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Abstract

We study the dynamical generation of randomness in Brownian systems as a function of
the degree of locality of the Hamiltonian. We first express the trace distance to a unitary
design for these systems in terms of an effective equilibrium thermal partition function,
and provide a set of conditions that guarantee a linear time to design. We relate the trace
distance to design to spectral properties of the time-evolution operator. We apply these
considerations to the Brownian p-SYK model as a function of the degree of locality p.
We show that the time to design is linear, with a slope proportional to 1/p. We corrobo-
rate that when p is of order the system size this reproduces the behavior of a completely
non-local Brownian model of random matrices. For the random matrix model, we rein-
terpret these results from the point of view of classical Brownian motion in the unitary
manifold. Therefore, we find that the generation of randomness typically persists for
exponentially long times in the system size, even for systems governed by highly non-
local time-dependent Hamiltonians. We conjecture this to be a general property: there
is no efficient way to generate approximate Haar random unitaries dynamically, unless a
large degree of fine-tuning is present in the ensemble of time-dependent Hamiltonians.
We contrast the slow generation of randomness to the growth of quantum complexity
of the time-evolution operator. Using known bounds on circuit complexity for unitary
designs, we obtain a lower bound determining that complexity grows at least linearly
in time for Brownian systems. We argue that these bounds on circuit complexity are
far from tight and that complexity grows at a much faster rate, at least for non-local
systems.
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1 Introduction

The Hilbert space provides a largely redundant description of the set of physically accessible
states of a conventional many-body quantum system. Namely, starting from some physical ref-
erence state, it is impossible for a system to dynamically explore the vast majority of the Hilbert
space efficiently restricted to few-body interactions, given that such class of Hamiltonians can
only generate a polynomial quantum computation [1].

Still, it is interesting to consider more general systems governed by Hamiltonians with a
larger degree of non-locality, systems for which the Hilbert space as a whole could make sense.
In general, given some Hilbert space H of dimension d, any two pure states |ψ1〉 , |ψ2〉 ∈H can
be efficiently connected by a large class of non-local Hamiltonians. For instance, for mutually
orthogonal states, explicit Hamiltonians which perform this task can be easily written down,

H = |ψ2〉 〈ψ1|+ |ψ1〉 〈ψ2|+H⊥ , (1)

where H⊥ acts trivially on the subspace generated by |ψ1〉 and |ψ2〉. To set the timescale, we
require the Hamiltonian to be normalized such that Tr(H2) = d.1 The time evolution with (1)
generates |ψ2〉 from |ψ1〉 in a time t = π

2 . The form of (1) can be trivially generalized to the
case of non-orthogonal states, which is the case with unit probability if |ψ2〉 and |ψ1〉 were to
be relatively random. In this sense, all of H becomes physical if non-local Hamiltonians are
allowed.

1This normalization simply fixes the variance of the Hamiltonian in the maximally mixed state, and the eigen-
values of H generally correspond to O(d0) numbers.
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To set up the terminology, from now on we shall refer to conventional many-body systems
with few-body interactions as p-local systems, where p denotes the degree of locality of the
Hamiltonian in some natural factorization of the Hilbert space, and is always taken to be fixed
as the system is scaled.2 On the other hand, we shall refer to systems which are not p-local as
non-local systems, without particular reference to the precise scaling of the degree of locality
of the Hamiltonian.

Non-local systems have been proven really useful as analytic models of structured chaotic
Hamiltonians; an observation that originated with the study of heavy atomic nuclei [2–5]. At
early times, however, the behavior of p-local and non-local systems is significantly different.
Non-local systems generally scramble localized information – assuming such a notion even ex-
ists – parametrically faster than the fastest conventional chaotic systems, which are expected
to correspond to black holes [6–11]. Moreover, non-local systems are believed to behave as
‘hyperfast quantum computers’, in the sense that the time-evolution in these systems generally
corresponds to an exponentially powerful quantum computation, one which cannot be repro-
duced efficiently by any conventional quantum computer [12–16]. Some of these significant
differences become irrelevant at the level of the late time physics where p-locality is less man-
ifest. For example, in both cases nearby eigenvalues of time-independent Hamiltonians tend
to repel each other and the unfolded energy spacings in the spectrum are statistically deter-
mined by a Wigner-Dyson distribution. This common feature is what defines quantum chaos
in conventional systems at the level of the spectrum [2–5].

In this paper, we study the role of p-locality in the dynamical generation of unitary ran-
domness in chaotic many-body quantum systems. We identify a surprising common feature
between p-local and non-local systems, when it comes to the dynamical generation of unitaries
distributed according to the Haar measure. Intuitively, p-local systems are not expected to be
efficient unitary randomness generators, given that Haar random unitaries are exponentially
complex to implement on a quantum computer. However, we find that the non-local systems
that we study in this paper, albeit being quite generic, also fail to generate randomness effi-
ciently. We can informally state our main conjecture, which posits the full generality of our
results, in the form:

Most non-local time-dependent Hamiltonians fail to efficiently generate Haar random uni-
taries.

Let U(d) denote the space of unitary transformations acting on H. More precisely, we
conjecture that for most time-dependent Hamiltonians the time-evolution operator

U(t) = T exp(−i

∫ t

0

dsH(s)) , (2)

is distinguishable – in a sense which will be made precise later – from typical unitary drawn
from the Haar distribution on U(d) at polynomial times t = poly(log d). As a consequence,
the Haar distribution of unitaries in U(d) cannot be generated dynamically in any realistic
timescale, and might be regarded as effectively unphysical in all cases, even if highly non-
local systems were to exist.

As an example, we can consider the Hilbert space H of N qubits such that d = 2N . The fail-
ure of efficiency here means that even if we consider a fully non-local time-dependent random
Hamiltonian with a natural normalization, it still takes a time which is superpolynomial in N
to generate unitaries which well-approximate all moments of the Haar distribution. This is
the motivation for our focus on polynomial (efficient) versus exponential (inefficient) scaling
with N ∝ log d, which is the entropy of the maximally mixed state on the Hilbert space.

2Throughout this paper, locality refers to the number of degrees of freedom that interact in a given term in the
Hamiltonian, not to any notion of geometric locality.
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An obvious objection to our conjecture comes from the fact that for any unitary, there are
explicit choices of time-independent Hamiltonians which generate it efficiently. This applies to
Haar random unitaries as well. Say we pick a unitary UHaar sampled randomly from the Haar
distribution. This unitary can indeed be reached in a unit of time with the time-independent
Hamiltonian

HHaar ≡ i log UHaar ⇒ UHaar = e−iHHaar , (3)

where the eigenvalues of this Hamiltonian are defined in the interval (−π,π] so that the log-
arithm has the usual branch cut. The Hamiltonian (3) is correctly normalized up to O(d0)
proportionality constants with extremelly high probability, given that the eigenvalues of a
Haar random unitary are approximately uniformly distributed phases. Therefore, we have
constructed, for any Haar random unitary, a time-independent Hamiltonian which generates
it efficiently.

However, we claim that Hamiltonians like (3), or time-dependenent generalizations, which
are able to generate Haar random unitaries efficiently, are either: i) highly atypical in any
reasonable ensemble of Hamiltonians, and due to the concentration of the measure defining
the ensemble at large values of d, are exponentially unlikely (in d) to be generated, or ii) arise
typically in ensembles of Hamiltonians which are extremely concentrated and violate universal
properties of random matrices.

A way to see this for HHaar in (3) is to consider its spectrum. Recall that the nearby eigenval-
ues of a random Hamiltonian repel each other, and the spectrum behaves as a one-dimensional
Coulomb gas confined in a potential. The potential determines the particular ensemble of
Hamiltonians. In a mean field approximation, the spectral density can be determined from
the static equilibrium of the Coulomb gas on this potential; the binding force of the potential
balances the Coulomb repulsion of the rest of the particles. This produces some profile for the
mean density of eigenvalues, with a vanishing denisty as one approaches the so-called spectral
edges.

On the other hand, the Hamiltonian HHaar has approximately uniform spectrum, i.e. mean
density of states, on an interval. Therefore, it can only arise as a highly atypical member of
any ensemble of Hamiltonians defined by a smooth potential. In this sense, the Hamiltonian
(3) is exponentially unlikely to be generated [17].

If, on the contrary, HHaar is to represent a typical member of an ensemble of Hamiltonians,
the measure in the space of Hamiltonians defining this ensemble has to be able to counter the
eigenvalue repulsion locally to generate a uniform density close to the edges. This can only
happen provided that the measure defined by the potential is extremely concentrated, like for
instance for the case of an infinite well potential. Still, this is not enough to construct (3). Finer
spectral properties, like the long-range eigenvalue repulsion, needs to be modified for HHaar
given that the phases of a Haar random matrix belong to the unitary circular ensemble [5]. For
instance, eigenvalues at opposite edges of the interval must possess a strong repulsion, even if
they are far away from each other. Therefore, the measure in the space of Hamiltonians needs
to incorporate all of these features, which are highly artificial from the point of view of the
universal features of random Hamiltonians.

Another way to see that the construction of HHaar is extremelly fine-tuned is to note
that perturbing the time-evolution by a small amount of time would completely destroy the
Haar-randomness of UHaar. In particular, at two units of time the ensemble of unitaries
U2

Haar = exp(−2iHHaar) will fail to be distributed according to the Haar measure, and this will
be very manifest even at the level of low moments of the distribution. In fact, if we only require
to spoil exponentially high moments of the distribution, it will be enough to consider an expo-
nentially small time-evolution U t

Haar = exp(−i tHHaar), for a time |t − 1| ≳ O(exp(−d log d)).3

3This can be signaled e.g. from the k-th frame potential [18] which for the ensemble Un
Haar scales as nkk!.

4

https://scipost.org
https://scipost.org/SciPostPhys.17.6.151


SciPost Phys. 17, 151 (2024)

Figure 1: In the p-local Brownian model, the Hamiltonian at each time step is re-
stricted to be few-body. In the completely non-local Brownian model the Hamiltonian
is a random matrix at each time step and the Brownian motion inU(d) is unrestricted.
The formation of an approximate k-design takes a time (up to logarithmic factors)
linear in k in both cases.

Such a dynamical instability is another piece of evidence that shows that this construction is
extremely fine-tuned.

Our conjecture generalizes these considerations to the case of time-dependent Hamiltoni-
ans.

A robust linear growth in design for Brownian systems

The dynamical approach to randomness can be quantified in quantum information theoretic
terms by introducing a notion of k-randomness known as a unitary k-design: a distribution
of unitaries which reproduces the first k moments of the Haar distribution. Unitary designs
play a prominent role in many corners of quantum information theory [19–33], many-body
quantum chaos [18,34–37] and in models of black holes [6].

In this paper, we will continue the study initiated in [36] and analyze how k-randomness
is generated as a function of time for a general class of time-dependent Hamiltonians. The
continuous systems that we will consider emulate random circuits in that they are defined
by picking the couplings of the operators that define the Hamiltonian randomly and indepen-
dently at each instant of time (see Fig. 1). This is, in some sense, the most random dynamical
evolution one can consider, while being restricted to p-body interactions. Intuitively, such
systems define a Brownian motion in U(d), which is inherited from the exponentiation of the
standard Brownian motion in the algebra u(d) of Hamiltonians. For p-local systems, the Brow-
nian motion is restricted to the p-local directions of u(d). For completely non-local systems,
the Brownian motion is unrestricted.

As we will show in this paper, both for the p-local and the non-local cases, the time to
k-design for a Brownian system is linear in k. As a consequence, this makes the time to reach
the Haar distribution exponential in the system size. Therefore, our results imply that such
generic time-dependent Hamiltonians are slow generators of randomness, independently of
the degree of locality of the Hamiltonian.

Note that, in actual random quantum circuits with few-body gates, the linear growth of
the time to design with k is known to be optimal, for the reason that discrete k-designs have
exp(k) many distinct unitaries. The non-trivial part then becomes to indeed show that this
linear growth is saturated. While it is known that k-designs with a polynomial value of k are
formed efficiently, the proof of general linear growth remains elusive [23–26, 30–32, 38–42].
Our results for p-local Brownian systems signal that the linear growth is generally saturated
for the continuous version of these random circuits.
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Figure 2: Comparison between the expected linear growth of circuit complexity (in
red) and the linear growth of the lower bound in complexity for a design (in blue)
that we compute for a typical Brownian p-body Hamiltonian. We observe that there
is a parametric separation between the time at which circuit complexity saturates
tsat and the time to reach approximate Haar random tHaar. On the left, the situation
for a p-local system, where both timescales are exponential in system size (log d).
On the right, the situation for a completely non-local system, where saturation of
circuit complexity occurs at a poly(log d) timescale, while the time to Haar is poly(d),
exponential in system size.

On the other hand, the non-local systems that we study in this paper involve continuous
time evolutions with fairly general, and even completely non-local, time-dependent Hamilto-
nians. In this case, the analogy with random quantum circuits with arbitrary non-local unitary
gates is no longer useful, and there is no obvious upper bound on the growth in design. The
fact that we find such a slow growth of randomness for non-local Brownian models provides
evidence in favor of our conjecture.

Complexity vs randomness

In light of our conjecture, the main goal of this paper is to make a quantitative distinction of
the many-body quantum systems whose dynamical evolution can be catalogued as a ‘hyperfast
quantum computation’ from the systems whose time-evolution corresponds to a ‘hyperfast
randomization’. The former are expected to be very common among the most general non-
local systems; however, our conjecture suggest that the latter are extremely rare.

In this direction, invoking the bounds on “complexity by design” derived in [18] and used
in [35], the robust linear growth in design for Brownian systems translates into a growth which
is at least linear for the circuit complexity of the time-evolution operator U(t) for these systems.
These bounds also have an avatar for the strong notion of quantum complexity introduced
in [43]. Strong complexity is more tightly related to the generation of randomness, in that
it measures the operational cost of distinguishing the unitary channel associated to U from a
perfect randomizer (the maximally depolarizing channel).

On the other hand, we will argue that such estimations provide very loose lower bounds
for the circuit complexity of U(t), at the very least when the latter is drawn from a unitary
design formed dynamically by an ensemble of non-local Hamiltonians.

In particular, as shown in Fig. 2, these bounds imply a robust linear growth on complexity
for both the p-local and the non-local case, with a slope proportional to p, which is another
manifestation of the linear growth in desgin. On the other hand, the growth in circuit com-
plexity is expected to generally be hyperfast in non-local systems, saturating at an O(1) circuit
time. A heuristic argument for this is that, after Trotterization of the time-evolution operator
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at early times, a general non-local Hamiltonian is exponentially complex to implement with
any universal set of few-body gates (see e.g. [44]). These different behaviors simply represent
that

U is maximally complex ≠⇒ U is Haar random, (4)

and thus U(t) can be maximally complex at relatively early times, but it does not become Haar
random in the space of unitaries until exponentially late times in the system size.

The paper is organized as follows. In section 2 we will include background material to
make the paper self-contained. We will define the notion of approximate unitary design, and
derive a way to compute the trace distance to design for general Brownian systems. We will
also state a sufficient set of assumptions which guarantee a linear growth in design. We will
finally relate all of these findings to the spectral properties of the time-evolution operator. In
section 3 we will apply these considerations to the Brownian p-SYK model as a function of p.
We will study the transition between p-local and non-local regimes in the double-scaling limit.
In section 4 we will propose a completely non-local Brownian random matrix model for the
Hamiltonian and study the dynamical generation of randomness in this model, making contact
with the non-local limit of the p-SYK model. For the Brownian GUE model, we will reformulate
our results in terms of classical Brownian motion in U(d). In section 5 we will compare the
slow generation of randomness with the expected hyperfast growth of circuit complexity for
non-local systems. We will provide an alternative argument, using complexity geometry, of
the expected transition between linear to hyperfast complexity growth for a Brownian system
as the degree of locality is scaled. We will end with conclusions and leave complementary
material for the appendices.

2 Generalities: Formation of approximate designs

Let us consider a general Hilbert space H of dimension d. We will study disordered and
possibly time-dependent Hamiltonians H(t)which generate an ensemble EH , formally defined
by some measure DH(t) in the space of time-dependent Hamiltonians. From this ensemble
we can form, at a fixed time t, the corresponding ensemble of time-evolution unitaries

Et =

�

U(t) = T exp(−i

∫ t

0

dsH(s)) : H(t) ∈ EH

�

. (5)

In general, given any ensemble E of unitary operators, its k-th moment map Φ(k)E is defined
as the quantum channel

Φ
(k)
E (X )≡ E

�

U⊗kX (U†)⊗k
�

, (6)

acting on operators X ∈ End(H⊗k). The quantum channel Φ(k)E can equivalently be represented
as the superoperator

Φ̂
(k)
E ≡ E

�

U⊗k ⊗ U∗ ⊗k
�

, (7)

acting on the replicated Hilbert space H⊗2k. We will mostly use the superoperator represen-
tation of Φ(k)E in this paper. If E † = E , then the superoperator is Hermitian, (Φ̂(k)E )

† = Φ̂(k)E .

A unitary ensemble E is a k-design if its k-th moment map Φ(k)E agrees with the k-th moment
map of the Haar ensemble,4

E is a k-design ⇔ Φ̂
(k)
E = Φ̂

(k)
Haar . (8)

4In appendix A we recall some basic facts about Φ(k)Haar.
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More generally, we can define an ϵ-approximate k-design as a unitary ensemble E which is
effectively indistinguishable from an exact k-design up to some tolerance ϵ. For our purposes,
the relevant notion of distinguishability between quantum channels is provided by the trace
distance between the corresponding superoperators. Therefore, we define

E is an ϵ-approximate k-design ⇔




Φ̂
(k)
E − Φ̂

(k)
Haar







1 < ϵ . (9)

Note that alternative definitions of approximate designs exist, most commonly in terms of
the diamond distance between quantum channels [15,45]. These definitions are all related by
factors of the dimension (see e.g. [46]); we recall the relation between (9) and the diamond
definition of design in appendix B.

As a general remark, it is important to realize that many ensembles Et fail to form ap-
proximate unitary k-designs even for small k at arbitrary late times, and thus a time-evolution
operator U(t) ∈ Et drawn randomly from these ensembles does never become Haar typical.
An interesting example is that of an ensemble of unitaries Et generated dynamically by time-
independent Hamiltonians H in some universality class of random matrices. Such systems
were studied extensively in [35]. The time-evolution operator U(t) in these cases is far from
Haar random even at the timescale set by the inverse mean level spacing of the Hamiltonian,
t∆E ∼ ∆E−1. The discrepancy between U(t∆E) and a Haar random unitary is manifest at
the level of the spectral properties of U(t∆E) (this argument has been presented in [18,35]).
The spectrum of U(t∆E) consists, with extremely high probability, of statistically uncorrelated
phases whose phase-separations are Poisson distributed. On the contrary, the spectrum of a
Haar random unitary consists of correlated phases that tend to repel each other. These cases
trivially satisfy our conjecture, given that they are not able to generate randomness even in
the long run.5

A bound on the trace distance from the frame potential

In previous work [18, 30, 35, 36], the strategy to estimate the trace or diamond distance be-
tween the k-th moment maps was to define the k-th frame potential of the unitary ensemble E ,

F (k)E ≡ E
�
�

�Tr(V †U)
�

�

2k�
, (10)

where the expectation value is understood with respect to both U , V ∈ E independently. In
practice, the frame potential is manifestly simpler to compute than the trace or diamond dis-
tance. Moreover, the frame potential is related to measures of early-time chaos; in particular,
it captures an average out of time-order correlator [18].

The difference in frame potentials F (k)E −F (k)Haar is the square of the 2-norm distance between
the k-th moment superoperators

F (k)E − F (k)Haar =




Φ̂
(k)
E − Φ̂

(k)
Haar







2
2 ≥ 0 . (11)

where we recall that the subscript 2 simply represents the standard Schatten 2-norm
∥A∥2 =

p

Tr(A†A), to be distinguished from the 2-norm distance between quantum channels
(see e.g. [46] for the different definitions). The frame potential for the Haar ensemble is
F (k)Haar = k!.

5In [35] it was argued that the ensemble Et inherited from the GUE of Hamiltonians becomes an approximate k-
design at the dip time td ∼

p
d, where the spectral correlations of the Hamiltonian are suppressed, for values k≪ d.

This system would still satisfy our conjecture given that the (finite-temperature) dip timescale is exponential in the
system size; however, it is unclear whether the time-evolution operators ever becomes approximate Haar random
in this system, since this requires to capture an exponentially large number of moments of the Haar distribution
k ≳ d.
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By Hölder’s inequality it follows that




Φ̂
(k)
E − Φ̂

(k)
Haar







2
1 ≤ d2k

�

F (k)E − F (k)Haar

�

. (12)

An analogous bound for the diamond distance follows from (B.2) (see also [30]). Therefore,
the frame potential can be used as a sufficient condition for the formation of an approximate
design in real time

dk
�

F (k)Et
− F (k)Haar

�1/2
< ϵ ⇒ Et is an ϵ-approximate k-design. (13)

However, the factor of the dimension in (12) indicates that, unless the frame potential is close
to the Haar value, F (k)Et

− F (k)Haar < O(1), the upper bound cannot be tight, given that the trace

distance is at most dk (note that F (k)E0
−F (k)Haar = d2k−k!). With additional information about the

channels, we will now provide a way to compute the trace distance to a k-design for general
Brownian systems.

2.1 Moment maps for Brownian systems

In order to proceed, we shall first explain some general features of the quantum channels Φ(k)Et
associated to Brownian systems. Consider a general time-dependent Hamiltonian

H(t) =
K
∑

α=1

Jα(t)Oα , (14)

where the Oα are a set of K Hermitian operators, normalized to satisfy Tr(OαO†
α) = d. The

Brownian ensemble is defined by the specification of the disordered time-dependent couplings
Jα(t), formally given in terms of the path integral measure

E[•] =
1
N

∫

∏

α

DJα(t) e−
K
2J

∫

dt
∑

α Jα(t)2 (•) . (15)

The normalization constant N is determined by the condition E[1] = 1. This ensemble pro-
duces independent Gaussian white-noise correlated random variables, with zero mean and
variance

E [Jα(t)Jα′(0)] =
J
K
δ(t)δαα′ , (16)

where J has dimensions of energy. With this normalization, the Hamiltonian has, at each in-
stant of time, zero expectation value and fixed variance in the maximally mixed state ρ0 =

1
d ,6

E [Tr(ρ0H(t))] = 0 , (17)

E [Tr(ρ0H(t)H(0))] = Jδ(t) . (18)

Under such assumptions, the time-dependent problem of analyzing the moment super-
operator Φ̂(k)Et

reduces to an effective equilibrium thermodynamic problem for an interacting
Hamiltonian between replicas, at inverse temperature t, as illustrated in Fig. 3. More pre-
cisely, the k-th moment superoperator Φ̂(k)Et

can be explicitly rewritten as the unnormalized
thermal density matrix

Φ̂
(k)
Et
=

1
N

∫

∏

α

DJα e−
K
2J

∫

dt
∑

α Jα(t)2 U(t)⊗ · · · ⊗ U(t)∗ = exp (−tHk) , (19)

6Another possible physically reasonable normalization for the Brownian couplings is to choose J to scale exten-
sively with the entropy of the system. Relating the results for both normalizations is straightforward.
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Figure 3: The k-th moment superoperator Φ̂(k)Et
is the unnormalized thermal state for

the effective Hamiltonian Hk at inverse temperature t. The Hamiltonian Hk is time-
independent and couples the 2k replicas together.

for the time-independent effective Hamiltonian [36]

Hk =
J

2K

K
∑

α=1

� k
∑

r=1

Or
α −O

r̄
α
∗

�2

. (20)

In this notation r = 1, . . . , k labels the ‘forward replica’ in which the operator Or
α acts. The

name forward replica simply comes from the orientation of the time-evolution; these replicas
are associated to the r-th U factor of the moment map. On the contrary r̄ = 1, . . . , k labels the
‘backward replica’ in which O r̄

α acts, and which is associated to the r-th U∗ factor. Due to the
square in (20), the effective Hamiltonian Hk contains bi-local couplings between replicas.

Late time limit from the ground space

Let GSk denote the ground space of the effective Hamiltonian Hk defined in (20). At infinite
time, or zero effective temperature, the k-th moment superoperator becomes the orthogonal
projector into this subspace,

Φ̂
(k)
E∞
= exp (−∞Hk) = ΠGSk

. (21)

Therefore, by constructing GSk one learns about the expected late-time limiting behavior of
the quantum channel Φ(k)Et

for a Brownian system.
In general, the effective Hamiltonian (20) contains the following set of ground states,

|Wσ〉=
k
⊗

r=1

|∞〉rσ(r̄) , Hk |Wσ〉= 0 , (22)

where σ ∈ Sym(k). To explain our notation, the state |Wσ〉 simply corresponds to the product
of k infinite-temperature thermofield double (TFD) states |∞〉rs̄ =

1p
d

∑d
i=1 |i, i〉rs̄, where

{|i〉}di=1 is some arbitrary orhonormal basis of H. The permutation σ labels a given pairing
of the k forward and k backward replicas, given that r and σ(r̄) are paired in the TFD. The
k! states {|Wσ〉 : σ ∈ Sym(k)} are not exactly mutually orthogonal, but they are linearly
independent as long as k ≤ d (see e.g. [47–49]).

Let Vk be the subspace of the ground space generated by this set of ground states,

Vk = Span{|Wσ〉 : σ ∈ Sym(k)} ⊂ GSk . (23)

The superoperator Φ̂(k)Haar is the orthogonal projector into this subspace

Φ̂
(k)
Haar = ΠVk

=
∑

σ,τ∈Sym(k)

(Q−1)
στ
|Wσ〉 〈Wτ| , (24)
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where Qστ = 〈Wσ| |Wτ〉 and k ≤ d. We will recall why this is true in appendix A.
Therefore, we see that the necessary and sufficient condition for the Brownian ensemble

to become an exact k-design at infinite times is

Φ
(k)
E∞
= Φ(k)Haar ⇔ Vk = GSk . (25)

In practice, one only needs to check this condition for k ≲ d, since approximate k-designs are
also approximate (k+ 1)-designs for k ≳ d [18].

The condition (25) will be met as long as the effective Hamiltonian has no other linearly
independent ground states to the states of the form (22). Generally, if the set of operators Oα
is all-to-all, in the sense that there are no clusters among the degrees of freedom, and in the
absence of global symmetries for the ensemble, this is expected to be true; however, proving
this requires of the particular form of the operators Oα in (20).7 In appendix C we show that
as a counterexample, the conservation of energy in a Brownian system leads to a situation in
which randomness is never generated.

2.2 Trace distance as a thermal partition function

Given (19), in the case of Brownian systems, it becomes straightforward to compute the
Schatten q-norm distance between the k-th moment superoperators Φ̂(k)Et

= exp(−tHk) and

Φ̂
(k)
EHaar

= ΠVk
, given that these superoperators can be simultaneously diagonalized. Addition-

aly, the spectrum of Φ̂(k)Et
is real and non-negative, while Φ̂(k)EHaar

vanishes in the orthogonal
subspace to Vk.

To this end, we will define the effective thermal partition function at inverse temperature t,

Zk(t)≡ Tr (exp (−tHk)) . (26)

In terms of this partition function, the q-norm distance simply reads




Φ̂
(k)
Et
− Φ̂(k)Haar







q = (Zk(qt)− dim(Vk))
1
q , where dim(Vk) = k! . (27)

Note that in this form the difference of frame potentials corresponds to F (k)Et
−F (k)Haar = Zk(2t)−k!.

The properties (24) and (25) directly follow from (27); the q-norm distance between both
superoperoperators vanishes at infinite late times if and only if Zk(∞) = dim(GSk) = k!,
which implies that Vk = GSk, given that Vk is always a subspace of GSk.

This formula also shows that the q-norm distance (27) to design is non-increasing as a
function of time

d
dt





Φ
(k)
Et
−Φ(k)Haar







q = −Z(qt)
1
q

�

1−
k!

Z(qt)

�

1−q
q

〈Hk〉qt ≤ 0 , (28)

where 〈Hk〉β = Zk(β)−1Tr (Hk exp (−βHk)) is the average energy at inverse temperature β .
The average energy is positive by virtue of Hk ≥ 0. This feature is expected from the Markovian
nature of the Brownian systems.

7 If there exists a global symmetry G preserved by the operators, [Oα, G] = 0, any time-evolution operator
U(t) of the ensemble will be block-diagonal in the decomposition H = ⊕gHg into superselection sectors Hg

of fixed global charge g. Therefore, the ensemble Et will never become an approximate k-design in the full
space of unitaries. At the level of the effective Hamiltonian, Hk will contain additional ground states of the form
|W v

σ
〉 =

⊗k
r=1 |∞, v〉rσ(r̄) where v = {g1, . . . , gk} labels the global charge of each TFD state. As we explain in Ap-

pendix A the ensemble Et might become an approximate block-diagonal k-design, capturing the k-th moment of
the block-diagonal Haar ensemble. Similarly, consider clusters of degrees of freedom H = ⊗ jH j that the operators
Oα do not mix. Then, at the level of Hk, we can form additional ground states |W j

σ
〉 ⊗ |Ψ〉 by pairing the j-th

clusters of each replicas into infinite temperature TFDs and taking the tensor product of the resulting state with
an arbitrary state |Ψ〉 on the rest of the clusters.
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Using (27) for q = 1, we can reformulate the condition (9) for the formation of designs in
Brownian systems

Et is an ϵ-approximate k-design ⇔ Zk(t)− k!< ϵ . (29)

Given these considerations, the time to k-design is defined as

tk ≡ inf
t
{t : Zk(t)− k!< ϵ} . (30)

The goal of the rest of the paper is to compute tk for different Brownian systems, by an-
alyzing the effective thermal partition function Zk(t) as a function of the degree of locality
of the Hamiltonian in those systems. Before proceeding to specific examples, we shall make
some general remarks about the expected behavior of tk for large values of k under a certain
set of general assumptions.

2.3 Linear time to design

We will now state a sufficient set of assumptions which guarantee a time to k-design tk propor-
tional to k for general Brownian systems. These assumptions, which will need to be verified
for the different particular Brownian systems that we will study, are:

1. The ground space of the effective Hamiltonian Hk (20) is linearly generated by the states
of the form (22), that is,

GSk = Vk . (31)

As explained in section 2.1 this is equivalent to the assumption that E∞ is a k-design.

2. The spectral gap ∆k of the effective Hamiltonian Hk is, for sufficiently large k, asymp-
totically independent of k,

∆k ∼ E0 = O(k0) . (32)

3. The number of first excited states N∗ of the effective Hamiltonian Hk scales exponentially
with k,

N∗ ∼ αk . (33)

The intuition behind 2 and 3 is that in systems with large number of degrees of freedom,
each ground state of the effective Hamiltonian typically admits a mean field description in
terms of k semiclassical saddle points connecting each forward replica with a backward replica
[36]. The first excited states then correspond to ‘single particle excitations’ on top of these
mean field saddle points. As isolated excitations, their energy ∆k should be independent of
the number of saddlepoints there are, which is controlled by k. Moreover, the multiplicity N∗
of single-particle excitations should be proportional to the number of ground states, which
scales exponentially with k.8

Assuming condition 1, at sufficiently late times, or small effective temperatures below the
gap, the trace distance to design behaves asymptotically as





Φ̂
(k)
Et
− Φ̂(k)Haar







1 = Zk(t)− Zk(∞)∼ N∗e
−t∆k , (34)

where N∗ is the number of first excited states. Therefore, under the assumptions 2 and 3, this
leads to a time to k-design

tk ∼
1
E0

�

k logα+ logϵ−1
�

, (35)

which, up to logarithmic factors (α could depend on k), gives the promised linear time to
design.

8In sparse systems, verifying assumptions 2 and 3 might be much more subtle. For instance, in spatially local
random circuits, domain walls connecting different vacua can proliferate the IR of the effective Hamiltonian [30].

12

https://scipost.org
https://scipost.org/SciPostPhys.17.6.151


SciPost Phys. 17, 151 (2024)

2.4 Randomness from the spectrum of U(t )

Another interesting observation is that, for Brownian systems, the trace distance to design only
depends on the spectral properties of the time-evolution operator U(t). To see this, we can
use (19) and (26) to rewrite the effective thermal partition function as

Zk(t) = E
�

SFF(U(t))k
�

, (36)

where for any unitary U we have introduced its unnormalized spectral form factor (SFF)

SFF(U)≡ |Tr U |2 . (37)

Let us denote the eigenvalues of U by eiθ j for −π ≤ θ j < π ( j = 1, . . . , d) and by
ρ(θ ) =

∑

j δ(θ − θ j) its eigenphase density. In terms of the eigenphases, the SFF reads

SFF(U) =

∫ π

−π
dθ

∫ π

−π
dθ ′ρ(θ )ρ(θ ′) cos(θ − θ ′) . (38)

That is, the trace distance of Et to a 1-design is controlled by the average value of
cos(θi − θ j) over the spectra of U(t) ∈ Et . Note that for Poisson distributed phase separa-

tions, and a uniform mean density of states, E
�

ρ(θ )ρ(θ ′)
�

= d2

(2π)2 +
d

2πδ(θ − θ
′) and the

average value of (38) is d. This is precisely what happens for systems with conserved energy,
at timescales set by the inverse mean level spacing (i.e. at the plateau of the SFF [50]); we
study an example of energy-conserving Brownian system in Appendix C.

On the other hand, for the Haar ensemble EHaar, the average of (38) attains a much smaller
value. This happens because of the stronger spectral correlations of the eigenvalues of a Haar
random matrix; in particular, the phases tend to repel each other. The eigenphases of a Haar
random matrix are distributed according to the circular unitary ensemble, with joint probabil-
ity distribution [5]

pHaar(θ1, . . . ,θd) =
1

(2π)d d!

∏

i< j

�

�eiθi − eiθ j
�

�

2
. (39)

This probability distribution produces a uniform mean eigenphase density E [ρ(θ )] = d
2π and

a connected two-point correlation for δρ(θ ) = ρ(θ )−E[ρ(θ )],

E
�

δρ(θ )δρ(θ ′)
�

=
d

2π
δ(θ − θ ′)−

sin
�

d θ−θ ′
2

�2

�

2π sin
�

θ−θ ′
2

��2 . (40)

The second part reduces to the usual sine kernel for a Gaussian random matrix in the regime
|θ − θ ′| ≪ π.

In particular, the eigenvalue repulsion between phases is responsible of lowering the aver-
age value of the SFF. This produces

E [SFF(U)] =

∫ π

−π
dθ

∫ π

−π
dθ ′E

�

ρ(θ )ρ(θ ′)
�

cos(θ − θ ′) = d − (d − 1) = 1 . (41)

Similarly, for k ≤ d, the average value of the k-th power of the SFF over the Haar ensemble
is given by E

�

SFF(U)k
�

= k!, which is exponentially smaller in the entropy than the value
dkk! for Poisson distributed phases. This value arises from the 2k-th moments of the spectral
density, E[ρ(θi1) · · ·ρ(θi2k

)]. Using the inversion formula, we can directly read the induced
probability distribution pHaar(SFF) associated to these moments,9

pHaar(SFF)≈ exp(−SFF) . (42)

9This distribution is related to the Porter-Thomas distribution, given that Tr(U) can be interpreted as the sum
over survival amplitudes in any basis of states.
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For Brownian systems, from the general considerations of section 2.1, the eigenvalue re-
pulsion in the spectrum of U(t)will be dynamically generated as a function of time. Given that
(36) is non-increasing and Zk(t) ≥ k!, assuming that the system satisfies the assumptions of
section 2.3, the joint probability distribution for the eigenvalues of U(t) will converge weakly
to (39) at infinite times. This will be signaled by the induced probability distribution pt(SFF)
for the SFF from ensemble of unitaries Et , which will converge weakly to (42). As an example,
for k = 1 the two-point eigenvalue repulsion that U(t) will develop will be responsible of the
plateau value of the SFF for a Brownian system. At finite times, the ensemble Et becomes
an approximate k-design when the 2k-th spectral moment E[ρ(θi1) · · ·ρ(θi2k

)] approximately
agrees with that of (39). This will take a time which is parametrically linear in k for Brownian
systems satisfying the assumptions of section 2.3.

3 Brownian SYK: From p-local to non-local

In this section, we will study the generation of randomness in the Brownian p-SYK model,
a system of N Majorana fermions ψ1, . . . ,ψN satisfying the anticommutation relations
{ψi ,ψ j}= 2δi j . The Hamiltonian of the system is all-to-all and couples the fermions in groups
of even p,

H(t) = i
p
2

∑

i1<···<ip

Ji1···ip(t)ψi1 · · ·ψip . (43)

The Brownian model is defined by (15) for the independent random couplings Ji1...ip(t), with

K =
�N

p

�

. That is, the couplings possess Gaussian white-noise correlations, with zero mean and
a two-point function

E
�

Ji1···ip(t)Ji′1···i′p
(0)
�

=
J
�N

p

�δ(t)δi1,i′1
· · ·δip ,i′p

. (44)

With this normalization of the couplings, the Hamiltonian at each instant of time has zero
mean and fixed variance in the maximally mixed state ρ0 =

1
d ,

E [Tr (ρ0H(t)H(0))] = Jδ(t) . (45)

Note that our choice of normalization of the couplings is different from the normalization of
e.g. [51] by a factor of N/p2 (commonly denoted by 2/λ in the double-scaled SYK literature).
The reason for our choice of normalization is that it is convenient to select a p-independent
Brownian amplitude (45), so that we can properly compare how randomness is generated
for different values of p. Moreover, we will make the amplitude N -independent to make our
choice consistent with (18); however, restoring the factors of N is straightforward.

As we derived in section 2.1 from the structure of the Hamiltonian and the random cou-
plings, the k-th moment superoperator Φ̂(k)Et

can be written as the unnormalized thermal state
(19) for the effective Hamiltonian

Hk =
J

2
�N

p

� ip
∑

i1<···<ip

 

k
∑

r,r̄=1

�

ψr
Ip
− (−1)

p
2ψr̄

Ip

�

!2

, (46)

where we used the shorthand notation ψIp
= ψi1 · · ·ψip for the collective fermion variables.

Again, the index r(r̄) labels the forward (backward) replica. The factor of (−1)
p
2 represents

the fact that for p ≡ 2 (mod 4) the system does not possess time-reflection symmetry, and the
complex conjugate of the operators in the backward replicas pick up a relative minus sign.

14

https://scipost.org
https://scipost.org/SciPostPhys.17.6.151


SciPost Phys. 17, 151 (2024)

Global symmetries: Fermion parity

We shall consider N to be even in order to simplify the discussion. Let us recall some basic
facts about the model. The Hilbert space H, of dimension d = 2

N
2 , consists of N/2 Dirac

fermions [50,51]

c j =
ψ j − iψN− j
p

2
, c†

j =
ψ j + iψN− j
p

2
, j = 1, . . . ,

N
2

. (47)

For our purposes, it will be important to consider the fermion number operator

Q =
N/2
∑

i=1

c†
i ci . (48)

In particular, fermion parity G = (−1)Q is conserved by each Hamiltonian of the form (43).
This implies that [G, Hk] = 0 at the level of the effective Hamiltonian. Due to this symmetry,
there will be many more ground states of the effective Hamiltonian Hk (46) and Vk will in this
case be a proper subspace of GSk. The superoperators Φ̂(k)Et

and Φ̂(k)Haar will never be close in
trace distance, and the ensemble Et will never become an approximate k-design for any k.

To circumvent this complication that arises only due to the fermionic nature of the model,
we can study the generation of randomness on each superselection sector of G. That is, we
consider the decompositionH =H+⊕H− in odd an even fermion parity sectors, and ensembles
EU of unitaries U of block diagonal form in this decomposition, satisfying [G, U] = 0. There
will a block-diagonal Haar ensemble EHaarG

(see appendix A). In what follows, we will study
the generation of block-diagonal randomness of Et for the Brownian SYK model.

To do that, let us come back to the effective Hamiltonian (46) and note that there are now
two linearly independent infinite-temperature TFD states between replicas r and s̄, due to the
two fermion parity sectors. These are defined to be the Fock vacuum state and the maximally
excited state of the N rs̄-Dirac fermions,

�

ψr
j + iψs̄

j

�

|∞, 1〉rs̄ = 0
�

ψr
j − iψs̄

j

�

|∞, 2〉rs̄ = 0







∀ j = 1, . . . , N . (49)

The two states are related by fermion parity, |∞, 1〉rs̄ = (−1)Qr |∞, 2〉rs̄, where Qr is the
fermion number operator (48) acting on the r Hilbert space. In particular, we can define
fermion even and odd infinite-temperature TFD states

|∞,±〉rs̄ =
1± (−1)Qr

2
|∞, 1〉rs̄ . (50)

These states are also even and odd with respect to (−1)Q s̄ .
The ground space of the effective Hamiltonian (46) is linearly generated by states of the

form [36]

|W v
σ〉=

k
⊗

r=1

|∞, vr〉rσ(r̄) , Hk |W v
σ〉= 0 , (51)

where σ ∈ Sym(k) and v ∈ {±}k. These are simply the product of k infinite-temperature TFD
states between forward and backward replicas, paired by the permutation σ, with a suitable
choice of fermion parity for each TFD, represented by v. That is, we find

GSk = Span{|W v
σ〉 : σ ∈ Sym(k) , v ∈ {±}k} ≡ V G

k . (52)
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By the considerations in appendix A, the corresponding superoperator Φ̂(k)HaarG
for the block-

diagonal Haar ensemble is the orthogonal projector into this subspace,

Φ̂
(k)
HaarG

= ΠV G
k
=

∑

σ,τ∈Sym(k)
v,w

(Q−1)vw
στ
|W v
σ〉 〈W

w
τ | , (53)

where Qvw
στ = 〈W

v
τ | |W

w
σ 〉 and k ≤ d.

The generation of an ϵ-approximate block diagonal k-design can be then diagnosed by the
trace distance to the block-diagonal Haar moment superoperators,





Φ̂
(k)
Et
− Φ̂(k)HaarG







1 = Zk(t)− Zk(∞) , (54)

where Zk(∞) = dim(GSk) = 2kk!.

Particle-hole symmetry

Let us finally comment on additional global symmetries, which arise as a function of the value
of N (mod 8) and can affect the discussion. These are associated to the particle-hole symmetry
of the model, which in terms of the Dirac fermions (47) is given by [50,52–54]

P =
N/2
∏

i=1

�

ci + c†
i

�

K , (55)

where K is an anti-linear operator that maps z→ z̄ for z ∈ C.
For N = 0 (mod 8) this symmetry does not generate a protected degeneracy in the spec-

trum to begin with. If N = 2,6 (mod 8), then P maps the odd and even fermion parity sectors
to each other, and there is no degeneracy on individual sectors, although there is one be-
tween sectors. Any of these cases follows the general considerations above for the generation
of block-diagonal Haar random unitaries. For N = 4 (mod 8), however, there is a two-fold
degeneracy on individual fixed-parity sectors. It is only in this case where the effective Hamil-
tonian has additional ground states with fixed fermion parity. To avoid this complication, we
will implicitly restrict to N ̸= 4 (mod 8) in what follows.

3.1 Time to design

As noted in [36], the first excited states of the effective Hamiltonian Hk obtained in (46) for
p = 4 are elementary fermion excitations above each ground state. This will also be true for
general p. Consequently, we shall not attempt to use the large-N collective mode description of
this model in this paper, given that this method will not lead to the information of the spectral
gap ∆k and of the degeneracy of first excited states N∗ that we need. In what follows, we will
examine the effective Hamiltonian (46) by direct diagonalization.

Formation of a 1-design

We shall begin with k = 1, in which case the effective Hamiltonian (46) can be written as

H1 = J
�

1−ψ11̄
p

�

, ψ11̄
p ≡

1
�N

p

�

∑

i1<···<ip

ψ1
Ip
ψ1̄

Ip
. (56)

Consider the set of states built from a single fermion excitation above any of the two ground
states

|i; v〉=ψ1
i |W

v
e 〉 , i = 1, . . . , N , v ∈ {±} . (57)
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Here e ∈ Sym(1) represents the trivial permutation, while v represents the fermion parity of
the TFD, |W v

e 〉 = |∞, v〉11̄. Given that we can choose any i ∈ {1, . . . , N}, there are a total of
N∗ = 2N such states. Note that the value of v in |i; v〉11̄ only represents the fermion parity of
the associated ground state, which is the opposite to the parity of |i; v〉11̄ with respect to the 1
replica.

Commuting the single Majorana fermion with each term forming ψ11̄
p gives

ψ1
Ip
ψ1

i =ψ
1
iψ

1
Ip
×

¨

−1 , if i ∈ Ip ,

+1 , otherwise.
(58)

Therefore, commuting ψ11̄
p with ψ1

i , there are
�N−1

p−1

�

terms in the sum over Ip which contain

ψ1
i and give a minus sign, and

�N
p

�

−
�N−1

p−1

�

terms which do not containψ1
i and give a plus sign.

After permuting the single fermion, we can use thatψ1
Ip
ψ1̄

Ip
|W v

e 〉= |W
v
e 〉. The states (57) then

correspond to the first excited states of the effective Hamiltonian (56), with energy given by
the spectral gap ∆1,

H1 |i, v〉=∆1 |i, v〉 , ∆1 = J

 

1−

�N
p

�

− 2
�N−1

p−1

�

�N
p

�

!

=
2J p
N

. (59)

More generally, we can consider states of the form

|I1
n , I 1̄

m; v〉=ψ1
In
ψ1̄

Im
|W v

e 〉 , (60)

where ψ1
In
≡ ψ1

i1
· · ·ψ1

in
and ψ1̄

Im
≡ ψ1̄

i1
· · ·ψ1̄

im
are Majorana strings. In order to keep track

of the lineraly independent states, it is convenient to restrict to even values of m, so that the
fermion parity of the 1̄ factor is given by v. There is a total of Nn,m =

�N/2
n

��N/2
m

�

linearly
independent states of the form (60), where n, m ≤ N/2. Given all possible choices of n and
even m, these states generate a complete basis of the double Hilbert space.

The states (60) are all eigenstates of the effective Hamiltonian,

H1 |I1
n , I 1̄

m; v〉= En,m |I1
n , I 1̄

m; v〉 , En,m = J

 

1−
f p
n f p

m
�N

p

�

!

, (61)

where we have defined

f p
n ≡

min{p,n}
∑

α=0

(−1)α
�

n
α

��

N − n
p−α

�

. (62)

The combinatorial factor
�n
α

��N−n
p−α

�

basically counts the number of Majorana strings inψ11̄
p that

share αMajorana fermions with a givenψ1
In

. The factor of (−1)α arises from the commutation

of these Majorana strings with ψ1
In

. In Fig. 4 we plot the numerical spectrum of H1, which is
in complete agreement with our analytic formula (61).

For (n+m)p≪ N , the low-lying excitations given by (61) are approximately additive

En,m ≈∆1(n+m) . (63)

The partition function Z1(t) = Tr(e−tH1) at late times is therefore approximately that of a
collection of Neff = γN/p free fermionic oscillators on top of each ground state, for some
γ≪ 1,

log Z1(t)≈ log2+ Neff log(1+ e−∆1 t) . (64)
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Figure 4: Spectrum of H1 for N = 14 and p = 4. There are 2 ground states and
N∗ = 28 first excited states with energy ∆1 = 8J/14. Most of the states have energy
En,m ≈ J . At larger values of N , for p≪ N , the spectral gap ∆1 becomes parametri-
cally smaller than J and a tower of states with En,m ≈∆1(n+m) develops.

This gives a time to approximate 1-design of

t1 ≈∆−1
1 log

1

(1+ ϵ
2)

1
Neff − 1

≈
N

2J p

�

log2N + logγ− log p+ logϵ−1
�

, p≪ N . (65)

As a self-consistency check, it is easy to see that the rest of the states with energies close to
J provide a very small correction to the partition function at the time (65). We would have
obtained a slightly worse approximation following the general considerations of section 2.3,
and neglecting all but the first excited states.

Note that the approximation leading to (65) is only valid for p≪ N , for which the spectral
gap ∆1 is parametrically smaller than J and Neff ≫ 1, so that we only need to consider the
tower of low-lying excitations. For p ∼ N , the spectral gap is precisely ∆1 ∼ J , and so is the
energy of approximately all the rest of the states. In this case, a better approximation is

Z1(t)− Z1(∞)≈ (2N − 2)e−J t , (66)

which leads to

t1 ≈
1
J

�

N log 2+ logϵ−1
�

, p ∼ N . (67)

We observe that, even though the gap gets larger and becomes O(J) as p is increased, the
number of relevant states in the decay of the partition function also increases, which makes
(67) parametrically large in N , even for the most non-local model. Of course, this scaling with
system size is an artifact of choosing a N -independent normalization for the variance of the
Hamiltonian in (45).10

10Normalizing the variance of the Hamiltonian to scale extensively with N , yields a time t1 which is of the
order of the scrambling time for these systems. For p-local SYK the scrambling time scales with log N while in the
completely non-local regime it is O(1).
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Formation of a k-design

Expanding the square, the effective Hamiltonian (46) can be recognized as

Hk = J

�

k−
∑

r,s

ψrs̄
p + (−1)

p
2

∑

r<s

(ψrs
p +ψ

r̄ s̄
p )

�

, (68)

where we have defined the fermion bilinears

ψab
p ≡

1
�N

p

�

∑

i1<···<ip

ψa
Ip
ψb

Ip
, for a, b ∈ {1, . . . , k, 1̄, . . . , k̄} . (69)

Let us consider a given ground state |W v
σ〉 of (68). The first excited states of Hk are formed

by single forward and backward replica excitations on top of this state

|I r
n, Iσ(r̄)m ;σ, v〉=ψr

In
ψ
σ(r̄)
Im
|W v
σ〉 . (70)

Note that the fermion strings are placed on the forward and backward replicas of the same
infinite-temperature TFD state in |W v

σ〉.
Consider σ = e for simplicity. From the Clifford algebra it follows that

�

ψab̄
p +ψ

bā
p − (−1)

p
2 (ψab

p +ψ
ā b̄
p )
�

|I r
n, I r̄

m; e, v〉= 0 , (71)

for any a, b ∈ {1, . . . , k} with a ̸= b. Moreover, we have that

ψaā
p |I

r
n, I r̄

m; e, v〉= |I r
n, I r̄

m; e, v〉 , ∀ a ∈ {1, . . . , k} , a ̸= r , (72)

ψr r̄
p |I

r
n, I r̄

m; e, v〉=
f p
n f p

m
�N

p

� |I r
n, I r̄

m; e, v〉 , (73)

were f p
n is defined in (62).

Then, it directly follows that such a state is an eigenstate of Hk in (68), with eigenvalue

Hk |I r
n, I r̄

m; e, v〉= En,m |I r
n, I r̄

m; e, v〉 , En,m = J

 

1−
f p
n f p

m
�N

p

�

!

. (74)

Given that Hk is invariant under permutations of the backward replicas, this means that all
the states (70) for general σ ∈ Sym(k) are also eigenstates of Hk with the same energy.

The gap is obtained from En,m for n= 1 and m= 0

∆k =
2J p
N

, (75)

which is independent of k, showing that this system satisfies the requirement 2 of section 2.3.
Again, for (n+m)p≪ N , the low-lying excitations given by (74) are approximately addi-

tive, and the partition function Zk(t) = Tr(e−tHk) at late times is therefore approximately that
of a collection of Neff = γN/p free fermionic oscillators on top of each ground state, for some
γ≪ 1. This gives

Zk(t)∼ 2kk!(1+ e−∆k t)Neff , (76)

which leads to a time to k-design

tk ∼
N

2J p
(k log k− k+ k log 2+ logγN − log p+ logϵ−1) , p≪ N . (77)
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Up to logarithmic and subleading factors, we find that the time to design is linear in k, in
complete agreement with the results of [36].

On the other hand, when p ∼ N , all of the states (70) have approximately energy J . The
number of states (70) per ground state is k × 2N−1, where the factor of k comes from the
different replicas in which a given ground state can be excited, and the factor of 2N−1 is the
Hilbert subspace dimension generated by single-replica excitations (these excitations do not
change the backward fermion parity of the TFD). A better approximation to the trace distance
to design at sufficiently late times is in this case

Zk(t)− Zk(∞)∼ 2kk!k(2N−1 − 1)e−J t . (78)

This leads to time to k-design

tk ∼
1
J

�

k log k− k+ (k+ N − 1) log2+ log k+ logϵ−1
�

, p ∼ N , (79)

which, up to logarithmic and subleading factors, is also linear in k. The linear growth implies
that the time to approximate Haar random tHaar (which is achieved for k ≳ d) in the completely
non-local Brownian SYK model is exponential in the system size, J tHaar ≳ O(2

N
2 ).

3.2 Double-scaling limit

It is useful to take the double-scaling limit of the SYK model [50,55–57] to see the transition
between the p-local and the completely non-local regimes. The double-scaling limit is defined
by

N →∞ , λ≡
2p2

N
fixed, q= e−λ . (80)

This simplifies the analysis substantially, given that in this regime the number of fermions in
common between two Majorana stringsψIp

andψI ′p̃
, denoted by |Ip∩ I ′p̃|, is Poisson distributed

over the set of allψIp
of size p, with mean pp̃

N (and similarly forψI ′p̃
). From the Clifford algebra,

ψIp
ψI ′p̃
= (−1)|Ip∩I ′p̃|ψI ′p̃

ψIp
. (81)

Therefore, in the double scaling limit (80), when considering Majorana strings acting on |W v
σ〉,

we can replace

ψrs̄
p ψ

r
I p̃
|W v
σ〉= q∆p̃ψr

I p̃
ψrs̄

p |W
v
σ〉 , ∆p̃ =

p̃
p

, (82)

where the permutation σ satisfies σ(r) = s. The value of q∆p̃ is essentially the mean value of
the phase in (81) over the Poisson distribution.

Formation of a 1-design

In the double scaling limit, we can use (82) to write down

ψ11̄
p ψ

1
In
|W v

e 〉= q∆nψ1
In
ψ11̄

p |W
v
e 〉 , ∆n =

n
p

. (83)
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The operator ψ11̄
p can be interpreted as an ‘average chord operator’ connecting replicas 1 and

1̄ together, diagramatically represented by

(84)

Moreover, the identity (83) can be represented as the rule

(85)

The infinite-temperature TFDs |∞,±〉11̄ are invariant under the action of the chord oper-
ator. This is represented diagramatically by the fact that the chord can contract when they act
over these states

(86)

For simplicity, we are omitting the details on the fermion parity of the TFDs, but a factor of
(−1)Qr needs to be included in order to talk about the two independent states. The chord
operator is invariant under this symmetry.

From these diagrammatic rules, it is straightforward to see that the states |I1
n , I 1̄

m; v〉 defined
in (60) are all eigenstates of the effective Hamiltonian H1, with eigenvalue

En,m = J(1− q∆n+∆m) . (87)

Note that in the corresponding limit n → 1 and m → 0 this expression recovers the spectral
gap∆1 that we computed exactly in (75). In fact, (87) follows from the exact eigenvalue (62)
by noting that

�n
α

��N−n
p−α

�

�N
p

� ∼
( pn

N )
α

α!
e−

pn
N , (88)

asymptotically approaches the Poisson distribution in the scaling limit in which pn
N is kept finite.
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Using (87) it is easy to see the different regimes. For finite λ, we have that

En,m ≈

¨

∆1(n+m) , for n, m≪ p ,

J , for n+m≫ p .
(89)

In this case there is a parametric separation between ∆1 and J set by the double-scaling pa-
rameter λ. In particular, the number of allowed additive levels is controlled by

Neff =
J
∆1
− 1=

p−λ
λ
≫ 1 . (90)

The trace distance to 1-design is then determined by the Neff free fermion oscillators on top of
each ground state and, additionally, the rest of the states with energy J ,

Z1(t)≈ 2(1+ e−∆1 t)
p−λ
λ + (2N − 2

p
λ )e−J t . (91)

This expression interpolates between (64) for finite λ (with γ≈ 1) and (66) for the completely
non-local limit λ → p (i.e. p → N/2). Accordingly, the time to 1-design t1 interpolates
between (65) and (67) as a function of the degree of locality of the Hamiltonian.

Formation of a k-design

In a completely analogous way, the distance to k-design can be written in the double-scaling
limit as

Zk(t)∼ 2kk!k (1+ e−∆k t)
p−λ
λ + 2kk!k(2N−1 − 2

p
λ )e−J t . (92)

This expression interpolates between (76) for finite λ (with γ ≈ 1) and (78) in the non-local
limit λ → p. Accordingly, the time to k-design tk interpolates between (77) and (79) as a
function of the degree of locality of the Hamiltonian.

3.3 Non-local limit

In the limit q→ 0 (λ→∞) it is possible to solve the spectrum of the effective Hamiltonian
exactly, given that all of the crossings are suppressed in this limit. In this case the chord
operators become orthogonal projectors onto infinite-temperature TFD states

lim
q→0

ψab
p =

∑

v=±
|∞, v〉ab 〈∞, v|ab , (93)

for a, b ∈ {1, . . . , k, 1̄, . . . , k̄}. For a = r, b = s̄ this is represented by the diagram

(94)

This identity follows from the fact that the infinite-temperature TFDs are invariant under the
chord operator, while all other states, constructed by applying suitable Majorana strings on
top of the infinite-temperature TFDs, will be annihilated after commuting the Majoranas with
the chord operator.
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In this limit, the effective Hamiltonian (68) becomes

Hk = J

�

k−
∑

r,s

|∞,±〉rs̄ 〈∞,±|rs̄ + (−1)
p
2

∑

r<s

(|∞,±〉rs 〈∞,±|rs + |∞,±〉r̄ s̄ 〈∞,±|r̄ s̄)

�

, (95)

where we are leaving the sum over ± implicit.
As we will see in the next section, this class of Hamiltonians arises naturally in completely

non-local Brownian random matrix models. In particular, for time-reversal symmetric systems
(even p

2 ) the effective Hamiltonian (95) exactly coincides with the large-d approximation to
the effective Hamiltonian (D.5) for the Brownian GOE model of random matrices that we
develop in appendix D. The discrepancy between (95) and (D.5) comes from the approxima-
tion made in this section where we neglected subleading terms of the chord operator in the
non-local limit.

As it will be clear later, Hamiltonians such as (95) can be exactly diagonalized using group
theory. In particular, they are invariant under SO(d) transformations of the reference basis.
The eigenspaces respect the decomposition of the Hilbert space into irreducible representations
of SO(d) in the 2k-fold tensor product of the fundamental representation. However, we will
not attempt to do this here; following the analysis of the next section and Appendix D for (95)
will yield a time to k-design which is precisely given by (79).

4 Brownian random matrix model

We will now introduce a random matrix model for the time-dependent Hamiltonian H(t). The
model is defined for a general Hilbert space H of dimension d. The intuitive idea, shown in
Fig 1, is to independently select at each instant of time, a random Hamiltonian from some
universality class of random matrices. This generates a completely unrestricted Brownian
motion in U(d).11 This ensemble is in some sense the most random dynamical evolution
that one can select on a Hilbert space. Nevertheless, as we will show, the time to Haar is
exponentially large in the entropy J tHaar ≳ O(d) even in this case.

Formally, the ensemble of Hamiltonians is defined by the Euclidean matrix quantum me-
chanics

E [•] =
1
N

∫

DH(t) e−S (•) , S =
K

2Jd

∫

dt Tr

�

Ḣ2

m2
+H2

�

. (96)

The normalization constant N is again determined by E [1] = 1, while K is a model-dependent
constant that will be fixed below. For Brownian correlations, the matrix is taken to be infinitely
massive m→∞ so that the two-point function E

�

Hi j(t)Hlm(0)
�

is ultralocal in time.
To define the path integral measure DH(t) of the model, in this section we will consider

the Gaussian unitary ensemble (GUE) of random matrices. Choosing some arbitrary reference
basis {|i〉}di=1, the time-dependent Hamiltonian can be expressed as

H(t) =
∑

i

x ii(t)Πii +
∑

i< j

�

x i j(t)
Πi j +Π ji
p

2
+ yi j(t)

Πi j −Π ji
p

(−2)

�

, Πi j ≡ |i〉 〈 j| , (97)

for the real independent functions x i j(t) (i ≤ j) and yi j(t) (i < j). With our normalization,
all the Hermitian operators defining H(t) in (97) have fixed variance in the maximally mixed
state. We pick the natural path integral measure

DH(t) ∝
∏

i

Dx ii(t)
∏

i< j

Dx i j(t)D yi j(t) . (98)

11The standard Brownian motion occurs in the Lie algebra u(d). This induces a multiplicative Brownian motion
on the group manifold U(d) by the rolling map [58].
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That is, in the Brownian GUE model, the functions {x i j(t), yi j(t)} are viwed as a collection
of K = d2 independent Gaussian random white-noise correlated ‘couplings’ with zero mean
and variance

E
�

x i j(t)x lm(0)
�

= E
�

yi j(t)ylm(0)
�

=
Jd
K
δ(t)δilδ jm . (99)

The normalization in the variance of the couplings is chosen to match the general normaliza-
tion used in section 2.1, where the variance of the Hamiltonian in the maximally mixed state
ρ0 =

1
d is taken to be

E [Tr(ρ0H(t)H(0))] = Jδ(t) . (100)

From the general considerations of section 2.1, the k-th moment superoperator Φ̂(k)Et
of this

ensemble can be written as the unnormalized thermal state (19) for the effective Hamiltonian

Hk =
J

4d

∑

i< j





� k
∑

r=1

Πr
i j +Π

r
ji −Π

r̄
i j −Π

r̄
ji

�2

−

� k
∑

r=1

Πr
i j −Π

r
ji +Π

r̄
i j −Π

r̄
ji

�2




+
J

2d

∑

i

� k
∑

r=1

�

Πr
ii −Π

r̄
ii

�

�2

. (101)

Expanding this formula we recognize the effective Hamiltonian as

Hk = J

�

k−
∑

r,s

|∞〉rs̄ 〈∞|rs̄

�

+
J
d

∑

r<s

(SWAPrs + SWAPr̄ s̄) , (102)

for the operators

SWAPrs =
∑

i, j

Πr
i jΠ

s
ji , SWAPr̄ s̄ =

∑

i, j

Πr̄
i jΠ

s̄
ji , (103)

|∞〉rs̄ 〈∞|rs̄ =
1
d

∑

i, j

Πr
i jΠ

s̄
i j . (104)

The operators SWAPrs and SWAPr̄ s̄ swap the corresponding replicas.
In the form (102), the effective Hamiltonian is clearly invariant under unitary transforma-

tions of the reference basis |i〉 → V |i〉 for V ∈ U(d). More specifically, the effective Hamilto-
nian satisfies

[Hk, V⊗k ⊗ V ∗ ⊗k] = 0 . (105)

This symmetry is inherited from the choice of GUE measure (98). By the Schur-Weyl duality
(see e.g. [18, 59, 60]), this symmetry severly restricts the k-th moment superoperator of the
ensemble, and this is manifest in the form of the effective Hamiltonian (102), which only
involves SWAP operators and orthogonal projectors into infinite-temperature TFDs.

This symmetry has further consequences. Most importantly for our purposes, the different
eigenspaces of Hk must all be left invariant by this symmetry, and fall into irreducible repre-
sentations of SU(d) in the k-fold tensor product of the fundamental d and antifundamental
d representations, d ⊗ d ⊗ · · · ⊗ d ⊗ d, which corresponds to how the symmetry acts on the
replicated Hilbert space. It is not hard to see that such a representation contains k! singlets
for k ≤ d. These states correspond to the states |Wσ〉 for σ ∈ Sym(k) which linearly generate
the ground space GSk.

We remark, however, that the ensemble Et is not right nor left invariant under unitary
multiplication (as opposed to EHaar). By inspection of the effective Hamiltonian (102), this
can be seen explicitly

Hk(V
⊗k ⊗ V ∗ ⊗k) ̸= Hk . (106)

In particular, the SWAP operators manifestly break this symmetry.
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Time to 1-design

The effective Hamiltonian (102) for k = 1 is simply

H1 = J
�

1− |∞〉11̄ 〈∞|11̄

�

. (107)

Naturally |∞〉11̄ is its only ground state, as expected from the general considerations of sec-
tion 2.1. Moreover, the rest of the states have energy ∆1 = J . Therefore, the trace distance to
a 1-design in this ensemble is

Z1(t)− Z1(∞) = (d2 − 1) e−J t . (108)

The time to 1-design is then

t1 =
1
J

�

log(d2 − 1) + logϵ−1
�

. (109)

Note that this matches the time to 1-design (67) for the Brownian p-SYK model in the non-local
limit p ∼ N (for the value d = 2

N
2 in that case).

Moreover, it is convenient for later purposes to note that the eigenspaces of H1 respect the
decomposition

d⊗ d= 1⊕ (d2 − 1) , (110)

of the product of the fundamental d and antifundamental d of SU(d) into the adjoint (d2−1)
(with eigenvalue J) and the singlet 1 (with zero eigenvalue). Explicitly, the Hilbert space of
states

|ψ〉=
∑

i, j

ψ
j
i |i, j〉11̄ , (111)

decomposes into the traceless eigenspace
∑

iψ
i
i = 0, in which caseψ j

i transforms in the adjoint

of SU(d), and the pure trace eigenspace ψ j
i ∝ δ

j
i , in which case the state |ψ〉 = |∞〉11̄ is

invariant.

Time to 2-design

Let us consider the case k = 2 for illustrative purposes, before providing a generalization for
any k. The effective Hamiltonian (102) in this case reads

H2 = J
�

2− |∞〉11̄ 〈∞|11̄ − |∞〉22̄ 〈∞|22̄ − |∞〉12̄ 〈∞|12̄ − |∞〉21̄ 〈∞|21̄

�

+
J
d

�

SWAP12 + SWAP1̄2̄

�

. (112)

Consider a general state of the form

|ψ〉=
∑

i, j

ψ
j1 j2
i1 i2
|i1, j1, i2, j2〉11̄22̄ . (113)

The eigenspaces of H2 respect the decomposition of the Hilbert space

d⊗ d⊗ d⊗ d= 1×2 ⊕ (d2 − 1)×4 ⊕A ⊕ M ⊕ M ⊕ S , (114)

into two singlets 1, four adjoints d2 − 1, an antisymmetric traceless A, two mixed M and a
symmetric traceless S rank (2,2) irreps of SU(d). These representations are constructed in a
standard way using Young tableaux (see e.g. [61]). In Table 1 we classify them and compute
the corresponding eigenvalue of H2.
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Table 1: The excited states of H2 fall into irreps of SU(d) in the twofold tensor prod-
uct of the fundamental and antifundamental. For simplicity, we only represent an
example of adjoint and mixed irreps. The eigenvalues E are approximately evenly
spaced, where the gap is∆2 = J and the maximum eigenvalue is approximately 2∆2.

irrep d2 − 1 A M S

ψ
j1 j2
i1 i2
=

δ
i1
j1
φ

i2
j2

�∑

iφ
i
i = 0

�

ψ
j1 j2
[i1 i2]

=ψ[ j1 j2]
i1 i2

�

∑

iψ
i j2
ii2
= 0

�

ψ
j1 j2
(i1 i2)

=ψ[ j1 j2]
i1 i2

�

∑

iψ
i j2
ii2
= 0

�

ψ
j1 j2
(i1 i2)

=ψ( j1 j2)
i1 i2

�

∑

iψ
i j2
ii2
= 0

�

dimension d2 − 1
d2(d + 1)(d − 3)

4
(d2 − 1)(d2 − 4)

4
d2(d − 1)(d + 3)

4

E ∆2 = J 2J(1− 1
d ) 2J 2J(1+ 1

d )

Consider the eigenspaces transforming in the adjoint, like for example

|ψ〉= |∞〉11̄

∑

i, j

ψ
j
i |i, j〉22̄ , (115)

where ψ j
i is traceless. These are eigenstates of (112) with eigenvalue

H2 |ψ〉=∆2 |ψ〉 , ∆2 = J . (116)

In total, the dimension of the subspace of states in the adjoint is 4(d2−1), where the factor of 4
comes from all the possible adjoint irreps in the tensor product (114). One such representation
is (115); the rest are constructed by suitable permutations of the replicas in the state (115).

Using the additional data collected in Table 1, the trace distance to 2-design in this ensem-
ble corresponds to

Z2(t)− Z2(∞)≈ 4(d2 − 1) e−J t + (d4 − 4d2 + 2)e−2J t , (117)

where we are neglecting energy separations of O(J/d). This leads to a time to 2-design

t2 ≈
1
J

�

log(d2 − 1) + 2 log2+ logϵ−1
�

. (118)

Time to k-design

For general k ≤ d we have the decomposition

d⊗ d⊗ · · · ⊗ d⊗ d
︸ ︷︷ ︸

2k

= 1×k! ⊕ (d2 − 1)×k!k ⊕ · · · (119)

Denoting the k-fold product representation (119) by Rk, the trace distance to k-design can be
written formally as

Zk(t)− Zk(∞) =
∑

π∈Rk
π̸=1

mπ dπ e−Eπ t , (120)
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where π is an irreducible unitary representation of SU(d), dπ is its dimension and mπ is its
multiplicity in Rk. The value of Eπ is the energy associated to the eigenspace transforming
under π.12

The ground space GSk is composed of the k! singlet states |Wσ〉, which can be checked
explicitly for (102). The first excited states transform in the adjoint and take the form

|ψ〉= |∞〉11̄ · · · |∞〉k−1 k−1

∑

i, j

ψ
j
i |i, j〉kk̄ , (121)

for ψ j
i traceless. The rest of the adjoint representations are constructed from (121) under

suitable permutations of the replicas. It is easy to see explicitly that these states are eigenstates
of Hk with energy

Hk |ψ〉=∆k |ψ〉 , ∆k = J . (122)

We thus find that the spectral gap is exactly independent of k for this model. The number of
first excited states is

N∗ = k!k(d2 − 1) , (123)

where the factor of k! comes from the number of ground states, and the factor of k comes
from the different replicas where each ground state can be excited to get (121). The number
of first excited states N∗ scales exponentially with k for large k. Therefore, this model satisfies
the assumptions of section 2.3.

It then follows that the time to k-design behaves asymptotically as

tk ∼
1
J

�

k log k− k+ log k+ 2 log d + logϵ−1
�

. (124)

Up to logarithmic or subleading factors, we find that tk grows linearly in k. This agrees with the
timescale (79) for the non-local limit of the Brownian p-SYK model. Furthermore, this implies
that time-to-Haar is exponential in the system size, J tHaar ≳ O(d), even for the Brownian GUE
model.

In fact, (124) is obtained in the crude approximation where we neglect all the higher
excited states. This approximation will be reasonable when k/d ≪ 1, since the energy of the
rest of the states will be reasonably separated from the gap. However, when k ≈ d, additional
towers of states become close to the gap, and they make the time to k-design slighlty larger
than (124). We can estimate the contribution as follows. By inspection of (102), the lowest
energies among these states will be attained for the rank (k, k) totally antysymmetric traceless
irrep Ak of SU(d), which will have eigenvalue

EAk
= Jk

�

1−
k− 1

d

�

. (125)

We see that for k ≤ d the energy of these states is always above the gap (122) (for k > d
this irrep is zero dimensional). However, when k ≈ d they are exponentially close to the gap.
Similarly, it is not hard to construct states transforming in mixed irreps, with eigenvalue

EMk
= Jk

�

1−
k− 1− 2n

d

�

. (126)

For finite n and k ≈ d the energy of these states will also be exponentially close to the gap.

12By the Schur-Weyl duality the decomposition of Rk into irreps of SU(d) also generates a natural decomposition
of the Hilbert space into irreps of the permutation group Sym(k)× Sym(k) that swaps the forward and backward
replicas separately. Since the effective Hamiltoninan (102) is invariant under such permutations, a fixed irrep π
must have the same eigenvalue, irrespectively of how it is represented on the Hilbert space.
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To take into account these additional states, a better estimate of the time to design for
k ≈ d is to consider an effective number of first excited states N eff

∗ = d2kα, for some O(1)
constant α < 1. Under this approximation, the time to k-design becomes

tk ∼
1
J

�

αk log d + logϵ−1
�

, (127)

which is paramterically larger than (124) and in fact exactly linear in k in this regime.
In appendix D we extend our study in this section to Brownian Gaussian random matrix

models with instantaneous time-reversal and rotation symmetry (GOE) and symplectic ensem-
bles (GSE).

4.1 Unrestricted Brownian motion in U(d)

At first sight, the fact that even non-local time-dependent Hamiltonians take exponentially long
to develop random unitaries might seem suprising. We will now provide an reformulation of
this result from the point of view of classical Brownian motion.13

Individual time-dependent Hamiltonians H(t) drawn from the Brownian GUE ensemble
(96) determine a Brownian trajectory in the Lie algebra u(d). From the rolling map [58], this
motion induces a multiplicative Brownian motion in the unitary manifold U(d). This class of
Brownian motion in compact Lie groups like U(d) has been extensively studied in probability
and measure theory (see [58, 62–66] and references therein). In fact, the results that we
derived in this section are indirectly related to some of the integrals of [64].

The matrix stochastic differential equation defining this process in Stratonovich/Itô form
is

dU(t) = −iU(t) ◦ dH(t) = −iU(t)dH(t) + JU(t)dt , U(0) = 1 . (128)

Here J arises from our convention for the variance of the Brownian motion in u(d). This
Markov process can be decomposed into a standard Brownian motion of the global phase of
U(t) and an independent Brownian motion in SU(d). The latter is generated by J∇SU(d),
where ∇SU(d) is the Laplacian associated to the bi-invariant metric on SU(d). Recall that such
metric is inherited from the Killing-Cartan form of the Lie algebra, which in our normalization
reads 〈iH1, iH2〉= 2dTr(H1H2) for iH1, iH2 ∈ u(d).

The formation of designs in this formulation of the Brownian GUE model is determined
by the heat kernel measure ρt(U)dU on U(d), where dU is the Haar measure.14 That is, the
probability distribution defining the induced ensemble of unitaries Et is the heat kernel

∂ ρt(U)
∂ t

= J∇SU(d)ρt(U) , (129)

initially concentrated at the identity, ρ0(U) = δ(U − 1). As time evolves, the distribution
spreads out diffusively throughout U(d) until it becomes homogeneous. The endpoint is
ρ∞(U) = 1, where the heat kernel measure becomes the Haar measure. The parameter J
plays the role of the diffusion constant.

The question is then how close ρt(U) is from 1. By the Peter-Weyl theorem, the Hilbert
space L2(U(d)) can be decomposed into the direct sum of (finite-dimensional) unitary irreps
of U(d). Given that the bi-invariant Laplacian ∇SU(d) is the representation of the quadratic
Casimir in L2(U(d)), these are invariant eigenspaces of the Laplacian. This allows to perform
harmonic analysis and write the heat kernel as

ρt(U) =
∑

π

απ fπ(U) exp(−cπJ t) , (130)

13We thank Alexey Milekhin for valuable discussions on this point.
14For simplicity, we have omitted the probability distribution of the global phase.
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where fπ(U) is an eigenfunction of the Laplacian with eigenvalue cπ, corresponding to the
value of the Casimir in the irreducible representation π. The eigenfunctions satisfy the or-
thonormality conditions,

∫

dU fπ(U) f ∗π′(U) = δπ,π′ . (131)

Therefore, the coefficients απ in the expansion (130) are just determined by the initial condi-
tion in the form

απ = f ∗π(1) = 1 , (132)

where the fact that these coefficients can always be set to 1 is a matter of the definition of fπ(U).
For the trivial representation π = 1 the eigenfunction is constant, f1(U) = 1, and the

eigenvalue vanishes, c1 = 0. The rest of the modes for π ̸= 1 decay in time. Given our
normalization of the metric, the value of the Casimir is minπ̸=1{cπ}= O(d0). For instance, the
values of the Casimir in the fundamental (or antifundamental) and the adjoint irreps are

cd = cd̄ =
d2 − 1
2d2

, cd2−1 =
1
2

. (133)

From these considerations, the L2 norm distance between the heat kernel measure and the
Haar measure can be computed as





ρt − 1






2
2 =

∑

π̸=1

e−2cπJ t . (134)

We shall now provide a rough estimate the decay of (134). Given that the difference in
quadratic Casimir cπ is O(d−2) for neighbouring irreps, there will be O(d2) irreps with
eigenvalue 2cπ ≈ 1, and we will neglect the contribution of the rest. Therefore, the
time it for the heat kernel measure to become approximately homogeneous in L2 norm,
tL2 = inf{t :





ρt − 1






2 < ϵ}, is

tL2 ∼
2
J

�

log d + logϵ−1
�

. (135)

This time is polynomial in the entropy, log d, which is what we could have expected from the
intuitive picture of diffusion on a compact space. The fact that (135) scales with the entropy
is only a consequence of our choice of non-extensive normalization for the Brownian step.

The reason why this timescale is parametrically smaller than the time to Haar computed in
this paper is that the definition of an approximate k-design (9) is a much stronger requirement
than





ρt − 1






2 < ϵ. Mainly, two probability distributions in U(d) can be ϵ close in L2 norm
distance, but they might have k-th moment superoperators which are not ϵ close in trace
distance, for large enough values of k.

To see this, note that the k-th moment superoperator in this picture is simply15

Φ̂
(k)
Et
=

∫

dUρt(U)U
⊗k ⊗ U∗ ⊗k = e−tHk . (136)

Using the harmonic decomposition of the heat kernel (130), this superoperator can also be
written as

Φ̂
(k)
Et
=
∑

π

e−cπ tJ O(k)π , O(k)π ≡
∫

dU fπ(U)U
⊗k ⊗ U∗ ⊗k . (137)

Note that forπ= 1, the superoperator is O(k)1 = Φ̂(k)EHaar
. Forπ ̸= 1 the rest of the superoperators

commute with O(k)1 , but generally they need not commute with each other. For this reason,

15We can neglect the probability distribution of the global phase of U , since it does not affect the moment
superoperator.
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this formulation is less useful than the one in terms of the effective Hamiltonian Hk when it
comes to the computation of the decay of the trace distance to design.

Let us however use the fact that from section 2.2 we know the trace distance to design is
given in terms of the partition function (27) to write it as





Φ̂
(k)
Et
− Φ̂(k)EHaar







1 =
∑

π̸=1

e−cπ tJ Tr
�

O(k)π
�

. (138)

The value of Tr
�

O(k)π
�

can also be related to a higher moment of the SFF in U(d), in the vein
of the discussion of section 2.4.

Given that Tr(O(k)1 ) = k!, it is reasonable to expect that the trace in (138) scales at least as
k!,16 so that the time that it takes for an approximate k-design to form is

tk ∼
1
J
(k log k− k+ logϵ−1) ≫ tL2 . (139)

That is, the additional factor of the trace in (138), associated to the k-th moments of the
eigenfunctions fπ(U), makes the time to k-design parametrically larger in k than the time for
the heat kernel to become approximately homogeneous in L2 norm.

5 Complexity growth vs the generation of randomness

In the previous sections we have shown that the formation of approximate k-designs takes a
time which is generally J tk = O(k), even for ensembles of highly non-local time-dependent
Hamiltonians. A natural question based on the study of [18, 43, 50] is whether this has any
implications for the complexity of the time-evolution operator U(t) in the circuit model of
quantum computation.

We shall consider the Hilbert space H of N qubits, of dimension d = 2N , and a universal
finite few-body gate set G. Let Ek be an approximate k-design and let U ∈ Ek. From a counting
argument, it follows that the circuit complexity C(U) is lower bounded by [18]

C(U)≳
2kN − k log k+ k

log(|G|N2)
. (140)

We can now define the completely non-local Brownian GUE model in this Hilbert space.
Using the results of section 4 we conclude that the circuit complexity of time-evolution in this
system satisfies

C(U(t))≳
J t (2N − log J t + 1)

log(|G|N2)
. (141)

The right hand side seems to provide a linear growth in circuit complexity for exponentially
long times, up to logarithmic factors.

By now it should be obvious that (141) cannot be a tight bound, at the very least for
non-local systems.17 Otherwise, it would imply that exponentially powerful computations are
rarely generated by the set of non-local time-dependent Hamiltonians. From general consid-
erations, the left hand side of (141) should saturate at early times J t = poly(N), while on the
other hand, the the right hand side simply keeps growing until J t = poly(2N ) times.

16A way to justify this is that the average value gives
∑

π Tr(O(k)
π
) = d2k which scales exponentially in k. We

expect that the representations which are close to 1 in value of the Casimir cπ to have similar features for the
moments; that is why we assumed a more modest k! scaling instead.

17This is also expected to be true for time-independent non-local Hamiltonians, like the systems studied in [35];
see e.g. [67] pointing in this direction.
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More concretely, let us sketch where the bound (140) arises from. Let U(C) be the set of
unitaries which up to some resolution in trace distance have complexity C. The bound (140)
was derived in [18] from the condition that for any k-design Ek the number of elements |Ek| up
to some resolution in trace distance must be lower bounded. Naturaly, if the set U(C) contains
fewer elements than a k-design, it will not be able to contain the k-design

|U(C)|< |Ek| ⇒ Ek ̸⊆ U(C) , (142)

and therefore there must exist unitaries U ∈ Ek with C(U)> C.
Let us consider the smallest value of the complexity for which the neccessary condition

|U(C)| ≥ |Ek| is satisfied
Cmin(k)≡min{C : |U(C)| ≥ |Ek|} . (143)

Then it must be true that the maximum complexity that a unitary U ∈ Ek can have is at least
Cmin

max
U∈Ek

C(U)≥ Cmin(k) . (144)

The value of Cmin(k) is basically the right hand side of (140), where the minimum value of |Ek|
has been estimated from the frame potential.18

However, our results for the Brownian random matrix model suggest that C(U)≫ Cmin for
most of U ∈ Ek, with an exponential difference in the scaling with N , even for small values
of k. That is, we expect that most unitaries U ∈ Ek for an approximate k-design Ek like the
one studied in section 4 have maximal circuit complexity.19 These unitaries must provide a
very atypical and small sample of all the unitaries with maximal complexity, since they are not
drawn from the Haar distribution.

5.1 Brownian motion and complexity growth

The linear growth of complexity for random circuits is expected from the fact that the occur-
rence of shortcuts at polynomial circuit time is extremely rare. We shall now provide a geo-
metric argument for why a smooth version of the linear growth in complexity is expected for
continuous p-local Brownian systems. Moreover, we will also motivate the hyperfast growth
of complexity for non-local Brownian systems from this point of view.

In order to do this, we will adapt the model of complexity geometry of [68–70] and study
Brownian motion on this metric. In complexity geometry, the linear growth follows from a
nice property of Brownian motion on negatively curved spaces: the radial spread is ballistic,
and approximately optimal compared to the geodesic (see Fig. 5).20

Restricted Brownian motion

In order to make the argument, we shall consider SU(d) endowed with an oversimplified toy
model of the complexity metric gµν. To illustrate our main point, we shall consider the analysis
locally close to 1 and restrict to the simplest negatively curved metric

ds2 = dC2 + sinh2(C)dΩ2
dp−1 + d2 ds2

d−dp
. (145)

Here C is simply the complexity in the p-local directions, measured as the geodesic proper
distance to the identity operator, at C = 0. The second factor ds2

d−dp
represents the exponen-

tially penalized d − dp directions of the tangent space, associated to non-local Hamiltonians,

18The left hand side of (140) should include a maximum over U ∈ Ek.
19Similar considerations should hold for strong complexity, following Theorem 9 in [43].
20This mathematical fact is responsible of fast scrambling of local systems on expander graphs [71,72].
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where dp is the number of p-local directions. This model of complexity geometry captures that
the number of unitaries in the p-local directions with complexity C (in some tessellation of the
Poincaré ball) grows exponentially with C.

We will model the p-local Brownian ensemble Et by the probability measure associated to
Brownian motion on the metric (145). This is the heat kernel measure ρtdVol(g) in the metric
(145), where dVol(g) is the volume element of the complexity metric gµν, and

∂ ρt

∂ t
= D∇2ρt , ρ0(U) = δ(U − 1) . (146)

Here D = J/dp plays the role of the diffusion constant, and ∇2 is the Laplacian of (145). The
factor of dp is necessary to match our normalization in the previous sections (i.e. note that
the eigenvalues of the Laplacian in section 4.1 are O(1) numbers in our convention of the
bi-invariant metric).

Under the assumption of spherical symmtery ρt = ρt(C) in the p-local directions, and
neglecting the extremely slow motion in the non-local directions, the diffusion equation (146)
reduces to

∂ ρt

∂ t
= D

�

∂ 2
C +

dp − 1

r
r ′∂C

�

ρt . (147)

Exact analytic solutions are known, see e.g. [73]. For our purposes, however, it is enough
to consider the approximation C ≫ 1, where r ′/r ≈ 1 and the equation (147) reduces to a
one-dimensional diffusion equation under the change of spatial variable C → C + J t. The
approximate solution is then

ρt(C)≈
α

(4πDt)1/2
exp

�

−
(C + J t)2

4tD

�

, (148)

where α−1 ≈ Vol(Sd−1) is a normalization constant.
The radial probability distribution pt(C)≡ α−1ρt(C) sinh(C)dp−1 gives the expected value

E[C]≡
∫ ∞

0

dC pt(C)≈ J t . (149)

We see that the radial proper distance, or complexity, grows ballistically, at a rate given by J ,
until J tsat = O(d2), where a cutoff surface is placed in this model. The non-extensivity of the
slope with the entropy is a consequence of the non-extensive normalization for the Brownian
step chosen throughout this paper.

Therefore, our argument suggests that circuit complexity grows linearly for very long times
for p-local Brownian systems, and the linear bound provided by (140) is parametrically rele-
vant, as illustrated on the left plot of Fig. 2. The slopes might differ in O(1) constants; they
will generally depend on the precise definition of quantum complexity, such as the particular
choice of universal gate set.

Unrestricted Brownian motion

As explained in section 4.1, for the non-local Brownian GUE model, the measure ρt(U)dU
defining the unitary ensemble Et corresponds to the heat kernel measure in the bi-invariant
metric of SU(d). From the form of (134) we see that heat kernel relaxes at early times to the
Haar distribution in L2 norm, in a timescale set by (135). Given this, the average value of the
proper distance to the identity in complexity geometry will saturate to its Haar (maximum)
value at early times,

E[C]≈ CHaar = O(d2) , for t ≳ tsat = J−1 log d2 . (150)
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Figure 5: Brownian motion in hyperbolic space. The radial spread is ballistic, and
approximately optimal compared to the geodesic.

Therefore, we have motivated the hyperfast growth of complexity illustrated on the right plot
of Fig. 2, in contrast to the slow generation of randomness, which takes a time J tHaar ≳ O(d)
for these systems.

6 Conclusions

In this paper we have studied the dynamical generation of randomness in chaotic many-body
quantum systems, as a function of the degree of locality of the time-dependent Hamiltonian.
We have shown that for Brownian systems, which resemble continuous versions of random cir-
cuits, the growth in design is universally linear both for p-local and non-local systems. Based
on this observation, we have conjectured that, generally, unless a large degree of fine-tuning
is present in the ensemble of time-dependent Hamiltonians, it is not possible to dynamically
generate random unitaries efficiently. We have pointed out the distinction between complexity
and randomness by providing examples of rather general non-local systems which are expo-
nentially complex to implement on a conventional quantum computer, but which are still slow
generators of randomness.

The Brownian random matrix model that we have introduced is defined by the GUE path
integral measure in the space of time-dependent Hamiltonians. In this model, we have pointed
out that the probability distribution of the induced ensemble of unitaries at fixed time is defined
by the heat kernel measure in SU(d). The relaxation timescale of the probability distribution in
L2 norm is itself O(log d); however, the timescale for the moments to relax is enhanced by the
large value of the moments. Together with the linear growth in design for p-local systems, our
results imply that the global relaxation of the probability distribution defining the ensemble
of unitaries is insufficient for the generation of randomness.

An interesting open question is whether our conjecture can itself be formulated at the level
of the Hilbert space. Definitely if U is Haar random, U |ψ1〉 is a random state; however, the
converse is not true. For this reason it might be easier to dynamically generate distributions
of random states, relative to some reference state |ψ1〉, with highly non-local Hamiltonians.
For instance, Hamiltonians of similar form to (1) for |ψ2〉 chosen randomly, all map |ψ1〉 to
a random state. However the unitaries that these Hamiltonians generate are themselves far
from Haar random, since each of them contains a two-dimensional invariant subspace.
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In this context, it would also be interesting to determine how long it takes for a many-
body quantum system to dynamically develop the moments of the Porter-Thomas distribution
for the return probabilities of states in a bit string basis. Finally, given that partial projective
measurements allow for the efficient generation of random states [74–76], another interest-
ing question is whether there is a way to approximately generate Haar random unitaries via
measurement of collections of states efficiently.

In a different direction, it would be interesting to elucidate the holographic manifestation
of the dynamical generation of k-randomness studied in this paper for systems describing
black holes, in situations where these systems are perturbed with suitable time-dependent
perturbations [77]. Since the generation of randomness studied in this paper is universal and
it persists until very late times after scrambling, it is reasonable to expect that randomness
should be reflected in properties of the black hole interior, in the vein of holographic complexity
[78,79].

Furthermore, non-local systems, and in particular the double-scaled SYK model, have been
recently proposed as a microscopic realization of de Sitter space holography [80–83]. In this
correspondence, the hyperfast growth of the computational complexity of the time-evolution
operator is conjectured to be captured by the behavior of maximal volume slices anchored to
the stretched cosmological horizons for antipodal observers [80]. Based on the results of this
paper, it would be interesting to investigate whether there is a holographic inprint of the slow
generation of randomness, after perturbing the cosmological horizon of de Sitter space with
suitable noise. We leave these problems for future investigation.
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A Moment maps of the Haar ensemble

In this appendix, we recall some basic facts about the k-th moment superoperators for the
Haar ensemble EHaar and block-diagonal Haar ensemble EHaarG

in the case that there exists a
global symmetry G.

The superoperator representation of the quantum channel Φ(k)Haar is explicitly given by

Φ̂
(k)
Haar ≡

∫

dU U⊗k ⊗ U∗ ⊗k , (A.1)

where dU is the Haar measure in U(d). From the right invariance of the Haar measure, it
follows that Φ̂(k)Haar is invariant under right multiplication

Φ̂
(k)
Haar

�

V⊗k ⊗ V ∗ ⊗k
�

= Φ̂(k)Haar , ∀ V ∈ U(d) . (A.2)
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Analogously, Φ̂(k)Haar is invariant under left multiplication.

This symmetry severely restricts the form of the superoperator Φ̂(k)Haar. In particular, Φ̂(k)Haar
must only act non-trivially on the singlet states of k-th tensor product of the fundamental and
antifundamental irreducible representations of SU(d) (i.e. in the representation V⊗k ⊗ V ∗ ⊗k

associated to how the symmetry acts on the total Hilbert space). By the Schur-Weyl duality,
the invariant states generate a natural representation of the symmetry group Sym(k). They
are explicitly characterized by

|Wσ〉=
k
⊗

r=1

|∞, v〉rσ(r̄) , σ ∈ Sym(k) . (A.3)

The permutation σ ∈ Sym(k) labels the way to assign infinite-temperature TFDs between
forward and backward replicas (here labeled by r and s̄ = σ(r̄)). For k ≤ d, these states
generate a k!-dimensional subspace Vk of the total Hilbert space.

Given that (Φ̂(k)Haar)
2 = Φ̂(k)Haar, and that Φ̂(k)Haar |Wσ〉 = |Wσ〉, the Haar superoperator is the

orthogonal projector to the space generated by the invariant states,

Φ̂
(k)
Haar = ΠVk

. (A.4)

This is essentially what we used in (24).

Moment maps for the block-diagonal Haar ensemble

In case that there exists a global symmetry G, the Hilbert space decomposes into nG superse-
lection sectors H = ⊕gHg , where G = ⊕g (g×1g) takes the value g on each sector Hg . We can
define the block-diagonal Haar measure

∏

g dUg for unitaries which respect this decomposi-
tion, [U , G] = 0. Such unitaries can be decomposed into smaller unitaries U = ⊕g Ug , where
Ug ∈ U(dg) for dg = dim(Hg). We will assume that dg > 1 ∀g.

The block-diagonal Haar superoperator is

Φ̂
(k)
HaarG
≡
∫

[U ,G]=0

dUg1
· · ·dUgnG

U⊗k ⊗ U∗ ⊗k . (A.5)

The symmetry of Φ̂(k)HaarG
is now reduced to right (or left) multiplication of the form (A.2)

by any block diagonal V ∈ U(d), restricted to [V, G] = 0. This symmetry again restricts the
form of the superoperator to act only on the invariant states of this symmetry. Now, since the
symmetry group is smaller, there will be more invariant states.

The total Hilbert space of 2k replicas where Φ̂(k)HaarG
acts can be decomposed into the direct

sum of subspaces of the form Hg1
⊗· · ·⊗Hg2k

, where symmetry V acts on the last k-factors by
complex conjugation. These Hilbert subspaces are invariant under the symmetry. In such sub-
spaces, if the number of fundamental and antifundamental representations of some symmetry
subgroup Vg (acting non-trivially only on Hg) is different, there cannot be singlets. Therefore,
singlet states exist in Hg1

⊗· · ·⊗Hg2k
provided that the first k global charges {g1, . . . , gk} can be

identified with the last k global charges {gk+1, . . . , g2k} in groups of even number of elements.
For each such group of 2l factors with the same charge, by the Schur-Weyl duality, the singlets
generate a natural representation of the permutation group Sym(l) group on these 2l factors.

That is, to label the invariant states, we can choose a permutation σ ∈ Sym(k) that identi-
fies the forward and backward replicas in pairs of infinite-temperature TFDs, and then assign
some global charge v = {g1, . . . , gk} to each TFD. This fully determines all the invariant states

|W v
σ〉=

k
⊗

r=1

|∞, v〉rσ(r̄) , σ ∈ Sym(k) , v = {g1, . . . , gk} . (A.6)
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The invariant states generate a nk
g k!-dimensional subspace

V G
k = Span{|W v

σ〉 : σ ∈ Sym(k) , v = {g1, . . . , gk}} . (A.7)

Given that (Φ̂(k)HaarG
)2 = Φ̂(k)HaarG

, and that Φ̂(k)HaarG
|W v
σ〉 = |W

v
σ〉, the Haar superoperator is the

orthogonal projector to this subspace,

Φ̂
(k)
HaarG

= ΠV G
k

. (A.8)

This is essentially what we used in (24) to treat the case of fermion parity in the SYK model.

B Relation to other notions of approximate designs

In this appendix, we recall some basic inequalities that relate diamond definitions of approx-
imate designs to the definition that we used based on the trace distance between moment
superoperators. For more details, see [16,45].

The diamond distance between completely positive maps can be defined as





Φ
(k)
E −Φ

(k)
Haar







◊ = sup
ρ,n










��

Φ
(k)
E −Φ

(k)
Haar

�

⊗ 1n

�

(ρ)









1
, (B.1)

whereρ is a density matrix in H⊗k⊗Hn. The diamond distance measures the distinguishability
from the point of view of one-shot discrimination between quantum channels.

The diamond distance is bounded by the trace distance between superoperators

1
dk





Φ̂
(k)
E − Φ̂

(k)
Haar







1 ≤




Φ
(k)
Et
−Φ(k)Haar







◊ ≤




Φ̂
(k)
E − Φ̂

(k)
Haar







1 . (B.2)

The lower bound is obtained by choosing n = dk and ρ =
1
dk
|∞〉〈∞|. The upper bound

is less trivial, it is obtained from the fact that the supremum in (B.1) is always achieved for
n ≤ dk and for a pure state ρ = |ψ〉 〈ψ|. We can use the operator representation AΨ of this
state to write





Φ
(k)
E −Φ

(k)
Haar







◊ =









��

Φ
(k)
E −Φ

(k)
Haar

�

⊗ 1n

�

(|ψ〉 〈ψ|)









1
=







AΨ
�

Φ̂
(k)
E − Φ̂

(k)
Haar

�

A†
Ψ










1
. (B.3)

Using Hölder’s inequality twice,
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(k)
E −Φ

(k)
Haar







◊ ≤




AΨ
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Ψ







∞










�

Φ̂
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E − Φ̂

(k)
Haar

�










1
. (B.4)

Using the monotonicity of the Schatten norms, and that




AΨ






2 =




A†
Ψ







2 = 1 from the purity
of the state, we get the upper bound in (B.2).

Therefore we see that our definition of approximate design is stronger than the diamond
definition, and in the reverse direction, an d−kϵ-approximate k-design in diamond distance is
an ϵ-design in trace distance between superoperators.21

21From (B.2), the linear growth for the trace distance definition of an approximate k-design that we will find for
generic Brownian systems in this paper will also imply a parametric linear growth for the diamond definition.
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Figure 6: Cartoon of Brownian motion with the conservation of energy. The tra-
jectory is restricted to a Td ⊂ U(d) submanifold. The thin red line represents the
Brownian trajectory of U(t) ∈ Et for a fixed realization of the coupling g(t).

C A Brownian model with conservation of energy

In this appendix, we consider a Brownian model of the form (14) with the additional feature
that it conserves the energy. We will explicitly show that for such a system, the ensemble of
time-evolution unitaries Et never becomes a k-design for any k ≥ 1.

To construct the model, we select some Hamiltonian H0. Now consider driving the system
with this Hamiltonian, adding a time-dependent dimensionless coupling

H(t) = g(t)H0 . (C.1)

In this model the time-evolution unitary corresponds effectively to the time-independent evo-
lution with H0,

U(t) = T exp

�

−i

∫ t

0

ds H(s)

�

= e−i tg H0 , tg =

∫ t

0

dsg(s) . (C.2)

That is, the effect of the coupling is simply to explore different times on the submanifold
generated by the fixed Hamiltonian H0. The energy given by H0 is obviously conserved,
[H0, U(t)] = 0.

The coupling is taken to be random Gaussian white-noise correlated

E[g(t)] = 0 , E[g(t)g(0)] = t0δ(t) . (C.3)

This induces a random Gaussian variable for the time tg in (C.2) withE[tg]=0 andE[t2
g]= t0 t.

The moment superoperator Φ̂(k)Et
takes the form of an unnormalized thermal state (19), for

the effective Hamiltonian

Hk = t0

� k
∑

r=1

H r
0 −H r̄

0

�2

. (C.4)

For simplicity we assume that the Hamiltonian H0 has time-reversal symmetry, so that H∗0=H0.
The effective Hamiltonian (C.4) can be explicitly diagonalized, in terms of the eigenbasis

|EIk
〉 ≡ |Ei1 , Ei1̄ , . . . , Ei1 , Eik̄

〉 , Hk |EIk
〉= EIk

|EIk
〉 , (C.5)

where
EIk
= t0

�

Ei1 + . . .+ Eik − Ei1̄ − . . .− Eik̄

�2
. (C.6)
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Let us assume that the spectrum of H0 lacks of degeneracies and rational relations. This is
what we expect in general if H0 is chaotic [84].22 At the level of the effective Hamiltonian (C.4)
this means that the ground space GSk is linearly generated by the eigenstates (C.5) where the
individual energies are paired between forward and backward replicas

Ei1̄ = Eiσ(1) , . . . , Eik̄
= Eiσ(k) , σ ∈ Sym(k) . (C.7)

There are in total dim(GSk) = dkk! such linearly independent states for k ≤ d. Note that,
in particular, all of the states of the form (22) belong to this subspace, as expected from the
general considerations of section 2.1.

According to (27) we get that the one-norm distance between the k-th moment superop-
erators is

Z1(t)− Z1(∞) = k!(dk − 1) +
∑

EIk
̸=0

e−tEIk . (C.8)

For a general chaotic system, the level-spacing is O(e−S(Ē)), where Ē denotes some average
energy of the mircocanonical window and S(Ē) represents the microcanonical entropy. The
exponential decay in (C.8) is therfore very long lived, lasting for times t ∼ O(e2S(Ē)). More
importantly, from the constant piece of (C.8), we see that the ensemble Et never becomes an
approximate k-design for any k.23

Relation to spectral properties of H0 and ergodicity

Note that our analysis above does not depend on the eigenbasis of H0; it simply points to
energy conservation as the source of non-generation of pseudorandomness. Indeed, from the
conservation of H0, all unitaries in Et are constrained to a torus submanifold Td ⊂ U(d). This
torus submanifold is defined by the unitaries which are diagonal in the energy basis of H0,

U = diag(eiθ1 , . . . , eiθd ) ∈ Td , θi ∈ (0,2π] . (C.9)

At long times the ensemble Et simply becomes the ergodic cover of Td , in the sense that
the measure defining the ensemble becomes the uniform measure dθ1···dθk

(2π)k over Td .24

For example, using (36), we note that for this ensemble we can rewrite the partition func-
tion Zk(t) as a Brownian time-averaged version of the SFF

Zk(t) =

∫ ∞

−∞
ds

e−
s2

2t t0

p

2πt t0

SFF(U(s))k , (C.10)

where the SFF was defined in (37).
At very long times the Gaussian becomes uniform and we get

Zk(∞) = SFFk , (C.11)

22When this ‘ergodicity’ condition is not met and there are a lot of degeneracies and rational relations (e.g.
in integrable systems) the number of independent ground states GSk is vastly larger and the late-time measure
defining E∞ does not become uniform measure in the submanifold explored by U(t), neither does it become a
k-design.

23This is also true for the weaker definition of approximate design in terms of the diamond distance, given the
lower bound in (B.2).

24Note that the uniform measure on Td is the block-diagonal Haar measure studied in appendix A, with the pecu-
liarity that the subspaces of fixed global charge (the energy in this case) are all one-dimensional. The hypothesis of
ergodicity translates into the fact that there are no other invariant states to the ones found in appendix A; namely,
that the charges of the different one-dimensional irreps have no rational relations and thus there are no additional
singlets states in the tensor product representation.
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where the overbar represents the long-time average

f ≡ lim
T→∞

1
T

∫ T/2

−T/2
ds f (s) . (C.12)

For a Hamiltonian H0 without rational relations on the spectrum, the long-time average is
the same as the uniform average over Td ,

Zk(∞) =
∑

i1,...,ik ,i1̄,...,ik̄

e−i t(Ei1+...+Eik
−Ei1̄
−...−Eik̄

)

=

∫

ddθ

(2π)d
∑

i1,...,ik ,i1̄,...,ik̄

e−i(θi1+...+θik
−θi1̄
−...−θik̄

) = dkk! . (C.13)

We thus find that the origin of non-generation of randomness in this ensemble is the conser-
vation of energy, which prevents Et from exploring more than a measure zero submanifold Td

of the space of unitaries U(d). Therefore a typical unitary U(t) ∈ Et will be far from random,
even if H0 is chosen in a very atypical way from the space of all Hamiltonians.

D Other Brownian beta ensembles

In this section, we study the Brownian random matrix models defined in section 4 where the
path integral measure DH(t) over Hamiltonians is chosen instead from the Gaussian orthog-
onal ensemble (GOE) and Gaussian symplectic ensemble (GSE).

D.1 GOE

In systems with instantaneous time-reversal and rotation symmetry the Hamiltonian can be
expanded as

H(t) =
∑

i

x ii(t)Πii +
∑

i< j

x i j(t)
Πi j +Π ji
p

2
, Πi j ≡ |i〉 〈 j| . (D.1)

The Brownnian GOE model is defined by (96) with the path integral measure

DH(t) ∝
∏

i

Dx ii(t)
∏

i< j

Dx i j(t) . (D.2)

With this choice, the real functions x i j(t) correspond to K = d(d+1)
2 real Brownian couplings

with vanishing mean and variance

E
�

x i j(t)
�

= 0 , E
�

x i j(t)x lm(0)
�

=
Jd
K
δ(t)δilδ jm . (D.3)

From the general considerations of section 2.1, the k-th moment superoperator Φ̂(k)Et
of this

ensemble can be written as the unnormalized thermal state (19) for the effective Hamiltonian

Hk =
J

2(d + 1)

∑

i< j

� k
∑

r=1

�

Πr
i j +Π

r
ji −Π

r̄
i j −Π

r̄
ji

�

�2

+
J

d + 1

∑

i

� k
∑

r=1

�

Πr
ii −Π

r̄
ii

�

�2

. (D.4)
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This operator can be recognized as

Hk =
Jd

d + 1

�

k+
∑

r<s

(|∞〉rs 〈∞|rs + |∞〉r̄ s̄ 〈∞|r̄ s̄)−
∑

r,s

|∞〉rs̄ 〈∞|rs̄

�

+
J

d + 1

�

k+
∑

r<s

(SWAPrs + SWAPr̄ s̄)−
∑

r,s

SWAPrs̄

�

. (D.5)

In this form, it is manifest that the effective Hamiltonian Hk is invariant under SO(d) sub-
group of the unitary transformations that rotate the reference basis, while leaving invariant
time-reversal symmetry. Note that since the symmetry is in this case a subgroup of SU(d), the
effective Hamiltonian (D.5) is less restricted than (102). In particular, SWAPrs̄, |∞〉rs 〈∞|rs
and |∞〉r̄ s̄ 〈∞|r̄ s̄ are only invariant under the SO(d) subgroup of transformations of the ref-
erence basis, and not under the full SU(d) group.

Time to 1-design

The effective Hamiltonian (D.4) for k = 1 is

H1 =
Jd

d + 1

�

1− |∞〉11̄ 〈∞|11̄

�

+
J

d + 1

�

1− SWAP11̄

�

, (D.6)

Let us consider a general state
|ψ〉11̄ =

∑

i j

ψi j |i, j〉11̄ . (D.7)

The eigenspaces of H1 fall into irreps of SO(d) in the tensor product

d⊗ d= 1⊕A2 ⊕ S2 , (D.8)

where 1 is the singlet (ψi j∝δi j), S2 is the rank 2 symmetric traceless (ψi j=ψ(i j),
∑

iψii = 0)
and A2 is the rank 2 antysymmetric (ψi j = ψ[i j]). These eigenspaces have corresponding
eigenvalue {0, J d

d+1 , J d+2
d+1}, respectively. The spectral gap is therefore ∆1 = J d

d+1 .
The trace distance to 1-design in this ensemble is then

Z1(t)− Z1(∞) = e−∆1 t
��

d(d + 1)
2
− 1

�

+
d(d − 1)

2
e

J t
d+1

�

. (D.9)

The time to 1-design is then

t1 ≈
1
J

�

2 log d + logϵ−1
�

. (D.10)

Time to 2-design

For illustrative purposes, we shall explicitly study the k = 2 effective Hamiltonian

H2 =
Jd

d + 1

�

2+ |∞〉12 〈∞|12 + |∞〉1̄2̄ 〈∞|1̄2̄ − |∞〉11̄ 〈∞|11̄

− |∞〉22̄ 〈∞|22̄ − |∞〉12̄ 〈∞|12̄ − |∞〉21̄ 〈∞|21̄

�

+
J

d + 1

�

2+ SWAP12 + SWAP1̄2̄ − SWAP11̄ − SWAP22̄ − SWAP12̄ − SWAP21̄

�

. (D.11)

Consider a general state

|ψ〉11̄22̄ =
∑

i jkl

ψi jkl |i, j, k, l〉11̄22̄ . (D.12)
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To construct the irreducible representations of SO(d) in this Hilbert space, we can start from
the irreps of GL(d), which can be constructed from the standard Young diagrammatics

⊗4
= ⊕ ⊕

×3

⊕

×3

⊕
×2

(D.13)

These diagrams define a set of Young projectors onto invariant subspaces of GL(d), which can
be easily read by labelling the boxes with the i jkl indices and following the standard rules
(see e.g. [61]).

The first two tableaux in (D.13) correspond to the totally symmetric and antisymmetric
tensors, ψi jkl = ψ(i jkl) and ψi jkl = ψ[i jkl], respectively. The next two correspond to mixed
representations, where the Young projector is more complicated. The last representation cor-
responds to a tensor with the symmetries of the Riemann tensor, ψi jkl =ψ[i j]kl =ψi j[kl] and
ψi[ jkl] = 0. Given this decomposition, to construct irreps of SO(d) we must separate these
tensors into their traceless parts and consider their traces separately. By the Schur-Weyl duality
the decomposition into irreps of SO(d) will generate irreps of Sym(2k) as well.

The simplest example comes from the rank 4 totally antisymmetric representation A4,
which is traceless and thus irreducible for d > 8 (for d = 8 it reduces into self-dual and anti
self-dual part, while for d < 8 it is dual to an antisymmetric representation of rank d−4< 4).
This subspace (ψi jkl =ψ[i jkl]) has dimension

�d
4

�

and energy 2J d+2
d+1 . The rest of the represen-

tations in (D.13) are reducible.
It is clear from (D.13) that there will be three singlets. One of them will come from the

totally symmetric representation of GL(d); the other two will come from the two ‘Riemann
tensors’ (these encode the analog of the Ricci scalar). In the space of singlets, there will be
two ground states |Wσ〉 for σ = e, (12) and an excited state, ψi jkl ∝ δikδi j with energy 4J .
Therefore, the first difference with the GUE case of section 4 is that the irrep of SO(d) does not
determine the energy totally. The reason is that the Hamiltonian (D.11) is not invariant under
the full permutation group Sym(2k); it is only invariant under a subgroup Sym(k)× Sym(k)
that swaps the forward and backward replicas separately.

Moreover, these three representations will yield a traceless symmetric rank 2 tensor S2
each. This will leave the rank 4 totally symmetric traceless S4 (of dimension

�d+3
4

�

−
�d+1

2

�

)
and two rank 4 representations W4 with the symmetries of the Weyl tensor (of dimension
d(d+1)(d+2)(d−3)

12 ). On the other hand, the mixed representations of (D.13) yield a rank 2 an-
tisymmetric tensor A2 each, while the third representation in (D.13) will yield a rank 2 sym-
metric traceless tensor S2 as well. The remaining representation are traceless rank 4 mixed
representations, M(3,1) and M(1,3).

Therefore, the eigenspaces of the effective Hamiltonian will respect the decomposition

d⊗ d⊗ d⊗ d= 1×3 ⊕A×6
2 ⊕ S×6

2 ⊕M×3
(3,1) ⊕M×3

(1,3) ⊕W×2
4 ⊕A4 ⊕ S4 . (D.14)

Note that by inspection of (D.11) the traceless representations all have energy E ≈ 2J if we
neglect energy separations of O(J/d). Four of the A2 and S2 (the ones corresponding to single-
replica excitations on top of the ground states, e.g. ψi jkl = δi jφkl , withφkl traceless) will have
energies E ≈∆2 ≈ J .

Since most of the states lie at E ≈ 2J , we can approximate the trace distance to 2-design
by

Z2(t)− Z2(∞)≈ 4(d2 − 1)e−J t + (d4 − 4d2 − 2)e−2J t , (D.15)
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which leads to a time to 2-design of

t2 ≈
1
J

�

log(d2 − 1) + 2 log2+ logϵ−1
�

, (D.16)

exactly like in the GUE case.

Time to k-design

For general k ≤ d, the eigenspaces of Hk in (D.4) will admit the decomposition

d⊗ · · · ⊗ d
︸ ︷︷ ︸

2k

= 1×
(2k)!
2k ⊕ · · · (D.17)

Now there will be more singlets than in the GUE case, corresponding to the total number of
pairings of the 2k replicas. However, only k! of these will be ground states, for the general
reasons stated above. Moreover, the first excited states will correspond to single replica exci-
tations (either S2 or A2) on top of each ground state. There will be a total of N∗ = k!k(d2−1)
first excited states. Note that the traceless representations (most of the Hilbert space) has
energy E ≈ kJ for k/d ≪ 1. Therefore, this leads to a time to k-design

tk ∼
1
J

�

k log k− k+ log k+ log(d2 − 1) + logϵ−1
�

, (D.18)

which up to logarithmic factors and subleading terms is linear in k, in complete agreement
with the GUE case.

D.2 GSE

For even d, in a system with time reversal symmetry but without rotational symmetry, the
time-dependent Hamiltonian can be expressed as

H(t) =
∑

i

aii(t)Πii +
∑

i< j

�

ai j(t)
Πi j +Π ji
p

2
+ (bi j(t)i+ ci j(t)j+ di j(t)k)

Πi j −Π ji
p

2

�

, (D.19)

where i, j = 1, . . . , d
2 and the matrix entries are quaternions Hi j = ai j + bi ji + ci jj + di jk,

represented as 2× 2 matrices and Πi j ≡ |i〉 〈 j|. The Brownian GSE model is defined by (96)
with the path integral measure

DH(t) ∝
∏

i

Daii(t)
∏

i< j

Dai j(t)Dbi j(t)Dci j(t)Ddi j(t) . (D.20)

In the Brownian GSE model, the functions {ai j(t), bi j(t), ci j(t), di j(t)} are taken as K = d(d−1)
2

white-noise correlated Gaussian random couplings with vanishing mean and variance

E
�

ai j(t)alm(0)
�

= E
�

bi j(t)blm(0)
�

= E
�

ci j(t)clm(0)
�

= E
�

di j(t)dlm(0)
�

=
Jd
K
δ(t)δilδ jm . (D.21)

From the general considerations of section 2.1, the k-th moment superoperator Φ̂(k)Et
of this

ensemble can be written as the unnormalized thermal state (19) for the effective Hamiltonian

Hk =
J

2(d − 1)

∑

i< j





� k
∑

r=1

Πr
i j +Π

r
ji −Π

r̄
i j −Π

r̄
ji

�2

− 3

� k
∑

r=1

Πr
i j −Π

r
ji +Π

r̄
i j −Π

r̄
ji

�2




+
J

d − 1

∑

i

� k
∑

r=1

�

Πr
ii −Π

r̄
ii

�

�2

. (D.22)
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We can reorganize this operator as

Hk =
J

d − 1

�

2k(d − 1)− d
∑

r<s

(|∞〉rs 〈∞|rs + |∞〉r̄ s̄ 〈∞|r̄ s̄)− 2d
∑

r,s

|∞〉rs̄ 〈∞|rs̄

+ 4
∑

r<s

(SWAPrs + SWAPr̄ s̄) + 2
∑

r,s

SWAPrs̄

�

, (D.23)

which is invariant under the symplectic subgroup Sp(d) of unitary transformations of the ref-
erence basis. In this form, the effective Hamiltonian (D.23) is only manifestly invariant under
a SO( d

2 ) subgroup, and it corresponds to the identity in the 2 × 2 factor. Therefore, the di-
agonalization of such Hamiltonian proceeds in analogy to the GOE case, in the replicated
Hilbert space where each factor has dimension d

2 . For this reason, we shall not attempt to
repeat the previous analysis here. The only subtlety in the GSE case is that there will be an
additional fourfold degeneracy on each factor, given that every Hamiltonian of the ensemble
(D.19) respects the factorization of the Hilbert space. Thus, the ensemble Et will only reach
the factorized Haar ensemble at infinite times.
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