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Abstract

We study the time evolution of eleven microscopic entropy definitions (of Boltzmann-
surface, Gibbs-volume, canonical, coarse-grained-observational, entanglement and diag-
onal type) and three microscopic temperature definitions (based on Boltzmann, Gibbs or
canonical entropy). This is done for the archetypal nonequilibrium setup of two systems
exchanging energy, modeled here with random matrix theory, based on numerical inte-
gration of the Schrödinger equation. We consider three types of pure initial states (local
energy eigenstates, decorrelated and entangled microcanonical states) and three classes
of systems: (A) two normal systems, (B) a normal and a negative temperature system and
(C) a normal and a negative heat capacity system. We find: (1) All types of initial states
give rise to the same macroscopic dynamics. (2) Entanglement and diagonal entropy
sensitively depend on the microstate, in contrast to all other entropies. (3) For class B
and C, Gibbs-volume entropies can violate the second law and the associated tempera-
ture becomes meaningless. (4) For class C, Boltzmann-surface entropies can violate the
second law and the associated temperature becomes meaningless. (5) Canonical entropy
has a tendency to remain almost constant. (6) For a Haar random initial state, entan-
glement or diagonal entropy behave similar or identical to coarse-grained-observational
entropy.
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1 Motivation

In view of the pivotal roles of entropy, temperature and the second law in science, it is sur-
prising that more than 150 years after their inception [1] scientists have not even approx-
imately agreed on their basic microscopic definitions. Instead, different schools of thought
have formed that differ widely both from a philosophical-conceptual and (what will be our
focus here) quantitative-numerical point of view. In addition, the topic appears unnecessar-
ily mystified as evidenced, for instance, by the often quoted statement “no one knows what
entropy really is”—allegedly made by von Neumann while discussing with Shannon about a
name for his “entropy” concept [2], even though it is unclear whether von Neumann truly
said it [3]. This quote also seems particularly unfortunate as historical evidence indicates that
von Neumann had a clear opinion on which microscopic entropy definition to use in statis-
tical physics [4–6], which—to add to the confusion—is not what is nowadays known as von
Neumann entropy.

For a long time these differences could be neglected in practice because numerical discrep-
ancies quickly vanish for normal macroscopic systems.1 However, various current research
directions related to long range interactions [10] arising in gravitating systems [11–14] and
quantum many-body systems [15], the origin of the arrow of time [16–19], isolated quantum
systems with cold atoms and trapped ions [20–22], nanoscale systems [23–25], among others,
make it necessary to reconsider foundational questions in statistical mechanics, and also allow
to test them experimentally (see, e.g., Refs. [26–31]). Thus, it seems as if the biggest strength
of statistical mechanics—namely, its “theory invariance” for normal macroscopic systems—
now turns against it as schools of thought are already established.

With advances in computer technologies it has now become possible to simulate isolated
quantum (and also classical) systems, which are large enough to exhibit thermodynamic be-
haviour, without approximations. Consequently, a number of interesting case studies emerged
that focused on the nonequilibrium dynamics of thermodynamic entropy from first princi-
ples [32–50].2 However, somewhat echoing the criticism above, a study critically comparing
a variety of entropy definitions on the same footing is not known to us.

The primary goal of this study is to close this gap by providing a comparative study of many
different entropy notions, and to motivate researchers to take this problem seriously. To do so,
we start by briefly introducing the model and the various definitions in Sec. 2. Section 3 then
presents our numerical results. Finally, all pertinent observations are summarized in Sec. 4.

To avoid any bias in the presentation that favors a particular entropy, our strategy is to
exclusively focus on indisputable numerical results that follow from numerically exact inte-
gration of the Schrödinger equation. In particular, we do not mention any conceptual issues
or mathematical properties related to the various entropies. While we believe they are impor-
tant, they are already well covered in the literature that we cite and, apparently, theoretical
and analytical arguments do not seem to have convinced the respective opponents yet. More-
over, our numerical results are transparent insofar that confirming them does not require very
advanced coding techniques or supercomputers. Finally, the reader will also see that the re-
sults we present below are rather generic in the sense that we did not use any fine tuning or
exhaustive search to generate them.

1We call a system normal if it has a concave and non-decreasing Boltzmann entropy as a function of energy. In
the literature one often requires only concavity, which ensures a positive heat capacity and implies equivalence of
ensembles [7–9], but it is more convenient here to have a separate category for systems that can show negative
(Boltzmann) temperatures.

2The literature is even wider if one includes equilibrium systems or effective dynamics such as master equations.
This is not our focus here because both cases potentially mask a large part of the problem.
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2 Framework

Setup

Our idea is to study a paradigmatic nonequilibrium process, namely the flow of heat between
two bodies A and B (similar but simpler versions of the model below have been studied, e.g.,
in Refs. [51–53]). Each system X ∈ {A, B} is modeled with a Hilbert space HX with dimension
DX and Hamiltonian HX =

∑DX
j=1 ε

X
j |ε j〉〈ε j|X .

Before specifying the interaction, we look at each system separately and drop for now the
label X for notational simplicity. The eigenenergies ε j are distributed according to a density
of states (DOS) µ(ε) such that µ(ε)dε are the number of microstates in an energy interval
[ε,ε+ dε). Since µ(ε) can be arbitrary, there is no assumption here, but below we consider
three classes of models:

A Normal systems where lnµ(ε) is concave and monotonically increasing (we choose a
square root dependence below).

B Negative temperature systems where lnµ(ε) is concave but not monotonically increasing
for all ε (we choose a Gaussian distribution below).

C Negative heat capacity systems where lnµ(ε) is convex (we choose a quadratic depen-
dence below).

Many entropies require a coarse graining of the energies. To this end, we first restrict
the discussion to a fixed energy interval [Emin, Emax], where Emin is the ground state energy
and Emax some suitable high energy cutoff. This interval is then divided into M equidistant
subintervals of size δE = (Emax − Emin)/M . The coarse grained energies, for which we choose
a capital letter, can thus be defined as Eα = Emin+(α−1/2)δE with α ∈ {1, . . . , M}. They label
the subintervals Iα = [Eα−δE/2, Eα+δE/2) such that [Emin, Emax] =

⋃

α Iα. The corresponding
projector is denoted Πα =

∑

ε j∈Iα
|ε j〉〈ε j|.

To match the fine and coarse descriptions, we demand that the number of microstates
Wα = tr{Πα} ∈ N compatible with the coarse energy Eα samples the DOS while respecting a
fixed Hilbert space dimension D (this requires some rounding). Within each coarse window we
then distribute the eigenenergies ε j evenly, but the results are quite insensitive to the question
where exactly the ε j lie as long as they are smeared out and the Wα sample well µ(ε). To
meet the last point, we require that µ(Eα)/

∑

αµ(Eα) ≈ Wα/D and that the Riemann sum
∑

αδEWα/D approximates
∫

µ(ε)dε/
∑

αµ(Eα).
Finally, we restrict the dynamics to a subinterval [Ea, Eb] ⊂ [Emin, Emax], which is still large

enough to accommodate several coarse grained energy windows. This restriction is forced on
us by numerical limitations and the fact that certain entropy and temperature definitions below
require either knowledge of µ(ε) down to the ground state or to match a Gibbs distribution
to some mean energy. Since we want to model the exchange of energy between two systems
A and B that are approximately equal in size, we are restricted to a local effective Hilbert
space dimension of around Deff = tr{Π[Ea ,Eb]} ≲ 400, where Π[Ea ,Eb] is the projector on the
subinterval [Ea, Eb]. Thus, if we would set [Ea, Eb] = [Emin, Emax], we would either need to
restrict the discussion to a small range of coarse grained energies, i.e., close-to-equilibrium
dynamics, or the local DOS would be too small to display thermodynamic behaviour. To avoid
both options, we cut away parts of the Hilbert space that have little dynamical relevance. This
picture is illustrated in Fig. 1 and it will become clearer when we present the definitions and
numerical results.
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Figure 1: Sketch of two interacting systems A and B and their (discretized) DOS. The
blue smooth line sketches the real distribution µ(ε) to which we numerically fit a
coarse grained distribution (symbolized by the histograms). Moreover, the dynami-
cally relevant subinterval is indicated in green, whereas the red part is only there to
properly define some particular entropies and temperatures. The dynamics is thus
restricted to the grey subpart, in which we sketched an energy exchange process me-
diated by a random matrix interaction.

To complete the model, we specify an interaction Hamiltonian V = λR. Here, λ is some in-
teraction strength (see below) and R is a banded random matrix. The motivation to use random
matrix theory stems from the extensive literature that has shown its power to model generic
complex and non-integrable quantum systems in a minimal way [54–60]. Moreover, recalling
the close connection between random matrix theory and the eigenstate thermalization hypoth-
esis [59–64], it is reasonable to conjecture that our findings continue to hold for more realistic
quantum many-body systems as well, at least qualitatively. Bandedness on R is imposed by
demanding 〈εA

k,εB
ℓ
|R|εA

m,εB
n〉 = 0 if |εA

k + ε
B
ℓ
− εA

m − ε
B
n | > δV , where |εA

m,εB
n〉 = |ε

A
m〉 ⊗ |ε

B
n〉

is the local energy eigenbasis of HA + HB. All remaining elements of R are uniformly filled
with zero-mean-unit-variance Gaussian random numbers, except of the diagonal elements of
R, which we set to zero.

In all numerical results below we set Emin = 0, Emax = 2.1, Ea = 0.42, Eb = 1.4 and
δE = 0.14. This implies M = 15 coarse grained energy windows in the full interval [Emin, Emax]
and seven windows in the dynamically relevant subinterval [Ea, Eb]. Moreover, the coupling
strength λ and the bandedness δV are chosen to satisfy the following demands:

1. We want a weak coupling between A and B such that 〈HA+HB〉(t) ≈ 〈HA+HB〉(0).
In this regime bulk properties dominate surface properties and it becomes mean-
ingful to talk about thermodynamic properties (energy, entropy, temperature) of A
or B alone. Specifically, we define weak coupling by demanding that the fluctua-
tions in the interaction energy 〈V 2〉mic, where 〈. . .〉mic denotes a microcanonical av-
erage, are small compared to 〈HA+HB〉

2
mic. Using the bandedness of V , we estimate

〈V 2〉mic ≈ λ2D2
effδV/∆E , where ∆E = Eb − Ea denotes the energy range of the dynami-

cally relevant regime (not to be mixed up with the coarse graining width δE). Moreover,
we have 〈HA+HB〉

2
mic ≈ 4∆2

E , tacitly assuming the arbitrary energy offset Ea to be sub-
tracted.
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2. Opposite to the weak coupling requirement, we also need to demand that the energy lev-
els of A and B are sufficiently strongly coupled to allow efficient energy exchanges. This
implies that the coupling strength λ, which broadens the levels in an interacting system,
should exceed the mean level spacing ∆E/Deff of A or B (this is a rough approximation
assuming that all Deff levels are distributed evenly in [Ea, Eb]).

3. Finally, we need to find a compromise between a very sparse matrix with small δV , which
allows to simulate systems with larger Deff, and a large δV such that the eigenstates of
the global Hamiltonian HA+HB+V are sufficiently delocalized with respect to the local
energy eigenbasis of HA+HB: if δV is too small, energy transport becomes blocked due
to Anderson localization.

What we found to work well is the choice

λ2 =
1

DA
effD

B
eff

�

1
5

∆2
E

δV

�2

, δV =
δE

6
. (1)

Finally, because a total Hilbert space dimension of DA
effD

B
eff ≲ (400)2 = 160,000

is too large for exact diagonalization, we use the sparsity of the Hamiltonian to-
gether with the Askar-Cakmak time propagation algorithm [65] until numerical conver-
gence is reached. The idea of this algorithm is to transform the symmetric expres-
sion |ψ(t + d t)〉 − |ψ(t − d t)〉 = (e−id tH − eid tH)|ψ(t)〉 into the propagation scheme
|ψ(t + d t)〉 ≈ −2id tH|ψ(t)〉 + |ψ(t − d t)〉. Moreover, for the first term we set
|ψ(d t)〉 ≈ (1− id tH − d t2H2/2)|ψ(0)〉.

Initial states

We consider three different types of initial nonequilibrium states. To this end, we choose some
initial coarse grained energies Eα(0) and Eβ(0) for system A and B and set

1. Local energy eigenstates: |ψ(0)〉 = |εA
m〉 ⊗ |ε

B
n〉 with randomly chosen εA

m ∈ Iα(0) and
εB

n ∈ Iβ(0).

2. Decorrelated microcanonical states: |ψ(0)〉 ∼ Πα(0)|ψA
R〉 ⊗ Πβ(0)|ψ

B
R〉, where |ψA

R〉 is a
Haar random state in HA (and similarly for B). Note that Πα(0)|ψA

R〉 is a pure state
version of the microcanonical ensemble.

3. Correlated microcanonical states: |ψ(0)〉 ∼ Πα(0) ⊗Πβ(0)|ψAB
R 〉, where |ψAB

R 〉 is a Haar
random state in HA⊗HB. Note that this state is with high probability strongly entangled.

We remark that all three states look macroscopically the same. By definition this mean that
their coarse grained probability distributions are the same, namely

pα,β(0)≡ p(Eα, Eβ ; 0) = 〈ψ(0)|Πα ⊗Πβ |ψ(0)〉= δα,α(0)δβ ,β(0) , (2)

with the Kronecker delta δα,α′ .
Note that we use the indices α,α′, . . . (β ,β ′, . . . ) to label properties of system A (B). In

favor of a more concise notation we then drop the superscripts A and B whenever no confusion
is possible (as done here).
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Entropy and temperature definitions

We start with the well known Boltzmann entropy SB(Eα, Eβ) = ln Wα+ ln Wβ for a state having
coarse energies (Eα, Eβ). However, in general the distribution pα,β(t) will not remain peaked
around a single energy as in Eq. (2) and there are two options to directly generalize Boltz-
mann’s entropy. First, we can consider the average energy 〈EA〉 =

∑

α Eαpα(t) of A, where
pα(t) =
∑

β pα,β(t) is the marginal (and similarly for B), to define the Boltzmann entropy of
the average:

SB(〈E〉; t)≡ ln W〈α〉 + ln W〈β〉 . (3)

Here, 〈E〉 is shorthand for (〈EA〉, 〈EB〉) and 〈α〉 is the index α minimizing |Eα − 〈EA〉| (and
similarly for 〈β〉). Alternatively, we can define the averaged Boltzmann entropy

〈SB〉(t)≡
∑

α

pα(t) ln Wα +
∑

β

pβ(t) ln Wβ . (4)

There is another possibility to generalize Boltzmann’s entropy known as coarse-grained or
observational (cgo) entropy by incorporating the Shannon entropy HSh(pα,β) of the macro-
distribution pα,β :

Scgo(t)≡ HSh[pα,β(t)] + 〈SB〉(t) =
∑

α,β

pα,β(t)
�

− ln pα,β(t) + ln W A
α + ln W B

β

�

. (5)

This definition has been suggested by von Neumann [4–6], for recent introductions see Refs.
[66, 67]. It is further possible to consider a local cgo entropy defined only in terms of local
quantities of A or B:

S⊗cgo(t)≡ HSh[pα(t)] +HSh[pβ(t)] + 〈SB〉(t) . (6)

Its difference S⊗cgo−Scgo with the previous one is given by the always positive mutual informa-
tion IAB(t)≡ HSh[pα(t)] +HSh[pβ(t)]−HSh[pα,β(t)]≥ 0.

In the following, we will sometimes refer to all the Boltzmann-type entropies as “surface
entropies” to distinguish them from “volume entropies”, which are obtained by replacing the
number of microstates Wα for a given energy Eα by

Ωα =
∑

α′≤α
Wα′ . (7)

Here, the sum runs over all α′ such that Eα′ ≤ Eα (and similarly we define Ωβ). The origin
of the “surface” and “volume” terminology comes from a classical phase space picture, where
Wα is the integral over an energy shell (a surface) and Ωα is the integral over the phase space
enclosed by that shell (a volume). The idea to replace Wα by Ωα was first considered by
Gibbs [68], and it received broad attention in the recent debate about the possibility of negative
temperatures [29, 69–75] without, as it seems, reaching any consensus yet. We label the
entropies that result from turning the surface definitions into volume definitions by a subscript
G (for Gibbs):

SG(〈E〉; t) , 〈SG〉(t) , SG,cgo(t) , and S⊗G,cgo(t) . (8)

To define the next entropy, we introduce the von Neumann entropy HvN(ρ) = −tr{ρ lnρ}
of a density matrix ρ. Furthermore, let πA(t) ∼ e−β

A
can(t)HA denote the canonical Gibbs state

of system A (and similarly for B), where the inverse temperature βA
can(t) is chosen such that

the coarse energy expectation value of πA(t) matches the one of the true macro-distribution
pα(t), i.e., βA

can(t) is indirectly defined by equating
∑

α Eαtr{ΠA
απA(t)} =
∑

α Eαpα(t). Then,
we define the canonical entropy

Scan(〈E〉; t)≡ HvN[πA(t)] +HvN[πB(t)] . (9)

6
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Recent studies of it include Refs. [67,76–79].
We remark that the definitions in Eqs. (8) and (9) require knowledge of the DOS out-

side the dynamically relevant regime, which we have discussed above and colored in red in
Fig. 1. Of course, we could simply neglect the red part and only use the green part in Fig. 1 in
Eqs. (8) and (9), but this could give very different result (depending on the DOS) and could
be unrealistic (as a real body has a non-zero DOS over a wide range of energies).

We continue with the definition of an entanglement entropy [80,81]

Sent(t)≡ HvN[ρA(t)] +HvN[ρB(t)] = 2HvN[ρA(t)] , (10)

where ρA(t) = trB{|ψ(t)〉〈ψ(t)|} is the reduced state of system A (and similarly for B). Note
that we are interested in the entanglement entropy of the compound system, which is the
reason why we add the contribution of A and B. Moreover, HvN[ρA(t)] = HvN[ρB(t)] is due
to the fact that the state of the compound system is pure.

Finally, we define diagonal entropy [34,35]

Sdiag(t)≡ HSh[p
A
j (t)] +HSh[p

B
j (t)] , (11)

where pA
j = 〈ε

A
j |ρA|εA

j 〉 is the probability to find system A with the microscopic eigenenergy

εA
j (and similarly for B). This concludes the definition of the eleven entropies that we will

compare below.
In addition, we will also look at three possible temperature definitions for given expectation

values 〈EA,B〉. First, we introduce the inverse Boltzmann temperature

βB(t)≡
∂ lnµ(ε)
∂ ε

�

�

�

�

ε=〈EA〉(t)
. (12)

Second, based on ω(ε) =
∫ ε

Emin
µ(ε′)dε′ we introduce the inverse Gibbs temperature

βG(t)≡
∂

∂ ε
lnω(ε)

�

�

�

�

ε=〈EA〉(t)
=
µ(ε)
ω(ε)

�

�

�

�

ε=〈EA〉(t)
. (13)

Note that, while βB can become negative if lnµ(ε) is not monotonically increasing, βG is always
positive, which is the reason for the controversy in Refs. [29,69–75].

Third, we consider the temperature we have already implicitly used above to define the
canonical entropy in Eq. (9) and consequently call it the canonical inverse temperature βcan(t).
As explained above, it is obtained from a canonical Gibbs distribution by matching its energy
expectation value to the actual value. Note that βcan(t) can also be negative. It has been intro-
duced in phenomenological thermodynamics in Refs. [82,83] and recent studies in statistical
mechanics include Refs. [67,76–79,84].

Note that all three temperature definitions, together with their respective entropy notions,
can be used to establish the Clausius relation dS = βdE. Moreover, for a broader overview on
nonequilibrium temperatures we refer to Refs. [85,86].

Finally, all entropy notions are summarized in Table 1. Note that they are all based on
the common idea to treat the system in a coarse way using incomplete information, just how
they do it precisely differs from definition to definition. In contrast, the full microscopic von
Neumann entropy HvN[ψ(t)] is zero and remains constant all the time.

3 Numerical results

Below, we use two more conventions beyond what has been discussed above. First,
α,β ∈ {1, 2, . . . , 7} labels the seven dynamically relevant energy windows in [Ea, Eb] in increas-

7
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Table 1: Overview of all the different entropy notions compared in this work. We
dropped the dependence on time t for notational simplicity.

name symbol definition comment

Boltzmann entropy
SB(〈E〉) ln W〈α〉 + ln W〈β〉

related to βB in the
of the average continuum limit δE → 0
averaged 〈SB〉 〈ln Wα〉+ 〈ln Wβ〉Boltzmann entropy
cgo entropy Scgo HSh[pα,β] + 〈SB〉
local cgo entropy S⊗cgo HSh[pα ⊗ pβ] + 〈SB〉
volume entropy

SG(〈E〉) lnΩ〈α〉 + lnΩ〈β〉
related to βG in the

of the average continuum limit δE → 0
averaged 〈SG〉 〈lnΩα〉+ 〈lnΩβ〉volume entropy
cgo entropy

SG,cgo HSh[pα,β] + 〈SG〉(volume version)
local cgo entropy S⊗G,cgo HSh[pα ⊗ pβ] + 〈SG〉(volume version)
canonical entropy Scan(〈E〉) HvN[πA] +HvN[πB] related to βcan

entanglement
Sent HvN[ρA] +HvN[ρB]entropy

diagonal entropy Sdiag HSh[pA
j ] +HSh[pB

j ]

ing order (previously, α,β ∈ {1,2, . . . , M} labeled the energy windows in [Emin, Emax]). Sec-
ond, we plot everything over a dimensionless time t/τ by introducing a characteristic nonequi-
librium time scale τ. To this end, we use Fermi’s golden rule Γi→ f = 2π|〈ε f |V |εi〉|2ρ(ε f ),
where εi (ε f ) denote initial (final) energy eigenstates and ρ(ε) the DOS of the unperturbed
Hamiltonian HA+ HB. Owing to the bandedness of the interaction Hamiltonian, the systems
needs to make at least ∆E/δV many transitions to explore the entire energy range. Thus, we
set

τ=
∆E

δV

1
Γi→ f
≈

∆2
E

2πλ2δV DA
effD

B
eff

. (14)

Here, we approximated |〈ε f |V |εi〉|2 = λ2 for |ε f − εi| ≤ δV (which is true on average) and
ρ(ε f ) ≈ DA

effD
B
eff/∆E . The latter approximation is rather crude and completely neglects the

fine structure of the DOS. Thus, τ serves as a convenient but not rigorous estimate of the
nonequilibrium time scale.

Moreover, all numerical results are displayed for a single choice of the random matrix
Hamiltonian and a single choice for the three types of initial states. We do not perform any
averages over them, but we have observed that the coarse behaviour is quite insensitive to the
precise choice of Hamiltonian or initial state (not displayed here).

3.1 Class A: Two normal systems

We consider two normal systems A and B with identical DOS µ(ε) = exp(6
p
ε) as sketched in

Fig. 2(A). The effective Hilbert space dimension of the dynamically relevant energy interval
[Ea, Eb] is for both systems DA

eff = DB
eff = 397 (hence, the total Hilbert space dimension is

157, 609). The initial macrostate is pα,β(0) = δα,2δβ ,6. All numerical results are displayed in
Fig. 3.
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Figure 2: With the same convention as in Fig. 1, we display the smooth DOS µA/B(ε)
and coarse-grained DOS histogram for systems A/B for the three classes of setups
(A), (B) and (C) considered here. Moreover, the numbers in the histogram equal the
Wα/β used in the numerical simulation.

We start by investigating the nonequilibrium time evolution of the local macrostate distri-
butions. To this end, we display a 3×4 grid of histograms of pα(t) (dark, blue bars) and pβ(t)
(bright, orange bars) for different times t/τ ∈ {0,10, 20,30} at the top of Fig. 3 (note that the
y-axis has the same scale everywhere). Each row of the histogram grid corresponds to one
of the three different initial conditions defined above Eq. (2): local energy eigenstates (IC1,
first row), decorrelated Haar random states (IC2, second row) and entangled Haar random
states (IC3, third row) confined to the microcanonical subspace. The most important thing to
notice is that the evolution of the macrostate distribution is almost identical for all three initial
conditions (numerical discrepancies in the plot are barely visible to the eye), even though the
microstates are very different. We here call this property dynamical typicality [87–91]. This
makes a thermodynamic analysis in terms of macrostates meaningful.

Moreover, we see that the macrostates spread out and do not remain strongly peaked
around some mean energy, indicating the need of a probabilistic description. This behaviour
is indeed expected for mesoscopic systems for which the need to find a proper definition of
entropy and temperature is pressing. It would vanish in a suitable macroscopic limit, which
is numerically not accessible to us. Note that any uncertainty in pα,β(t) is entirely of quan-
tum origin in our model, there is no classical uncertainty. Finally, we can observe a (mirror)
symmetry between pα(t) and pβ(t), as one would expect for two identical systems.

Next, we consider the time evolution of the average energies of A and B in Fig. 3(a) for
IC2 and we observe two things. First of all, we see that the quantum expectation value
〈HA〉(t) = trA{HAρA(t)} is all the time very close to the coarse-grained expectation value
〈EA〉=
∑

α Eαpα(t), and similarly for B. This is important because it shows that the widths of
the energy windows is chosen well. Second, we see the energies converging to the same value
for long times because the two systems are identical.

We continue with the time evolution of the three different inverse temperature definitions
in Fig. 3(b) for IC2. We see that βA(t) ≈ βB(t) for long times and for all three different
definitions, even though the different definitions do not agree among each other. However, it is
known that the remaining discrepancy would vanish for larger systems due to the equivalence
of ensembles [7–9], but it was numerically not possible to reach this regime.

Finally, we turn to the nonequilibrium dynamics of entropy in Figs. 3(c–e) and remark that
the thin horizontal gray line indicates the value ln(DA

effD
B
eff) for orientation. In Fig. 3(c) and

Fig. 3(d) we plot the time evolution of the entanglement and diagonal entropy, respectively,
for all three different initial conditions. The important point to observe is that both notions
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Figure 3: Numerical results for class A (for a description see the main text).
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do not depend on the macrostate alone but are sensitive to the microstate for transient times.
This implies that also the associated second law, quantified by the change in entanglement or
diagonal entropy (the entropy production), respectively, would depend on the microstate. Note
that this is not the case for any of the other thermodynamic quantities, which is the reason
why we plot their evolution for a single initial condition only (here IC3) in Fig. 3(e).

Turning to the comparison of all eleven different entropies in Fig. 3(e), we see that all of
them tend to increase, i.e., they satisfy the second law of thermodynamics. However, both the
Boltzmann surface and Gibbs volume entropies SB(〈E〉), 〈SB〉, SG(〈E〉) and 〈SG〉 stay almost
constant. The upward and downward jumps of SB(〈E〉) and SG(〈E〉) are caused by a brief tran-
sition of the average energy from one discrete energy window to another. Also the canonical
entropy production is significantly smaller than the production of the entanglement, diagonal
and cgo entropies. It is further noticeable that the diagonal entropy Sdiag (for IC2 and IC3)
almost perfectly matches the local cgo entropy S⊗cgo, while the entanglement entropy Sent (for
IC3) evolves in parallel but not very close to the cgo entropy Scgo. Moreover, as it should be for
normal systems, all volume-related entropies show the same behaviour, just shifted upwards
to larger numerical values (that is, the entropy productions are the same if we interchange the
letters B by G).

Finally, it is worth to notice that von Neumann’s H-theorem [4,5] (see also Refs. [92–95])
establishes the conditions under which the cgo entropy Scgo saturates to its maximum value
ln(DA

effD
B
eff) (thin horizontal gray line), which does not happen in our example. We attribute

this discrepancy to the fact that the perturbation V = λR is too banded or, equivalently, the
global state is not confined to a sufficiently narrow energy shell. In this case, the eigenfunctions
of HA+HB +V are not delocalized over the entire dynamically relevant Hilbert space (we can
not prove this fact as an exact diagonalization of the total Hamiltonian is out of reach) such
that the resulting non-negligible correlations between the global and local energy eigenbasis
could jeopardize the applicability of von Neumann’s H-theorem.

3.2 Class B: Normal system coupled to a negative temperature system

We continue by considering a normal system A with DOS µA(ε) = exp(
p

3ε) coupled to a
system with a Gaussian DOS µB(ε) = exp[−(ε − ε̄)2/σ2 + c], where we set the mean and
variance to ε̄= (Eb+Ea+2δE)/2 andσ = (Eb+Ea)/12, respectively, and introduced a constant
c = (Emax − ε̄)2/(2σ2). For a sketch see Fig. 2(B). A Gaussian DOS would naturally arise (at
least approximately) for spin systems and it is characterized by the appearance of negative
Boltzmann temperatures in the regime where ∂ε lnµB(ε) < 0. The correct thermodynamic
treatment of such systems has caused some debate [29, 69–75]. The initial macrostate is
pα,β(0) = δα,2δβ ,6 and the effective dimensions are DA

eff = 342 and DB
eff = 406. All numerical

results are displayed in Fig. 4 using the same conventions as for Fig. 3.
We start again by discussing the nonequilibrium dynamics of the local macrostate distri-

butions (3× 4 grid of histograms at the top of Fig. 4). As before, we see dynamical typicality.
Moreover, system B has a clearly visible preference for occupying the energy window Eβ=5
with the largest amount of states, as expected.

The evolution of the local average energies is shown in Fig. 4(a), demonstrating again that
the coarse-grained average energy matches well the exact quantum expectation value. Now,
however, the average energy of A and B do not tend to the same value (which is also visible in
the histograms) since the systems are not identical.

The inverse Boltzmann and canonical temperature tend to converge to a similar value
for long times as shown in Fig. 4(b). The remaining small but noticeable difference for long
times is attributed to finite size effects. Instead, the difference in Gibbs temperature seems
not attributable to finite size effects. In fact, one even observes that the difference in Gibbs
temperature increases in time (the coincidence at t = 0 is accidental).
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Figure 4: Numerical results for class B (for a description see the main text).
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Finally, we turn to the nonequilibrium dynamics of entropy in Fig. 4(c–e). The qualitative
features are identical to class A with the only important difference that the Gibbs-volume
entropies SG(〈E〉) and 〈SG〉 now violate the second law.

3.3 Class C: Normal system coupled to a negative heat capacity system

Finally, we consider a normal system A with DOS µA(ε) = exp(
p

10ε) coupled to a system B
with DOS µB(ε) = Θ(Eb − ε)exp[(3ε/2)2]. Since C ∼ −∂ 2

ε lnµB(ε) = −3/2 this describes
a system with negative heat capacity as it could arise in systems with long range interac-
tions [10–15]. Moreover, the Heaviside step function Θ(x) introduces a cutoff outside the dy-
namically relevant regime (physically, this could be justified by a gaped DOS or an additional
conservation law). The resulting situation is sketched in Fig. 2(C). The initial macrostate is
pα,β(0) = δα,1δβ ,7 and the effective dimensions are DA

eff = 372 and DB
eff = 392. All numerical

results are displayed in Fig. 5 with the same conventions as in Figs. 3 and 4.
As before, the grid of histograms at the top of Fig. 5 displays the time evolution of the

macrostates, affirming dynamical typicality. Furthermore, there is a clear tendency to reside
in the state with the highest Boltzmann entropy despite some smearing out.

Figure 5(a) displays the evolution of the average energies, giving rise to the same obser-
vation as for class B.

Figure 5(b) shows that both the Boltzmann and Gibbs temperature face problems. One
could say that the Gibbs temperature performs a bit better, but in general both temperatures
of A and B decrease, describing a spontaneous cooling of the entire setup. However, such
strange behaviour is expected for systems with negative heat capacity and does not necessarily
violate the second law (but see below). Remarkably, the canonical temperature shows a clear
tendency to approach each other, even though it does not reach the same value. Moreover,
observe that for the present initial state and DOS the initial inverse temperature βB

can(0) of
system B is very negative.

Finally, we conclude with a study of the entropies in Fig. 5(c–e). We can now see that both
the Boltzmann-surface entropies SB(〈E〉) and 〈SB〉 and the Gibbs-volume entropies SG(〈E〉)
and 〈SG〉 clearly violate the second law (the Boltzmann entropy even stronger than the Gibbs
entropy). Moreover, in contrast to class B and C, the canonical entropy increases significantly,
which is related to the just mentioned strong negativity of βB

can(0). Note that the behaviour of
canonical entropy depends sensitively on the behaviour of the DOS outside the dynamically
relevant regime: if instead of the Heaviside step function one allows some small µB(ε)> 0 for
ε > Eb one quickly restores a behaviour similar to class A and B (not shown here). Otherwise,
we observe a similar behaviour for all the other entropies: they are clearly increasing, Sent and
Sdiag depend on the microstate, and Sdiag (for IC3) and S⊗cgo almost perfectly coincide.

4 Summary

Before we summarize our observations, we briefly discuss the weaknesses and strengths of the
model chosen here.

The weaknesses are related to the particularity of the model: a random matrix Hamiltonian
(in reality no Hamiltonian is truly random), the arbitrary choice of DOS for HA and HB (which
we have not obtained from any explicit model), the choice of initial states that are strongly
localized in energy (which would not result from a prior coupling of A or B to heat reservoirs),
as well as other compromises forced on us by numerical limitations. However, the present
model has also several strengths that tame the criticism.
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Figure 5: Numerical results for class C (for a description see the main text).
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First, while we presented numerical results only for a single choice of the random matrix
interaction V = λR and a single random choice of the three different initial conditions, we
have tested the code extensively and observed quantitatively very similar behaviour in each
run. Thus, the success of random matrix theory [54–60] and the closely related eigenstate
thermalization hypothesis [59–64] makes us confident that our model captures at least qual-
itatively some relevant features of realistic heat exchange models. Similarly, we have also
checked that many qualitative features remain when changing the local DOS slightly.

Second, while our choice for the initial state is not inspired by a prior coupling of A or B to
separate heat reservoirs, one can imagine other experimental procedures that prepare A or B
within a microcanonical energy window. For instance, one could initially measure the coarse
energy of A or B, or one could start from the ground state and then inject fixed amounts of
energy. Moreover, it seems questionable that a more smeared out initial distribution would re-
sult in great changes of our results. At least the entropies SB(〈E〉), 〈SB〉, SG(〈E〉), 〈SG〉 and Scan
are insensitive to the variance. We found microcanonical initial conditions more interesting as
canonical initial states are conventionally considered in many fields (e.g., in Refs. [23–25]).

It is also worth mentioning that scaling up the local Hilbert space dimensions but leaving
the DOS and coarse-graining fixed would not result in qualitatively different results because
the qualitative features of the dynamics depend on the relative ratio of the volumes Wα and
Wβ but not their absolute values.

Finally, if the second law and the entropy concept truly are universal, as it is widely pro-
claimed, they should certainly uphold a test within a simple toy model that captures some
elementary aspects of a heat exchange model.

We now summarize our findings.

1. Both entanglement and diagonal entropy sensitively depend on the initial microstate
even though the macrostates show the same dynamics. If one chooses the third initial
condition, which corresponds to the maximally unbiased pure state with respect to the
initial macrostate, the evolution of diagonal entropy becomes virtually identical to the
evolution of local cgo entropy and the evolution of entanglement entropy shows some
similarity with the evolution of cgo entropy.

2. Boltzmann’s surface entropy concept, whether we evaluate it for the average energy
or consider its average, strongly violates the second law for class C (a normal system
coupled to a negative heat capacity system). Also the associated temperature notions
shows no tendency of convergence then.

3. Gibbs’ volume entropy concept, whether we evaluate it for the average energy or con-
sider its average, violates the second law for class B (a normal system coupled to a
negative temperature system) and C. Also the associated temperature notions shows no
tendency of convergence then.

4. For classes A and B, the canonical entropy increases only very little in comparison to the
entanglement, diagonal and cgo entropies, but for class C it increased strongly. This be-
haviour is related to the sensitivity of canonical entropy with respect to the DOS outside
the dynamically relevant regime. Its associated temperature notion performs very well
for class A and B and shows some tendency of convergence for class C.

5. Cgo entropies, whether of surface or volume type, show a strong increase similar to
the entanglement or diagonal entropy. This highlights that probabilistic considerations,
captured by a Shannon entropy term in cgo entropies, seem important for the validity of
the second law. In particular, we repeat that these probabilities are genuinely of quantum
origin in our model: they do not arise from classical ensemble averages or a subjective
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lack of classical knowledge. Finally, despite its increase, von Neumann’s H-theorem for
cgo entropy Scgo does not apply, presumably because of the too narrow band structure
of V (or the too widespread energy interval) considered here.

In spirit of our paper, we leave it to the reader to draw further conclusions from these
numerical observations.
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