics. The
latter time, after which the random matrix SFF is approached, defines the so-called Thouless
time tTh, i.e., the time scale of the onset of universal random-matrix like dynamics of the
system. Equivalently, spectral correlations on quasi-energy scales below ∼ 2π/tTh coincide
with random-matrix spectral correlations. The (many-body) Thouless time is conventionally
obtained from the SFF, m = 1 in Eq. (18). It can be roughly estimated by noting that n ≤ L
and hence |χ(J)|2t(1−k/n) ≤ |χ(J)|2t/L as well as

∑

k Ak(x) <
p

2πLt Le1−L using Stirling’s
approximation. This yields

K(t)≤ t +
p

2πLe1−L t L+1|χ(J)|2t/L , (20)

which indicates that non-universal corrections to the random matrix result initially grow (at
most) like t L+1. In contrast, at later times the non-universal corrections decay (at least) as
|χ(J)|2t/L and thus are expected to approach the random matrix result on extensive time
scales. More precisely, Thouless time should scale (at most) as tTh ∼ Lµ for some positive
µ, not necessarily equal to one due to the L dependence of the prefactor in the above bound.
Formally we define the Thouless time as the time after which |K(t) − t| ≲ 1. Solving this
condition in terms of the −1 branch of the Lambert W-function and its asymptotic behaviour
around zero yields

tTh ≲
L2 ln(L)
| ln |χ(J)||

, (21)
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Figure 1: SFF for (a) Haar-random and (b) T-dual impurity interactions at J = 3.1
and uniformly distributed phases in [−1, 1] for local Hilbert space dimensions (a)
q = 2, 3 and system size L = 11,7, as well as (b) q = 2,3, 4 and L = 11,7, 3 averaged
over > 104 realizations. The black line corresponds to the random matrix result for
the CUE. In the T-dual case at q = 2 the main panel depicts the SFF only for times,
which are not integer multiples of L = 11. For the latter the SFF is enhanced by up
to two orders of magnitude as shown in the inset, where we depict the SFF for all
times.

for large L. It implies an upper bound for the Thouless time which scales essentially quadratic
with system size, µ = 2. Having non-zero Thouless time, one might call the system with
T-dual impurity interactions “less chaotic” in the sense of spectral statistics as in the case of
generic impurity interactions. In contrast, T-dual impurity interactions yield (local operator)
entanglement growth at maximum speed [69] and fast thermalization [56], minding again
that those properties were derived in a different limit than considered here.

5 Numerical observations

In this section we present numerical results for the SFF and its moments for small local Hilbert
space dimension. In Fig. 1 we show the SFF for both (a) generic and (b) T-dual impurity
interactions for local Hilbert space dimension q = 2 and q = 3 for the ensembles introduced in
Sec. 4. For better comparison between different q and different system sizes, we rescale both
the SFF κ = K/qL+1 and time τ = t/qL+1 by the respective Heisenberg time. For q = 3 the
SFF matches the random matrix result for the unitary symmetry class well, possibly after some
non-trivial initial dynamics. The latter are clearly seen on the shown scale in the T-dual case,
while hardly visible in the generic case. Those initial deviations are particularly pronounced
at times which are integer multiples of system size. The timescale after which they die out
sets the Thouless time tTh, which we find to scale with system size with a power law tTh ∼ Lν

where ν ≈ 1 and ν ≈ 0.7 for Haar random and T-dual imputity interactions, respectively; see
below for details.

For q = 2 generic impurity interactions reproduce the CUE result as well after some non-
trivial initial dynamics. In contrast for T-dual impurity interactions with q = 2 the SFF clearly
deviates from the CUE result K(t) = t (κ(τ) = τ). Instead it is drastically enhanced by up
to two orders of magnitude at times which are integer multiples of system size (see inset),
whereas it follows the COE (with adapted Heisenberg time tH→

L−1
L tH [56]) otherwise. This

hints towards an (weakly broken) anti-unitary symmetry present for T-dual impurity interac-
tions at q = 2. In this case, the ensemble averaged level spacing distribution p(s) shows even
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Figure 2: Ensemble averaged level spacing distribution for (a) Haar-random and (b)
T-dual impurity interactions at J = 3.1 and uniformly distributed phases in [−1,1]
for local Hilbert space dimensions q = 2, 3,4 and system size L = 11, 7,5 averaged
over 500 realizations. The dashed and dotted black lines correspond to the Wigner-
Dyson distribution for the CUE and to the exponential distribution of a Poissonian
spectrum, respectively.

more dramatic deviations from the random matrix results for both the unitary and the orthog-
onal symmetry class, see Fig. 2(b). Instead p(s) is closer to the exponential distribution of a
Poissonian spectrum, but still differs significantly from the latter. In particular, we observe a
large weight for small spacings with p(s) ≈ 4 as s → 0 (not captured in Fig. 2(b)). We at-
tribute this highly degenerate spectrum to the fact, that for smallest q = 2 the probability for
all phases ξi j in Eq. (16) to be small is not negligible. Hence the model is with non-vanishing
probability close to the non-interacting toy model even though the interaction parameter J is
large. This is in contrast with the transition oberved in the random phase circiut of Ref. [18],
where Poissonian level spacings have been observed below a critical interaction parameter
only. There, however, all the independent local gates are of the the form of the impurity in-
teraction here and need to be close to the non-interacting point simultaneously. This becomes
highly unlikely at larger interaction parameter, such that eventually the Wigner-Dyson level
spacing distribution is restored. This is also expected in the present model for larger local
Hilbert space dimension, for which the probability of being close to the non-interacting toy
model becomes sufficiently small. Indeed, as depicted in Fig. 2, for local Hilbert space dimen-
sion q ≥ 3 or generic impurity interactions at arbitrary q the level spacing distribution is well
described by Wigner-Dyson statistics for the CUE. Only for generic impurity interactions with
q = 2 and T-dual impuritiy interactions with q = 3 small deviations are still visible, whereas
for the respective next larger dimension the deviations disappear almost completely.

In the following we ignore the seemingly pathological case q = 2. We focus on local
Hilbert space dimension q ≥ 3, fixing q = 3, unless stated otherwise, instead and perform the
required ensemble averages over > 104 realizations of the respective impurity interaction. In
this situation the above numerical observations on the SFF exhibit similar phenomenology as
predicted by the semiclassical results from Sec. 4. We discuss those numerical results in more
detail and compare them with the above analytic description in the following sections.
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Figure 3: (a) SFF κ for generic impurity interactions at initial times τ for L = 7
(connected symbols). The black line corresponds to the random matrix result. (b)
Difference of SFF ∆κ from the random matrix result for q = 3 and various system
sizes (connected symbols, see legend).

5.1 Haar-random impurity interactions

We start our discussion with the SFF and its moments for Haar-random impurity interactions.
The analytical large q result of Sec. 4.2, as well Fig. 1(a) indicate that the SFF follows the
random matrix result for the CUE at all times. At small q = 3, however, we find deviations at
initial times. This is illustrated in Fig. 3(a) which reveals deviations in the form of peaks at
times t which are integer multiples of system size. The semiclassical analysis suggests, that
those peaks should vanish as q→∞ at fixed L. Additionally, our numerical analysis indicates,
that upon proper rescaling by Heisenberg time both the height of the peaks and the time up
to which they occur seem to vanish, when keeping q fixed and increasing system size L. This
is illustrated in Fig. 3(b), where we depict the difference of the numerically obtained SFF
κ(τ) from the random matrix result, ∆κ(τ) = κ(τ)−τ (for τ < 1) for different system sizes.
Without the rescaling, this implies that both the height of the peaks and the time scales up to
which they occur grow slower than exponentially with the system size.

We comment on this in more detail below, but discuss higher moments of the SFF
first. To this end we consider moments κm(τ) rescaled according to the exponential dis-
tribution predicted in the semiclassical limit and measured in units of Heisenberg time as
κm = q−(L+1) (Km/m!)1/m as a function of τ. Numerical results for the second and third mo-
ment are depicted in Fig. 4 and demonstrate excellent agreement with the random matrix
result. Only for initial times large deviations in the form of sharp peaks occur around times,
which are integer multiples of system size, similar as for the SFF. While their magnitude seems
to grow with increasing system size at fixed t/L, those peaks decrease for later times at simi-
lar time scales as for the SFF. This sets Thouless time tTh and indicates the onset of universal,
random-matrix like dynamics.

More precisely, we might define Thouless time tTh as the time after which ∆κ is smaller
than a given small threshold. In Fig. 5(a) we depict ∆κm = κm − τ (for τ < 1) as a function
of time t/L for times, which are integer multiples of system size, i.e., for the times where we
numerically observe the largest deviations of the SFF from random matrix theory. Due to the
scaling of time by system size the curves almost coincide and, more importantly, all scale as
approximately
� t

L

�−ν
with a fitted exponent ν≈ 4. This implies Thouless time to scale linearly

with system size, tTh ∼ L, and causes non-universal dynamics to cease after an extensive time
scale. The second and third moment, shown in Fig. 5(a) and (c) respectively, show very similar
features, including the same scaling behavior. Note, that from our semiclassical analysis we
further expect Thouless time to decrease, when increasing q while keeping L fixed.
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Figure 4: (a) Second(m = 2) and (b) third (m = 3) moment of the SFF κm for
generic impurity interactions and L = 7 (connected symbols). The insets show mag-
nifications at initial times. Black lines correspond to the random matrix result. (c)
Difference ∆κ2 and (d) ∆κ3 from the random matrix result for initial times for var-
ious system sizes (connected symbols, see legend).

5.2 T-dual impurity interactions

We now focus on numerical results for T-dual impurity interactions. We choose phases ξi j
uniformly distributed in [−1, 1] and fix the interaction parameter J = 3.1, ensuring chaotic
dynamics. Figure 1(b) indicates that the SFF for q = 3 follows the random matrix result for
sufficiently large times, whereas initial times show large deviations. The large q results suggest
that those deviations might be particularly pronounced, when t and L share a large common
factor. This persists also for small q as is shown in Fig. 6, where we depict the SFF for (a)
times coprime with system size and find good agreement with the random matrix result for
the largest accessible system sizes. In contrast, for (b) times, which are integer multiples of
system size and hence gcd(L, t) = L, we observe large deviations from the random matrix
result at initial times. In case the greatest common divisor is smaller, also the deviations from
the random matrix result decrease.

1 10

10−5

10−4

10−3

10−2

10−1

100

t
L

∆κm (a)

1 10t
L

(b)

∼
(

t
L

)−4

1 10t
L

(c)L = 7
L = 6
L = 5
L = 4

Figure 5: ∆κm vs t/L for different system sizes and (a) m = 1, (b) m = 2 and (c)
m = 3 (connected symbols, see legend). We only depict times, for which t/L is an
integer. The dashed black line indicates the scaling ∼

� t
L

�−4
for m= 1,2, 3.
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Figure 7: (a) SFF κ vs τ for L = 6 grouped by the greatest common divisor
gcd(t, L) = 1,2, 3,6 (connected symbols, see legend). The black line indicates the
random matrix result. (b) ∆κ vs. τ grouped by gcd(t, L) = 1,2, 3. Times, given as
integer multiples of L are omitted.

This motivates to use only those times with gcd(L, t) = L to estimate the Thouless time.
In Fig. 6(c) we show the difference ∆κ from the random matrix result for these times. After
scaling, the curves for∆κ/L2 vs. t/L, approximately collapse (up to the respective Heisenberg
time) and the scaled difference roughly decays as (t/L)−ν with ν≈ 1.2, with both the scaling of
∆κ by L2 and the exponent obtained as a fit to the numerical data. Thouless time consequently
scales as tTh ∼ Lµ with µ= (2−ν)/ν≈ 0.7. In general, the exponent µ might still depend on
the parameter J and on the local Hilbert space dimension q, as long as the latter is finite.

Moreover, in Fig. 7 we investigate the dependence on the SFF at time t on n = gcd(L, t)
in more detail. For L = 6, n can take the values 1,2, 3 and 6. We depict the SFF grouped by
those possible values of n in Fig. 7(a) and find SFF to be drastically enhanced at initial times for
n = L, as predicted by the large q results and as used for the extraction of the Thouless time.
For the other possible values of n the SFF is qualitatively similar, but an enhancement with
larger n still can be observed. This is shown in Fig. 7(b), where the difference ∆κ, grouped
by n= 1,2, 3, is depicted. For larger n also the SFF is larger.
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Figure 8: Second moment of the SFF κ2 for various system sizes (connected symbols,
see legend) for times (a) coprime with system size and (b) integer multiples of L.
Black lines correspond to the random matrix result. (c) ∆κ2/L

4 vs. t/L. We only
depict times for which t/L is an integer, the gray dashed lines represent the respective
Heisenberg times (corresponding to increasing L from left to right). The dashed black
line indicates the scaling ∼

� t
L

�−1
.

For the moments of the SFF we obtain very similar behavior. We illustrate this for the
(rescaled) second moment κ2, which we depict in Fig. 8. One of the main differences in com-
parison with the SFF are the larger fluctuations, particularly pronounced for larger L and for
n= L. This is a consequence of the number of realizations and we expect these fluctuations to
decrease if more realizations of the impurity interaction are used. Additionally, the scaling of
∆κ2(τ) ∼ L4 (t/L)−1 differs. Hence, in contrast to generic impurity interactions, the second
moment approaches the random matrix result at later times ∼ Lµ with µ = (4 − ν)/ν ≈ 3,
which is considerably later than tTh extracted from the SFF above. This can already be seen
from comparing Fig. 6(b) with Fig. 8(b). For higher moments (not shown) we observe quali-
tatively similar results, with the approach to the random matrix result occurring at even later
times due to the enhancement at times, which are integer multiples of system size.

We conclude this section by mentioning, that we expect the SFF for T-dual impurity in-
teractions to be closer to the random matrix result for larger q. The latter, however, allows
for numerical computations for even smaller system sizes only and is hence less suited for a
numerical analysis. Nevertheless, we support our claim by depicting the SFF for q = 4 and
L = 3 for the same interaction strength J = 3.1 as above in Fig. 9(a). The SFF shown there
matches the random matrix result well, even for most times, which are integer multiples of L.
Only for small time scales those times lead to visible deviations from the random matrix result
as illustrated in Fig. 9(b). The enhancement occuring at those times is considerable smaller
as for q = 3.

6 Conclusion

We studied spectral correlations in terms of the SFF in a minimal model of chaotic many-body
quantum systems, previously dubbed boundary chaos, composed of a free, non-interacting
quantum circuit, in which chaos and ergodicity is induced by an impurity interaction at the
system’s boundary. We obtained the SFF and all its moments exactly for two classes of impurity
interactions (T-dual and generic) in the semiclassical limit of large local Hilbert space dimen-
sion. Analytical calculations become possible by “integrating out” the free bulk dynamics and
thereby reducing the many-body to a two-body problem, which can be treated exactly at large
q. The semiclassical results match with the expected random matrix result, after possibly non-
universal initial dynamics in the case of T-dual impurity interactions. The latter is due to a
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Figure 9: (a) SFF κ vs. τ for q = 4 and L = 3 (orange line). Black lines correspond
to the random matrix result. (b) is a magnification of (a).

resonance effect between time and system size, which causes the SFF to be enhanced when
both integers share a large common factor. This effect is particularly pronounced for times,
which are integer multiples of system size. Surprisingly, the large q analytical results explain
most of the phenomena observed at small q in extensive numerical investigations. More pre-
cisely, the enhancement of the SFF at times which share a large common factor with system
size is observed for small q as well. In contrast to the semiclassical results generic impurity
interactions at small q show an enhancement of the SFF for times, which are integer multiples
of system size, as well. That is, at small q both classes of impurity interactions exhibit a non-
zero Thouless time tTh. The latter scales approximately as Lµ with system size, where µ≈ 0.7
and µ≈ 1 for T-dual and generic impurity interactions, respectively. In case of T-dual impurity
interactions, higher moments approach the random matrix result at times later than tTh.

Our work further consolidates the role of the boundary-chaos setting as a solvable mini-
mal model for many-body quantum chaos, demonstrated here in terms of spectral statistics.
In particular, our results imply, that in the Floquet setting a single impurity in an otherwise
free system, i.e., in the absence of interactions in the unperturbed system, is sufficient to in-
duce chaos. Interestingly, in a very loose sense, generic impurity interactions lead to spectral
correlations closer to random matrix theory than T-dual impurity interactions, making the
generic case “more chaotic”. In contrast, T-dual impurity interactions lead to faster decay of
correlations [56] and hence faster thermalization as well as faster growth of (local operator)
entanglement [69] than generic impurity interactions, rendering the latter “less ergodic” in a
similarly loose sense. Even though the above is a rough qualitative statement, it once again
emphasizes that different notions of chaos and ergodicity in quantum systems are in general
not equivalent. Hence care needs to be taken when handling those concepts in the quantum
context and further research is necessary to unravel their connection.
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A Exact spectral form factor in the semiclassical limit

In this appendix we provide some details on the computation of the SFF and its moments in the
semiclassical limit q→∞. As indicated in the main text this is achieved by exploiting the gen-
eral theory of integrating monomials in the matrix elements over the unitary group developed
in Ref. [76, 77]. Such integrals can be expressed in terms of Weingarten functions [76–78].
Their large q asymptotics determines the SFF in the semiclassical limit. This has been used to
compute the SFF in Refs. [17,18,21] and we adapt those methods in the following.

A.1 Generic impurity interactions

We first consider generic impurity interactions, i.e., Haar random two-qudit gates.

Spectral form factor By linearity of the expectation value we might average the terms in
Eq. (11) individually. To this end, first note that the Haar average over an individual term

k(i, j,k, l) =
¬

〈i j|U⊗t |η1(i)ηL(j)〉 〈k l| (U⋆)⊗t |η1(k)ηL(l)〉
¶

, (A.1)

is non-zero only if there are permutations σ,τ ∈ St such that |ij〉 = |σ(k)σ(l)〉 and
|η1(i)ηL(j)〉= |τη1(k)τηL(l)〉 or equivalently |ij〉= |η−1

1 τη1(k)η−1
L τηL(l)〉 [76,77]. For states

|i〉 and |j〉 with pairwise distinct tensor factors the latter implies σ = η−1
1 τη1 = η−1

L τηL . In
the following we consider only such states, as those are almost all of the q2t basis states and
all other states give only subleading contributions as q→∞. Note that in Eq. (A.1) the per-
mutations σ and τ act on both H⊗t

1 and H⊗t
2 simultaneously as the distinction between i and j

is just an artifact of our choice for labeling the elements of the product basis in H0⊗H1. Any
pair of such permutations contributes with Wg

�

τσ−1
�

to the average, such that [76,77]

k(i, j,k, l) =
∑

σ,τ∈St

δi,σ(k)δj,σ(l)δi,η−1
1 τη1(k)δj,η−1

L τηL(l)Wg
�

τσ−1
�

, (A.2)

with the Kronecker δ being understood elementwise. For large q the leading contribution to
the above sum stems from Wg(id) ∼ q−2t , i.e., from σ = τ. Consequently the leading con-
tribution to the average comes from the translational invariant (invariant under conjugation
by η1) permutations. These are exactly the periodic shifts ηr for r ∈ {0, 1, . . . , t − 1}. As
any permutation that is invariant under conjugation by η1 is automatically invariant under
conjugation by ηL the bulk of the system and its free dynamics do not yield any further con-
straints on the permutations contributing to the large q asymptotics of the SFF. Keeping only
the leading contributions as q→∞ given by k(i, j,k, l) = q−2t

∑

r δi,ηr (k)δj,ηr (l) we arrive at

K(t) =
∑

ijkl

k(i, j,k, l) = q−2t
∑

ijkl

t−1
∑

r=0

δi,ηr (k)δj,ηr (l) = q−2t
∑

ij

t = t . (A.3)

Here, the sums runs only over the ∼ q2t states i and j with pairwise distinct factors, which
cancels the factor q−2t . Hence, we recover the random matrix result for the CUE, i.e., the
linear growth K(t) = t in the limit q→∞. Note, that in this limit the Heisenberg time qL+1

diverges as well, such that the plateau of the SFF for larger times cannot be resolved within
this approach.

Higher moments We now turn our attention to higher moments of the SFF, which are ob-
tained by evaluating the Haar average of integer powers of Eq. (11). The structure of the
arguments is very similar as above and we only sketch the main steps and refer to Refs. [20]
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and [21] for details. To compute the m-th moment this involves averaging over m repli-
cas and hence a 4m-fold sum over basis states I = (in)

m
n=1. We might think of the states

I = (in)n =
�

in,s

�

n,s as a basis in H⊗mt
1 and similar for J = (jn)n, K = (kn)n, and L = (ln)n.

Permutations σ ∈ Stm again act on this bases by permuting tensor factors and we write, e.g.,
|σ(I)〉 for the basis state with accordingly permuted factors. To compute the m-th moment of
the SFF, expressed as

K(t) =
∑

I,J,K,L

k(I, J,K,L) , (A.4)

by rewriting Eq. (2), we average each term

k(I, J,K,L) =
¬

m
∏

n=1

〈in jn|U⊗t |η1(in)ηL(jn)〉 〈kn ln| (U⋆)
⊗t |η1(kn)ηL(ln)〉

¶

, (A.5)

in the 4mt-fold sum individually. Each of those terms is non-zero only if there are permutations
σ,τ ∈ Stm such that |IJ〉 = |σ(K)σ(L)〉 and |IJ〉 = |

�

η⊗m
1

�−1
τη⊗m

1 (K)
�

η⊗m
L

�−1
τη⊗m

L (L)〉 [76,
77]. Here η⊗m

x ∈ Stm denotes the permutation that implements the t-periodic shift by x within
each of the m replicas. Expressing the Haar average in terms of Weingarten functions and using
their large q asymptotics again allows for evaluating Eq. (A.5) as q→∞. The permutations
which contribute in this limit are those which are invariant under conjugation by both η⊗m

1
and η⊗m

L with the latter not giving any further constraints. These permuations implement
independent t-periodic shifts within each replica and additionally permute the replicas [20,
21]. They form a subgroup G(t)m of Stm of order |G(t)m (t)|= m!tm and which for m= 1 reduces
to the cyclic subgroup generated by η1. In the semiclassical limit q→∞ we then obtain

k(I, J,K,L) = q−2mt
∑

σ∈Gm

δI,σ(K)δJ,σ(L) , (A.6)

with the prefactor representing the asymptotic behavior of Wg(id)∼ q−2mt . The m-th moment
of the SFF consequently reads

Km(t) =
∑

I,J,K,L

k(I,J,K,L) = q−2mt
∑

I,J,K,L

∑

σ∈G(t)m

δI,σ(K)δJ,σ(L) = |G(t)m |= m!tm , (A.7)

where again the prefactor is canceled by the sum over the ∼ q2mt states I and J. The above
coincides with the m-th moment for the CUE and the exponential distribution of the CUE
SFF. That is, as q →∞ the boundary chaos circuit with Haar random impurity interactions
reproduces the random matrix SFF and all its moments exactly.

A.2 T-dual impurity interactions

In this section, we compute the SFF and its moments for T-dual impurity interactions drawn
from the ensemble described in Sec. 4.3.

Spectral form factor Again we begin by computing the average k(i, j,k, l) defined in
Eq. (A.1) for fixed i, j, k, and l, for which we again assume pairwise distinct tensor factors
similar as in the previous section. For impurity interactions of the form (16) the average over
the two local unitaries and the phases factorizes as

k(i, j,k, l) =
¬

〈i|u⊗t
o |η1(i)〉 〈k|
�

u⋆o
�⊗t |η1(k)〉
¶

u0

¬

〈j|u⊗t
1 |ηL(j)〉 〈l|
�

u⋆1
�⊗t |ηL(l)〉
¶

u1

×
¬

exp

�

iJ
t
∑

s=1

�

ξis js − ξis−1 js−L

�

�

¶

ξ
. (A.8)
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Here the subscripts s−1 and s− L are understood mod t and the last bracket denotes the aver-
age over all the phases ξi j . We first consider the average over u0, whose leading contribution
coincides with the computation of the spactral form factor at time t in a single particle system
with Hilbert space dimension q. The average over the first qudit hence reads [18,76,77]

¬

〈i|u⊗t
o |η1(i)〉 〈k|
�

u⋆o
�⊗t |η1(k)〉
¶

u0
=
∑

σ,τ∈St

δi,σ(k)δi,η−1
1 τη1(k)Wg(τσ−1) = q−t

t−1
∑

r=0

δi,ηr (k) , (A.9)

where in the last equation we only keep the leading contributions as q → ∞ similar to
App. A.1.

Even though the first equality in the above equation holds also for u1 with η1 replaced
by ηL , the average over u1 is slightly more involved. This is due to the free bulk dynamics
which couples local unitaries that are L time steps apart, which might prevent unitaries at
different time steps to be connected via intermediate steps. To be more precise, we denote
by n = gcd(t, L) the greatest common divisor of time t and systems size L and introduce the
integer p = t/n. This allows for writing

〈j|u⊗t
1 |ηL(j)〉 〈l|
�

u⋆1
�⊗t |ηL(l)〉=

n
∏

k=1

� p
∏

s=1

〈 jk+sL|u1 | jk+(s−1)L〉 〈lk+sL|u⋆1 |lk+(s−1)L〉

�

, (A.10)

with the subscripts again understood mod t. The average of this expression over u1 can be
interpreted as the average over n disconnected replicas indexed by k, where each replica is
given by the expression in parentheses. This is a consequence ofηL being a product of n disjoint
cycles of length p = t/n. For a single replica the latter is just the expression to be averaged for
the SFF of a single particle system at time p = t/n. Consequently, the average of Eq. (A.10)
corresponds to computing the n-th moment of the SFF of a single q-dimensional CUE at time
p, possibly after some irrelevant rearranging of tensor factors.1 The leading contribution to
the average [76,77]
¬

〈j|u⊗t
1 |ηL(j)〉 〈l|
�

u⋆1
�⊗t |ηL(l)〉
¶

u1
=
∑

σ,τ∈St

δj,σ(l)δj,η−1
L τηL(l)Wg(τσ−1) , (A.11)

originates from permutations which are invariant under conjugation by ηL . Just as in App. A.1
these permutations implement independent periodic shifts (with period p) within each replica
and additionally permute the replicas [20,21]. They form a subgroup G(p)n of St = Spn of order

|G(p)n |= n!pn. The average in the semiclassical limit q→∞ becomes
¬

〈j|u⊗t
1 |ηL(j)〉 〈l|
�

u⋆1
�⊗t |ηL(l)〉
¶

u1
= q−t
∑

σ∈G(p)n

δj,σ(l) . (A.12)

Note that in the case of co-prime t and L corresponding to n= 1 and p = t the subgroup G(p)1
corresponds to the cyclic subgroup generated by η1 and Eq. (A.12) reduces to Eq. (A.9).

It remains to compute the average over the phases ξi j . To this end we introduce

Θ(i, j;σ,τ) =
t
∑

s=1

�

ξis js − ξiσ−1(s) iτ−1(s)

�

, (A.13)

and note that [21]



exp (iJΘ(i, j;σ,τ))
�

ξ
= |χ(J)|2t−2fp(σ−1τ) , (A.14)

1In the following, such a rearrangement translates to going from G(p)mn to one of its conjugacy classes. As the
number of fixed points of a permutation does not change under conjugation this does not effect the final result for
the SFF and its moments and we ignore this subtlety henceforth.
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with χ(J) = 〈exp(iJξ)〉ξ the characteristic function of the distribution of the phases ξi j and
fp(σ) the number of fixed points of the permutation σ. Putting this together we obtain for the
SFF

K(t) =
∑

ijkl

k(i, j,k, l) = q−2t
∑

ijkl

∑

σ∈G(t)1

∑

τ∈G(p)n

δi,σ(k)δj,τ(l)|χ(J)|2t−2fp(σ−1τ) (A.15)

=
∑

σ∈G(t)1

∑

τ∈G(p)n

|χ(J)|2t−2fp(σ−1τ) , (A.16)

where in the last line the sum over the states cancels the asymptotic behavior of the Weingarten
functions∼ q−2t . By a change of summation variables the first sum trivializes and gives a factor
|G(t)1 | = t. The second sum can be simplified by noting that for any permutation in G(p)n the
number of fixed points is a multiple of p = t/n and by introducing Ak(p) as the number of
permutations in G(p)n with exactly kp fixed points given by Eq. (19) [21]. This yields Eq. (18)
for m= 1.

Higher moments We now extend the above reasoning to the computation of higher mo-
ments. To this end we again use the basis I = (ik)k =

�

ik,s

�

k,s of H⊗mt
1 with k labeling the

replicas and s labeling the intermediate times. The generalization of Eq. (A.8) to the m-th
moment reads

k(I, J,K,L) =
¬

m
∏

k=1

〈ik|u⊗t
o |η1(ik)〉 〈kk|
�

u⋆o
�⊗t |η1(kk)〉
¶

u0

×
¬

m
∏

k=1

〈jk|u⊗t
1 |ηL(jk)〉 〈lk|
�

u⋆1
�⊗t |ηL(lk)〉
¶

u1

×
¬

exp

�

iJ
m
∑

k=1

t
∑

s=1

�

ξik,s jk,s
− ξk,is−1 jk,s−L

�

�

¶

ξ
. (A.17)

In complete analogy to the computation of higher moments in App. A.1 the average over u0
for large q yields

¬

m
∏

k=1

〈ik|u⊗t
o |η1(ik)〉 〈kk|
�

u⋆o
�⊗t |η1(kk)〉
¶

u0
= q−mt
∑

σ∈G(t)m

δI,σ(K) . (A.18)

To compute the average over u1 we observe that the m-fold product in the u1 average in
Eq. (A.17) in combination with the n-fold product in Eq. (A.10) allows for interpreting the u1
average as the computation of the mn-th moment of the SFF at time p = t/n. The correspond-
ing ensemble average is thus given by

¬

m
∏

k=1

〈jk|u⊗t
1 |ηL(jk)〉 〈lk|
�

u⋆1
�⊗t |ηL(lk)〉
¶

u1
= q−mt
∑

σ∈G(p)mn

δJ,σ(L) . (A.19)

It remains to perform the average over the phases ξi j . To this end let us denote by Θ(I, J;σ,τ)
the obvious generalization of Eq (A.13), which allows for expressing the ξi j averages as




exp (iJΘ(I,J;σ,τ))
�

= |χ(J)|2mt−2mfp(σ−1τ) . (A.20)
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Putting this together and repeating the computation which yields Eq. (18) we obtain.

Km(t) =
∑

IJKL

k(I, J,K,L) =
∑

σ∈G(t)m

∑

τ∈G(p)mn

|χ(J)|2t−2fp(σ−1τ) (A.21)

= m!tm
mn
∑

k=0

Ak

� t
n

�

|χ(J)|2mt(1− k
mn) , (A.22)

with the Ak computed for G(p)mn, as indicated in Eq. (19). The above is the result presented in
Eq. (18) in the main text.

References

[1] F. J. Dyson, The threefold way. Algebraic structure of symmetry groups and ensembles in
quantum mechanics, J. Math. Phys. 3, 1199 (1962), doi:10.1063/1.1703863.

[2] E. P. Wigner, Random matrices in physics, SIAM Rev. 9, 1 (1967), doi:10.1137/1009001.

[3] M. L. Mehta, Random matrices: Revised and enlarged second edition, Academic Press, San
Diego, USA, ISBN 9780124880511 (1991).

[4] F. Haake, Quantum signatures of chaos, Springer, Berlin, Heidelberg, Germany, ISBN
9783642054280 (2010), doi:10.1007/978-3-642-05428-0.

[5] H.-J. Stöckmann, Quantum chaos: An introduction, Cambridge University Press, Cam-
bridge, UK, ISBN 9780521592840 (2000), doi:10.1017/CBO9780511524622.

[6] G. Casati, F. Valz-Gris and I. Guarnieri, On the connection between quantization of non-
integrable systems and statistical theory of spectra, Lett. Nuovo Cim. 28, 279 (1980),
doi:10.1007/BF02798790.

[7] M. V. Berry, Quantizing a classically ergodic system: Sinai’s billiard and the KKR method,
Ann. Phys. 131, 163 (1981), doi:10.1016/0003-4916(81)90189-5.

[8] O. Bohigas, M. J. Giannoni and C. Schmit, Characterization of chaotic quantum
spectra and universality of level fluctuation laws, Phys. Rev. Lett. 52, 1 (1984),
doi:10.1103/PhysRevLett.52.1.

[9] J. Cotler, N. Hunter-Jones, J. Liu and B. Yoshida, Chaos, complexity, and random matrices,
J. High Energy Phys. 11, 048 (2017), doi:10.1007/JHEP11(2017)048.

[10] J. S. Cotler, G. Gur-Ari, M. Hanada, J. Polchinski, P. Saad, S. H. Shenker, D. Stanford, A.
Streicher and M. Tezuka, Black holes and random matrices, J. High Energy Phys. 05, 118
(2017), doi:10.1007/JHEP05(2017)118.

[11] H. Gharibyan, M. Hanada, S. H. Shenker and M. Tezuka, Onset of random
matrix behavior in scrambling systems, J. High Energy Phys. 07, 124 (2018),
doi:10.1007/JHEP07(2018)124.

[12] M. Winer and B. Swingle, Hydrodynamic theory of the connected spectral form factor, Phys.
Rev. X 12, 021009 (2022), doi:10.1103/PhysRevX.12.021009.

[13] P. Kos, M. Ljubotina and T. Prosen, Many-body quantum chaos: Analytic connection to
random matrix theory, Phys. Rev. X 8, 021062 (2018), doi:10.1103/PhysRevX.8.021062.

20

https://scipost.org
https://scipost.org/SciPostPhys.17.5.142
https://doi.org/10.1063/1.1703863
https://doi.org/10.1137/1009001
https://doi.org/10.1007/978-3-642-05428-0
https://doi.org/10.1017/CBO9780511524622
https://doi.org/10.1007/BF02798790
https://doi.org/10.1016/0003-4916(81)90189-5
https://doi.org/10.1103/PhysRevLett.52.1
https://doi.org/10.1007/JHEP11(2017)048
https://doi.org/10.1007/JHEP05(2017)118
https://doi.org/10.1007/JHEP07(2018)124
https://doi.org/10.1103/PhysRevX.12.021009
https://doi.org/10.1103/PhysRevX.8.021062


SciPost Phys. 17, 142 (2024)

[14] B. Bertini, P. Kos and T. Prosen, Exact spectral form factor in a minimal
model of many-body quantum chaos, Phys. Rev. Lett. 121, 264101 (2018),
doi:10.1103/PhysRevLett.121.264101.

[15] B. Bertini, P. Kos and T. Prosen, Random matrix spectral form factor of dual-unitary quan-
tum circuits, Commun. Math. Phys. 387, 597 (2021), doi:10.1007/s00220-021-04139-2.

[16] B. Bertini, P. Kos and T. Prosen, Exact spectral statistics in strongly localized circuits, Phys.
Rev. B 105, 165142 (2022), doi:10.1103/PhysRevB.105.165142.

[17] A. Chan, A. De Luca and J. T. Chalker, Solution of a minimal model for many-body quantum
chaos, Phys. Rev. X 8, 041019 (2018), doi:10.1103/PhysRevX.8.041019.

[18] A. Chan, A. De Luca and J. T. Chalker, Spectral statistics in spatially ex-
tended chaotic quantum many-body systems, Phys. Rev. Lett. 121, 060601 (2018),
doi:10.1103/PhysRevLett.121.060601.

[19] S. J. Garratt and J. T. Chalker, Local pairing of Feynman histories in many-body Floquet
models, Phys. Rev. X 11, 021051 (2021), doi:10.1103/PhysRevX.11.021051.

[20] A. Chan, A. De Luca and J. T. Chalker, Spectral Lyapunov exponents in chaotic
and localized many-body quantum systems, Phys. Rev. Res. 3, 023118 (2021),
doi:10.1103/PhysRevResearch.3.023118.

[21] F. Fritzsch and M. F. I. Kieler, Universal spectral correlations in interacting chaotic few-body
quantum systems, Phys. Rev. E 109, 014202 (2024), doi:10.1103/PhysRevE.109.014202.

[22] M. Winer, R. Barney, C. L. Baldwin, V. Galitski and B. Swingle, Spectral
form factor of a quantum spin glass, J. High Energy Phys. 09, 032 (2022),
doi:10.1007/JHEP09(2022)032.

[23] X. Chen and A. W. W. Ludwig, Universal spectral correlations in the chaotic wave
function and the development of quantum chaos, Phys. Rev. B 98, 064309 (2018),
doi:10.1103/PhysRevB.98.064309.
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