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Abstract

The Inozemtsev chain is an exactly solvable interpolation between the short-range Hei-
senberg and long-range Haldane–Shastry (HS) chains. In order to unlock its potential
to study spin interactions with tunable interaction range using the powerful tools of
integrability, the model’s mathematical properties require better understanding. As a
major step in this direction, we present a new generalisation of the Inozemtsev chain
with spin symmetry reduced to U(1), interpolating between a Heisenberg XXZ chain and
the XXZ-type HS chain, and integrable throughout. Underlying it is a new quantum many-
body system that extends the elliptic Ruijsenaars system by including spins, contains the
trigonometric spin-Ruijsenaars–Macdonald system as a special case, and yields our spin
chain by ‘freezing’. Our models have potential applications from condensed-matter to
high-energy theory, and provide a crucial step towards a general theory for long-range
integrability.
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1 Introduction

Recent years brought tremendous progress for trapped-ion and cold-atom experiments, and
low-dimensional systems with tunable spin-spin interactions can now be engineered [1–4].
Wheareas such systems inherently have long-range spin interactions, theoretical studies of-
ten assume drastically simplified nearest-neighbour interactions. Long-range spin interactions
also find applications in quantum information and computing [5–7] and pose fundamental
questions about e.g. causality [8–11]. In 1+ 1 dimensions, (quantum) integrable models are
exactly solvable thanks to underlying symmetries. Such models may thus offer exciting op-
portunities to study the effects of long-range interactions using exact analytical methods. Yet
such models are rare, and the theory behind them is incomplete.

Main results. We introduce two new integrable long-range models with spins:

a (quantum) spin chain;

a quantum many-body system (QMBS),
of particles with spins moving on a circle.

As we shall see, the two models are closely related. Besides having potential applications in
both condensed-matter and high-energy theory, our models shed light on the three-decades
old open problem to understand the integrability of the Inozemtsev chain.

The spin chain. Until recently, the study of integrable long-range spin chains focused on
isotropic (i.e. SU(2)-symmetric) models. Using a bar to denote the isotropic case, these spin
chains have Hamiltonians of the form

H̄ =
1
2

N
∑

i< j

V̄ (i − j)
�

1− σ⃗i · σ⃗j

�

=
N
∑

i< j

V̄ (i − j)
�

1− Pi j

�

, (1)

where we consider a chain of N spins, V̄ (x) is a pair potential setting the interaction range,
σ⃗ = (σx ,σ y ,σz) are the Pauli spin matrices, and Pi j = (1+ σ⃗i · σ⃗j)/2 is the spin permutation
operator. The Haldane–Shastry (HS) chain [12,13] is given by (1) with pair potential

V̄ HS(x) =
1
r2

, r = N
π sin
�

�

π
N x
�

� , (2)

which is the critical case for long-range order (cf. [8, 10, 14]). It can be engineered with
trapped ions [15] and is a lattice toy model for the fractional quantum Hall effect [16,17] and
Wess–Zumino–Witten CFT [18–21]. This model is connected (Fig. 1) to the nearest-neighbour
Heisenberg XXX chain through the Inozemtsev chain [22], whose Hamiltonian H̄ Ino is given by
(1) with

V̄ Ino(x) = ℘(x) + cst, (3)
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Figure 1: Landscape of integrable long-range spin chains, including the Heisenberg
and Haldane–Shastry chains and their partially isotropic extensions. We find the spot
marked ‘X’.

the Weierstraß elliptic function. This pair potential generalises (2) by including a second,
imaginary period that sets the interaction range. Widely believed to be integrable [17,23], H̄ Ino

offers the tantalising possibility to study a spin system analytically as one tunes the interaction
range. First, however, the toolkit of integrability needs to be developed further: there is a
conjecture for a hierarchy of conserved charges of H̄ Ino [24,25],1 but no underlying algebraic
structure is known. This is an important open problem in the theory of integrability [17]. To
unveil such structures we shall break the spin symmetry of H̄ Ino in a controlled way.

The HS chain has a partially isotropic (i.e. U(1)-symmetric) extension retaining its key
properties, the deformed HS chain [28–30]. Our first new long-range model likewise deforms
H̄ Ino, generalising the Inozemtsev and deformed HS chains as in Fig. 1 while remaining inte-
grable. The partially isotropic generalisation of 1− Pi j from (1) comes in two ‘chiralities’, with
deformed permutations transporting either spin to the other, for a deformed exchange, followed
by transport back. Like in (1), a potential sets the interaction range; it is a ‘point splitting’ of
(3) as anticipated in [23].

The QMBS. Unlike for nearest-neighbour models, integrability of long-range spin chains
hinges on connections to QMBSs of Calogero–Sutherland (CS) and Ruijsenaars type. This
is best understood for HS (see also [31]):

i. its exact wavefunctions come from a spinless trigonometric CS system [16,27],

ii. its conserved charges stem from a trigonometric CS system with spins by ‘freezing’ [27,
32,33],

and the enhanced (Yangian) spin symmetry of H̄HS arises from (ii) too [27, 34]. These con-
nections persist at the partially isotropic level, where trigonometric CS is generalised to the
‘relativistic’ trigonometric Ruijsenaars–Macdonald (RM) system [27,28,30] (Fig. 2). For H̄ Ino

only (i) was properly understood, via the elliptic CS system [23,35]. Here, we add (ii): our spin
chain arises by freezing an elliptic dynamical spin-Ruijsenaars system. This QMBS is our second
new long-range model (Fig. 2). Despite its supporting role here, it is clearly of independent
theoretical interest. We shall prove the commutativity of its Hamiltonians elsewhere.

1Note added during the revisions. Chalykh [26] has at long last settled this problem by deriving extensively many
commuting charges for the elliptic spin-Calogero–Sutherland system and, by ‘freezing’, the Inozemtsev chain. It
is not yet clear how the charges of [24, 25] fit in. The proof of [26] exploits the algebraic framework of elliptic
Dunkl operators. Whereas their simpler (trigonometric) counterpart moreover allows one to construct a Yangian
underpinning the Haldane–Shastry chain [27], unfortunately this is not true in the elliptic setting. Explicitly
featuring R-matrices, the q-deformed Inozemtsev chain is an important theoretical asset to help identify a quantum-
group-like structure underlying the Inozemtsev chain.
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Figure 2: Landscape of integrable QMBS with spins, including Calogero–Sutherland
(CS) and Ruijsenaars–Macdonald (RM). Without lattice spacing as an infrared cutoff,
the short-range limit is absent. We find the spot marked ‘eX’.

Outline. In Section 2, we introduce our new long-range spin chain, discuss how it satisfies
the defining properties introduced above, and compute two new limits: an intermediate re-
finement of the Inozemtsev chain, and the short-range limit. We furthermore point out some
interesting new features. In Section 3, we construct a novel QMBS and discuss its properties.
We moreover outline how ‘freezing’ this QMBS yields our spin chain, thereby connecting the
commutativity of their respective charges and hence their integrability. We conclude in Sec-
tion 4. The appendices contain all relevant information about the elliptic functions (Appendix
A) and R-matrix (Appendices B–C) that we will need.

While we focus on spin 1/2, all our results extend to higher rank: multi-component versions
with several particle ‘species’ (‘colours’).2

2 The spin chain

2.1 Hamiltonians

Consider N spin-1/2 sites equispaced on a circle. The deformed Inozemtsev chain has ‘chiral’
Hamiltonians

H L =
N
∑

i< j

V(i − j)SL
[i, j] , HR =

N
∑

i< j

V(i − j)SR
[i, j] . (4)

Let ρ(x) = θ ′(x)/θ (x), where θ (x) is the odd Jacobi theta function with quasiperiods iπ/κ
and N , which we view as a periodic version of a hyperbolic sine:

θ (x) =
sinh(κ x)
κ

∞
∏

n=1

sinh[κ (N n+ x)] sinh[κ (N n− x)]
sinh2(Nκn)

=
sinh(κ x)
κ

+O(p2) , (5)

with nome p = e−Nκ, see Appendix A for more.
The potential is

V(x) =
ρ(x −η)−ρ(x +η)

θ (2η)
∼

1
sn(x +η) sn(x −η)

, (6)

with anisotropy parameter η. Here sn is the Jacobi elliptic sine function, and in ‘∼’ we omit
some constants, see (A.6) for the precise relation.

2Simply replace (8) by the dynamical glr R-matrix [36].
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The long-range spin interactions SL
[i, j] and SR

[i, j] are deformations of the isotropic long-
range spin exchange interaction Ei j = (1− Pi j)/2 = (1− σ⃗i · σ⃗j)/4 in (1). The latter admits
two ‘chiral’ decompositions into nearest-neighbour steps:

Ei j = Pj−1, j · · · Pi+1,i+2 Ei,i+1 Pi+1,i+2 · · · Pj−1, j

= Pi,i+1 · · · Pj−2, j−1 E j−1, j Pj−2, j−1 · · · Pi,i+1 .
(7)

The structure on the right-hand side persists to the partially isotropic level, with suitable re-
placements for both the spin permutation P and the nearest-neighbour spin interaction E.
These are both built from Felder’s dynamical R-matrix [37]

Ř(x , a) =







1 0 0 0
0 f (η, x ,η a) f (x ,η,η a) 0
0 f (x ,η,−η a) f (η, x ,−η a) 0
0 0 0 1






, f (x , y, z) =

θ (x)θ (y + z)
θ (x + y)θ (z)

, (8)

depending on a ‘dynamical’ parameter a. It satisfies the dynamical Yang–Baxter equation, see
Appendix B. The deformed spin permutation is

Pi,i+1(x) = Ři,i+1

�

x , a− (σz
1 + · · ·+σ

z
i−1)
�

= ···

x ′′

x ′′

x ′

x ′

···a , x = x ′ − x ′′ , (9)

where the ith and i + 1st spins cross, carrying along their ‘inhomogeneity’ parameters x ′, x ′′.
The dynamical parameter a is shifted by the spin-z to the left of the R-matrix. On the usual
spin basis, labelled by s j equal to ↑≡ +1 or ↓≡ −1 for each 1⩽ j ⩽ N , this means

Pi,i+1(x) |s1, . . . , sN 〉= |s1, . . . , si−1〉 ⊗ Ř
�

x , a−
∑i−1

k=1 sk

�

|si , si+1〉 ⊗ |si+1, . . . , sN 〉 , (10)

so, for example, P23(x) = |↑〉〈↑| ⊗ Ř(x , a− 1) + |↓〉〈↓| ⊗ Ř(x , a+ 1). The properties of these
deformed spin permutations are collected in Appendix B.

Finally, the deformed nearest-neighbour spin exchange is defined from (9) as

Ei,i+1(x) =
1

θ (η)V(x)
Pi,i+1(−x) P ′i,i+1(x) = ···

x ′

x ′

x ′′

x ′′

···a , x = x ′ − x ′′ . (11)

This definition, in which we factor out the potential (6), is chosen such that both (6) and (11)
have the appropriate limits, as we will see in Section 2.2. The explicit 4×4 matrix determining
(11) is given in Appendix C. Unlike the potential, it depends on a. While the dependence on
x is new compared to the Inozemtsev and deformed HS chains, this feature is shared by the
elliptic long-range spin chain of Matushko and Zotov [38,39], as well as in all degenerations
thereof.

Together, the deformed permutation (9) and deformed exchange (11) define the chiral
long-range spin interactions SL

[i, j] and SR
[i, j] diagrammatically as

SL
[i, j] =

N

N

···

···

j

j

···

···

i

i

···

···

1

1

··· ···a , SR
[i, j] =

1

1

···

···

i

i

···

···

j

j

···

···

N

N

······a . (12)
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Here each site 1⩽ k ⩽ N has a fixed inhomogeneity parameter x⋆k = k, where the ‘⋆ ’ serves to
distinguish these fixed parameters from their unrestricted counterparts xk that will appear in
§3. Thus, the deformed long-range spin interactions (12) read

SL
[i, j] = Pj−1, j(1) · · · Pi+1,i+2( j − i − 1) Ei,i+1(i − j) Pi+1,i+2(i − j + 1) · · · Pj−1, j(−1) , (13)

SR
[i, j] = Pi,i+1(1) · · · Pj−2, j−1( j − i − 1) E j−1, j(i − j) Pj−2, j−1(i − j + 1) · · · Pi,i+1(−1) , (14)

in clear analogy to the first and second line, respectively, of the decompositions in (7).

Examples. At N = 3 the chiral long-range spin interactions read

SL
[1,2] = E12(−1) , SL

[2,3] = E23(−1) , SL
[1,3] = P23(1) E12(−2) P23(−1) ,

SR
[1,2] = E12(−1) , SR

[2,3] = E23(−1) , SR
[1,3] = P12(1) E23(−2) P12(−1) .

(15)

For higher N the first few terms look exactly the same, with dependence on N residing in the
real (quasi)period of the entries of Ei,i+1(x) and Pi,i+1(x). At N = 4 we further need

SL
[3,4] = E34(−1) ,

SL
[2,4] = P34(1) E23(−2) P34(−1) ,

SL
[1,4] = P34(1) P23(2) E12(−3) P23(−2) P34(−1) ,

(16a)

for the left-chiral interactions, and for the right-chiral ones

SR
[3,4] = E34(−1) ,

SR
[2,4] = P23(1) E34(−2) P23(−1) ,

SR
[1,4] = P12(1) P23(2) E34(−3) P23(−2) P12(−1) .

(16b)

In general one obtains SL
[i, j] from SL

[1, j−i+1] by shifting all subscripts k, k+ 1 to k+ i − 1, k+ i.
The same holds for SR

[i, j]. Note that the SL
[i, j] have the same structure as in [29] and the SR

[i, j]
look like in [30], the difference being the choice of R-matrix.

2.2 Properties and limits

While the Hamiltonians (4) are more complex than in the isotropic case (1), their ingredients
have clear physical meanings: a potential (6), a deformed permutation (9), and a deformed
spin exchange (11). There are four parameters: the length N ⩾ 2, κ > 0 tuning the interaction
range, the anisotropy η, and the dynamical parameter a.3 While the Hamiltonians are not
hermitian for the standard scalar product, numerics show that the spectrum is real if η is
imaginary (i.e. the regime |∆|> 1 for the Heisenberg XXZ spin chain) and a real.

Defining properties. The chain (4) contains the Inozemtsev and deformed HS chains as in
Fig. 1, and is integrable. Let us explain.

When η → 0 we retrieve the isotropic Inozemtsev Hamiltonian H̄ Ino given by (1) and
(3). Indeed, (6) becomes −ρ′(x) = V̄ Ino(x) from (3), and both (13)–(14) yield 1 − Pi j up
to a conjugation that is removed by a → −i∞, since then Pi,i+1(x) → Pi,i+1 and (see §C)
Ei,i+1(x)→ 1− Pi,i+1.

3These parameters have some constraints, since the potential (6) has poles at 2η = Nk + iπ l/κ for k, l ∈ Z,
and the entries of (8) have poles at η a = N k+ iπ l/κ.
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At κ = 0 we find the deformed HS chain, again up to a conjugation that disappears if a
is removed. To see this use θ (x) → N sin(π x/N)/π as κ → 0. The potential (6) thus has
long-range limit V tri(x) = (πN )

2/ sin[πN (x + η)] sin[
π
N (x − η)]. When κ → 0 and moreover

η a→−i∞ for fixed η, the exchange (11) becomes independent of x , namely

Etri =







0 0 0 0
0 q−1 −q 0
0 −q−1 q 0
0 0 0 0






, q = eπiη/N , (17)

acting at sites i, i + 1. The deformed permutation (9) reduces to the operator

Řtri(x) = 1−
sin(πN x)

sin[πN (x +η)]
Etri , (18)

at sites i, i + 1. We will discuss the algebraic meaning of (17)–(18) in Section 2.3. Thus we
obtain the deformed HS chain, which is still chiral and of the form (4). Further letting η→ 0,
both reduce to the isotropic HS Hamiltonian H̄HS, which is also obtained from H̄ Ino as κ→ 0.

Finally, our model is integrable in the sense that the chiral Hamiltonians (4) commute,

[H L, HR] = 0 , (19)

belonging to a tower of conserved charges whose expressions parallel those in [30,38], see [40].

Further properties. The ordinary Inozemtsev chain has full SU(2) spin symmetry. Our chain
is its generalisation with spin symmetry broken to U(1): our conserved charges all commute
with Sz =
∑

i σ
z
i /2.

Like the deformed HS chain, the spin interactions (12) involve multispin interactions af-
fecting all intermediate spins, whence the subscript ‘[i, j]’. While η ̸= 0 breaks periodicity, our
chain has quasiperiodic boundary conditions. One of the conserved charges is the deformed
(lattice) translation operator (cf. [29])

G =

1

1

2

2

···

···

N

N

a = KN PN−1,N (1− N) · · · P12(−1) , KN = e−κη[a−(σ
z
1+···+σ

z
N−1)]σ

z
N . (20)

Here KN is a diagonal twist, e−κηaσz
= diag(e−κηa , eκηa), acting at site N with a shift of a as

in (9). Upon normalisation, (20) provides a notion of momentum, plus all N eigenvectors at
Sz = N/2− 1 (cf. §1.2.6 in [30]), i.e. the magnons of our chain. Namely, GN = K1 · · ·KN is a
central element, so the rescaled shift operator G′ = (K1 · · ·KN )−1/N G obeys G′N = 1, and thus
has eigenvalues ei p with ‘deformed momentum’ p quantised as p = 2πn/N for 0⩽ n< N . The
N ‘deformed magnons’

∑N
j=1 ei p jG′1− j |↓↑ · · · ↑〉 by construction have deformed momentum p.

These are the simplest eigenstates after the reference vector |↑ · · · ↑〉. We have not yet been
able to find a compact expression for their chiral dispersion relations. Another feature of (20)
is that it allows us to express the long-range interaction of neighbouring spins on sites 1 and
N as

SL
[1,N] = G SL

[1,2] G
−1 , SR

[1,N] = G−1SR
[N−1,N] G , (21)

underlining the chirality of the Hamiltonians (4).
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New limits. Our chain has various new limits. For N → ∞ we formally get a hyperbolic
counterpart of the deformed HS chain, with N ↭ iπ/κ and sum in (4) over all integers.
Numerics suggest that its matrix entries converge.

As discussed in the previous section, the limit η→ 0 yields the Inozemtsev spin chain (up
to a conjugation). Interestingly, this limit can be refined to obtain an intermediate spin chain
that seems to be new, by setting a = a′/η before sending η → 0. This does not affect the
limits of the potential and deformed spin permutation, but changes the limit of the deformed
exchange (11) as a function of a′. Both chiral Hamiltonians (4) then limit to

H̄ Ino(a′) =
1
2

N
∑

i< j

�

φ′(i − j, a′)
σ+i σ

−
j

2
+φ′(i − j,−a′)

σ−i σ
+
j

2
+ V̄ Ino(i − j) (1−σz

iσ
z
j )
�

, (22)

where φ′ is the derivative with respect to the first variable of φ(x , y) = θ (x+ y)/[θ (x)θ (y)].
The Hamiltonian (22) generalises H̄ Ino from (1) and (3) with an extra parameter a′ that breaks
the left-right symmetry and SU(2) spin symmetry. Unlike for η ̸= 0, (22) is not dynamical in
the sense that the parameter a′ does not receive any shifts as in e.g. (9). The spectrum is
a′-dependent and real when a′ ∈ iR. The isotropic Inozemtsev chain is retrieved by sending
a′→ 0 or a′→ iπ/κ, since then φ′(x , a′)→ ρ(x) = −V̄ Ino(x).

Finally, we turn to the short-range limit κ→∞. It is convenient to represent the potential
(6) as the sum

ρ(x +η)−ρ(x −η) =
∑

n∈Z

2κ sinh(2κη)
sinh[κ(η+ x + N n)] sinh[κ(η− x − N n)]

=
∑

n∈Z

4κ sinh(2κη)
cosh(2κη)− cosh[2κ (N n+ x)]

.
(23)

For a convergent but non-zero limit as κ →∞ we must also send η → 0 with κη fixed so
that cosh(2κη) becomes constant. Thus we set η = −iπγ/κ and rescale (23) by a prefactor
behaving as nη(κ)∼ e2κ/[4κ sinh(2κη)] to obtain

n−iπγ/κ(κ)
�

ρ(x − iπγ/κ)−ρ(x + iπγ/κ)
�

→ δx ,1 +δx ,N−1 , κ→∞ , x ∈ {1, . . . , N − 1} . (24)

A choice of normalisation that fits with all other limits is to rescale the Hamiltonians (4) by
nη(κ) = sinh2κ/[κ2 θ (2η)]. This is why we choose denominator θ (2η) in the potential (A.6)
rather than the 2η from [23]; when η → 0 the two have the same behaviour. Therefore, as
κ→∞, we get a nearest-neighbour chain

HXXZ =
N−1
∑

i=1

SH
[i,i+1] + SH

[1,N] . (25)

Here, the exchange SH
[i,i+1] = EH

i,i+1

�

a − (σz
1 + · · ·+σ

z
i−1)
�

is defined like in (9) in terms of a
generalisation of (17):

EH(a) =











0 0 0 0
0 sin[πγ(a−1)]

sin[πγa] − sin[πγ(a+1)]
sin[πγa] 0

0 − sin[πγ(a−1)]
sin[πγa]

sin[πγ(a+1)]
sin[πγa] 0

0 0 0 0











. (26)

Since the two expressions in (21) coincide in the limit, the boundary term in (25) admits two
forms

SH
[1,N] = GH SH

[1,2] G
H−1 = GH−1SH

[N−1,N] G
H , (27)
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where (20) becomes GH = KH
N P H

N−1,N · · · P
H
12, with twist eiπγaσz

and permutation built from
ŘH(a) = 1 − e−iπγEH(a) as in (9). Note that the arguments x have completely disappeared.
This R-matrix also appeared in a slightly different form in [41], see (5.28) therein.

The short-range limit (25) is a ‘dynamical’ variant of the Heisenberg XXZ chain. It is no
longer chiral, but remains quasiperiodic, since the twist in (27) prevents removing a. When
γ→ 0 we obtain, once more up to a conjugation that vanishes as a→−i∞, the usual periodic
Heisenberg XXX chain (Fig. 1).

2.3 Discussion

Form of spin interactions. The long-range interactions (12) are very specific generalisations
of 1− Pi j . The need for such involved interactions is more clear for the deformed HS chain,
so as to maintain the HS chain’s integrability, enhanced spin symmetry, and extremely simple
exact spectrum [29,30]. In turn generalising the deformed HS chain, our spin chain must have
similar spin interactions.

Choice of R-matrix. The deformed HS chain already uses an R-matrix in its deformed per-
mutations, viz. (18). Its enhanced spin symmetry requires [27,34] Řtri to be related (by ‘Bax-
terisation’) to the Hecke algebra — and, for spin 1/2, the Temperley–Lieb algebra, see (29)
below. This necessarily leads to some asymmetry (P Ř P ̸= Ř) as in (17). Now, at the partially
isotropic level, an elliptic potential asks for an R-matrix with elliptic functions, cf. (11). The
standard choices are

• Baxter’s eight-vertex (XYZ) R-matrix [42]: P Ř8v P = Ř8v, which generalises the symmet-
ric six-vertex (XXZ) R-matrix;

• Felder’s elliptic dynamical R-matrix (8) [37]: Sz-symmetric, which generalises the R-
matrix (18).

They are related by a (‘face-vertex’) transformation [43],

Ř8v(x i − x j) T (x i , x j , a) = T (x j , x i , a) Ř(x i − x j , a) . (28)

One might expect the corresponding spin chains to be equivalent. Yet the resulting deformed
exchanged interactions (11), containing a derivative in x , are not related by the x-dependent
transformation (28). It appears impossible to obtain (18) from Ř8v without (28).4 Hence our
spin chain differs from the (fully) anisotropic chain recently found by Matushko and Zotov
using Ř8v [45], which belongs to a landscape disjoint from Fig. 1 [40]. See [39] for a detailed
analysis of this fact.

Modular family. As we will see below, ‘freezing’ in fact produces an SL(2,Z)-family of inte-
grable longe-range spin chains. Only two of these have a real spectrum for some parameter
range, of which only (4) has a short-range limit. At the isotropic level this choice corresponds
to shifting℘(x) to−ρ′(x) [22,35]; this shift also simplifies the dispersion and Bethe equations,
and allows the latter to be recast in rational form [23].

Algebraic structure at short range. The operators ei ≡ SH
[i,i+1] in (25) obey the Temperley–

Lieb (TL) relations

e2
i = 2cos(πγ) ei , 1⩽ i ⩽ N − 1 , ei ei±1 ei = ei , 1⩽ i ⩽ N − 2 . (29)

4This is supported by the fact that the principal grading operator is essential in the construction of the universal
elliptic R-matrix of vertex type [44]. We thank H. Konno for pointing this out.
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The boundary term (27) is a ‘braid translation’ [46], and e0 ≡ SH
[1,N] obeys the periodic TL

relations, i.e. the preceding extended to subscripts mod N . The translation u∝ GH enhances
this to the affine TL algebra,

u ei u−1 = ei−1mod N , 1⩽ i ⩽ N , uN is central, u2 e1 · · · eN−1 = eN−1 . (30)

Thus, (25) is a dynamical alternative to the twisted Heisenberg chain of [47], relating to the
affine TL algebra in a similar way as the usual TL algebra underpins the Heisenberg XXZ chain
with special open boundaries [48]. Also note that (25) resembles an unrestricted version of
the RSOS model [49]. It provides an Sz-symmetric alternative to the TL representation from
the conclusion of [50], enabled by the dynamical nature of our ei , cf. [51].

3 The quantum many body system

3.1 Hamiltonians

Now consider N spin-1
2 particles with coordinates x j moving on a circle. Given another pa-

rameter ε, consider the shift operator

Γi = exp
�

−iħhε∂x i

�

, xk 7→ xk − iħhεδ jk . (31)

Our QMBS is given by a tower of conserved charges that are difference operators built from
(31) and the deformed permutation (9). The first conserved charge is

eD1 =
N
∑

i=1

Ai(x )×

xN

xN

···

···

x−i

ε

x i

···

···

x1

x1

···
a

, ε

x−i

x i

= Γi , x−i ≡ x i − iħhε (32)

=
N
∑

i=1

Ai(x ) Pi−1,i(x i − x i−1) · · · P12(x i − x1) Γi P12(x1 − x i) · · · Pi−1,i(x i−1 − x i)

=
N
∑

i=1

Ai(x ) Pi−1,i(x i − x i−1) · · · P12(x i − x1) P12(x1 − x−i ) · · · Pi−1,i(x i−1 − x−i ) Γi ,

with coefficients

Ai(x ) =
N
∏

j(̸=i)

θ (x i − x j +η)

θ (x i − x j)
. (33)

We furthermore have an ‘antichiral’ version of (32),

eD−1 =
N
∑

i=1

Ai(−x )×

x1

x1

···

···

x+i

−ε

x i

···

···

xN

xN

···
a

, x+i ≡ x i + iħhε (34)

=
N
∑

i=1

Ai(−x ) Pi,i+1(x i+1 − x i) · · · PN−1,N (xN − x i) Γ
−1
i PN−1,N (x i − xN ) · · · Pi,i+1(x i − x i+1)

=
N
∑

i=1

Ai(−x ) Pi,i+1(x i+1 − x i) · · · PN−1,N (xN − x i) PN−1,N (x
+
i − xN ) · · · Pi,i+1(x

+
i − x i+1) Γ

−1
i .
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These two operators commute with each other, and with the total shift operator

eDN = Γ1 · · · ΓN . (35)

In Section 3.4 we will describe how the higher conserved charges, whose structure is like
in [30,45,52], are constructed.

Example. For N = 3 we have

eD1 = A1(x ) Γ1 + A2(x ) P12(x2 − x1) Γ2 P12(x1 − x2)

+ A3(x ) P23(x3 − x2) P12(x3 − x1) Γ3 P12(x1 − x3) P23(x2 − x3) ,
eD−1 = A3(−x ) Γ−1

3 + A2(−x ) P23(x3 − x2) Γ
−1
2 P23(x2 − x3)

+ A1(−x ) P12(x2 − x1) P23(x3 − x1) Γ
−1
1 P23(x1 − x3) P12(x1 − x2) .

(36)

3.2 Properties and limits

Our QMBS, of which (32) and (34) are the first two commuting charges, depends on the four
parameters of our spin chain, as well as on the shift ε.

Defining properties. As η → 0, again with a → −i∞, we get the (‘effective’ form of the)
elliptic spin-CS system [53, 54]. Next, κ → 0 and a → −i∞ readily yields the spin-RM
system [30,52] underlying the deformed HS chain [27,28,30], see Fig. 2. Replacing P(x)⇝ 1
gives the spinless elliptic Ruijsenaars system [55].

Moreover, our QMBS is integrable in the sense that the difference operators all commute,
e.g.

[eD1, eD−1] = 0 , [eD±1, eDN ] = 0 . (37)

The second equality is clear as eD±1 only depend on coordinate differences. The first one can
be checked explicitly for low N .

3.3 Discussion

Commutativity. It seems difficult to use the proof of integrability of the model in [45], which
relies heavily on the periodicity properties of Ř8v for simplifying expressions and setting up a
proof by induction. Alas, (8) does not have such simple properties. Our proof of (37) is
independent. In view of its technical nature it will appear elsewhere.

Choice of R-matrix. Since (32)–(34) only differ from the spin-Ruijsenaars model found by
Matushko and Zotov [45] in the choice of R-matrix, (28) might again lead one to expect these
QMBSs to be equivalent. But, because the face-vertex transformation (28) depends on coor-
dinates xk, it does not commute with the shift operators Γi . Thus our difference operators are
not face-vertex transforms of those of MZ, and define another QMBS. As we have seen, this
difference persists to all limiting spin chains (see [39] for more).

Modular family. A new feature of the elliptic case is that there is an SL(2,Z)-family of clas-
sical equilibria of (50) related by modular transformations of the quasiperiods N , iπ/κ [40].
These equilibria can be identified by reparametrising η, a,ε, x . Upon freezing, however, each
equilibrium yields a different integrable spin chain.
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3.4 Heuristic derivation of the QMBS

Let us motivate how the expressions (32), (34) and (35) for the charges of our QMBS with
spins can be ‘derived’ from the spinless QMBS known as the elliptic Ruijsenaars system. The
latter describes N scalar particles moving on a circle with coordinates xk and is defined by the
difference operator

D1 =
N
∑

i=1

Ai(x ) Γi , Ai(x ) =
N
∏

j(̸=i)

θ (x i − x j +η)

θ (x i − x j)
. (38)

The operator D1 belongs to a hierarchy of conserved charges, i.e. commuting difference op-
erators. While this commutativity holds in general, it is physically reasonable to focus on
bosonic/fermionic wave functions with definite (anti)symmetry

si,i+1Ψ(x ) = ±Ψ(x ) , 1⩽ i < N . (39)

The space of either type of wave functions is preserved by (38). At the same time, on either
space, (38) is determined by any single term: if we have an operator of the form

∑

i Bi(x ) Γi
where, say, B1(x ) = A1(x ) is as in (38), then the prescribed symmetry fixes the remain-
ing coefficients to be as in (38) too. Indeed, on any wave function obeying (39) we have
D1Ψ(x ) = (±s12)D1 (±s12)Ψ(x ) = s12 D1 s12Ψ(x ) since D1Ψ(x ) also obeys (39); comparing
coefficients of Γ2 in D1 = s12 D1 s12 gives B2(x ) = s12 B1(x ) s12 = A2(x ). Likewise, equating
coefficients of Γ3 in D1 = s23 D1 s23 yields B3(x ) = A3(x ), and so on. This argument provides a
useful heuristic to understand the structure of Ruijsenaars operators in more complicated set-
tings, such as the trigonometric spin-Ruijsenaars–Macdonald system [30], the trigonometric
and elliptic spin-Ruijsenaars systems of Matushko and Zotov [45], and ours.

Now consider a QMBS with N spin-1/2 particles moving on a circle. To define bosons or
fermions in this setting, the appropriate permutation operator for the particles is

P tot
i,i+1 = si,i+1 Pi,i+1(x i − x i+1) , (40)

which exchanges both coordinates, through si,i+1, as well as spins, through Pi,i+1(x i − x i+1)
as defined in (9). Such permutation operators form a representation of the braid group (see
Appendix B), and reduce to the usual permutation of particles, si,i+1Pi,i+1, as η→ 0. In terms
of this permutation operator the bosonic (fermionic) condition is simply

P tot
i,i+1 |Ψ〉= ±|Ψ〉 , 1⩽ i < N . (41)

Now suppose a difference operator has the form eD1 =
∑

i
eBi(x ) Γi on either space, and again

eB1(x ) = A1(x ). The coefficient of Γ2 in eD1 = P tot
12
eD1 P tot

12 can be found by comparing

eB2(x ) Γ2 = P tot
12
eB1(x ) Γ1 P tot

12

= s12 P12(x1 − x2)A1(x ) Γ1 s12 P12(x1 − x2)

= A2(x ) P12(x2 − x1) Γ2 P12(x1 − x2)

= A2(x ) P12(x2 − x1) P12(x1 − x2 + iħhε) Γ2 ,

(42)

whence eB2(x ) = A2(x ) P12(x2 − x1) P12(x1 − x2 + iħhε). Similarly,

eB3(x ) Γ3 = P tot
23
eB2(x ) Γ2 P tot

23

= s23 P23(x2 − x3)A2(x ) P12(x2 − x1) Γ2 P12(x1 − x2) s23 P23(x2 − x3)

= A3(x ) P23(x3 − x2) P12(x3 − x1) Γ3 P12(x1 − x3) P23(x2 − x3)

= A3(x ) P23(x3 − x2) P12(x3 − x1) P12(x1 − x3 + iħhε) P23(x2 − x3 + iħhε) Γ3 ,

(43)
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and so on. In this way we obtain our first difference operator (32).
Its ‘antichiral’ counterpart eD−1 =

∑

i
eB−i(x ) Γ−1

i is likewise fixed by (41) starting from the
coefficient eB−N (x ) = AN (−x ) and yields (34).

More generally, the higher conserved charges eD±r =
∑N

i1<···<ir
eB±i1,...,±ir (x ) Γ

±1
i1
· · · Γ±1

ir
are

obtained in the same way from eB1...r(x ) = A1...r(x ) =
∏

i(⩽r)

∏N
j(>r) θ (x i − x j +η)/θ (x i − x j)

and eB−(N−r+1),...,−N (x ) = AN−r+1,...N (−x ), yielding a tower of Hamiltonians, with structure like
in [30,45,52]. In particular, the total shift operator takes the simple form eDN = Γ1 · · · ΓN .

We emphasise that while this argument ‘explains’ the structure of our dynamical spin-
Ruijsenaars operators, including the appearance of R-matrices, and shows that our operators
preserve the ‘physical space’ of bosonic/fermionic vectors (41), it does not prove their com-
mutativity (37). That proof will be published elsewhere in view of its technical nature.

3.5 Freezing

Let us discuss the relation between the spin-chain Hamiltonians (4) and the spin-Ruijsenaars
operators (32)–(34). We begin with a useful heuristics for deriving the spin-chain Hamilto-
nians from the QMBS. Let δ = ∂ε

�

�

ε=0 denote linearisation in ε. Using δΓ j = −iħh∂x j
and the

Leibniz rule we compute

δeD1 =
N
∑

j=1

A j(x )×δ

xN

xN

···

···

x−j

ε

x j

···

···

x1

x1

···
a

=
N
∑

j=1

A j(x )×−iħh






∂x j
−

j−1
∑

i=1

xN

xN

···

···

x j

x j

x i

x i

⊛

···
a






, (44)

where the ⊛ denotes a derivative P ′(x) of the (deformed) permutation (9). Note that the spin
and differential part decouple (‘spin-charge separation’). By unitarity and recognising (11),
the spin part is

xN

xN

···

···

x j

x j

x i

x i

⊛

···a =

xN

xN

···

···

x j

x j

x i

x i

⊛
···a = θ (η)V (x i − x j)×

xN

xN

···

···

x j

x j

x i

x i

···a , (45)

which equals θ (η)V (i− j)SL
[i, j] at x⋆k = k (1⩽ k ⩽ N). The computation of δeD−1 is analogous,

instead yielding θ (η)V (i − j)SR
[i, j]. As we will explain below, at the equispaced positions

x⋆k = k the coefficients A j(x ⋆) = A⋆ have a common value [A⋆ = θ (η)N=1/N θ (η)]. Then we
can conclude that

1
iħhθ (η)

�

δeD±1 ∓
N
∑

j=1

A j(±x )δ Γ j

�

xk = x⋆k
=

1
iħhθ (η)

�

δeD±1 ∓ A⋆δeDN

�

xk = x⋆k

= A⋆
N
∑

i< j

V (i − j)SL,R

[i, j] = A⋆H L,R .

(46)

The physical picture is that ε = iη/g (cf. the ‘nonrelativistic limit’ to the spin-Calogero–
Sutherland system) and in the classical/strong-coupling limit ħhε∝ ħh/g → 0 the kinetic en-
ergy is negligible compared to the potential energy, and the particles slow down to come to a
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halt, ‘freezing’ at the classical equilibrium positions x⋆k = k of the spinless elliptic Ruijsenaars
system.

The expansion (46) gives the correct spin-chain Hamiltonian, but the calculation has to be
made more precise to turn it into a proper derivation. Here we outline how this goes; details
will be given in [40]. Let us for a moment keep the elliptic parameter τ arbitrary by replacing
the (odd) Jacobi theta function (5) by

ϑ(x |τ) =
sin(π x)
π

∞
∏

n=1

sin[π(nτ+ x)] sin[π(nτ− x)]
sin2(πnτ)

. (47)

Consider the classical spinless elliptic Ruijsenaars system with canonically conjugate coordi-
nates x i and momenta p j , with Poisson brackets {x i , p j} = δi j . The (‘chiral’) Hamiltonians
are

Dcl
±1 =

N
∑

i=1

e±ε pi Ai(±x ;η |τ) , Ai(x ;η |τ) =
N
∏

j(̸=i)

ϑ(x i − x j +η |τ)
ϑ(x i − x j |τ)

. (48)

These functions belong to a family of N independent Poisson-commuting quantities, which
are the conserved charges of the classical Ruijsenaars–Schneider system [56]. Picking Dcl

1 as
Hamiltonian defines a time flow with velocities

∂ x j

∂ t
≡ {x j , Dcl

1 }=
∂ Dcl

1

∂ p j
= ε eε p j A j(x ;η |τ) , (49a)

and momenta changing as

∂ p j

∂ t
≡ {p j , Dcl

1 }= −
∂ Dcl

1

∂ x j
= −

N
∑

i=1

eε pi ∂x j
Ai(x ;η |τ) . (49b)

We can search for phase-space configurations (x ⋆, p⋆) ∈ C2N that satisfy the classical equilib-
rium conditions

∂ x j

∂ t
= εA⋆ ,

∂ p j

∂ t
= 0 , (50)

for a ( j-independent) constant A⋆. Such configurations are ‘frozen’ in the sense that they
remain stationary in the co-moving frame with velocity A⋆. Evaluating our quantum spin-
Ruijsenaars system at such stationary configurations and dropping all derivatives in a consis-
tent manner yields a spin-chain Hamiltonian like in (46), cf. [38].

One equilibrium configuration solving (50) is

x⋆j =
j

N
, p⋆j = 0 , τ=

ω

N
, (51)

where we parametrise ω = iπ/κ. In this case all coefficients A j

�

x ⋆; ηN
�

�

ω
N

�

are equal to the
constant A⋆ ≡ ϑ(η |ω)/

�

N ϑ
� η

N

�

�

ω
N

��

. This configuration is used to obtain an integrable spin
chain by freezing for the HS and deformed HS chains [30] and was used by Matushko and
Zotov [38]. In this case the argument around (46) can be made rigorous following [38].

However, the resulting spin chain does not admit a Heisenberg-type short-range limit. Hap-
pily, there are many more solutions to (50), each belonging to a (lattice) parameter τ [40].
The modular action of SL(2,Z) on τ relates these solutions. In particular, one of the other
equilibrium configurations is

x⋆j =
− j
ω

, p⋆j =
iπη
ωε
(N − 2 j + 1) , τ⋆ =

−N
ω

, (52)
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which yields the theta function (5) as θ (x) =ωϑ
� x
ω

�

�

−N
ω

�

. Note that the positions in (52) are
still equally spaced, albeit now along the imaginary axis. The values of the momenta in (52)
compensate for the differences as j varies between

A j

�

x ⋆;
−η
ω

�

�

�

−N
ω

�

= e−(N−2 j+1)ηκ ϑ
� η

ω

�

�

�

−1
ω

�

/ϑ
� η

ω

�

�

�

−N
ω

�

, (53)

so that all velocities (50) are again equal; one may think of the particles as having different
masses. Thus, the expansion leading to (46) has to be computed more carefully, taking into
account that Γi = eε p̂i → eε pi also contributes to the value of A⋆ = ϑ

� η
ω

�

�

−1
ω

�

/ϑ
� η
ω

�

�

−N
ω

�

;
see [40] for details. The result is that freezing the quantum spin-Ruijsenaars system at (52)
yields our spin-chain Hamiltonians (4) with theta functions (5). Unlike the spin chain obtained
by freezing at (51), this spin chain admits a short-range limit, as discussed above.

Note that (46) does not yet imply the commutativity (19) of the commuting charges of our
spin chain. This can be proven [40] following [28, 33, 38] using the commutativity (37) for
the spin-Ruijsenaars system. The conclusion is that the commutativity of the Hamiltonians of
our QMBS implies that for the Hamiltonians of our spin chain.

4 Conclusion

Summary. We introduced a new integrable long-range quantum spin chain that unifies the
Inozemtsev chain and the deformed Haldane–Shastry chain: the deformed Inozemtsev chain.
It is obtained by ‘freezing’ a quantum many body system (QMBS) of particles with spins moving
on a circle: the dynamical elliptic spin-Ruijsenaars system, which is also new. Both models are
(quantum) integrable in the sense that they possess a family of conserved charges including the
Hamiltonians. The freezing procedure guarantees that the commutativity of these conserved
charges is preserved when passing from the QMBS to the spin chain.

Since the SU(2)-symmetric Inozemtsev chain is a limit of our U(1)-symmetric generalisa-
tion, through our work the Inozemtsev chain, too, is embedded in the framework of freezing at
last. It thus gives strong evidence for its integrability (existence of many conserved charges),
although extracting explicit conserved charges from (4) requires effort, cf. Remark ii in §1.3.4
of [30]. Moreover, our work provides a first glimpse of underlying algebraic structures via the
appearance of R-matrices. The latter depend on an extra ‘dynamical’ parameter, not unlike
suggestions of [17, 22]. Thus, our work presents a major step towards a general theory of
(quantum) integrability for long-range models with spins.

Our models differ from those of Matushko and Zotov [38, 45] in that the deformed spin
interactions are built from the (face-type) dynamical elliptic R-matrix, rather than the (vertex-
type) elliptic R-matrix of Baxter. Unlike for periodic nearest-neighbour chains, the two sets of
models are not related by a face-vertex transformation. The difference has significant impli-
cations for the physical properties, even in all limits [39].

In addition to recovering known limits, we showed that the deformed Inozemtsev chain
also has two new limits. Its short-range limit is a twisted Heisenberg XXZ chain that seems
to be new and is related to the affine Temperley–Lieb algebra in the spirit of [50], certainly
warranting further investigation. Other promising directions are RSOS specialisations, cf. [49].
It would also be worth investigating our novel intermediate generalisation of the Inozemtsev
spin chain depending on an extra parameter a′, which sits somewhere between the latter and
its deformed generalisation in Fig. 1. The fact that the parameter a′ disappears in all limits
(including infinite length) makes this model rather unique, and its solution structure could
shed light on the particular challenges that appear at the elliptic level.

Outlook. Our work opens up many new directions.
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The exact characterisation of the energies and eigenstates of our models is left for future
work. The spin-chain magnons, eigenstates of the (twisted) translation operator, already ex-
hibit rich structure, making it quite non-trivial to find the dispersion relation. The eigenstates
of both the isotropic Inozemtsev and deformed Haldane–Shastry chain rely on a connection to
a scalar QMBS. It is natural to investigate whether our freezing procedure can produce eigen-
states for the chain from the eigenfunctions of the scalar elliptic Ruijsenaars model [57–60]
as well, connecting it to elliptic Macdonald theory and elliptic toroidal algebras beyond gl1,
cf. [61]. Through suitable short-range limits, we believe this will provide a new perspective
even on the well-known Bethe-ansatz solution of the isotropic Heisenberg chain.

The anisotropy of our deformed Inozemtsev chain can be set to points of special interest
for condensed-matter theory, where it will simplify to yield new long-range models with e.g.
free fermions or supersymmetry on the lattice, cf. [62].

Our work also has implications for high-energy theory: long-range spin chains naturally
appear in AdS/CFT integrability (see [63–66] and references therein), and our QMBS is closely
related to supersymmetric gauge theories in five dimensions, cf. [61,67,68]. Finally, it provides
a test for the conjectured spin-version of the (quantum) ‘DELL’ (double elliptic) system [67,68].
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A Elliptic functions

Here we summarise the definitions of the elliptic functions that we need. See [23] (where
the functions θ and ρ defined below were decorated with a subscript ‘2’) and [40] for more
details or the standard references [70–72].

We use the (odd) Jacobi theta function with nome p = e−Nκ, which is a periodisation of a
hyperbolic sine:

θ (x) =
sinh(κ x)
κ

∞
∏

n=1

sinh[κ (N n+ x)] sinh[κ (N n− x)]
sinh2(Nκn)

=
sinh(κ x)
κ

+O(p2) . (A.1)

It is the unique odd entire function with double quasiperiodicity

θ (x + iπ/κ) = −θ (x) , θ (x + N) = −eκ(2x+N) θ (x) , (A.2)

and normalisation θ ′(0) = 1. In terms of the Weierstraß sigma function with quasiperiods N
and iπ/κ it reads

θ (x) = eiκη2 x2/2πσ(x) , η2 = 2ζ(iπ/2κ) . (A.3)
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It obeys the addition formula

θ (x + y)θ (x − y)θ (z +w)θ (z −w) = θ (x + z)θ (x − z)θ (y +w)θ (y −w)

+ θ (x +w)θ (x −w)θ (y + z)θ (y − z) .
(A.4)

When κ→ 0 we have θ (x)→ N sin(π x/N)/π by the Jacobi imaginary transformation.
The prepotential is the logarithmic derivative

ρ(x) =
θ ′(x)
θ (x)

= ζ(x) +
iκη2

π
x = κ coth(κ x) +O(p2) , (A.5)

with ζ(x) = σ′(x)/σ(x) the Weierstraß zeta function. It is odd and obeys ρ(x+iπ/κ) = ρ(x),
ρ(x + N) = ρ(x) + 2κ.

Finally, the potential is defined as the symmetric difference quotient

V(x) = −
ρ(x +η)−ρ(x −η)

θ (2η)
=

A
sn[B (x +η), k] sn[B (x −η), k]

+ C ,

k =

p

℘(iπ/2κ)−℘[(N + iπ/κ)/2]
p

℘(N/2)−℘[(N + iπ/κ)/2]
,

(A.6)

where the equality with Jacobi’s elliptic sine sn(x , k), with elliptic modulus k, involves con-
stants A, C (determined by the values at x = 0, N/2) and B =

p

℘(N/2)−℘(N/2+ iπ/2κ).
The potential is even and doubly periodic, V (x + iπ/κ) = V (x +N) = V (x). The sign in (A.6)
is chosen such that V (x)→−ρ′(x) = ℘(x)− iκη2/π becomes the Weierstraß elliptic function
as η→ 0.

B Deformed permutations

One way to obtain the dynamical R-matrix (8) is from Baxter’s R-matrix of the eight-vertex
model using the face-vertex transformation (28) [43,73,74]. As the name of the transforma-
tion suggests, one often thinks of Ř(x , a) as defining a ‘(interaction-round-the-)face’ (or ‘IRF’)
model. One can equivalently view this model as a ‘height model’, in which case it is often
called the (‘elliptic’ or ‘eight-vertex’) ‘solid-on-solid’ (or ‘SOS’) model, which can be described
as a version of the six-vertex model where each face is decorated by a ‘height’.

One face of the lattice is given a ‘reference’ height a, which determines the heights of all
other faces by the spin configuration on the lines of the vertex model through the rule

s

s

a b , b = a− s , (B.1)

where the line carries a spin s = ±1, and |+1〉 ≡ |↑〉 and |−1〉 ≡ |↓〉. The matrix entries of the
identity correspond to

δs,t = 〈t |s〉=
s

t

a b , b = a− s = a− t . (B.2)

Furthermore giving each line a spectral parameter, the generalised vertex model has vertices

〈t ′, t ′′| Ř(x ′ − x ′′, a) |s′, s′′〉= a
b

c
d

x ′′, s′′

x ′′, t ′

x ′, s′

x ′, t ′′

,
b = a− t ′ ,

d = a− s′ ,
c = b− t ′′ = d − s′′ , (B.3)
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with (statistical-mechanical) weight equal to the corresponding entry of (8). The equality on
the right uses the ice rule (spin-z conservation) s′+ s′′ = t ′+ t ′′ of the dynamical R-matrix. By
passing to the dual lattice, where the heights are instead attached to the vertices, one arrives

at the standard IRF picture shown in gray in (B.1)–(B.3), with weight W
�

a b
d c
�

�

� x ′− x ′′
�

. One

of the benefits of the generalised-vertex perspective is that the R-matrix with entries (B.3) is
just a 4× 4 matrix (in the spin, rather than height, basis) as in (8), i.e.

Ř(x , a) =







1 0 0 0
0 f (η, x ,η a) f (x ,η,η a) 0
0 f (x ,η,−η a) f (η, x ,−η a) 0
0 0 0 1






, f (x , y, z) =

θ (x)θ (y + z)
θ (x + y)θ (z)

. (B.4)

The price to pay is an additional parameter, a, that has to be shifted in the appropriate way,
determined by (B.2). The dynamical R-matrix obeys the unitarity relation Ř(x , a) Ř(−x , a) = 1
and initial condition Ř(0, a) = 1. In components, unitarity reads

〈t ′, t ′′| Ř(x ′′ − x ′, a) Ř(x ′ − x ′′, a) |s′, s′′〉=
a

a
b

c

c

d

e

x ′′, s′′

x ′′, t ′′

x ′, s′

x ′, t ′

= δb,d × a b c

x ′′, s′′

x ′′, t ′′

x ′, s′

x ′, t ′

= δs′, t ′ δs′′, t ′′ , (B.5)

(B.6)

with b = a − s′ and c = b − s′′, and where in the first diagram dashed lines join heights that
are to be identified, and a sum over the spins on the two internal edges (equivalently, over the
heights e on the internal face) is understood. In addition, (B.4) obeys the (braid-like form of
the) dynamical Yang–Baxter equation (or Gervais–Neveu–Felder equation)

Ř12(x
′ − x ′′, a) Ř23(x − x ′′, a−σz

1) Ř12(x − x ′, a)

= Ř23(x − x ′, a−σz
1) Ř12(x − x ′′, a) Ř23(x − x ′, a−σz

1) .
(B.7)

In components it reads

〈t, t ′, t ′′| Ř12(x
′ − x ′′, a) Ř23(x − x ′′,

= g
︷ ︸︸ ︷

a−σz
1 ) Ř12(x − x ′, a) |s, s′, s′′〉

=
a

a
b

c

d

d

d

e
f

g

x , s

x , t ′′

x ′, s′

x ′, t ′

x ′′, s′′

x ′′, t

= a

b c

d

ef

g

x , s

x , t ′′

x ′, s′

x ′, t ′

x ′′, s′′

x ′′,t

= d

cb

a

f e

h

x ′′, s′′

x ′′, t

x ′, s′

x ′, t ′

x , s

x , t ′′

=
d

d
c

b

a

a

a

f
e

h

x ′′, s′′

x ′′, t

x ′, s′

x ′, t ′

x , s

x , t ′′

= 〈t, t ′, t ′′| Ř23(x − x ′, a−σz
1
︸ ︷︷ ︸

= b

) Ř12(x − x ′′, a) Ř23(x − x ′, a−σz
1
︸ ︷︷ ︸

= f

) |s, s′, s′′〉 ,

(B.8)

where sums over spins on the three internal lines (equivalently, over the height g or h of
the internal face) are again understood. The resulting algebraic structure is Felder’s elliptic
quantum group [37].

18

https://scipost.org
https://scipost.org/SciPostPhys.17.6.155


SciPost Phys. 17, 155 (2024)

Now consider a row of N vertical lines in the generalised vertex model. The deformed
permutation (9) similarly encodes the vertex

〈t1, . . . , tN | Pi,i+1(x
′ − x ′′) |s1, . . . , sN 〉=

s1

t1

···

x ′′, si+1

x ′′, t i

x ′, si

x ′, t i+1

···

sN

tN

a ai−1

a′′i
ai+1

a′i

aN , (B.9)

where we omitted the spectral parameters attached to all non-crossing lines to avoid cluttering,
and the heights are

a0 = a , a j = a j−1 − s j ( j ̸= i, i + 1) ,
a′′i = ai−1 − t i ,

a′i= ai−1 − si ,
ai+1 = a′′i − t i+1 = a′i − si+1 .

(B.10)
The vertex (B.9) corresponds to a single matrix entry of Pi,i+1(x). The whole matrix can be
written as in (9), i.e.

Pi,i+1(x) = Ři,i+1

�

x , a− (σz
1 + · · ·+σ

z
i−1)
�

. (B.11)

On the usual spin (‘computational’) basis this notation means

Pi,i+1(x) |s1, . . . , sN 〉= |s1, . . . , si−1〉 ⊗
�

Ř
�

x , a−
∑i−1

k=1 sk

�

|si , si+1〉
�

⊗ |si+1, . . . , sN 〉 . (B.12)

We stress once more that the dynamical parameter of the R-matrix in (B.11)–(B.12) is shifted
by (twice) the spin-z to the left of the in agreement with (B.9). Projecting on 〈t1, . . . , tN |
we recover (B.9).

Thanks to (B.7), the deformed permutations obey the (braid-like) Yang–Baxter equation

Pi,i+1(x − y) Pi+1,i+2(x) Pi,i+1(y) = Pi+1,i+2(y) Pi,i+1(x) Pi+1,i+2(x − y) , (B.13)

as well as the commutativity [Pi,i+1(x), Pj, j+1(y)] = 0 for |i − j| > 1. They moreover inherit
the unitarity relation

Pi,i+1(−x) Pi,i+1(x) = 1 , (B.14)

with ‘initial condition’ Pi,i+1(0) = 1. According to (B.14), swapping twice is the identity. That
is, taking into account that the parameters follow the lines, the deformed permutations square
(appropriately interpreted) to the identity. This can be made precise by introducing the coor-
dinate permutation si j : x i↔ x j . Consider the deformed ’total’ permutation

P tot
i,i+1 = si,i+1 Pi,i+1(x i − x i+1) . (B.15)

It permutes particles, i.e. spins and coordinates. (Since parameters should follow lines in
diagrams, one could draw it as .) Now (B.7) becomes the braid relation

P tot
i,i+1 P tot

i+1,i+2 P tot
i,i+1 = P tot

i+1,i+2 P tot
i,i+1 P tot

i+1,i+2 , (B.16)

we have
�

P tot
i,i+1, P tot

j, j+1

�

= 0 for |i − j|> 1, and (B.14) reads

�

P tot
i,i+1

�2
= 1 . (B.17)

These are the relations of the permutation group. In the isotropic limit η → 0 we recover
the standard particle permutation, P tot

i,i+1 → si,i+1 Pi,i+1. For general η, (B.15) depends on all
parameters.
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C Deformed nearest-neighbour exchange

The deformed spin exchange

E(x , a) =
1

θ (η)V(x)
Ř(−x , a) Ř′(x , a) =

x ′

x ′

x ′′

x ′′

a , Ř′(x , a)≡ ∂x Ř(x , a) , x = x ′ − x ′′ , (C.1)

is nothing but a normalised logarithmic derivative of the dynamical R-matrix, ∂ log Ř= Ř−1Ř′,
mirroring the local Hamiltonians of Heisenberg chains. As an explicit 4× 4 matrix it reads

θ (η)V (x) E(x , a) = Ř(−x , a) Ř′(x , a) =







0 0 0 0
0 α(x ,η a) β(x ,η a) 0
0 β(x ,−η a) α(x ,−η a) 0
0 0 0 0






, (C.2)

where the first equality uses the unitarity Ř(x , a)−1 = Ř(−x , a), and the coefficients are

α(x , a) = f (η, x , a) f (η,−x , a)
�

ρ(x + a)−ρ(x)
�

−
�

ρ(x +η)−ρ(x)
�

= f (η, x , a) f (η,−x , a)ρ(x + a) + f (x ,η, a) f (−x ,η,−a)ρ(x)−ρ(x +η) ,

β(x , a) = f (x ,η, a) f (η,−x , a)
�

ρ(x)−ρ(x − a)
�

.

(C.3)

Its entries can be interpreted like in (B.5): if ‘ ⊛’ marks the derivative in Ř′,

〈t ′, t ′′| E(x ′−x ′′, a) |s′, s′′〉= a
b

c
d

x ′, s′

x ′, t ′

x ′′, s′′

x ′′, t ′′

=
1

θ (η)V(x ′ − x ′′) ⊛a

a
b

c

c

d

e

x ′′, s′′

x ′′, t ′′

x ′, s′

x ′, t ′

,
b = a− t ′ ,

d = a− s′ ,
(C.4)

with c = b− t ′′ = d − s′′.
To evaluate the isotropic limit of E(x , a) note that for η→ 0

f (η, x ,η a) =
θ (η)θ (x +η a)
θ (η+ x)θ (η a)

→
1
a

, f (x ,η,η a) =
θ (x)θ (η+η a)
θ (x +η)θ (η a)

→
a+ 1

a
. (C.5)

Hence
α(x ,η a)
θ (η)

→
1
a2

aρ′(x)−ρ′(x) =
�

1−
1
a

�

V̄ Ino(x) ,

β(x ,η a)
θ (η)

→
a+ 1

a2
aρ′(x) = −
�

1+
1
a

�

V̄ Ino(x) ,
η→ 0 , (C.6)

where we recall V̄ Ino(x) = −ρ′(x). Letting a→−i∞ we see that E(x , a) reduces to 1− P.
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