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Abstract

We study the spindle compactification of families of AdS5 consistent truncations corre-
sponding to M5 branes wrapped on complex curves in Calabi-Yau three-folds. From the
AdS/CFT correspondence these models are dual to N = 1 SCFTs obtained by gluing of
TN blocks. The truncations considered here have both vector and hyper multiplets and
the analysis of the BPS equations on the spindle allows to extract the central charges.
Such analysis gives also consistency conditions for the existence of the solutions. The
solutions are then found both analytically and numerically for opportune choices of the
charges for some sub-families of truncations. We then compare our results with the one
expected from the field theory side, by integrating the anomaly polynomial.
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1 Introduction

A prediction of the AdS/CFT correspondence is the matching of exact quantities of a CFT with
their gravitational counterparts. An ancestor result in this direction was obtained in [1], where
the central charges of a 2d CFT was computed in terms of an AdS3 gravitational background.
Furthermore in absence of a Lagrangian description of an interacting fixed point the correspon-
dence represents a definition of the desired CFT. Another way to produce superconformal field
theories consists of compactifying higher dimensional theories on curved manifolds, preserv-
ing some supersymmetry by turning on quantized magnetic background fluxes for the global
symmetries. Such mechanism, commonly referred to as (partial) topological twist [2–4], has
been vastly studied in many stringy and holographic setups.

The prototypical example was discussed in [5] in terms of branes wrapped on Riemann
surfaces. From the gravitational side the mechanism is usually referred as a (gravitational)
flow across dimensions. Then in [6] such flows have been generalized and related to the
c-extremization principle of [7]. The c-extremization principle in this case is related to a grav-
itational attractor mechanism (see [8–12] for related works in this direction).

Recently it has been observed that one can extend the notion of the topological twist on
manifolds with orbifold singularities [13]. The explicit orbifold considered in [14] is the spin-
dle, topologically a two sphere with deficit angles at the poles. Supersymmetry in this case is
preserved such that the Killing spinors are neither constant nor chiral on the orbifold. Further-
more, there are two ways to preserve supersymmetry, denoted as the twist and the anti-twist.
Many field theoretical and gravitational constructions have been proposed in the recent years
by considering compactifications on orbifolds [14–39].

In this paper we will focus on the case of M5 branes wrapped on a complex curve Cg in
a Calabi-Yau three-fold X [40, 41]. These models are a generalization of the ones obtained
in [5] where M5 branes wrapped on a Riemann surface were considered. The construction
of [40,41] generates an infinite family of 4d SCFTs obtained by gluing TN theories [42]. The
setup is specified by two integers that depend on the local geometry of X , corresponding to
a decomposable C2 bundle over Cg. The (non-negative) integers, denoted as p and q, are the
Chern numbers of the line bundles L1,2 that specify L1 ⊕L2 → Cg. For p = q the N = 1 case
studied in [5] is recovered, while p = 0 (or q = 0) corresponds to the N = 2 case of [5].
For other choices of p and q the 4d SCFT corresponds to a different N = 1 SCFT.
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While M5 branes and the theories of [5] have been already studied on the spindle in var-
ious setups [17, 18, 26, 28] a general analysis for the models introduced in [40, 41] has not
been pursued so far. Here we are interested in generic choices of p and q from the supergrav-
ity perspective. Our starting point are the 5d consistent truncations obtained in full generality
by [43] (see also [44–47] for earlier results in this direction). Such truncations have the ad-
vantage to hold for any choice of p and q, but the price to pay in this case is the presence of
hypermultiplets. Anyway, by exploiting the general recipe of [48], we can analyze the reduc-
tion on the spindle of the consistent truncations of [43] even in presence of hypermultiplets.
The reason is that in this case one hyperscalar triggers an Higgs mechanism that gives a mass
to one of the vector multiplets. The Higgsing simplifies the analysis of the BPS equations and
of the fluxes at the poles of the spindle, allowing to find the boundary conditions that most
of the scalars have to satisfy at the poles in order to compute the central charges in the twist
and in the anti-twist class. While this analysis makes the calculation of the central charges
possible, it does not guarantee the existence of a solution. Furthermore, it does not fix the
boundary condition for the hyperscalar.

However, by restricting to the graviton sector, the universal analytic solution of the type
discussed in [13, 15] is found. In this case the scalars are fixed to their AdS5 value. Observe
that the universal twist is consistent only if the 4d superconformal R-charge is rational, and
this limits the amount of accessible truncations. For more general twists, beyond the universal
one, we solved numerically the BPS equations for various values of the hyperscalar at one
of the poles of the spindle. When the (unique) value of the hyperscalar that solves the BPS
equation, at such pole of the spindle, is found, the existence of the solution is guaranteed. The
procedure fixes also the boundary condition for the hyperscalar at the other pole and the finite
distance between the poles.

In the following we will exploit such procedure for the consistent truncations of [43] and
we will compare our results with the one found on the field theory side by integrating the
anomaly polynomial.

The paper is organized as follows. In section 2 we study the spindle compactification of the
4d non lagrangian theories obtained in [41]. First, in sub-section 2.1, we review the relevant
aspects of the construction of [41] focusing on the ’t Hooft anomalies and on the distinction
between the trial R-symmetry emerging from the higher dimensional picture and the exact one
due to a-maximization. This distinction indeed plays a crucial role in the analysis. Then in sub-
section 2.2 we study the compactification on the spindle and we compute the central charge
of the emerging two-dimensional theory. In the computation of the exact 2d R-symmetry we
observe that the result can be formulated (when the conditions of integerness on the fluxes is
satisfied) in terms of the 4d trial R-symmetry or in terms of the 4d exact one. As a bonus we
also study in subsection 2.3 the case of the spindle compactification of 4d models associated to
negative degree bundles, corresponding to the models obtained in [49, 50]. The in section 3
we review the supergravity truncation of [43] in order to fix the notations and the conventions
that we use in subsequents sections of the paper. In section 4 we study the compactification of
the spindle of these 5d N = 2 gauged supergravities, obtaining the relevant BPS and Maxwell
equations. In section 5 we focus on the calculation of the conserved charges and of the integer
fluxes. In this way we can fix most of the scalars at their boundary values on the spindle and
from these results we extract the exact central charges form the gravitational perspective. We
eventually observe that these results agree with the ones obtained from the field theoretical
analysis. In section 6 we complete our analysis by studying the gravitational solution. First,
in sub-section 6.1 we look for an analytical solution, finding that it exists for the universal
twist, for choices of p and q that correspond to a rational 4d R-symmetry. Then in sub-section
6.2 we look for numerical solutions for more generic values of p and q, by turning on also
the magnetic charge associated to the flavor symmetry. We find numerical solutions only in
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the case of the anti-twist class for Riemann surfaces of positive curvature. In section 7 we
conclude by discussing the relation of our results with the literature and by listing a set of
open problems not addressed in this paper.

2 The 4d SCFT on the spindle

In sub-section 2.1 we are going to review the M-theory construction of N = 1 SCFTs in 4d
of [41], which is going to be the starting point for our effective 2d theories compactified on
the spindle. These models turn out to be dual to N = 1 SCFT built by opportunely gluing TN
blocks [42]. Then in sub-section 2.2 we construct the theory compactified on the spindle Σ,
closely following [13, 48] mutatis mutandis. Eventually in sub-section 2.3 we study the case
of negative degree bundles, obtained in [49,50], on the spindle.

2.1 The 4d model

The worldvolume theory of stack of N M5-branes is well known to be a 6d N = (2, 0) SCFT.
One can construct effective 4d theories by wrapping the branes on some specific geometry. In
this particular case, we are interested in effective 4d theories obtained by wrapping the M5-
branes on a complex Riemann curve of genus g Cg in a Calabi-Yau three-fold. This geometric
construction gives rise to an infinite family of 4d effective theories which are parametrized by
two integers depending on the local geometry of the Calabi-Yau three-fold X which in the case
of interest is just a holomorphic C2 bundle over Cg

C2 ,→ X
π
−→ Cg . (1)

Crucially, when X is decomposable it will take the simpler form X = L1 ⊕L2. This structure
has a manifest U(1)2 isometry, one factor for each fiber in the line bundle. The two isometries
give rise to two abelian symmetries, one being the R-symmetry U(1)R and the other being an
additional flavor symmetry U(1)F .

The integers describing the families of IRN = 1 SCFTs are just the Chern numbers labelling
the possible bundle decomposition

c1(L1) = p , c1(L2) = q , (2)

subject to the Calabi-Yau condition p + q = 2(g − 1). Depending on the choices of these
two integers, the fields in the M5-brane theory transform in different representation of the
U(1)F symmetry, leading to different IR fixed points. A solution to the constraint of the Chern
numbers is given by the following parametrization

p = (1+ z)(g− 1) , q = (1− z)(g− 1) , (3)

where z(g− 1) ∈ Z.
An explicit field theory construction for these theories can be given when the integers

p, q in (2) are positive. For these cases in fact the theories can be described, from class-S, as
opportune gluing of 2(g−1) TN building blocks to create a Riemann surface with no punctures.
In the next section we are going also to consider the cases of negative p, q whose explicit
construction was given in [49,50] but for which no dual gravity solution is known.

In this setup the key observables are the central charges c and a, determined by the fol-
lowing combinations of R-symmetry anomalies

c =
1
32

�

9Tr R3 − 5Tr R
�

,

a =
3
32

�

3Tr R3 − Tr R
�

.
(4)
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Note that in the large N limit, for holographic SCFTs a = c. The central charges can be
recovered from the known anomaly polynomial of the M5-brane theory integrated over Cg,
assuming that no accidental symmetries are generated along the flow. Since the abelian sym-
metries U(1)R and U(1)F mix together, the exact superconformal R-symmetry is found by a-
maximization [51].

One finds that the ’t Hooft anomalies of the trial R-charge R(ε4d) = R+ ε4d F , for theories
of type G = AN , DN , EN , are given by

Tr R(ε4d)
3 = (g− 1)[(rG + dGhG)(1+ zε3

4d)− dGhG(ε
2
4d + zε)] ,

Tr R(ε4d) = (g− 1)rG(1+ zε4d) , (5)

where rG , dG and hG are the rank, dimension and Coxeter number of G respectively, while ε
is the mixing parameter.

We are interested in the AN−1 case at large N . By plugging (5) into (4) we can
use a-maximisation to find the superconformal R-charge. This is given by the mixing
R(ε∗4d) ≡ R∗ = R + ε∗4d F where the mixing parameter at large N , fixed by a-maximisation,
is given by

ε∗4d =
1+ k
p

1+ 3z2

3z
, (6)

where k is half of the scalar curvature of Cg.1 Choosing k= −1 for later purposes, the ’t Hooft
anomalies for the superconformal R-symmetry read

kR∗R∗R∗ =
2(g− 1)

27z2

�

9z2 − 1+ (3z2 + 1)3/2
�

N3 , kR∗R∗F = 0 ,

kR∗F F = −
(g− 1)

3

p

3z2 + 1N3 , kF F F = (g− 1)zN3 . (7)

The mixed ’t Hooft anomalies between the R-symmetry R and the flavor symmetry F can be
computed from (5) and they read

k
RRR
= (g− 1)N3 , k

RRF
= −

1
3
(g− 1)zN3 ,

k
RF F
= −

1
3
(g− 1)N3 , k

F F F
= (g− 1)zN3 . (8)

2.2 BBBW on the spindle

Consider the 4d SCFT reviewed above, whose anomaly polynomial in the large N limit reads

I6 =
1
6

∑

i, j,k=R,F

ki jk c1(Fi)c1(F j)c1(Fk) , (9)

where the coefficients ki jk are given by the mixed ’t Hooft anomalies (8) and the c1(FR,F ) are
the first Chern-classes for the U(1)-bundles over the total space X4 with gauge curvature R
and F .

We proceed to compactify further the 4d theory over the spindle Σ ≡ WCP1
[nN ,nS]

, where
nN , nS label the deficit angles at the north and south pole of the orbifold respectively, with
background magnetic fluxes for the two abelian U(1)R and U(1)F symmetries of the 4d theory.
In order to do that, we need to take into account the azimuthal U(1)J isometry of the spindle
which is generated by rotations about the axis passing through the poles. Geometrically, this is
given by considering the total space X4 as a X2 orbibundle fibered over Σ. In the field theory,

1The Ricci scalar curvature is normalized such that k= 1 for g= 0, k= 0 for g= 1 and k= −1 for g> 1.
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this can be achieved by turning on a connection AJ for the U(1)J isometry, so that we can write
the following gauge connections

A(I) = ρI(y)(dz + AJ ) , I = R, F , (10)

where ρI(y) are the background fluxes for the abelian symmetries, and (y, z) are respectively
the longitundal and azimuthal coordinates over Σ, with y ∈ [yN , yS] and z ∼ z + 2π. The
curvatures for the fields (10) are given by

F (I) = ρ′I(y)dy ∧ (dz + AJ ) +ρI(y)FJ , I = R, F , (11)

where FJ = dAJ . These fields are consistent with the flux condition

1
2π

∫

Σ
F (I) = [ρI]

yS
yN
=

pI

nSnN
. (12)

The curvature forms F (I) define a U(1)-line bundle LI over X4 , and the associated first Chern
classes are2

c1(LI)≡
�

F (I)

2π

�

∈ H2(X4,R) , c1(J)≡
�

FJ

2π

�

∈ H2(X2,R) . (13)

To obtain the 2d anomaly polynomial, we make the following substitution

c1(R)→ c1(R) +
1
2

c1(LR) , c1(F)→ c1(F) + c1(LF ) , (14)

where c1(R) and c1(F) are the pull-back of the U(1)R and U(1)F bundles over X2 respectively.
The choice of normalization is such that the R-symmetry generators give charge 1 to the su-
percharges. Thus, we shift the curvatures in Eq. (11) accordingly, compute the anomaly poly-
nomial in Eq. (9) and integrate it over Σ. The result is a combination of the four non-zero
mixed ’t Hooft anomalies given in sec. 2.1. In the following, as a working example we show
only the computation for the terms proportional to kRRR
∫

Σ

�

c1(R) +
1
2

c1(LR)
�3

=

∫

Σ

�

3
2

c1(R)
2c1(LR) +

3
4

c1(R)c1(LR)
2 +

1
8

c1(LR)
3
�

, (15)

where the product of forms is understood. Notice that the c1(R) does not depend on the
spindle, so they can be factorized out of the integral. Let us consider the first term in (15)

∫

Σ

3
2

c1(R)
2c1(LR) =

3
2

c1(R)
2

∫

Σ

F (R)

2π
=

3
2

c1(R)
2[ρR]

yS
yN

. (16)

The second term reads
∫

Σ

3
4

c1(R)c1(LR)
2 =

3
4

c1(R)

∫

Σ

1
4π2

F (R) ∧ F (R)

=
3
4

c1(R)

∫

Σ

2
4π2

ρR(y)ρ
′
R(y)dy ∧ (dz + AJ )∧ FJ

=
3
4

c1(R)

∫

Σ

1
4π2

dρ2
R ∧ (dz ∧ FJ + AJ ∧ FJ )

=
3
4

c1(R)c1(J)

∫

Σ

1
2π

dρ2
R ∧ dz

=
3
4

c1(R)c1(J)[ρ
2
R]

yS
yN

,

(17)

2Note that the gauge curvature of J is only defined on X2. It’s Chern class will not contribute in the integral.
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where we used the fact that AJ∧FJ is just a total derivative and that FJ does not depend on the
spindle as stated in (13). In the second to last step we went back from forms to cohomology
classes. The last term in (15) evaluates to

1
8

∫

Σ
c1(LR)

3 =
1
8

∫

Σ

1
(2π)3

F (R) ∧ F (R) ∧ F (R) =
1
8

c1(J)
2[ρ3

R]
yS
yN

. (18)

The complete anomaly 4-form of the 2d theory reads

I4 =
1
4

�

kRRR[ρR]
yS
yN
+ 2kRRF [ρF ]

yS
yN

�

c1(R)
2 +

1
4

�

kRF F [ρR]
yS
yN
+ 2 kF F F [ρF ]

yS
yN

�

c1(F)
2

+
1
48

�

kRRR[ρ
3
R]

yS
yN
+ 8kF F F [ρ

3
F ]

yS
yN
+ 6kRRF [ρFρ

2
R]

yS
yN
+ 12kRF F [ρRρ

2
F ]

yS
yN

�

c1(J)
2

+
1
2

�

kRRF [ρR]
yS
yN
+ 2 kRF F [ρF ]

yS
yN

�

c1(F)c1(R)

+
1
8

�

kRRR[ρ
2
R]

yS
yN
+ 4kRRF [ρRρF ]

yS
yN
+ 4kRF F [ρ

2
F ]

yS
yN

�

c1(J)c1(R)

+
1
8

�

4 kF F F [ρ
2
F ]

yS
yN
+ kRRF [ρ

2
R]

yS
yN
+ 4kRF F [ρRρF ]

yS
yN

�

c1(J)c1(F) .

(19)

To compute the exact central charge we allow a mixing between the various U(1) factors
c1(J) = ε2d c1(R) and c1(F) = x2d c1(R), extremizing the function

c2d
trial(ε2d , x2d) =

6I4

c1(R)2
. (20)

The background magnetic fluxes are fixed to be
∫

F (R)

2π
=

pR

nSnN
,

∫

F (F)

2π
=

pF

nSnN
, (21)

where pR, pF ∈ Z. For the R-symmetry, we have two possible choices of fluxes consistent with
supersymmetry

ρR(yN ) =
(−1)tN

nN
, ρR(yS) =

(−1)tS+1

nS
, (22)

where tN = 0,1, while tS is fixed by the twisting procedure, namely tS = tN for the twist,
while tS = tN + 1 for the anti-twist. For the flavor symmetry, the flux can be fixed to

ρF (yN ) = z0 , ρF (yS) =
pF

nSnN
+ z0 , (23)

where z0 is an arbitrary constant.
Let us consider the following parametrization of the on-shell central charge

c2d
trial(ε

∗
2d , x∗2d)≡ c∗2d =

f (nS , nN , pF ;z)
g(nS , nN , pF ;z)

(g− 1)N3 . (24)

In the case of the twist we have

f (nS , nN , pF ;z) =
�

(nN + nS)
2 − 4p2

F

� �

2zpF + (−1)tN (nN + nS)
�

(25)

×
�

(−1)tN (nN + nS)
�

16zpF +
�

z2 + 3
�

(−1)tN (nN + nS)
�

+ 4
�

3z2 + 1
�

p2
F

�

,

g(nS , nN , pF ;z) = 2nN nS

�

8p2
F

�

−2nN nS + 3z2(n2
S + n2

N )
�

− 32zp3
F (−1)tN (nN + nS)

+ 8zpF (−1)tN (nN + nS)
�

3n2
N − 2nN nS + 3n2

S

�

− 48z2p4
F + (nN + nS)

2 �− 2
�

z2 + 2
�

nN nS +
�

z2 + 4
�

n2
S +
�

z2 + 4
�

n2
N

�

�

.
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The central charge is extremized by the mixing ε∗2d , x∗2d for which we give the exact, albeit
quite cumbersome, result

ε∗2d =
ϵ(nS , nN , pF ;z)
d(nS , nN , pF ;z)

, x∗2d =
χ(nS , nN , pF ;z)
d(nS , nN , pF ;z)

− z0ε
∗
2d , (26)

where

ϵ(nS , nN , pF ;z) = 4nN nS(−1)tN (nN − nS)(2nN (−1)tN (8zpF + (z
2 + 3)nS(−1)tN )

+ 16zpF nS(−1)tN + 4(3z2 + 1)p2
F + (z

2 + 3)n2
S + (z

2 + 3)n2
N ) ,

χ(nS , nN , pF ;z) = −2n2
S

�

2
�

z2 − 3
�

pF nN (−1)tN − 20zp2
F + 3zn2

N

�

− 4n3
S(−1)tN
�

znN (−1)tN − 2pF

�

− 4znS(−1)tN
�

n2
N − 4p2

F

� �

2zpF + nN (−1)tN
�

− 16
�

z2 + 1
�

p3
F nN (−1)tN − 4
�

z2 + 1
�

pF n3
N (−1)tN

− 24zp2
F n2

N − 16zp4
F − zn4

S − zn4
N ,

d(nS , nN , pF ;z) = 24z2p2
F n2

S + 4n3
N (−1)tN
�

6zpF + (−1)tN nS

�

+ 2zn2
N

�

4pF nS(−1)tN + 12zp2
F − zn2

S

�

+ 4nN (−1)tN
�

n2
S − 4p2

F

� �

2zpF + nS(−1)tN
�

+ 24zpF n3
S(−1)tN − 32zp3

F nS(−1)tN

− 48z2p4
F +
�

z2 + 4
�

n4
S +
�

z2 + 4
�

n4
N .

(27)

Notice that there is no explicit z0 dependence in the central charge.
We can check the validity of the result, by considering the S2 limiting case, where

nS = nN = 1, pF = 0 and comparing with the result of [6]. As expected the two results
match.3 One can see that in this limit the mixing parameter ε∗2d = 0. This is to be expected
since in this limit the spindle becomes a P1, and the abelian U(1)J is enhanced to the SU(2)
isometry of the P1, thus does not mix anymore with the R-symmetry.

Instead, for the anti-twist case the on-shell central charge is given by

f (nS , nN , pF ;z) =
�

(nS − nN )
2 − 4p2

F

� �

2zpF + (−1)tN (nN − nS)
�

×
�

(−1)tN (nN − nS)
�

16zpF +
�

z2 + 3
�

(−1)tN (nN − nS)
�

+ 4
�

3z2 + 1
�

p2
F

�

,

g(nS , nN , pF ;z) = 2nN nS

�

8p2
F

�

2nN nS + 3z2n2
S + 3z2n2

N

�

+ 32zp3
F (−1)tN (nS − nN )

− 8zpF (−1)tN (nS − nN )
�

3n2
N + 2nN nS + 3n2

S

�

(28)

− 48z2p4
F + (nS − nN )

2 �2
�

z2 + 2
�

nN nS +
�

z2 + 4
�

n2
S +
�

z2 + 4
�

n2
N

�

�

,

where the extremum, using the same parametrization as in (26), is reached for the following
mixing

ϵ(nS , nN , pF ;z) = −4nN nS(−1)tN (nN + nS)
�

2nN (−1)tN
�

8zpF − (−1)tN
�

z2 + 3
�

nS

�

(29)

− 16zpF nS(−1)tN + 4
�

3z2 + 1
�

p2
F +
�

z2 + 3
�

(n2
S + n2

N )
�

,

3From the result of [6], one fixes η1 = 2(g− 1),η2 = −2,κ1 = −1,κ2 = 1, z1 = z2 = z to find the matching.
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χ(nS , nN , pF ;z) = −2n2
S

�

2(−1)tN
�

z2 − 3
�

pF nN − 20zp2
F + 3zn2

N

�

+ 4(−1)tN n3
S

�

(−1)tN znN − 2pF

�

+ 4(−1)tN znS

�

n2
N − 4p2

F

� �

2zpF + (−1)tN nN

�

− 16(−1)tN
�

z2 + 1
�

p3
F nN − 4(−1)tN
�

z2 + 1
�

pF n3
N

− 24zp2
F n2

N − 16zp4
F − z(n4

S + n4
N ) ,

d(nS , nN , pF ;z) = 24z2p2
F n2

S + 4(−1)tN n3
N

�

6zpF − (−1)tN nS

�

+ 2zn2
N

�

−4(−1)tN pF nS + 12zp2
F − zn2

S

�

+ 4(−1)tN nN

�

n2
S − 4p2

F

� �

2zpF − (−1)tN nS

�

− 24(−1)tN zpF n3
S + 32(−1)tN zp3

F nS

− 48z2p4
F +
�

z2 + 4
�

(n4
S + n4

N ) .

Once again, the on-shell central charge does not depend on z0 as expected. Notice that the
central charge for the anti-twist case is related to the twist one by nS →−nS .

The central charge calculated from the R∗, F anomalies (7) instead of R, can be computed
in the same manner as just described. The two exact central charges will then match as follows

c∗2d

�

ε
(1)∗
2d , x (1)∗2d ; R, F, nS(−1)tN + nN (−1)tS , pF

�

= c∗2d

�

ε
(2)∗
2d , x (2)∗2d ; R∗, F, nS(−1)tN + nN (−1)tS , pF + ε

∗
4d

nS(−1)tN + nN (−1)tS

2

�

, (30)

where ε∗4d is the 4d mixing parameter found in (6) with k = −1, and we specified which
symmetries we are considering as well as their fluxes. Namely, the former is obtained from the
anomaly polynomial considering the ’t Hooft anomalies (8) and their fluxes, while the latter is
obtained considering the anomalies (7) and their fluxes are related with the other by a shift.

Observe that the universal twist4 is consistent only if the exact 4d R-symmetry is ratio-
nal. From the second line in (30) it follows that this choice requires to set the combination
pF +ε∗4d

nS(−1)tN+nN (−1)tS
2 to zero. The integerness conditions on pF , nS and nN then restrict the

allowed values of p and q admitting the universal twist.

2.3 Negative degree bundles

Here we further generalize the construction of [40, 41] by gluing 2(g− 1) together copies of
T (m)N theories [52]. This construction reproduces the model of [40, 41] when m = 0 [49, 50]
and generalizes it for generic m. The construction of [40, 41] in fact allows only for positive
p, q ≥ 0, while in the construction of [49,50], one can allow also for negative degree bundles.
Although these theories have no known supergravity description at this time, we give the field
theory calculation for completeness.

The cubic anomalies of the model of [40, 41] can be recovered from the ones of the T (m)N
blocks by linear combination of the U(1)i isometries of the line bundles. Namely, R=(J++J−)/2

4The universal twist corresponds, on the field theory side, to twist along the exact R-symmetry of the 4d theory.
This corresponds indeed on the dual side to turn on a background flux only for the graviphoton in the flow across
dimensions from AdS5 to AdS3. In our case we have shown indeed that by using the trial R-symmetry U(1)R and
the flavor symmetry U(1)F the exact R-symmetry U(1)R∗ realizes the universal twist. For consistency this procedure
requires to restrict the allowed values of p and q such that the exact R-symmetry is rational as well. We have further
commented on this issues in section 6.
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and F = (J−− J+)/2, following the naming convention of [49]. Therefore, in the large-N limit

kRRR =
N3

2
, kRRF = −

1
6
(1+ 2m)N3 ,

kRF F = −
N3

6
, kF F F =

1
2
(1+ 2m)N3 ,

(31)

where the integer m parametrizes the degree of the line bundles p = m+ 1 and q = −m.
Following the same arguments as before, we can compactify these theories on the spindle

and find the central charge of a family of theories parametrized by m. By taking the anomaly
polynomial constructed from the anomalies (31), we find the following central charge in the
case of the twist

f (nS , nN , pF ; m) = 2
�

4p2
F − (nN + nS)

2� �2(2m+ 1)pF + (−1)tN (nS + nN )
�

×
�

(−1)tN (nN + nS)
�

4(2m+ 1)pF +
�

m2 +m+ 1
�

(−1)tN (nN + nS)
�

+ 4(3m(m+ 1) + 1)p2
F

�

, (32)

g(nS , nN , pF ; m) = nN nS

�

(−1)tN
�

4n3
S

�

6(2m+ 1)pF + (−1)tN nN

�

+ 2(−1)tN (2m+ 1)n2
S

�

12(2m+ 1)p2
F

− (−1)tN nN

�

(−1)tN (2m+ 1)nN − 4pF

� �

+ 4nS

�

n2
N − 4p2

F

� �

2(2m+ 1)pF + (−1)tN nN

�

+ nN

�

(−1)tN nN

�

(−1)tN nN

�

24(2m+ 1)pF + (−1)tN (4m(m+ 1) + 5)nN

�

+ 24(2m+ 1)2p2
F

�

− 32(2m+ 1)p3
F

�

+ (−1)tN (4m(m+ 1) + 5)n4
S

�

− 48(2m+ 1)2p4
F

�

, (33)

where we used the parametrization (24). The mixing is given by

ϵ(nS , nN , pF ; m) = 16nN nS(−1)tN
�

4(−1)tN (2m+ 1)pF

�

n2
N − n2

S

�

+ 4(3m(m+ 1) + 1)p2
F (nN − nS)

+
�

m2 +m+ 1
�

(nN − nS) (nN + nS)
2
�

,

χ(nS , nN , pF ; m) = −4n3
N (−1)tN
�

2
�

2m2 + 2m+ 1
�

pF + (−1)tN (2m+ 1)nS

�

− 4nN (−1)tN
�

2
�

2m2 + 2m− 1
�

pF n2
S + 8
�

2m2 + 2m+ 1
�

p3
F

− 4(−1)tN (2m+ 1)p2
F nS + (−1)tN (2m+ 1)n3

S

�

− 2(2m+ 1)n2
N

�

4(−1)tN (2m+ 1)pF nS + 12p2
F + 3n2

S

�

+ 32(−1)tN (2m+ 1)2p3
F nS + 40(2m+ 1)p2

F n2
S

− 16(2m+ 1)p4
F + 8(−1)tN pF n3

S − (2m+ 1)n4
S − (2m+ 1)n4

N ,

d(nS , nN , pF ; m) = −32(−1)tN (2m+ 1)p3
F (nN + nS)

+ 8p2
F

�

3(2m+ 1)2n2
N + 3(2m+ 1)2n2

S − 2nN nS

�

+ 8(−1)tN (2m+ 1)pF (nN + nS)
�

−2nN nS + 3n2
N + 3n2

S

�

− 48(2m+ 1)2p4
F + (nN + nS)

2
�

− 2(4m(m+ 1) + 3)nN nS

+ (4m(m+ 1) + 5)(n2
N + n2

S)
�

. (34)
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f (nS , nN , pF ; m) = 2
�

(nN − nS)
2 − 4p2

F

� �

2(2m+ 1)pF + (−1)tN (nS + nN )
�

×
�

(−1)tN (nN − nS)
�

4(2m+ 1)pF +
�

m2 +m+ 1
�

(−1)tN (nN − nS)
�

+ 4(3m(m+ 1) + 1)p2
F

�

, (35)

g(nS , nN , pF ; m) = −nN nS

�

(−1)tN
�

− 4n3
S

�

6(2m+ 1)pF + (−1)tN nN

�

+ 2(−1)tN (2m+ 1)n2
S

�

12(2m+ 1)p2
F

− (−1)tN nN

�

(−1)tN (2m+ 1)nN − 4pF

� �

(36)

− 4nS

�

n2
N − 4p2

F

� �

2(2m+ 1)pF + (−1)tN nN

�

+ nN

�

(−1)tNnN

�

(−1)tN nN

�

24(2m+ 1)pF + (−1)tN (4m(m+ 1) + 5)nN

�

+ 24(2m+ 1)2p2
F

�

− 32(2m+ 1)p3
F

�

+ (−1)tN (4m(m+ 1) + 5)n4
S

�

− 48(2m+ 1)2p4
F

�

,

where we used the parametrization (24). The mixing is given by

ϵ(nS , nN , pF ; m) = −16nN nS(−1)tN
�

4(−1)tN (2m+ 1)pF

�

n2
N − n2

S

�

+ 4(3m(m+ 1) + 1)p2
F (nN + nS)

+
�

m2 +m+ 1
�

(nN + nS) (nN − nS)
2
�

,

χ(nS , nN , pF ; m) = −4n3
N (−1)tN
�

2
�

2m2 + 2m+ 1
�

pF − (−1)tN (2m+ 1)nS

�

− 4nN (−1)tN
�

2
�

2m2 + 2m− 1
�

pF n2
S + 8
�

2m2 + 2m+ 1
�

p3
F

+ 4(−1)tN (2m+ 1)p2
F nS − (−1)tN (2m+ 1)n3

S

�

− 2(2m+ 1)n2
N

�

−4(−1)tN (2m+ 1)pF nS + 12p2
F + 3n2

S

�

− 32(−1)tN (2m+ 1)2p3
F nS + 40(2m+ 1)p2

F n2
S

− 16(2m+ 1)p4
F − 8(−1)tN pF n3

S − (2m+ 1)n4
S − (2m+ 1)n4

N ,

d(nS , nN , pF ; m) = −32(−1)tN (2m+ 1)p3
F (nN − nS)

+ 8p2
F

�

3(2m+ 1)2n2
N + 3(2m+ 1)2n2

S + 2nN nS

�

+ 8(−1)tN (2m+ 1)pF (nN − nS)
�

2nN nS + 3n2
N + 3n2

S

�

− 48(2m+ 1)2p4
F + (nN − nS)

2
�

2(4m(m+ 1) + 3)nN nS

+ (4m(m+ 1) + 5)(n2
N + n2

S)
�

.

(37)

In the limit of m→ 0 one recovers the same result of the compactified model of [40, 41], as
expected.

3 The 5d supergravity truncation

The five-dimensional supergravity model we are working with is a consistent truncation from
eleven-dimensional supergravity studied in [43]. It contains two vector multiplets and one
hypermultiplet and it has gauge group U(1)×R.

As we mentioned before, this truncation generalizes the structure associated with the solu-
tions of [40,41] and it completes the consistent truncation of seven-dimensional N = 4 SO(5)
gauged supergravity reduced on a Riemann surface Cg analyzed in [44]. There, the 5d model
was obtained truncating the 7d supergravity to the U(1)2 sector, corresponding to the Cartan
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of SO(5). Besides enclosing the two U(1) gauge fields and the two scalars belonging to the
vector multiplets, the bosonic sector of the construction made in [43] also includes all the
scalar fields in the hypermultiplet, and furthermore it gives a direct derivation of the gauging.
In the following we outline the construction made in [43]. The eleven-dimensional metric is

ds2
11 = e2∆ds2

AdS5
+ ds2

6 , (38)

which corresponds to a warped product AdS5×wM with warp factor e2∆ℓ2 = e2 f0∆̄1/3, where
ℓ is the AdS radius and ∆̄ and f0 are constants. M6 is a six-dimensional manifold given by a
fibration of a squashed-sphere M4 over the Riemann surface Cg and has metric

ds2
6 = ∆̄

1/3e2g0 ds2
Cg +

1
4
∆̄−2/3ds2

4 , (39)

where g0 is a constant. The Riemann surface has Ricci scalar curvature k as discussed after
formula (6) and the metric on M4 is

ds2
4 = X−1

0 dµ2
0 +
∑

i=1,2

X−1
i

�

dµ2
i +µ

2
i (dϕi + A(i))2
�

, (40)

with

µ0 = cosζ , µ1 = sinζ cos
θ

2
, µ2 = sinζ sin

θ

2
. (41)

The angles ϕ1,ϕ2 are in [0,2π], while ζ,θ are in [0,π]. A(1) and A(2) gauge two U(1) isome-
tries of the squashed S4. Furthermore,

∆̄=
2
∑

I=0

X Iµ
2
I , e f0 = X−1

0 , e2g0 = −
1
8

kX1X2

�

(1− z)X1 + (1+ z)X2

�

, (42)

where z, that can be read from (3) as

z=
p− q
p+ q

, (43)

is a discrete parameter related to the Chern numbers p and q and

X0 = (X1X2)
−2 ,

X1X−1
2 =

1+ z

2z− k
p

1+ 3z2
,

X 5
1 =

1+ 7z+ 7z2 + 33z3 + k(1+ 4z+ 19z2)
p

1+ 3z2

4z(1− z)2
.

(44)

There is also a four-form flux, but we address the interested reader to [43] for its explicit form.
Notice that the N = 1 and N = 2 twistings studied in [5] can be recovered as special cases
from this model: the first one arises from setting p = q (corresponding to z = 0), while the
second one from p = 0 or q = 0 (z= ±1 ).

3.1 N = 2 supergravity structure

The reduction described above gives rise to an infinite family of N = 2 gauged supergravity
theories in five dimensions. Here we summarize the most salient features of the model and we
refer the reader to appendix A of [37] for a short review of 5d N = 2 gauged supergravity.5

5The Lagrangian in (B.10) of [43] that we are using here can be obtained from the one used in [37] by rescaling
the gauge fields and the coupling constant as

AI
there = −

√

√3
2

AI
here , gthere = −

√

√2
3

ghere . (45)
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Focusing on the vector multiplet sector, the two real scalars Σ and φ parametrize the Very
Special Real Manifold

MV = R+ × SO(1,1) , (46)

that has metric

gx y =

�

3
Σ2 0
0 1

�

. (47)

The homogeneous coordinates hI(Σ,φ) (from now on we will omit the explicit dependence of
the sections from the two real scalars Σ and φ) are given by

h0 =
1
Σ2

, h1 = −ΣH1 , h2 = −ΣH2 , (48)

where
H1 = sinhφ , H2 = coshφ , (49)

parametrize the unit hyperboloid SO(1,1), while Σ parametrizes R+. The metric gx y is the
pull-back of the metric aI J in the ambient space, which takes the form

aI J =
2

3Σ2





Σ6

2 0 0
0 2(H1)2 + 1 −2H1H2

0 −2H1H2 2(H2)2 − 1



 . (50)

The non-zero components of the totally symmetric tensor CI JK are

C0 Ī J̄ = C Ī0J̄ = C Ī J̄0 =
1
3
η Ī J̄ , for Ī , J̄ = 1, 2 , (51)

with η= diag(−1,1).
Moving to the hypermultiplet sector, the quaternionic manifold

MH =
SU(2, 1)

SU(2)×U(1)
, (52)

is spanned by the scalars qX = {ϕ,Ξ,θ1,θ2} with line element6

gX Y dqX dqY = −dϕ2 −
1
2

e2ϕ(dθ2
1 + dθ2

2 )−
1
4

e4ϕ(dΞ− θ1dθ2 + θ2dθ1)
2 . (53)

Only the hypermultiplet sector is gauged and the corresponding Killing vectors kI = kX
I ∂X read

k0 = ∂Ξ , k1 = zk∂Ξ , k2 = −k∂Ξ + 2(θ2∂θ1
− θ1∂θ2

) , (54)

with associated Killing prepotentials

P r
0 = {0,0,

1
4

e2ϕ} ,

P r
1 = {0,0,

zk
4

e2ϕ} , (55)

P r
2 = {
p

2eϕθ1,
p

2eϕθ2,−1+
1
4

e2ϕ(2θ2
1 + 2θ2

2 − k)} .

Thus, the bosonic part of the five-dimensional Lagrangian is

e−1L =
1
2

R−
1
Σ2
∂µΣ∂

µΣ−
3
4

a Ī J̄ ∂µ(ΣH Ī)∂ µ(ΣH J̄ )−
1
2

gX YDµqXDµqY (56)

−
Σ4

12
F0
µνF0µν −

1
4

a Ī J̄ F Ī
µνF J̄µν −

e−1

12

√

√2
3
εµνρστ
�

F1
µνFµν1 − F2

µνFµν2
�

A0
τ − g2V ,

where we recall the notation Ī , J̄ = 1, 2 and V represents the scalar potential of the theory.
6We are using a different normalization w.r.t. [43]. This allows us to obtain a simplified version of the hyperino

variation, as it was pointed out in [37].

13

https://scipost.org
https://scipost.org/SciPostPhys.17.6.154


SciPost Phys. 17, 154 (2024)

3.2 The model

In the remainder of this paper we will work with a further truncation of the 5d supergravity
model introduced above, which is obtained by setting

θ1 = θ2 = 0 , (57)

consistently with the AdS5 vacuum of the model we started from. In this truncation, the Killing
vectors (54) simplify to

k0 = ∂Ξ , k1 = zk∂Ξ , k2 = −k∂Ξ . (58)

Notice that from (58) we can see that the field Ξ gets charged under the vector
A(0)µ + zkA(1)µ −kA(2)µ , that becomes massive. Furthermore, only the third SU(2)-components of
the Killing prepotentials (55) survive and they reduce to

P3
0 =

1
4

e2ϕ, P3
1 =

zk
4

e2ϕ, P3
2 = −1−

k
4

e2ϕ . (59)

We can thus introduce a superpotential as

W = hI P3
I =

Σ3
��

ke2ϕ + 4
�

coshφ − zke2ϕ sinhφ
�

+ e2ϕ

4Σ2
. (60)

Furthermore, the following AdS5 vacuum is also a vev for the scalars Σ,φ,ϕ in this truncation:

ϕ =
1
2

log
�

4
p

3z2 + 1− 2k

�

,

φ = arctanh

�

1+ k
p

1+ 3z2

3z

�

,

Σ3 =

q

2
�

3z2 − 1− k
p

1+ 3z2
�

z
�p

1+ 3z2 − 2k
� .

(61)

4 The 5d truncation on the spindle

In this section we briefly review the geometric construction used to split the five-dimensional
background as the warped product AdS3 × Σ, where the space Σ is a compact spindle with
azimuthal symmetry and conical singularities at the poles. Once introduced the Ansatz on the
geometry and on the gauge fields, we present the corresponding BPS equations and Maxwell
equations of motion.

We refer the reader to [48] for the original derivation and to [37] for a more detailed
analysis made using our conventions.

4.1 The Ansatz and Maxwell equations

We begin by considering the AdS3 ×Σ Ansatz made in [48]:7

ds2 = e2V (y)ds2
AdS3
+ f (y)2d y2 + h(y)2dz2 ,

A(I) = a(y)(I)dz , (62)

where ds2
AdS3

is the metric on unitary AdS3, while (y, z) are the coordinates on Σ, which is
a compact spindle with an azimuthal symmetry generated by ∂z . A spindle is a weighted

7We are using the mostly plus signature, as in [37].
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projective space WCP1
[nN ,nS]

with conical deficit angles at the north (nN ) and at the south (nS)
pole, whose geometry is determined by the two co-prime integers nN ̸= nS that are associated
to the deficit angles 2π

�

1− 1
nN ,S

�

at the poles.
The azimuthal coordinate z has periodicity ∆z = 2π. The longitudinal coordinate y is

compact, bounded by yN and yS (with yN < yS), implying that the function h(y) vanishes at
the poles of the spindle. We assume that the scalars Σ,φ,ϕ depend on the y coordinate only,
while the hyperscalar Ξ is linear in z, i.e. Ξ= Ξz (with Ξ a constant). Following [48], we will
use an orthonormal frame to simplify the analysis of the Killing spinor equations and of the
equations of motion of the gauge fields:

ea = eV ēa , e3 = f d y , e4 = h dz , (63)

where ēa is an orthonormal frame for AdS3. In this basis, the field strengths read

f h F (I)34 = ∂y a(I) . (64)

Given that Σ,φ,ϕ are functions of y only and Ξ = Ξz, two out of the three gauge equations
of motion specified to our Ansatz can be easily integrated, and they can be written in the
orthonormal frame as

2e3V

3Σ2

�

(cosh2φ − z sinh2φ)F (1)34 + (z cosh2φ − sinh2φ)F (2)34

�

= E1 , (65)

2e3V

3Σ2

�

zkΣ6F (0)34 −(cosh2φ+z sinh 2φ)F (1)34 +(z cosh 2φ+sinh2φ)F (2)34

�

= E2 , (66)

∂y

�1
3

e3VΣ4F (0)34

�

=
1
4

e4ψ+3V g f h−1DzΞ , (67)

where E1 and E2 are constants, and we defined DzΞ≡ Ξ+ g(a(0) + zka(1) − ka(2)).

4.2 The BPS equations

To derive the BPS equations for the geometry introduced above, we need to factorize the Killing
spinor [48]:

ε=ψ⊗χ , (68)

where χ is a two-component spinor on the spindle and φ is a two-component spinor on AdS3
such that

∇mψ= −
κ

2
Γmψ , (69)

with κ = ±1 depending on the N = (2, 0) or N = (0, 2) supersymmetry chirality of the dual
2d SCFT.

We then decompose the 5d gamma matrices as

γm = Γm ⊗σ3 , γ3 = I2 ⊗σ1 , γ4 = I2 ⊗σ2 , (70)

with Γm = (−iσ2,σ3,σ1).
The analysis of the BPS equations is similar to the one in appendix C of [37] (or to the

original of [48]). Here again the spinor χ can be written in terms of an auxiliary function
ξ(y) as

χ = eV/2eisz

�

sin ξ2
cos ξ2

�

, (71)

with s a constant. Notice that, as expected, the spinor is not constant on the spindle.
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In the following we summarize the differential relations coming from the BPS equations

ξ′ − 2 f (gW cosξ+ κe−V ) = 0 ,

V ′ −
2
3

f gW sinξ= 0 ,

Σ′ +
2
3

f gΣ2 sinξ∂ΣW = 0 ,

φ′ + 2 f g sinξ∂φW = 0 ,

ϕ′ +
f g

sinξ
∂ϕW = 0 ,

h′ −
2 f h

3sinξ
(gW (1+ 2cos2 ξ) + 3κe−V cotξ) = 0 ,

(72)

where W is the superpotential defined in (60). Besides the first-order equations, there are also
two algebraic constraints that can be derived from the supersymmetry variations

sinξ(s−Qz) = −h(gW cosξ+κe−V ) ,

gh∂ϕW cosξ= ∂ϕQz sinξ ,
(73)

where Qz can be read from the supercovariant derivative Dµε = ∇µε− iQµε that appears in
the gravitino variation and for our model takes the form

Qz =
e2ϕ

4
DzΞ− ga(2) . (74)

We can also reduce the differential system by observing that

h= keV sinξ , (75)

where k is an arbitrary constant that needs to be determined. Finally, we can take advantage
of the BPS equations to express the field strengths in terms of the scalar fields as

F (0)34 =
6κe−V + 4gW cosξ− 4gΣ∂ΣW cosξ

3Σ2
,

F (1)34 =−
2Σ
3

�

sinhφ
�

g cosξ
�

2W+Σ∂ΣW
�

+ 3κe−V
�

+ 3g∂φW cosξ coshφ
�

,

F (2)34 =−
2Σ
3

�

coshφ
�

g cosξ
�

2W+Σ∂ΣW
�

+ 3κe−V
�

+ 3g∂φW cosξ sinhφ
�

.

(76)

5 Analysis at the poles

In this section we study the solutions of the BPS equations derived above and we show how
to obtain the 2d central charge from the pole analysis. The procedure follows the one origi-
nally described in [48] and then applied in [36, 37] for the case of the conifold. We start by
summarizing the BPS equations, the constraints and the Maxwell equations. Then we derive
the explicit expressions of the conserved charges and the magnetic fluxes. The charge conser-
vation imposes the constraints that allow us to fix the boundary conditions at the poles for the
scalars that enter the calculation of the central charge. We then compute the central charge
from the Brown-Henneaux formula and discuss its relation with the calculation done on the
field theory side.

Before starting our analysis let us stress that, differently from the discussion in [36,37,48]
we have not found from the pole analysis immediate reasons to exclude the possibility of
having solutions in the twist class. We will further comment on this issue in the next section
where we provide numeric and analytical solutions of the BPS equations.
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5.1 Conserved charges and restriction to the poles

From the expressions of the field strengths in (76) we can study the Maxwell equations using
the two conserved charges E1,2 in (65) and (66). In order to keep the hyperscalar ϕ(y) finite
we require that ∂ϕW |N ,S = 0. This constraint gives rise to

kΣ|3N ,S +
1

coshφ|N ,S − z sinhφ|N ,S
= 0 , (77)

where W is given in (60). Using (77) and the fact that E1 and E2 are conserved we found
simpler expressions by working with the following linear combinations

Q1|N ,S = E1|N ,S =
4
3

e2V |N ,S

�

κ(sinh
�

φ|N ,S

�

− z cosh
�

φ|N ,S

�

)

Σ|N ,S
− zgeV |N ,S cos
�

ξ|N ,S

�

�

,

Q2|N ,S = E1|N ,S − E2|N ,S =
4κe2V |N ,S

3Σ|N ,S

�

2sinh
�

φ|N ,S

�

− zkΣ|3N ,S

�

. (78)

At the north and at the south poles we have k sinξ → 0. For non-vanishing k this gives
cosξN ,S = (−1)tN ,S with tN ,S = 0 or tN ,S = 1. Denoting the poles as yN ,S we can work with
yN ≤ y ≤ yS . Furthermore,

|h′|N ,S = |k sin′ ξ|N ,S =
1

nN ,S
. (79)

This relation is due to the metric and to the deficit angles at the poles 2π
�

1− 1
nN ,S

�

where

nN ,S > 1. From the Z2 symmetry of the BPS equations acting on h, a(I), s,Qz and k we can
restrict to h≥ 0 and k sinξ≥ 0. We have then k sinξ≥ 0 and this quantity is vanishing at the
poles, with a positive derivative at yN and a negative one at yS . Formally we introduce two
constants, lN = 0 and lS = 1 such that

k sin′ ξ|N ,S =
(−1)lN ,S

nN ,S
. (80)

Then the cases (tN , tS) = (0, 0) and (1, 1) correspond to the twist while (tN , tS) = (1, 0) and
(0, 1) correspond to the anti-twist. Plugging the evaluation of cosξ at the poles in (80), we
obtain a relation for ξ′ at the poles as well. Furthermore, ξ′ following from the first BPS
equation in (72) in the conformal gauge, can be shown to be proportional to the quantity
(s − Qz) in (73), after plugging in this last the relation (75). It follows that, the quantity
(s−Qz) at the poles becomes

s−QZ |N ,S =
1

2nN ,S
(−1)tN ,S+lN ,S+1 . (81)

Furthermore, the relation ∂ϕW |N ,S = 0 imposes from the second relation in (73) that
∂ϕQz|N ,S = 0. Another assumption (justified a posteriori by the numerical results) is that
ψ|N ,S ̸= 0. Such assumption implies also that DzΞ|N ,S = 0.

5.2 Fluxes

Here we introduce the magnetic fluxes for the reduction of this truncation on the spindle. This
will be necessary in order to find the constant k introduced in (75) in terms of the data of the
spindle. First, from the relations (76), we observe that

F (I)yz = (a
(I))′ =
�

I(I)
�′

, with I(I) ≡ −keV cosξhI . (82)
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At this point we need to define the fluxes starting from (82). Let’s start by defining the integer
fluxes pI from the relations

pI

nN nS
=

1
2π

∫

Σ

gF (I) = gI(I)
�

�

S
N . (83)

The magnetic charge associated to the R-symmetry is

−gnN nSI(2)|SN =
1
2

�

nS(−1)tN + nN (−1)tS
�

. (84)

This expression is quantized if nS(−1)tN + nN (−1)tS is even. Observe also that

I(0) + zkI(1) − kI(2) = 0 , (85)

that implies also that the combination p0+zkp1−kp2 does not give rise to a conserved magnetic
flux. The last flux that we need to discuss is the one associated to the flavor symmetry. The
integer flavor flux is given by

pF = gnN nSI(1)|SN . (86)

It is important to observe that the relation p0 = k(zpF + p2) ∈ Z requires that for z ∈ Q \Z we
have the further constraint zpF ∈ Z.

Furthermore we also found useful to introduce an auxiliary function δ, in terms of which
we can rewrite

tanh(φ)≡
1−δ

z
, (87)

such that the charges evaluated at the poles simplify to

Q1N ,S =
kδN ,S((−1)lN ,S − 2κknN ,S(−1)tN ,S )2

6zg2k3n3
N ,S

× (2κknN ,S(δN ,S − 1)δN ,S − (−1)lN ,S−tN ,S ((δN ,S − 1)2 − z2)) , (88)

Q2N ,S =
kκ((−1)lN ,S − 2κknN ,S(−1)tN ,S )2

3zg2k2n2
N ,S

(z2 − 1+δN ,S(4− 3δN ,S)) .

It follows that we have three equations: the first one is (86), that after the substitution (87)
becomes

pF =
(δN − 1)nS(−1)−tN + nN (−1)−tS (δS − 1)− 2κknN nS(δN −δS)

2z
,

while the other two equations correspond to Q1|N =Q1|S , i.e.

(1+ 2κknS(−1)tS )2

(1− 2κknN (−1)tN )2
·
δSn3

N

δN n3
S

·
2κknS(−1)tS (δS − 1)δS + (δS − 1)2 − z2

2κknN (−1)tN (δN − 1)δN − (δN − 1)2 + z2
= (−1)tS+tN ,

and Q2|N =Q2|S , i.e.

n2
N

n2
S

·
z2 − 1+δS(4− 3δS)
z2 − 1+δN (4− 3δN )

·
(1+ 2κknS(−1)tS )2

(1− 2κknN (−1)tN )2
= 1 , (89)

for the three variables, k, δS and δN . By solving these three equations we obtain then the
boundary conditions to impose for the scalars V, h,φ,Σ in terms of the integers nS , nN and pF
of the spindle for generic values of the parameters z ∈ Q and k= ±1 in both the twist and the
anti-twist class. The requirement of reality for these fields imposes further constraints on the
allowed values of the integers nS,N and pF . The only field that is not involved in this analysis
is the hyperscalar ϕ, that we are assuming as non-vanishing at the poles.
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5.3 Central charge from the pole data

Once the boundary data for δN ,S and the constant k are specified we can read the central
charge of the putative 2d CFT from the pole analysis. The central charge is obtained from the
Brown–Henneaux formula [1]

c2d =
3RAdS3

2G3
=

3
2G5
∆z

∫ yS

yN

eV (y)| f (y)h(y)|d y . (90)

The relation

eV (y) f (y)h(y) = −
k

2κ
(e3V (y) cosξ(y))′ , (91)

implies that the central charge can be computed from the value of the fields at the poles that
we have computed above, without specifying the value of the hyperscalar. The consistency of
this analysis represents just a necessary condition for the existence of a solution. Nevertheless,
when a solution exists, the central charge computed here is the correct one.

In the conformal gauge f = eV the integrand in (90) is eV (y)|h(y)|, where we remove the
absolute value here and consider h(y) > 0 thanks to the symmetries of the BPS equations as
discussed above. The central charge becomes c2d = cS − cN where

cN ,S =
3πkδN ,S

2z2 g3G5κk2

�

κk−
(−1)lN ,S−tN ,S

2nN ,S

�3

((δN ,S − 1)2 − z2) . (92)

The central charge in the case of the anti-twist, splitting numerator and denominator for
ease of readability, is given by

Numerator= 3πkκ(4p2
F − (nS − nN )

2)(2zpF (−1)tN − nN + nS)

× (nS − nN )
�

16zpF (−1)tN + (z2 + 3)(nS − nN ) + 4(3z2 + 1)p2
F

�

, (93)

Denominator= 4g3G5nN nS

�

8zpF (−1)tN (nS − nN )(3n2
N + 2nN nS + 3n2

S − 4p2
F )

+ 16p2
F nN nS + 4(nS − nN )(n

3
S − n3

N )

+ z2
�

24p2
F (n

2
N + n2

S)− 48p4
F + (n

2
S − n2

N )
2
�

�

, (94)

while the central charge in the case of the twist is given by

Numerator= 3πkκ(4p2
F − (nS − nN )

2)(2zpF (−1)tN − nN + nS)

×
�

(nN + nS)(16zpF (−1)tN + (z2 + 3)(nN + nS)) + 4(3z2 + 1)p2
F

�

, (95)

Denominator= 4g3G5nN nS

�

8zpF (−1)tN (nN + nS)(3n2
N − 2nN nS + 3n2

S − 4p2
F )

− 16p2
F nN nS + 4(nN + nS)(n

3
N + n3

S)

+ z2
�

24p2
F (n

2
N + n2

S)− 48p4
F + (n

2
S − n2

N )
2
�

�

. (96)

The five dimensional Newton constant can be read from the holographic dictionary. Indeed

from the general relation a4d =
πR3

AdS5
8G5

and from the explicit values of the central charge and
of the AdS5 radius, given by

a4d =
(g − 1)
�

(1− 9z2)k+
�

3z2 + 1
�3/2�

48kz2
, R3

AdS5
=
(1− 9z2)k+
�

3z2 + 1
�3/2

4z2
, (97)
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we can extract G5 =
3πk

2(g−1) . Substituting this expression in the 2d central charge computed
above we can then recover the result obtained from the field theory calculation in Section 2.2.

Some comments are in order. First we have checked in many cases if the various con-
straints, imposed by the quantization of the fluxes, by the reality condition on the scalars and
by the positivity of the central charge, are enough to exclude the existence of some solutions.
While in many cases the answer is affirmative, we have not been able to exclude whole fami-
lies of solutions. In general there are four main families of possible solutions, identified by the
value of k= ±1 and by the fact that they can be in the twist or in the anti-twist class. Anyway,
anticipating the results of next section, we have found solutions only in the anti-twist class for
k= −1.

6 The solution

In this section we obtain the AdS3 ×Σ solution for the model discussed above. We separate
the analysis in two parts. In the first part we discuss the analytic solution for the universal
truncation. This corresponds to a further truncation of the model to the graviton sector. In
this case we found the explicit solution corresponding to the general one found in [13, 15].
Similarly to the cases discussed in [36,37,48] in presence of hypermultiplets, here we found an
analytic solution only in the anti-twist class. Furthermore, we have found such solution only for
k= −1. We have also checked that the 2d central charge matches the general expectation [13]

c2d =
4
3

a4d(nS − nN )3

nN nS(n2
N + nN nS + n2

S)
. (98)

In the second part of this section we study the solution turning on a generic flux pF . In this case
we have obtained the solution numerically. Again we found solutions only in the anti-twist
class for k= −1 and for generic values of z.

6.1 Analytic solution for the graviton sector

Here we study the AdS3 ×Σ solution by restricting to the graviton sector. It will turn out that
the solution is exactly the same as the one studied in the original Spindle paper [13]. This is
consistent with similar results obtained in other 5d truncations in presence of hypermultiplets
[36, 37, 48]. This requires to fix A(1) + ε∗4dA(2) = 0 (with ε∗4d defined in (6)) and identifying
A(R) = −A(2). This further fixes 2pF = ε∗4d(nS − nN ). We have found a solution in this case for
the anti-twist class and k= −1 by fixing the scalars Σ(y), φ(y) and ϕ(y) at their AdS5 value
(61). Observe that φN ,S = φAdS5

and ΣN ,S = ΣAdS5
when pF = ε∗4d(nS − nN )/2.

Before continuing the discussion a comment is in order. The choice of pF that allows to
study the universal twist is, for generic values of z, in contrast with the requirement that zpF
is an integer. The only cases that are allowed correspond to the ones that give rise to a rational
exact R-symmetry. In these cases a solution exists when (the even quantity) nS − nN gives rise
to an integer zpF . This analysis restricts the possible truncations to the graviton sector that
can be placed on the spindle. This is the counterpart of the field theory argument that we
made after formula (30). The discussion fits with similar ones appeared in the literature of
the spindle (see for example footnote 20 of [16] for an analogous behavior in the case of toric
SE5). Having this caveat in mind, the scalar functions V (y), f (y) and h(y) in (62) are

eV (y) =
p

y
W

, f (y) =
3

2W

√

√ y
q(y)

, h(y) =
c0

p

q(y)
4W y

, (99)

20

https://scipost.org
https://scipost.org/SciPostPhys.17.6.154


SciPost Phys. 17, 154 (2024)

while the gauge field is

A(R) =
�

c0κ(a− y)
4y

− s
�

dz . (100)

We also found that

sinξ(y) =

p

q(y)
2y3/2

, cosξ(y) =
κ(3y − a)

2y3/2
, (101)

with
q(y) = 4y3 − 9y2 + 6a y − a2 . (102)

The constants a and c0 are obtained from the solutions of the BPS equations at the poles. We
found

c0 =
2
�

n2
N + nN nS + n2

S

�

3nN nS (nN + nS)
, (103)

while the constant a is

a =
(nN − nS) 2 (2nN + nS) 2 (nN + 2nS) 2

4
�

nN nS + n2
N + n2

S

�

3
. (104)

From here it follows that

yN =

�

−2n2
N + nN nS + n2

S

�2

4
�

n2
N + nN nS + n2

S

�2 , yS =
(nN − nS)

2 (nN + 2nS)
2

4
�

n2
N + nN nS + n2

S

�2 . (105)

The central charge becomes

c2d =
9π (nS − nN )

3

16G5W 3
critnN nS

�

n2
N + nN nS + n2

S

� . (106)

Using then a4d =
πR3

AdS5
8G5

and RAdS5
= 3

2Wcrit
we arrive at the expected universal result (98).

Observe that Wcrit can be consistently found from the relation (97).
Before turning on a generic value for the flavor flux pF and studying the solution numeri-

cally, a comment is in order. We have so far referred to the solution with pF set to ε∗4d(nS−nN )/2
as “universal” solution. Such terminology refers to the fact that the truncation is restricted the
“pure” gravity sector, indeed recovering the AdS5 vacuum. On the field theory side the con-
straint on pF indeed reflects on the ones on p and q that set the exact R-symmetry to be rational,
as discussed at the end of subsection 2.2.

6.2 Numerical solution for generic pF

Here we look for more generic solutions of the BPS equations interpolating among the poles
of the spindle. From the analysis above we have observed that the analytic solutions with
pF = ε∗4d(nS − nN )/2 are in the anti-twist class with k = −1. Here we search for numerical
solutions for a generic integer zpF . We have scanned over large regions of parameters and
again we have only found solutions with k= −1 in the anti-twist class.

The solutions are found along the lines of the analysis of [36, 37, 48]. First we specify
the values of z, nS , nN and pF . Then we fix the initial conditions imposed by the analysis at
the poles. In this way we are left with one unknown initial condition for the hyperscalar ϕ.
Finding the initial condition of ϕ corresponds to find the solution for the BPS equations on
the spindle. There is just (up to the numerical approximation) a single value ϕS (here we are
fixing the south pole at yS = 0) that allows to integrate the BPS equation giving rise to a finite
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Table 1: Some numerical solutions found in our analysis for various, consistent, val-
ues of deficit angles nN ,S , flavor flux pF and geometry z. The boundary values for the
field ϕ are found so to give rise to a finite Spindle in the y direction.

nS nN pF z ϕS ϕN ∆y

1 3 0 2 -0.285076 -0.274493 1.83241

1 7 -1 2 -0.172372 -0.170589 2.39707

1 3 0 3 -0.555814 -0.542721 1.82303

1 5 -1 3 -0.300428 -0.300346 2.16012

1 9 3 1
3 0.463989 0.363277 2.57446

1 5 0 1
3 0.126802 0.124497 2.16392

1 7 2 1
2 0.484886 0.347516 2.3322

3 7 0 1
2 0.104192 0.103447 1.74866

Figure 1: Numerical solutions for the scalar fields Σ(y),φ(y),ϕ(y) and the scalar
functions eV (y) and h(y) interpolating between y = yS = 0 and y = 2(yN − yS).
The values of nS , nN , pF and z are the ones fixed in (1).The values of the fields at yS
are the green lines and at yN are the orange ones. From left to right, the plots follow
the same order of table 1.
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spindle in the y direction. Once this value is found a good sanity check consists of running the
numerics until 2∆y , that corresponds to solve the BPS equations from the north to the south
pole as well. We have scanned over various values of the parameters and we present some of
the solutions that we found in table 1.

In each case we have fixed k= −1 and chosen κ= 1 (corresponding to the choice nN > nS).
The explicit solutions are plot in Figure 1. Observe that the solutions for the cases at pF = 0 do
not correspond to the universal twist (at least for z ̸= 0). The cases at pF = 0 correspond to a
twist along a trial R-symmetry, obtained from a linear combination (with irrational coefficients)
of the (irrational) exact R-symmetry and the flavor symmetry.

7 Conclusions

In this paper we studied the reduction of the consistent truncations found in [43] on the
spindle. These truncations are associated to M5 branes wrapping holomorphic curves in a CY3
and the dual field theories have been obtained in [40,41]. Using these results we matched the
2d central charge obtained from the field theoretical analysis with the one predicted in gauged
supergravity from the analysis at the poles of the spindle. We have also studied the full solution,
showing its existence for consistent choices of the parameters, analytically for the universal
anti-twist and numerically after including the magnetic charge of the flavor symmetry.

There are many interesting aspects that we did not investigate. A first open question re-
gards the uplift of our solutions to 7d and 11d supergravity. An interesting limit corresponds
to set z = ±1 and consider pF = 2z

�

q − 1
4(nS − nN )
�

. In this case we reproduce the results
obtained in [17] for the N = 2 Maldacena-Nuñez theory. Observe that the matching works
when pF and (nS − nN )/2 have the same parity.

Another open question regards the existence of solutions for k = 1 and |z| > 1 in both
the twist and the anti-twist class and for k = −1 in the twist class. Even if we have not been
able to exclude these possibilities (for generic values of z) we have not found any solution
of this type neither in the analytical nor in the numerical analysis carried out in section 6.
Nevertheless we observe that by choosing z= 0 we can simplify the problem (for k= −1) and
we obtain results similar to the one studied in [36,37,48]. This limit corresponds to the N = 1
Maldacena-Nuñez theory and in this case the pole analysis completely excludes the existence
of solutions in the twist class. The reason is that in this case we can impose further reality
constraints on the conserved charges against the existence of such solutions.

Our analysis has been performed at leading order in N , i.e. the central charge here is scales
with N3. There is a subleading contribution of order N , proportional to the gravitational
anomaly of the SCFT, that one could compute from the field theoretical side. It would be
interesting to match this contribution from the holographic analysis. A similar calculation was
carried out for the case of the topological twist in [53].

It would also be interesting to consider M5 branes wrapping other geometries. For example
by considering a disc, an holographic dual of an N = 2 SCFT of AD type was proposed in
[54–56] (see also [27]) As then observed in [57, 58] indeed the disc and spindle geometries
are different global completions of the same local solution.

Finally, it would be possible to study the models discussed here from the 11d perspective
along the lines of the recent discussions of [59–62] from the theory of equivariant localization.
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