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Z4 transitions in quantum loop models on a zig-zag ladder
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Abstract

We study the nature of quantum phase transitions out of Z4 ordered phases in quantum
loop models on a zig-zag ladder. We report very rich critical behavior that includes a
pair of Ising transitions, a multi-critical Ashkin-Teller point and a remarkably extended
interval of a chiral transition. Although plaquette states turn out to be essential to realize
chiral transitions, we demonstrate that critical regimes can be manipulated by deforming
the model as to increase the presence of leg-dimerized states. This can be done to the
point where the chiral transition turns into first order, we argue that this is associated
with the emergence of a critical end point.
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1 Introduction

Identifying different universality classes of quantum phase transitions appearing in low dimen-
sional many-body systems is one of the central topics in condensed matter physics [1]. Often,
one can guess the underlying critical theory by analyzing the symmetry that is spontaneously
broken at the transition. Let us consider, for example, the transition between an ordered phase
with a Zp symmetry and a disordered phase. Naïvely, the corresponding transition is expected
to belong to the universality class of conformal minimal model with the matching value of p,
i.e. Ising for p = 2, three-state Potts for p = 3, Ashkin-Teller for p = 4. However, if short-range
correlations in the disordered phase are incommensurate (IC), with the dominant wave-vector
q different from its commensurate value 2π/p, the transition is classified as a commensurate-
incommensurate (C-IC) one. Understanding the nature of these C-IC transitions is one of the
biggest challenges of modern quantum physics that roots back to the classical study of ab-
sorbed monolayers [2–5]. In this case, different sequences of ground-state domains, such as
ABC and ACB, have different sets of domain walls, and if free energy contributions of various
domain walls are not identical, such as AB ̸= AC , one type of sequence becomes energetically
favored over the other and induces chiral perturbations [6]. For p = 2, if the transition is
continuous, one can always expect the transition to be of the Ising type, irregardless of chiral
perturbations. But for p > 2 chiral perturbations are (almost always) relevant and drastically
change the nature of the transition [3,6–8]. For instance, for ordered phases with periodicities
p ≥ 5 the C-IC transition cannot be direct but is a two-step transition with an intermediate
floating phase [3, 9], i.e. an incommensurate Luttinger liquid [10]. This floating phase is
separated from the C ordered phase by a Pokrovsky-Talapov [2, 11] transition and from the
IC disordered phase by the Kosterlitz-Thouless transition [12], with exponentially decaying
correlation lengths for the latter.

The transitions in the cases of p = 3 and p = 4 are much more exotic in nature. When
the disordered phase is commensurate, the transition is conformal and belongs to the 3-state
Potts (for p = 3) or Ashkin-Teller (for p = 4) universality class. In the presence of strong
chiral perturbations the transition to the p = 3 and p = 4 phases is through the floating phase,
similar to the p ≥ 5 cases. In the presence of weak chiral perturbations the C-IC transition to
the p = 3 phase remains direct, though it is no longer conformal but belongs to the chiral Huse-
Fisher universality class [3, 6, 13–17]. Weak chiral perturbations might also lead to a direct
chiral transition at the boundary of the p = 4 phase. In this case, however, the appearance
of the chiral transition is a subtle issue [3] due to the fact that the Ashkin-Teller family of
conformal critical theories forms a so-called weak universality class [18,19]. This means that
some critical exponents, such as ν and β describing the divergence of the correlation length
and the scaling of the order parameter in the vicinity of the critical point respectively, are not
fixed but vary as a function of an external parameter (usually called λ [18, 20–22]), while
others, including the central charge and the scaling dimension d = β/ν, are universal within
the family. The Ashkin-Teller family of transitions ranges from a pair of decoupled Ising chains
with ν = 1 to the symmetric 4-state Potts point with ν = 2/3 [18]. It turns out that the way
chiral perturbations affect the nature of the transition drastically depend on the properties
of the conformal point. When ν ≳ 0.8 even weak chiral perturbations always open up a
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floating phase [3,20,22]. On the other hand, when the Ashkin-Teller point is characterized by
(1+
p

3)/4 < ν ≲ 0.8 a direct chiral transition emerges under weak chiral perturbations and
is followed by an opening of the floating phase when chiral perturbations become strong. The
two regimes are separated by the Lifshitz point that is characterized by a dynamical critical
exponent z = 3 [3, 16, 20]. Finally, when the Ashkin-Teller point is close to the 4-state Potts
point with 2/3 ≤ ν ≤ (1 +

p
3)/4 ≈ 0.683, chiral perturbations are irrelevant [2], allowing

for an interval of a conformal Ashkin-Teller transition, followed by a chiral transition and the
floating phase when chiral perturbations become stronger [22].

In addition to the chiral Ashkin-Teller model [20, 22], the Z4 chiral transition has been
recently reported in the context of Rydberg atoms [23–30]. In experiments Rydberg atoms
are trapped with optical tweezers in a one-dimensional array with a well controlled inter-
atomic distances. Lasers with Rabi frequency Ω bring atoms from their ground-state to excited
Rydberg states. Competition between the strong van der Waals interaction of excited atoms
and the laser detuning ∆ leads to a rich phase diagram with the lobes of density-wave phases
with different integer periodicities p [9, 24]. A narrow intervals of the chiral transition has
been observed at the boundary of the p = 4 lobe [26,27,29].

In this paper we explore a possibility to realize the Z4 chiral transition in quasi-one-
dimensional quantum magnets. The transition we are looking for takes place between two
gapped phases, one of which - the disorder phase - does not break translation symmetry and
has no long-range order. According to the Mermin-Wagner theorem [31] this naturally ex-
clude half-integer spin chains. Previous studies of spin-1 Heisenberg zig-zag chains with anti-
ferromagnetic nearest- and next-nearest-neighbor interactions report a next-nearest-neighbor
Haldane (NNN-Haldane) phase appearing when the ratio between these interactions exceeds
J2/J1 ≳ 0.75 [32–35]. Intuitively one can understand NNN-Haldane phase by starting with
two decoupled Haldane chains and tuning the antiferromagnetic nearest-neighbor coupling
in such way that the spin-1/2 edge states are annihilated and a valence bond connects the
two chains at each edge, forming a single spin-singlet loop spanning over the entire zig-zag
ladder.1 This phase, being topologically trivial without long-range order and with incommen-
surate short-range correlations, is therefore ideally suited for the role of an incommensurate
disordered phase, providing an excellent starting point for our study. The Z4 chiral transition,
just like the previously reported Ising transition to the dimerized phase [35, 36], is expected
to be non-magnetic with low-lying excitations taking place entirely within the singlet sector
while a singlet-triplet gap remains open.2 This allow us to focus on S = 1 quantum loop mod-
els (QLMs) [37], which effectively disregard all magnetic degrees of freedom such that the
Hilbert space is formed by states with all possible spin-singlet, often called dimers, coverings
satisfying some quantum loop constraints. We note that S = 1 QLMs are rather similar to the
class of quantum dimer models [38–40] that were originally proposed in the context of high
temperature cuprate superconductors. These provide an effective description of valence bond
crystals [41–43], think of columnar, staggered and plaquette phases on a square lattice, and
resonating valence bond phases [44–47] on various lattices. The main difference between the
latter and former models is that states of S = 1 QLMs consist of dimer coverings with two
dimers per site while quantum dimer states only allow for one dimer per site. This makes
it so that in QLMs, contrary to its quantum dimer model counterpart, the dimers can form
loops. Often, these model do not allow trivial loops - formed only between two lattice sites.
By contrast, in the present case we do allow them.

These quantum loop models provide a number of computational advantages. Firstly, QLMs
are by definition constrained: at each node, originally hosting a spin-1 site, 2 and only 2

1The spin-1/2 edge states in the NNN-Haldane phase cause the transitions out of it to be magnetic in nature,
making it rather different from the NNN-Haldane phase, with a topological term in the corresponding field theory.

2In the literature these transitions are sometimes known as valence-bond-singlet- or VBS-transitions.
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quantum dimers originate. Dimer coverings that violate this constraint are excluded from
the Hilbert space, significantly reducing its size. Secondly, QLMs formulated directly in terms
of dimers simplifies the construction of the parent Hamiltonian that would lead to a desired
long-range order with spontaneously broken Z4 symmetry. Furthermore, there are several re-
alization of the Z4 phase in spin-1 chains and, as we will show later, quantum loop models
provide a natural way to interpolate and distinguish between them. Thirdly, in special cases
QLMs can be mapped to the blockade models of Rydberg atoms [48]. This provides an excel-
lent starting point for our study and opens a by-path for experimental validation of our results.
Fourthly, the non-magnetic Ising transition into the dimerized phase in a frustrated Haldane
chain mentioned previously has been successfully reproduced with the related quantum loop
model already [48]. In other words, if a chiral transition exists in quantum spin-1 chains, it
will likely also appear in quantum loop models. In turn, realization of chiral transitions in
QLMs will help to narrow down the conditions for its appearance in more realistic models of
quantum magnetism. We address the problem numerically with the state-of-the-art density
matrix renormalization group (DMRG) algorithm [49, 50] with explicitly implemented quan-
tum loop constraints [48] such that the algorithm fully profits from a restricted Hilbert space,
allowing us to reach convergence for critical chains with up to N = 3000 sites.

In this paper we report an extremely extended chiral transition that separates the Z4 leg-
dimerized and the disordered NNN-Haldane phase. For a certain parameter range we see
that the disordered and Z4 phase are connected via a pair of Ising transitions with a Z2 rung-
dimerized phase between the two. Eventually the rung-dimerized phase disappears and two
Ising transitions merge into a multi-critical Ashkin-Teller point, beyond which we resolve theZ4
chiral transition. We show that the nature of the Ashkin-Teller point and the extent of the chiral
transition depends on the relative weight of two realizations of the Z4 phase - trivial double-
dimers on legs and four-site plaquette loops. Furthermore, and quite surprisingly, when the
weight of double leg dimers is too high the chiral transition turns into a first order transition.
We argue that this might be due to the presence of an additional relevant operator in the
underlying critical theory.

The rest of the paper is organized as follows. In Section 2 we define the model, provide
details on our DMRG algorithm and explain how we extract main observables. In Section 3 we
discuss the basic phase diagram of the quantum loop ladder with three main phases - Z2, Z4
and disordered. We also show that for an extremely extended parameter range the transition
between the latter two phases is chiral. In Section 4 we show that the nature of the multi-
critical point and the extent of the chiral transition can be manipulated by the relative ratio of
the two kinetic terms of the QLM. Here we also discuss how the first order transition between
the Z4 and the disordered phase develops as a function of the kinetic term responsible for the
formation of double-dimers. Finally, we summarize our results and put them in perspective in
Section 5.

2 Model & methods

2.1 Model

We study Z4 transitions in QLMs with two dimers per node on a zig-zag ladder. This choice
allows us to realize a quantum dimer analogue of the NNN-Haldane phase of the J1 − J2
Heisenberg spin-1 chain. We also include a potential term that stabilizes the Z4 phase. The
microscopic Hamiltonian is defined as follows:

HQLM = −
∑

plaquettes

�

t| 〉〈 |+ t ′| 〉〈 |+ h.c.
�

− θ
∑

plaquettes

| 〉〈 |+δ
∑

rungs

| 〉〈 | , (1)
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where the respective sums run over all plaquette and rungs with both orientations of the zig-
zag chain. The first kinetic term, parametrized by t, acts on a plaquette that has its rungs
occupied by a dimer (either single or double) and flips one pair of dimers at a time over a
given plaquette. The second kinetic term controlled by t ′ acts on a plaquette that has both its
rungs and legs occupied by a single dimer and flips them to a plaquette with two dimers on
both legs. Furthermore, the first potential term, controlled by the parameter θ , favors 4-site
quantum loops - the plaquette phase. Lastly, the parameter δ controls the second kinetic term
that acts on all rungs in the ladder. This term aims to suppress the otherwise very stable rung
dimer phase. Without loss of generality we set t = 1 and explore the model as a function of
three independent parameters t ′, θ and δ.

2.2 DMRG

We study the model defined in Eq.(1) with the constrained three-site - optimizing three ten-
sors per iteration - DMRG algorithm with explicitly implemented quantum loop constraints,
and using a Matrix Product State (MPS) ansatz [48–52]. With all eigenstates fully consisting
of local dimer configurations, the QLM degrees of freedom can be taken as the occupation of
dimers on the rungs and legs instead of spins. We make use of this by considering the occu-
pation of dimers on a single rung with the preceding leg as the local Hilbert space, with its
dimension being equal to six - one state without any dimers, two with two dimers on either
the rung and leg, and three with single dimer occupations of the rung and leg. For differ-
ent dimer occupations, we associate quantum numbers to label their respective sectors in the
Hilbert space in iterative processes of the algorithm, such as the construction of the left and
right normalized blocks. These blocks are constructed iteratively and the fusion between these
quantum numbers under the addition of new sites to these blocks are described by a set of fu-
sion rules. Since there is a one-to-one correspondence between quantum labels, the tensor
can be projected into a block-diagonal form, significantly reducing computational costs. In
addition, the dimension of the Hilbert space scales ≈ 1.68N instead of 3N for spin-1 chains.
Further details on the construction of the matrix product operator for the QLM Hamiltonian
and technical aspects of the implementation of the constraints are provided in Appendix A.

We simulate systems with up to N = 3000 spin-1 lattice sites, which effectively translates to
N = 2999 QLM local degrees of freedom, each half sweep we increase the bond dimension by
200, up to a maximum of 10000 and discard all singular values smaller than 10−8. We note that
during simulations the maximum number of states, even for the largest system considered, was
never reached. Due to fragmented Hilbert space of QLMs, tensor operations can be performed
block by block and the complexity is reduced by a lot. We perform up to seven full sweeps. As
a convergence criteria we require the absolute error of the energy over a sweep to be below
10−13. We start each simulation with a random guess for our initial wave-function. We always
use 4k−1, with k ∈ N, QLM sites to ensure that the ordered phases, including the Z4 plaquette
and leg-double-dimers, fully cover the ladder with symmetric boundary conditions.

2.3 Extraction of ξ and q

Our numerical analysis of the nature of the transition between the Z4 symmetric and the NNN-
Haldane phase primarily relies on the scaling of the correlation length ξ and the incommensu-
rate wave-vector q. We extract both of these from the correlation function Ci, j∝〈nin j〉−〈ni〉〈n j〉
- unless states otherwise we use ni = | 〉〈 |+ | 〉〈 | - by fitting it to the Ornstein-Zernicke
form [53]:

COZ
i, j ∝

e−|i− j|/ξ
p

|i − j|
cos(q|i − j|π+φ0) , (2)
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where ξ, q and the phase φ0 are considered as fitting parameters. The correlation func-
tion is always calculated on the interval N/2 ≤ i ≤ N with j = N/2. We extract
the correlation length and the wavevector in a two-step process. First, we plot the loga-
rithm of the correlation function, as shown in Fig.1 (a), and fit its slope with the function
ln Ci, j(x = |i − j|) ≈ A− x/ξ− ln(x)/2 to extract ξ. In doing so we fit ξ and the amplitude A
at the same time. To extract the slope we first identify local maxima of ln |Ci, j| by comparing
each point with its 2 neighbours and then fitting these maxima.

In the second step we calculate the reduced correlation function

C̃i, j = Ci, j · Ae|i− j|/ξ
Æ

|i − j| , (3)

that we fit with
C̃OZ

i, j ≈ a cos(q|i − j|π+φ0) . (4)

In Fig.1 (b) we show an example of the fit where we treat q, φ and a as fitting parameters.
The agreement between our numerical data (blue circles) and the fit (orange dots) is almost
perfect. We expect the wave-vector q to be affected by finite-size effect due to fixed boundary
conditions. We can estimate the associated error to be of the order of 2ξ/N2, where 2/N is a
single step in q and the extra factor ξ/N results from finite size effects that could arise at the
boundaries.

We repeat the procedure outlined above for multiple points in proximity to the critical
point. From these data points we extract the critical exponents ν and β̄ from the scal-
ing of the correlation ξ and the wave-vector q respectively. This we also do in two steps.
First we fit the inverse of the correlation length 1/ξ ∝ |θ − θc|ν to extract ν and the crit-
ical parameter θc , indicating the location of the transition. We do this with the function
1/ξ = AΘ(θc − θ )(θc − θ )ν + BΘ(θ − θc)(θ − θc)ν, where Θ(x) is the heaviside step func-
tion and we fitted ν and θc but also the constants A and B all at the same time. After extract

250 500 750 1000 1250

ln
|C

i,
j|

−15

−10

−5
𝜉 ≈ 196.4

(a)

|i − j|
300 400 500 600 700 800 900 1000 1100

C
̃ i,j

−1.0

−0.5

0.0

0.5

1.0
(b)

DMRG data q ≈ 0.503𝜋

Figure 1: Example of fitting the correlation function Ci, j to the Ornstein-Zernicke
form (2) in a two step process. (a) First the correlation length ξ is extracted from
fitting the main slope of ln |Ci, j|. (b) Then the reduced correlation function C̃i, j is
calculated and fitted to extract the wavevector q.
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θc we use it to fit the wavevector q∝ |θ − θc|β̄ with q = CΘ(θc − θ )(θc − θ )β̄ to obtain β̄ . In
our analysis we also compute the product |q/π− 1/2| × ξ. We would like to emphasize here
that we do what we outlined above point-by-point, independently for each fit for ν and β̄ .

3 Z4 transitions for t ′ = t

3.1 Overview of the phase diagram

We start our study of the quantum loop model defined in Eq. (1) by looking at a special case
t ′ = t = 1. The ground-state phase diagram as a function of δ and θ is presented in Fig.2
and contains three main phases - NNN-Haldane phase, Z2 rung-dimerized phase and Z4 leg-
dimerized phase. The NNN-Haldane phase is a disordered phase realized for positive δ and
small θ . Within the disordered phase we distinguish two regions: one with commensurate
and the other with incommensurate short-range order, which are separated by the so-called
disorder line. In Appendix B we explain in details the method we use to locate this line. By
increasing θ while keeping δ positive, the system enters the Z4 leg-dimerized phase phase
with spontaneously broken translation symmetry. There are two main families of states re-
alized with a broken Z4 symmetry - plaquette and columnar leg states. In the former every
four consecutive sites form a single dimer loop while in the latter every other leg is occupied
by a double dimer - a trivial loop. Example of both states are sketched in Fig.2. The leg-
dimerized phase realized with t ′ = t is a superposition of these two families of states. The
columnar states’ weight is most significant near the boundary of the leg-dimerized phase, but,
nonetheless, is always a fraction of that of plaquette states. Further away from the boundary

D
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Ising
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Chiral

-1 0 1 2 3 4 50
1.0

1.2

1.4
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d
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d
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Figure 2: Phase diagram of the quantum loop model defined in Eq. (1) for t ′ = t = 1
as a function of δ and θ . There are three main phases: disordered NNN-Haldane
phase (yellow) with a commensurate and incommensurate part separated by the dis-
order line (grey line), Z2 rung-dimerized phase (red), and Z4 phase (blue) as a su-
perposition of plaquette and columnar states. The transition between the disordered
phase and the rung-dimerized phase and that between the rung-dimerized and Z4
leg-dimerized phase are of the Ising type (green circles). Two Ising transitions merge
into the multi-critical Ashkin-Teller point (purple dot) within some uncertainty of its
location indicated by the light-pink region around it. Beyond the Ashkin-Teller point
the transition is chiral (blue squares) The θ -axis is broken for visual clarity.
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+

Figure 3: Sketches of two possible Z2 ordered states that appear as a superposition
in the rung-dimerized phase, alongside their typical density profiles. (a) Fully dimer-
ized state with every other rung occupied by a trivial two-dimer loop and (b) par-
tially dimerized state with a single dimer on every other rung. Density profile of two
dimers (c) and a single dimer (d) on each rung, computed for the parameters t ′ = 0,
N = 199 sites, δ = −1 and θ = 2.

the density of columnar dimer states decreases down to zero. Negative θ stabilizes the Z2
rung-dimerized phase with spontaneously broken translation symmetry. Although the poten-
tial term in the Hamiltonian of Eq.(1) favors only one type of rung-dimerized state - the fully
dimerized ones with every other rung occupied by a trivial two-dimer loop - in the Z2 phase,
in actuality these states appear in a superposition with partially dimerized states where every
other rung is occupied by a single dimer while the full quantum loop coverage is completed
by a uniform density of dimers resonating on the legs of the ladder. In Fig.3 we sketch both
pair of states and provide their typical density profiles in the rung-dimerized phase.

After identifying the phases, we take a closer look at the transitions. One way to go from
the Z4 leg-dimerized phase to the disordered phase is through a pair of Ising transitions with
an intermediate rung-dimerized phase. At each of the two Ising transitions a Z2 symmetry is
spontaneously broken (hence the Z2 rung-dimerized phase appears). Upon increasing δ the
two Ising transitions, characterized by the central charge c = 1/2, come closer and merge into
an Ashkin-Teller multi-critical point with a central charge c = 1 [19]. There is some uncertainty
in the location of the Ashkin-Teller point due to a limited numerical resolution and a crossover
between various critical regimes. Instead, we identify a finite interval along the boundary of
the Z4 leg-dimerized phase where the Ashkin-Teller point is located. Beyond the Ashkin-Teller
point the transition becomes chiral. For t ′ = t we do not observe a floating phase opening up,
at least up to δ = 50, indicating that the chiral transition persists for an extremely extended
interval.

3.2 Ising transitions

We start our analysis with the region where the transition between the Z4 ordered and the
disordered phase takes place through two Ising transitions and an intermediate Z2 ordered
phase. We locate these Ising transitions by performing a finite-size scaling of the relevant or-
der parameter. We first focus on the transition between the Z2 rung-dimerized and disordered
phase. At this transition the translation symmetry between rungs is spontaneously broken. To
reflect this broken symmetry, we compute the dimerization on the rungs Drung = |〈ni〉−〈ni+1〉|,
where ni = | 〉〈 |+ 2| 〉〈 | is an operator that measures the local density of dimers on a
rung. In order to reduce edge effects we extract Drung in the center of the ladder. In the ther-
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Figure 4: Numerical evidence for the Ising transition between the Z2 rung-dimerized
phase and (a)-(b) the disordered and (c)-(d) theZ4 leg-dimerized phase for δ = 0.55.
(a) Finite-size scaling of the dimerization on the rungs computed in the middle of
the ladder with open boundary conditions. The quantum critical point is located
at θ c

1 ≈ 1.6242 (red circles). (c) Finite size scaling of the dimerization on one of
the legs, computed in the middle of the ladder with open boundary conditions. The
critical point is located at θ c

2 ≈ 1.807 (red circles). In both cases the scaling dimen-
sion d ≈ 0.125 extracted at the critical points is in excellent agreement with theory
prediction for Ising transition d = 1/8 (black dashed lines). (b),(d) Scaling of the
reduced entanglement entropy with dN (n) =

2N
π sin πn

N at the two critical points θ c
1

and θ c
2 obtained as shown in (a) and (c). Extracted central charges c ≈ 0.501 at θ c

1
and c ≈ 0.505 at θ c

2 fall within 1% of the c = 1/2 of the Ising universality class.

modynamic limit we expect Drung to approach a finite value inside the ordered Z2 phase and
to vanish in the uniform disordered phase. Consequently, in a log-log plot these will appear
as convex and concave curves respectively and in between these we find the separatrix that
we associate with the quantum critical point. The slope of the separatrix yields the scaling
dimension d of the corresponding operator. In Fig.4 (a) we show the finite-size scaling of the
dimerization for δ = 0.55 and various values of θ in vicinity of the transition. Our numerical
results suggest that the critical point is located at θ c

1 ≈ 1.6242 and that the numerically ex-
tracted scaling dimension d ≈ 0.125 is in excellent agreement with the conformal field theory
predictions d = 1/8 for an Ising transition.

To further verify the nature of the transition between the rung-dimerized and disordered
phase we extract the central charge c. From the reduced density matrix we compute the en-
tanglement entropy SN (n) and then compute the reduced entanglement entropy by removing
Friedel oscillations of the local density [54] - in the present case translation symmetry is broken
- which we define as:

S̃N (n) = SN (n)−α〈ni〉 , (5)

where α is a non-universal parameter tuned such that the oscillations are removed. For con-
formal transitions the reduced entanglement entropy in 1D systems with open boundary con-
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ditions scales linearly with c according to the Calabrese-Cardy formula [55]:

S̃N =
c
6

ln dN (n) + ln g + s1 , (6)

where dN (n) =
2N
π sin πn

N is the conformal distance, ln g accounts for boundary contributions to
the entropy and s1 is a non-universal constant. We extract the central charge at the previously
identified critical point θ c

1 by performing a scaling of the reduced entanglement entropy S̃N (n)
with the conformal distance as shown in Fig.4 (b). To reduce boundary effects we discard 30%
of all sites on both edges of the chain. We observe that under increasing N the numerically
extracted c approaches the theory prediction c = 1/2 for the Ising transition.

Based on symmetry arguments we also expect an Ising transition between the rung-dimer-
ized (Z2) and leg-dimerized (Z4) phase. To confirm this, we follow the same protocol. First,
we compute the finite-size scaling of the dimerization, which we denote as D̃leg = |ñi− ñi+1|, in
the middle of the ladder, but now for the operator ñi = | 〉〈 |+ 2| 〉〈 | that computes the
density of dimers on the legs. Here we only consider the top chain, but, of course, the results
for the bottom one would be identical. In the rung-dimerized phase the density of dimers on
the legs is small and uniform. Consequently, in the thermodynamic limit, D̃leg scales to zero in
the rung-dimerized phase, while it naturally assumes a finite-value in the leg-dimerized phase.
In Fig.4 (c) we provide an example of the scaling of D̃leg. We use the same value of δ = 0.55 as
in Fig.4 (a). The second critical point associated with the separatrix is located at θ c

2 ≈ 1.807
and it is clearly different from the previous Ising transition (θ c

1 ̸= θ
c
2). At this point we extract

a scaling dimension d ≈ 0.125 (Fig.4 (c)) and a central charge c ≈ 0.505 (Fig.4 (d)). Once
again, both are in excellent agreement with the Ising universality class.

3.3 Ashkin-Teller point and extended chiral transition

By accurately locating the two Ising transitions at the boundary of the Z2 phase we notice
that upon increasing δ the two transitions come closer and, eventually, the rung-dimerized
phase disappears. We expect the multi-critical point where two Ising transitions meet to be
in the Ashkin-Teller universality class [18], characterized by a central charge c = 1. We also
locate the disorder line beyond which the disordered phase has incommensurate short-range
correlations. Due to a finite resolution of the numerical approach there is an uncertainty
in the location of the multi-critical point and the disorder line. We thus define an interval
(indicated in Fig.2 with light pink symbols) that starts once we no longer are able to resolve
two Ising transitions with sufficient accuracy and terminates at the point where we detect
a chiral transition. The multi-critical Ashkin-Teller point is located within this interval,3 but
there are three possible scenarios that can be realized, as sketched in Fig.5. The most probable
situation is that the disorder line hits the Ashkin-Teller point and, if the critical exponent at this
point lies within the interval 0.8≲ ν≲ 0.68, the chiral transition starts immediately, as shown
in Fig.5(a). In case when the critical exponent is 0.68 ≲ ν ≤ 2/3 the chiral transition starts
after a short interval of the conformal Ashkin-Teller transition [22] (see Fig.5(b)). It is also
possible that the disorder line hits the transition at a certain distance from the multi-critical
point. Then, in the interval between the two, the transition will be commensurate and in the
Ashkin-Teller universality class.

Beyond the multi-critical Ashkin-Teller point the transition between the Z4 and the NNN-
Haldane phase can be in one of the three regimes − Ashkin-Teller, chiral, or an intermediate
floating phase. Following Huse and Fisher [6], we use the product ∆q × ξ to distinguish the
critical regimes, where ∆q = |q/π− 1/2| is the distance between the wave-vector q from its

3We observe a crossover between various critical regimes in the vicinity of the multi-critical point. We therefore
associate the Ashkin-Teller multi-critical point with the location that shows the smallest finite-size corrections to
the expected Ashkin-Teller critical scaling.
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Figure 5: Sketches of the three possible scenarios of two Ising transitions merging
into an Ashkin-Teller point followed up by a chiral transition. (a) Disorder line hits an
Ashkin-Teller point characterized by ν≥ (1+

p
3)/4≈ 0.68. The transition immedi-

ately becomes chiral beyond this point. (b) If 2/3≤ ν≲ 0.68 the chiral perturbation
can be irrelevant, allowing for a short Ashkin-Teller interval, even if the disorder line
terminates in the Ashkin-Teller point. (c) The disorder line does not terminate in the
Ashkin-Teller points but at the direct transition line, allowing for an Ashkin-Teller
interval, even if ν≳ 0.68. Beyond the disorder line, in the presence of chiral pertur-
bations, the transition becomes chiral.

commensurate value q = π/2 and ξ is the correlation length. Upon approaching the transi-
tion ∆q vanishes with the critical exponent β̄ , while ξ diverges with the critical exponent ν.
Despite β̄ not being known for the Ashkin-Teller universality class, for conformal transitions
one expects β̄ > ν [3, 6]. Subsequently, the product |q/π − 1/2| × ξ is expected to vanish
approaching an Ashkin-Teller transition. For the chiral transition β̄ = ν and thus the product
|q/π − 1/2| × ξ converges to a constant. By contract, the floating phase, being incommen-
surate in nature, is separated from the disordered phase by a Kosterlitz-Thouless transition
that is characterized by an exponential divergence of the correlation length [12] while at the
same time the wave-vector q remains incommensurate through the transition. Therefore, the
product |q/π− 1/2| × ξ is expected to diverge in this case.

Our numerical results are summarized in Fig.6, where we show the inverse of the cor-
relation length 1/ξ, the distance between the wave-vector q from its commensurate value
|q/π− 1/2|, and the product of the two, |q/π− 1/2| × ξ. The results are presented for three
vertical cuts across the transition for various values of δ. For δ = 1.7, where we expect to go
through the Ashkin-Teller point, we extract a critical exponent ν≈ 0.678 and β̄ > ν, consistent
with the Ashkin-Teller universality class. Furthermore, the product |q/π− 1/2| × ξ vanishes
upon approaching the transition. In principle, this Ashkin-Teller point belongs to the interval
in which chiral perturbations can be irrelevant, i.e. 2/3 ≤ ν ≤ (1+

p
3)/4 [2, 22], and thus

there might be a small interval of the Ashkin-Teller transition, as sketched in Fig.5(b). Our
numerical accuracy does not allow to resolve this in more detail. Starting from δ ≈ 2 we see
signatures of a chiral transition. A typical example of this is presented in Fig.6(b)(e),(h), in
which δ = 5. Numerically extracted critical exponents ν ≈ β̄ ≈ 0.64± 0.03 are very similar
and the product |q/π− 1/2| × ξ stays constant upon approaching the transition, signaling a
chiral transition.

Further away from the Ashkin-Teller point we expect the floating phase to open up. Rather
surprisingly however, we find that in this quantum loop model the chiral transition extends
over a very long interval. Even at δ = 50 (see Fig.6 (c),(f),(i)), the transition still appears
to be chiral. If the floating phase appear, the transition that separates it from the Z4 ordered
phase is expected to be in the Pokrovsky-Talapov [11, 56] universality class characterized by
the critical exponents ν= 1/2 (correlation length in the ordered phase), and β̄ = 1/2 (incom-
mensurability as an order parameter in the floating phase). The critical exponents that we
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Figure 6: (a)-(c) Inverse of the correlation length ξ, (d)-(f) |q/π − 1/2| - the dis-
tance of wave-vector q with respect to the commensurate value q = π/2 - and
(g)-(i) the product |q/π − 1/2| × ξ along three cuts across the transition between
the leg-dimerized (Z4) and the NNN-Haldane (disordered) phases. We fit 1/ξ and
|q/π − 1/2| with power laws to extract ν and β̄ . Dashed vertical lines show the
boundary of the Z4 phase extracted by fitting 1/ξ. Error bars of |q/π − 1/2| and
|q/π− 1/2| × ξ are shown as 2× ξ/N2 and 2× ξ2/N2 respectively (we only show
those that exceed the size of the symbols).

extract numerically across the transition at δ = 50 are still significantly far from these values.
Furthermore, |q/π − 1/2| × ξ does not diverge either as expected for the floating phase. In
contrary, under increasing system the product |q/π−1/2|×ξ, in the vicinity of the transition,
flattens out and clearly converges to a constant, as in agreement with a chiral transition. A
remarkably extended interval of a chiral transition in quantum loop models is interesting and
inspiring, as the biggest challenge of chiral transitions in the context of Rydberg arrays is their
extremely small interval [27,28].

4 Manipulating the nature of Z4 transitions

In the previous section we presented the phase diagram of the QLM for the special case
t ′ = t = 1. Let us now investigate, by changing the value of t ′, how the nature of the Z4
transition is altered. In this section we will focus on three cases: first we consider t ′ = 0 asso-
ciated with an additional fragmentation of the Hilbert space, for which we observe a floating
phase; then we present the results for t ′ = 2 where we see no signature of a chiral transition;
finally, we fix δ = 50 and study the phase diagram as a function of θ and t ′ to track how the
nature of the Z4 transition changes.
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Figure 7: Sketches and density profiles of the Z4 leg-dimerized phase. (a) Four possi-
ble configurations of the plaquette states. (b) The four possible states of the columnar
leg phase. (c) Local density of the plaquette (blue) and columnar leg (red) states in-
side the Z4 phase for t ′ = 0 and t ′ = 1. We present only the central part of the ladder
for N = 199, δ = 50 and respectively θ = 1.9 and θ = 1.4.

4.1 Transition to the plaquette phase at t ′ = 0

We start our analysis with t ′ = 0 for which the Z4 columnar leg dimerized states are completely
disconnected from other sectors in the Hilbert space. As a result, the Z4 ordered phase consists
solely out of the plaquette phase, like demonstrated in Fig.7. Apart from that, the main features
of the phase diagram presented in Fig.8(a) resemble, to a certain extent, the previous case with
t ′ = 1. We also detect a Z2 rung-dimerized phase that is separated from both the Z4 plaquette
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Figure 8: Phase diagrams of the QLM defined by Eq.(1) for (a) t ′ = 0 and (b)
t ′ = 2. In each case there are three gapped phases: disordered NNN-Haldane, Z2
rung-dimerized and Z4 leg-dimerized. For t ′ = 0 columnar leg states are fully dis-
connected from the rest of the Hilbert space, causing the Z4 ordered phase to consist
out of the plaquette phase only. In both cases the Z2 ordered phase is separated from
the disordered and the Z4 ordered phases by continuous Ising transitions (green cir-
cles). (a) For t ′ = 0 two Ising transitions meet at the multi-critical Ashkin-Teller point
(purple circle), beyond which the transition is chiral (blue squares) until eventually
it turns into a floating phase (red pentagons). There is some uncertainty in the loca-
tion of the Ashkin-Teller point, which we indicate with light pink diamonds. (b) For
t ′ = 2, as soon as the Z2 phase disappears the transition between the disordered and
Z4 phases is first order (dark gray hexagon).
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and disordered phase by a pair of Ising transitions. Once again, the rung-dimerized phase
disappears and the two Ising transitions meet at the multi-critical Ashkin-Teller point that is
followed by the chiral transition. However, this time, the properties of the Ashkin-Teller point
and, in turn, the length of the chiral transition are different.

To study the details of the Ashkin-Teller multi-critical point and the transition beyond it, we
follow the same protocols as before and compute the scaling of the inverse of the correlation
length 1/ξ and the product |q/π− 1/2| × ξ for various cuts along the transition line. A few
typical examples for t ′ = 0 are presented in Fig.9 (a)-(d). Along the cut at δ = 1.8, that crosses
the Ashkin-Teller critical point4 we see the product |q/π− 1/2| × ξ vanishing (see Fig.9 (b)),
in agreement with the conformal transition, and we extract a critical exponent ν ≈ 0.71 that
is noticeably larger than in the previous case, as demonstrated in Fig.9 (a).

Beyond the Ashkin-Teller point we find that the transition is chiral for an extended interval.
In Fig.9(c) we provide an example of |q/π−1/2|×ξ scaling to a finite-value at the transition.
Further away from the Ashkin-Teller point, δ = 50 to be precise, we see a signature of a floating
phase with a clear divergence of |q/π− 1/2| × ξ, as presented in Fig.9(d). Note that in this
case the finite-size effect is opposite to the one we observed for the chiral transition in Fig.6
(i) - |q/π− 1/2| × ξ divergence becomes more apparent under increasing system size.
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Figure 9: Numerical evidences of various types of quantum phase transition between
the Z4 ordered and disordered phase for (a)-(d) t ′ = 0 and (e)-(g) t ′ = 2. (a)
Inverse of the correlation length 1/ξ at the Ashkin-Teller point. (b)-(d) The product
|q/π − 1/2| × ξ across (a) the conformal Ashkin-Teller transition, (b) direct chiral
transition, and (c) the floating phase. Dashed vertical lines indicate the location of
the critical point extracted by fitting 1/ξ. Error bars of |q/π − 1/2| are estimated
as 2 × ξ2/N2 and are only shown if they exceed the size of the symbols. (e)-(g)
Numerical evidences of the first order transition at δ = 50 that includes (e) finite
correlation length ξ across the transition; (f) a kink in the ground-state energy per
site, and (g) jump in the order parameter. Dashed lines in (e) indicate a power-
law fit. (f) In addition to the finite-size energy per site EN/N we also compute an
estimate of the bulk energy as (EN1

− EN2
)/(N1 − N2) (purple pentagons) that has

significantly reduces boundary effects. (g) Vertical dashed lines indicate the location
of the transitions. (h) Scaling of the 1/ξ for t ′ = 2 through the multi-critical point.
Although the transition appears continuous, the critical exponent ν is outside the
range of the Ashkin-Teller model and might signal a weak first order transition.

4As in the previous case, there is some uncertainty in the exact location of the Ashkin-Teller point.
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According to our data the floating phase opens up between δ = 10 and δ = 20, imply-
ing that the chiral transition for t ′ = 0 is shorter than the one for t ′ = 1 (though it is still
remarkably extended). This observation fully agrees with the theory prediction that if the
Ashkin-Teller conformal point becomes closer to the point with ν ≈ 0.8 where it crosses the
Lifshitz line, the interval of the chiral transition shortens [20,22].

To summarize, we find that the nature of the multi-critical Ashkin-Teller point, and in
turn the length of the chiral transition, can be manipulated by t ′, which is responsible for the
appearance of double dimers on the legs of the ladder. More precisely, we observe that by
switching from t ′ = 0 to t ′ = 1 the critical exponent ν decays from ν ≈ 0.71 to ν ≈ 0.68
accompanied by a significant increase of the interval of chiral transition. However, one can
also notice that at t ′ = 1 the Ashkin-Teller point is already pretty close to the four-state Potts
point with ν= 2/3 [18] and it is therefore natural to question the fate of the chiral transition
if we increase t ′ even further.

4.2 First order transition for t ′ = 2

By increasing t ′ the density of double dimers on the legs in the Z4 phase is increasing. As
a result the Z4 phase appears earlier and the transition takes place at smaller θ . The phase
diagram for t ′ = 2 is presented in Fig.8(b). Like before we observe the rung-dimerized Z2
phase to be separated by a pair of Ising transitions from the disordered NNN-Haldane phase
on one side and the Z4 leg-dimerized phase on the other. However, quite different from the
previous two cases, starting from the point where two Ising transitions meet the two phases are
separated by a first order transition. In Fig.9(e)-(g) we present numerical evidences for δ = 50
supporting this claim. First, the correlation length ξ does not diverge at the transition as
shown in Fig.9(e). Second, the ground-state energy per site EN/N has a kink typical for a first
order transition that becomes more pronounced upon approaching the thermodynamic limit,
as demonstrated in Fig.9(f). In addition to the finite-size results for EN/N we also consider the
bulk energy per site (EN1

−EN2
)/(N1−N2) for two different system sizes, effectively eliminating

boundary effects, and observe a kink as well. Finally, in Fig.9(g) we show that the dimerization
on the legs D̃leg of the top chain - the order parameter of the Z4 leg-dimerized phase - has a
clear jump at the transition.

Upon approaching the multi-critical point signatures of the first order transition weaken.
In particular, the scaling of the inverse of the correlation length presented in Fig.9(h) looks
very similar to that of a continuous transition. However, the numerically extracted critical
exponent ν ≈ 0.62 lies outside the range 2/3 ≤ ν ≤ 1 defined by the Ashkin-Teller critical
theory, with the lowest value ν = 2/3 corresponding to the 4-state Potts point. So, what is
the nature of the transition beyond this point? A recent study of the Ashkin-Teller model has
shown that the system along the self-dual line becomes gapped for ν < 2/3 [21]. This is
compatible with the first order transition that we observe, with a finite correlation length and
co-existing ground-states.

4.3 Phase diagram as a function of t ′

For the three examples we considered thus far, i.e. t ′ = 0,1 and 2, we observe that for large
δ the transition out of the Z4 ordered phase can either be through an intermediate floating
phase (t ′ = 0), direct and chiral (t ′ = 1), or first order (t ′ = 2). In this section we study how
one type of the transition changes into another as a function of t ′ and take a closer look on
how the first order transition opens up.

Since the floating phase appears only for very large values of δ, we focus on δ = 50, which
is also sufficiently far to reduce a crossover effect from the multi-critical point where the rung-
dimerized phase disappears. Fig.10(a) presents the ground-state phase diagram, as a function
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Figure 10: (a) Phase diagram of the QLM as a function of t ′ and θ for δ = 50.
t ′c ≈ 1.37 indicates the end point of the chiral transition (black star). (b) and (c)
Product |q/π − 1/2| × ξ for a vertical across (b) a floating phase and (c) a chiral
transition. (d) Minimum in 1/ξ as a function of t ′ along the first order transition.
The solid line indicates a power-law fit. (e) Same results, but but in a log-log scale.

of θ and t ′, that summarizes our results. The floating phase that we observe for small t ′ (see
Fig.10(b)) turns into a chiral transition (see Fig.10(c)) between θ ≈ 1.60 and t ′ ≈ 0.7, and
θ ≈ 1.53 and t ′ ≈ 0.8. In between these points we expect the multi-critical Lifshitz point,
with dynamical critical exponent z = 3, to be located. Determining the precise location of this
point is an extremely challenging computational task and is beyond the scope of this paper.
Then, starting from t ′c ≈ 1.37 we detect a first order transition with finite correlation length
at the transition.

By taking a closer look at the minimum in 1/ξ we study how the characteristic length
scale develops along the first order line and away from the end point of the chiral transition.5

We identify the location of the transition and the minimum of 1/ξ by fitting both sides of the
transition with a power law function and calculating the intersection of these fits. In Fig.10(d)
we show how the characteristic length develops along the transition. We fit the data point with
a power-law, which allows us to estimate the location of the critical point t ′c and its scaling. In
Fig.10(e) we present the same set of data but in a log-log scale.6

As a final remark let us mention that we observe a clear coexistence of two domains in the
disordered phase, another clear signature of a first order transition. In Fig.11 we show the
density profiles and entanglement entropy at the first order transition for t′ = 1.8. Close to
the edges of the chain we observe a plaquette domain while in the bulk it corresponds to the
NNN-Haldane phase. Furthermore, the location of the domain walls clearly matches the peaks
in the entanglement entropy.

5For conformal transitions that would be equivalent to looking at the opening of the energy gap along the first
order line, away from the end point. But, since the chiral transition is not conformal and the dynamical critical
exponent might not even take a universal value along the transition, we cannot fully rely on our characteristic
length results to predict the behavior of the energy gap.

6We also checked checked whether the scaling of min1/ξ with the distance to the end point can be described
with an exponential growth, but this was not feasible.
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Figure 11: Numerical evidence for the coexistence of two domains in the disordered
phase close to the first order transition, for t ′ = 1.8. Density profiles of (a) an en-
tire plaquette and (b) occupation of one dimer on a leg. (c) Entanglement entropy
throughout the chain. Quantities are computed for N = 1999 sites, δ = 50 and
θ = 0.184.

5 Conclusion

In this paper we investigate the nature of the transition out of Z4 leg-dimerized phases in
quantum loop models constrained to two dimers per node on a zig-zag ladder. We report
very rich critical behavior. First of all, the Z4 order can be destroyed in two steps via Ising
transitions and a rung-dimerized phase - another gapped phase with spontaneously broken
Z2 symmetry. Realization of other scenarios depends on the parameter t ′, that controls the
density of double-dimers on the legs of the ladder. When t ′ is not too large we observe a multi-
critical Ashkin-Teller point followed by an extended interval of a Z4 exotic chiral transition.
For small t ′ the transition can also be through a floating phase - incommensurate Luttinger
liquid phase bounded by the Kosterlitz-Thouless and Pokrovsky-Talapov transitions. However,
for large values of t ′ we see no Ashkin-Teller conformal point, nor a chiral transition or a
floating phase. Instead, our results predict a first order transition.

The way how this first order transition opens up is actually very interesting. The character-
istic length scale diverges algebraically away from the end point of the chiral transition and not
exponentially. The latter scenario would suggest the presence of a marginal operator, while
the former one, what we actually observe in Fig.10(a), hints towards an additional relevant
operator present in the system. As a consequence, we expect the chiral transition to terminate
in a critical end point that might have a different underlying critical theory than the continu-
ous chiral transition above it. Numerically this question is very challenging and goes beyond
the scope of this work, but we hope that our observation of the chiral transition turning into
the first order (to the best of our knowledge it is the first reported example) will advance the
development of the field theory of chiral transitions and stimulate further numerical studies
in this direction.

Our results obtained for a family of QLMs - a toy model of quantum magnets that com-
pletely discards magnetic degrees of freedom - provide a number of important messages to
advance the study of Z4 transitions in more realistic models including, for instance, a Heisen-
berg spin-1 ladder. First of all, we have confirmed our original conjecture that the VBS transi-
tion between leg-dimerized phase and NNN-Haldane phase can be in the Z4 chiral universality
class. The remarkable extent of the chiral transition that we observed significantly increases
its chances to be detected in the Heisenberg-like models. Both the plaquette, with a partial
dimerization on the legs, and fully-dimerized double-dimer states are present in the Z4 phase
of QLMs - this opens up a wider range of interactions in Heisenberg models to realize the
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Z4 phases. At the same time our results point out that the presence of plaquette states is
crucial as strong fully-dimerized state might be responsible for a relevant perturbations that
destroys chiral criticality.

Let us also highlight the floating phase, emergent at the boundary of the Z4 when the
plaquette states are dominant. Recently, magnetic floating phases predicted in half-integer
J1 − J2 spin chains attracted a lot of attention among theorists and experimentalists [57–
60]. Our results in quantum loop models suggest a non-magnetic counterpart of this exotic
phenomena, opening an opportunity to realize them in integer spin-chains.

Furthermore, our results predict that the transition between the Z2 rung-dimerized and Z4
leg-dimerized phases, if continuous, will be in the Ising universality class. To the best of our
knowledge this possibility has never been reported yet in the context of frustrated Haldane
chains. At the same time, the second Ising transition that we observed in QLMs - between the
rung-dimerized phase and the NNN-Haldane phase - has been successfully realized in a J1−J2
Haldane chain in the presence of biquadratic [36] or three-site [35] interactions. In addition,
our result highlight a chance to realize a non-magnetic Ashkin-Teller transition at the critical
point where the two Ising transitions meet, of course, under the condition that at this multi-
critical point magnetic degrees of freedom would still have a finite gap, which is nevertheless
totally feasible.

Finally, let us highlight the peculiarity of the possibility to tune the nature of the multi-
critical point, and in turn the length of the chiral transition beyond it, by controlling the density
of the double leg-dimerized states with t ′ in QLMs. Similar mechanisms that allow tuning
of the Ashkin-Teller point have recently been proposed in the context of multi-component
Rydberg atoms [28]. Despite the two models being remarkably deeply connected, there are
some key differences in the fusion rules, and thus also the Hilbert space, between these two
models, indicating that the mechanisms responsible for the appearance of the chiral transition
in these two models might not be identical (see Appendix C for details). Nevertheless, both
families of models - QLMs and an array of multi-component Rydberg atoms - open up an
exciting opportunity to manipulate quantum phase transitions.
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A DMRG with quantum loop model constraints

A.1 Implementing quantum loop constraints

To fully profit from the fragmented Hilbert space of QLMs, we implement the constraints
to which these models are subjected directly into key components of the algorithm, follow-
ing [48]. The QLMs considered in this study are naturally constrained since each site in the
zig-zag ladder forms two, and only two, dimers with other sites. An extra constraint is imposed
by limiting the dimer formation to nearest and next-nearest neighbouring sites only. There are
several consequences of this. First, instead of considering spins on the lattice as the relevant
degrees of freedom we consider the occupation of dimers instead, resulting in the Hilbert space
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Figure 12: (a) Local Hilbert space of dimension d = 6, consisting of all possible
dimer occupations on a rung and the preceding leg. (a) Quantum numbers of the
left environment that are used to label separate sectors of the Hilbert space. (c)
Fusion graphs for left and right environment. There is a one-to-one correspondence
between quantum numbers of the left and right.

consisting out of all possible dimer configurations, allowed by the constraints above, on the
ladder. One possible local Hilbert space to express the system in is by associating for each site
all possible dimer configurations on a single rung and the preceding leg - for N sites in the
ladder this translates to N−1 QLM degrees of freedom. In total there six of such combinations
possible, which we depict in Fig.12 (a). We use these six states as the local Hilbert space for
the DMRG algorithm as well.

Second, constraints cause the full Hilbert space to be fragmented into sectors correspond-
ing to different dimer configurations. This fragmentation is not merely a global property but
also holds locally during distinct steps of the DMRG algorithm. Take for example the biparti-
tion of the total system into left- and right-normalized blocks−we refer to these as the left and
right environments (see [52] for terminology). In the course of sweeping through the chain,
one environment growths and the other shrinks. The growth is done iteratively, in which,
during each iteration, we add a new layer. In tensor language this corresponds to adding a
tensor, and its Hermitian conjugate, of the MPS, and a Matrix Product operator (MPO) tensor
to the environment. Each iteration, we label all allowed states of both environments by a set
of quantum numbers, corresponding to the different Hilbert space sectors. In total, there are
five of such, which we number from 0 to 4. For the left environment these are - for elaborative
purposes we use a Valence-Bond-Singlet notation where one spin-1 site is split up into two
spin-1/2 dots: 0 has no free dots on either side of the chain, 1 has one free dot on both sides,
2 labels the state in which there are two free dots on the site added, 4 has two free dots on
both sides of the chain, and 3 labels the state in which there are two free dots, but such that
they do not belong to the last but second last site instead. We depict these quantum numbers
of the left environment in Fig.12 (b). A similar set of quantum numbers can be created for the
right environment. We note that the labels 0, 1 and 2 are the ones used for the QLM studied
in [48] and we added the labels 3 and 4 to allow the formation of the Z4 columnar phase.

Under the addition of a site to the environment, in dimer language this translates to adding
dimers, a quantum number is mapped to a set of new ones. Not all basis are allowed to be
added to a given quantum number due to the QLM constraints. Take for example the quantum
number zero in which there are no free dots available to form dimers with. As a result we can
only add |ψ1〉 - the basis state without any dimers - since all other basis states would case the
previous spin-1 site in the lattice to form more than two dimers. When the |ψ1〉 is added, the
environment has two free dots on one side of the chain and is now labeled as 2. By following
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the same procedure for the other quantum numbers, we can construct a so called fusion graph
that describes the fusion between quantum numbers under the addition of a bases. In the left
panel of Fig.12 (c) we list the fusion graph for the left environment. We construct the fusion
graph for the right environment (see right panel) by reversing the direction of all arrows and
renaming the quantum numbers to be the same as for the left environment. We note that
there is a one-to-one correspondence between the Hilbert space sectors of the left and right
environment and they can be connected through the following rule: (L, R) = {(0,2), (1,1),
(2,0), (3,4), (4,3)}, meaning that the state labeled as 0 on the left can only fuse a state labeled
by 2 on the right, etc.

Third, local constraints are also accounted for in determining the optimal tensor(s) and an
estimate of the ground state energy at each iteration of the DMRG algorithm. In this process
the many-body Hilbert space is mapped to a reduced one in the form of a so-called effec-
tive Hamiltonian, which is then diagonalized. The bases in which this eigenvalue problem is
greatly reduced in size since it is subjected to the QLM constraints as well, speeding up the
diagonalization.

Lastly, splitting up the Hilbert space into distinct sectors allows tensors of the MPS to be
written in a block-diagonal form. Not only does this make it so that numerical operations,
such as tensor contraction and singular value decomposition, can be carried out on each block
separately [61], resulting in them being computationally cheaper. The blocks also require far
fewer memory to be stored.

A.2 Matrix product operator

To use the QLM Hamiltonian shown in Eq.(1) in the constrained DMRG algorithm it first has
to be written in terms of the local Hilbert space defined above. By doing so, we obtain the
following Hamiltonian

HQLM =
∑

i

(−t p(1)i p(2)i+1p(3)i+2 − t ′q(1)i q(2)i+1q(3)i+2 + h.c.) +δri − θ s(1)i s(2)i+1s(3)i+2 , (A.1)

where p(1) = f (4, 1), p(2) = f (3,6), p(3) = f (2,6), q(1) = f (5, 4) + f (2, 3), q(2) = f (1,3),
q(3) = f (5,2)+ f (4, 3), s(1) = f (4,4), s(2) = f (3,3), s(3) = f (2,2) and r = f (5,5) and f (n, m)
is a 6× 6 matrix for which the element in the n’th row and the m’th column is 1. To illustrate

f (4,1) =















0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0















. (A.2)

We convert the above Hamiltonian to its MPO form, for which we formulate its tensors

W =









































I · · · · · · · · · · ·
p(3) · · · · · · · · · · ·
(p(3))† · · · · · · · · · · ·

q(3) · · · · · · · · · · ·
(q(3))† · · · · · · · · · · ·

v(3) · · · · · · · · · · ·
· p(2) · · · · · · · · · ·
· · (p(2))† · · · · · · · · ·
· · · q(2) · · · · · · · ·
· · · · (q(2))† · · · · · · ·
· · · · · v(2) · · · · · ·
δr · · · · · −t p(1) −t(p(1))† −t ′q(1) −t ′(q(1))† v(1) I









































, (A.3)

with · denoting a 6×6 matrix with zeros elements only and I being the 6×6 identity matrix.
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Figure 13: Locating the disorder line via a two step process. (a) First we define a top
and bottom segment in the correlation function Ci, j in the crossover region. Both of
these have their slope fitted to extract their respective correlation lengths ξtop and
ξbottom. (b) We associate disorder line to be the point where ξtop = ξbottom. In the
incommensurate domain of the disordered phase we observe only one correlation
length.

B Locating the disorder line

The disorder line separates the commensurate and incommensurate part of the disordered
phase and it is characterized by a kink, frequently a minimum, in the correlation length [62,
63]. Unfortunately, such a kink is not always sharp but often smeared out, making a good
estimate of the location of a kink very hard. Therefore, we instead extract an estimate of the
disorder line in a two step process, which we illustrate in Fig.13. In vicinity of the disorder
line in the commensurate domain, there are two short range orders present in the correlation
function; the top part has a smaller correlation length and shows incommensurate correlations
while the bottom part reflects the actual order. We denote their respective correlation lengths
ξtop and ξbottom (see Fig.13 (a)) and refer to this domain in the phase diagram as the crossover
region. In this region ξtop and ξbottom often differ while the in the incommensurate part there
is no distinction between the two anymore and there is only a single correlation length. In
other words, we associate the point where ξtop terminates as the estimate of the disorder line,
which we define as ξtop = ξbottom. We shown an example of this in Fig.13 (b). We note that
this is merely an estimate and not the actual disorder line. However, this estimate is consistent
with expectations since it approaches the multi-critical Ashkin-Teller point. We are not able to
locate the disorder line near this point and leave it out of the data. For indicative purposes we
do sketch a possible trajectory to the multi-critical Ashkin-Teller point as a dashed line (see
Fig.2 and Fig.8(a))

We locate the disorder for N = 599 sites and calculate the correlation function with the
operator that measures the density of dimers on the legs ni = | 〉〈 |+ | 〉〈 |. We observe
that different operators can result in different estimates of the disorder line, but all of them
terminate in, or in vicinity of, the Ashkin-Teller point.

C Mapping to multi-component Rydberg atoms

Quantum loop models on zig-zag ladders without states containing two dimes on any legs,
such as for t′ = 0, are rigorously mapped to a Rydberg chain [48]. Let us briefly repeat
how. For each rung and the legs it can form a triangle with, i.e. those directly above and
below it, we associate a Rydberg atom in the excited state if all three are not occupied by
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any dimers. All other possibilities correspond to Rydberg atoms in the ground state. When
leg columnar-dimer states are included in the Hilbert space on the other hand, this mapping
does not suffice to correctly map the Hilbert space of QLMs to that of Rydberg atoms anymore
since this mapping does not a distinguish between the Z4 ordered plaquette and columnar-
dimer phases. To overcome this problem we map the QLM to a multi-component Rydberg
chain instead [28, 64, 65].7 In such a chain, each Rydberg atom can be excited to one of
two levels α = 1,2 from the ground state by a laser with Rabi frequency Ωα and detuning
∆α. We use the same mapping as described above to map all states in the Hilbert space
without any trivial two-dimer loops on the legs to states with Rydberg atoms that can either
be in the ground state or the first excited state. This yields the possibility to describe the
NNN-Haldane phase, the Z2 rung-dimerized phase and the Z4 plaquette phase. Added to
this, we associate for each rung that has both legs it can form a triangle with occupied by
two dimers each, a Rydberg atom excited to excitation level. In Fig.14(a) we summarize
the above with three illustrative sketches. Additionally, we show the NNN-Haldane phase,
rung-dimerized phase and the plaquette and columnar-dimerized phases mapped to a multi-
component rydberg chain in Fig.14(b)-(e).

(a)

(b)

(c)

(d)

(e)

Figure 14: (a) Map between spin-1 quantum loop models, that allow trivial two
dimer loops on rungs and legs, and a multi-component Rydberg chain. Shown dimer
configurations of the two left sketches are not unique, i.e. there are multiple dimer
configurations that map to the same Rydberg state. (b)-(e) Multi-component Rydberg
states corresponding to; (b) the NNN-Haldane phase, (c) Z2 rung-dimerized phase,
and the Z4 (d) plaquette and (e) columnar-dimer phase.

7In principle, mapping the QLM to a monatomic Rydberg ladder works as well. But, arranging the atoms in
such a way that there is a nearest neighbor blockade on the top chain and a three-site blockade on the bottom one,
unfortunately seems impossible for larger systems in a 2D geometry.
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We derive the constraints to which the Rydberg atoms are subjected to by mapping the
QLMs’ fusion graph to multi-component Rydberg atoms and describe these in terms of an
effective n-site blockade model following hard boson statistics. Let us define the operator c†

α,i
as the one that excites the i’th Rydberg atom from the ground to one of the two excited states.
With this in mind, we can formulate the constrains as:

n1,in1,i+1 = n2,in2,i+1 = n2,in2,i+2 = n1,in2,i = n1,in2,i+1 = 0 , (C.1)

where nα,i = c†
α,icα,i measure the occupation of a particle in the excitation level α on the i’th

site.
Using both the Rydberg constraints and the map between QLMs’ and Rydbergs’ Hilbert

space, we map the Hamiltonian (1) to a multi-component Rydberg one as well. We start off
with the first term that swaps a pair of dimers. In Rydberg chain, this corresponds to bringing
a Rydberg atom from its first excited state to the ground state, such that

| 〉〈 |+ h.c.= c1,i + c†
1,i . (C.2)

The second kinetic terms maps a plaquette to a leg columnar-dimer one. This, of course, makes
it so that we can not simply excite a Rydberg atom from the ground state to the second energy
level. To be more precise,

| 〉〈 |+ h.c.= n1,i−2(c2,i + c†
2,i)n1,i+2 , (C.3)

where the occupation number operators ensure that the columnar-dimerized phase can only be
mapped to from the plaquette one. Moving on to first the potential term, in QLMs a rung with
two dimers on them is preceded and followed by a rung and two legs that are not occupied
by any dimers at all. In a Rydberg chain this translates to the Rydberg atoms corresponding to
the rung with two dimers on it being in the ground state while its nearest-neighboring atoms
are in the first excited state:

| 〉〈 |= n1,i−1(1− n1,i)n1,i+1 = n1,i−1n1,i+1 , (C.4)

where the constraint n1,in1,i−1 = 0 is used to simplify the expression. Mapping the second
potential term is a bit more complex. The three rungs part of the plaquette correspond to
Rydberg atoms in the ground state while its neighboring rungs correspond to atoms that are
excited to the first energy level. In terms of Rydberg atoms, this is mapped to

| 〉〈 |= n1,i−2(1− n1,i−1)(1− n1,i)(1− n1,i+1)n1,i+2(1− n2,i)

= n1,i−2(1− n1,i)n1,i+2 − n1,i−2n2,in1,i+2 ,
(C.5)

where again the blockade constraints were used to simplify the expression. The term (1−n2,i)
ensures that we actually target the plaquette state and not the leg columnar-dimer one. Despite
n1,i−2n1,i+2 likely being much smaller than the other potential term - the interaction is distant
dependent - it it crucial in stabilizing the plaquette phase. Simply having an energy penalty
for the Z2 and the Z4 columnar-dimer phase does not ensure that we end up in the plaquette
phase - crucial for the realization of the Z4 chiral transition. Summarizing the above, (1) is
mapped to a multi-component Rydberg chain with the Hamiltonian

HRydberg ≈
∑

i

− t(c1,i + c†
1,i)− t ′n1,i−2(c2,i + c†

2,i)n1,i+2 + (δ+ θ )n1,in1,i+2

− θn1,in1,i+4 + θn1,i−2n2,in1,i+2 .
(C.6)
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