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Abstract

Calculating dynamical spin correlations is essential for matching model magnetic ex-
change Hamiltonians to momentum-resolved spectroscopic measurements. A major nu-
merical bottleneck is the diagonalization of the dynamical matrix, especially in systems
with large magnetic unit cells, such as those with incommensurate magnetic structures
or quenched disorder. In this paper, we demonstrate an efficient scheme based on the
kernel polynomial method for calculating dynamical correlations of relevance to inelas-
tic neutron scattering experiments. This method reduces the scaling of numerical cost
from cubic to linear in the magnetic unit cell size.
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1 Introduction

The existence of coherent low-energy spin wave excitations in ordered spin systems has been
known since the first half of the 20th century. The thermal occupation of these low energy
modes gives rise to the T3/2 scaling of the magnetization as suggested by Bloch [1]. A highly
successful and more complete theoretical treatment of spin waves was provided in later work
by Dyson [2], Anderson [3], Kubo [4] and Holstein and Primakoff [5]. In many cases, consid-
ering only harmonic fluctuations and neglecting interaction terms is sufficient and corresponds
to linearizing the equation of motion governing the dynamics of the spin operators’ expectation
values. This treatment is exact in the limit 1/S→ 0.

The utility of linear spin wave theory (LSWT) to describe experimental results is fully
displayed in neutron spectroscopy. The often quantitative match between spin wave theory
and inelastic neutron scattering from magnetic insulators enables the inverse modeling of
measured neutron spectra to extract the parameters of exchange Hamiltonians. This inverse
modeling is not merely restricted to fitting the dispersion relations. The entire dynamical
correlation functions and intrinsic line widths offer deep insight into spatial anisotropies and
finite lifetime effects, respectively. This insight has been instrumental across many topics in
quantum materials, from understanding the spin correlations in cuprate and Fe-based super-
conductors [6–8] to searching for quantum spin liquid candidates [9–12].

Inelastic neutron scattering experiments on modern spectrometers can collect data on a
dense grid of billions of pixels in the four-dimensional space (q,ħhω). For inverse modeling, it
is typically necessary to integrate over several dimensions and perform fits of binned data in
two or three dimensions. Accounting for this binning and instrument resolution is expensive
but sometimes vital [13]. With advances in machine learning [14], there is hope that the highly
sensitive determination of model Hamiltonians from large volumes of spectroscopic data can
be accelerated [15–19]. This sensitivity is likely key to determining the spin Hamiltonians of
important quantum material systems such as α-RuCl3 [16, 20] where a flat parameter space
has led to wildly different predictions of Hamiltonian parameters.
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The development of efficient forward calculators is key to leveraging powerful novel op-
timization methods with large quantities of input data. Several efficient implementations of
LSWT exist such as MCPHASE [21, 22], SPINW [23], PYLISW [24], SPINWAVE [25] and SPIN-
WAVEGENIE [26]. These leverage the traditional spin wave theory workflow, which amounts to
finding the non-interacting magnon spectrum through diagonalization of the dynamical ma-
trix [27–29]. The cost of this operation scales as ∼ O(N3) in the system size N . This makes
LSWT modeling prohibitively expensive for systems with large magnetic unit cells, including
incommensurate, multi-k and disordered systems. In this paper, we outline a new approach
based on the kernel polynomial method [30], which reduces the computational complexity of
calculating the dynamical correlations to ∼O(N) in system size. We then demonstrate signif-
icant practical speedups, relative to convention LSWT implementations, for several physically
relevant systems. We anticipate that this improved computational efficiency will be vital to the
inverse modeling of spectroscopic measurements for systems with especially large magnetic
unit cells.

2 Review of linear spin wave theory

There are a number of formal steps to arrive at the LSWT predictions for dynamical correla-
tions. The starting point is a quantum spin Hamiltonian. The naïve replacement of operators
with expectation values yields a classical Hamiltonian. Minimization of the classical Hamil-
tonian with respect to expectation values yields a magnetically ordered ground state. LSWT
considers expansion of the quantum operators about the assumed magnetic ordering, under
the assumption of small fluctuations. Each local observable operator may be represented as a
quadratic form of Schwinger bosons [31]. In the conventional approach, only the spin-dipole
is retained, yielding two bosonic flavors. For sites with spin-S, a more variationally accurate
approximation employs N = 2S+1 bosonic flavors per quantum spin [32]. An associated clas-
sical limit of SU(N) coherent spin states has recently been derived [33], along with efficient
numerical techniques [34,35]. The contributions in this paper will apply independently of the
selected variant of the LSWT (dipole-only, or multi-flavor bosons). It should be noted that the
traditional, dipole-only LSWT can be made more accurate through a renormalization proce-
dure that implicitly accounts for the spin multipoles [36]. This allows, for example, to directly
calculate the expected energy of a given single-ion anisotropy 〈Ω⃗| (Ŝz

i )
2 |Ω⃗〉, while avoiding

the approximation 〈Ω⃗| Ŝz
i |Ω⃗〉 〈Ω⃗| Ŝ

z
i |Ω⃗〉, which would only be valid when S →∞. Here, |Ω⃗〉

denotes an SU(N) coherent spin state that is a pure dipole, Ω⃗.
It is convenient to work in a local reference frame such that the z-axis for each site is

aligned with the magnetic ordering. Because fluctuations must be perpendicular to the local
z-axis, one can perform a “condensation” along this axis, yielding the Holstein-Primakoff (HP)
bosons â† = (α̂†, α̂), here written in Nambu spinor-like form. Like the Schwinger bosons,
these HP bosons satisfy canonical commutation relations. If the system has translation invari-
ance, then the quasi-momentum q becomes a good quantum number, and the Hamiltonian
can be diagonalized in blocks. Conventionally, one would work with â†

q = (α̂
†
q, α̂−q). In our

presentation, for pedagogical simplicity, we omit the q index and assume that α̂ becomes an
abstract list of n operators, with α̂† their Hermitian conjugates. This simplification can be
readily justified in real space, and also in Fourier space if we assume enlarged spinor objects,
â†

q = ((α̂
†
q, α̂†
−q), (α̂q, α̂−q)). Note that each α̂q includes an index over sites of the magnetic

unit cell. When generalizing to a theory of multi-flavor bosons, the α̂q will also carry a flavor
index [32].

3

https://scipost.org
https://scipost.org/SciPostPhys.17.5.145


SciPost Phys. 17, 145 (2024)

The original spin Hamiltonian is next expanded in powers of the HP bosons, which are
associated with “small” fluctuations away from the classical ground state. At zeroth order,
one recovers the classical energy H. The linear order term should vanish, provided that the
magnetically ordered state is indeed a local minimum of the classical energy H. The most
general Hamiltonian at quadratic order takes the form,

Ĥ = 1
2

â†Dâ=
1
2
(α̂†, α̂)

�

A B
B∗ A∗

��

α̂

α̂†

�

, (1)

and this will be the starting point for the LSWT calculation. Higher order terms in the expan-
sion of the spin Hamiltonian would be needed for perturbative corrections to LSWT, but that
is outside the scope of the present work. Interested readers are referred to Ref. [37] for an
in-depth discussion of nonlinear corrections to LSWT.

Because Ĥ is Hermitian, the 2n × 2n matrix D must be also. This implies that the n × n
sub-matrix A is Hermitian, while the sub-matrix B is symmetric, but not necessarily Hermitian.
The notation A∗ and B∗ denotes element-wise complex conjugation, without matrix transpose.
The matrix D will be positive semi-definite, because it originates in an expansion about an
energy minimum. In practice, to avoid divergences, we will further require that D is positive
definite. To study zero-energy modes, one might impose a shift D→ D + ε and then take the
limit ε→ 0+.

In the traditional LSWT, the next step is to bring the Hamiltonian into diagonal form,
Ĥ = b̂†Ωb̂/2. For this, one seeks a transformation from the HP bosons to the Bogoliubov
bosons,

b̂= T−1â , (2)

that satisfies
T †DT = Ω , (3)

for some diagonal matrixΩ. The components of b̂ must be bosonic operators that satisfy canon-
ical commutation relations. The conditions for T to be canonical are reviewed in Appendix A.
In particular, T must be para-unitary,

T−1 = Ĩ T † Ĩ , (4)

or equivalently T Ĩ T † = T † Ĩ T = Ĩ , where

Ĩ = diag(1, . . . , 1,−1, . . . ,−1) , (5)

is a 2n× 2n diagonal matrix,
Assuming para-unitarity, Eq. (3) becomes a diagonalization of the non-Hermitian matrix,

Ĩ D = T ( ĨΩ)T−1 . (6)

This coincides with the generalized eigenvalue problem,

Ĩt j = λ j Dt j , (7)

where t j are the columns of T , and λ j are the diagonal elements of ( ĨΩ)−1. Recall that Ĩ
and D are Hermitian matrices, with D positive definite by assumption. A theorem of linear
algebra states that a complete set of generalized eigenvectors t j exists, corresponding to real
eigenvalues λ j . The numerical linear algebra package LAPACK [38] provides a subroutine
ZHEGV to directly calculate all generalized eigenpairs (t j ,λ j). A common implementation uses
the Cholesky decomposition of D [27].
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Consider the anti-unitary operator J defined by the action

J

�

r
s∗

�

=

�

s
r∗

�

. (8)

Given the 2×2 block structure of D, if (t j ,λ j) is an eigenpair for Eq. (7), then (Jt j ,−λ j) is also
an eigenpair. To make T a canonical transformation, it is necessary to order the eigenvalues
such that,

ĨΩ= diag(E1, . . . En,−E1, · · · − En) , (9)

where E j = λ−1
j is positive for j = 1, . . . , n. This ordering ensures that Ω is strictly positive,

and
T = [t1 . . . tn, Jt1 . . . Jtn] . (10)

Referring to Eq. (7), one finds t†
j Ĩtk ∝ Ĩ jk with positive constant of proportionality because

t†
j Dt j > 0 by assumption on D. Therefore, with suitable normalization of t j , the para-unitary

condition, T † Ĩ T = Ĩ , is achieved. Referring to Appendix A, these results establish that the

Bogoliubov bosons b̂† = (β̂
†
, β̂) satisfy canonical commutation relations.

In summary, diagonalizing the matrix Ĩ D produces a canonical transformation T that maps
between HP and Bogoliubov bosons, and the latter bring the quantum Hamiltonian to diagonal
form. Using the positivity of Ω and the bosonic commutation relation, β jβ

†
j = β

†
j β j + 1, the

result is,

Ĥ =
n
∑

j=1

E j(β̂
†
j β̂ j + 1/2) , (11)

where each Bogoliubov boson operator β̂†
j creates a quasi-particle excitation of energy E j .

Dynamical correlations can now be formulated. Let Â and B̂ denote arbitrary physical
observables. Consistent with our assumption that fluctuations are small, each operator may
be approximated as a linear combination of the HP bosons,

Â= â†u , B̂ = â†v , (12)

for appropriate complex vectors u and v with 2n components. If the operators Â and B̂ rep-
resent local observables defined in real space, then Â† = Â and B̂† = B̂. Alternatively, if they
have well-defined momentum q, they transform as Â†

q = Â−q. The latter case is relevant for
computing inelastic scattering cross sections.

Now consider the dynamical correlation in thermal equilibrium,

CB†,A
ω =
∑

ν,µ

〈ν|B̂†|µ〉〈µ|Â|ν〉 e
−βεν

Z
δ(εµ − εν −ω) , (13)

where Z =
∑

µ e−βεµ is the (grand canonical) partition function, and the indices µ and ν

label eigenstates |µ〉 and |ν〉 of the quadratic Hamiltonian, Ĥ|µ〉 = εµ|µ〉. Each eigenstate
|µ〉= |N1N2 . . . Nn〉 is labeled by its Bogoliubov boson occupation numbers N j , and has energy
εµ =
∑n

j=1 N j E j .
The principle of detailed balance is a general consequence of (13) and states,

CB†,A
−ω = e−βωCA,B†

ω . (14)

That is, the negative frequency result can be obtained from a different correlation function at
positive frequency.
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For the remainder of this paper, it suffices to consider ω > 0. The correlation function
Cω ≡ CB†,A

ω can be calculated explicitly (see Appendix B),

Cω = [1+ nB(ω)]
n
∑

j=1

v†t jt
†
j uδ(ω− E j) (ω> 0) , (15)

which involves the Bose function,

nB(ω) = (e
βω − 1)−1 . (16)

This completes a traditional recipe for calculating intensities within the framework of
LSWT. Given a quadratic bosonic Hamiltonian, Eq. (1), the steps are:

1. Solve the generalized eigenvalue problem of Eq. (7) to calculate a para-unitary transform
T that maps from a† to the Bogoliubov bosons b†. The latter represent non-interacting
quasi-particle excitations with energies E1, . . . , En, as in Eq. (11).

2. Calculate intensities associated with the dynamical correlation for bands j = 1 . . . n using
Eq. (15). The operators Â and B̂ may be arbitrary, but are approximated as a linear com-
bination of HP bosons, involving the 2n-component complex vectors u and v, Eq. (12).

This procedure is widely deployed for studying systems with translation invariance and
small magnetic unit cells [23]. In some application contexts, however, the explicit calculation
of T may become a numerical bottleneck. For example, very large effective magnetic unit cells
will arise in studies of systems with quenched disorder, systems with long-wavelength magnetic
modulations, or in (approximations to) systems with multiple incommensurate wave-vectors.
The computational cost to explicitly diagonalize Ĩ D will scale cubically in the volume of the
magnetic unit cell. Further, to calculate momentum-dependent correlation functions, such as

the components of the spin structure factor Sαβ(q,ω) ≡ C
Sα†

q ,Sβq
ω , one must employ an inde-

pendent LSWT calculation procedure for each wavevector q of interest, and this can lead to a
very large overall computational cost. In the following sections, we detail an algorithm that
significantly accelerates the calculation for large magnetic unit cells.

3 Acceleration of LSWT using the kernel polynomial method

The kernel polynomial method (KPM) allows estimation of matrix properties while avoiding
explicit matrix diagonalization [30]. This approach has been used in a diverse range of physics
contexts including the Kondo lattice model [39,40], non-Hermitian Hamiltonians [41], many-
body localization [42, 43] and flat-band physics in semimetals [44, 45]. In this work, we
explore the application of KPM to LSWT; this reduces scaling of computational cost from cubic
to linear in the volume of the magnetic unit cell. Such acceleration can be achieved provided
that the dynamical matrix D is sparse, or otherwise can be efficiently applied to a given vec-
tor. An alternative technique to measure dynamical correlations is integration of the classical
equations of motion, commonly referred to as Landau-Lifshitz Dynamics (LLD), which also
scales linearly in system size [46]. Advantages of KPM-LSWT (henceforth simply referred to
as KPM) over classical dynamics at small kB T are as follows:

1. Through periodic extension of the magnetic unit cell, there is no restriction that the
q vectors be commensurate with a given system size. For example, one can calculate
S(q,ω) for an arbitrary path in reciprocal space. The cost scales linearly in both the size
of the magnetic unit cell, and also in the number of selected q vectors.
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2. There is no stochastic error associated with averaging over randomly sampled equilib-
rium conditions of the magnetic configuration.

3. The prefactor to the linear-scaling computational cost can be directly controlled by re-
ducing resolution in the energy, ω.

It should be emphasized that the method outlined in this paper considers only small fluc-
tuations about a magnetic ground state and is valid at low temperatures. If the tempera-
ture is comparable with the Hamiltonian parameters, kB T ∼ J , then nonlinearities associated
with thermal fluctuations become relevant, and an approach such as LLD with coupling to a
Langevin thermostat should be used instead [46].

3.1 Intensities without matrix diagonalization

Our aim is to express Eq. (15) in a compact form that avoids explicit reference to the matrix
diagonalization of Eq. (6).

The dynamical correlation function can be written

Cω = [1+ nB(ω)]v
†ρ+(ω)u (ω> 0) . (17)

The matrix-valued distribution,

ρ+(ω) =
n
∑

j=1

t j δ(ω− E j)t
†
j , (18)

will play a key role in what follows. It can be viewed as a Green’s function associated with only
the positive eigenvalues E j of the matrix Ĩ D. Referring to Eqs. (6) and (9), the eigenvalues of
Ĩ D come in pairs, ±E j . We can extend the summation to all eigenvalues by introducing,

gω(x) = Θ(ω)δ(ω− x) , (19)

with Θ(·) being the Heaviside step function. This allows us to write,

ρ+(ω) =
2n
∑

j=1

t j gω( Ĩ j jΩ j j) Ĩ j jt
†
j , (20)

where only the terms j = 1, . . . , n actually contribute the sum and the negative eigenvalues
are zeroed out by the Heaviside step function.

Because Ĩ and Ω are each diagonal, it will be possible to simplify this expression by intro-
ducing matrix notation. The key idea is to view gω(·) as a matrix function that maps from the
diagonal matrix ĨΩ to a new diagonal matrix gω( ĨΩ).1 In particular,

gω( ĨΩ) jk = gω( Ĩ j jΩ j j)δ jk . (21)

Then the sum over the j index can be implemented as matrix multiplication. Explicitly,

ρ+(ω) =
2n
∑

j,k,ℓ=1

t j gω( ĨΩ) jk Ĩkℓt
†
ℓ
= T gω( ĨΩ) Ĩ T † . (22)

Using the para-unitary condition of Eq. (4) and the identity Ĩ2 = I ,

ρ+(ω) = T gω( ĨΩ)T
−1 Ĩ . (23)

1Although gω(·) is formally defined as matrix-valued distribution, one can imagine constructing it from smoothed
Dirac-δ functions, to any desired level of approximation.
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Recall that matrix functions are defined by their action in the diagonal basis, via the transfor-
mation of eigenvalues. From the diagonalization of Eq. (6), it follows,

gω( Ĩ D) = T gω( ĨΩ)T
−1 . (24)

Substituting yields our final result,

ρ+(ω) = Θ(ω)δ(ω− Ĩ D) Ĩ . (25)

Crucially, the right-hand side no longer makes explicit reference to the eigenvectors or eigen-
values of the matrix Ĩ D. With this reformulation, one can avoid direct matrix diagonalization,
and instead use polynomial approximation techniques via expansion in powers of Ĩ D.

If we can efficiently estimate the matrix-vector product ρ+(ω)u, then the desired dynami-
cal correlations Cω follow directly from Eq. (17). One possibility is to apply matrix-polynomial
approximation to obtain a smoothed estimate of ρ+(ω). This direct approach is viable, and is
presented in Appendix D. We argue, however, that it is better to first incorporate known broad-
ening effects that will effectively smooth the intensities Cω, leading to faster convergence in
the polynomial expansion.

3.2 Broadening and regularization

Experimental measurements of Cω will have broadened peaks, rather than the idealized Dirac-
δ peaks in Eq. (15). An effective broadening kernel G0(·, ·) will arise from limitations in the
experimental energy resolution and from intrinsic quantum effects that are beyond LSWT.
These effects are commonly modeled as Gaussian and Lorentzian lineshapes, respectively. The
two lineshapes can be combined via convolution, yielding a Voigt function. To reduce cost, this
is frequently approximated as a pseudo-Voigt function. Note that the broadening line-width
σ may also be energy dependent. All of these effects can be captured by some appropriate
choice of kernel G0(·, ·).

Our numerical aim is to calculate smoothed intensities,

C̃ω =

∫ ∞

−∞
G(ω,ω′)Cω′dω

′ . (26)

To make contact with Eq. (17), we focus on the case where intensities originate from posi-
tive quasi-particle energies, ω′ > 0. If desired, one may still account for sources ω′ < 0 by
performing a separate calculation, as indicated by detailed balance, Eq. (14). To restrict the
integration domain to ω′ > 0, we are employing,

G(ω,ω′) = ϑ(ω′)G0(ω,ω′) , (27)

where G0(ω,ω′) is the desired broadening kernel, and ϑ(ω′) is an empirical function that
masks contributions from negative ω′. Then G(ω,ω′) can be viewed as a smoothed version
of gω(ω′), Eq. (19).

To simplify the expression of C̃ω, introduce a new function associated with the broadened
intensity at energy transfer ω, as originated from a positive quasi-particle energy ω′ = x ,

fω(x) = [1+ nB(x)]G(ω, x) . (28)

Because of the implicit ϑ(x) factor, fω(x) = Θ(x) fω(x) by construction. Using this identity,
and also substituting from Eqs. (17) and (25), one may calculate,

C̃ω =

∫ ∞

−∞
fω(x)v

†ρ+(x)u d x

= v†

�∫ ∞

−∞
fω(x)δ(x − Ĩ D) d x

�

Ĩu , (29)
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which integrates to,2

C̃ω = v† fω( Ĩ D) Ĩu . (30)

Our results so far hold for any ϑ(x) that masks contributions from negative x . For purposes
of polynomial approximation, there are benefits to selecting ϑ(x) smooth. A good option is

ϑ(x) =











0 , x < 0 ,

(4− 3x
σ′ )

x3

σ′3
, 0≤ x ≤ σ′ ,

1 , x > σ′ ,

(31)

which broadens the step function over a tunable energy scale σ′. In effect, ϑ(x) dampens
intensities that may arise from low-energy modes, x ≲ σ′. The scaling ϑ(x)∼ 4x3/σ′3 at small
x is designed to counteract the singularity of the Bose function nB(x) ∼ 1/β x . Consequently,
fω(x) and its first derivative will be continuous everywhere. This smoothness makes fω(x)
well suited for polynomial approximation, to be discussed in the next section.

The energy cut-off scale σ′ is an empirical parameter. If the unbroadened spectrum Cω is
known to have a quasi-particle gap, then its size is a natural choice forσ′. Otherwise, one must
be aware that some spectral intensity can be lost in the approximation ϑ(x) ≈ Θ(x). Making
this sacrifice, however, can bring numerical benefits. As we will describe in the next section, the
overall numerical cost for a linear-scaling spin wave calculation will be inversely proportional
to the smallest energy resolution scale, min(σ,σ′), where σ is the smallest characteristic line-
width of the broadening kernel G0(·, ·).

3.3 Fast polynomial approximation

Numerical evaluation of the intensities in Eq. (30) will require calculating the matrix-vector
product fω( Ĩ D) Ĩu. KPM enables this calculation without explicit construction of the dense ma-
trix fω( Ĩ D). Instead, the method requires only that the dynamical matrix D can be efficiently
applied to a given vector. A brief review of KPM is presented in Appendix C. Here, we state
the final procedure.

To apply KPM, first construct a scaled matrix

A= Ĩ D/γ , (32)

where γ is defined such that all eigenvalues of A lie between −1 and 1. A generalization of
the Lanczos algorithm [47,48] to η-pseudo-Hermitian matrices [49], can be used to estimate
bounds on the extremal eigenvalues of Ĩ D, which determines a valid scaling γ.

The key idea in KPM is to approximate the unknown function as a finite-order matrix
polynomial,

fω(γA)≈
M−1
∑

m=0

cm,ωTm(A) . (33)

The order-m Chebyshev polynomial can be written Tm(x) = cos(m arccos x)when−1≤ x ≤ 1.
This identity establishes a close relationship between the Chebyshev and Fourier series. The
coefficients,

cm,ω =
1

qm

∫ +1

−1

w(x)Tm(x) fω(γx)d x , (34)

2To avoid the matrix-valued Dirac δ-function, one could instead substitute ρ+ from Eq. (20). Then integration
yields a summation over eigenvalues of fω( Ĩ D), from which the same matrix expression can be reconstructed.
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are analogous to a Fourier transform of fω(·). Here, w(x) = (1 − x2)−1/2, q0 = π, and
qm≥1 = π/2. Given ω, the coefficients cm,ω for all m = 0 to M − 1 are efficiently evalu-
ated using Chebyshev-Gauss quadrature and the discrete cosine transform. The procedure is
described in Appendix C.2.

The higher the polynomial degree M , the better the ability to approximate sharp features in
fω(·). If σ denotes the target energy resolution scale (e.g., the characteristic width of the line
broadening kernel), then an appropriate polynomial order is M = cγ/σ, where the constant c
is typically of order 5–10. Beyond this, the error decays approximately exponentially in c. In
the examples of section 4, we find that M ≲ 350 is typically sufficient for an LSWT calculation.

To achieve linear scaling in computational cost, it is necessary to avoid explicit construction
of the dense matrices Tm(A). Instead, we work with the vectors,

ϕm = Tm(A) Ĩu . (35)

These are efficiently calculated using a two-term recurrence associated with the Chebyshev
polynomials,

ϕ0 = Ĩu , (36)

ϕ1 = AĨu , (37)

ϕm+1 = 2Aϕm −ϕm−1 . (38)

After each vector ϕm is calculated, one can obtain the scalar dot product,

µm = v†ϕm = v†Tm(A) Ĩu . (39)

Given the moments µm for m= 0 to M − 1, it becomes possible to estimate the dynamical
correlations of Eq. (30),

C̃ω = v† fω(γA) Ĩu≈
M−1
∑

m=0

cm,ωµm . (40)

For large matrices A, calculating all the moments µm will be the dominant numerical expense.
These moments should be calculated only once, independently of ω. Evaluating the sum of
Eq. (40) is an additional cost that is independent of system size. To perform this sum quickly,
one should precalculate the dense matrix of coefficients cm,ω. The Chebyshev moments, for
each q of interest, may be collected into another dense matrix, µm,q. Then the contraction
over m may be recognized as dense matrix-matrix multiplication, which efficiently yields the
intensities C̃ω,q.

Sometimes it will be desired to calculate the dynamical correlations between an operator
Â and multiple operators B̂1, B̂2, . . . . Each observable B̂i , labeled by the index i, is associated
with a different vector vi . The dynamical correlation functions are,

C̃i,ω ≈
M−1
∑

m=0

cm,ωµi,m , (41)

where now the moments µi,m = v†
iϕm carry an i index. The C̃i,ω can be calculated for all i

using only a single Chebyshev recursion, Eq. (38). The key observation is that the vectors ϕm
are independent of i. Upon calculating eachϕm, it is fast to perform many vector dot products,
yielding the moments µi,m for all i. In the context of linear spin wave theory, the index i will
run over all combinations of α,β ∈ {x , y, z} forming all components of the dynamical structure
factor.
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4 Example KPM calculations

We now present several examples on systems for which the large unit cell size makes conven-
tional LSWT impractical. We focus on three examples, each possessing a property that leads
to a large effective unit cell, and compare the time required to compute the spectrum with
that of the comparable LSWT calculation. In each example, the mean-field ground state is
first found by simulated annealing followed by gradient descent. The spectra are plotted on
a grid in (q,ħhω) through several high symmetry points [50, 51]. The spectrum are plotted
symmetrically such that the KPM result and the LSWT result are mirror-symmetric about the
center of the figure (chosen to be the Γ -point). As noted in section 3, M = cγ/σ with c ∼ 5-10
is typically sufficient for convergence. To determine a cutoff order in the Chebyshev expansion
more systematically, we take 50 energies spanning [2σ,ħhωmax] at 50 random q positions in
the first Brillouin zone and calculate the spectrum with different truncation orders, M in steps
of 25. We then choose M such that the average norm difference per point between subsequent
steps is ≤ 0.05%. A Lorentzian kernel was chosen with a width of σ = 0.025Emax, where
Emax is the largest energy calculated (compared with∆E/Ei ≈ 1-5% for modern time-of-flight
spectrometers). The low energy regularization cutoff was chosen to be equal to the Lorentzian
width σ′ = σ. Neutron form factors and the dipole factor have been applied while the Bose
correction factor has been omitted.

4.1 Quenched disorder

Disorder is ubiquitous in magnetic systems and takes many forms, including the presence of
non-magnetic vacancies [52–55] and site-mixing [56, 57]. The presence of this disorder can
play a role in the low energy dynamics even if it is confined to the non-magnetic sites [9,58] due
to the presence of spin-orbit or spin-lattice coupling. LSWT calculations of disordered systems
are rare in the literature owing to the need to create a sufficiently large unit cell to capture the
aperiodic nature of disorder. It should be noted that analytical approaches based on Green’s
functions exist but are complicated and restricted to the simplest systems with a large degree
of approximation [59], with, in principle, an infinite number of self-consistency equations
needing to be solved. Other recent approaches to treating disorder have involved real-space
perturbation theory and Monte Carlo simulations [60]. Within standard LSWT, disorder can be
captured by building a large magnetic unit cell. The momentum-space resolution is ultimately
limited to the inverse linear size of the supercell, with artifacts arising due to the assumption
of periodic repetition.

Motivated by recent work on rare-earth triangular lattice quantum spin liquid candidates,
we now consider a S = 1/2 triangular lattice antiferromagnet model. The presence of chemical
disorder in the non-magnetic environment manifests itself in a variation of the crystalline
electric field, resulting in a varied g-tensor when projected onto the ground state doublet and
anisotropic pseudo-dipolar exchange interactions [61]. Here, we only consider a variation of
the g-factor and assume a Heisenberg exchange interaction for simplicity. We take a supercell
of 30×30 spins and reduce the resolution to 30 q-points per inverse lattice constant to eliminate
artifacts from the periodic repetition of the unit cell. We apply a magnetic field along z,

Ĥ = J
∑

〈i, j〉

Ŝi · Ŝ j − h
∑

i

g∥(i)Ŝ
z
i , (42)

assuming the g-factors are normally distributed, g∥ ∼ N(µ,σ2). If the g-factor were not
disordered (σ = 0), a single coherent gapped spin wave mode would be observed above the
saturation field, hsat = 9JS/g∥, associated with the coherent precession of the spins about
the magnetic field direction along which they are polarized. However, taking µ = 1.0 and
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Figure 1: Comparison of the perpendicular dynamical spin structure factor calculated
using KPM (left) and LSWT (right) for the g-factor disordered triangular lattice an-
tiferromagnet.

σ = 1
6 , and setting h = 2.5hsat , one observes considerable broadening of the field-saturated

excitations (Fig. 1), as previously calculated in Ref. [62]. The truncation order to converge
to within tolerance was M = 75. The distance between sampled q-points is 0.25 Å−1 in the
global frame, giving 249 q-points each for KPM and LSWT. For the results of Fig.1, the KPM
calculation completed approximately 50 times faster than the traditional LSWT calculation
(all benchmarks were taken using our preliminary implementation of KPM within the Sunny
software package [63]). An alternatively linear scaling approach is to measure dynamical
correlations within the classical Landau-Lifshitz dynamics. It is difficult to directly compare
performance with KPM, because LLD requires additional averaging over thermal fluctuations,
which are absent from the KPM calculation.

4.2 Incommensurability

The presence of frustrated interactions can lead to noncollinear magnetic structures where
spins smoothly rotate with an associated magnetic ordering wavevector |k|= 2π/λ with a pe-
riod of rotation, λ. Perhaps the simplest example of such a system is a one-dimensional chain
with nearest-neighbor Heisenberg exchange, J , along with antisymmetric (or Dzyaloshinskii-
Moriya) coupling [64, 65] along the nearest-neighbor coupling direction, D⃗ = (D, 0, 0). Here
frustration originates from the competition between the Heisenberg exchange which favors
collinear alignment and antisymmetric exchange which cants neighboring spins. The classical
energy of such a system is minimized when k = arctan(D/J), with spins rotating uniformly in
the x − y plane. For k ̸= p/q, where p and q are coprime integers, the ordering wavevector is
incommensurate with the lattice. That it to say, translational symmetry, which is broken by the
magnetic order, cannot be restored by a redefinition of the unit cell. In the presence of contin-
uous SO(2) rotation symmetry, a transformation to a rotating frame can restore translational
symmetry [23] allowing for a LSWT treatment. In the absence of spin rotational symmetry,
umklapp terms destabilize the magnetic order making a rotating frame LSWT description im-
possible. At special points, a hidden SO(2) symmetry may exist [66], but in general a large
supercell must be created and the treatment is approximate. One example that evades a rotat-
ing frame treatment is the case of coupled zig-zag chains with opposite D⃗ (DMI) vectors. Such
a situation is present in β-CaCr2O4, where the two-fold screw rotation symmetry between
neighboring zig-zag chains stabilizes a ground state comprising an incommensurate structure
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Figure 2: Incommensurate counterrotating zig-zag spiral model inspired by CaCr2O4.
Plotted are the (a) Heisenberg exchanges and (b) DMI vector directions. Figure cre-
ated using VESTA [67]. The .cif file was taken from Ref. [68].

of cycloids of opposite chirality [69–73]. Inspired by this compound we consider coupled
zig-zags with opposite DMI vectors

Ĥ =
∑

〈i, j〉ν

JνŜi · Ŝ j + D⃗i jŜi · Ŝ j +µ(Ŝ
y
i )

2 . (43)

The exchange parameters Jν are labeled in Fig. 2a. With easy-plane anisotropy, the moments
are confined to the a − c plane. The staggering of the DM vector (Fig. 2b) on the legs of the
zig-zag chains promotes a cycloidal magnetic structure with alternating chirality.

For simplicity, we assume that J1a = J1b = J1, J2a = J2b = J2, that J2, J ′ ≫ J1, D and the
magnetic structure has a cylindrical envelope. The classical energy is then minimized for

cos
kz

2
= −

J ′

4J2
. (44)
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Figure 3: Comparison of the perpendicular dynamical spin structure factor calculated
using KPM (left) and LSWT (right) for the counterrotating zig-zag model described
in the main text.
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Figure 4: (a) Real space spin structure for the skyrmion lattice model described in
the main text. Shown is a single unit cell, with dipoles colored based on 〈Ŝz

i 〉. (b)
Scalar spin chirality S1 · (S2 × S3) for each plaquette on the lattice. Nine magnetic
unit cells are plotted. The color scale has been saturated to aid visibility.

With an antiferromagnetic J1, we take J2 = 8J1 and J ′ = −4J1, leading to an incommen-
surate propagation vector k = (0,0, 0.0.53989). A small DMI, D⃗ = 0.5J1 sets the chirality. We
take the nearby commensurate point k = (0,0, 20/37) and approximate the cell as commen-
surate. The presence of finite J1 gives rise to umklapp terms which, if large enough, tend to
destabilize a single-k magnetic structure giving rise to multi-k order.

Figure 3 shows a comparison between the KPM calculation (left) and LSWT (right). The
truncation order taken was M = 175. The distance between sampled q-points is 0.03 Å−1 in
the global frame, giving 273 q-points for each of the KPM and LSWT calculations. Despite
the significantly smaller supercell size than the calculation in section 4.1, KPM still provides
a speed up of approximately a factor of four, as benchmarked in our preliminary implemen-
tation [63]. Again, we remark that the unsuitability of the rotating frame LSWT formalism is
common to many systems with SO(2) symmetry breaking, for example Li2IrO3 [66,74–77].

4.3 Multi-k

The existence of topologically non-trivial spin-textures in noncentrosymmetric systems with
non-zero antisymmetric exchange has long been discussed [78–80]. Even in the absence of
antisymmetric exchange, competition between symmetric exchange interactions can give rise
to skyrmion lattice order [81–83]. These states are of great interest for their potential device
applications [84]. Here we take the model of Ref. [83] and examine the dynamics in the
triple-k phase using KPM. The Hamiltonian under consideration is

Ĥ = J1

∑

〈i, j〉

Ŝi · Ŝ j + J3

∑

〈〈〈i, j〉〉〉

Ŝi · Ŝ j − h
∑

i

Ŝz
i ,

with ferromagnetic nearest neighbor, J1 and antiferromagnetic third-nearest-neighbor, J3. The
classical energy is minimized simultaneously for three wavevectors [83], reflecting the three-
fold rotational symmetry on the triangular lattice. The wavevectors which minimize the clas-
sical energy satisfy [83]

|k|=
2
a

cos−1

�

1
4

�

1+

√

√

1−
2J1

J3

��

. (45)

We select a point in the triple-k part of the phase diagram, stabilized by a finite field, J3 = −3J1,
h= 2.5J3 and kB T = 0.3J3. The wavevector that minimizes the classical energy is incommen-
surate with the lattice, leading to a magnetic unit cell lattice constant of am = 3.26929a. We
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Figure 5: Comparison of the perpendicular dynamical spin structure factor calculated
using KPM (left) and LSWT (right) for the skyrmion lattice model described in the
main text.

can find a nearby commensurate point by rationalizing the lattice parameter as am/a = 85/26
and taking a 26× 26× 1 dimensional unit cell. We note that the approximate commensurate
system is extremely close to the incommensurate point, with 85

26/3.26929 = 0.999983. The
ground state (Fig. 4) was determined by simulated annealing, followed by gradient descent.

Figure 5 shows the spectrum calculated using KPM (left) and LSWT (right). The truncation
order to converge to within tolerance was M = 125. The distance between sampled q-points is
0.25 Å−1 in the global frame, giving 249 q-points for each of the KPM and LSWT calculations. A
small diagonal positive shift of ε= 10−2 was added to the spectrum to remove a discontinuity
at the Goldstone mode in both LSWT and KPM. For this model, the KPM calculation offers a
speed up of approximately a factor of 15 compared with the conventional LSWT method. The
KPM calculation faithfully captures the complicated overlapping dispersive modes present due
to the large unit cell size, showing strong agreement with LSWT.

5 Computational complexity

The key algorithmic result of this paper is the favorable scaling of computational cost as a
function of system size. A traditional LSWT calculation involves direct matrix diagonalization,
at a cost that scales cubically with the volume of the magnetic unit cell. With KPM acceleration,
the cost is reduced to linear scaling in system size. In this section, we quantify the speedup,
as a function of system size, for a simple benchmark problem.

Consider, for simplicity, the model of an anisotropic antiferromagnetic chain of length n.
Since each site carries a single boson, the size of the dynamical matrix D appearing in Eq. (1) is
then 2n×2n. Traditionally, one would diagonalize this matrix directly, as in Eq. (6), to obtain
the dynamical correlations of Eq. (15). The cost of direct diagonalization scales like O(n3).
By design, KPM avoids this expensive diagonalization operation; instead, KPM performs a
sequence of M sparse matrix-vector products via the recursion of Eqs. (35)–(39). The total cost
of this recursion scales like O(nM), with a prefactor that depends sensitively on the sparsity of
the matrix D. The polynomial order M should be selected according to the required resolution
in frequency ω, relative to the total spectral bandwidth. Typically, M will be order 102.
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Figure 6: Scaling of numerical complexity of LSWT (red) compared with KPM (blue)
for a linear chain of size n. In our benchmarking exercise KPM offers a clear advan-
tage for unit cell sizes ≳ 200.

Figure 6 shows timings for the core operations described above, as a function of chain
length n. All benchmarks were taken using a single thread on an Intel Coretm i7-1185G7 CPU.
For the traditional LSWT timings, we benchmarked only the cost of the solving the generalized
eigenvalue problem, Eq. (6), using the OpenBLAS implementation of the LAPACK subroutine
ZHEGV. For KPM, we benchmarked only the costs of the Cheyshev recursion, Eqs. (35)–(39),
multiplied by a factor of three. Therefore the KPM timings are reflective of the cost to evaluate
the structure factor Sα,β(q,ω) for all nine components α,β ∈ {x , y, z} at a single q. We also
selected M = 350, which yields a relatively high energy resolution. With these choices, KPM
becomes clearly favorable over a traditional LSWT calculation for chain lengths n≳ 200.

Some further technical remarks: (1) In this simple chain model, each site interacts only
with its two nearest neighbors. If the number of exchange interactions were larger, then the
cost of a matrix-vector multiply operation would proportionally increase. This, in turn, would
slow KPM but not direct diagonalization. (2) Our benchmarks of KPM do not include the
m summation of Eq. (40) because this cost is independent of system size, and becomes rela-
tively small beyond the crossover point, n≳ 200. (3) With planned optimizations to the KPM
implementation within Sunny [63], the KPM result may become about three times faster.

6 Conclusion

In this paper, we presented a method for calculating dynamical correlations using linear spin
wave theory based on the kernel polynomial method. This method replaces the matrix diag-
onalization, inherent to conventional LSWT implementations, with a matrix approximation
in terms of a Chebyshev expansion. This reduces computational complexity from O(N3) to
O(N) in the size N of the magnetic unit cell. The utility of this method has been demonstrated
by calculating the dynamical structure factor for three examples of systems with large system
sizes. In all cases, the KPM shows high fidelity to the exact LSWT result, while significantly re-
ducing computational time. It is suggested that this method will prove valuable in the inverse
modeling of spectroscopic data, including inelastic neutron scattering, for systems which are
incommensurate, multi-k or possess quenched disorder.
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A Conditions for a canonical transformation

Assume an n-component vector of bosonic creation operators α̂†. Following the notation of
Sec. 2, it is convenient to collect these operators with their Hermitian conjugates into a single
2n-component vector,

â† = (α̂†, α̂) , â=

�

α̂

α̂†

�

. (A.1)

With this notation, the canonical commutation relations,

[αi ,α j] = 0 , [αi ,α
†
j ] = δi j . (A.2)

take the compact form,
[ai , a†

j ] = Ĩi j , (A.3)

where the diagonal matrix Ĩ has been defined in Eq. (5).
Now consider some linear transformation b̂ = Sâ where S = T−1 as in Eq. (2). To allow

the decomposition b̂† = (β̂
†
, β̂) for some n operators β̂

†
, we require that S has the structural

form,

S =

�

U V
V ∗ U∗

�

. (A.4)

Of interest are the commutation relations following the linear transformation of Eq. (2),

[bi , b†
j ] = [(Sa)i , (Sa)†j ] . (A.5)

Using (Sa)† = a†S†, and bilinearity of the commutator, one finds

[bi , b†
j ] = Sil[al , a†

m]S
†
mj (A.6)

= (SĨS†)i j . (A.7)

That is, the new operators will satisfy bosonic commutation relations,

[bi , b†
j ] = Ĩi j , (A.8)

if and only if S obeys the para-unitary condition SĨS† = Ĩ , or equivalently, S−1 = ĨS† Ĩ .
Canonical transformations are isomorphisms, so equivalent conditions can be imposed on

the inverse transform. It follows that if T has a structure analogous to Eq. (A.4) and is para-
unitary, then the transformation S = T−1 is canonical. Both conditions are satisfied by the
eigen-decomposition of Eqs. (9) and (10) in the main text.
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B Formulating dynamical correlations

When the many-body Hamiltonian Ĥ reduces to a sum of decoupled harmonic oscillators, as
in LSWT,

Ĥ =
n
∑

j=1

E j

�

β̂†
j β̂ j +

1
2

�

, (B.1)

the expression of Cω given in Eq. (13) can be simplified because it reduces to a sum of in-
dividual contributions from each harmonic oscillator. This is a direct consequence of the
factorization of the partition function Z =

∏

j Z j into a product of partition functions

Z j =
∑∞

n j=0 e−βE j(n j+
1
2 ) for each oscillator labelled by j. In other words, the eigenstates of

Ĥ can be expressed as a tensor product of eigenstates of each individual oscillator:

|n〉= ⊗ j|n j〉 , (B.2)

where

|n j〉=
[β̂†

j ]
n j

Æ

n j!
|0〉 , (B.3)

and En =
∑

j E j(n j +
1
2). We can then rewrite Eq. (13) as

Cω =
n
∑

j=1

∞
∑

n j=0

〈n j|B̂†|n j + 1〉〈n j + 1|Â|n j〉
e−βE j(n j+1/2)

Z j
δ(E j −ω) , (B.4)

where we have used the fact that Â and B̂ are linear in the operators β̂†
j and β̂ j and that we

are only considering ω> 0. Now we use

〈n j + 1|=
〈n j|β̂ j
Æ

n j + 1
, (B.5)

to obtain

Cω =
n
∑

j=1

∞
∑

n j=0

〈n j|B̂†β̂†
j |n j〉〈n j|β̂ jÂ|n j〉

n j + 1
e−βE j(n j+1/2)

Z j
δ(E j −ω) . (B.6)

Now we use

〈n j|β̂ jÂ|n j〉= 〈n j|β̂ ja
†|n j〉u= (1+ n j)(t

†
j u)δi j ,

〈n j|B̂†β̂†
j |n j〉= 〈n j|a β̂

†
j |n j〉v† = (1+ n j)(v

†t j)δi j , (B.7)

to obtain

Cω =
n
∑

j=1

(v†t j)





∞
∑

n j=0

(n j + 1)
e−βE j(n j+1/2)

Z j
δ(E j −ω)



 (t†
j u) . (B.8)

Finally, we use
∞
∑

n j=0

(n j + 1)
e−βE j(n j+1/2)

Z j
= 1+ n(E j) , (B.9)

with n(E j) = (e
βE j − 1)−1 being the Bose function, to obtain the final ω> 0 result,

Cω = [1+ n(ω)]
n
∑

j=1

(v†t j)δ(E j −ω)(t
†
j u) . (B.10)
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C Review of the kernel polynomial method

The kernel polynomial method (KPM) allows low-rank, stochastic approximation of matrix
functions f (A) provided that the eigenvalues of A are real and bounded. Without loss of gen-
erality, we may assume that A has been rescaled to have eigenvalues between −1 and 1. KPM
enables estimation of the matrix-vector products f (A)u without explicit construction of the
matrix f (A). This appendix reviews the procedure.

C.1 Chebyshev expansion of a function

First, consider the function f (·) applied to a scalar x . (Think of x as an arbitrary eigenvalue
of A.) We will approximate f (x) using a series expansion in Chebyshev polynomials. On the
interval −1≤ x ≤ 1, the Chebyshev polynomials can be written

Tm(x) = cos(m arccos x) . (C.1)

Many results from Fourier analysis carry over to Chebyshev series. For example, the cosines
are orthonormal,

∫ π

0

cos(mφ) cos(m′φ)dφ = qmδm,m′ , (C.2)

where

qm =

¨

π , m= 0 ,

π/2 , m≥ 1 .
(C.3)

Upon changing the integration variable, x = cosφ, we find orthonormality of Chebyshev
polynomials,

∫ +1

−1

Tm(x)Tm′(x)w(x)d x = qmδm,m′ . (C.4)

The appropriate weight function,

w(x) = (1− x2)−1/2 , (C.5)

follows from dφ/d x = −w(x)−1.
Chebyshev polynomials are complete on the interval −1 ≤ x ≤ 1, allowing expansion of

an arbitrary function,

f (x) =
∞
∑

m=0

cmTm(x) . (C.6)

By orthonormality, the expansion coefficients are

cm =
1

qm

∫ +1

−1

w(x)Tm(x) f (x)d x . (C.7)

When f (x) is a smooth function, Chebyshev-Gauss quadrature is effective, as described in
Appendix C.2.

An approximate polynomial expansion is obtained by restricting the series to some finite
polynomial order m < M . If f (x) includes singularities, then naïve truncation may lead to
“ringing” artifacts (Gibbs oscillations). These artifacts can be eliminated in a general way by
introducing damping coefficients gM

m that decrease with m,

f (x)≈
M−1
∑

m=0

gM
m cmTm(x) . (C.8)
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A common choice of coefficients,

gM
m =

(M −m+ 1) cos πm
M+1 + sin πm

M+1 cot π
M+1

M + 1
, (C.9)

is derived from the “Jackson kernel” [30], which originates from Fourier analysis [85,86].
In our applications to LSWT, we will be working with a smoothed function f (x). If M

is sufficiently large to resolve all the sharp features in f (x), then Gibbs oscillations will be
controlled, and it becomes preferable to select

gM
m = 1 , (C.10)

which reduces the error of the polynomial approximation.

C.2 Coefficients via the discrete cosine transform

To numerically estimate the coefficients cm of Eq. (C.7) for smooth f (x), one may use
Chebyshev-Gauss quadrature,

cm ≈
π

qmN

N−1
∑

n=0

Tm(xn) f (xn) . (C.11)

The N abscissas of integration are,

xn = cos
hπ

N
(n+ 1/2)
i

. (C.12)

For the KPM approximation of Eq. (C.8), one requires coefficients c0 . . . cM−1, and a reasonable
quadrature order is N ≳ 2M .

The Chebyshev polynomials are defined to satisfy Tm(cosφ) = cos(mφ). It follows,

Tm(xn) = cos
hπ

N
(n+ 1/2)m
i

. (C.13)

Then Eq. (C.11) becomes

cm ≈
π

qmN
f̃m , (C.14)

where

f̃m =
N−1
∑

n=0

f (xn) cos
hπ

N
(n+ 1/2)m
i

, (C.15)

is a discrete cosine transform of the second kind (DCT-II). Given data for f (xn), all coefficients
c0 . . . cM−1 can be evaluated in a single shot at cost O(N ln N) using a package like FFTW [87].

C.3 Fast matrix-vector products

The approximation of Eq. (C.8) also applies to functions of a diagonalizable matrix A,

f (A)≈
M−1
∑

m=0

gM
m cmTm(A) , (C.16)

provided that the eigenvalues of A are real and within the range [−1,1].
The Chebyshev matrix-polynomials can be calculated using a two-term recurrence,

Tm+1(A) = 2ATm(A)− Tm−1(A) , (C.17)

starting from T0 = I and T1 = A.
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Frequently, only a matrix-vector product f (A)u, for some vector u, is required. In this
context, it is advantageous to avoid explicit construction of the matrix f (A). Instead, we may
calculate

f (A)u≈
M−1
∑

m=0

gM
m cmϕm , (C.18)

where the vectors ϕm = Tm(A)u are generated through the recurrence,

ϕm+1 = 2Aϕm −ϕm−1 , (C.19)

starting from ϕ0 = u and ϕ1 = Au. Typically the matrix-vector product Aϕm will be very
efficient to evaluate (e.g., A will be sparse), yielding an overall linear scaling cost with system
size.

C.4 Stochastic approximation

KPM is frequently used in conjunction with stochastic approximation, e.g.,

f (A)≈ [ f (A)r]r† , (C.20)

where r is a random vector. The approximation is unbiased if 〈rr†〉 = I . That is, the random
components ri should be independent, with zero mean and unit variance.

Stochastic approximation enables efficient evaluation of matrix-vector products,
f (A)u ≈ [ f (A)r](r†u). Crucially, one can precompute the matrix vector product f (A)r in-
dependently of u via the Chebyshev expansion of Eq. (C.18). Then, for each u of interest, the
vector dot product r†u is relatively fast to evaluate.

Matrix elements approximated as in Eq. (C.20) will tend to have large stochastic error.
To reduce it, one can average over multiple random vectors. Stacking these vectors into the
columns of a matrix R, the stochastic approximation may be written f (A) ≈ f (A)RR†, and
is unbiased if 〈RR†〉 = I . This viewpoint suggests opportunities for reducing stochastic er-
ror [88]. Specifically, the R matrix may be designed in a way that leverages of the decay of
matrix elements f (A)i j as a function of distance between sites i and j [89]. Further reduc-
tion in stochastic error is possible by estimating f (A) ≈ (d/dAT )tr g(A)RR†, where g(·) is an
antiderivative of f (·) viewed as a scalar function [90]. The key observation is that g(·) will
typically be smoother than f (·), and this in turn leads to more sparsity of the matrix g(A).

One might envision future applications of stochastic approximation to LSWT. For example,
the dynamical matrix D might formulated in real-space, for a large magnetic unit cell. Then a
single stochastic approximation to the matrix function fω( Ĩ D) could be used to efficiently esti-
mate structure factor data S(q,ω) for a large number of commensurate wavevectors q. A very
different approach is to use KPM to estimate the real-time evolution of dynamical observables,
and employ stochastic approximation to the matrix trace [91].

D Direct expansion of the bare intensities

In the main text, KPM was used to approximate the smoothed intensities C̃ω. Here we explore
an alternative approach: direct expansion of the bare intensity distribution Cω. A benefit of
this approach is that the m-summation of Eq. (40) can be replaced with a faster convolution
operation. A disadvantage, however, is that the resulting line-broadened approximation con-
verges more slowly in the polynomial order M .
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Recall from Eq. (17) that Cω is expressible in terms of the distribution-valued matrixρ+(ω)
of Eq. (25). Given our focus on positive frequencies ω> 0, we have

ρ+(ω) = δ(ω− Ĩ D) Ĩ . (D.1)

As before, let γ be a scaling such that A= Ĩ D/γ has eigenvalues within −1 and 1. Then,

ρ+(ω) = fω(A) Ĩ , (D.2)

where fω(x) = (1/γ)δ(ω/γ− x) is suitable for Chebyshev expansion, Eq. (C.8). This yields

ρ+(ω)≈
M−1
∑

m=0

gM
m cm,ωTm(A) Ĩ . (D.3)

The coefficients

cm,ω =
1

qmγ
w(ω/γ)Tm(ω/γ) , (D.4)

are obtained by integrating Eq. (C.7) with f (x)→ fω(x) defined above. Definitions of Tm(·),
qm, and w(·) are provided in Eqs. (C.1)–(C.5). In the present context, the damping coefficients
gM

m play a crucial role. Because the Dirac-δ is highly singular, naïvely setting gM
m = 1 would

lead to severe ringing at any truncation order M . Instead, one may select gM
m as in Eq. (C.9) to

eliminate all ringing. Upon doing so, the polynomial approximation to fω(x) is non-oscillatory,
with a width that decays like 1/M .

Substitution of Eq. (D.3) into Eq. (17) yields a KPM approximation to the bare intensities,

Cω ≈ [1+ nB(ω)]
M−1
∑

m=0

gM
m cm,ωµm , (D.5)

where µm are the same Chebyshev moments as defined in the main text, Eq. (39). As before,
these can be evaluated efficiently using sparse matrix-vector products, Eq. (38).

The remaining m-summations can be efficiently evaluated for a carefully selected set of
frequencies,

ωn = γxn = γ cos
hπ

N
(n+ 1/2)
i

, (D.6)

with n= 0, 1, . . . , N−1. Note that xn previously appeared as the abscissas of Chebyshev-Gauss
quadrature, Eq. (C.12). Substituting from Eq. (C.3) and Eq. (C.1), the bare intensities are,

Cωn
≈ [1+ nB(ωn)]

w(xn)
πγ

¨

µ0 gM
0 + 2

N−1
∑

m=1

µm gM
m cos
hπ

N
(n+ 1/2)m
i

«

. (D.7)

To extend the m-summation, we have zero-padded the moment data by setting µm = 0 for
m≥ M .

The right term in brackets is a discrete cosine transform of the third kind (DCT-III) on
the data {µm gM

m }. It can be efficiently evaluated, for all n simultaneously, using a package
such as FFTW. Note that the DCT-III is the inverse of the DCT-II operation, which appeared in
Eq. (C.15).

Assuming all the moment data µm is available, the remaining computational cost to esti-
mate Cω at all frequencies ω ∈ {ω0, . . . ,ωN−1} scales like O(N ln N). This makes it feasible
select a large N value (relative to M), evaluate the sums of Eq. (D.7), and then interpolate Cω
onto any desired set of frequencies.
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Typically, the broadened intensities C̃ω of Eq. (26) will be a convolution over Cω. In this
case, one can estimate Cω at regular intervalsω= {0,∆ω, 2∆ω, . . . } and use FFT acceleration
to calculate C̃ω via the convolution theorem, thereby avoiding the explicit m-summations of
Eq. (40).

As mentioned in the beginning of this appendix, this scheme has a significant disadvan-
tage: Direct KPM approximation to Cω converges relatively slowly in the polynomial order
M . Effectively, KPM must find a smoothed approximation to the Dirac-δ, and its width will
scale like γ/M . This relatively slow decay, of order 1/M , then propagates to the errors in the
estimates of the broadened intensities, C̃ω.

Conversely, in the main text, we applied KPM approximation to the already broadened
intensities C̃ω via Eq. (40). There, convergence is exponentially fast in M once the KPM reso-
lution γ/M exceeds the characteristic scale of line broadening.

It is interesting to observe that the KPM approximation to either Cω or C̃ω is built upon
identical Chebyshev matrix polynomials Tm(A), and from these, identical Chebyshev moments
µm. The crucial difference, it seems, is that the direct approximation Cω must introduce damp-
ing coefficients gM

m to avoid ringing artifacts in the approximate Dirac-δ, prior to broadening.
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