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Abstract

We develop a Dirac fermion theory for topological phases in magnetic topological insu-
lator films. The theory is based on exact solutions of the energies and the wave func-
tions for an effective model of the three-dimensional topological insulator (TI) film. It
is found that the TI film consists of a pair of massless or massive Dirac fermions for
the surface states, and a series of massive Dirac fermions for the bulk states. The mas-
sive Dirac fermion always carries zero or integer quantum Hall conductance when the
valence band is fully occupied while the massless Dirac fermion carries a one-half quan-
tum Hall conductance when the chemical potential is located around the Dirac point
for a finite range. The magnetic exchange interaction in the magnetic layers in the film
can be used to manipulate either the masses or chirality of the Dirac fermions and gives
rise to distinct topological phases, which cover the known topological insulating phases,
such as the quantum anomalous Hall effect, quantum spin Hall effect and axion effect,
and also the novel topological metallic phases, such as the half-quantized Hall effect,
half quantum mirror Hall effect, and metallic quantum anomalous Hall effect.
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1 Introduction

Topological phases, bridging the abstract topological classification [1–4] to the practical elec-
tronic phases of matter, have gained an increasing interest and redefined the way people under-
stand and estimate physics in condensed matter systems [5–7]. In contrast to phases described
by the Landau-Ginzburg theory and spontaneous symmetry breaking scheme [8, 9], phases
termed after topological share no local order parameter, but topological invariants [4,10–12]
defined globally only. These invariants, such as Chern numbers and the Z2 invariant, exhibit
robustness against continuous deformations that do not alter certain preconditions imposed
over specified topological classes, like the global gap for an insulator [13–16], and symmetry
constraints over the total system [3] or the Fermi surface in a metal [4].

Within the vast topological phase landscape, the three-dimensional topological insulator
(3D TI) [17–23] stands out as a unique state of matter, protected by the time-reversal sym-
metry and characterized by a strong Z2 index. As a result of the celebrated bulk-boundary
correspondence [24–27], the surface of a 3D TI hosts a single gapless Dirac fermion, whose
low-energy dispersion is necessarily governed by the massless Dirac equation in 2D, exhibit-
ing spin-momentum locking [28]. Nevertheless, the ever existence of such a gapless Dirac
fermion has to be restrained by the no-go Nielsen-Ninomiya theorem [29, 30], and it turns
out that the high-energy states of this fermionic band gain a bulk-like mass [31, 32] to rec-
oncile the contradiction. The sign of this restored mass is defined as the chirality [33] for a
regulated 2D gapless Dirac fermion, and it is responsible for the half-quantization of its Hall
conductance. The emergence of the high-energy mass term due to the lattice regularization
essentially breaks the parity symmetry explicitly [34] and evades locality [35] simultaneously.

The gapless behavior of the surface Dirac fermion can be altered through the finite-size
effect. When the topological insulator is exfoliated into a film, two gapless Dirac fermions
emerge at the top and bottom surfaces. However, as the thickness of the film is further re-
duced to the ultra-thin limit, by quantum confinement [36–38] the surface states of the two
Dirac bands become gapped. The thickness-dependent mass gap exhibits an exponentially
decaying and oscillating pattern [39], revealing multiple topological phase transitions. This
phenomenon provides a pathway to realize the 2D quantum spin Hall effect [12,40–42] with
an ultra-thin TI film.

The occurrence of spontaneous magnetization can alter the topological property of the TI
film. Typically, a pair of gapless Dirac fermions emerge at two surfaces of a TI film, each carry-
ing half-quantized Hall conductance with opposite signs under mirror symmetry, leading to the
half quantum mirror Hall effect [33]. The effect shares a similar quantized non-local transport
signature with the quantum spin Hall effect [12, 43–45], while being intrinsically a metallic
phase. Further gapping out the surface states by an out-of-plane magnetism [46] gives rise to
various topologically distinct phases. Within the scheme of magnetic topological insulators,
two such phases have been discovered as the Chern insulator [47–49], aka quantum anoma-
lous Hall effect (QAHE) that is characterized by Chern invariant and quantized Hall plateau,
and the axion insulator [50,51], marked by zero Hall plateau and non-vanishing longitudinal
conductance. A semi-magnetic topological insulator, on the other hand, bears with the half-
quantized quantum anomalous Hall effect (half QAHE) [31,52,53] with a half-quantized Hall
conductance and unusual bulk-boundary correspondence, signed by the absence of edge state
but the appearance of the power-law decaying current from boundary to bulk. In addition, if
the magnetization is pushed away from the surfaces and towards the middle of the film with
sufficient strength, the metallic quantized anomalous Hall effect (metallic QAHE) [32] can
occur, which also exhibits integer Hall conductance but lacks chiral edge states.
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Remarkably, the physics underlying the topological phases in the (magnetic) topologi-
cal insulator films can be all attributed to the topological properties of the emergent two-
dimensional Dirac fermions in the system. While certain phases, like QAHE and half QAHE,
can be well explained by focusing on the interplay between surface Dirac fermions and mag-
netism, there exist other phases that essentially involve higher bulk bands, notably the metallic
QAHE. These higher bulk bands are identified as a series of massive Dirac fermions, revealing
that both gapless and gapped Dirac fermions in the topological insulator film interact with
spontaneous magnetism to generate various topological phases. The topological index, or the
quantized Hall conductance in each phase, is always given by some gapped or gapless Dirac
fermion(s), described by a modified Dirac equation.

In this paper, we will provide a unified framework to discuss and review how emergent
Dirac fermions exist and generate various topological phases in magnetic topological insulator
films, thus naturally partitioning the paper into two main parts. The first part of the paper will
focus on establishing the existence of Dirac fermions in magnetic topological insulator films.
This discussion will heavily rely on a newly defined basis derived from an exact solution in
1D. We will thoroughly investigate the Hall conductivity carried by different types of Dirac
fermions within this framework, setting the stage for the subsequent discussion of topological
phases. In the second part we will delve into the characterization and analysis of topological
phases in magnetic topological insulator films. These phases will be classified into weak- and
strong-magnetism regimes, providing a comprehensive understanding of how different mag-
netic strengths influence the emergence of various topological states. In the remainder of this
introduction we will give an overview of the main results of this paper following the line.

The TI film is equivalent to a set of Dirac fermions: a pair of massless Dirac fermions for
bands that contain the surface states, and a series of massive Dirac fermions consisting of purely
bulk states, classified by their momentum-dependent mass terms mn(k). This scenario holds
within both its continuum and lattice model versions, and is made clear and exact through
an introduced unitary transformation in the whole k-space, based on an exact solution in one
dimension perpendicular to the film plane. The finite-size effect is briefly discussed here.

The Hall conductivity carried by a massive or gapless Dirac fermion is discussed generally,
with additional symmetry constraints imposed on the Fermi surface for the latter one, for both
continuum and lattice models. A direct deduction leads to the result that the Hall conductiv-
ities associated with the gapless and gapped Dirac fermions in the TI film are ±e2/2h and 0,
respectively, leading to a half quantum mirror Hall effect by 1/2− 1/2, serving as a metallic
partner to the insulating quantum spin Hall effect. A brief proof for the half-quantization of
a metallic band structure with considered symmetry constraints over the Fermi surface is also
presented. Additionally, a field theoretical deduction for the half quantization, and a discus-
sion on handling the Hall conductivity of a gapless Dirac fermion are provided.

The introduced magnetism, characterized by out-of-plane polarization, manifests as two
equivalent matrix Higgs fields that collectively couple the Dirac fermions in a TI film, gen-
erating and altering their masses. Treated at the mean-field level, the exchange interaction
stands as an out-of-plane Zeeman field in TI film, which transforms via the unitary transfor-
mation into two momentum-dependent matrix fields IS/A(k). The two fields directly couple
different species of Dirac fermions and alter their masses, serving as mass-generating Higgs
fields, whose non-vanishing expectation values arise concurrently with the spontaneous estab-
lishment of the ferromagnetic order. Depending on the field strength, generally two regimes
as weak and strong magnetism are classified. In addition, the forms of other kinds of spin and
orbital fields under unitary transformation are discussed.

In the weak Zeeman field regime, the topological phases are characterized by focusing
on n = 1 matrix elements affecting the two gapless Dirac fermions near the surface. This
framework clarifies the underlying physics behind the Chern insulator, axion insulator, and
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half QAHE, with symmetric, antisymmetric, or unilateral distribution of Zeeman fields at the
surface of the TI film, respectively. The resulting Hall conductance exhibits quantized nature:
1 + 0, 0 + 0, and 1/2 + 0 in units of e2/h. Additionally, the mirror layer Chern number in
the Chern insulator with symmetrically distributed magnetism is examined, revealing (1/4)–
(1/2)–(1/4) partition for the non-trivial band and (c/4)–(−c/2)–(c/4)with c ≈ 1 for the trivial
band.

In the strong Zeeman field regime, the discussion is based on the effective mass picture,
involving the gapped series of Dirac fermions through matrix Higgs fields couplings. Another
metallic topological phase, the metallic QAHE, is identified where the magnetism is central-
ized in the middle of the TI film. Despite remaining gapless and lacking chiral edge states, its
Hall conductance is quantized into an integer over e2/h. Additionally, higher Chern insulators
resulting from sub-band inversion at high-symmetry points are presented under a uniform Zee-
man field. Furthermore, the paper discusses topological phases characterized by cooperation
between magnetism in the middle and at the surface, based on the framework of gapping out
surface states in the metallic QAHE.

The plan of the remainder of this paper is as follows. Beginning with the exact solution of
the model Hamiltonian for a topological insulator film in Section 2, we demonstrate that a TI
film comprises a pair of gapless Dirac fermions, which contain low-energy surface states, and a
series of gapped massive bulk Dirac fermions. Section 3 offers a comprehensive discussion on
the Hall conductivity, a critical indicator revealing the presence of topological phases, carried
by different species of Dirac fermions. Moving on to the inclusion of magnetism in Section 4,
we unveil the role of magnetism as matrix Higgs fields, responsible for generating masses of
the Dirac fermions in a TI film. This section also briefly explores other spin and orbital fields
possible within the framework. In Section 5, based on the weak magnetism approximation, we
identify topological phases processable under the lowest four-band model framework, which
stresses surface states with magnetism: half quantum mirror Hall effect, quantum anomalous
Hall effect, half-quantized anomalous Hall effect, and axion insulator. We introduce the mirror
layer Chern number and illustrate the Hall conductivity distribution in symmetrically magne-
tized TI film. The Chern and axion insulator phases in interlayer anti-ferromagnetic material
MnBi2Te4 are also discussed under the same framework. In Section 6, we delve into topologi-
cal phases within relatively strong magnetism regimes, such as high Chern number insulators
and the metallic quantized anomalous Hall effect, where bulk Dirac fermions come into play.
The paper concludes in Section 7 with a summary and a discussion of future prospects.

2 Massless and massive Dirac fermions in a topological insulator
film

In this section, by solving the minimal continuum and lattice models of the topological insula-
tor, we show that from the physical aspect, a topological insulator film is composed of a pair
of gapless Dirac fermions, whose low-energy parts near Dirac point are composed of massless
surface states inside the bulk gap while the high-energy parts away from the Dirac point evolve
into bulk states gradually, together with a series of gapped massive Dirac fermions consisting
of purely bulk states. Quantitatively, we write

Hc(k) =
⊕

n

�

λ∥k ·σ +mn(k)τzσz

�

, (1a)

Hl(k) =
Lz
⊕

n=1

�

λ∥ sin(kx a)σx +λ∥ sin
�

ky a
�

σy +mn(k)τzσz

�

, (1b)
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(a) (b) (c)

Figure 1: Schematic momentum dependent mass configurations (upper panel) and
corresponding band structure of Dirac fermions (lower panel). The quantization of
Hall conductivity is denoted by N for half quantization in a metallic band and C for
quantization at the bottom of a gapped band. The colors assigned to the Dirac cones
represent the sign of Berry curvature with red for positive and blue for negative.
(a) On the left panel, two gapless Dirac fermions are shown, whose masses are zero
at low-energy near the Dirac point (assumed to be k = 0), while non-vanishing at
high-energy with opposite signs, which we define as the chirality χ of a 2D gapless
Dirac fermion. Such chirality unambiguously determines the sign of the loop integral
of Berry connection around the Fermi surface, consequently determining the sign of
half-quantized Hall conductivity. (b) In the middle, two trivially gapped massive
Dirac fermions are present, with masses being either positive or negative for all k,
leading to a sign change of Berry curvature and a totally vanishing Hall conductivity
labeled by zero Chern number. (c) On the right panel, two non-trivial gapped Dirac
cones are displayed, and the corresponding masses exhibit kink configurations with
sign change between low and high-energy areas. Such non-trivial mass configuration
indicates overall Berry curvature sign convergence, and leads to a non-vanishing Hall
conductivity labelled by an integer Chern number. The non-triviality is also addressed
by formally drawing states connecting conduction and valence bands, well-known as
chiral edge states for a Chern band under open boundary conditions [13,14].

for the continuum and lattice model, respectively. Here we adopt a homogeneous in-film-plane
parameter set with a and λ∥ as the in plane lattice constant and Fermi velocity, and k = (kx , ky)
is the in-film-plane wavevector. Notice that an infinitely direct summed Dirac fermions exist
in the continuum model, while there are only 2Lz species with Lz the layer number along
opened z-direction of the film in the lattice model. For the mainly concerned individual Dirac
cone with a single Dirac point at k = 0, its topological property is revealed based on a general
discussion over the nature of its Hall conductivity quantization, as revealed in the schematic
diagram Fig. 1. Especially, in the strong TI film with a single Dirac cone at Γ , aka k = 0 point,
the gapless pair of Dirac fermions carry ±e2/2h, as half-quantized Hall conductivity, while the
gapped series are all trivial.

2.1 The continuum model

In this subsection, the exact solution of the confined 3D modified Dirac equation, which is the
continuum model describing the topological insulator film, is presented. A detailed study can
be found in Appendix A.
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The continuum model Hamiltonian for the 3D TI reads [27,54]

HTI(k, kz) = λ∥(k ·σ)τx +λ⊥kzσzτx + (m0(k)− t⊥k2
z )σ0τz

= H1d(k, kz) +H∥(k) ,
(2)

where H∥(k) = λ∥(k · σ)τx , m0(k) = m0 − t∥k
2. This Hamiltonian is isotropic only in x-

y plane. Substituting kz 7−→ −i∂z leads to the real-z-space description for the 1-D part as
H1d(k, z) = ⊕s=±h(s), where

h(s) = −isλ⊥∂zτx + (m0(k) + t⊥∂
2
z )τz . (3)

Solving the eigenproblem h(s)φ = Eφ leads to specifically symmetrized chiral-partner basis
[36–38]

ϕn(s) = C

�

−isλ⊥ f n
+

t⊥η
n f n
−

�

, E = mn , (4a)

χn(s) = C

�

t⊥η
n f n
−

isλ⊥ f n
+

�

, E = −mn , (4b)

where the dependence on (k, z) is inherited inside even/odd parity functions f n
± (k, z) and real

factor ηn(k), whose definition can be found in Appendix A. The k-dependent eigenvalue of
h(s) is represented by ±mn(k), n = 1,2, · · · , as a mass term, which can be solved in a closed
manner through equations

mn = m0(k)− t⊥
ξ2

1 g(ξ1)− ξ2
2 g(ξ2)

g(ξ1)− g(ξ2)
, (5a)

ξα =

√

√

−
F
D
+ (−1)α−1

p
R

D
, α= 1, 2 , (5b)

where


















g(ξ) = tan(ξL/2)/ξ ,

D = 2t2
⊥ ,

F = −2m0(k)t⊥ +λ2
⊥ ,

R= F2 − 2D(m2
0(k)−m2

n) .

(6)

Projecting TI film Hamiltonian on eigenstates of H1d equals to performing an infinite-
dimensional local unitary transformation in k-space, which gives a Hamiltonian equivalent
to the TI film one as (see Appendix A.)

H(k) =
⊕

n
λ∥τ0(k ·σ) +mn(k)τzσz , (7)

as Eq. (1a), where the projection basis is organized as

Φn
1 =

�

ϕn(+)
0

�

, Φn
2 =

�

0
χn(−)

�

,

Φn
3 =

�

χn(+)
0

�

, Φn
4 =

�

0
ϕn(−)

�

.

(8)

We have to emphasize here that although spin is still preserved as σ in the transformed Hamil-
tonian, the degrees of freedom τ newly appeared here share a different meaning compared
with the original TI film Hamiltonian. Notice that Φ1,4 (Φ2,3) are z-parity even (odd) states,
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Figure 2: The momentum-dependent mass of Dirac fermions in a TI film as a contin-
uum model. The lowest several momentum-dependent mn(k) along kx solved from
closed equations Eq. (5) are presented, while the homogeneous in-plane nature of
the model ensures that the asymptotic behavior of mn(k) is the same as k → ∞.
Here the film thickness L = (Lz+1)c with Lz = 10 is chosen here as a TI film with 10
layers. The index n is assigned such that |mn| increases with n. Especially notice the
sign-jump behavior that sgn(mn(∞)) = (−1)n. From here on, the model parame-
ters on lattice for numerical calculations and verifications are set as λ∥ = 0.41 eV eV,
λ⊥ = 0.44 eV, t∥ = 0.566 eV, t⊥ = 0.4 eV, m0 = 0.28 eV, a = b = 1 nm, c = 0.5 nm
if with no specific indication [54]. Generically, these parameters can be determined
through the first-principle calculations, and the specific choice here is for the sake
of illustration. This parameter choice makes the bulk 3D TI a strong one with a sin-
gle Dirac point at Γ . And for the continuum model discussed here, the substitution
λ∥→ λ∥a λ⊥→ λ⊥c, t∥→ t∥a

2, t⊥→ t⊥c2 should be recognized.

while Φ1,2 (Φ3,4) are z-mirror even (odd) states, which means that under the projection, the
unitary matrices related to two operators are transformed into (see Appendix A)

Pz = τzσz , (9a)

Mz = τz . (9b)

Meanwhile, the local unitary matrix in k-space that transforms the continuum model Hamil-
tonian under the original representation is formally written as

U c(k, z) = ({{Φ(k, z)}i}n) , (10)

where the double brackets mean that we arrange i = 1, 2,3, 4 index inside each n = 1, 2, · · · ,
we see that U c is topologically trivial in (kx , ky) space, as it consists of certain arrangement of
eigenstates Φn

i , which are solved from the separated 1-D Hamiltonian and has a well-defined
global representation within the same gauge choice in (kx , ky) plane, and is therefore topo-
logically trivial.

Our solution reveals that the 3D topological insulator film is composed of effectively 2D
multi-Dirac fermions, differing by their mass terms represented in Fig. 2 only. Notice that
for the continuum model, there are in fact an infinite number of mns as a basic property of
bound states in a quantum well, and we just present several lowest branches of the solutions.
Also notice that from the solved mn, the mass terms show sign jumping behavior at high-
energy (large k). Comparing the mass configurations in continuum model with the general
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Figure 3: Finite-size effect of an ultra-thin TI film in the continuum model, revealed
by the exponentially decaying oscillating mass gap 2m1(0) of surface Dirac cones.
Both m1(0) and its logarithmic absolute value varying with film thickness L are
shown. The solid line represents results from Eq. (12), while the circles are ob-
tained from solving the self-consistent equations Eq. (5) directly. The inset shows an
amplified area of the m1(0)− L diagram.

classification in Fig. 1 reveals that while all n≥ 2 masses serve as trivial massive Dirac band in
the bulk, the lowest states with n= 1 are necessarily not, which in the presented case serve as
two possible gapless Dirac cones whose low-energy parts are localized z-mirror-symmetrically
at top and bottom surfaces. Especially, the analytic expression for m1(k), when the film is thick
enough, can be written as [33] (also see Appendix A, and here t⊥ > 0 is assumed without losing
generality)

m1(k) = Θ(−m0(k))m0(k) . (11)

Notice that the Heaviside Theta function appearing here only reveals physics that, in the low-
energy zone near the Dirac point, the surface Dirac cone is massless, preserving both time-
reversal and parity symmetry, while for the high-energy part away from the Dirac point, the
non-vanishing mass term reveals that the surface Dirac cone has emerged into the bulk state,
which breaks both time-reversal and parity symmetry explicitly. The appearance of such non-
vanishing high-energy mass term is analogous to the introduced regulator [55–57] in quantum
field theory. In this sense, one should not worry about the nonanalytic behavior of the Theta
function near m0(k) = 0, as it can always be replaced by its mollifier [31,58].

For the completeness of discussion here, we note that an ultra-thin TI film bears an expo-
nentially decaying oscillating small gap m(0)with varying film thickness [36–38], which reads
upon the lowest order as (for derivation, also see Appendix A)

m1(0)≈ −
4m0
p

4γ− 1
sin
�

u
p

4γ− 1L
�

e−uL , (12)

with γ = m0 t⊥/λ
2
⊥, u = λ⊥/2t⊥. The numerical result is shown in Fig. 3, with excellent

agreement between the lowest order approximated gap and that from solving the set of non-
linear equations, especially for relatively large L. The exponentially decaying tendency is
best revealed by the logarithmic absolute value of mass gap at k = 0, as its center decreases
linearly with thickness, while the oscillating nature is revealed by the dips, which will extend
to negative infinity at strict gap closing point, and the mass gap will reverse its sign before and
after the dip, as shown directly by the m1(0)−L diagram and the inner amplified picture. Since
m1(∞) = m0(∞)< 0 is certain, we see that the oscillating behavior of m1(0)with thickness L
can drive m1(k) to share configuration that jumps between the one shown in Fig. 1(b) and (c),
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i.e., between a trivial band and a band with unit Chern number. Then for an ultra-thin film
which owns two copies ±m1(k) reflected by τz in Eq. (7), the Z2 topological index shows
jumping behavior between Z2 = 0 and Z2 = 1, i.e., between a band insulator and a quantum
spin Hall insulator [40–42,59,60]. We will not discuss further about this phenomenon except
for giving an explicit Z2(Lz) oscillating diagram below in the lattice model subsection shown
in Fig. 5. We emphasize here that the exponentially decaying gap will not affect physically
observable topological phase, either for an insulating or metallic one, for a TI film with enough
thickness.

The solution of the continuum model enlightens us to commence with the lattice model of
TI film below.

2.2 The lattice model

In this subsection, we ask and deal with the same question as above, but in the more realistic
lattice model. Details are presented in Appendix B.

The Hamiltonian of a 3D TI with nearest-neighbour hopping on cubic lattice is [17,54]

HT I =
∑

l

Ψ†
l M0Ψl +
∑

l,µ

�

Ψ†
l TµΨl+µ + h.c.
�

, (13)

where energy and hopping matrices are M0 = (m0−2
∑

µ tµ)β , Tµ = tµβ− i
λµ
2 αµ, with l and

µ denoting site locations and three spatial directions, while {β ,αµ} denoting Dirac matrices
under standard Dirac representation β = σ0τz , αµ = σµτx , where Pauli matrices σµ and τµ
represent different degrees of freedom, respectively. For instance, one could choose them to
represent spin and pseudo-spin (like orbital) ones. Ψl represents vectorized Fermionic oper-
ator at site l. Notice that when adopting a full Fourier transformation upon all three spatial
dimensions, i.e., an infinite bulk system, the Hamiltonian is transformed into the standard
modified Dirac’s equation [27] on lattice HT I =

∑

k Ψ
†
k H(k)Ψk where

H(k) =
∑

µ

λµ sin
�

kµaµ
�

αµ +

�

m0 − 4tµ sin2

�

kµaµ
2

��

β , (14)

whose continuum model is just an anisotropic version of Eq. (2). This model avoids the
fermion-doubling problem [29, 30] by introducing Wilson terms [34] that break chiral sym-
metry explicitly for k ̸= 0.

Consider such a film with Lz number of sites along z direction. The Fourier transformation
in x-y plane gives

HFilm =
∑

lz ,k

�

Ψ†
lz ,kM0(k)Ψlz ,k +Ψ

†
lz ,kTzΨlz+1,k + h.c.

�

+
∑

lz ,k

Ψ†
lz ,k H∥Ψlz ,k , (15)

with
H∥ = λ∥[sin(kx a)σxτx + sin

�

ky b
�

σyτx] , (16)

and M0(k) = M0(k)σ0τz = [m0(k)− 2t⊥]σ0τz , where

m0(k) = m0 − 4t∥

�

sin2 kx a
2
+ sin2

ky b

2

�

. (17)

Note that we have set t x = t y = t∥, tz = t⊥, λx = λy = λ∥, λz = λ⊥, a = b.
The solution of lattice model [32] shares much similarity with the continuum one. The

details can be found in Appendix B as a repeat. Separating the Hamiltonian at k as

HFilm(k) =H1d(k) +HS(k) , (18)
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Figure 4: The momentum-dependent mass of Dirac fermions in a TI film on the
lattice. Namely, mn(k), n = 1,2, · · · , Lz along kx are solved from closed equa-
tions Eq. (20) of lattice model with Lz = 40. Again, index n is assigned in the
way that |mn(π,π)| increases with n. Especially notice the sign-jump behavior that
sgn(mn(π,π)) = (−1)n.

where

H1d(k) =
∑

lz

�

Ψ†
lz ,kM0(k)Ψlz ,k +Ψ

†
lz ,kTzΨlz+1,k + h.c.

�

, (19a)

HS(k) =
∑

lz

Ψ†
lz ,k H∥Ψlz ,k . (19b)

The eigenvalues of H1d can be obtained with a set of simultaneous equations below,

mn = M + 2t⊥
cosξ1 g(ξ1)− cosξ2 g(ξ2)

g(ξ1)− g(ξ2)
, (20a)

cosξα =
−M t⊥ + (−1)α−1

q

M2 t2
⊥ − (t

2
⊥ −λ

2
⊥/4)(M

2 +λ2
⊥ −m2

n)

2(t2
⊥ −λ

2
⊥/4)

, (20b)

where






M = M0(k) ,

g(ξ) =
tan(ξ(Lz + 1))/2

sinξ
,

(21)

and the sign of ξ is fixed by

sinξα =
q

1− cosξ2
α , α= 1, 2 . (22)

Now, different from the continuum model, the set of equations give Lz solutions
mn(k) , n = 1,2, . . . , Lz including one surface state and Lz − 1 purely trivial bulk states, if
within suitable choice of parameters. This is essentially because now the Dirac equation is put
on lattice, and the number of solutions is constrained by finite lattice constants. And the other
set of Lz masses are just the chiral partners with eigenvalues −mn(k).

The projection basis shares the same form as with the continuum model eigenstates, with
only re-defined factor η (for details, refer to Appendix B or [32]). And the projection of the
TI film model offers an equivalent description as

H(k) =
Lz
⊕

n=1

�

λ∥(sin(kx a)σx + sin
�

ky b
�

σy) +mn(k)τzσz

�

, (23)
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Figure 5: Finite size effect of an ultra-thin strong TI film (Dirac point at Γ ) in the
lattice model, revealed by the exponentially decaying oscillating gap 2m1(0) of sur-
face Dirac cones and the oscillating Z2 index. The solid blue line of m1(0) represents
results from solving the self-consistent equations Eq. (20), while the circles are ob-
tained from diagonalizing the TI film Hamiltonian at k = 0 directly. The Z2 index
is calculated from inversion symmetry indicator [61] method, and the solid red line
represents index of n = 1 block Dirac fermions with solved m1(k), while circles are
indices calculated from TI film Hamiltonian directly.

as Eq. (1b), where 2Lz Dirac fermions H = ⊕n,χhn,χ(k) emerge as

hn,χ(k) = λ∥(sin(kx a)σx + sin
�

ky b
�

σy) +χmn(k)σz , (24)

with χ = ± labelling the mirror eigenvalue [33]. An example of mn(k) with Lz = 40 is pre-
sented in Fig. 4. Among these Dirac fermions, two of them with±m1(k) are gapless Dirac cones
with their low-energy states localized at top and bottom surfaces, while emerging into the bulk
at their high-energy away from Dirac point, and the remaining fermions are all gapped. No-
tice that the same arguments about the projection as a trivial local unitary transformation and
Heaviside Theta function form of the lowest solution (see below) can be made here, as in the
continuum model.

For the strong topological insulator with a single Dirac cone at Γ point, as we consider in
the article, the lowest mass reads (t⊥ > 0 assumed, and the film is thick enough)

m1(k) = Θ [−m0(k)]m0(k) , (25)

which shares the same form with the continuum model.

2.2.1 Oscillating Z2 invariant

As discussed in the continuum model case, in the ultra-thin film limit, the strong TI thin film
with a single Dirac cone at Γ (k = 0) point will show oscillating behavior between a quantum
spin Hall insulator and an ordinary insulator. The topological index of this kind is carried
out explicitly in Fig. 5, with Z2 = (−1)ν with ν = 0, 1, and the latter corresponds to a non-
trivial 2D quantum spin Hall insulator. The mass oscillation and the index oscillation match
perfectly, as Z2 = −1 (ν = 1) zones correspond to m1(0) > 0, so do their sign transitions
(remind that m1(π,π) < 0 and m1(0) > 0 leads to a nontrivial mass configuration, as to be
discussed below). Notice that when attributed to the lowest n = 1 block in Eq. (23), there is
no constraint to force Lz to be integer from Eq. (20), and in this sense we continue the n = 1
block from integer Lz to a positively real one. This is why we can do the calculation above.
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Again we emphasize that we will consider thick-enough strong TI film for topological phases
hereafter, and the exponentially decaying finite size effect is physically negligible.

3 The quantum Hall conductivity of Dirac fermions

As stated, in both the continuum model and lattice model, the strong topological insulator film
is composed of two gapless Dirac fermions and countable gapped Dirac fermions. We have also
claimed that all the massive fermions inside are trivial, while saying nothing about the massless
two. Here in this subsection, we shall complete the basic picture of them. Discussion here is
restricted to effectively two-dimensional systems and the zero-temperature limit.

3.1 In the continuum model

Our starting point is the continuum model of a two-band Dirac fermion appearing above

hC
DF = λk ·σ +m(k)σz , (26)

with k = (kx , ky) and σ = (σx ,σy). Notice that the mass depends on k = |k| and possesses
a topologically trivial infinity behavior. Its Hall conductivity can be carried out by a deformed
Kubo formula [27,62], when the chemical potential µ lies at the valence band,

σH = −
e2

h
1

4π

∫

d2kΘ(µ+ d)
(∂kx

d × ∂ky
d) · d

d3
, (27)

where d(k) = (λkx ,λky , m(k)), d = |d|, and to reveal possible topological property, we
have used the Heaviside Theta function with Θ(x > 0) = 1 and zero otherwise, as the zero-
temperature Fermi-Dirac distribution. The Hall conductivity can then be carried out easily by
defining

cosθ =
m

(λ2k2 +m2)1/2
, (28)

and notice that
σH

e2/h
=

1
2

∫ +∞

kF

dk2 ∂ cosθ
∂ k2

, (29)

which finally leads to

σH =
e2

2h

�

sgn(m(+∞))−
m(kF )
d(kF )

�

, (30)

with kF the Fermi vector determined by µ = d(kF ), and sgn(x) the sign function. From this
equation, three topological phases are readily to be classified. While we have assumed a path
connected Fermi surface, the discussion here should be easily generalized to the Fermi surface
composed of concentric circles.

3.1.1 Gapless/metallic case

The first case corresponds to a metallic phase with a finite kF . If m(kF ) = 0, which leaves a per-
fect linearized dispersion near the Fermi surface, we obtain a half-quantized Hall conductance
as

σH(µ|d(kF ) = λkF ) =
e2

2h
sgn(m(+∞)) , (31)
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where the half-quantization is completely determined by the high-energy mass sign which may
be recognized as the chirality assigned to the low-energy massless Dirac fermion near the Fermi
surface. In our equivalent model, such a case exists for the n= 1 bands

h1,χ = λ∥(k ·σ) +χΘ(−m0(k))m0(k)σz , χ = ± . (32)

Since m0(k) = m0 − t⊥k2, then by assuming m0 > 0, t⊥ > 0, we have

σ
1,χ
H (kF < kc) = −χ

e2

2h
, (33)

with kc =
p

m0/t⊥ identified. For each gapless Dirac fermion, the exact half-quantization
[4,53] comes deeply from the parity ‘anomaly’ [47,63–68], which manifests itself as an explicit
symmetry breaking term at high-energy for a low-energy massless 2D Dirac fermion. To be
clearer, the 2D parity symmetry is indeed an in-plane mirror symmetry [31], say about x ,

which forces (kx , ky)
Mx−→ (kx ,−ky), and in our model, the projected spin degrees of freedom

make the related unitary transformation to be UMx
= σx , then the imposed parity symmetry

U†
Mx

h(k)UMx
= h(Mx k) stands only when k < kc , which forms a parity invariant regime (PIR)

inside which the parity symmetry is respected. The parity invariant regime is recognized as
the low-energy zone around the Dirac point with small k, and for larger k > kc recognized as
the high-energy zone, the non-vanishing mass term breaks the 2D parity symmetry explicitly,
as a consequence of regulating the effective low-energy theory [55].

3.1.2 Insulating case

The remaining two phases are insulating with kF = 0 recognized when the chemical potential
lies inside the global insulating gap, then simply

σH(|µ|< dmin) =
e2

2h
[sgn(m(+∞))− sgn(m(0))] , (34)

for a Dirac cone, where dmin = min(d(k)) denotes the bound of the global gap. Clearly,
σH/(e2/h) = 0,±1 appears, notifying trivial or non-trivial phases depending on the relative
signs of low and high-energy masses, with the ±1 cases identified as the Chern insulator or
equivalently, the quantum anomalous Hall effect. In our equivalent model, one sees from
Fig. 2 that all n ≥ 2 masses contains the same sign, and the corresponding Dirac cones are
all trivial. And we come back to the statement that in a TI film, there are two gapless Dirac
fermions with opposite half-quantized Hall conductance, while all other bands form paired
trivial massive Dirac fermions. The quantized nature of the Hall conductance in insulating
system, σH = −Ce2/h, is referred to by the famous TKNN theorem [10], with its robustness
against continuous non-gap-closing perturbations rooted in the topological nature of C as the
Chern invariant [69,70].

3.2 In the lattice model

Now we turn to the lattice model with a starting Dirac Hamiltonian defined on the lattice

hL
DF = λ(sin(kx)σx + sin

�

ky

�

σy) +m(k)σz . (35)

Firstly, we notice that when m ≡ 0, the remaining part is a naive lattice realization of single
Weyl fermion, which is strongly constrained by the Nielsen-Ninomiya theorem [29,30]. There
appear to be four connected Dirac points at Γ , X , Y, M , respectively. Any non-vanishing m(k)
will serve as a lattice regularization of the theory, with the only difference as its effectiveness
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upon in gapping out which Dirac point. Essentially, here the difference with a continuum
model appears, say in the latter case there is only a single gapless Dirac cone, and the infinity
is usually treated by one-point compactification and the k-space is topologically equivalent to
a sphere surface S2, while on lattice the Brillouin zone geometry as a torus T2 can contain
non-trivial property on its periodic boundary. Such a non-trivial property is exactly reflected
by the existence of four Dirac points under naive lattice realization of Dirac operator k · σ.
With an analogical formulation, we write

σH =
e2

2h
[SX + SY − SΓ − SM ] , (36)

with Sk as an analogy to m(k)/d(k) appearing in the continuum model. Sk becomes zero
when the chemical potential lies in the metallic states around k, and over those states cer-
tain symmetry constraint is imposed in a finite regime around, such as the parity symmetry
which requires m(Mx k) = −m(k), and essentially, the imposed symmetry should ensure that
the net Berry curvature integral contributed from the regime (constrained also by chemical
potential) is zero wherever we put the Fermi level inside. On the other hand, we recognize
Sk = sgn(m(k)) when Dirac point k is gapped, and the Fermi level lies inside. The formula is
further classified into two cases under additional conditions.

3.2.1 Gapless/metallic case

The first case corresponds to the existence of gapless Dirac fermion(s) inside a parity invariant
regime. Consider an example as a single gapless Dirac fermion at Γ point, let the Fermi level
lie in the symmetry constrained regime (SCR), and we recognize

σH(kF ⊆ SCR) =
e2

2h
[sgn(m(X )) + sgn(m(Y ))− sgn(m(M))] , (37)

which is always half-quantized. Notice that kF = {k|d(k) = µ} is now a set, representing
Fermi surface wavevectors. Also notice that unlike the case in the continuum model where
the regulator comes from only at infinity, here on the square lattice, a single gapless Dirac
fermion owns three regulators. At the same time, if sgn(m(X )) = sgn(m(Y )) = sgn(m(M)) is
recognized which makes the boundary of the Brillouin zone trivial, we get

σH(kF ⊆ SCR) =
e2

2h
sgn(m(M)) . (38)

In our equivalent model on lattice, the lowest two cones

h1,χ(k) = λ∥(sin(kx a)σx + sin
�

ky b
�

σy) +χm1(k)σz , (39)

satisfy the condition, with m1(k) = Θ(−m0(k))m0(k) identified. Since under our model pa-
rameter choice, it is easy to verify that sgn(m1(X )) = sgn(m1(Y )) = sgn(m1(M)) < 0, and we
write

σ
1,χ
H (m1(kF )> 0) = −χ

e2

2h
, (40)

inside the symmetry constrained regime which is now the parity invariant regime defined by
m0(k)> 0.

3.2.2 Insulating case

The second case corresponds to a globally gapped Dirac band. Now by requiring the chemical
potential to lie inside the gap, the Chern number reads

C =
1
2
[sgn(m(Γ )) + sgn(m(M))− sgn(m(X ))− sgn(m(Y ))] , (41)
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which ranges among 0,±1,±2. This formula has two common versions that we will come up
with in the following. The first version is the most familiar one with a trivial Brillouin boundary
when sgn(m(X )) = sgn(m(Y )) = sgn(m(M)) is recognized, and

C =
1
2
[sgn(m(Γ ))− sgn(m(M))] . (42)

The mass term generating this formula, is usually written as

m(k) = m0 − 4t

�

sin2 kx

2
+ sin2

ky

2

�

, (43)

with a relatively small |m0| compared to |t|, and correspondingly, we have

C =
1
2
[sgn(m0) + sgn(t)] , (44)

which is non-trivial with unit Chern number when m0 t > 0. And when we relax the value of
m0, a better formula for this mass term is

C = −
sgn(m(X ))

2
[sgn(m(Γ ))− sgn(m(M))] . (45)

In our equivalent model on lattice within our parameter choice as a strong topological insulator
with homogeneous in-film-plane parameters, Eq. (42) is enough to describe all n≥ 2 massive
Dirac fermions; and since from Fig. 4, all mn≥2(k) do not change sign at Γ and M , they are
evidently all trivial.

3.3 A glance in proof of half-quantization

The proof [4,31] for the half-quantization of a general band structure in 2D comes as follows,
with a requirement of parity or time reversal symmetry at the Fermi surface. Without losing
generality, we consider a connected Fermi surface. Recognizing the infinity as one point com-
pactifies the k-space, then the existence of Fermi surface cuts the curvature integral into two
parts with three boundaries where the Stokes’ theorem applies

−2πσH

e2/h
=

∮

FS

dk · Tr
�

AM
�

+

∮

FS

dk · Tr
�

AL
�

+

∮

FS

dk · Tr
�

ÃL
�

, (46)

where AM refers to the non-Abelian Berry connection (convention follows that A = i 〈u|d|u〉)
formed by the metallic bands crossed by the Fermi surface with parity or time-reversal sym-
metry, while AL refers to connection of bands with lower energy, on the boundary formed by
kF . Essentially, the last two terms are phase integrals around one mutual boundary with op-
posite orientations, which will contribute an integer value [71–73] 2πC . For the first term,
requiring the 2D parity (i.e., mirror) symmetry at the Fermi surface leads to a local unitary
transformation U M

k relating states at parity-symmetric points, which leads to

AM
µ (k) = i(U M

k )
†∂kµU M

k + (U
M
k )

†AM
ν (Mk)U M

k Jνµ , (47)

where Jνµ = ∂ (Mk)ν/∂ kµ is the Jacobian matrix with det(J) = −1. And similarly, requiring
time reversal at Fermi surface leads to

AM
µ (k) = i(U T

k )
†∂kµU T

k − (U
T
k )

†AM
µ (−k)U T

k , (48)
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where U T
k is the unitary matrix relating time reversal points satisfying that U T

k = −(U
T
−k)

T .
Performing Berry phase loop integral of both sides leads to, for both symmetry restricted cases,

∮

FS

dk · Tr
�

AM
�

=
i
2

∮

FS

dk · Tr
�

U†
k∇kUk

�

= πN . (49)

Combining three terms gives

σH = −
e2

h

�

C +
N
2

�

, (50)

with both C and N integers. The proof here can be easily generalized to the lattice model,
by simply replacing the base manifold with a torus, and to the case when the Fermi surface
consists of several separately connected components, with the curvature integral cut into more
parts determined by Fermi surface position in k-space.

When bands related to C and N are fully separated, the former can be recognized as the
Chern number contributed from these fully occupied bands, while the latter reduces to a quan-
tized Fermi surface loop integral over metallic bands [74–77]. We would like to emphasize
here that even though reduced to cumulating low-energy (refer to Fermi surface here) quan-
tities, the N index in our analysis has to be determined by the properties of far Fermi sea,
i.e., high-energy regime. This is because the application of the Stokes theorem, which turns
the Fermi sea volume integral over Berry curvature into Fermi surface line integral over Berry
phase, requires a self-consistent gauge choice of the vector field. This gauge choice must not
contain any singularities in the integrated volume, in order to ensure the existence of a non-
singular gauge field throughout the volume.

3.4 View from field theory

The gapless Dirac fermion in a strong topological insulator film can be written as
H0(k) = λ∥σ · (sin kx , sin ky) + m(k)σz with m(k) = Θ(−m0(k))m0(k) identified, which
is constructed on lattice with finite 2D Brillouin zone. The time-ordered Green function is
G0(k) = [ω− d ·σ(1− iη)]−1where kµ = (ω, k)µ, d(k) = (λ∥ sin kx ,λ sin ky , m(k)) and η is
infinitesimally small quantity. In order to study a linear electromagnetic response in the film
system, we include the electromagnetic fields A which are coupled to the current through the
interaction term Hgauge = j ·A. The electric current density operator in the momentum space
is given by j =∇kG−1

0 (k). With the electromagnetic fields, the action reads (e = ħh= 1)

S =

∫

k
ψ†

kG
−1
0 (k)ψk +

∫

k

∫

q
Aµ(q)ψ†

k+q/2∂kµG
−1
0 (k)ψk−q/2 , (51)

where
∫

k =
∫ dω

2π

∫

BZ
d2k
(2π)2 and the momentum k integral is performed over the whole 2D

Brillouin zone. By integrating out the fermions in the action, the effective action for gauge
fields Seff[A] can be obtained by expanding to the quadratic order

Seff =
1
2

∫

d3q
(2π)3

Aµ(−q)Πµν(q)Aν(q) , (52)

where µ,ν run over the space-time indices (0,1, 2) with the vacuum polarization operator
defined as

iΠµν(q) =

∫

d3k
(2π)3

Tr[∂kµG
−1
0 (k)G0(k+ q/2)∂kνG

−1
0 (k)G0(k− q/2)] . (53)

There is no divergence in Πµν as the momentum integral is performed over a finite Brillouin
zone due to the lattice regularization. The antisymmetric terms ΠA

µν(q) can be evaluated as
follows

ΠA
µν =

1
2π
εµνζq

ζC , (54)
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(a) (b)

PV Regularization

(c) (d)

Figure 6: Regulated gapless Dirac fermion on lattice and by Pauli-Villars regulariza-
tion. (a) Momentum dependent mass of regulated gapless Dirac fermion on lattice,
kc is defined by m0(k) = 0, which splits the mass and the dispersion in (c) of the
Dirac fermion into two regions, low-energy part with k < kc and high-energy part
with k > kc . (b) Mass of massless Dirac fermion and of its regulator partner by Pauli-
Villars treatment. (c) Dispersion of regulated gapless Dirac fermion on lattice with
spin orientation. (d) Dispersion of double Dirac fermions, one massless and one mas-
sive under Pauli-Villars regularization, and to obtain convergent result, contributions
from two fermions should be subtracted.

with Chern number in the case following definition that

C =

∫

BZ

d2k
4π

d̂ · ∂kx
d̂ × ∂ky

d̂ , (55)

where εµνζ is Levi-Civita symbol and d̂ = d/|d|. Finally, we obtain the Chern-Simons theory
for Aµ

Seff[A] =
C

2π

∫

d3 xεµνςAµ∂ςAν . (56)

For the lattice Hamiltonian H0(k), we have C = − sgn(m(π,π))
2 which is a half-integer with its

sign determined by the sign of m(π,π). Restoring physical units, the Chern-Simons term
corresponds a half quantum Hall effect

〈 jν〉=
δSeff

δAν
=

sgn(m(π,π))
2

e2

h
εµνς∂ςAµ . (57)

Notice that upon DC linear response, the result is strict.
If we now focus on the low-energy effective model of the lattice four-band Hamil-

tonian by neglecting higher energy states (∝ m(k)), which can be expressed as
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Hlow
0 (k) = λ∥(kxσ1 + kyσ2). There is a linear ultraviolet divergence in Πµν(q) which should

be regularized by Pauli-Villars method in a gauge-invariant way. In the Pauli-Villars regulariza-
tion approach, we need to introduce a second Dirac field mass Mσ3. In the limit (M →∞),
the regulator field decouples from the theory, which removes the divergence in Πµν, leaving a

finite contribution for the crossed polarization tensor Πµν =
sgn(M)

4π εµνζq
ζ. This also induces a

Chern-Simons term and corresponds to a half-quantum Hall effect.
The comparison of mass configuration and band dispersion of two methods is shown in

Fig. 6. The advantage of our approach for lattice realization single gapless Dirac fermion lies
in its realism, as it appears naturally in a topological insulator film, and also in its conciseness of
expressing topological properties with a single analytical mass term. The price here, however,
is to introduce symmetry-breaking term at high-energy zone explicitly, and the form of Theta
function (or its mollifier) will introduce long-range hopping in real space.

3.5 Unexchangeable limits

In the usual context of quantum field theory, a massive (2 + 1)-D Dirac fermion bears half-
quantized Hall conductivity when the chemical potential lies inside the gap, even if the mass
is infinitesimally small [14,65,67], under which one gets in fact a Dirac point. Such a picture
relies on the limit sequence that one firstly takes µ→ 0, and then the mass m→ 0, while on
the other hand, once the sequence is inverted, say at first place, one stays at finite chemical
potential µ and takes m → 0, which leads to zero Hall conductivity, one gets constant zero
Hall plateau when pushing µ → 0. And in this sense one realizes that a gapless Dirac point
is singular, and different approaches to reach it will lead to different and even contradictory
pictures.

The same thing happens in our model. Consider now a gapless Dirac fermion is perturbed
by a small constant mass term

h= λ∥(k ·σ) + [δm+Θ(−m0(k))m0(k)]σz , (58)

where for simplicity we discuss the continuum model here. Given m0(k) = m0 − bk2 with
m0 b > 0, by Eq. (30) we have

σH = −
e2

2h



sgn(b) +
δm
Ç

λ2
∥k

2
F +δm2



 , (59)

where a small µ near the Dirac point is assumed. The kF refers to the Fermi wavevector defined
by µ= −
Ç

λ2
∥k

2
F +δm2, which lies inside the valence band and satisfies m0(kF )> 0. Now the

two different limits for the Hall conductivity of the gapless Dirac cone in the case read

lim
δm→0

lim
µ→0

σH = −
e2

2h
[sgn(b) + sgn(δm)] , (60a)

lim
µ→0

lim
δm→0

σH = −
e2

2h
sgn(b) , (60b)

i.e., first pushing chemical potential to zero and then pushing δm to zero leads to an undefined
limit that depends on the limit direction δm takes (positive or negative), while an admittedly
infinitesimal mass gap will not affect the half-quantization of the gapless Dirac cone by subse-
quent Fermi level tuning — not only to µ→ 0 but for all possible Fermi wavevectors that lie
inside the parity invariant regime [31] defined by m0(k)> 0. The corresponding schematic di-
agram illustrating the sequential limit-taking processes upon evaluating the Hall conductivity
of a regulated gapless Dirac fermion is presented in Fig. 7. In reality, which limit the measured
Hall conductance takes has to depend on specific situation of the system, while for the Dirac
point emerged in a purely magnetic TI, the second perspective may be deemed more realistic.
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(a) (b)

(d)(c)

Figure 7: Schematic diagrams illustrating the limits in calculating the Hall conduc-
tivity of a regulated gapless Dirac fermion are shown below. In these diagrams,
kc =
p

m0/b. (a) Initially tuning the chemical potential to µ = 0 leads to inte-
ger quantized Hall conductivity. (b) Initially adjusting the chemical potential finite
inside the valence band with Fermi wavevector kF < kc results in unquantized Hall
conductivity asymptotically proportional to δm/kF . (c) Continuing from (a), push-
ing the small gap δm → 0 while pinning the chemical potential at µ = 0 leaves
the integer of the quantized Hall conductivity invariant. (d) Continuing from (b),
pushing the small gap δm → 0 while keeping the finite chemical potential inside
the valence band with kF < kc leads to half-quantized Hall conductivity of a gapless
Dirac fermion, with the sign of the Hall conductivity determined by its chirality or
equivalently its high-energy mass sign.

4 Magnetic and orbital fields in topological insulator films

In this section we consider additional elements, such as exchange interaction, gate-voltage
and orbital orders, to play their roles in the topological insulator film at the mean-field level.
We identify the mean field to be V (k, lz)σµτν, with single in plane wavevector and out of
plane position dependence, and transform the field into the Dirac fermion representation.
For instance, an induced z-Zeeman field Vz(lz)σzτ0 with solely z-dependence and intrinsic
spin-orbital coupling H∥(k) that only depends on k are two special cases under the formula-
tion. For our interest, we will mainly consider magnetic exchange interaction that has been
approximated to affect as an effectively mean-field Zeeman field [78] along z direction, and
transformation over other spin and orbital related fields are discussed and summarized later.
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Top & Bottom
Symmetric

Top & Bottom
Anti-Symmetric

One-Surface Only In The Middle

Figure 8: Several basic representative magnetic topological insulator heterostruc-
tures. From left to right: Zeeman field at top and bottom surfaces with parallel and
antiparallel polarizations, at top surface and in the middle only, corresponding to ba-
sic topological phases in magnetic topological insulator film as Chern insulator, axion
insulator, half-quantized anomalous Hall effect, and metallic quantized anomalous
Hall effect, respectively. We use color and its gradation to emphasize the direction
and strength of the Zeeman field.

4.1 Magnetism polarized along z direction

The stated mean z-Zeeman field is assumed to be uniform intralayer while varies with lz , and
that is to say [32],

VZ(k) =
∑

lz ,k

Ψ†
lz ,k VZ(lz)Ψlz ,k , (61)

where
VZ(lz)≡ Vz(lz)σzτ0 , (62)

which acts on spin z. For several schematic examples with different Zeeman configurations,
see Fig. 8. Its equivalent action by projection 〈Φn

m|VZ |Φn′
m′〉 (m, m′ = 1, 2,3,4; n, n′ = 1, · · · , Lz)

reads
V (k) =
�

IS(k)τ0 − IA(k)τy

�

σz . (63)

In the expression, two projected Hermitian matrices IS/A(k) have been defined with elements

Inn′
S = |CnCn′ |
∑

lz

Vz(lz)[λ
2
⊥( f

n
+ )
∗ f n′
+ + t2

⊥η
nηn′( f n

− )
∗ f n′
− ] = (I

n′n
S )
∗ , (64a)

i Inn′
A = i|CnCn′ |
∑

lz

Vz(lz)λ⊥ t⊥[η
n′( f n

+ )
∗ f n′
− +η

n( f n
− )
∗ f n′
+ ] = −i(In′n

A )
∗ , (64b)

where n, n′ = 1, . . . , Lz . Notice that IS/A is non-vanishing only when the symmet-
ric/antisymmetric component of Vz is non-zero. Our formula then illustrates that the Zeeman
field in a TI film is brought into two classes by the discrete parity or mirror symmetry, with
S(A) labelling the part respects (disrespects) this symmetry. Bring the transformed Zeeman
term into multi-Dirac fermions representation, and we obtain

HV =
Lz
⊕

n=1

�

λ∥(sin(kx a)σx + sin
�

ky b
�

σy) +mn(k)τzσz

�

+
�

IS(k)τ0 − IA(k)τy

�

σz . (65)

Under the local unitary transformation, the Zeeman field in TI film undergoes a transfor-
mation into the I matrices, which act as generalized Higgs fields in matrix form, generating
mass through the Yukawa-like couplings among Dirac fermions in the film [55,79]. This phe-
nomenon occurs precisely due to the fact that the projected Zeeman terms still act on spin-z
component, similar to how masses affect the system. The emergence of a non-vanishing Higgs
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expectation value is closely associated with the establishment of the magnetic order in the
system, either by intrinsic spontaneous magnetization or a proximate magnetic field.

A closer look then classifies this action into three aspects. Firstly, the intra-Dirac cone ele-
ments Inn

S tell how the Zeeman field directly modifies the mass term mn, and due to the trace
invariance under unitary transformation, such a direct modification is significant in under-
standing the impact of the Zeeman field on the overall mass generation process. Secondly,
the intra-block inter-Dirac cone elements Inn

A couple the two mirror-symmetric Dirac fermions
with the same n-label together, and force them to recombine into two new Dirac fermions that
break the mirror symmetry. Finally, the general inter-block elements Inn′

S/A(n ̸= n′) couple Dirac
cones with different n-labels. Nevertheless, since the linear winding part of Dirac fermions in
our equivalent TI film model (see Eq. (65)) is identity in subspace spanned by n and τ, the
total effect of the projected Zeeman term is to modify the mass terms, i.e.,

M(k)σz =

� Lz
⊕

n=1

mnτz + ISτ0 − IAτy

�

(k)σz , (66)

and further diagonalization of this total mass part will give another set of 2Lz mass terms
without affecting the winding part, i.e.,

M(k)
diagonalization
−→

2Lz
⊕

n=1

m̃n(k) , (67)

and accordingly, we can write down the Dirac fermion Hamiltonian under Zeeman field as

H̃(k) =
2Lz
⊕

n=1

�

λ∥(sin(kx a)σx + sin
�

ky b
�

σy) + m̃n(k)σz

�

, (68)

which describes the 2Lz Dirac fermions in a magnetic topological insulator film. Notice that
the Zeeman term alters the masses of Dirac fermions thus their topological properties, which
is the origin of the fruitful magnetic topological phases in the system.

The formula and discussion above are general and applies for any z-varying Zeeman con-
figurations. For our consideration here, we separately discuss main cases.

4.1.1 Uniform field strength

In this case Vz(lz)≡ V for any lz , and it is easy to check out that

Inn′
S = Vδnn′ , (69a)

Inn′
A = 0 , (69b)

which offers us with an exact projection without further diagonalization as

HV (k) =
Lz
⊕

n=1

�

λ∥(sin(kx a)σx + sin
�

ky b
�

σy) + (mn(k)τz + Vτ0)σz

�

= hV
n,χ(k) , (70)

where each sub-block

hV
n,χ(k) = λ∥(sin(kx a)σx + sin

�

ky b
�

σy) + (χmn(k) + V )σz , (71)

describes a Dirac fermion of TI film modified by a uniform Zeeman splitting V . This formula
serves as a clear physical picture to illustrate the formation of higher Chern number in TI film,
with multi-sub-bands inversion [80] generated by the direct Higgs coupling V , as we shall
illustrate in the section thereafter.
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(a) (b)

Figure 9: Basis wavefunction distribution along z for (a) n= 1 and (b) n= 2, varying
from kx = 0 to kx = π with ky = 0. Dots in purple light, yellow and green represent
wavefunction at kx = 0, kx = 0.5 and kx = 0.7, respectively. Total layer number
Lz = 19.

4.1.2 Weak Zeeman field

When a weak Zeeman field, whose strength is comparably small to major parameters in topo-
logical insulator, especially, the bulk gap m0, is applied to the topological insulator film system,
its effective Hamiltonian can be obtained by considering only n = n′ = 1 elements in the pro-
jected matrix as a cut-off approximation. The reason why we can do this lies in the basis
wavefunction distribution along z-direction. As revealed in Fig. 9, where we have presented
n = 1 basis wavefunction distribution for the strong topological insulator with a single Dirac
cone at Γ , together with n = 2 basis wavefunction distribution as a representative for higher
states, the surface state and higher states have little overlap in the low-energy zone (near Dirac
cone, in our case the parity-invariant regime [31] around Γ point, i.e., small k area), which
makes the overlap integral I1,n≥2

S/A approach zero in the regime. This tells that the low-energy

behavior of the system under weak Zeeman field is dominated by only I1,1
S/A terms. And when

we turn to high-energy part, the effective Hamiltonian for n = 1 is dominated by the non-
vanishing mass term m1(k) since Zeeman integrals are all perturbative quantities in the case.
What is more, since n ≥ 2 bands are naturally gapped with minimal gap m0, weak Zeeman
field has no prominent influence to them. Based on the picture above, it suffices that we only
consider n = 1 block with m1(k) and preserve I1,1

S/A as the influence (mass-)source at low en-
ergy. This procedure is equivalent to a cut-off approximation. Notice that since low-energy
surface states distribute mainly at two surfaces, Zeeman field at these two zones should play
the major role.

Now we ignore n= 1 index and write
¨

IS(k) = 〈Φ1(k)|VZ |Φ1(k)〉 ,

i IA(k) = 〈Φ1(k)|VZ |Φ3(k)〉 ,
(72)

which varies with wavevector k, then by utilizing basis solutions above we have

IS = |C |2
∑

lz

VS(lz)[λ
2
⊥| f+|

2 + t2
⊥η

2| f−|2] , (73a)

i IA = i|C |2
∑

lz

VA(lz)λ⊥ t⊥2ηRe[( f+)
∗ f−] , (73b)

respecting (anti-)symmetric part projection of Zeeman field to z as

VS/A(lz) =
Vz(lz)± Vz(−lz)

2
. (74)
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Note that IS/A are real. The effective Hamiltonian for Zeeman term then reads

VEFF(k) =
�

IS(k)τ0 − IA(k)τy

�

σz . (75)

Adding this term to the lowest four-band model leads to

HEFF = λ∥(sin(kx a)σx + sin
�

ky a
�

σy) +m(k)τzσz + IS(k)τ0σz − IA(k)τyσz , (76)

where m(k) = Θ(−m0(k))m0(k) for thick-enough film, while IS/A(k) are z-Zeeman-related
integrals dependent on k. This effective Hamiltonian serves as the starting point for analyzing
magnetic phases in a topological insulator film within weak Zeeman regime, and we should
confine the Zeeman distribution to mainly stay at the top and bottom surfaces to make the
best use of it.

Notice that this Hamiltonian for the lowest surface bands is written under the (mirror)
symmetric basis, and it is actually equivalent to a generalization of the commonly utilized
four-band surface state Hamiltonian [48,81], which treats the top and bottom surfaces as two
fundamental degrees of freedom. To show this, we introduce a two-step unitary transformation
U = U1U2 with U1 = eiπτyσz/4 and U2 = e−iπτx/4, which combines the mirror symmetric basis
and transforms the Hamiltonian into the ‘surface state representation’ as

HS = U†HEFFU

=
�

−λ∥(sin(kx a)σy − sin
�

ky a
�

σx) + I+(k)σz m(k)
m(k) λ∥(sin(kx a)σy − sin

�

ky a
�

σx) + I−(k)σz

�

,
(77)

with I± = IS ± IA. When k < kc with the projecting basis composing of surface states, I+
and I− can be recognized approximately as the Zeeman field strengths at top and bottom,
respectively. This Hamiltonian utilizes the same Dirac matrices as the usual four-band surface
state Hamiltonian, but includes k-dependent projected Zeeman terms IS/A(k) and mass term
m(k). The low-energy form m(0) is commonly referred to as the finite-size coupling between
the top and bottom surface states in an ultra-thin film. For a sufficiently thick film, the k-
dependence of this mass term becomes crucial, since at low energies it is zero and offers
us two well-separated surface states localized at the top and bottom surfaces, while at high
energies it tells us that the surface bands will inevitably mix together, rendering the ’top’ and
’bottom’ labels ineffective as quantum numbers in this much broader zone. This observation
is consistent with the wavefunction distribution in Fig. 9(a), where the low-energy surface
states are predominantly localized on the top and bottom surfaces, whereas the high-energy
states spread into the bulk. As a result, a well-defined Chern number cannot be assigned
to a single surface but must instead involve contributions from bulk states. Furthermore, as
we have discussed, the Theta function form of the lowest mass term m(k) differs from the
conventional approach, which assumes a mass term of the form m̃0 + bk2 similar to the bulk
band. The usual choice only restores parity symmetry near k = 0 as m̃0 goes to zero, and fails
to fully capture the topological nature of the surface gapless Dirac fermion that contains parity
symmetry in a finite but much larger area by k < kc .

Effective mass treatment Diagonalization of the mass part in the weak Zeeman field case
shows much less complexity than that in Eq. (67), and is accessible analytically. A careful look
on Eq. (76) tells that we can treat all the latter-three terms as mass terms, since by τ-space
diagonalization

U†
M

�

mτz + ISτ0 − IAτy

�

UM =

�

m̃+
m̃−

�

, (78)

where the defined unitary matrix reads

UM =
1
p

2

�

isgn(IA)
Æ

1+ m
M

Æ

1− m
M

Æ

1− m
M isgn(IA)

Æ

1+ m
M

�

, (79)
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with M(k) =
q

m2(k) + I2
A(k), we can write H̃EFF = ⊕χ=±H̃χ with

H̃χ = λ∥(sin(kx a)σx + sin
�

ky a
�

σy) + m̃χ(k)σz , (80)

where the effective mass is defined as

m̃χ(k)≡ IS(k) +χ
q

m2(k) + I2
A(k) . (81)

This equation illustrates minimally the mass generation brought by the matrix form Higgs
fields, which are reduced into merely two components IS/A(k) here. The ultimate effect given
by the Zeeman field action to the system is reduced to a correction of the Dirac mass term,
which is responsible for the possible non-trivial topology of the system. The treatment here
relies on the sign invariance of IA inside the parity invariant regime, which ensures the global
gauge consistency for the transformation.

Notice that the gap is now determined by

∆χ = 2|m̃χ(0)|= 2|IS(0) +χ|IA(0)|| , (82)

which is non-zero (gapped) as long as |IS(0)| ̸= |IA(0)|. The χ-Chern number, according to
Eq. (42), for each gapped surface state is written as

Cχ =
1
2
[sgn(m̃χ(0))− sgn(m̃χ(π,π))] , (83)

which, by utilizing the fact that m(0) = 0 and Zeeman field is added perturbatively so that
m(k) dominates at (π,π), we obtain that

Cχ =
1
2
[sgn (IS(0) +χ|IA(0)|)−χ] = −χΘ(−|IA(0)| −χ IS(0)) . (84)

This formula works in the chosen parameter regime 0 < m0 < 4t⊥ within weak Zeeman
treatment.

4.1.3 Strong Zeeman field

For a general strong Zeeman field whose strength is comparably large enough relative to the
system parameters (mainly bulk gap m0) or even stronger, with arbitrary configuration along
z direction, both the uniform and the weak criteria fail, and in this case, we usually have to
adopt the most general formula from Eq. (65), whose topological property is revealed after
a further diagonalization of mass terms given by Eq. (67), which turns the total Hamiltonian
again into a direct sum of a series of Dirac fermions shown in Eq. (68). Then based on our
discussion in 3, the Hall conductivity of each single Dirac fermion is determined, from which
we can analyze the topological property of the system.

4.2 Other fields

In the subsection, we present more examples of spin and orbital fields other than the z-Zeeman
field discussed above, and the results are listed in Table 1. The signals appearing here only
apply in the subsection. The list of results reveals the power of our general procedure, and is
enlightening for discovering more topological phases driven by diverse physical origins.

For a given field V (k, lz)σµτν, the transformation follows similarly by organizing the pro-
jected elements

∑

lz
V (k, lz) 〈Φn

m(k, lz)|σµτν|Φn′
m′(k, lz)〉 (m, m′ = 1, 2,3,4; n, n′ = 1, · · · , Lz)

aligned with the sequence of the basis. The form of field after transformation will always be
two Lz × Lz matrix fields differing by z-parity symmetry labels, with S counting for symmetric
distribution and A for the opposite. Each matrix field will also be attached with a new 4× 4
Dirac matrix.
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Table 1: Different fields and their forms under the transformation.

Name of field Original field expression Field after transformation Kernel

Spin-orbital coupling λ∥[sin(kx a)σxτx + sin
�

ky b
�

σyτx]
⊕Lz

n=1λ∥τ0(sin(kx a)σx + sin
�

ky b
�

σy) FS+

Zeeman field

Zz(lz)σzτ0

�

Iz
S(k)τ0 − Iz

A(k)τy

�

σz FS+, FA+

Zx(lz)σxτ0

�

Ix
S (k)τx − Ix

A(k)τz

�

σx FS−, FA−

Zy(lz)σyτ0

�

Iy
S (k)τx − Iy

A(k)τz

�

σy FS−, FA−

Gate-voltage G(lz)σ0τ0

�

GS(k)τ0 −GA(k)τy

�

σ0 FS+, FA+

Oribital field

Oy(lz)σ0τy

�

Oy
A(k)τ0 −Oy

S (k)τy

�

σz FS+, FA+

Ox(lz)σ0τx

�

Ox
A(k)τz −Ox

S (k)τx

�

σ0 −FS−, − FA−

Oz(lz)σ0τz

�

Oz
A(k)τx −Oz

S(k)τz

�

σz FS−, − FA−

To express matrix quantities I,G,O in Table 1, we introduce the momentum-dependent
matrix-form acting functional Fk over V field that generates projected matrix component like

Fnn′
k [V ] =
∑

lz

V (k, lz)F
nn′
V (k, lz) = (Fn′n

k [V ])
∗ , (85)

where the summation kernel F nn′
V (k, lz) depends on different Dirac matrix the untransformed

field carries. However, in practice, we find that the non-vanishing components in the trans-
formed field matrix are only generated by four kinds of summation kernels,

F nn′
S+ (k, lz) = |CnCn′ |[λ2

⊥( f
n
+ )
∗ f n′
+ + t2

⊥η
nηn′( f n

− )
∗ f n′
− ] , (86a)

F nn′
A+ (k, lz) = |CnCn′ |λ⊥ t⊥[η

n′( f n
+ )
∗ f n′
− +η

n( f n
− )
∗ f n′
+ ] , (86b)

F nn′
S− (k, lz) = |CnCn′ |[−λ2

⊥( f
n
+ )
∗ f n′
+ + t2

⊥η
nηn′( f n

− )
∗ f n′
− ] , (86c)

F nn′
A− (k, lz) = |CnCn′ |(−i)λ⊥ t⊥[η

n′( f n
+ )
∗ f n′
− −η

n( f n
− )
∗ f n′
+ ] , (86d)

different by symmetry requirement and an inner sign. In the table the symmetry labels between
the transformed fields and the summation kernels are in one-to-one correspondence.

The table can be longer once one considers more kinds of Dirac matrices. This procedure
above is general, powerful while easy to understand. Despite the easiness of the transforma-
tion, the non-trivial difficult part is to endow physical meaning to the attached fields, both
before transformation and after. For instance, the spin-orbital coupling remains its meaning
after the transformation, while being block-diagonal in the Dirac fermion representation; the
z-Zeeman field, as discussed above, is transformed into two matrix form Higgs fields, which
stand as the effective mass generators.

Spin-orbital duality Interestingly, we see that the y-orbital order is transformed to attach
the same Dirac matrices as the transformed z-Zeeman field, but with symmetry indices of
matrix quantities exchanged. This relation tells that, as long as some topological phase is
discovered with z-Zeeman field Zz = Zz,S+Zz,A, another phase with the same topological index
can immediately be identified with y-orbital order satisfying that Oy,A = Zz,S , Oy,S = Zz,A.
For instance, we show the dual phases formed by σz and τy orders in Table 2, the Chern
insulator, aka quantum anomalous Hall effect (QAHE), the axion insulator, the half QAHE
and the metallic QAHE as several typical phases in magnetic topological insulators as we will
discuss below. Here one has to notice that for the metallic QAHE [32], which requires a
relatively strong magnetism in the middle of a topological insulator film, the corresponding
τy orbital order induced metallic QAHE requires a higher threshold for the antisymmetric field
strength Om

y,A, due to the odd function nature which forces Om
y,A(Lz/2) = 0.
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Table 2: Duality of typical topological phases induced by spin order σz and orbital
order τy . t, b, m for top, bottom, middle and S, A for symmetric, antisymmetric dis-
tribution of fields, respectively.

Name of phase σz configuration τy configuration

Chern insulator Z t
z = Z b

z ̸= 0 Ot
y = −Ob

y ̸= 0

Axion insulator Z t
z = −Z b

z ̸= 0 Ot
y = Ob

y ̸= 0

Half QAHE Z t
z ̸= 0, Z b

z = 0 Ot
y ̸= 0, Ob

y = 0

Metallic QAHE Zm
z,S strong Om

y,A strong

Following the effective mass treatment above, we can furthermore construct quantitative
model unifying the two orders. There are now totally five mass terms that read

M(k) =

� Lz
⊕

n=1

mnτz + (I
z
S +Oy

A)τ0 − (Iz
A+Oy

S )τy

�

(k) , (87)

and a similar diagonalization leads to the effective masses

M(k)
diagonalization
−→

2Lz
⊕

n=1

m̃n(k) , (88)

without affecting the spin-orbital coupling field (the linear winding part). On the other hand,
in the context of weak field, we only preserve n = n′ = 1 components and write down mass
terms for n= 1 block as

�

mτz + (I
z
S +O y

A )τ0 − (Iz
A +O y

S )τy

�

(k) , (89)

with n = 1 label ignored. Here merely a substitution IS → Iz
S + O y

A , IA → Iz
A + O y

S happened
compare with Eq. (76), and a similar diagonalization leads to two effective masses for the
surface Dirac bands as

m̃χ(k) = (I
z
S +O y

A )(k) +χ
q

m2(k) + (Iz
A +O y

S )2(k) , (90)

from which the synergistic and competing relations betweenσz and τy orders are shown more
explicitly.

5 Topological phases with weak field

Counting on the mean strength of the magnetic exchange interaction, our exploration can
be further divided into two main branches as weak and strong Zeeman fields. The division
follows simply from the criterion whether the phase can be described within the n= 1 frame,
or equivalently, whether Eq. (76) from weak Zeeman field approximation is applicable. If it is
the case, we identify the phase to lie inside the weak field regime, as we shall discuss here.

5.1 Half quantum mirror Hall effect: A non-magnetic film with mirror symmetry

The topological insulator film itself without adding any external ingredients or interactions,
but with an intrinsic mirror symmetry, possibly like rhombohedral 3D TI Bi2(Se, Te)3 along
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TI Film with
Mirror Symmetry

Gapless Dirac Cones
with Opposite Chirality

Figure 10: Schematic diagram of the half quantum mirror Hall effect. The lowest
four bands of a topological insulator film with mirror symmetry (left) are classified
into two gapless Dirac cones with opposite chiralities labelled by the eigenvalues of
z-mirror operator.

the [100] direction or with a mirror twin-boundary along [001] direction, is already interesting
enough and exhibits a novel topological phase [33], namely, the half quantum mirror Hall
effect shown in Fig. 10, which reveals measurable parity anomaly physics. A general film
Hamiltonian reads H =

∑

lz ,l ′z ,k Ψ
†
lz ,k H(lz , l ′z , k)Ψl ′z ,k with k = (kx , ky), and the out of film

plane mirror symmetry Mz emerges as a combination of inversion and C2z rotation that reads
MzΨlz ,kM−1

z = UzΨ−lz ,k , where Uz is a unitary matrix. Requiring such a symmetry over
the system Hamiltonian leads to the condition U†

z H(lz , l ′z , k, )Uz = H(−lz ,−l ′z , k). It is then
possible to write down the mirror operator under {Ψk,lz} as Mz = C2z P, with Uz as its anti-
diagonal elements, and the Hamiltonian can be projected into decoupled mirror-labelled parts
as

Hχ = PMz
χ H , PMz

χ =
1+ iχMz

2
, (91)

with χ labelling the eigenvalue of the mirror operator. Each Hχ is yet again a complete system
whose non-trivial property is revealed by the (zero-temperature, ignored below) mirror Hall
conductivity

σ
χ
H =

e2

h
Im
π





∑

Eχn<µ<Eχm

∫

d2k
v̄mn,χ

x v̄nm,χ
y

(Eχn − Eχm)2



 , (92)

where v̄mn,χ
i = 〈nχ |∂ki

Hχ |mχ〉 is the expectation value of the mirror velocity operator evalu-
ated over eigenstates of the mirror-projected Hamiltonian. Clearly, this is just the usual Kubo
formula [62] evaluated over the projected Hamiltonian Hχ , and thanks to the imposed mirror
symmetry, two parts with mirror label χ = ± do not communicate with each other and are
totally decoupled.

The gapless pair of Dirac fermions in a topological insulator film causes the half quantum
mirror Hall effect. Here in the concrete model the anti-diagonal elements of mirror operator
read Uz = −iσzτz , which is projected into τz under multi-Dirac fermions representation (see
Appendix B.), indicated by χ = ± as its eigenvalue in the effective Hamiltonian. The gapless
n= 1 Dirac fermions in the TI film read

Hn=1 = Hsurf,+ ⊕Hsurf,= , (93)

where each block with mirror label reads

Hsurf,χ = λ∥(sin(kx a)σx + sin
�

ky a
�

σy) +χm(k)σz , (94)

with m(k) = Θ(−m0(k))m0(k) identified. To show the nature of the half quantum mirror
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(a)
Film
Effective Model

(b)

Film
Effective Model

Figure 11: Half-quantized mirror Hall metal: total layer number Lz = 19. Results
are presented for (a) χ = +, and (b) χ = −. Both results from direct calculation with
TI film model and effective model with hn=1,χ sub-blocks are shown.

Hall effect, we calculate the Hall conductivity of Hχ obtained from the mirror-projected TI
film Hamiltonian, and of the split Dirac fermion Hsurf,χ . The results are shown in Fig. 11,
where the half-quantized transverse conductivity nature is shown for each χ part with inverse
signs, indicating quantum spin Hall like physics [12,43–45,82–86], while the topological ori-
gin of the half-quantized mirror Hall conductivity is bound with the metallic gapless Dirac
fermions [33]. Their massless low-energy parts distribute mirror-(anti-)symmetrically at both
top and bottom surfaces of the TI film as a result from the bulk-boundary correspondence of
3D strong topological insulator [17], corresponding to states with mass ±Θ(−m0(k))m0(k)
term at m0(k)> 0. Here, the symmetry statement is traced back to our basis, which is chosen
to distribute along z either mirror symmetrically or anti-symmetrically (see Appendix B). As
a complete band, the surface Dirac cone does not end at a finite wavevector, but gradually
emerges into the bulk with a regulated non-zero mass term represented by Θ(−m0(k))m0(k)
at m0(k) < 0, and it is this non-vanishing high-energy part that ultimately gives rise to the
half-quantized Hall conductivity, as discussed in Section 3, which finally reads by Eq. (40) as
σ
χ
H = −χe2/2h, when the Fermi surface satisfies that m0(kF )> 0.

The physically observable effect generated by the phase is embedded in the mirror Hall
conductivity [33], which is defined as

σMirror
H =
∑

χ

χσ
χ
H , (95)

and equals to quantum unit −e2/h in the case. The quantity reveals that, though, by
opposite Hall conductivity, the charge current by a transverse electrical field vanishes as
σH =
∑

χ σ
χ
H = 0, the ‘mirror’ current does not, similar to that in quantum spin Hall effect.

Nevertheless, a better way of looking at the half quantum mirror Hall effect may start from
treating it as an intrinsic ‘spin’ Hall effect in metal, while the effect shows quantization with its
transverse ‘spin’ Hall conductivity that shares a topological origin deeply related to the parity
anomaly, and replacing ‘spin’ with ‘mirror’ leads to the observation that in different mirror
sectors, the mirror current and the charge current will be either parallel or anti-parallel with
the same quantized magnitude. Such a way of narration also lies in the lineage of induced
dissipationless mirror current and dissipative longitudinal current, as they are both generated
by metallic gapless Dirac fermions. To detect the mirror current, non-local electrical trans-
port signals [87–89] are needed, while to reveal the quantized nature, one needs to perform
a series of measurements to fully separate the dissipationless and dissipative currents [33], by
changing the sample width and noticing the scale invariance of the Hall conductance.
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5.2 Quantum anomalous Hall effect: Chern Insulators

The Chern insulator is identified as an insulating phase which hosts the quantum Hall ef-
fect [90] with quantized Hall conductance, while without the need of applying an external
magnetic field to form Landau levels [91]. The key ingredient lies in the breaking of time-
reversal symmetry, which makes the non-vanishing Hall conductivity possible, as studied ex-
tensively in the anomalous Hall effect [92]. The quantization nature, on the other hand, is
determined by the Berry phase flux integral over the Brillouin zone, which is an integer known
as the first Chern number [10, 47, 69, 93–95]. An insulator with a non-zero Chern number is
known to host gapless chiral edge modes [24] that circulate around the system dissipation-
lessly without backscattering [96]. Essentially, the number of these modes is equal to the
Chern invariant, as a physical realization of the index theorem by bulk-boundary correspon-
dence [13,25,26,97]. It is usually argued that to realize a Chern insulator in a realistic mate-
rial, relatively strong spin-orbital coupling together with internal magnetism are needed [98].

With confined geometry, the topological insulator film is predicted [48,50,99] to host the
quantum anomalous Hall effect (QAHE) with proper magnetism, either by magnetic doping
approach [49, 100–104] like Cr and V doped (Bi,Sb)2Te3, magnetic proximity effect [105] in
the sandwich heterostructures of (Zn, Cr)Te/(Bi, Sb)2Te3/(Zn, Cr)Te or establishing intrinsic
magnetic order [106–108] in materials like MnBi2Te4 with an odd layer number. In this sense
three typical cases realizing the Chern insulating phase are presented in Fig. 12, with uniform
Zeeman field (to make consistency with discussion here, the Zeeman strength here is still
chosen to be weak, while the uniformly strong strength case is left to be discussed in the higher
Chern number case later on), symmetric top and bottom surface Zeeman fields configuration
and an asymmetric configuration which does not break the holistic polarization, by which
we mean that the symmetric ingredient in the configuration overwhelms the asymmetric one.
The common feature these realizations share is the parallel polarization of the top and bottom
surface-magnetism vertical to the TI film plane, effectively as the Zeeman field directions that
point to both up or down.

The verification of the three cases is brought out by numerical calculations with both TI
film and weak Zeeman effective four-band models, as revealed in Fig. 13, Fig. 14 and Fig. 15,
respectively. Besides the bands in (a) that all show Zeeman-gapped feature with perfect cor-
respondence between two methods, the Hall conductivity in (c) pictures captures the essence
of a Chern insulator with an integer Chern number quantifying the quantized Hall plateau
magnitude. What is more, the calculated IS/A in (b) and Hall conductivity in (d) for H̃χ reveal
more about physics behind the phenomenon. Below, based on the symmetric or asymmetric
Zeeman configurations, we further divide the discussion into two classes.

5.2.1 Symmetric magnetic structure

In this class,
¨

IS ̸= 0 ,

IA = 0 ,
(96)

and the given first two cases satisfy the condition. In case I and II, the symmetric Zeeman
distribution leads to a vanishing IA, and the effective mass, according to Eq. (81), is written as

m̃χ(k) = IS(k) +χ|m(k)| , IS > 0 , (97)

it is thus clear that under the circumstance, χ = − branch will contain a mass sign change
from Dirac point Γ = (0, 0) to high-energy point M = (π,π), and is topologically non-trivial
with unit Chern number given by Eq. (83), while χ = + mass remains positive and leads to a
trivially gapped surface band. And this composes of the explanation of the χ-dependent Hall
conductivity for the first two cases.
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Case I

Case II

Case III

Uniform

Top & Bottom Symmetric

Top & Bottom Deviate From Symmetric

Figure 12: Schematic diagram of three typical Chern insulator cases with pair-
ing gapped lowest Dirac cones responsible for the phase. From top to bottom:
Case I: Chern insulator with uniform magnetism whose polarization contains a non-
vanishing component vertical to the TI film; Case II: Chern insulator with symmetric
top and bottom magnetism; Case III: Chern insulator with top and bottom magnetism
that deviates from symmetric distribution, but the polarization direction remains the
same. In all three cases, two gapped Dirac cones, where the gap comes from the
gapped surface states, are present with one trivial cone and one cone with a unit
Chern number. In the third case we deliberately tune the gap in the diagram to em-
phasize that it is the cone with a smaller gap that is non-trivial.

5.2.2 Asymmetric magnetic structure

In this case,










IS ̸= 0 ,

IA ̸= 0 ,

|IS|> |IA| ,
(98)

i.e., an imbalance between top and bottom Zeeman strength appears, while their directions
remain parallel so that the symmetric component overwhelms, as reflected by the case III. Now
we observe that in Fig. 15 (d) the χ = − branch is non-trivial with unit quantized Hall plateau,
and χ = + branch is trivial with a broader zero-Hall plateau, this means that the non-trivial
χ = − band has a smaller gap than the χ = + band, as revealed in Fig. 15 (a). Lifting this to
some principle, we claim that the surface band with a smaller magnetic gap is non-trivial for a
Chern insulator film. To gain insight from the phenomenon, notice that in this case, both IS
and IA are non-vanishing, but generally IS > |IA|> 0 since the Zeeman configuration is closer
to the symmetric case, i.e. VS > |VA|> 0 near two surfaces in this case. The above observation
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(a) Thin film
Effective model

(b)

(c) Thin film
Effective model

(d)

Figure 13: Chern insulator case I: total layer number Lz = 19 with uniform Zeeman
field Vz ≡ 0.1 eV. (a) Comparison of band structure from TI film model and effective
four-band Hamiltonian. (b) Calculated IS(k) and IA(k). (c) Calculated Hall conduc-
tivity from TI film model and effective four-band Hamiltonian. (d) Hall conductivity
for χ = ±.

leads to
¨

m̃χ(0) = IS(0) +χ|IA(0)|> 0 ,

m̃χ(M) = IS(M) +χ
q

m2(M) + I2
A(M)∼ χ|m(M)| ,

(99)

and since non-trivial topology requires mass inversion, we conclude that m̃− is non-trivial with
unit Chern number while χ = + is trivial, and clearly the gap∆= 2|m̃(0)| tells that∆− <∆+.

Pictures and discussions above complete the case study for the Chern insulator phase here.
Notice that in the typical cases given above, the Zeeman field directs along z-positive axis, and
it is always the χ = − band that has −e2/h Hall conductivity while the χ = + band is trivial
with zero Hall contribution, i.e., it is a 1 + 0 combination with the sign of Hall conductivity
determined by the polarization direction of the Zeeman field, as we shall illustrate further
below.

Generalization of the picture above about the Chern insulator phase in TI film to arbitrary
weak Zeeman configuration that varies layer by layer is presented here. According to Eq. (84),
the non-trivial condition is satisfied whenever |IS| > |IA|, i.e., symmetric Zeeman distribution
overwhelms asymmetric configuration, and especially there exists a χ for which it holds that

−χ IS(0)> |IA(0)| , (100)

and correspondingly we have
Cχ = −χ , Cχ̄ = 0 , (101)

with χ̄ = −χ identified. This tells us that while one of the two gapped surface Dirac fermions
becomes topologically non-trivial, carrying non-vanishing Chern index of unit, the other
gapped cone is driven into a topologically trivial band. Then totally the system owns unit
Chern number and quantized Hall conductivity. Meanwhile, by definition of IS in Eq. (73a),
one deduces that when IS(0) > 0 which corresponds to a general z-up VS configuration, it is
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(a)
Thin film
Effective model

(b)

(c) Thin film
Effective model

(d)

Figure 14: Chern insulator case II: total layer number Lz = 19 with symmetric Zee-
man field Vz(lz) = 0.1 eV at top and bottom 2 layers. (a) Comparison of band struc-
ture from the lowest four bands of TI film model and effective four-band Hamiltonian.
(b) Calculated IS(k) and IA(k). (c) Calculated Hall conductivity from TI film model
and effective four-band Hamiltonian. (d) Hall conductivity for χ = ±.

χ = − that satisfies the condition, vice versa, which allows us to write
¨

C− = 1, C+ = 0 , for IS(0)> 0 ,

C+ = −1, C− = 0 , for IS(0)< 0 ,
(102)

with IS(0) contributed mainly from surfaces. There is indeed no threshold for the Zeeman
strength to realize Chern insulator counting the gapless feature of surface states as long as
Eq. (100) is satisfied.

We have seen that for the topological insulator based Chern insulator, there are always one
trivially gapped Dirac cone and one with unit Chern number, and a natural question emerges
as which cone is non-trivial? In the symmetric case, gaps of two Dirac fermions are the same,
and we have to rely on χ labelled mirror symmetry together with magnetization direction to
decide which cone is non-trivial. However, for the slightly asymmetric case, a quick answer to
the question can be made: the one with smaller gap is. To see why, we can consider the gap
equation Eq. (82) which can be rewritten as

∆χ = 2|(−χ IS(0))− |IA(0)|| , (103)

we find that for the asymmetric Chern insulator case −χ IS(0) > |IA(0)| ≥ 0, and it always
holds that

∆χ <∆χ̄ , (104)

then combined with Eq. (101), we arrive at the conclusion that it is always the cone with
smaller gap which becomes topologically non-trivial carrying unit Chern number, while the
cone with a larger Zeeman gap becomes just trivial.
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(a) (b)

(c) Thin film
Effective model

(d)

Figure 15: Chern insulator case III: total layer number Lz = 19 with top-2-layer
Zeeman field V t

z = 0.1 eV and bottom-2-layer field V b
z = 0.2 eV. (a) Comparison of

band structure from the lowest four bands of TI film model and effective four-band
Hamiltonian. (b) Calculated IS(k) and IA(k). (c) Calculated Hall conductivity from
TI film model and effective four-band Hamiltonian. (d) Hall conductivity for χ = ±.

5.2.3 Mirror layer Chern number

Notice that there exists a fully mirror symmetric case where VA = 0, and in this special case, a
quantity proposed as mirror layer Chern number can be defined. Again, the mirror-symmetric
Hamiltonian including the Zeeman term can be projected into decoupled mirror-labelled parts
as

Hχ = PMz
χ H , PMz

χ =
1+ iχMz

2
, (91)

with Mz the represented mirror operator, and its anti-diagonal elements are recognized to be
Uz , which relates quantity at ±lz (see section 5.1 for more about mirror symmetry).

Due to the film geometry, it is natural to introduce the so-called layer Hall conductivity
[109–113] by considering layer-dependent eigenstates

σH(l) =
e2

h
Im
π

∑

En<µ<Em

∑

l ′

∫

d2k
v̄nm

x (l)v̄
mn
y (l

′)

(En − Em)2
, (105)

where in the usual case, the expectation value of velocity operator is v̄mn
i (l) = 〈m(l)|∂ki

H|n(l)〉
with only diagonal elements, which, however, fails for the mirror projected Hamiltonian. The
key observation lies in the fact that by projection ∂ki

Hχ contains not only diagonal elements
but off-diagonal part, which induces additional non-local transition contribution from exactly
mirror symmetrized layers. Work the effect out and one obtains the mirror layer Hall conduc-
tivity

σ
χ
H(l) =

e2

h
Im
π





∑

Eχn<µ<Eχm

∑

l ′

∫

d2k
v̄nm
χ,kx
(l)v̄mn

χ,ky
(l ′)

(Eχn − Eχm)2



 , (106)

with
v̄nm
χ,ki
(l) =

1
2
〈nχ(l)|
�

vki
(l) |mχ(l)〉+ Uz vki

(−l) |mχ(−l)〉
�

, (107)
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(a) (b)

(c)
Layer-resolved
Layer-added

Figure 16: Mirror layer Hall conductivity for topological insulator film with symmet-
ric z-Zeeman field immersed at top 2 and bottom 2 layers upon total 19 layers with
strength Vz = 0.1eV, and chemical potential is chosen to be µ = 2.5meV, where
(a) for χ = −, (b) for χ = + and (c) for the total result by adding two mirror
parts together, respectively. Both layer-resolved and layer-added Hall conductivity
are presented. To respect the mirror symmetry we put the TI film at origin and the
layer index becomes lz = −

Lz−1
2 ,− Lz−3

2 , · · · , Lz−1
2 with total layer number Lz = 19.

where the appeared velocity operator is defined through the original Hamiltonian and is as-
sumed to contain only diagonal element vki

(l) = (∂ki
H)(l).

Now we turn to our special case. As stated in half quantum mirror Hall effect, the bare
Hamiltonian without external field contains mirror symmetry, while the same symmetry con-
straint imposed on the Zeeman field distribution leads to the restriction that Vz(lz) = Vz(−lz),
which is equivalent to the requirement that VA(lz) = 0. Thus, Chern insulator generated by TI
film with symmetric Zeeman field owns mirror symmetry, and the corresponding σχH(lz) could

be carried out, so does its layer-cumulated version σχH,c(lz) =
∑lz

l=−(Lz−1)/2σ
χ
H(l), as presented

in Fig. 16. The anti-diagonal elements of mirror operator read Uz = −iσzτz for the TI film.
The layer dependent Hall conductivity serves us a new insight to understand the phe-

nomenon. Treating the system as a whole, its layer-resolved Hall conductivity, as presented
in Fig. 16(c), becomes non-zero mainly near the top and bottom surfaces where time-reversal
symmetry is broken explicitly under the Zeeman field. And the cumulated Hall conductivity
gains approximately half quantum Hall conductivity near two surfaces. On the other hand, as
shown in Fig. 16(a), (b), when we split the system by mirror symmetry, the layer-resolved mir-
ror Hall conductivity shows similar top and bottom distribution as the whole system, but with
only half the amplitude by mirror splitting, while the Hall conductivity distribution around
mirror plane shows opposite-sign peaks inherited from the time-reversal unbroken bulk prop-
erty like that in the half quantum mirror Hall effect. Once the Hall conductivity contribution
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Top & Bottom Anti-Symmetric

Figure 17: Schematic diagram of the axion insulator. On the left, the magnetic het-
erostructure of the TI film is presented, with top and bottom surface magnetism con-
taining opposite polarization components vertical to the film. On the right, a pair
of trivially gapped Dirac cones is presented, both with zero Chern number. The gap
comes from the gapped surface states.

is added layer by layer, we immediately see the tri-section configuration: for the non-trivial
C− = 1 part, there exist two Hall-plateaus separating the surface and bulk, then following the
top-middle-bottom section cut, we see a contribution rather close to (−1/4)–(−1/2)–(−1/4)
from each section; and for the trivial C+ = 0 part, the section separation is not that apparent,
and we only roughly write (−c/4)–(c/2)–(−c/4) with c approximately one to represent the
observed distribution.

5.3 Axion insulator: An antisymmetric magnetic structure

Along with the special (3+1)-D space-time dimension, the Maxwell electrodynamics is allowed
to be decorated with an extra θ term, which generates the axion electrodynamics [114, 115]
to the space-time dependent θ axion field that couples with the ordinary electromagnetic
field. On a practical level, based on the picture of surface Hall effect [61,116] and analogical
mathematical structure between Hall current and magnetization current, people generalize
and propose the topological field theory [50], where a θ term is introduced to describe the
magnetoelectric effect [109–111,117–122] in a topological insulator medium, where the axion
field is forced to gain a magnitude of π [123] by symmetry and topological requirement.

Realistically, an anti-ferromagnetic TI represents an example of the axion insulator [109].
The axion field, proportional to the space-time volume integral field product E · B or equiv-
alently the Chern-Simons form [50], is odd under time reversal/inversion. In a system with
such symmetry, the θ field matters only for its absolute value and is defined only modulo
2π, which is essential for its π magnitude [81]. The anti-ferromagnetic TI certainly breaks
these two symmetries, however, as a 3D system, its θ quantization is protected by an effective
time-reversal symmetry as a combination of time reversal and translation [124].

The magnetic configuration in TI film closest to the proposed axion insulator is the one in
Fig. 17, which shows a zero-Hall plateau and accompanied non-vanishing longitudinal con-
ductance as an experimental signature [51, 107, 125], also in Cr, V doped (Bi, Sb)2Te3 and
MnBi2Te4 systems with an even layer number. Here then, based on the effective mass picture,
we show that the two Dirac cones with gapped surface states are both trivial, once high-energy
parts are involved. Now the fully antisymmetric magnetic configuration leads to IS = 0 for all
k, and the only left Zeeman quantity is IA, as shown in Fig. 18(b). Then upon weak Zeeman
approximation, the two effective masses become, according to Eq. (81),

m̃χ(k) = χ
q

m2(k) + I2
A(k) , (108)
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(a)
Thin film
Effective model

(b)

(c)
Thin film
Effective model

(d)

Figure 18: Axion insulator: total layer number Lz = 19 with top-2-layer Zeeman
field V t

z = 0.1 eV and bottom-2-layer field V b
z = −0.1 eV. (a) Comparison of band

structure from the lowest four bands of TI film model and effective four-band Hamil-
tonian. (b) Calculated IS(k) and IA(k). (c) Calculated Hall conductivity from TI film
model and effective four-band Hamiltonian. (d) Hall conductivity for χ = ±.

which do not show sign reversal in whole Brillouin zone for both χ and are thus trivial. Nu-
merical results for the Hall conductivities related to two masses are shown in Fig. 18 (d),
where they cancel each other exactly at any chemical potential. Especially the zero-plateaus
for both χ bands, which correspond to the situation with the chemical potential lying inside
the Zeeman gap, reveal that both bands are trivial with zero Chern number.

We can also generalize this case. Generally for the axion insulator we need |IS(0)|< |IA(0)|,
i.e., asymmetric Zeeman distribution overwhelms symmetric configuration at surfaces, then
from Eq. (84) we have

C+ = C− = 0 , (109)

which in fact leads to a trivially insulating phase viewed from the effective 2D model. The
phase is termed as the axion insulator (AI) phase, since the totally asymmetric magnetic polar-
ization leads to, if one switches a surface-state representation, a sign difference of low-energy
mass of top and bottom surface states, which gives rise to non-vanishing Berry curvature at
low-energy thus surface Hall contribution, with opposite sign for two surfaces. However, the
Chern number as we have shown for each complete surface band is zero, which reveals an over-
all cancellation of transverse transport signals to the linear order, and the Hall conductivity
contributed from the gapped surface states is not protected to be half-quantized. Furthermore,
counting on the zero Chern number nature for each individual band, the absence of chiral edge
state for an x-y opened TI film stands firmly, and the non-vanishing longitudinal conductance
measured has to be induced by the side-surface states of a topological insulator, and the sig-
nal becomes non-zero only when the chemical potential is fine-tuned to avoid falling in the
finite-size gap ∼ λ∥/Lz of the side surface.
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odd, symmetric Chern insulator

Axion insulatoreven, asymmetric

Figure 19: Schematic diagram of the anti-ferromagnetic topological insulator films
MnBi2Te4 with the magnetic moments along the z axis. Up: Odd layer number film
with net ferromagnetism and symmetric Zeeman distribution, which corresponds to
a non-trivial Chern insulator; Down: Even layer number film without net ferromag-
netism and antisymmetric Zeeman distribution, which corresponds to the axion in-
sulator with two trivially gapped Dirac cones.

5.4 MnBi2Te4 film: Even and odd number of magnetic layers

The first intrinsic antiferromagnetic topological insulator [109], MnBi2Te4 (Te-Bi-Te-Mn-Te-Bi-
Te) [126–128], is composed of septuple layers (SLs), with out-of-plane intralayer ferromag-
netism and interlayer anti-ferromagnetism, known as the A-type AFM state. It is predicted and
shown that with odd or even SL layer numbers, the material will exhibit quantum anomalous
Hall effect [106, 107, 129–131] or the axion insulating phase [107, 132], respectively. Here,
based on the lowest four-band model and the discussed Chern and axion insulator pictures,
we can explain these two phenomena in a simple and elegant way.

The combination of layer-number-odevity determined (anti-)symmetric Zeeman distribu-
tion and the localized nature of surface states leads to two qualitatively distinct physical pic-
tures. As revealed in the schematic diagram Fig. 19, when the layer number Lz is odd, the
Zeeman distribution is symmetric with parallel polarization of the outermost top and bottom
Zeeman field direction, and vice versa. Based on the symmetry analysis, two cases are identi-
fied.

5.4.1 Odd layer: Chern insulator

In this case
¨

IS > 0 ,

IA = 0 ,
Lz mod 2= 1 , (110)

with the maximum value of IS centralized around Γ as shown in Fig. 20(a), and its sign is
controlled by the outermost layer Zeeman field direction, given by the fact that the low energy
states around Γ are localized near two surfaces. IS almost vanishes for large k since the high
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(a) (b)

(c) (d)

Figure 20: Left (right) pictures are for Lz = 19 (18) anti-ferromagnetic TI film as
an odd (even) one. The Zeeman strength is chosen to be |Vz| = 0.1 eV. (a) (b)
Calculated IS/A(k) for the effective model. (c) (d) Calculated Hall conductance from
magnetic TI film Hamiltonian.

energy states emerge into bulk and distribute diffusely, which leads to the cancellation of IS
integral counting on the interlayer antiferromagnetism. Discussion above classifies the odd SL
MnBi2Te4 films into Chern insulator phase, as now m̃χ = IS + χ|m| following Eq. (97), with
sgn(m̃χ(Γ )) = sgn(IS) > 0, sgn(m̃χ(M)) = χ, and m̃− changes signs at Γ and M which gives
rise to a unit Chern number, while m̃+ is trivially gapped. Totally, the odd-layer MnBi2Te4
stands as a Chern insulator with unit Hall plateau, as revealed in Fig. 20(c), where the rela-
tively narrow quantized Hall plateau for the quantum anomalous Hall insulator phase is due to
the second-outermost-layer Zeeman field which owns an inverse polarization direction com-
pared with the outermost field by the interlayer anti-ferromagnetic nature, and thus weakens
the IS integral at the Γ point, whose amplitude is recognized as the band gap which measures
the width of the quantized plateau when the chemical potential shifts.

5.4.2 Even layer: Axion insulator

In this case
¨

IS = 0 ,

IA > 0 ,
Lz mod 2= 0 , (111)

with the maximum value of IA centralized around Γ as shown in Fig. 20(b), which classifies
the even SL MnBi2Te4 films into axion insulator phase, as now m̃χ = χ

q

m2 + I2
A following

Eq. (108), with sgn(m̃χ(Γ )) = sgn(m̃χ(M)) = χ, and both become trivial since they do not
change signs. Totally, the even-layer MnBi2Te4 shares zero Hall plateau revealed in Fig. 20(d).

5.5 Half-quantized anomalous Hall effect: A semi-magnetic film

From a model point of view, there should exist a search for the phase characterized
by a domain-wall separating the axion insulator (|IA(0)| > |IS(0)|) and Chern insulator
(|IA(0)| < |IS(0)|), and that comes to the celebrated half-quantized anomalous Hall phase
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Magnetism at One-Surface Only

Figure 21: Schematic diagram of the half-quantized anomalous Hall effect. In this
case only one side of the TI film is immersed with magnetism. The topological prop-
erty is revealed by one trivially gapped Dirac cone and a gapless Dirac fermion that
carries half-quantized Hall conductivity.

[31,52,53] with condition |IS|= |IA| inside the parity-invariant regime. Configurationally, this
corresponds to a semi-magnetic TI with a Zeeman field applied on only one side, as illustrated
in Fig. 21. The corresponding numerical results are presented in Fig. 22.

Another motivation for searching such a phase lies deeply in the lattice realization of a
single Dirac fermion, which serves as a basis for the lattice gauge theory [133, 134]. The
Nielsen-Ninomiya theorem [29, 30], however, imposes strong constraints on this realization.
Tremendous approaches have been proposed like the Wilson fermion [4,34], the SLAC fermion
[35, 135, 136], the Tan fermion [137, 138], etc. These realizations either break one or more
conditions required by the fermion-doubling theorem, such as symmetry or locality, or evade
the physical requirements like existence of first order derivative of wavefunction and finite
bandwidth on lattice.

In this context, by introducing magnetism to gap out surface states of one Dirac cone
through magnetism, the remaining gapless Dirac cone, as depicted in Fig. 22(a), essentially
serves as one lattice realization of a single Dirac fermion. As stated, the gapless Dirac cone on
lattice has to boil one or more conditions required by the fermion-doubling problem, and it is
the 2D parity symmetry together with the locality that are broken. To avoid doubling caused
by periodicity of Brillouin zone, the mass term of this gapless Dirac fermion has to contain
non-vanishing bulk-like high-energy part, as captured by Eq. (11), which breaks the parity
symmetry explicitly, while the vanishing low energy mass preserves the symmetry. Such a
low-energy symmetry-preserving while high-energy symmetry-breaking term shares similarity
with the ‘quantum anomaly’ [47, 63–68] in field theory, specifically the parity anomaly in
this case. However, the gapless Dirac fermion appeared here manifests itself as a regularized
complete condensed matter system with explicit symmetry breaking at high-energy, which
should be distinguished from the spontaneous symmetry breaking case under the frame of
quantum anomaly. The locality principle is violated by the massless to massive transition.

The gapless Dirac fermion, identified as the band with gapless surface states contributes a
half-quantized Hall conductance. From Fig. 22 (d), the χ = + band is trivial with zero-Hall
plateau inside the Zeeman gap, i.e., the Zeeman gapped band is trivial, while the χ = − band
contains a relatively large Hall plateau quantized to −e2/2h, which is bounded by the TI bulk
gap and corresponds to the Hall conductance contributed from the high-energy part of the
gapless Dirac band [31]. To explain this behavior, it is important to note that we now have
I ≡ IS = IA > 0 around the Dirac point revealed in Fig. 22 (b) (valid in the parity invariant
regime bounded by kc), and the effective masses become, according to Eq. (81),

m̃χ = I(k) +χ
Æ

m2(k) + I2(k) , (112)
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(a)
Thin film
Effective model

(b)

(c)
Thin film
Effective model

(d)

Figure 22: Half-quantized anomalous Hall metal: total layer number Lz = 19 with
top-2-layer Zeeman field V t

z = 0.1 eV. (a) Comparison of band structure from the
lowest four bands of TI film model and effective four-band Hamiltonian. (b) Cal-
culated IS(k) and IA(k). (c) Calculated Hall conductance from TI film model and
effective four-band Hamiltonian. (d) Hall conductance for χ = ±.

from which we see that m̃+ > 0 holds for any k and is trivial, while

m̃− =

¨

0 , k < kc ,

I −
p

m2 + I2 ∼ −|m(k)| , k > kc ,
(113)

which is nontrivial and offers us with a half-quantized Hall conductance within the regime
k < kc , as read from Eq. (38).

To realize this phase generally, we need |IS(k)|= |IA(k)| when k < kc . Under the situation,
one specifies the χ such satisfying that

−χ IS(k < kc) = |IA(k < kc)| , (114)

which gives the gaps according to Eq. (82) that ∆χ = 0 while ∆χ̄ = 4|IA(0)|, i.e., one gapless
band plus one gapped band. For the gapped band, the Chern number description still works
and gives

Cχ̄ = −χ̄Θ(−2|IA(0)|) = 0 , (115)

while for the gapless band, we can not use Chern number to define its topology in princi-
ple, since it describes a metallic phase with a non-vanishing Fermi surface. Nevertheless, the
effective masses now have property

¨

m̃χ(k < kc) = 0 ,

m̃χ̄(k < kc) = 2χ̄|IA(k)| ,
(116)

then combined with the high-energy condition m̃χ(π,π)∼ χ|m(π,π)|, one obtains that






σ
χ
H =

χ

2
e2

h
,

σ
χ̄
H = 0 ,

|µ|< 2|IA(0)| , (117)
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Chern

Chern

Axion

Axion

HQMHE
HQAHE

HQAHE

Figure 23: Phase diagram of topological phases with weak field. Four distinct phases
have been labelled as Chern insulator phase in the first and fourth quadrants differed
by sign of Hall conductance, Axion insulator phase in the second and third quad-
rants, the half quantum mirror Hall effect (HQMHE) along the x-axis (indicated by
the green wave line), and the half-quantized anomalous Hall effect (HQAHE) along
V+0 and V−0 rays (indicated by red or blue dashed lines) differed by sign of Hall con-
ductance. The effectiveness of the phase diagram should be confirmed for chemical
potential lying in both the parity invariant regime and (smaller) Zeeman gap of sur-
face states, and the Zeeman strength should be constrained to be relatively weak
compared with the bulk gap, while playing its role mainly at top and bottom surfaces
under the discussed frame.

in line with Eq. (38), i.e., the gapless Dirac cone provides half-quantized Hall conductance,
accompanied by a trivially gapped cone. This phenomenon is known as the half-quantized
anomalous Hall effect [31, 52, 53], and is experimentally observed in Cr-doped (Bi, Sb)2Te3
system. It is important to note that the chemical potential should lie within the magnetic gap
to avoid non-quantized contributions from the trivial χ̄ band. Additionally, the weak Zeeman
field presumption ensures that the Zeeman gap, which is smaller than the bulk gap, does not
exceed the energy limit of the parity-invariant regime. The metallic nature of the non-trivial
gapless Dirac fermion indicates that the system stays inside a metallic topological phase. Notice
that the non-trivial gapless band requirement Eq. (114) gives χ = −sgn(I) = −sgn(V ) with
I = IS(0) and V = V top

S , and we can write down the asymptotic Hamiltonian for this band as

Hhalf ∼ λ∥(sin(kx a)σx + sin
�

ky b
�

σy) + sgn(V )m(k)σz , (118)

counting on the fact that m(k)≤ 0. This effective Hamiltonian offers with half-quantized Hall
conductance −sgn(V )e2/2h, which does not depend on whether the magnetism is put at the
top or bottom of TI film, but only on its polarization direction. Under an external magnetic
field, such a single gapless Dirac fermion will step into the quantum Hall regime [52,90] and
exhibits quantized Hall conductance whenever an integer number of Landau levels become
fully filled [139]. Especially, the ‘anomaly’ contribution will manifest itself to compensate the
half quantization contributed from the lowest Landau level, so as to keep the integer value of
Chern invariant for this gapped Landau level system.

5.6 Phase diagram

To appreciate the details of the phases mentioned, especially regarding the phase transitions
among, we go back to the effective model and assume that the immersed depth of top and
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bottom Zeeman field, if exists, is relatively longer than the characteristic exponentially decay-
ing length of surface states while being much smaller than the film thickness, with uniform
strength for the top or bottom field. Then we can adopt the substitution

IS/A→ VS/A = V top
S/A . (119)

And the effective model reads


















H̃χ = λ∥(sin(kx a)σx + sin
�

ky a
�

σy) + m̃χ(k)σz ,

m̃χ(k) = VS +χ
q

m2(k) + V 2
A ,

m(k) = Θ(−m0(k))m0(k) ,

m0(k) = m0 − 4t∥
�

sin2 kx a
2 + sin2 ky b

2

�

,

(120)

from which one reads the Hall conductance from Eq. (83) as (in the Zeeman gap or the parity
invariant regime)

σ
χ
H =

e2

h
1
2
[χ − sgn(VS +χ|VA|)] . (121)

Now let us introduce the top Zeeman strength V top
z = V0, and the bottom Zeeman strength

V bottom
z = xV0 described by the collaboration between V top

z and a phenomenological parameter
x characterizing their relative strength. Then accordingly we have







VS = V0
1+ x

2
,

VA = V0
1− x

2
,

(122)

which gives further the Hall conductance

σ
χ
H =

e2

h
1
2

�

χ − sgn(V0)sgn

�

1+ x
2
+χsgn(V0)

�

�

�

�

1− x
2

�

�

�

�

��

, (123)

whose dependence on parameters (x , V0) are presented in Fig. 23 as a phase diagram empha-
sizing the role the relative strength x plays here. Notice that we have defined sgn(0) = 0
here, corresponding to realistic physical phenomenon when V0 = 0. From the diagram, ex-
cept for V0 = 0 line, which represents a pure topological insulator film with half quantum
mirror Hall effect, it is always x ≥ 0 side that gives rise to phases with non-vanishing Hall con-
ductance, belonging to either Chern insulator or half-quantized anomalous Hall metal phase,
while the x < 0 side termed as axion insulator phase always contains two trivially gapped
Dirac cones/fermions.

Focusing on the phase transition, we observe that a phase characterized by an anoma-
lous half-quantized index always emerges upon the integer index phase transition. This phe-
nomenon echoes transitions observed in integer quantum Hall systems [100,140], where the
renormalization group flow diagram exhibits a generic fixed point with half-quantized Hall
conductance and finite longitudinal conductance, suggesting a phase transition in 2D from
a field theoretical point of view. However, the physics here should differ, as the robustness
of the gapless surface state is protected by the bulk and corresponding surface time-reversal
symmetry as an intrinsic feature of 3D strong topological insulators [17]. Put the statement
differently, the additional dimension in our system exhibits robust topological/geometric ef-
fects, making it plausible that phases characterized by half-integers here are more likely to
be symmetry-protected metallic topological phases, while this protection only occurs in a fi-
nite regime over the whole Brillouin zone. Especially, the half QAHE here is protected by a
parity invariant regime, and is different from a critical quantum Hall transition phase without
protection from any non-conformal symmetries.
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Magnetism in the Middle

Figure 24: Schematic diagram of the metallic quantized anomalous Hall effect. In
the case a relatively strong out-of-plane ordered magnetism exists in the middle of
the film. The topological property of the system is reflected by a pair of gapless
Dirac cones with the same high-energy mass sign, each carrying half-quantized Hall
conductivity.

In the phase diagram we draw, the line of half quantum mirror Hall effect is crossed when
transitioning between two Chern insulator phases characterized by opposite Chern numbers,
since such a phase transition relies on changing of Zeeman polarization direction, thus crossing
V0 = 0 where half quantum mirror Hall effect happens. A similar thing happens for the tran-
sition between axion insulator phases differed by Zeeman direction. On the other hand, lines
representing half QAHE are crossed when stepping between the Chern insulator and axion
insulator phases, with the sign of Hall conductance determined by Zeeman direction.

6 Topological phases with strong field

A more extensive and complex regime exists beyond the weak Zeeman field approximation,
and the criterion tells that the topological phase appearing here can not be simply described
under n = 1 framework. In this scenario, we step into the strong field regime, where the
appearance of n ≥ 2 cones is unavoidable. Surprisingly, the inter-Dirac-cone interaction can
sometimes play the ultimate role deciding the topological property of the system. It is in such
situations that our effective mass picture from Eq. (66) and Eq. (67) serves as the ultimate
criterion for the topological property in the system.

6.1 Metallic quantized anomalous Hall effect: A film with a magnetic sandwich
structure

One other novel metallic topological phase bearing a pair of gapless Dirac fermions has been
recently proposed [32], which shows a quantized Hall conductivity of unit that originates
from two metallic bands, each with one-half quantum. To further enhance our understanding
of magnetic topological phases, the key findings related to this phase are summarized below.

The schematic diagram is shown in Fig. 24. We set total layer number Lz = 22 which is
even, and the z-symmetric site positions read

lz = ±
1
2

, . . . ,±
Lz − 1

2
. (124)

44

https://scipost.org
https://scipost.org/SciPostPhys.17.5.146


SciPost Phys. 17, 146 (2024)

(a) (b)

Figure 25: (a) The band structure near the Γ point with ky = 0 with the presence
of magnetic doping (α = 0.9). The gapless dispersions for the surface states are
doubly degenerate, as shown by the red and yellow lines. (b) Corresponding Hall
conductivity as a function of the chemical potential µ at α = 0.9. The thickness
Lz = 22 and the magnetic layers mz = 6.

Accordingly, z-symmetric Zeeman field in magnetically doped layers at the middle of the TI
film is set as

Vz(lz) =

¨

αt⊥ , lz = ±1/2 , . . . ,±(mz − 1)/2 ,

0 , otherwise,
(125)

with magnetic layer number mz = 6. By z-symmetric VS(lz) = Vz(lz), VA(lz) = 0, the projection
only contains IS term proportional to α. Then we bring α to the front explicitly as

IS(α, k)τ0σz 7→ αIS(k)τ0σz , (126)

with IS(α= 1, k) 7→ IS(k) as a re-definition.
The metallic feature and quantized Hall conductivity nature are revealed in Fig. 25. The

band structure of the film is shown in the presence of strong enough magnetism (α= 0.9), with
a pair of massless Dirac fermions. The pairing nature is reflected by the double degeneracy
of band dispersion near the Γ point, as labelled by the red and yellow lines. The unbroken
surface states picture is possible due to the localized nature of the surface states inside the bulk-
gap, which is not affected by the far-away magnetism in the middle of the film. Meanwhile,
a quantized Hall conductivity is observed, when the chemical potential lies inside both the
bulk and magnetic gap. And as we shall see later, essentially the quantization comes from
the two gapless Dirac fermions, each sharing a half-quantized Hall conductivity with the same
sign, based on which we further identify that the effect is not only superficially metallic, but
originates from such metallic bands. And it is in this circumstance that we term this new
phase as the ‘metallic quantized anomalous Hall effect’ (metallic QAHE), indicating that it
differs from the conventional QAHE, aka the Chern insulator in an insulating phase.

Attributed to the mass exchange mechanism over the effective mass picture presented in
Section 4, such a topological phase transition with the increasing of α as Zeeman strength
in the middle can be explained. Absorbing the α-dependent Zeeman term into the one-
dimensional Hamiltonian separated from the TI film leads to an α-dependent 1-D Hamilto-
nian H1d(α), with H1d(α= 0) coming back to the 1-D Hamiltonian extracted from TI film and
solved exactly before (see section 2.2). Projecting H1d(α) over solutions of H1d(0) leads to
�

⊕Lz
n=1 mnτz +αIS(k)τ0

�

σz , and further diagonalizing this provides a bijection which maps

the projected Hamiltonian form into the mass term
⊕Lz

n=1,χ=± m̃n,χ(k,α)σz (see section 4.1).
Notice that both σz and τz here are good quantum numbers, as spin and mirror indices
(χ = ±), respectively. Confining to the subspace with σz = +, we could then track the evolu-
tion and interaction of the mass terms m̃n,χ between n = 1 and n = 2 blocks with increasing
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(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m) (n)

Figure 26: The evolution of the effective mass m̃n,χ(kx , ky = 0) (n = 1,2). (a)∼(g)
and (h)∼(n) show lowest-two effective masses varying with changing Zeeman field
strength α belonging to set [0,0.3, 0.5,0.7, 0.74,0.8, 0.9] for χ = + and χ = −,
respectively. (a) (g) (h) (n) have already been shown as Fig. 3 in the main text but
with a finer structure here. Adapted from [32].

α for given χ. As shown in Fig. 26, m̃n,+(n = 1, 2) maintain their shapes increasing α, while
m̃n,−(n = 1, 2) have effectively exchanged their high-energy parts through the low-energy
mass exchange, which leads to the high-energy mass sign change of the gapless Dirac cone,
and alters its Hall conductivity from e2/2h to −e2/2h, when Fermi surface lies inside the parity
invariant regime. Then combined with the unaltered −e2/2h from m̃1,+, totally a topological
phase transition happens, driving the system from zero Hall conductivity to quantized Hall
conductivity, with Hall contribution coming from two metallic bands, which makes the system
a metallic topological phase. We can identify

αc ≈ 0.74 , (127)

in this case to indicate 0→−1 plateau transition. Notice that although we have explicitly ex-
ploited the z-mirror symmetry to separate our effective masses into two groups, this symmetry
consideration is not necessary here and the metallic QAHE is not protected by the symmetry.
For example, from Eq. (66), Eq. (67) we see clearly that a general Zeeman field configuration
can still generate 2Lz independent Dirac masses, and if we place a strong enough Zeeman field
in the middle of the film deviating from the symmetric case, still we can see the effect with
unit Hall plateau.

The key difference between our metallic QAHE and the conventional QAHE or equivalently
the Chern insulator lies in the unconventional bulk boundary correspondence. As discussed
in [31], the half-quantized Hall conductivity bears no chiral edge states, while its correspond-
ing boundary physics lies in the existence of the chiral current, which is indeed a bulk states
contribution and decays algebraically along the metallic surface, starting from the middle mag-
netic zone where time-reversal symmetry is broken most severely.

6.1.1 A qualitatively model with n = 1, 2

A qualitative understanding of the phenomenon within a cut-off approximation based on the
n = 1,2 blocks can be deduced. In the mass exchange picture above, we have used the fully
diagonalized m̃1,2 to illustrate the physics behind, while the picture with only n = 1 involved
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based on the weak Zeeman field approximation breaks down. This is essentially because,
the weak field approximation heavily relies on effect the magnetism has upon the surface
states, which is not the case here since the magnetism in the middle will not directly affect
the surface states, and were there to be any physics effects, they must be conducted through
the bulk states, whose wavefunction has maximal overlap with the magnetic areas. Here, the
metallic QAHE is just the first non-trivial case of such kind, where the inter-n blocks interaction
conducted through magnetism is deterministic, and luckily, we have found a way to directly
observe the overall effect by a second diagonalization, yielding the effective masses m̃n. While
the process and the results are straightforward and conclusive, it will be more satisfying if a
simplified model exists and grasps the core of physics even qualitatively. Interestingly, a model
incorporating the n= 1, 2 blocks plays a crucial role in achieving this.

For simplicity, we consider the symmetric Zeeman field in the middle, and by preserving
n= 1,2, the mass terms read

M(α) =

�

m1
m2

�

τz +α

�

I11
S I12

S
I21
S I22

S

�

τ0 , (128)

with k-dependence in mn and IS terms. The Hamiltonian for n= 1,2 reads

Hn=1,2(k) = λ∥ρ0τ0(sin(kx a)σx + sin
�

ky b
�

σy) +Mσz , (129)

with ρ another pseudo-spin degrees of freedom for two blocks.
Following the effective mass treatment, we further block-diagonalize H1,2 into 2× 2 sub-

blocks. Notice that again the projected mirror operator τz in M serves as a good quantum
number due to the chosen symmetric Zeeman distribution, then a split M = ⊕χMχ(χ = ±)
can be made, so does that for the Hamiltonian H1,2 = ⊕χH1,2

χ , where

H1,2
χ = λ∥ρ0(sin(kx a)σx + sin

�

ky b
�

σy) +αRe(I12
S )(k)ρxσz −α Im(I12

S )(k)ρyσz

+ Eχ(k)ρ0σz +∆χ(k)ρzσz ,
(130)

with
¨

Eχ = [χ(m1 +m2) +α(I11
S + I22

S )]/2 ,

∆χ = [χ(m1 −m2) +α(I11
S − I22

S )]/2 .
(131)

Clearly, diagonalization in ρ-space is accessible without altering the linear part, which leads
to

H̃1,2
χζ
= λ∥(sin(kx a)σx + sin

�

ky b
�

σy) + m̃χ,ζσz , (132)

where
m̃χ,ζ = (Eχ(k) + ζΛχ(k))σz , χ,ζ= ± , (133)

with Λχ =
Ç

∆2
χ +α2|I12

S |2 defined. This is reached by a unitary transformation Uχ = Uχ2 Uχ1
for each χ, where Uχ2 = eiρxθ

χ
2 , Uχ1 = eiρyθ

χ
1 , with definitions tan2θχ1 = αRe(I12

S )/∆χ ,

tan 2θχ2 = α Im(I12
S )/δχ , δχ =
Ç

α2 Re(I12
S )2 +∆2

χ .
Now we choose case α > 0 so that αInn

S > 0 to illustrate the physics. Topological phase
transition happens when αI22

S > m2(0) > 0 (for m2(0) > 0 see Fig. 4) with the help of I12
S . In

the case now, we identify the Hall conductivity for each sub-block as

σ
χζ
H =

e2

2h

�

sgn(m̃χ,ζ(M))− sgn(m̃χ,ζ(k
χ,ζ
F ))
�

, (134)

with m̃χ,ζ(k
χ,ζ
F ) recognized as m̃χ,ζ at Fermi surface of the band, and for an insulating band

with Fermi level inside the gap, it is m̃χ,ζ(0). For unification and simplicity, we will always
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(a) (b)

Figure 27: I11
S/A, I22

S/A and I12
S/A calculated with total layer number Lz = 22 and middle

Zeeman layer number mz = 6. Re-plotted from [32].

assume Fermi level to lie inside insulating gap and the parity invariant regime of a gapless band
near Γ point so to always recognize kF = 0, and those worrying about the singular gapless Dirac
point for the metallic case can always take the unambiguous second limit in Section 3.5. Then
by treating



















m1(0) = 0, m2(0)> 0 ,

−m1(M)≈ m2(M)≫ α|IS(M)|> 0 ,

I11
S (0) = I12

S (0) = 0, I22
S (0)> 0 ,

IA = 0 ,

where quantities IS/A can be read from Fig. 27, we can write







m̃χ,ζ(0) =
χm2(0) +αI22

S (0)

2
+ ζ

�

�

�

�

χm2(0) +αI22
S (0)

2

�

�

�

�

,

m̃χ,ζ(M)≈ ζm2(M) .
(135)

Clearly, m̃χ,ζ(M) are almost unchanged since the projected Zeeman field is not that strong
here, and the Hall conductivity formula is reduced into

σ
χζ
H =

e2

2h

�

ζ− sgn(m̃χ,ζ(0))
�

. (136)

For m̃χ,ζ(0) two cases should be distinguished. When αI22
S (0)< m2(0),



















m̃++(0) = m2(0) +αI22
S (0)> 0 ,

m̃+−(0) = 0 ,

m̃−+(0) = 0 ,

m̃−−(0) = −m2(0) +αI22
S (0)< 0 ,

(137)

and we obtain


















σ++H = 0 ,

σ+−H = −e2/2h ,

σ−+H = e2/2h ,

σ−−H = 0 ,

(138)

with total Hall conductivity zero. Interestingly, in this case the symmetric magnetism in the
middle does not even quantitatively change the half quantum mirror Hall phase. On the other
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hand, for αI22
S (0)> m2(0),



















m̃++(0) = m2(0) +αI22
S (0)> 0 ,

m̃+−(0) = 0 ,

m̃−+(0) = −m2(0) +αI22
S (0)> 0 ,

m̃−−(0) = 0 ,

(139)

and we obtain


















σ++H = 0 ,

σ+−H = −e2/2h ,

σ−+H = 0 ,

σ−−H = −e2/2h ,

(140)

with total Hall conductivity unit upon e2/h. This unit is fundamentally different the C = 1
as Chern insulator case, since here 1 = 1/2 + 1/2, with non-vanishing contribution coming
from two metallic bands describing gapless Dirac fermions. It is recognized that the phase
transition happens only within χ = − sub-blocks, where ζ= ± Dirac fermions exchange their
low-energy mass when crossing the qualitative phase transition point I22

S (0) = m2(0), and by
treating approximately I22

S ≈ αt⊥, m2(0)≈ m0, we see the qualitative critical point as

αquali
c =

m0

t⊥
≈ 0.7 , (141)

which is close to the numerical result.
I12
S as inter-n Dirac fermions coupling plays an important role here. Without this term,

n= 1 and n= 2 Dirac fermions will totally be decoupled from Eq. (128), which makes the mass
exchange between ζ-Dirac fermions with χ = − impossible. With this term, which serves as an
avoid-crossing source between ζ-Dirac fermions masses, and obtains its maximum nearly after
surface to bulk transition of n = 1 gapless Dirac fermions, we see that the crossing behavior
of m̃−,ζ at ∆−(kcross) = 0 is prohibited by a non-zero I12

S (kcross), and the two bands are forced
to exchange masses before and after kcross. This is possible since ∆−(k) = 0 requires that
I11
S (k) > I22

S (k), which can happen only when n = 1 surface states emerge into the bulk at
k > kc , where I12

S (k) is also non-zero.

6.1.2 Lower threshold by decreasing the mass in the middle

It was pointed out [141,142] that magnetic doping can reduce and even drive the bulk band
gap m0 of TI into a trivial one, and this effect plays a positive role in realizing the metallic
QAHE indeed. To illustrate this, consider a simplified scenario where the bulk mass of TI,
initially m0 = 0.28 eV, is reduced to m̃0 = 0.08 eV in the magnetically doped region. Then
by comparing the detailed effective mass evolution in Fig. 28 with the original case in Fig. 26,
we observe that the critical point αc decreases to approximately αc ≈ 0.435. Such a reduc-
tion is beneficial for the experimental realization of the metallic QAHE. Moreover, since the
decrease in the critical α is positively correlated with the reduction of doped middle layer
mass, while and this mass reduction itself is also positively correlated with the increase in
concentration of magnetic doping, it is expected that the metallic QAHE can be achieved with
a significantly lower threshold of magnetic doping concentration in practice. Note that if the
middle layers are driven to a trivial state with a negative bulk mass m̃0 < 0, and are simul-
taneously considered nonconductive, the system effectively splits into two semi-magnetic TI
films, a trivial metallic QAHE comprising two non-communicative half QAHEs with the same
half-quantized Hall conductance is obtained. It is important to recognize that the above calcu-
lation assumes an oversimplified relationship between doping concentration and the reduced
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(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m) (n)

Figure 28: The evolution of the effective mass m̃n,χ(kx , ky = 0). (a)∼(g)
and (h)∼(n) emphasize lowest-two (n = 1, 2) effective masses in red and
blue colors, varying with changing Zeeman field strength α belonging to set
[0,0.1, 0.25,0.4, 0.435,0.5, 0.6] for χ = + and χ = −, respectively. Still, we take
total layer number Lz = 22 and middle Zeeman layer number mz = 6, while the dif-
ference with Fig. 26 is that here the middle-layer mass is reduced to m̃0 = 0.08 eV.

mass. A more accurate determination of the modified critical point requires a realistic model
and a self-consistent calculation.

6.1.3 Stronger field in the middle

Encouraged by the mass exchange series diagrams, a natural question to ask is what happens
when we increase Zeeman strength in the middle further. A first step answer to the ask is
we will meet a system with higher Hall conductance. For instance, after increasing Zeeman
field strength to α = 1.2, we see from Fig. 30(a) that the Hall conductivity of the system be-
comes −2e2/h now. For the reason behind, we again look on the effective masses presented
in Fig. 30(b), where a pair of gapless Dirac cones and one non-trivial gapped Dirac cone with
mass sign reversal emerge, and essentially, from Eq. 38 and Eq. 42, they contribute synergis-
tically to the Hall conductivity, i.e., 1/2+ 1/2+ 1 = 2 units over −e2/h. A careful trace over
the effective mass evolution upon increasing α reveals that, at this time, n= 3 band of χ = +
closes and reopens the gap, during which an avoid crossing happens and forces it to exchange
low energy mass with n= 1 band of χ = +, which leads to the result above.

6.2 Higher Chern number insulator

Based on magnetic TI film, several proposals to realize higher Chern number have been pro-
vided [80,131,142], among which one theoretical proposal [80] utilizes one-by-one sub-band
inversion to illustrate the increasing Chern number process. Here the physics behind is brought
out in a more strict way with a similar picture.

Still we firstly present an example shown in Fig. 31(a) as the Chern numbers of a uni-
formly magnetized TI film with total layer number Lz = 8. The algorithm follows [143]. With
increasing the uniform Zeeman strength V , the change of Chern numbers experiences three
stages: For the relatively weak Zeeman field, the Chern number plateau increases step by step,
from 0 to 8, as revealed by red dots; For the Zeeman field with medium strength, the Chern
number plateau drops from 8 to −8 with 2 as a step, illustrated by blue dots; Finally for the
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Stronger Magnetism
in the Middle

Figure 29: Schematic diagram of a stronger magnetism in the middle of the topolog-
ical insulator film. The system now contains a pair of gapless Dirac fermions with the
same high-energy mass signs, together with one non-trivial gapped Dirac cone with
unit Chern number. The contributions of these Dirac fermions are synergistic.

(a) (b) (c)

Figure 30: (a) Hall conductance of a metallic QAHE with a stronger magnetic field in
the middle. (b) Momentum-dependent effective masses of Dirac fermions in Eq. (68).
The masses for non-trivial bands have been stressed in the same color. (c) Band dis-
persion for the system, where the gapless bands at Γ are doubly degenerate. Specifi-
cally, here the total layer number of TI film is Lz = 22, the magnetic layer number is
the middle is 6, and the Zeeman strength is V = αt⊥ with α= 1.2.

relatively strong Zeeman field, the Chern number plateau again increases from−8 to 0 one-by-
one, shown by purple dots. Notice that under our parameter choice we have m1(π, 0)∼ 2 eV
and m1(π,π)∼ 4.3 eV.

The Hamiltonian Eq. (70) now best suits to describe the phenomenon, where the uniform
Zeeman field makes it exact to preserve diagonal blocks only. However, due to the largely
adjustable magnitude of the Zeeman field, Eq. (83) becomes inapplicable here, and a more
general formula following Eq. (45) is written as [27,50,98]

Cχ = −
sgn(m̃χ(X ))

2
[sgn(m̃χ(Γ ))− sgn(m̃χ(M))] , (142)

i.e., it accounts for the mass sign-change induced topological phase transition at X = (π, 0).
In this case, the χ-Chern number for each n= 1, · · · , Lz is written as

Cn
χ = −

sgn(V +χmn(X ))
2

[sgn(V +χmn(Γ ))− sgn(V +χmn(M))] . (143)
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(a)
X & Y
M

(b)

Figure 31: (a) Chern numbers of magnetic TI film with varying uniform Zeeman field
strength V . Red, blue and purple dots represent Chern numbers caused by Γ , X/Y
and M mass inversions, respectively. (b) Calculated mass mn(k) along M−Γ−X high
symmetry line. Green guidance lines have been imposed to reveal either zero-energy
surface state plateau or relative magnitude of masses among high symmetry points.
Total layer number Lz = 8.

In our case, |mn(Γ )| < |mn(X )| < |mn(M)|, and admittedly, all bulk bands n ≥ 2 are trivial by
which we mean mn(Γ/X/M) share the same sign, then focusing on one band and increasing
V from zero, we see that when V just crosses |mn(Γ )|, the band with χmn < 0 increases its
Chern number from zero to one; continuing to increase V so that it is bigger that mn(X ), the
corresponding Chern number reverses its sign from 1 to −1; and finally when V goes beyond
the bandwidth |mn(M)|, the band goes back to its trivial phase with zero Chern number. Notice
that under our assumption V > 0, the band χ̄mn > 0 is always trivial.

It is now clear that the sub-band mass-inversion at Γ , X and M points are responsible
for the change of Chern numbers, or equivalently the anomalous Hall plateaus with quantum
units of conductance revealed in Fig. 31(a). As presented in Fig. 31(b), the masses mn(k) now
share the property that max[mn(Γ )] < min[ml(X )], max[mn(X )] < min[ml(M)], as revealed
by the green guidance lines. Then the Chern number change can be divided into three regions
with increasing Zeeman field V labelled in Fig. 31(a), i.e., the Γ -mass inverse region, the
X (Y )-mass inverse region and the M -mass inverse region, without crossing among distinct
regions. The physics happening in each region is exactly Lz = 8 copies illustrated above with
increasing V , i.e., the Chern number increases one-by-one in the Γ -region each time Zeeman
field V crosses some |mn(Γ )| and makes the band non-trivial, until it reaches its maximum
Cmax = Lz = 8, then decreases two-by-two in the X -region once V gets bigger than some
|mn(X )|, where topological phase transition happens with both sides non-trivial, until bottom
touching Cmin = Lz − 2Lz = −8, and finally the Chern number goes back to zero step-by-
step in the M -region as long as V becomes bigger than some bandwidth |mn(M)| and makes
corresponding band trivial again. The inverse process happens for an opposite Zeeman field,
with Chern number reversing its sign.

6.3 Cooperation between middle and surfaces

Similar to the approach of gapping out surface(s) of a topological insulator film, we can gap
out the surface states in metallic QAHE with surface magnetism polarized along z direction.
In this sense we explore the cooperation between magnetism in the middle and at surface(s).

The surface magnetism is chosen to be weak compared to the smallest gap in metallic
QAHE, and it can thus be treated again as a perturbation. This is simply because gapping
out the gapless surface needs no threshold over surface magnetic strength. Based on such
a picture, the physics beneath comes from perturbating two gapless Dirac fermions with the
same high-energy mass signs in metallic QAHE, whose simplified model Hamiltonian reads
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Metallic QAHE

Parallel Surface Magnetism

Figure 32: Schematic diagram of the metallic quantized anomalous Hall effect with
top and bottom symmetric magnetism parallel to that in the middle. In the case a
relatively strong Zeeman field exists in the middle of the film, while top and bottom
states are gapped out by a weak Zeeman field. The system is now an insulator again,
and contains a pair of gapped Dirac cones, each carrying Chern number one.

HMQAHE = h⊕ h with single Dirac cone Hamiltonian

h(k) = λ∥(sin(kx a)σx + sin
�

ky b
�

σy) + sgn(V mid)m̃(k)σz , (144)

with m̃(k) = Θ(−m0(k))m0(k) identified. Considering now in metallic QAHE, the mid-
dle Zeeman field does not affect the gapless surface states, then the projection of top
and bottom Zeeman fields onto the mirror-symmetric surface states can still be written as
IS(k)τ0σz − IA(k)τyσz . And by approximation, we recognize IS ≡ V top

S , IA ≡ V top
A so that the

phenomenological mass terms read

sgn(V mid)m̃(k)τ0 + V top
S τ0 + V top

A τy , (145)

which can be diagonalized without affecting linear term as

m̃ζ(k) = sgn(V mid)m̃(k) + V top
S + ζV top

A , (146)

with ζ= ±. Attributing to Eq. (42), we have for a gapped Dirac cone with V top
S + ζV top

A ̸= 0,

Cζ =
1
2

�

sgn(V top
S + ζV top

A ) + sgn(V mid)
�

, (147)

while for a gapless Dirac cone with V top
S + ζV top

A = 0, according to Eq. (38) we have

Nζ = sgn(V mid) , (148)

and the corresponding Hall conductivity reads σζH = −Ce2/h or σζH = −Ne2/2h depending on
gapped or gapless nature, which serves as the starting point for analyzing phases below.

For an instance, adding gap opening z-Zeeman field at both top and bottom surfaces par-
allel to magnetic polarization in the metallic QAHE system leads to C = 2 state, composed of
a pair of non-trivial gapped Dirac fermions each carrying unit Chern number, as represented
in Fig. 32. Such C = 2 state has been observed [142] in a similar magnetic structure with an
alternate explanation based on the assumption that magnetic layers dividing topological insu-
lator film do not hold side surface states, which then turns the magnetic insulator-topological
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(a) (b) (c)

Figure 33: (a) Hall conductivity of a metallic QAHE with its top and bottom sur-
face states also gapped by magnetism, whose polarization direction is parallel to the
field in the middle. (b) Momentum-dependent effective masses of Dirac fermions in
Eq. (68). Due to the symmetric Zeeman configurations, masses are again divided into
mirror classes by χ = ±. The masses for gapped surface states have been stressed in
the same color. (c) The band structure of the system. Specifically, here the total layer
number of TI film is Lz = 22, the magnetic layer numbers at top, middle and bottom
are 2, 6, 2, with mean Zeeman strengths chosen to be V top = 0.05 eV, V mid = αt⊥
with α= 0.9, and V bot = 0.05 eV, respectively.

insulator multilayer structure into individual C = 1 insulators, each of which can be explained
by the discussion over Chern insulator in the weak Zeeman field section. Here instead we
assume that the magnetism does not alter the bulk gap m0 very much, so that the side surface
state goes throughout the zone with magnetism. The calculated Hall conductivity for one con-
figuration following the assumption is shown in Fig. 33(a), where a C = 2 plateau is presented
inside the top/bottom Zeeman gap for surface states. The system is thus identified as a Chern
insulator by the gapped band structure shown in Fig. 33(c). For simplicity, we have chosen a
symmetric surface Zeeman distribution with V top

A = 0. Now since V top
S > 0, V mid > 0, we have

mass sign changes at Γ and M for both surface states as revealed by mass configurations in
Fig. 33(b), and by Eq. (147)

C+ = C− = 1 , (149)

which leads to totally a C = 2 state.
Now let us switch down V top, which makes V top

S = −V top
A > 0, accordingly we have

N+ = 1, C− = 1, which corresponds to a system with Hall conductivity 3e2/2h. Further we re-
add V top = −V bottom < 0, which leads to V top

S = 0, V top
A > 0, and we see C+ = 1, C− = 0, which

makes the system a Chern insulator again with unit Chern number. Next we reverse V bottom

to minus, and V top
S < 0, V top

A = 0, which makes the system trivial with C+ = C− = 0. Finally,
we switch down again V top, and now V top

S = −V top
A < 0, accordingly we have N+ = 1, C− = 0,

which leaves half quantization of Hall conductivity in the system.
Totally, we see that there exist five more additional topologically distinct phases upon tun-

ing surface magnetism of metallic QAHE, with Hall conductivities quantized into 2,3/2,1, 1/2
and 0 over quantum units, respectively. The topological properties of these additional phases
can be easily verified by calculating their Hall conductivities, or reading from their effective
mass pictures. The signs of Hall conductivities are inverted once we overturn magnetism at
both surfaces and in the middle.
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Table 3: Summation of main magnetic topological phases discussed. C represents
Chern number for a fully occupied band, while N is the half-integer index for a metal-
lic band. The Hall conductance σH = −(C+N/2)(e2/h)when the chemical potential
lies inside the insulating gap and symmetry constrained regime of the metallic band.

Name of phase Magnetic structure Responsible Dirac fermion(s) Topological index

Half quantum
mirror Hall effect

Nmirror = 1− (−1) = 2

Half quantized
anomalous Hall effect

C = 0, N = 1

Metallic quantized
anomalous Hall effect

N = 1+ 1= 2

Chern insulator C = 0+ 1= 1

Axion insulator C = 0+ 0= 0

7 Discussion and conclusion

It is quite remarkable and surprising that so many topologically distinct phases already emerge
under such a relatively simple model describing a magnetic topological insulator film. At
the core of physics, however, such a descriptive and predictive power of the frame should be
estimated. Although, admittedly infinite possibilities exist to explain the phenomena, down to
the ground several principles, such as symmetry, topology, emergence and conciseness, have
almost fixed the formalism we are willing to adapt in addressing the problem. In our focused
questions, particularly regarding the Hall conductances for different species of Dirac fermions
in the system, the property of several points in the spectrum is already sufficient to solely
determine the result. And to endow physical meaning to these points, we name the points to
represent low-energy and anomaly. The invariance of laws of physics then suggests that, once
we have grasped these key ingredients, the complexities of the more intricate components will
naturally fall into place. Below we summarize key points in our paper and extend to further
discussions.
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The introduced local unitary transformation in k-space, based on the exact solution, unveils
the existence of a pair of gapless Dirac fermions and a series of massive gapped Dirac fermions
in a 3D topological insulator film, when viewed as 2D system effectively. This comprehensive
understanding of the constitutes inside the TI film is paramount, as our derivation here is a
complete extension of the previous work on projection of TI surface states [36–38], with the
inclusion of the high-energy part of the surface bands in the full 2D Brillouin zone and higher
massive Dirac fermions for bulk bands.

The Hall conductivity associated with the gapless and gapped Dirac fermions in the TI film
are ±e2/2h and 0, respectively. This results in a half-quantized topological phase, serving as a
metallic partner to the insulating quantum spin Hall effect, namely, the half quantum mirror
Hall effect in TI film itself with a mirror symmetry. The pairing feature of the gapless Dirac
fermions in half quantum mirror Hall effect is summarized in Table 3. It is noteworthy that
their existence here is not a result from the Nielsen-Ninomiya theorem, since they are two
separable fermions in whole Brillouin zone; rather, it is the mirror symmetry along the opened
direction of the TI film that requires the doubling — symmetric and antisymmetric.

The mass term of the gapless Dirac fermion in our study is a regularized one that can be
directly expressed on a lattice. However, this regularization comes at the cost of introducing
an explicitly parity-symmetry-breaking term away from the Dirac point. As a result, the gap-
less Dirac fermion remains massless at low-energy but becomes massive at high-energy. In the
article, a Heaviside Theta function is utilized to grasp the feature of such a mass term, which
exhibits long-range algebraic decay with the first power modified by a sinusoidal function,
when Fourier transformed into real space. Specifically, it contains a hopping term propor-
tional to ∼ sin(∆l)/∆l, with ∆l being the distance between sites. Not accidentally, a similar
hopping term with the same algebraic decaying order has been used as one way to construct
single gapless Dirac fermion on lattice, known as the SLAC fermion [35,135,136]. However, it
is important to note that in our theory, the phenomenological evasion of locality by the gapless
Dirac fermion, residing in effectively 2D space, is a consequence of the bulk property of the 3D
TI, where locality is preserved. This phenomenon underscores the concept of bulk-boundary
correspondence and suggests that a seemingly unphysical theory in lower dimensions can be
attributed to a projection from a higher-dimensional theory. It is noteworthy that the proce-
dure employed here is different from a dimensional reduction, and is not an effective field
theory because the Dirac fermion naturally obtains completeness on lattice. Rather, a better
similarity can be shared with the quasicrystal containing aperiodic order, which can arise from
projections of higher-dimensional periodic lattices [144]. Essentially, both the gapless Dirac
fermion containing surface states of a 3D TI, and the quasicrystal from tilings, are physically
realizable systems.

The formalism introduced here, involving the transformation of a confined spatially
(n + 1)D Dirac Hamiltonian into nD Dirac fermions through the construction of a local uni-
tary matrix using solutions from a decomposed 1D Hamiltonian along the confined direction,
can be generalized to arbitrary dimensions, with the aid of Clifford algebra. In particular,
initiating from a 4D space modified Dirac equation, a unitary transformation yields a pair of
gapless Dirac fermions effectively in 3D space. This extension holds the potential to enhance
our comprehension of the chiral anomaly in the system [56, 57]. What is more, given that
the high-energy components of the two Dirac fermions explicitly break the chiral symmetry,
they are not obliged to be paired by violating conditions stipulated by the Nielsen-Ninomiya
theorem. As a result, we can anticipate that when the constrained 4D Hamiltonian becomes
‘semi-magnetic’, a single gapless Dirac fermion will be observed, similar to that in half QAHE.

The introduced magnetism, initially presented as an out-of-plane Zeeman field at the mean-
field level, undergoes the unitary transformation into two momentum-dependent matrix Higgs
fields IS/A(k), which obtain non-vanishing values along with the spontaneous symmetry break-
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ing that establishes intralayer ferromagnetic order. The two fields play a pivotal role in gener-
ating mass to the Dirac fermions through Yukawa-like couplings. The nature of the magnetic
structure, influencing the distribution and strength of the Zeeman field along the open di-
rection, leads to the classification of several topologically distinct phases, including the Chern
insulator, axion insulator, half-quantized anomalous Hall effect and metallic quantized anoma-
lous Hall effect. A summary of their main features is presented in Table 3. Essentially, IS pre-
dominates in the Chern insulator and metallic QAHE phases, IA takes precedence in the axion
insulator, while a collaborative effort between both IS and IA is necessary to achieve the half
QAHE.

In the presence of a uniform Zeeman field, the mass of each Dirac fermion in TI film is
directly modified by a Zeeman field. By tuning the strength of magnetism, sub-band inversion
happens step-by-step for each Dirac fermion, whose Chern character changes correspondingly.
Summing those mass-modified Dirac fermions together gives a Chern insulator that carries
jumping Hall conductance among integers in [−Lz , Lz] over the quantum unit e2/h, with Lz
the total layer number.

With a relatively weak Zeeman field compared with the bulk gap, focusing solely on the
n = 1 matrix elements that act on the two gapless Dirac fermions becomes feasible. In this
scenario, only fields near the two surfaces maximally tune the topological property of the TI
film by influencing the surface states. This approximation, referred to as the weak Zeeman
field condition, elucidates the underlying physics behind the Chern insulator, axion insulator
and half QAHE clearly, with Hall conductance showing 1 + 0, 0 + 0 and 1/2 + 0 quantized
nature upon quantum unit.

Under a general strong Zeeman field, the gapped series of Dirac fermions have to be in-
volved, and the n ̸= 1 Higgs components can play a crucial role. The most general description
is conducted by a further diagonalization over mass terms mn and Higgs fields IS/A, and the
procedure leads to effective masses m̃n for the Dirac fermions, which determine the topologi-
cal property of the system. As discussed, the avoid-crossing between m̃1 and m̃2 leads to the
formation of two gapless Dirac fermions with the same chirality (high-energy mass sign) in
system, which bears a doublet of half quantized Hall conductivity and leads to the metallic
QAHE. Interestingly, in the case, another cut-off over n = 1,2 blocks can be made, since the
Zeeman field applied should not alter the n≥ 3 states dramatically.

When IA = 0, the mirror symmetry is respected by the system, allowing for the separation of
the total Hamiltonian by the projection operator of mirror symmetry. This separation provides
valuable insights, such as the application of mirror layer Chern number in a Chern insulator
with a unit Chern number.

It is certainly reasonable but lamentable that we cannot exhaustively list all relevant topo-
logical phases in magnetic topological insulators in the article. The sheer multitude of pos-
sible magnetic distributions makes it impractical to cover every potential scenario. However,
our work lays down a unified framework that enables the depiction of both discovered and
yet-to-be-discovered topological phases in a uniform and consistent manner, grounded in the
conceptualization of the grouped Dirac fermions and the associated mass generation mecha-
nism. We believe that the diversity and variety of different magnetic configurations can lead
to even richer topological phases within our framework.

Furthermore, as elaborated in Section 4.2, our exploration is not confined solely to topo-
logical phases induced by magnetism, especially a Zeeman field in the TI film. One illustrative
example, as highlighted earlier, involves the duality between the z-Zeeman field σz and a spe-
cial orbital order τy . This duality has the potential to generate all topological phases discussed
in the paper, with symmetric and antisymmetric distributions exchanged for the time-reversal-
breaking τy field. This approach extends beyond the commonly studied ferromagnetism (or
layer-by-layer antiferromagnetism, as observed in materials like MnBi2Te4) induced quantum
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anomalous Hall effect (QAHE). Moreover, leveraging the superconducting effect, we can in-
clude the superconducting pairing field into the frame across all pairing symmetries. This
inclusion opens avenues for exploration and determination of the possibilities and conditions
necessary for realizing topological superconductors [145–148] within the solid framework we
have established.

An additional intriguing aspect to consider pertains to the symmetries in the system. The
modified Dirac equation model we employed for the topological insulator film encapsulates
fruitful symmetries, like the standard time reversal, particle hole and chiral symmetries, to-
gether with the inversion symmetry in each dimension and the 1D mirror symmetry along
each direction. Some of these symmetries play crucial roles in determining our solutions and
topological phases in the system. For instance, in solving the separated 1D Hamiltonian, the
utilization of one-dimensional parity and chiral symmetry is essential; the z-mirror symmetry
becomes decisive for the manifestation of the half quantum mirror Hall effect, contributing to
quantized mirror Hall conductance; despite not a protecting symmetry in the metallic quan-
tized anomalous Hall effect, the ever existence of the same mirror symmetry helps us to cut
the effective masses into two groups by their mirror labels and clarifies the mass exchange
mechanism. It may prove worthwhile to contemplate a starting point Hamiltonian with lower
symmetry or introduce additional symmetry-breaking fields to assess the stability of these ef-
fects. For instance, the half quantum mirror Hall effect is clearly a metallic twin partner of the
quantum spin Hall effect, and it should also share a general Z2 classification scheme depending
on the time reversal symmetry solely. Consequently, it is worthy to give a unified expression
for this invariant. Moreover, as we have shortly discussed, the half-quantization of the gapless
Dirac fermion is protected by the parity invariant regime around the Dirac point, and indeed,
this 2D parity symmetry coexists with the time reversal in our model, which warrants fur-
ther discussion regarding their individual impacts on half-quantization. This exploration can
be extended to encompass broader symmetries and other kinds of metallic topological phase
classes, providing a comprehensive understanding.

Besides, the exploration of disorder and interaction effects in metallic phases presents a
rich avenue for investigation. As previously discussed, metallic topological phases inherently
grapple with disorder effects on their metallic side, wherein mechanisms like skew-scattering
and side-jump alter the transverse transport behavior [89, 92]. The stability of these phases
against disorder, addressed through parameter renormalization, poses a significant question,
akin to considerations in their insulating counterparts [94, 149–152]. Moreover, while the
adiabatic criterion justifiably establishes a connection between a gapped interacting phase
and a non-interacting one by preserving gap opening, it remains elusive in what way we can
say something similar in those metallic phases. Clarifying how this linkage can be articulated
in the context of these metallic phases poses an ongoing challenge.

In short, the interplay between magnetism and topology in 3D TI film is investigated under
a unified frame, exploiting the Dirac fermion physics and mass generating mechanism.
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A Derivation of Eq. (1a)

We start from solving

h(s) = −isλ⊥∂zτx + (m0(k) + t⊥∂
2
z )τz , (A.1)

with s defined by eigenvalue of σz . All parameters are real with m0(k) = m0 − t∥k
2 > 0

to be the criterion for the region where surface states emerge. For the purpose of keeping
consistence with the lattice model in 2.2, one in fact needs to substitute parameters as

λ⊥→ cλ⊥ , λ∥→ aλ∥ , t⊥→ c2 t⊥ , t∥→ a2 t∥ .

However, we would not write in that way explicitly for simplicity. Also, to make discussion
pithy, we shall omit s in wavefunction below.

The eigenproblem of h(s) is a second-order differential equation and allows us to set so-
lutions with trial function φ = φξeiξz . Using ∂zφ = iξφ, ∂ 2

z φ = −ξ
2φ, one has equation

below:
�

m0(k)− t⊥ξ
2 sλ⊥ξ

sλ⊥ξ −m0(k) + t⊥ξ
2

�

φ = Eφ , (A.2)

which readily leads to
E2 − (m0(k)− t⊥ξ

2)2 −λ2
⊥ξ

2 = 0 , (A.3)

and gives

ξp
α = pξα = p

√

√

−
F
D
+ (−1)α−1

p
R

D
, p = ± , α= 1,2 , (A.4)

where
D = 2t2

⊥ , F = −2m0(k)t⊥ + sλ2
⊥ , R= F2 − 2D(m2

0(k)− E2) .

For each ξs
α, one has

φαp =

�

sλ⊥pξα
E −m0(k) + t⊥ξ

2
α

�

, (A.5)

and the general solution would be

Φ=
∑

αp

Cαpφαpeipξαz . (A.6)

Now considering finite size along z direction with top and bottom surfaces located at ±
L
2

,

respectively, one would have boundary condition

Φ

�

±
L
2

�

= 0 , (A.7)

applying which one would get four linear equations for coefficients

P(C1+, C1−, C2+, C2−)
T = 0 , (A.8)

and requirement det(P) = 0 leads to two transcendental equations

m1ξ2

m2ξ1
=

tanξ2 L/2
tanξ1 L/2

, (A.9a)

m1ξ2

m2ξ1
=

tanξ1 L/2
tanξ2 L/2

, (A.9b)
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which gives two energies varying with k, designated as E+ and E−, respectively. To be clearer,

E+ = m0(k)− t⊥
ξ2

1 g+(ξ1)− ξ2
2 g+(ξ2)

g+(ξ1)− g+(ξ2)
, g+(ξ) =

tan(ξL/2)
ξ

, (A.10a)

E− = m0(k)− t⊥
ξ2

1 g−(ξ1)− ξ2
2 g−(ξ2)

g−(ξ1)− g−(ξ2)
, g−(ξ) =

1
tan(ξL/2)ξ

. (A.10b)

In common sense, it is time taking E± into expressions of ξs, together with the coefficients
equations again and solve them. However, that not only is tricky but lacks of physical insight,
and we shall change our perspective.

Notice that under parity operation z ↔ −z, τx ↔ −τx and h(s) ↔ h(s), then both
h(s) and H1d has parity symmetry and the general solution should contain two factors below
considering the boundary condition:















f+(z) =
cos(ξ1z)

cos(ξ1 L/2)
−

cos(ξ2z)
cos(ξ2 L/2)

,

f−(z) =
sin(ξ1z)

sin(ξ1 L/2)
−

sin(ξ2z)
sin(ξ2 L/2)

,
(A.11)

where the subscripts refer to even or odd parity. Now we can assume that for energy E, h(s)
has solution

φ = c̃ f+ + d̃ f− =

�

c̃1 f+ + d̃1 f−
c̃2 f+ + d̃2 f−

�

, (A.12)

and the two-line eigenequation h(s)φ = Eφ gives, for the first line

d̃2 = i t⊥η1 c̃1/sλ⊥ , (A.13a)

c̃2 = −i t⊥η2d̃1/sλ⊥ , (A.13b)

which leads to

φ+1 = C+1

�

−isλ⊥ f+
t⊥η1 f−

�

, E = E+ , (A.14a)

φ−1 = C−1

�

isλ⊥ f−
t⊥η2 f+

�

, E = E− , (A.14b)

and for the second line,

d̃1 = −i t⊥η1 c̃2/sλ⊥ , (A.15a)

c̃1 = i t⊥η2d̃2/sλ⊥ , (A.15b)

which leads to

φ+2 = C+2

�

t⊥η1 f−
isλ⊥ f+

�

, E = −E+ , (A.16a)

φ−2 = C−2

�

t⊥η2 f+
−isλ⊥ f−

�

, E = −E− , (A.16b)

by defining two coefficients

η1 =
ξ2

1 − ξ
2
2

ξ1 cot(ξ1 L/2)− ξ2 cot(ξ2 L/2)
, (A.17a)

η2 =
ξ2

1 − ξ
2
2

ξ1 tan(ξ1 L/2)− ξ2 tan(ξ2 L/2)
, (A.17b)
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with C is the norm, and super and lower indices represent E± and line index, respectively.
Clearly, C ι1 = C ι2 is identified, and φι1 = −iτyφ

ι
2 as they are chiral partners (ι = ±).

Solution above seems to give four solutions, mathematical restriction, however, tells that
equations from different lines for the same set of coefficients must stand simultaneously, i.e.,
(A.14a)⇔(A.16b) and (A.14b)⇔(A.16a), which gives us two relations as

1=

�

�

�

�

i t⊥η1

sλ⊥
·

i t⊥η2

sλ⊥

�

�

�

�

=⇒ |η1η2|=
λ2
⊥

t2
⊥

, (A.18a)

E+ = −E− , (A.18b)

and the latter is also a physical result from Dirac equation. Then, we only have two indepen-
dent solutions for one h(s) sub-block, say Eq. (A.14a) and Eq. (A.16a). Formal combination of
equations for the simultaneous-standing equations from different lines again leads to

E2 − (m0(k)− t⊥ξ
2)2 −λ2

⊥ξ
2 = 0 . (A.19)

Then we see that the guessing solution not only satisfies the boundary condition, but also
satisfies all E − ξ equations, thus it is indeed our solution.

Notice that, by Eq. (A.4), ξα are both complex or not complex for a given energy, where
complex means both real and imaginary parts of ξ are non-vanishing, determined by the sign
of R. This information, combined with property of trigonometric/hyperbolic function leads to
the conclusion that quadratic form f ∗+ f− and η (at certain (k, z, E)) are always real. Essentially,
f± are either real or purely imaginary.

Now, we restore s explicitly and extract

ϕ(s) = φs,+
1 , χ(s) = φs,+

2 (A.20)

as two solutions for h(s) for basis construction. Then by defining






































m= E+ = m0(k)− t⊥
ξ2

1 g(ξ1)− ξ2
2 g(ξ2)

g(ξ1)− g(ξ2)
,

g(ξ) =
tan(ξL/2)

ξ
,

η=
ξ2

1 − ξ
2
2

ξ1 cot(ξ1 L/2)− ξ2 cot(ξ2 L/2)
,

C = C+1 = C+2 ,

(A.21)

one obtains four projecting basis in certain sequence as

Φ1 =

�

ϕ(+)
0

�

= C







−iλ⊥ f+
t⊥η f−

0
0






,

Φ2 =

�

0
χ(−)

�

= C







0
0

t⊥η f−
−iλ⊥ f+






,

(A.22)
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Φ3 =

�

χ(+)
0

�

= C







t⊥η f−
iλ⊥ f+

0
0






,

Φ4 =

�

0
ϕ(−)

�

= C







0
0

iλ⊥ f+
t⊥η f−






,

with energy (m,−m,−m, m), respectively. Notice that Φ3,4 are chiral partners of Φ1,2 by −iτy ,
respectively. To obtain m, a set of closed equations need to be solved

m= m0(k)− t⊥
ξ2

1 g+(ξ1)− ξ2
2 g+(ξ2)

g+(ξ1)− g+(ξ2)
, (A.23a)

ξα =

√

√

−
F
D
+ (−1)α−1

p
R

D
, α= 1,2 , (A.23b)

where


















g+(ξ) = tan(ξL/2)/ξ ,

D = 2t2
⊥ ,

F = −2m0(k)t⊥ +λ2
⊥ ,

R= F2 − 2D(m2
0(k)−m2) .

(A.24)

Basically, there are three variables (m,ξ1,ξ2) with three equations, then they could be deter-
mined exactly.

A.1 Symmetry analysis of solutions

Firstly, as we have stated, the chiral symmetry τy is respected in Eq. (A.1) since {h(s),τy}= 0,
and this symmetry is reflected in our solutions by ϕ(s) = −iτyχ(s) with opposite energies.

Meanwhile, we have relied on the help from the 1D parity symmetry which is a reflection
along z direction, or simply, the z-parity Pz , which acts on the basis as

Φ(z)
Pz−→ τzΦ(−z) , (A.25)

with τz the unitary matrix related to inner degrees of freedom transformation. Now since
f±(z) = ± f±(−z), we identify that Φ1,4 (Φ2,3) are even (odd) under z-parity, and correspond-
ingly, under the representation of Φ, the unitary matrix related to z-parity is written as τzσz .

There exists in fact a hidden symmetry in the model, namely, the mirror symmetry about
the x-y plane. Effectively, it will also bring z to −z as an inversion, but with an additional
operation that rotates spin angular momentum by π phase, i.e., such a z-Mirror symmetry Mz
is a combination of Pz and a C2z rotation, which then acts on the basis as

Φ(z)
Mz−→ σzτzΦ(−z) , (A.26)

and classifies Φ1,2 (Φ3,4) into z-mirror even (odd) states. Accordingly, under Φ representation
this operator has form τzσ0. Then combined with the spin index s = ± appeared in ϕ(s),χ(s),
we can further assign Φi to be Φχ,s with χ, s labelling mirror and spin-z index as

Φ++ = Φ1 , Φ+− = Φ2 ,

Φ−+ = Φ3 , Φ−− = Φ4 .
(A.27)
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The single h(s) does not share time reversal symmetry, since under T = iσyK,
h(+)↔ h(−), i.e., H1d owns this symmetry. Also given by the fact that time reversal keeps
energy unconverted, one finds Φ4 = eiθT Φ1, Φ2 = eiθT Φ3, where θ = 0 or π depending on
k, E. The essential point to get avoid of subtle f ∗± is to notice that they are either both real or
imaginary, as stated above, while η is always real. Also notice that we did not write k explicitly
since H1d(k) = H1d(−k).

The combination of time reversal and chiral symmetries gives rise to a particle hole symme-
try, which, when implanted over basis, reads ϕ(s) = eiθϕ∗(s̄) = eiθ [−iτyχ(s̄)]∗, with s̄ = −s
identified.

Similar analysis applies for the lattice model, and the projected Pz , Mz share the same
matrix form above.

A.2 Equivalent block Hamiltonian

The projection procedure works under the given basis representation HT I(k), which is formally
H = 〈Φ|HT I(k) |Φ〉, with

(H)nn′
i j =

∫

dz (Φn
i (z))

†HT I(k, z)Φn′
j (z) , (A.28)

where the integral is done from −L/2 to L/2. Clearly, projection on H1d would give
diag(m,−m,−m, m), then we only need to deal with H∥(k)=λ∥(k ·σ)τx = λ∥(kxσx+kyσy)τx
term. Since H∥(k) is purely off-diagonal, it is easy to conclude that

〈Φn
i |H∥|Φ

n′
i 〉= 0 , i = 1,2, 3,4 ,

〈Φn
1|H∥|Φ

n′
3 〉= 0= 〈Φn

2|H∥|Φ
n′
4 〉 .

Then only four terms need consideration by hermicity, among which

〈Φn
1|H∥|Φ

n′
4 〉= λ∥k−|C

nCn′ |
∫

dz iλ⊥ t⊥[η
n( f n
+ )
∗ f n′
− +η

n′( f n
− )
∗ f n′
+ ] = 0 ,

〈Φn
2|H∥|Φ

n′
3 〉= λ∥k−|C

nCn′ |
∫

dz iλ⊥ t⊥[η
n( f n
− )
∗ f n′
+ +η

n′( f n
+ )
∗ f n′
− ] = 0 ,

as f− f+ is odd to z. Here k± = kx ± iky is defined. Then, the only remaining terms are

〈Φn
1|H∥|Φ

n′
2 〉=
∫

dz λ∥k−ϕ
†(λ⊥)τxχ(−λ⊥) = λ∥k−δnn′ ,

〈Φn
3|H∥|Φ

n′
4 〉=
∫

dz λ∥k−ϕ
†(λ⊥)τxχ(−λ⊥) = λ∥k−δnn′ ,

where the normalization condition is used. And finally we arrive at the block Hamiltonian

H(k) =
⊕

n
λ∥τ0(k ·σ) +mn(k)τzσz , (A.29)

as Eq. (1a). Here, notice that the spin degree of freedom is fully preserved as σ, while the
newly-defined τ owns different meaning from the original one.

To make the transformation more formal, we define the transformation matrix

U c(k, z) = ({{Φ}i}n)(k, z) , (A.30)
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where the double brackets mean that we arrange i = 1, 2,3, 4 index inside each n = 1,2, · · · ,
and by written more straightforwardly,

U c = (Φ1,Φ2, · · · ) , Φn = (Φn
1,Φn

2,Φn
3,Φn

4) . (A.31)

This transformation then brings the Hamiltonian of the boundary constrained topological in-
sulator film HT I(k,−i∂z) into the direct sum form of Dirac fermions by

H(k) =

∫

dz (U c)†(k, z)HT I(k,−i∂z)U
c(k, z) . (A.32)

A.3 Analytic expression for mass term

The proof has been posted separately [33], and here is a repetition. Analytic expression for
effective mass m(k) is obtained in the L→∞ case as a thick limit, however, notice that finite-
size correction to m(k) decays exponentially with thickness [38], our proof here is suitable
even for a thin film. Closed E − ξ equations are































ξ2
1 + ξ

2
2 =

2m0(k)t⊥ −λ2
⊥

t2
⊥

,

ξ2
1ξ

2
2 =

m0(k)2 − E2

t2
⊥

,

E = m0(k)− t⊥
ξ2

1 g+(ξ1)− ξ2
2 g+(ξ2)

g+(ξ1)− g+(ξ2)
,

(A.33)

where g+(ξ) = tan(ξL/2)/ξ. We shall assume λ⊥ > 0, t⊥ > 0 in the following discussion,
without losing generality, and m0(k) controls the expression form.

The classification on tan(ξL/2) leads to

lim
L→+∞

tan(ξL/2) =











i , Im(ξ)> 0 ,

N.A. , Im(ξ) = 0 ,

−i , Im(ξ)< 0 .

(A.34)

And three basic cases are separated as










Im(ξ1)> 0> Im(ξ2) ,
Im(ξ1,2)> 0 ,

Im(ξ1) = 0 , Im(ξ2)> 0 ,

(A.35)

while other cases could be obtained similarly.
Case I. (Im(ξ1)> 0> Im(ξ2))

Now tan(ξ1 L/2) = i = − tan(ξ2 L/2) (L→ +∞ ignored), and


























ξ2
1 + ξ

2
2 =

2m0(k)t⊥ −λ2
⊥

t2
⊥

,

ξ2
1ξ

2
2 =

m0(k)2 − E2

t2
⊥

,

E = m0(k)− t⊥ξ1ξ2 ,

(A.36)

where the second and third equations lead to

m0(k)
2 − E2 = (m0(k)− E)2 , (A.37)
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which offers two possible solutions E = 0 or E = m0(k).
I. (E = 0) This leads to















ξ1ξ2 =
m0(k)

t⊥
,

ξ2
1 + ξ

2
2 =

2m0(k)t⊥ −λ2
⊥

t2
⊥

.
(A.38)

Requiring Im(ξ1)> 0> Im(ξ2) then gives










ξ1 + ξ2 =

¨

2u
p

4γ− 1 , γ > 1/4 ,

2ui
p

1− 4γ , γ < 1/4 ,

ξ1 − ξ2 = 2ui ,

(A.39)

¨

γ= m0(k)t⊥/λ2
⊥ ,

u= λ⊥/2t⊥ ,
(A.40)

which offers:
• γ > 1/4:

¨

ξ1 = u(
p

4γ− 1+ i) ,
ξ2 = u(
p

4γ− 1− i) ,
(A.41)

• γ < 1/4:
¨

ξ1 = iu(
p

1− 4γ+ 1) ,
ξ2 = iu(
p

1− 4γ− 1) .
(A.42)

The latter condition stands only when γ > 0 as for Im(ξ2)< 0.
II. (E = m0(k)) This leads to







ξ1ξ2 = 0 ,

ξ2
1 + ξ

2
2 =

2m0(k)t⊥ −λ2
⊥

t2
⊥

,
(A.43)

and one of ξα = 0 is unavoidable, which fails the precondition and is abandoned, i.e.,
E = m0(k) is not a solution in the case.
Case II. (Im(ξ1,2)> 0)

Now tan(ξ1 L/2) = i = tan(ξ2 L/2) (L→ +∞ ignored), and


























ξ2
1 + ξ

2
2 =

2m0(k)t⊥ −λ2
⊥

t2
⊥

,

ξ2
1ξ

2
2 =

m0(k)2 − E2

t2
⊥

,

E = m0(k) + t⊥ξ1ξ2 ,

(A.44)

then the second and third equations above leads to

m0(k)
2 − E2 = (m0(k)− E)2 , (A.45)

which gives us two possible solutions as E = 0 or E = m0(k).
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I. (E = 0) This condition leads to














ξ1ξ2 = −
m0(k)

t⊥
,

ξ2
1 + ξ

2
2 =

2m0(k)t⊥ −λ2
⊥

t2
⊥

.
(A.46)

Requirement Im(ξ1,2)> 0 then gives











ξ1 + ξ2 = 2ui ,

ξ1 − ξ2 =

¨

2u
p

4γ− 1, γ > 1/4 ,

2ui
p

1− 4γ, γ < 1/4 ,

(A.47)

which offers:
• γ > 1/4:

¨

ξ1 = u(
p

4γ− 1+ i) ,
ξ2 = u(−
p

4γ− 1+ i) ,
(A.48)

• γ < 1/4:
¨

ξ1 = iu(
p

1− 4γ+ 1) ,
ξ2 = iu(−
p

1− 4γ+ 1) .
(A.49)

The latter condition stands only when γ > 0 as for Im(ξ2)> 0.
II. (E = m0(k)) This leads to







ξ1ξ2 = 0 ,

ξ2
1 + ξ

2
2 =

2m0(k)t⊥ −λ2
⊥

t2
⊥

,
(A.50)

and again one of ξα = 0 is unavoidable, and one concludes E = m0(k) is not a solution in the
case.
Case III. (Im(ξ1) = 0, Im(ξ2)> 0)

By guessing E = m0(k), we have







ξ1ξ2 = 0 ,

ξ2
1 + ξ

2
2 =

2m0(k)t⊥ −λ2
⊥

t2
⊥

,
(A.51)

which gives
¨

(ξ1 + ξ2)2 = 4u2(2γ− 1) ,
(ξ1 − ξ2)2 = 4u2(2γ− 1) ,

(A.52)

and choosing
¨

ξ1 = 0 ,

ξ2 = 2ui
p

1− 2γ ,
(A.53)

fulfills the requirement. Notice that γ < 1/2 is assumed, which should not bother the self-
consistent solution. Meanwhile, since ξ1 = 0 leads to degenerate eigenvalue ±ξ1, then one
should generally assume another solution as

(A+ Bz)eiξ1zφ
�

�

ξ1=0,E=m0(k)
,
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which, however, only gives result that B = 0 while A is arbitrary, which passes no additional
information.

Retrospecting the definition γ = m0(k)t⊥/λ2
⊥, the discussion above naturally leads to the

conclusion that the lowest eigenenergy of H1d reads

E =

¨

0 , m0(k)> 0 ,

m0(k) , m0(k)< 0 ,
(A.54)

or by re-defining lowest E(k) as m1(k), we write

m1(k) = Θ(−m0(k))m0(k) ,

as result mention in Eq. (11).

A.4 Finite-size correction to mass term

We could in fact conserve the lowest order correction to see the finite size gap when L is not
that large. For ξ1 and ξ2, one could approximately get lowest order correction for tan(ξL/2)
by treating β±L/2 as small quantity (depend on sign of Im(ξ))

tan(ξL/2)≈

¨

i(1− 2β L) , Im(ξ)> 0 ,

−i(1− 2β−L) , Im(ξ)< 0 .
(A.55)

Also notice that from the original E − ξ equation

E2 − (m0(k)− t⊥ξ
2)2 −λ2

⊥ξ
2 = 0 ,

which could be further split into (when E = 0 as zeroth-order)

t⊥ξ
2 ± iλ⊥ξ−m0(k) = 0 , (A.56)

one solves

ξ=
s1iλ⊥ + s2

q

4m0(k)t⊥ −λ2
⊥

2t⊥
= u(is1 + s2

p

4γ− 1) , (A.57)

where s1, s2 = ±without restriction. Notice that in real calculation, one needs to specify which
branch ξ1,2 lie in, but such choice will not affect the final result as long as chosen ξ1,2 satisfy
zeroth-order solution. Now again we have two cases below:
• γ > 1/4, we choose











ξ1 = ξ∗2 ,

Im(ξ1)> 0> Im(ξ2) ,
Re(ξ1) = Re(ξ2)> 0 ,

(A.58)

as main branch condition, then
¨

tan(ξ1 L/2)≈ i(1− 2β L
1 ) ,

tan(ξ2 L/2)≈ −i(1− 2β−L
2 ) ,

(A.59)

and

E(k)≈ (m0(k)− t⊥ξ1ξ2) + 2t⊥ξ1ξ2
ξ1 − ξ2

ξ1 + ξ2
(eiξ1 L − e−iξ2 L) .

Notice that first term in bracket is zeroth order as E ≈ 0. Now, it is time to utilize four solutions
in Eq. (A.57). By main branch condition above, accordingly we choose

¨

ξ1 = u(
p

4γ− 1+ i) ,
ξ2 = u(
p

4γ− 1− i) ,
(A.60)
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considering that γ > 1/4 in this zone. Afterwards, one obtains

E(k)≈ −
4m0(k)
p

4γ− 1
sin
�

u
p

4γ− 1L
�

e−uL . (A.61)

Low energy surface state mass shows both exponentially decay and oscillating behavior.
• 0< γ < 1/4, we choose

¨

Im(ξ1)> 0 ,

Im(ξ2)> 0 ,
(A.62)

as main branch condition, then
¨

tan(ξ1 L/2)≈ i(1− 2β L
1 ) ,

tan(ξ2 L/2)≈ i(1− 2β L
2 ) ,

(A.63)

E(k)≈ (m0(k) + t⊥ξ1ξ2)− 2t⊥ξ1ξ2
ξ1 + ξ2

ξ1 − ξ2
(eiξ1 L − eiξ2 L) ,

where first term in bracket is again zeroth order energy approaching zero. Again, utilizing
four solutions in Eq. (A.57) with main branch condition above, we choose

¨

ξ1 = iu(1+
p

1− 4γ) ,
ξ2 = iu(1−
p

1− 4γ) ,
(A.64)

considering that 0< γ < 1/4 in this zone. Again, one obtains

E(k)≈ −
4m0(k)
p

1− 4γ
sinh
�

u
p

1− 4γL
�

e−uL . (A.65)

Since sin(i x) = i sinh(x), and by γ= m0(k)t⊥/λ2
⊥, we may set γ(kc) = 0 and obtain a unified

expression for lowest order mass correction

E(k < kc) = −
4m0(k)
p

4γ− 1
sin
�

u
p

4γ− 1L
�

e−uL . (A.66)

However, as a comment, in numerical calculation, E in zone 0 < γ < 1/4 is suppressed into
zero in a much slower manner, which is caused by exponential cancellation between sinh
and exp. Nevertheless, since

p

1− 4γ < 1 in the region, we conclude that the exponential
increasing is always slower than the decaying, which finally pushes the state to zero energy
for L→ +∞.

B Derivation of Eq. (1b)

To obtain an effective model, we start from solving H1d and notice that [H1d(k),σz] = 0,
from which we could let

H1d(k)ζs ⊗ |φs(k)〉= ζs ⊗Hs
1d(k) |φ

s(k)〉 , (B.1)

where Hs
1d(k) is split Hamiltonian that only acts on one subspace, and by definition

σzζs = sζs , s = ± . (B.2)
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Under basis of {Ψlz ,k}lz , H
s
1d(k) is in its matrix form denoted as Hs

1d(k), with solution defined
from its eigenvalue equation

Hs
1d(k)φ

s(k) = Es(k)φs(k) , φs(k) = ⊕lzφ
s
lz
(k) . (B.3)

To make discussion pithy, we shall omit s, k and let M ≡ M0(k) below in the section.
Eq. (B.3) can be written in th e recurrence form as
�

t⊥τz + i
λ⊥
2

sτx

�

φlz−1 +Mτzφlz +
�

t⊥τz − i
λ⊥
2

sτx

�

φlz+1 = Eφlz , (B.4)

by observing which could we set trial function as φlz = eiξlzφ = β lzφ where β = eiξ. Then
accordingly the equation is reduced to
��

t⊥τz + i
λ⊥
2

sτx

�

β−1 + (Mτz − E) +
�

t⊥τz − i
λ⊥
2

sτx

�

β

�

φ = 0 , (B.5)

which firstly leads to
E2 = (M + 2t⊥ cosξ)2 +λ2

⊥ sin2 ξ , (B.6)

requiring non-trivial φ. From Eq. (B.6) one solves










cosξp
α =
−M t⊥ + (−1)α−1

q

M2 t2
⊥ − (t

2
⊥ −λ

2
⊥/4)(M

2 +λ2
⊥ − E2)

2(t2
⊥ −λ

2
⊥/4)

,

sinξp
α = p
p

1− cos2 ξα , p = ± , α= 1,2 ,

(B.7)

which tells that
β p
α = eiξp

α = cosξα + ip
Æ

1− cos2 ξα . (B.8)

Here one thing to notice is that the sign change of sinξp
α is caused by sign change of ξ, rather

than a phase shift like ξ → ξ + π, since the latter will lead to the sign change of cosξ, too,
and that is not our solution.

To make maximum utilization of the symmetry, we consider canonical boundary condition
in which the centre of 1-d chain sits at z = 0, then by denoting l = Lz + 1, we would have

φs
�

±
l
2

�

= 0 , (B.9)

and it is essential to notice that sites lz = ±
Lz + 1

2
are two fictitious points where the constraints

take place, and true lattice stops at lz = ±
Lz − 1

2
as we only have Lz sites. What is more, for

compensation of unifying expression regardless of odevity of Lz , lz would be forced to choose
different ways to be taken out as follows







lz = 0,±1,±2, . . . ,±
Lz + 1

2
, for Lz odd ,

lz = ±
1
2

,±
3
2

, . . . ,±
Lz + 1

2
, for Lz even ,

(B.10)

which conforms mirror symmetry to z = 0. Afterwards, enlightened by the idea of symmetric
trial functions, we also build several functions from β

p
α considering the symmetric case stated

above. Denote










E(β , lz) =
β lz + β−lz

β (Lz+1)/2 + β−(Lz+1)/2
=

cos(ξlz)
cos(ξl/2)

,

O(β , lz) =
β lz − β−lz

β (Lz+1)/2 − β−(Lz+1)/2
=

sin(ξlz)
sin(ξl/2)

,
(B.11)
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where ‘E’ and ‘O’, namely even and odd, represent the parity of two functions about z, and
one should not identify E here as the energy function. From which we establish two sets of
factors respecting boundary condition with even or odd parity

¨

f+(lz) =
∑

α(−1)α−1E(β p
α , lz) ,

f−(lz) =
∑

α(−1)α−1O(β p
α , lz) ,

(B.12)

where the summation is over α but without p since it only changes sign of ξ and thus does
not influence the value of E or O. Before proceeding, let us find some special properties about
those functions or factors. Let











a = β +
1
β
= 2 cosξ ,

b = β −
1
β
= 2i sinξ ,

(B.13)

who weight as the lattice differential operators that lead to relation

f+(lz ± 1) =
∑

α

(−1)α−1 aαE(βα, lz)± i bα tan(ξαl/2)O(βα, lz)
2

≡ g± , (B.14a)

f−(lz ± 1) =
∑

α

(−1)α−1 aαO(βα, lz)∓ i bα cot(ξαl/2)E(βα, lz)
2

≡ h± . (B.14b)

One could again see that the iteration relation is also independent of p within our expectation.
Now we are able to come back and solve the chain problem. Let

φlz = c f+(lz) + d f−(lz) , (B.15)

to be guessed general solution confined by boundary condition. Bring this trial solution into
Eq. (B.4) and requiring vanishing coefficients of E(βα, lz) and O(βα, lz), one obtains, after
re-organization,







(M − E + t⊥aα)c1 −
λ⊥
2

sd2 bα cot(ξαl/2) = 0 ,

−
λ⊥
2

sc1 bα tan(ξαl/2) + (M + E + t⊥aα)d2 = 0 ,
(B.16a)







(M − E + t⊥aα)d1 +
λ⊥
2

sc2 bα tan(ξαl/2) = 0 ,
λ⊥
2

sd1 bα cot(ξαl/2) + (M + E + t⊥aα)c2 = 0 ,
(B.16b)

for different α. Requiring simultaneous standing with respect to α leads to four solutions in
pairs










d2 =
i t⊥η1

sλ⊥
c1 , E = E+ ,

c1 =
i t⊥η2

sλ⊥
d2 , E = −E− ,











c2 = −
i t⊥η2

sλ⊥
d1 , E = E− ,

d1 = −
i t⊥η1

sλ⊥
c2 , E = −E+ ,

(B.17)

where the formal expression for energies are

E± = M + 2t⊥
cosξ1 g±(ξ1)− cosξ2 g±(ξ2)

g±(ξ1)− g±(ξ2)
, (B.18)

with two defined functions

g±(ξ) =
tan±1(ξ(Lz + 1)/2)

sinξ
, (B.19)
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and two dimensionless factors










η1 =
−2(cosξ1 − cosξ2)

sinξ1 cot(ξ1l/2)− sinξ2 cot(ξ2l/2)
,

η2 =
−2(cosξ1 − cosξ2)

sinξ1 tan(ξ1l/2)− sinξ2 tan(ξ2l/2)
,

(B.20)

have been introduced. From the above discussion we seemingly have four solutions, mathe-
matical restriction, however, tells that equations in Eq. (B.16) in the same brace must stand
simultaneously, which then gives us two relations as







1=

�

�

�

�

i t⊥η1

sλ⊥
·

i t⊥η2

sλ⊥

�

�

�

�

=⇒ |η1η2|=
λ2
⊥

t2
⊥

,

m≡ E+ = −E− ,

(B.21)

and the latter one is also a physical result from Dirac equation. This reduces our four so-
lutions to two independent ones for each s. The above discussion is equivalent to requiring
simultaneous standing of equations in left brace of Eq. (B.16)

E2 = (M + 2t⊥ cosξα)
2 +λ2

⊥ sin2 ξα ,

which is independent of α and matches the result of Eq. (B.6).
Similar arguments can be made here as in the continuum model. Counting on complexity

of ξ1,2 restricted by Eq. (B.7) and the property of trigonometric/hyperbolic function leads to
the conclusion that quadratic form f ∗+ f− and η (at certain (k, z, E)) are always real. Essentially,
f± are either real or purely imaginary.

In short, what we need solving to get all energy states m are the simultaneous equations
below

m= M + 2t⊥
cosξ1 g(ξ1)− cosξ2 g(ξ2)

g(ξ1)− g(ξ2)
, (B.22a)

cosξα =
−M t⊥ + (−1)α−1

q

M2 t2
⊥ − (t

2
⊥ −λ

2
⊥/4)(M

2 +λ2
⊥ −m2)

2(t2
⊥ −λ

2
⊥/4)

, (B.22b)

where










M = M0(k) = m0 − 4t∥

�

sin2 kx a
2
+ sin2

ky b

2

�

− 2t⊥ ,

g(ξ) =
tan(ξ(Lz + 1))/2

sinξ
,

(B.23)

and sign of ξ is fixed by p = + so that

sinξα =
q

1− cosξ2
α , α= 1, 2 . (B.24)

Basically, there are three variables ξ1,ξ2 and m, together with three equations above, then it
is in a sense some exact system of equations but a non-linear transcendental version. From this
set of equations, one may expect Lz solutions mn(k), n = 1, 2, · · · , Lz including one surface
state and Lz − 1 purely trivial bulk states, if within suitable choice of parameters. And the
other set of Lz solutions are just chiral partners with −mn(k). Notice that these 2Lz solutions
compose eigenvalues for one Hs

1d , then by counting s = ± there are in fact 4Lz solutions in
total, which is expected from the matrix form of H1d .
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Here it comes to construct basis for projection, we firstly ignore lower index for m since
our wavefunction solution form is universal whatever n takes. Then by counting s, we totally
have four independent solutions for each m as follows



















ϕ(s) =

�

c1 f+
d2 f−

�

= C

�

−isλ⊥ f+
t⊥η f−

�

, E = m ,

χ(s) =

�

d1 f−
c2 f+

�

= C

�

t⊥η f−
isλ⊥ f+

�

, E = −m ,

(B.25)

where we have ignored lower index of η1, and the norm C is the same for ϕ and χ states.
Then restoring n-indices we have 4Lz basis in certain sequence as

Φn
1 = ζ+ ⊗ϕ(+) =

�

ϕn(+)
0

�

, Φn
2 =

�

0
χn(−)

�

,

Φn
3 =

�

χn(+)
0

�

, Φn
4 =

�

0
ϕn(−)

�

,

(B.26)

with energies (mn(k),−mn(k),−mn(k), mn(k)), respectively. The (k, lz) dependence of these
basis states are inherited from functions f n

± (k, lz) and factor ηn(k).
The basis here shares the same symmetry analysis as within the continuum model, while

here the parity and mirror symmetries can be written down explicitly in the off-diagonal matrix
form, with σ0τz and −iσzτz as the anti-diagonal elements, respectively. And especially, by
combining the mirror and spin-z index, we assign Φn

i = Φ
n
χ,s with

Φn
++ = Φ

n
1 , Φn

+− = Φ
n
2 ,

Φn
−+ = Φ

n
3 , Φn

−− = Φ
n
4 .

(B.27)

Now we turn to the projection, which is formally

〈Φ|HFilm|Φ〉= 〈Φ|H1d |Φ〉+ 〈Φ|H∥|Φ〉 , (B.28)

where the first part, by the definition of eigenvalue equation, is just

⊕ndiag(mn,−mn,−mn, mn) = ⊕nmn(k)τzσz ,

while in the second part, since H∥ = λ∥(sin(kx a)σxτx +sin
�

ky b
�

σyτx) is purely off diagonal,
it is easy to conclude that

〈Φn
i |H∥|Φ

n′
i 〉= 0 , i = 1, 2,3,4 ,

〈Φn
1|H∥|Φ

n′
3 〉= 0= 〈Φn

2|H∥|Φ
n′
4 〉 .

Then only four terms need consideration by hermicity, among which

〈Φn
1|H∥|Φ

n′
4 〉= λ∥(sin(kx a)− i sin

�

ky b
�

)
∑

lz

|C |2iλ⊥ t⊥[η
n( f n
+ )
∗ f n′
− +η

n′( f n
− )
∗ f n′
+ ] = 0 ,

〈Φn
2|H∥|Φ

n′
3 〉= λ∥(sin(kx a)− i sin

�

ky b
�

)
∑

lz

|C |2iλ⊥ t⊥[η
n( f n
− )
∗ f n′
+ +η

n′( f n
+ )
∗ f n′
− ] = 0 ,

as f− f+ is odd to z. Then, the only remaining terms are

〈Φn
1|H∥|Φ

n′
2 〉= λ∥(sin(kx a)− i sin

�

ky b
�

)δnn′ = 〈Φn
3|H∥|Φ

n′
4 〉 ,

where normalization condition is used. Finally we arrive at the equivalent Hamiltonian

H(k) =
Lz
⊕

n=1

�

λ∥(sin(kx a)σx + sin
�

ky b
�

σy) +mn(k)τzσz

�

=
⊕

n,χ
hn,χ(k) , (B.29)
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where unspecified degrees of freedom are all identity matrix. And hereto we have successfully
arrived at Eq. (1b) in the main text. Also notice that H is exactly equivalent to original HFilm,
since by counting all n, the projection we did is just a unitary basis transformation, where the
unitary matrix is composed of solutions of H1d .

The projection here is also a unitary transformation, which shares a simpler form than that
in the continuum model. Since now the original Hamiltonian reads

HFilm(k) =
∑

lz ,l ′z

Ψ†
lz

HFilm(k, lz , l ′z)Ψl ′z
, (B.30)

then by defining Ψ = ⊕lzΨlz , we identify the unitary transformation as

HFilm(k) = (Ψ
†U l)
�

(U l)†HFilm(k)U
l
�

((U l)†Ψ) , (B.31)

where
U l = (Φ1,Φ2, · · · ,ΦLz ) , Φn = (Φn

1,Φn
2,Φn

3,Φn
4) , (B.32)

and we recognize Φn
i = ⊕lzΦ

n
i (lz) here so that U l is a 4Lz×4Lz unitary matrix. And here again

U l is trivial in k-space. The core transformation on matrix form of Hamiltonian gives rise to

H(k) = (U l(k))†HFilm(k)U
l(k) , (B.33)

while the inverse transformation (U l)†Ψ assigns composed Fermionic operators to the new
basis. Essentially, the transformation to each hn,χ is done by

hn,χ = (U
l
n,χ)

†HFilmU l
n,χ , (B.34)

where
U l

n,χ = Φ
n
χ = (Φ

n
χ,s=+,Φn

χ,s=−) , (B.35)

is a 2Lz × 2 matrix.
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