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Abstract

Focusing on Bethe-Ansatz integrable models, robust to both time-reversal symmetry
breaking and disorder, we consider the Russian Doll Model (RDM) for finite system
sizes and energy levels. Suggested as a time-reversal-symmetry breaking deformation of
Richardson’s model, the well-known and simplest model of superconductivity, RDM re-
vealed an unusual cyclic renormalization group (RG) over the system size N, where the
energy levels repeat themselves, shifted by one after a finite period in ln N, supplemented
by a hierarchy of superconducting condensates, with the superconducting gaps follow-
ing the so-called Efimov (exponential) scaling. The equidistant single-particle spectrum
of RDM made the above Efimov scaling and cyclic RG to be asymptotically exact in the
wideband limit of the diagonal potential. Here, we generalize this observation in var-
ious respects. We find that, beyond the wideband limit, when the entire spectrum is
considered, the periodicity of the spectrum is not constant, but appears to be energy-
dependent. Moreover, we resolve the apparent paradox of shift in the spectrum by a
single level after the RG period, despite the disappearance of a finite fraction of energy
levels. We also analyze the effects of disorder in the diagonal potential on the above pe-
riodicity and show that it survives only for high energies beyond the energy interval of
the disorder amplitude. Our analytic analysis is supported with exact diagonalization.
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1 Introduction

The Richardson model, suggested in [1,2] is a widely known and simple toy model of super-
conductivity with a fixed number of fermions/Cooper pairs in the condensate. Besides the fact
that it captures the main properties of superconductivity, this model is known to be integrable
via the Bethe Ansatz (BA). Indeed, the spectrum of the Richardson’s model can be obtained via
BA equations, which moreover, coincide with those for another well-known integrable model,
namely, the twisted SU(2) Gaudin magnets [3]. Note that similar all-to-all Hamiltonians have
been used in the physics literature for the description of superconducting grains [4] and the
disorder-induced superconductor-insulator transition [5].

As soon as any superconductor reveals itself not as a pure conductor, but as a pure dia-
magnet, the magnetic-field effects, such as the Meissner and Aharonov-Bohm ones, are most
crucial manifestations of its superconducting properties. In the all-to-all coupled (effectively
zero-dimensional) Richarson’s model, the effects of the magnetic field were investigated via
a simple time-reversal (T) symmetry breaking deformation of the Richardson model – the so-
called Russian Doll model (RDM) [6,7], where the all-to-all constant coupling g gets the odd
imaginary part h. Already at that time, it appeared to be clear that RDM is also BA integrable,
equivalent to the so-called twisted inhomogeneous XXX SU(2) spin chain in terms of the BA
equations [8], and can also be related to Chern-Simons theory when the excitations are rep-
resented by vertex operators [9].

However, what was more surprising is that the RDM exhibits a rare property — it hosts
a cyclic renormalization group (RG) flow for the couplings via the system size N [6]. It was
shown that in the wideband regime of the single-particle diagonal spectrum, the entire spec-
trum repeats itself over the finite period in ln N . Another peculiarity of RDM was that, unlike a
single superconducting condensate in Richardson’s model, it demonstrates an entire hierarchy
of condensates with superconducting gaps, which are related to each other via a fixed exponen-
tial Efimov scaling and repeat (shifted by one) after the same RG period as the single-particle
spectrum.

The above described RG cycle implies a nontrivial interplay between the ultraviolet- (UV)
and infrared-limit (IR) physics, and the underlying algebraic property was identified as the
anomalous breaking of scale invariance down to the discrete subgroup [10, 11]. It is this
remaining discrete scale invariance in the models with cyclic RG flows which is responsible
for the fact that some part of the spectrum obeys the so-called Efimov exponential scaling
En ∝ ecn, which, in the case of RDM, stands behind the hierarchy and periodicity of the
superconducting gaps, see [12] for a review. Note that recently new examples of cyclic RG [13],
as well as examples of homoclinic RG orbits [14] and chaotic RG flows [15] have been found.
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One of the questions which we address in this paper is related to the following paradox:
how is it possible that the spectrum repeats itself (including the superconducting condensates)
and shifts only by one level after the RG period ∆ ln N = π/h, i.e., after the disappearance of
the finite fraction of levels (but not just one)? Where do the other levels go? Another question
is related to the robustness of both Richardson’s model and RDM to diagonal disorder. Indeed,
in both the models the BA equations are still applicable for any (even disordered) diagonal
potentials. However, this robustness of BA does not guarantee the corresponding robustness
of the eigenstates or of the cyclic RG properties.

Indeed, for the Richardson model with any strength of diagonal on-site disorder it is shown
in [16–20] to have all the excited eigenstates (except the superconducting ground state) to
be power-law localized, while the eigenvalue statistics still indicates level repulsion. On the
contrary, the corresponding eigenstates in RDM, considered in [21], show non-ergodic, but
extended properties. Thus, the violation of time-reversal symmetry breaks the localization
effects down and forms an entire fractal phase, similar to observations in several other mod-
els [18–30], with the Rosenzweig-Porter model (RPM) being the most familiar example.

In this study, we address the same question of disorder effects in the context of the cyclicity
of RG. We generalize the cyclic RG of the couplings, developed in [6] for the case of equidis-
tant spectrum, in two respects. First, we make a refinement of the cyclic RG, applicable for
the entire spectrum beyond the wideband limit, both for equidistant and non-equidistant spec-
tra, and find that the cyclic RG structure survives but the period of the RG becomes energy-
dependent. Second, we incorporate the diagonal disorder into the derivation of the RG for the
random RDM. The analysis yields a similar result – the period of the RG becomes energy- and
disorder-dependent and for the disorder potential, which reshuffles the order of the diagonal
energies, the periodicity survives only in some parts of the spectrum. We also comment on the
fate of the Efimov tower and the incomplete breaking of scale invariance in these cases. Thus,
to summarize, the effects of disorder on the cyclic RG in RDM is not as straightforward as on
the eigenstates or BA: the hierarchy of the condensates and, partially, the periodicity of RG
survive, but the period depends both on the considered energy and disorder (and its concrete
realization).

Note that the T-breaking parameter is usually not renormalized perturbatively, but can be
renormalized however if some kind of non-perturbative effects are taken into account. An
example of RG in a disordered system with Anderson localization and T-breaking can be found
in [31].

2 Model

Here we introduce the Hamiltonian of the Russian Doll model. We consider the N0×N0 random
matrix model of the following form

Hmn = ϵnδmn − jmn , jm ̸=n = δ(N0) [g + ihsign (m− n)] , 1≤ m, n≤ N0 , (1)

where we consider open boundary conditions and put the overall energy shift jnn to zero
without loss of generality. Here ϵn is a certain (might be random and non-monotonic) potential
of n on a finite support

|ϵn| ≤ω/2 , (2)

and the matrix-size-dependent constant δ(N0) is defined in the next section.
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3 LeClair - Román - Sierra’s renormalization group (RG) for all
energies

3.1 RG for equidistant spectrum

In Ref. [6] the authors consider the model (1) in the bosonic setting for application to super-
conductivity, with the following choice for the parameter

δ(N0) =ω/N0 , (3)

with ω = ϵN0
− ϵ1 being the bandwidth1 of the diagonal potential. They focused on the case

with equidistant spectrum of the diagonal potential

ϵn = (n− n0)δ , (4)

with a certain energy shift n0δ (if not mentioned otherwise, we will use n0 = N0/2), giving the
range of the diagonal energies as in (2). They derived the following renormalization group
(RG), see Eq. (15) in Ref. [6], removing the largest diagonal energy level at each step:

gN−1 = gN +
g2

N + h2
N

N
, hN−1 = hN . (5)

In order to derive the above equations the authors of [6] did the following:

1. First, they start with the matrix of size N0 and at each step reduce its size by one.

2. For this, they take at each step the level with the largest diagonal energy in the absolute
value (ϵN or ϵ1).

3. Assuming it to be large with respect to the rest of the levels (a so-called wideband limit
as we have mentioned it above), they resolve the eigenproblem with respect to it (say
ϵN ):

(ϵN − E)ψE(N)−
∑

n

jNnψE(n)= 0 ⇔ ψE(N) =

∑

n̸=N jNnψE(n)

ϵN − E
, (6a)

(ϵm − E)ψE(m)−
∑

n

jmnψE(n)= 0 ⇔ (ϵm − E)ψE(m)−
∑

n̸=N

�

jmn +
jmN jNn

ϵN − E

�

ψE(n) = 0 .

(6b)

Strictly speaking, the latter fraction was split into two terms with E replaced by ϵm and
ϵn, respectively, but this was not important for them.

4. Next, they assumed ϵN − E ≃ δ · N and using the ratio ω/δ = N they end up with
Eqs. (5).

The solution of Eqs. (5) can be found in the continuous limit ds ∼∆s = −∆N/N ≪ 1

hN = hN0
≡ h , (7a)

gN = h tan
�

hsN + arctan
� gN0

h

��

, (7b)

with ∆N = 1 and sN = ln (N0/N). Strictly speaking the above RG works for the bottom of the
spectrum E ∼ ϵ1 if one takes the energies ϵN always from the top of the spectrum.

Physically, the solution (7) means that the T-symmetry breaking parameter h stays intact
within such an RG over the logarithm of the system size sN = ln (N0/N), while the T-symmetric
coupling gN changes periodically with the period ∆s = π/h, determined by the T-breaking
parameter h.

1Unlike [6], we use ω for the total bandwidth, not its half and δ for the level spacing, not its half.
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3.2 Energy dependent RG periods

In order to go beyond applicability only for the bottom of the spectrum, mentioned in the end
of the previous section and apply the results to the entire spectrum, one should replace the
assumption in item 4 by the correct energy-dependent expression

gN−1 = gN +δ(N0)
g2

N + h2
N

ϵN − E
, hN = hN0

. (8)

Now the renormalization variable sE should be defined as

dsE(N) = −
δ(N0)
ϵN − E

⇔ sE(N) =
N0
∑

n=N

δ ·∆N
ϵn − E

≈
∫ N0

N

δ · dn
ϵn − E

, (9)

where ∆N = 1 and one arrives at the same RG equations and solution as Eqs.(15-16) in [6]

d g
dsE
= g2 + h2 ⇔ g(sE) = h tan

�

hsE + arctan
� gN0

h

��

. (10)

The validity of the above equation (10) is limited by the conditions for the absence of resonance

|dsE(N)| ≪ 1 ,
1

g2(sE) + h2
⇔ |E − ϵN | ≫ δ , δ ·

�

g2(sE) + h2
�

. (11)

The first condition |dsE(N)| ≪ 1 ensures that the increment in the integral (9) is small, while
the second one limits the increment |d g(s)| in (10) to make the derivation from (8) to it valid.
Note that from Eq. (9) one can see that the monotonicity of the parameter s (9) depends on the
energy E and does not necessarily require the monotonicity of ϵn. Indeed, for |E|>ω/2> |ϵn|,
even random ϵn does not change the monotonic behavior of sE(N), keeping the periodicity of
the cyclic RG robust in this energy interval. In the following two subsections, we apply the
above considerations for equidistant and disordered diagonal potentials.

3.3 Entire spectrum for equidistant potential

For equidistant diagonal potential (4), one can introduce the following parameter
ME = E/δ+ n0, for the energy shift, which gives:

sE(N) = ln
�

N0 −ME

N −ME

�

. (12)

As in Eq. (17) of [6] the result (10) is periodic with the period λ= π/h in sE . The period λ in
sE corresponds to the change ∆NT in the matrix size N given by

λ= ln
�

N −ME

N −∆NT −ME

�

, ∆NT = (N −ME)
�

1− e−λ
�

. (13)

The number of periods before N −ME = 1 goes as

n=
h
π

ln (N0 −ME) . (14)

However, unlike [6], here we see two peculiarities:

• First, the period ∆NT in N is energy E-dependent, Eq. (13), and

• Second, there is the singularity at N = ME , or equivalently, at E = ϵN .

5

https://scipost.org
https://scipost.org/SciPostPhys.17.6.157


SciPost Phys. 17, 157 (2024)

The latter is important for the understanding of the first question (or paradox), mentioned
in the introduction. Indeed, according to [6] and Eq. (13), the matrix size shrinks by ∆NT (N)
after the period, when the spectrum repeats itself with the shift by one level. However, on the
way from N0 to N other ∆NT − 1 levels have also disappeared. Where have they gone?

To answer this physical question, one should consider the continuity condition (11) more
closely. What happens when this condition is violated? In such a case, one cannot transform
the sum in Eq. (9) to the integral and, moreover, already at a single step, one of the increments
dsE(N) or d g(sE) is not small. This means that many periods can pass in this region without
being seen in the continuous equations (10) and the numerics. Strictly speaking, each RG
step (8) corresponds to the removal of one column and one row of the matrix and can be
considered as a rank-1 perturbation for the matrix [32]. As it is known from Richardson’s
model [17] and other works [20, 33], such a rank-1 perturbation can move significantly only
one (top or bottom) level E(N−1)

N , while the other N − 2 levels E(N−1)
n are bound in between

the ones at the previous step
E(N)n < E(N−1)

n < E(N)n+1 . (15)

This means that independently of the condition (11) only one level disappears from the spec-
trum by going to the sink at E = ϵN in the RG step. We will show the same in our numerical
results in Sec. 4.

3.4 Case of the diagonal disorder

Strictly speaking Eqs. (8) and (9) work for any diagonal potential, not only for equidistant
or monotonic ϵn. Therefore in this subsection we consider disordered diagonal potential. In
the case when the diagonal energies are not equidistant (4) but given by independent random
numbers, the derivation of RG equations from (6) is not completely trivial.

In order to make the derivation clear let’s consider separately the two effects of the disor-
der:

1. Fluctuations of ϵn around their mean value (4).

2. Re-shuffling of ϵn.

Taking into account only the first effect, i.e., keeping the order ϵn ≤ ϵn+1, one can represent
ϵn as a sum of independent non-negative increments

ϵn = ϵ1 +
n−1
∑

k=1

δϵk , P({δϵk}) =
N−1
∏

k=1

P0(δϵk) , P0(x) =
1
δ

e−x/δ , 〈δϵk〉= δ . (16)

For large enough nE = n− n0 − E/δ ≡ n−ME ≫ 1, Eq. (4), of i.i.d. random elements in the
sum ϵn− E, can be approximated by a Gaussian random number with the following mean and
variance

〈ϵn − E〉= δ · nE , σ2
n,E =



(ϵn − E)2
�

− 〈ϵn − E〉2 = δ2 · nE , (17)

and thus can be represented as

ϵn = E +δ · nE +δ ·
p

nEGn = δ (n− n0) +δ ·
p

nEGn , (18)

with the standard Gaussian variable Gn

〈Gn〉= 0 ,



G2
n

�

= 1 . (19)

The corresponding increment dsE(N), Eq. (9), is then given by

dsE =
∆N

nE

�

1+ GN/
p

nE

� ≃
∆N
nE

�

1−
GN

n1/2
E

�

. (20)
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With the latter Taylor expansion this gives the result for sE(N) in terms of the central limit
theorem as

sE(N) = ln
�

N0 −ME

N −ME

�

− G̃N

� N0
∑

n=N

1

(n−ME)
3

�1/2

(21)

≃ ln
�

N0 −ME

N −ME

�

−
G̃Np

2 |N −ME |

�

1−
�

N −ME

N0 −ME

�2
�1/2

. (22)

Here we used the central limit theorem for the sum of Gaussians Gn/n
3/2
E with zero means and

variances σ2
n = n−3

E and introduced another standard Gaussian variable G̃N , Eq. (19).
From the latter one can see that the additional summand ∼ |N −ME |−1 to sN with respect

to the one in the disorder-free case, Eq. (12), is small compared to the period π/h for large
enough N −ME within the RG validity region, Eq. (11). Strictly speaking, in the sum (21) one
cannot keep the terms O(1) as the Euler-Mascheroni constant γE ≃ 0.5772 is also neglected
there.

At the same time, at the top of the spectrum (from where we take out ϵN ) and close to
N ≈ ME , the fluctuations will be important already at the level of Eq. (20). In the former
region the central limit theorem in (18) does not hold, while in the latter the entire validity
of the RG (11) is broken. As a result, with this we show that the periodicity of RG for the
spectrum survives in the monotonic but disordered diagonal potential within the same validity
range away from the sink point E = ϵN , i.e., at |E − ϵN | ≫ E.

The reshuffling of the diagonal disorder has another effect. Indeed, as we mentioned in
Sec. 3.2, in this case, the monotonicity of the periodicity parameter sE(N) is guaranteed only
for |E| >ω/2. Otherwise, both the sign and the amplitude of the increment dsE(N in Eq. (9)
are random and the validity conditions (11) to derive the continuous equation (10) cannot be
satisfied. Therefore, the above periodicity (10) survives only in the above mentioned region
|E| > ω/2, while within the diagonal band, |E| < ω/2, the parameter sE(N) can be non-
monotonic with N and random, and therefore no periodicity is expected.

To sum up this section, we showed that the effect of the diagonal potential fluctuations
without reshuffling affects only the vicinity of the sink point and the cyclic RG survives in the
same validity range as for the equidistant spectrum. At the same time, reshuffling the diagonal
elements ruins the periodicity of the RG in the entire range of the diagonal potential |E|<ω/2,
keeping it intact only beyond it, including the condensate energies (and the corresponding
Efimov scaling, as we will see below).

3.5 Generalized Efimov scaling

Let us comment on the place of our study in the general context of the two-parametric RG
flows when one parameter induces T-symmetry breaking. It is useful to introduce the following
modular parameter [34]

τ= x + i y , where x is T-symmetry breaking term and y is a some kind of disorder. (23)

The real part is the chemical potential for the topological number of any nature, say, winding,
topological charge etc. On the other hand the imaginary part is any parameter quantifying
disorder, say, coupling constant, diffusion coefficient, boundary condition etc. In our case one
could have in mind τ = h+ i g while, for example, τ = θ + iD for the Anderson model in 1d
with T-symmetry breaking term θ and the diffusion coefficient D [31]. Before renormalization
there is the natural action of SL(2, Z) on modular domain of τ.

The pattern of RG orbits considered as trajectories of the dynamical systems depends on
the relative weights of the perturbative and non-perturbative contributions to the β-functions.
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The conventional cyclic RG occurs at stable fixed point for Reτ taking into account only a first
perturbative contribution to the βImτ. The Reτ is finite at the stable fixed point and it governs
the period of the RG cycle (10). Generically both the β ’s are elliptic functions of the modular
parameter and behave differently in the limiting cases.

The RG flow towards the stable fixed point can occur through the chain of unstable fixed
points for Reτ. For instance, such behavior and interesting universality has been observed
in [34] in the limit y = Imτ→ 0 when the potential function for the RG flow which yields the
β(x , y) function is the generalized Dedekind function.

U(x , y) = log(y1/4|η(x + i y)| , τ= x + i y , (24)

where η(z) is Dedekind function η(z) = e
πiz
12
∏∞

n=0(1− e2πinz). At small fixed y the RG poten-
tial for T-breaking parameter gets reduced to U(x) whose minima xn exhibit the interesting
recurrence xn+1 = f (xn) for the unstable critical points of the RG flow for Imτ. The recur-
rence is ruled by the free group Γ2 which is subgroup of SL(2, Z) and involves three generators
of the discrete RG flows [34]. At n→∞ the RG flows to the stable critical point while a topo-
logical parameter tends to the Golden ratio xn →

p
5+1
2 . This model example corresponds to

the one-dimensional Penrose model which is a toy model exhibiting cyclic RG cycle. In that
case the Efimov scaling for the bound states reads as

En = E0 exp(cn) , (25)

with c = ln(
p

5+1
2 ). In the refined RG, once again we look at the stable fixed point of Reτ but

the period of Imτ is energy dependent

g(sE +λ) = g(sE) . (26)

A bit loosely we could say that the Reτ defining the period at the fixed point is E-dependent.
Instead of (25) we have scaling of the form

log( En
E0
)

s(En)
∼ n , (27)

which reduces to Efimov scaling for equidistant spectrum. Note that the Efimov scaling follows
from the partial breaking of the scale invariance down to the discrete subgroup [10, 11]. In
the refined case the discrete subgroup is broken as well.

It is worth making one more remark. In [7], the set of resonances in the particular (1+1)
quantum field theory (QFT) with the scaling

Mn = 2m cosh(λn) , (28)

where the λ = π/h is a period of the peculiar RG flow, has been found. Certainly it does not
enjoy the Efimov scaling at low energy but the spectrum can be represented in the form of the
generalised Efimov scaling with the energy dependent RG period λ(n)

Mn = 2m exp(λ(n)n) , λ(n) = λ+
1
n

log
(1+ e−2nλ)

2
. (29)

Hence it seems that our finding in finite dimensional system has the clear QFT counterpart
however it would be nice to investigate this relation in more details.
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)/
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Figure 1: Generalized E-dependent spectrum periodicity, Eq. (12), in the Russian
Doll model with equidistant diagonal potential, Eq. (4) in different spectral parts.
Vertical lines correspond to the periodicity in the parameter sE(N) = ln

�

N0−ME
N−ME

�

,
which perfectly matches the one in the numerical spectrum in all those parts. The
color of the data points varies from blue to red as the system size is reduced from
N0 = 256 to 64.

4 Numerics

In order to check the analytical predictions of the previous sections, we have performed nu-
merical simulations similar to [6]. Taking the initial Hamiltonian (1) of size N0, we compute
the spectrum for the models, given by the first N rows and N columns of the matrix. Then the
spectrum of such models (normalized by the parameter δ) has been plotted versus the peri-
odicity parameter sE(N), Eq. (9), see Figs. 1 – 3. For our numerics we have chosen N0 = 256,
g = 1, and h= 12, though the results are qualitatively the same for other parameters as well.

In the case of the equidistant spectrum, Fig. 1, the periodicity parameter is given by (12),
sE(N) = ln
�

N0−ME
N−ME

�

, with ME = E/δ + n0. One can see from Fig. 1 that the period varies in
different regions of the spectrum, but it is still given by the above formula. At the spectral
edges (see the first and last panels), the energy levels may disappear with decreasing N (and
increasing sE(N)). In addition, close to the energies E/δ = N ≡ ϵN/δ, (see the bottom part of
the last panel in Fig. 1), the periodicity is violated in full agreement with the validity range,
Eq. (11). Note that it is not just the discreteness of the spectrum which matters as for smaller
energies |E|/δ < N even the discrete spectrum shows the same periodicity, cf. left (|E|/δ < N)
and right (|E|/δ > N) bottom panels.
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Figure 2: Generalized E-dependent spectrum periodicity, Eq. (17), in the Rus-
sian Doll model with random diagonal potential in different spectral parts. Verti-
cal lines show the periodicity in the parameter sE(N) (9), which provides reasonable
match to the periodicity of the spectrum in the parts, away from the diagonal po-
tential bulk, |E| > ω/2. The color of the data points varies from blue to red as the
system size is reduced from N0 = 256 to 64.

In the more physical and interesting case of disordered diagonal potential (17), one has
to modify the periodicity parameter to (9) or in the monotonic case to (21). In this case, see
Fig. 2, the periodicity is still clearly seen, but close to the interval of the diagonal potential
energies, |E| < ω/2 (with n0 = N0/2) the periodic levels are not seen under the ones with
random shifts along sE(N). The latter are those levels, which hit the resonance E ≃ ϵN and,
thus, have non-monotonic sE(N) vs N .

In order to show clearly the range of random energies, we plot the entire spectrum of
the system in Fig. 3 versus the local periodicity parameter sE(N) =

∑N0
n=N δ/(ϵn − E). From

that figure the periodicity is hard to see due to the symbol sizes, but one can clearly observe
that in the interval |E|/δ < N0/2 the random levels, corresponding to the above hitting of
resonances and non-monotonic sE(N), prevails over the the regular ones, so the latter are not
seen. Beyond the above mentioned energy interval, i.e. for |E|/δ > N0/2, no such random
levels are visible and the regular (periodic) behavior is present.

In addition, a random singular point of the spectrum appears at E = ϵN , where the regular
spectral part changes behavior from sN > 0 at E < ϵN to sN < 0 otherwise. These are exactly
the sink points which are random within the interval |ϵN | < ω/2 at each step N where most
of the levels disappear beyond RG periodicity.
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Figure 3: Overview of generalized E-dependent spectrum periodicity in the Rus-
sian Doll model with random diagonal potential. One can clearly see that the
periodicity is broken within the diagonal potential bulk, |E|<ω/2. The color of the
data points varies from blue to red as the system size is reduced from N0 = 256 to 64.

5 Conclusion

In this paper we have generalized the periodic renormalization group (RG) for the known
Russian Doll model (RDM) in several respects.

Within the original RDM setting with the equidistant diagonal elements, we have shown
that the RG period depends significantly on the energy interval considered and has a singularity
at the sink point E = ϵN . It is this singularity which compensates the disbalance of ∆NT − 1
energy levels that should disappear after the RG period∆NT ≃ and, according to the previous
literature [6,7], shift the entire spectrum by one level only.

In addition, we have considered the RDM with the disordered diagonal elements and found
two separate effects of disorder. First, the fluctuations of diagonal potential do not affect the
validity of the cyclic RG, while the second reshuffling contribution of the diagonal potential
allows the RG periodicity to survive only beyond the diagonal disorder amplitude. For this, we
derive a generalized RG parameter over which RG equations are still periodic (at least in the
spectral parts lying beyond the energy interval of the diagonal elements). All the analytical
predictions have been confirmed by the numerical simulations.

In the further investigations, it would be interesting to identify the limit cycle breaking
discussed in this study with the generic framework of breakdown of the limit cycle within the
bifurcation theory.

The effect of periodicity, suggested in the Russian Doll model and generically considered in
this work, is in some sense similar to the Aharonov-Bohm effect in the single-mode supercon-
ducting ring pierced by a magnetic flux φ, where the (all-to-all site) coupling also has the real
g and imaginary h parts, periodically changing withφ, however, unlike the latter, the cyclic RG
in RDM shows periodicity over the logarithm ln N of the system size and this periodicity, as we
have shown, is energy-dependent. In this sense, it will be of particular interest to find similar
periodicity effects in some physical short-range models. Among possible candidates one can
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guess to have hierarchical structures like the so-called random-regular or Erdös-Renyi graphs,
where the dominant cycle size where the magnetic field can penetrate is, indeed, proportional
to ln N and in this respect one can expect it to show similar Aharonov-Bohm periodicity as the
magnetic flux will contain the dominant loop size ∼ ln N .
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