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Abstract

We show that the algebra of Parisi ultrametric matrices is recovered by the real-time,
replica-free, Dyson-Keldysh equations of infinite-range quantum spin glasses in the late
time glassy limit. This connects to earlier results on classical and quantum systems
showing how ultrametricity emerges from the persistent slow aging dynamics of the
glass phase. The stationary spin glass state thereby spontaneously breaks thermal sym-
metry, or the Kubo-Martin-Schwinger relation of a state in global thermal equilibrium.
We describe the Keldysh path integral of the infinite-range Ising model in transverse and
longitudinal fields, and in the context of the Landau expansion of the action functional,
show how the long-time limit connects to the full replica symmetry breaking obtained in
the equilibrium formalism. We also illustrate our formalism by applying it to the spher-
ical quantum p-spin model, which only exhibits one-step replica symmetry breaking.

Copyright J. Lang et al.
This work is licensed under the Creative Commons
Attribution 4.0 International License.
Published by the SciPost Foundation.

Received
Accepted
Published

19-06-2024
07-11-2024
09-12-2024

Check for
updates

doi:10.21468/SciPostPhys.17.6.160

Contents

1 Introduction 2

2 Equivalence of ultrametric Keldysh dynamics and replica symmetry breaking 3
2.1 Replica formulation 3
2.2 Dynamic theory 5

3 Application: The quantum Sherrington-Kirkpatrick model 11
3.1 Effective action 12
3.2 Paramagnetic phase 15
3.3 Landau action to order g2 17
3.4 Asymptotic solution in the glass phase 17

4 Application: The quantum spherical p-spin model 20
4.1 Effective action 21
4.2 Late-time solution 22

1

https://scipost.org
https://scipost.org/SciPostPhys.17.6.160
mailto:j.lang@uni-koeln.de
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhys.17.6.160&amp;domain=pdf&amp;date_stamp=2024-12-09
https://doi.org/10.21468/SciPostPhys.17.6.160


SciPost Phys. 17, 160 (2024)

5 Discussion 25
5.1 Spontaneous breaking of thermal symmetry 25
5.2 Zero temperature limit 26

6 Outlook 27

References 28

1 Introduction

The characteristic property of glasses is their slow evolution. As the system approaches the
equilibrium state, its evolution becomes increasingly restricted by barriers in the free energy
landscape [1–4] that take more and more time to overcome. As the time since the quench
increases, relaxation slows down – the system ‘ages’. One finds that accompanying this be-
havior is an ultrametric structure in the time dependence of correlations [5–10]. Because the
dynamic constraints depend on the age of the glass, contrary to most other systems, it develops
a sufficiently strong long-term memory for the age of the system to forever remain a relevant
time scale [11]. Consequently, aging precludes glasses from reaching thermal equilibrium on
accessible time scales [12–17].

Simultaneously, the analysis of the putative equilibrium state in systems with quenched
disorder has brought forth many surprises, most prominently the breaking of replica symme-
try [18–20], indicating the fragmentation of configuration space into disconnected energet-
ically equivalent regions separated by insurmountable free energy barriers [2, 21, 22]. This
fragmentation of the phase space breaks ergodicity [23] and gives rise to an ultrametric struc-
ture, observable in correlations [24].

Although theoretical research has focused largely on the simplest models exhibiting glassy
behavior, namely spin systems with infinite-ranged interactions and quenched disorder, a con-
nection to fragile glasses exists in mode coupling theory [25–28]. While lacking a rigorous
derivation, numerical [29–32] and experimental evidence [33] support its conclusion that the
characteristic properties of mean-field spin glasses carry over to systems with short-ranged
interactions and annealed disorder in finite dimensions.

From the previous arguments, it is clear that aging dynamics and the absence of ergodic-
ity are related phenomena [21]. In fact, in classical mean-field spin glasses, there have been
numerous approaches to such connections [9, 10, 17, 34–40]. In this paper, we will describe
the analogous connection in the Keldysh quantum formalism. Within this formalism we show
that after a quench, at infinitely late times, the dynamic description eventually reproduces the
equilibrium results, including the cases with ultrametricity and full replica symmetry break-
ing. It is important to point out that the infinite-time limit is taken at the beginning and the
equilibrium result is not necessarily smoothly connected to any results obtained at finite times.
In particular, the evolution never reaches the equilibrium state.

We summarize our main results in Sec. 2. There, we show that the algebraic properties of
Parisi matrices, characterizing the fragmentation of configuration space, are recovered in the
Keldysh formalism under the assumption of a strong hierarchy of time scales. The result then
is applied in Sec. 3 to the quantum Sherrington-Kirkpatrick model in a longitudinal field and to
the spherical quantum p-spin model in Sec. 4. Our approach exposes the spontaneous break-
ing of thermal symmetry (or the Kubo-Martin-Schwinger relation of a state in thermodynamic
equilibrium) as the origin of replica symmetry breaking. This, however, is independent of the
breaking of time-translation invariance as emphasized in Sec. 5. There we also apply con-
straints to the potential quantum critical scaling at zero temperature. In Sec. 6, we conclude
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with an outlook discussing the connection to glasses of a finite age and to the zero-temperature
limit.

2 Equivalence of ultrametric Keldysh dynamics and replica sym-
metry breaking

The proposal of a connection between replicas and the classical Langevin theory of spin glasses
goes back to the classic early work of Sompolinsky and Zippelius [11, 34, 41]. They pro-
posed that replica symmetry breaking was associated with multiple exponentially long time
scales which diverged as the thermodynamic limit was taken. Later, Cugliandolo and Kur-
chan [5,6,42,43] showed that the classical equations exhibited ‘aging’ dynamics [44] in which
the time scales remained finite, although exponentially long, even in the thermodynamic limit:
they established an explicit connection between the aging equations and the replica symmetry
breaking of the static problem. The connection to experimental dynamical observables was
clarified in Refs. [7, 8], and further elaboration of the ultrametric case with full replica sym-
metry breaking was provided in Refs. [9, 10]. The aging dynamics was extended to quantum
p-spin spherical models [40, 45, 46] and large Ms SU(Ms) quantum Heisenberg spin mod-
els [47] with one-step replica symmetry breaking using the Keldysh formalism: in the slow
dynamics regime, the Keldysh equations became identical to the classical Langevin equations.
The important case of the quantum Sherrington-Kirkpatrick Ising model, i.e. the Ising spin
glass in a transverse field, was briefly discussed by Kennett et al. [48,49].

This section will present a general and model-independent discussion of the connection
between replicas and glassy dynamics in the context of the Keldysh formalism. The analy-
sis applies to quantum and classical spin glasses with possibly full replica symmetry break-
ing, including the recently studied quantum Ising spin glass in both transverse and longitudi-
nal fields with an Almeida-Thouless transition [50], and the SU(2) quantum Heisenberg spin
glass [51]. A related connection between supersymmetry and thermal symmetry in the param-
agnetic phase of spin glasses was previously found by Kurchan [43] with applications to mode
coupling theory discussed in Refs. [52–54].

The Parisi spin-glass order parameter, characterized by the function p(u), 0 ≤ u ≤ 1, in
Eq. (1) is connected to the effective time-dependent (half) inverse temperature X (t), defined
by Eq. (12). The deviation of X (t) from its equilibrium value β/2 measures the breaking
of the fluctuation-dissipation relation by the glassy dynamics. For each u < 1, there is a t
which is determined by the solution of Eq. (17), where β is the inverse temperature; smaller
u corresponds to larger t, with u = 1 mapping to t = 0 (X (0) = β/2), and u = 0 mapping to
t =∞ (X (∞) = 0).

The analogy between the two approaches is complete in the sense that the algebra of ultra-
metric matrices in Eqs. (3), (4) and (5) is recovered by the real-time Dyson-Keldysh equations
in the glassy limit under the assumption of ultrametricity in Eqs. (15), (20) and (22).

2.1 Replica formulation

On the replica side of the correspondence, we need to recall the algebraic relations satisfied by
Parisi matrices, which we then aim to recover in the late-time limit of the dynamical equations.

For completeness, we begin by introducing the Parisi matrix Pab and the equivalent Parisi
function p(u) u ∈ [0,1]. Note, that sometimes u is called x in the spin-glass literature. Now
consider some model with N replicas. Its equilibrium correlation functions are N -dimensional
square matrices in replica space with an intriguing structure in the physical limit N → 0. To
capture this structure, we define that the N -dimensional symmetric matrix P is called a Parisi
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matrix if a sequence of integers N = {n1, n2, . . . , nL−1} with n1 = 1 exists such that Pab = pi

for
�

a−1
mi

�

̸=
�

b−1
mi

�

, but
�

a−1
mi+1

�

=
�

b−1
mi+1

�

, where mi =
∏i

j=1 n j and mL = N . Furthermore,
we fix the diagonal to Paa = p0. Simply put, a Parisi matrix consists of a hierarchy of block
matrices placed along the diagonal such that each block itself is again a Parisi matrix (see
Fig. 1(g)). If P is identified with the correlation function, it describes the formation of clusters
in replica space. If the pi form a decreasing sequence, different realizations of the system
within a cluster are more strongly correlated with each other, than with replicas from other
clusters. Thus, unless the sequence N contains only one element, the Parisi matrix describes
the breaking of ergodicity.

The simple structure of P allows it to be rewritten in terms of the equivalent Parisi function

p(u) = pi , if mi < u< mi+1 , (1)

with p(1) = p0. Since m1 = 1 and mL = N , with all other values in between, in the replica
limit N → 0 one has u ∈ [0, 1], see Fig. 1(f). Note, that due to the limit N → 0 smaller values
of u correspond to terms farther from the diagonal of P. Thus, inverting (1), (dp(u)/du)−1

gives the probability of finding the value p in the Parisi matrix. Again, if P is interpreted
as a correlation function, this determines the probability distribution of correlations between
different realizations.

We define an ultrametric space as a metric space M in which the triangle inequality is
replaced by the strong triangle inequality

dab ≤max{dac , dcb} , ∀c, a, b ∈ M . (2)

This implies that there are no points between a and b, meaning that all points closer to a than
b are at least a distance dab from b. The space M thus appears fractured into a hierarchy of
clusters, such that on each level every point is a member of only one cluster [21]. If the pi
are a decreasing sequence, replica space with the Parisi matrix P as a measure of the inverse
distance is ultrametric, meaning P satisfies (2) with an appropriate choice for the dependence
d(P). One may choose for example dab = 1/Pab or dab = p0 − Pab. The hierarchical structure
and the ultrametric condition can then both be read off in Fig. 1(g).

With these definitions, it immediately follows that the Hadamard (or component-wise)
product of two Parisi matrices A and B is again a Parisi matrix C with

c(u) = a(u)b(u) . (3)

Following some algebra (for a detailed derivation, see for example [55]), one finds that the
same is true for matrix multiplication, for which one finds in the limit N → 0

c(u) = a(u)b(1) + a(1)b(u)− ua(u)b(u)−
∫ 1

u
dv (a(u)b(v) + a(v)b(u))−

∫ u

0

dv a(v)b(v) . (4)

Specifically, for the diagonal in replica space, the result simplifies to

c(1) = a(1)b(1)−
∫ 1

0

dv a(v)b(v) . (5)

Some intuition for the interpretation of the Parisi function can be gained by considering the
unmagnetized ergodic case without replica symmetry breaking. In this case, the Parisi matrix
P is diagonal and therefore p(u)∼ δ1u, with δi j the Kronecker delta. In Fig. 1, this corresponds
to the case with p1 = p2 = p3 = 0. This is to be compared with a ferromagnetic or magnetized
phase for which all pn>0 are identical but non-zero. We point out that this ergodic solution
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preserves replica symmetry as P is invariant under permutations of its indices. Hence, although
indistinguishable in terms of the Edwards-Anderson order parameter [56] pEA ≡ p(1−) ≡ p1
alone, this gives a clear differentiation between the ferromagnetic and the spin-glass phase.

In general, Parisi functions are not continuous, and for practical purposes, it is often useful
to write p(u) = ps(u) + p f δ1u, where ps(u) is continuous in the limit of u→ 1. In particular,
p0 = p1 + p f , ps(1) = p1, i.e., both p0 and ps(1) involve the order parameter p1. Due to the
absence of aging in the ergodic phase, it is natural to expect at late times a relation between
the off-diagonal terms ps(u) in replica space with the slow aging component of the evolution.
Simultaneously, there should be a connection between the replica diagonal p f and the fast
evolution that at late times becomes independent of the age of the system. In the following,
we will show under which conditions these relations can be made rigorous.

2.2 Dynamic theory

We now show that the same rules of computing the Hadamard (or component-wise) product
Eq. (3), and the matrix multiplication of two Parisi matrices Eq. (5) are also obtained from a
dynamical Keldysh approach under the assumption of ultrametricity. The result is summarized
in Tab. 1. We keep the details of the Keldysh formalism at a minimum; this allows us to discuss
the connection to the Parisi algebra concisely. Later in the applications, we will start from the
microscopic quantum models in the dynamical Keldysh formulation, and see how the objects
discussed here arise in the course of calculation. This concerns the quantum Ising model with
long-range disorder (Sec. 3), also known as the quantum Sherrington-Kirkpatrick model, and
the quantum p-spin models 4.

A key object in the Keldysh formalism is the Green’s function G, which can be organized
in the following way (for an introduction, see [57]):

G =

�

GK GR

GA 0

�

. (6)

Here, the so-called Keldysh Green’s function GK describes the correlations in the system (see
Eq. (7) below for a spin system), and the retarded Green’s function GR describes the retarded
response to an external perturbation (see Eq. (11) below). The advanced Green’s function
is related to the retarded by GA = (GR)† and appears naturally in the calculation of virtual
processes.

In the infinite-range mean-field models considered throughout this work, the two-point
Green’s function has no spatial dependence. The relevant low energy degrees of freedom are
coarse-grained, collective real scalar spin variables S. The Green’s function then merely de-
pends on two times, G = G(t1, t2). For example, the Keldysh Green’s function for the collective
spin variable is

〈S(t1)S(t2)〉= GK(t1, t2) . (7)

An alternative parameterization of time variables is in Wigner coordinates (see e.g. [57]),
introducing center-of-mass and relative time,

T = (t1 + t2)/2 , and t = t1 − t2 , (8)

see Fig. 1(a). We will consider the dynamics after a quench at time T = 0. The strict connec-
tion to the Parisi algebra follows when we send the time passed since the quench T →∞. In
this limit, the center-of-mass time becomes but an overall scale that drops out; this ingredi-
ent will be used here as an assumption, and be justified from the explicit microscopic model
calculations in Secs. 3, 4. We thus transform to Wigner coordinates and study the limit

G(t1, t2) = G(T, t) −→
T→∞

GK(t) . (9)
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To complete the physical setup studied throughout this work: We consider isolated systems
with an energy density corresponding to an inverse temperature β in equilibrium, including
the zero temperature quantum limit β →∞. This does, of course, not immediately imply that
the system globally equilibrates to this temperature; the actual state of the system has to be
found in a problem-specific way from solving the Dyson equation, i.e., the equations of motion
for the Green’s function (see Secs. 3, 4). For example, for the random quantum Ising model,
this equation reduces to a standard Boltzmann equation in the limit of vanishing randomness,
describing global thermalization. Including randomness leads to corrections that compete
with thermalization, and give rise to the stationarity condition of the quantum Sherrington-
Kirkpatrick model, which does not always thermalize but can show glassy behavior.

We then split the the Green’s functions into a fast part that equilibrates at late times, and
a slow part that describes aging

G(t) = Gs(t) + G f (t)≡
∫ Λ/b

−Λ/b
dω e−iωt G(ω) +

∫ Λ

Λ/b
dω e−iωt G(ω) +

∫ −Λ/b

−Λ
dω e−iωt G(ω)

︸ ︷︷ ︸

=G f (t)

. (10)

Here Λ is a high-frequency cutoff. From the view of the scales of the aging variables (index s)
b≪ 1, whereas b can be sent to 1 from the view of the fast variables (this makes sense particu-
larly when the scale separation between aging and stationary field diverges with T →∞). By
this construction, the fast field has support in the time domain on scales b/Λ≤ |t| ≤ 1/Λ, and
the slow one varies with time for |t| ≥ b/Λ, while it is constant for |t| ≤ b/Λ. We therefore
identify b/Λ = τerg as the time scale up to which correlations are ergodic. Furthermore, we
anticipate G f and Gs for t ∼ b/Λ to correspond to p f and p1 for the appropriate Parisi function
p(u). The emergence of the scale τerg for finite T implying imperfect separation between G f
and Gs is shown in Fig. 1(b). The boundary value GK(t = 2T ) vanishes as T →∞.

Next, we address the response to an external (longitudinal) field h which is given by the
retarded Green’s function

GR(t1, t2) =
δ〈S(t2)〉
δh(t1)

. (11)

Since the advanced Green’s function for real scalar theories can be expressed as
GA(t1, t2) = GR(t2, t1), the dynamic theory can be formulated in terms of the two real func-
tions GR(t1, t2) and GK(t1, t2). In the dynamical formalism of classical spin glasses, these are
commonly referred to as G and C respectively. Due to causality, the former vanishes for neg-
ative relative times t < 0. In the limit T →∞, it can therefore be written in the form of a
generalized thermal ansatz [6]

GR
s (t) = −X (t)θ (t)∂t G

K
s (t) = GA

s (−t) , (12)

where θ (t) is the Heaviside function and X (t) plays the role of a time-dependent inverse
temperature in the high-temperature expansion of the fluctuation-dissipation relation

GR(t) = −θ (t) tan
�

β

2
∂t

�

GK(t)

= −θ (t)
β

2
∂t G

K(t) +O(β2) .
(13)

We emphasize that this interpretation becomes particularly meaningful at late times when the
characteristic time scales of the evolution satisfy ∆t ≫ β , which justifies the expansion in
powers of the inverse temperature β .
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Time evolution Replica formalism

Figure 1: Illustration of the structural similarity between the dynamical theory at
asymptotically late times and replica theory. (a) For the time domain, we work in
Wigner coordinates T, t. (b) Correlation function GK and dynamical temperature X
along a cut with fixed T . We parametrize the fields into fast G f (gray shaded area)
and slow fields Gs, for short and long relative times t. (c) The monotonic function
X (t), defined in Eq. (12), is used to map time to a compact domain. Since X (t)
is decreasing, small values of u correspond to large t. (d) As the number of time
scales τn are sent to infinity, GK(u) becomes a smooth function. (e),(f) In the limit
T → ∞, GK(u) is structurally identical to a Parisi function obtained in the limit
N → 0 from a Parisi matrix. (g) Parisi matrix for N = 12 in the specific case with
m2 = 3, m3 = 6 and m4 = N . We show the case of 2-step replica symmetry breaking,
except for (d) and (e), which demonstrate the extension to full replica symmetry
breaking corresponding to an infinite number of time scales or equivalently layers in
the Parisi matrix. In this case, the asymptotic correlation functions are ultrametric,
such that the equilibrium result is indeed eventually reached by the dynamics. This is
in general not the case for n-step replica symmetry breaking with n finite. Although
GK(u) in (c) reproduces the Parisi function p(u) in (f), the absence of ultrametricity
of GK(t) means that they do not satisfy the same algebra. This is indicated by the
gray arrow between (c) and (f).
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Table 1: Translation table between replica formalism and ultrametric Keldysh theory.
Here, A and B are Parisi matrices evaluated in the limit N → 0. The corresponding
Parisi functions are a(u) and b(u) with u ∈ [0,1]. AK/R(t) etc., are the associated
ultrametric correlation/response functions in relative time t and ◦ denotes their con-
volution.

replica theory ultrametric Keldysh theory
Aab AK(t)

Aaa = a(1) = as(1) + a f AK(t = 0) = AK
s (0) + AK

f (0)
AabBab AK(t)BK(t)
(A · B)ab (AK ◦ BA+ AR ◦ BK)(t)

From its definition (7), it is clear that GK(t1, t2) is symmetric under exchange of t1 and t2.
Without loss of generality, the dynamic theory can therefore be restricted to t > 0. At short
relative times (t < τerg), all correlations have equilibrated, which fixes the boundary condition
X (0) = β/2. But at large values of t that diverge as the inverse infrared cutoff T is sent to in-
finity, the system becomes increasingly fragmented and thus unresponsive. Hence, we expect
the correlations to decay slowly in t and X to be a decreasing function of t, see Fig. 1(b). The
ansatz (12) is consistent with that of Ref. [6] and a generalization of the one used in Ref. [39].
From the expansion (13) it also follows that the ansatz (12) corresponds to a restriction of the
Parisi function to the first Matsubara frequency in the equilibrium approach. Due to the ex-
ceedingly slow dynamics in the aging regime, following the same argument as in the expansion
in Eq. (12) this ansatz becomes exact in the limit T →∞ at any finite temperature.

Finally, we make the assumption of strong hierarchy [34], which is to say that correlations
vary so slowly in time that GK

s (t) < GK
s (t
′) requires limT→∞ t/t ′ = 0. This implies that

correlations are ultrametric since

GK
s (t + t ′) = GK

s (max(t, t ′)) , (14)

satisfies the strong triangle inequality GK
s (t) ≥min{GK

s (t − τ), GK
s (τ)} ∀τ ∈ R. Each value of

GK
s can be assigned to a characteristic time scale. In the case of infinitely many time scales

Eq. (14) is also the only dependence on relative time t in the limit of T →∞ that is consistent
with aging dynamics [6]. Conversely, if only a finite number of time scales emerges, this is
not expected to hold true for the late-time dynamics [5]. We will see below in Sec. 4, that
this implies that in the thermodynamic limit a quench in the spin-glass phase of the spherical
p-spin model never reaches thermal equilibrium.

With these preparations, we can now consider the product of two Green’s functions in the
time domain. We focus on the Keldysh component

CK(t) = AK(t)BK(t) = AK
s (t)B

K
s (t) + AK

f (t)B
K
f (t) . (15)

In the examples below, we will show how these products enter the equation of motion for
the Keldysh Green’s function as a result of memory effects. We can restrict to the product
of Keldysh components: products involving retarded/advanced components AR/A, BR/A can be
reduced to those using Eq. (12). We identify the equal-time expression CK(t = 0) with the
replica diagonal, i.e. equilibrated, part of the Parisi function c(1), and the slow component
CK

s (t) with the off-diagonal parts describing replica symmetry breaking c(u) with u ∈ [0,1[.
The product of two Keldysh Green’s functions in the time domain is therefore equivalent to
the Hadamard product of two Parisi matrices (see Table 1, which summarizes our key results).

8

https://scipost.org
https://scipost.org/SciPostPhys.17.6.160


SciPost Phys. 17, 160 (2024)

We next show that this correspondence also extends to convolutions. Here, the relevant
combination of Green’s functions, which appears ubiquitously in the contributions to the Dyson
equation of motion due to disorder averaging and describes memory effects, is of the form
AK ◦ BA + AR ◦ BK , with A ◦ B =

∫

t ′ A(t − t ′)B(t ′). We then split again into slow and fast
components, A= As + A f , B = Bs + B f .

We first consider the product of the slow components

AK
s ◦ BA

s + AR
s ◦ BK

s =−
∫ t

0

d t ′AK
s (t + t ′)X (t ′)∂t ′B

K
s (t
′)−
∫ ∞

t
d t ′AK

s (t + t ′)X (t ′)∂t ′B
K
s (t
′)

−
∫ t

0

d t ′BK
s (t − t ′)X (t ′)∂t ′A

K
s (t
′)−
∫ ∞

t
d t ′BK

s (t − t ′)X (t ′)∂t ′A
K
s (t
′)

=

∫ X (t)

X (0)
dX ′AK

s (X (t))B
K
s (X
′)− AK

s (X (t))X (t)B
K
s (X (t))

+

∫ X (t)

X (0)
dX ′BK

s (X (t))A
K
s (X
′)− BK

s (X (t))X (t)A
K
s (X (t))

+ AK
s (X (t))X (0)B

K
s (X (0)) + BK

s (X (t))X (0)A
K
s (X (0))

+ AK
s (X (t))X (t)B

K
s (X (t)) +

∫ 0

X (t)
dX ′AK

s (X
′)BK

s (X
′)

=
β

2

�

−
∫ 1

u
dv AK

s (u)B
K
s (v)− uAK

s (u)B
K
s (u) + AK

s (u)B
K
s (1)

−
∫ 1

u
dv BK

s (u)A
K
s (v) + BK

s (u)A
K
s (1)−
∫ u

0

dv AK
s (v)B

K
s (v)

�

. (16)

In the first equality, we have used the generalized thermal ansatz. It implies that the glass
phase becomes stiff as T →∞: Since GK

s (t) decays on a time scale t ∼ T , the derivative scales
as ∂t ∼ 1/T and compensates the divergence of the integration domain ∼ T . This behavior
is illustrated in Fig. 2. We point out that this stiffness property of the classical ansatz (12)
ensures a weak long-term memory and thus convergence of the convolutions even in the aging
regime. A more responsive, i.e. more slowly decaying GR, would imply a stronger memory
and divergent convolutions in Eq. (16) while for a less responsive ansatz, the integrals vanish
thereby precluding glassy behavior. The second equality in Eq. (16), which compactifies time,
follows from ultrametricity and partial integration. It is important to point out that due to this
change of variables, the information on time scales is lost. In the last step, we have introduced
the dimensionless variable u ∈ [0, 1] as

X (t) = βu/2 , (17)

with the boundary conditions X (0) = β/2 and X (∞) = 0. The same relation holds between v
and X ′. X (t) is a decreasing function. Consequently, small values of u correspond to late times
t, and while the system equilibrates at short relative times, X (∞) = 0 implies a maximally
unresponsive infinite temperature state at large relative times.

As a consequence of the stiffness implied by the generalized fluctuation-dissipation rela-
tion (12) with X (t) ≤ β/2 the slow retarded Green’s function decays faster than the slow
Keldysh component and can therefore be neglected at sufficiently late times t (see also Fig. 2).
Consequently, one finds

AK
f ◦B

A
s + AR

s ◦B
K
f = 0 , (18)
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Figure 2: Stiffness of the glass phase. We show a logarithmic plot of typical corre-
lation and response functions GK(t) and GR(t) at intermediate center-of-mass times
T . In the aging regime t > τerg the correlation function GK(t) varies slowly, such
that the generalized thermal ansatz Eq. (12) implies that GR(t ≳ τerg) ≲ 1/T van-
ishes as T →∞. The arrows indicate this behavior of the response function as T
is increased. For times t < τerg the system is in thermal equilibrium. The boundary
effects for t ≈ T that cause GR to rise quickly become irrelevant as T →∞.

while the other term mixing fast and slow parts is finite

AK
s ◦B

A
f + AR

f ◦B
K
s =

∫

t

�

BR
f (t)A

K
s (u) + AR

f (t)B
K
s (u)
�

=
β

2

�

BK
f (1)A

K
s (u) + AK

f (1)B
K
s (u)
�

.

(19)

The first line follows from the condition of strong hierarchy: The slow parts are constant on the
scale on which the fast functions decay. To obtain the simplified expression in the second line,
we have used the high-temperature expansion of the standard fluctuation-dissipation relation
Eq. (13) to linear order in β for the fast field, which makes the analogy to the replica formalism
more apparent. It will therefore be used throughout this article. We emphasize, however, that
it is not essential to the argument. Combining all terms, we find

AK ◦ BA+ AR ◦ BK =
β

2

�

AK
s (u)B

K(1) + BK
s (u)A

K(1)− uAK
s (u)B

K
s (u)

−
∫ 1

u
dv
�

AK
s (u)B

K
s (v) + BK

s (u)A
K
s (v)
�

−
∫ u

0

dv AK
s (v)B

K
s (v)
�

,
(20)

which is to be compared with Eq. (4). In Eq. (20) that fast fields B f and A f enter only via
BK(u= 1) and AK(u= 1) in the first two terms as is the case for the replica diagonal in Eq. (4).

We are left with the task of evaluating the time diagonal in the Keldysh formulation. Send-
ing t → 0 and using the same arguments as above, we find

AK
f ◦ BA

s + BK
f ◦ AR

s

�

�

�

�

t=0
= 0 ,

AK
f ◦ BA

f + BK
f ◦ AR

f

�

�

�

�

t=0
=
β

2
AK

f (1)B
K
f (1) ,

AK
s ◦ BA

s + BK
s ◦ AR

s

�

�

�

�

t=0
=
β

2

�

AK
s (1)B

K
s (1)−
∫ 1

0

dvAK
s (v)B

K
s (v)
�

,

AK
s ◦ BA

f + BK
s ◦ AR

f

�

�

�

�

t=0
=
β

2

�

BK
f (1)A

K
s (1) + AK

f (1)B
K
s (1)
�

.

(21)
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Putting everything together, this gives for the time-diagonal

AK ◦ BA+ AR ◦ BK

�

�

�

�

t=0
=
β

2

�

AK(1)BK(1)−
∫ 1

0

dvAK
s (v)B

K
s (v)

�

. (22)

Comparison with Eq. (5) shows that the matrix multiplication in Keldysh formalism at asymp-
totically late times using ultrametricity and a generalized thermal ansatz in the classical limit
is identical to the matrix multiplication in the replica formalism.

As has previously been reported by Cugliandolo and Kurchan [5], this approach also gives
an interpretation of the replica average in equilibrium theory. For example, the averaged
correlation function

Q∞ =

∫ 1

0

du q(u) , (23)

with q(u) the Parisi function of the replica matrix Qab = 〈sa
i sb

i 〉, is related to the integrated
response function

Q∞ = 1+

∫ ∞

0

d t X (t)∂tQ
K(t) = 1−
∫ ∞

0

d t QR(t) . (24)

In summary, we have shown that, under the assumption of ultrametricity, the Keldysh
component of convolution integrals in time A◦B reproduces the algebra of replica matrices in
the limit N → 0. Since the replica Fourier transform satisfies the convolution theorem [58] a
similar equivalence can be found for products in frequency space and replica Fourier space.

3 Application: The quantum Sherrington-Kirkpatrick model

We now turn our attention to the most general case of replica symmetry breaking, known as
full RSB and realized by the Sherrington-Kirkpatrick model. We begin with the derivation of
the Landau action valid near the critical point. The procedure can be understood as the out-
of-equilibrium version of the Landau theory presented in Ref. [50]. Our approach is similar
in spirit to that of Sompolinsky and Zippelius [11, 34, 41] that culminated in the analytical
solution of the late-time relaxation obtained by Cugliandolo and Kurchan [6]. Following sev-
eral attempts at recovering the results of replica theory from the dynamical equations at late
times [34–37] long-standing discrepancies were resolved in Ref. [10]. There remains, how-
ever, a conceptual difference between the two approaches arising from the order of limits [43].
If one considers a finite system at infinitely late times and eventually sends the system size
to infinity [34], the system is time-translation invariant, but must also obey the fluctuation-
dissipation relation [59], as at infinite times, any finite system is fully equilibrated [17]. Con-
sequently, a violation of the fluctuation-dissipation relation in this limit contradicts the un-
derlying assumptions. The thermal symmetry cannot be broken spontaneously. Considering
instead an infinite system at late but finite times [6], time-translation invariance is always
broken because the equilibration time is determined by the system size and therefore never
reached. Our approach considers an infinite system from the outset and then sends time to in-
finity, which allows us to study the spontaneous breaking of thermal symmetry. By measuring
time in terms of the inverse temperature of the generalized fluctuation-dissipation relation we
have access to all relevant infinite time scales.
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Recent experimental developments have resulted in renewed interest in spin glasses. In
particular, the precise positioning of large numbers of Rydberg atoms with tweezers provides
an avenue towards the realization of spin glasses with long-ranged interactions [60–65]. The
idea is as follows, lasers are used to drive the Rabi transition between ground-state atoms and
a highly excited long-lived Rydberg state. As no other states get occupied, it is sufficient to
describe the atoms as two-level systems that interact via van-der Waals interactions only when
in the large and therefore highly polarizable Rydberg state. By positioning the atoms at random
but fixed sites using optical tweezers, the strengths of the interactions are randomized [61].
Finally, the occupation of the Rydberg states can be controlled by adjusting the detuning δ of
the driving laser, which leads to a longitudinal field h= δ in the effective spin model [66]

H =
∑

i j

Ji j Zi Z j −
∑

i

X i − h
∑

i

Zi , (25)

where X i , Zi are the Pauli operators on qubits at site i. Here the Rabi coupling has been set to
one and Ji j denotes the van-der Waals interaction between atoms i and j.

We point out that other experimental schemes such as Rydberg dressing which uses lasers
far detuned from the Rabi transition to increase the lifetime at the expense of weaker in-
teractions or microwave coupling between different Rydberg states leading to longer-ranged
interactions ∼ R−3 result in the same Hamiltonian [66,67]. Furthermore, random long-range
interactions can be achieved with quantum simulators based on superconducting qubits [68]
or by trapping atoms in a confocal cavity [69, 70]. Although in the latter case, the driven-
dissipative cavity prevents the system from reaching thermal equilibrium, significant similari-
ties with the classical Sherrington-Kirkpatrick model have been found in theory [71, 72] and
experiment [73].

An important distinction between the new platforms and classical glasses is the finite life-
time of the excited states due to spontaneous emission. It is therefore important to develop a
minimal dynamical description applicable to late but finite times. In the following, we thus first
derive the Ginzburg-Landau effective action for the quantum Sherrington-Kirkpatrick model
(25) near the critical point where the spin glass forms. The Dyson-Keldysh equations obtained
from it are then analyzed in the ultrametric limit and shown to reproduce the full replica-
symmetry-breaking solution of the equilibrium model.

3.1 Effective action

To obtain the equations of motion, we derive the effective Ginzburg-Landau action of the
random Ising model in a longitudinal and a transversal field as defined in (25). Without
loss of generality, the quenched disordered coupling strengths Ji j are drawn from a Gaussian
distribution independent of the site indices i and j. Hence, this model first introduced in
Ref. [74], is effectively infinite-dimensional and described by mean-field theory. Its equilibrium
Landau action has been studied in Ref. [75], with aging dynamics analyzed in Ref. [49] and
previously based on the approach of Sompolinsky and Zippelius [11, 41] in Ref. [6]. Near
the phase transition, we can average the spins over a small domain, and integrate over the
transverse spin components, such that the discrete spins are replaced by a real bosonic variable
Si ∼ Zi; in this process the spin Berry phase, which has a first-order time derivative, is replaced
by a kinetic term which has a second-order time derivative [75] (in other words, Ising spins
in a transverse field are similar to quantum rotors). Integrating out the disordered coupling
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strengths Ji j , the site index can be dropped, and the effective action is given by [49]

s[S] = s0[S] + sg[S] + sκ[S] + sh[S] ,

s0[S] = −
1
2

∫

t

∑

η

ηSη(t)[∂
2
t +m2]Sη(t) ,

sh[S] =

∫

t

∑

η

ηhη(t)Sη(t) ,

sg[S] = −
g
2

∫

t

∑

η

ηS4
η(t) ,

sκ[S] = i
κ

4

∫

t1,t2

Sη(t1)σ
3
ηρSρ(t1) Sη′(t2)σ

3
η′ρ′Sρ′(t2) .

(26)

With the spins represented by the bosonic variable S, Pauli matrices here and in the following
act exclusively on the Keldysh/time-contour space. The effective mass m tunes between the
paramagnetic and spin-glass phase. As noted above, the transverse field gives rise to the in-
ertial dynamic term in s0. The quartic term sg provides a soft constraint for the spin length.
Replacing the hard- by a soft-spin constraint is possible since we only target the description
of low frequency modes as appropriate for glasses within our Landau effective field theory
approach. Its key assumption is that, since the expectation value of Q vanishes on the param-
agnetic side, we can expand in small fluctuations, taking only low order powers into account,
which are compatible with the symmetries of the problem. The same terms will be encoun-
tered irrespective to whether we start, on the microscopic level, from a hard-spin model or
from a softened constraint. While either choice will lead to different non-universal coupling
parameters for the Landau theory, both give rise to the same universal low frequency behav-
ior [75]. The non-linearity gives rise to an interacting impurity model, which has to be treated
perturbatively. A stable Landau theory obtains when expanding to second order in g, see
Sec. 3.3.

The disorder is encoded in the term sκ, with κ = J̄2
i j the variance of the Gaussian distri-

bution P(Ji j). The dynamical theory requires a doubling of the time contour. Following the
standard procedure of the Keldysh path-integral (for an introduction see [57, 76]), we there-
fore introduce Greek indices that take the values {+,−} to denote the branch of the contour.
Although external fields are classical, we keep the notation symmetric and thus distinguish
between the longitudinal field h on the forward (+) and backward (−) branch.

Due to the infinite range of the random couplings Ji j , the site index in (26) is irrelevant
and will be suppressed in the following.

It is convenient to introduce the spin bilinear qαβ ≡ qρρ′(t1, t2) = Sη(t1)σ3
ηρSρ′(t2). Here

and in the following α and β denote multi-indices incorporating the Keldysh index and time.
We now decouple the disorder-induced non-linearity by a Hubbard-Stratonovich transforma-
tion with

saux[S,Q] =
i

4κ
Tr
�

(RQσ1R− iκq)2
�

, (27)

where R= (σ1 +σ3)/
p

2. We have furthermore introduced the trace Tr over the multi index,
i.e. Tr[A2] =
∫

t,t ′ Aηρ(t, t ′)Aρη(t ′, t). Rewriting the soft constraint sg in terms of a functional
derivative with respect to a source field K , we can perform the remaining Gaussian integral
over Sη. Rotating the result to the R/A/K basis, we define classical and quantum fields as
hc =
∑

η hη/
p

2 and hq =
∑

ηηhη/
p

2 to express the Keldysh partition function as

Z =

∫

DQ eisg[
δ
δK ]e−

i
2 (K
⊤+h⊤)σ1[G−1

0 +Q]−1σ1(K+h)e−
1

4κTr[Qσ1Qσ1]− 1
2 Tr log(1+G0Q)+const.

�

�

�

�

K=0
. (28)
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Here, ⊤ denotes the transpose in Keldysh space. Finally, the bare spin propagator can be
expanded in powers of m−2

G0(t1, t2) = −δ(t1 − t2)σ
1
�

∂ 2
t2
+m2
�−1

≈ δ(t1 − t2)σ
1
�

−
1

m2
+

1
m4
∂ 2

t2

�

.
(29)

Due to the saddle point condition

0= −2iκ
δsaux

δQαβ
= (σ1Qσ1 − iκσ1RqR)βα , (30)

the average of Q can be given a physical interpretation in terms of the full spin propagator
G =
�

G−1
0 +Q
�−1

1
κ
〈Qαβ〉= i〈RqRσ1〉αβ = −(σ1Gσ1)αβ . (31)

It is however not a valid order parameter as it does not vanish at the critical point. We
arrange for this property by a shift operation, which can also be viewed as a UV renor-
malization operating on short time distances. Thereby, we fix the value of the criti-
cal coupling strength via the requirement that the renormalized order parameter vanishes
at the transition, which will be verified explicitly below. To this end, we decompose
Q(t, t ′) =
�

(m2 − m̃2)σ1 +QEA

�

δ(t− t ′)+Q̃(t, t ′)≡Q0(t, t ′)+Q̃(t, t ′) into a UV shift Q0(t, t ′)
with QEA = iqEA(1−σ3)/2 and a small field Q̃. We also define G̃−1

0 = G−1
0 +Q0, use again the

exact relation Eq. (31), and expand in powers of Q̃

1
κ

�

σ1
�

Q0 + Q̃
�

σ1
�

αβ
− i
�

G̃0σ
1(hh⊤)σ1G̃0

�

αβ
= −
�

(G̃−1
0 + Q̃)−1
�

αβ
(32)

≈
�

−G̃0 + G̃0Q̃G̃0 − G̃0Q̃G̃0Q̃G̃0 + . . .
�

αβ
.

We approximate G̃0 ≈ −m̃−2σ1δ(t− t ′) everywhere except for the zero-order term in Q̃, where
we also expand in the time derivative to leading order. Furthermore, we make use of the
fact that the magnetic field is classical and time-independent. With this, the term due to
the magnetic field simplifies to i[G̃0σ

1(hh⊤)σ1G̃0]αβ = ih2G̃R
0 G̃A

0δα1δβ1 ≈
ih2

m̃4δα1δβ1. Most
importantly, we notice, that both the magnetic field and the order parameter qEA only affect
the Keldysh component of the matrix equation (32). This is an exact statement, that follows
from the causal structure of the Green’s function. It implies that the magnetic field can be
absorbed into qEA.

Explicitly, upon Fourier transformation, the Keldysh and retarded components of

Q̃ =

�

Q̃V Q̃A

Q̃R Q̃K

�

, (33)

satisfy the equations

(m2 − m̃2) + Q̃R = −
κ

ω2 − m̃2 + Q̃R

≈
κ

m̃2
+
κ

m̃4
(ω2 + Q̃R) +

κ

m̃6

�

Q̃R
�2

,

2πiqEAδ(ω) + Q̃K = κ
2πi
�

qEA + h2
�

δ(ω) + Q̃K

|ω2 − m̃2 + Q̃R|2
.

(34)
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Causality of the spin response function requires Q(t, t ′)∼ θ (t−t ′). Furthermore, we have used
that Q̃A(ω) is the complex conjugate of Q̃R(ω) and that Q̃V vanishes (hence the superscript)
due to the normalization of the partition function Z = 1. Clearly, in the first equation, the
linear term in Q̃R disappears for m̃4 = κ, independent of h (because u= 0 here). We conclude

Q̃R(ω) = −
Æ

−
p
κ [(ω+ i0+)2 − r] , (35)

which is causal in the paramagnetic phase and gives rise to a phase transition when
r = m2 − 2

p
κ vanishes at κ= m4/4.

The second equation evaluated atω= 0 fixes the order parameter (we demand that Q̃K is a
continuous function). Multiplying both sides with GRGA, inserting the retarded and advanced
Q̃R/A and keeping only the leading term in r one finds

qEA =
h2κ1/4

2
p

r
. (36)

As expected, in the paramagnetic phase, the magnetization is linear in the longitudinal field
m ∼ S ∼ h and the Hubbard-Stratonovich field Q ∼ S2 is proportional to h2. Furthermore,
at the critical point, the system is gapless and has a divergent response to the external field,
signified by qEA ∼ r−1/2.

Below we obtain the Landau action by expanding in the small field Q̃ near the critical
point. The above ensures that there will be no contribution ∼Q2 =

∫

t ′Q(t1, t ′)Q(t ′, t2) to the
Landau action.

In the following, we will exclusively work with Q̃, G̃0, and m̃ and therefore drop the tilde
from here on.

3.2 Paramagnetic phase

Having established the proper order parameter field, we can now expand the action in the
soft constraint sg . For the discussion of the paramagnetic phase, an expansion to first order
in g is enough to obtain stable results known from equilibrium theory. On the other hand, an
expansion to second order in g is necessary to recover the spin glass phase [75].

Following the discussion above, we expand in small fields Q to find the unconstrained
action

is0[Q] = −
1

2κ

∫

t,t ′

�

∂ 2
t + r
�

tr(σ1Q(t, t ′)
�

�

t=t ′) +
i

2κ

∫

t,t ′
h⊤(t)Q(t, t ′)h(t ′)−

1
6κ3/2

Tr
�

(σ1Q)3
�

. (37)

To first order in g, the constraint on the spin length contributes a Hartree term

i∆sg[Q] =
3i g
2

∫

t

�

GK + GV
�

(t, t)
�

GR + GA
�

(t, t)

≈ −
3i g
2κ2

∫

t

�

QK +QV
�

(t, t)
�

QR +QA
�

(t, t) ,
(38)

to the Landau action, which then reads

s[Q] =s0[Q] +∆sg[Q] . (39)

To highlight the temporal structure of this action, it is useful to consider its diagrammatic
representation shown in Fig. 3. We observe that the disorder gives rise to a term ∼ Q3 that
relates the order-parameter fields at different times. As we will see below, it corresponds to
a memory that for sufficiently large κ causes the order parameter to become stiff, thereby
excluding its relaxation at large relative times that is characteristic of the paramagnetic phase.
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Figure 3: Diagrammatic representation of the Landau action (39) at linear order in
the soft-spin constraint g. For simplicity, we have suppressed the Keldysh structure.
The inverse bare spin propagator for Q = 0 reading 1/(2κ)σ1δ(t1 − t2)(r + ∂ 2

t2
) is

depicted as open rectangle. Q is shown as a straight line, h is represented by a cross,
the vertex i g

2κ2 as a dot, and G0 as open circle.

To find the critical disorder strength where the paramagnet freezes, we consider the equa-
tions of motion for Q, also known as Kadanoff-Baym equations [77, 78], which are obtained
from the saddle point condition

0
!
=
δis[Q]
δQ(t1, t2)

≈ −
1

2κ
σ1δ(t1 − t2)
�

r + ∂t2

�

+
1

2κ3/2

∫

t
σ1Q(t1, t)σ1Q(t, t2)σ

1

+
i

2κ
h(t1)h

⊤(t2) +
δi∆sg[Q]

δQ(t1, t2)
,

(40)

with

δi∆sg[Q]

δQη̄ρ̄(t1, t2)
= −

3i g
2κ

QK(t1, t1)δ(t1 − t2)δη̄ρ , (41)

where η̄ denotes the opposite of η.
Following the general procedure outline in Sec. 2.2, we split the order parameter field into

fast and slow components Q =Q f +Qs, where the evolution of Qs slows down indefinitely for
T →∞. Looking for a paramagnetic solution, we require Qs = 0 and make a time-translation
invariant ansatz Q(t, t ′) =Q(t− t ′). The equations of motion (40) therefore become diagonal
in frequency space. Due to the absence of scattering at the current level of approximation,
there is only one non-trivial equation of motion. Expanding for h = 0 in small frequencies ω,
one finds

ω2 +
1
κ1/2

�

QR
�2
(ω) = r −

3i g
κ

∫

ν

QK(ν) , (42)

which has the thermal paramagnetic solution

QR(ω) = −κ1/4
Æ

∆2 − (ω+ i0+)2 ,

QK(ω) = 2κ1/4 coth
β |ω|

2

p

∆2 −ω2 θ (|ω| − |∆|) ,
(43)

with the shifted mass ∆2 = r − 3i g
κ

∫

ν
QK(ν).

This reproduces the form of results from the analytically continued replica theory for h= 0
(up to relabelling of coefficients) developed in [75] and in [49] in the Keldysh framework. In
particular, for small g we reach a critical point ∆(rc0) = 0, with

rc0 = −
6g
κ3/4

∫

ω

ω coth
βω

2

β→∞
−→

6g
κ3/4

∫

ω

|ω| , (44)
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as well as Q(ω= 0) = 0, which verifies the assumption that the shifted Q is an order parameter
for the Landau theory. After crossing the phase transition, we expect that ∆ remains pinned
to zero and that this can be achieved by introducing an Edwards-Anderson order parameter
into the occupation function component, QK

EA(ω) = QK(ω) + 2πiqEAδ(ω), qEA > 0. Indeed,
inserting this ansatz into the equation of motion (42) we reproduce the known results [49,50]

QR(ω) = iκ1/4ω ,

qEA = i

∫

ν

QK(ν)
�

�

�

∆=0
−
κ

3g
r =

κ

3g
(rc0 − r) ,

QK(ω) = 2iκ1/4ω coth
βω

2
.

(45)

In particular, there is a gapless, damped mode.

3.3 Landau action to order g 2

The discussion of the spin glass phase requires a more careful discussion of the memory terms.
In particular, beyond the critical point the disorder term ∼ Q3 renders the Landau action in
Eq. (39) unstable. It is therefore necessary to continue the perturbative expansion in the soft-
spin constraint g to second order. As is shown in Fig. 4, there is only one term in the effective
action that is of order g2 and two-particle irreducible. It involves time-non-local fields and
thus gives rise to memory effects that are essential for the stability of a spin glass. All other
diagrams ∼ g2 are either disconnected or not two-particle irreducible and thus constitute at
most a quantitative correction to the Hartree shift already discussed in the previous section.
We therefore exclusively focus on the memory term at this order

i∆sg2[Q] =−
3g2

4κ4

∫

t,t ′

�

(tr(Q(t, t ′)Q(t ′, t))tr(Q(t, t ′)σ1Q(t ′, t)σ1)

+tr(Q(t, t ′)Q(t ′, t)σ1)tr(Q(t, t ′)σ1Q(t ′, t))
�

.

(46)

Terms of this form are known as the primary cause of relaxation and thermalization in quench
dynamics, see for example [79]. For the stability of the spin-glass it is therefore important
to investigate the competition between the terms ∼ g2 that favor ergodicity and the disorder
term ∼Q3 that favors freezing.

Expanding the trace-log as before, we find the Landau action of the Sherrington-Kirkpatrick
model with longitudinal and transversal fields

s[Q] =s0[Q] +∆sg[Q] +∆sg2[Q] . (47)

This action is the dynamical equivalent of the result recently reported in Ref. [50].

3.4 Asymptotic solution in the glass phase

In the previous section, we have found the Keldysh action corresponding to the equilibrium
Landau action in replica theory. We will now consider the limit of late times and apply the
general results of Sec. 2 to show how full replica symmetry breaking is recovered in the time
domain.

In the limit of late times T = (t1 + t2)/2 → ∞ the forward evolution scale drops out.
This does exclude the spontaneous breaking of time translation invariance globally. Time
translation invariance can, however, be broken in a scale-dependent way, as suggested by the
reparametrization invariance of the aging action [6].
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Figure 4: Diagrammatic representation of the second order contribution of the soft-
spin constraint g to the effective action. The first diagram is not one-particle irre-
ducible and corresponds to quantitative corrections to the tadpole diagram in Fig. 3.
The second diagram is disconnected and therefore cancels against the normalization
of the partition function. Consequently, we only retain the last contribution, which
involves time-non-local fields and thus introduces a memory to the equation of mo-
tion that competes with the disorder term in the spin glass phase.

We thus bring the action into a form in which time translation invariance is used:
Q(t1, t2) = Q(t = t1 − t2). To this extent, one performs a Wigner expansion of the action
(47) and drops all derivatives ∂T . In all terms of the action the length of the time domain, T ,
factors out

is[Q]/T = −
1

2κ

�

∂ 2
t + r
�

tr[σ1Q(t)]

�

�

�

�

t=0
+

ih2
c

2κ

∫

t
QV (t) (48)

+
1

6κ3/2

∫

t,t ′
tr
�

Q(t)σ1Q(t ′)Q⊤(t + t ′)
�

+
3i g
2κ2

�

tr(Q(t = 0))tr(σ1Q(t = 0))
�

−
3g2

4κ4

∫

t

�

tr(Q(t)Q⊤(t))tr(Q(t)σ1Q⊤(t)σ1) + tr(Q(t)Q⊤(t)σ1)tr(Q(t)σ1Q⊤(t))
�

.

Following the procedure of Sec. 2, we split the field Q in a slow and a fast component and
similarly divide the action into a ‘spin glass’ part ssg that involves the slow field and a quantum
part sq that describes the equilibration at short relative times. Since Q f (t) approaches zero
for large arguments, we require qEA = −iQK

s (t = 0). In analogy to the paramagnetic phase, in
sq the terms ∼ g2 are not important at small frequencies, so we will neglect these by writing
sq = sq,0+O(g2). Since in the following, we will mostly concern ourselves with the slow field,
we will drop its index from now on and simply refer to it as Q (i.e. Q ≡Qs). One then has

s[Q]≈ ssg[Q] + sq,0[Q] ,

issg[Q]/T = −
∫

t
tr[R1Q(t)Q⊤(t)σ1] +

ih2
c

2κ

∫

t
QV (t) +

R2

3

∫

t,t ′
tr[Q(t)σ1Q(t ′)Q⊤(t + t ′)]

−
R3

3

∫

t

�

tr[Q(t)Q⊤(t)]tr[σ1Q(t)σ1Q⊤(t)] + tr[Q(t)Q⊤(t)σ1]tr[Q(t)σ1Q⊤(t)]
	

,

isq,0[Q]/T =
1

2κ

∫

ω

(ω2 − r)tr[σ1Q f (ω)]−
ih2

c

2κ
tr[Q f (ω= 0)] (49)

+
R2

3

∫

ω

tr[σ1Q f (ω)σ
1Q f (ω)σ

1Q f (ω)] + iR2qEAQ f 11(ω= 0)tr[σ1Q f (ω= 0)]

+
3i g
2κ2

∫

ω,ω′
tr[Q f (ω) + 2πδ(ω)QEA]tr[σ

1(Q f (ω
′) + 2πδ(ω′)QEA)] ,
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with

R1 = −
1

2κ3/2
σ1Q f (ω= 0)σ1 ≡

�

RK
1 RR

1
RA

1 RV
1

�

, R2 =
1

2κ3/2
, R3 =

9g2

4κ4
, (50)

where RA
1 = RR

1 . The saddlepoint of ssg and sq,0 with respect to Q and Q f respectively gives
the coupled dynamical equations of the aging and ergodic components. Since we are looking
for the qualitative form of the slow component Q, it is enough to consider δssg[Q]/δQ, which
gives

0= 2RR
1QR(t)− R2

∫

t ′
QR(t ′)QR(t − t ′) +

2R3

3

�

QR2(t) + 3QK 2(t)
�

QR(t) ,

0= RK
1

�

QR(t) +QA(t)
�

+ 2RR
1QK(t)− i

h2

2κ

− R2

�

∫ T+t/2

0

d t ′QK(t − t ′)QR(t ′) +

∫ 0

t/2−T
d t ′QK(t − t ′)QA(t ′)

�

+
2R3

3

�

QK 2(t) + 3
�

QR2(t) +QA2(t)
��

QK(t) ,

(51)

where we have kept the integration boundaries explicit, even though we have not done so
before. The reason is, that, although we expect that the integration boundaries are irrelevant
when we send T →∞, we want to show so explicitly in the following.

As is the case for the replica formulation, Eq. (51) has a ferromagnetic solution for which
QK(t) is a non-vanishing constant, while QR(t) = 0. In equilibrium, it can be shown that
this solution is thermodynamically unstable [80], with the exact solution instead given by
the Parisi function with full replica symmetry breaking [81, 82]. When considering quench
dynamics on the other hand, one has to fix a boundary condition for Q at large values of
|t|. The difference between a system that exhibits aging and more conventional spontaneous
symmetry breaking has to be encoded in the time scale on which the order parameter qEA
recovers from the perturbation at the boundary. Here, we will only discuss the equivalent of
the spin glass solution, not the (im)possibility of a ferromagnetic phase.

Following the discussion of Kurchan [83], we expect Q(t) to vary increasingly slowly as t
grows. In fact, each value of QK(t) corresponds to a time scale on which the system thermalizes
to an effective inverse temperature X (t). This time scale is much longer than those of all
previous (larger) values of QK(t ′ < t). We can exploit this to simplify e.g. integrals of the form
∫ t

0 d t ′Q(t ′)Q(t − t ′). Specifically, for all values of t ′ on the scale of t one has QK(t ′) =QK(t),
while for t−t ′ ∼ t one has QK(t−t ′) =QK(t). In other terms, the correlation QK is ultrametric.
At the same time, the generalized thermal response function QR(t) = iX (t)∂tQ

K(t) vanishes
much more quickly than QK(t). This justifies the classical approximation of the general scheme
in Sec. 2. In Eqs. (51) we therefore only keep the memory terms ∼ R3 with the highest power
in QK and drop the term proportional to RK

1 . At late times, the evolution thus is determined
by a Martin-Siggia-Rose action [84,85] corresponding to classical stochastic evolution.

Following these preparations, the second equation in (51) only involves time-local or
Hadamard products of Keldysh Green’s functions as well as the Keldysh component of causal
convolutions. Both have been discussed in Sec. 2. Applying the partial integration Eq. (16),
we find

0= −2RR
1q(u) +

h2

2κ
+

2R3

3
q(u)3 − R2β

�

2q(u)

∫ 1

g
dv q(v) +

∫ u

0

dv q(v)2 + uq(u)2 − 2qEAq(u)

�

.

(52)
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Since X (t = 0) = β/2 is fixed by the temperature of the equilibrated part, we have
parametrized X (t) = βu/2 with u ∈ [0,1] and QK(X (t)) = −iq(u). We thereby exactly re-
cover the replica result [50].1 Consequently, the Keldysh structure for T → ∞ derives the
rules of the replica limit. Physically, we can say that replica symmetry breaking corresponds
to the inability of the system to fully thermalize to a single global inverse temperature β , even
at arbitrarily late times/in the steady state. The assumption of the replica off-diagonal being
independent of Matsubara frequency (hence including only the zeroth Matsubara frequency)
is equivalent to the classical limit involving only the time-local generalized FDR (12).

Exploiting the analogy to the known solution from replica theory, it is easy to show that

q(u) =











qh =
1
2(

3
κR3

h2)1/3 , u≤ qh
qEA

x ,

qEA
u
x , qh

qEA
x < u< x ,

qEA , x ≤ u ,

(53)

with q2
EA = RR

1/R3 and x = 2R3qEA
R2β

> 0. Consequently,

X (q) =











0 , q < qh ,
R3
R2

q , qh < q < qEA ,
β
2 , q = qEA ,

(54)

which is consistent with the solution of Ref. [6]. We point out that x > 0 requires
QR(ω = 0) > 0, which, as we saw in Sec. 3.2, requires the disorder strength to exceed the
critical value κ > κc = m4/4.

What is left is to show that this is also a solution to the classical limit of the first equation
in (51). This can be seen by integrating that equation with respect to t and exploiting that
with QK(t) also X (t) is an ultrametric function. One then finds

0=2R1

∫ q

qEA

dq′X (q′) + R2

�

∫ q

qEA

dq′X (q′)

�2

− 2R3

∫ q

qEA

dq′q′2X (q′) , (55)

which is indeed solved by (54).

4 Application: The quantum spherical p-spin model

Our second application is the quantum spherical p-spin model. We begin with a brief derivation
of its effective action in the Keldysh formalism. We then apply the generalized thermal ansatz
to the ultrametric aging component of the spin correlations. This procedure is then shown to
reproduce the results known from replica formalism.

The Hamiltonian of the random p-spin model was first introduced in Ref [86]with the Ising
counterpart discussed in Ref [87]. Its soft spin version was introduced shortly thereafter [25].
Upon inclusion of a spherical constraint, this classical model is known to exhibit 1-step replica
symmetry breaking in thermal equilibrium [88]. Additionally, the transition between the para-
magnetic and glass phase changes from second to first order continuous to discontinuous at low
temperatures. There, the dynamical equations of motion predict a higher critical field strength
than the equilibrium theory [39]. The same behavior is found for the quantum model, where
the discontinuous transition is of first order also in the thermodynamic sense [89]. Due to the
discrepancy between the dynamical and the equilibrium theory, it poses a critical test to the
general arguments of Sec. 2.

1The only difference between their result and ours is the addition of 2βqEAq(u) in Eq. (52). This is a consequence
of the replica diagonal of the Parisi matrix being removed. It exactly compensates for the difference in the definition
of R1
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4.1 Effective action

Technically, the discussion here follows closely that of Ref. [50], with modifications owed to
the doubling of the time contour in the Keldysh approach. The spherical p-spin model is given
by the Hamiltonian

Hint =
∑

1≤i1<12<···<ip≤N

Ji1 i2...ip Zi1 Zi2 . . . Zip , (56)

with Ising spins Zi = ±1, p ≥ 3 and the global spherical constraint
∑N

i=1 Z2
i = N . As for the

Sherrington-Kirkpatrick model, we allow for longitudinal and transverse fields to couple to the
spins (but neglect all commutators). The coupling constants Ji1 i2...ip are chosen randomly with
a Gaussian distribution

P(Ji1...ip)∝ exp

�

−
N p−1

p!

Ji1...ip

J2

�

. (57)

Averaging the spins over some small regions, the Keldysh partition function,

Z =

∫

DJi1...ipP(Ji1...ip)

∫

DS eis[S] , (58)

can be written in terms of the continuous bosonic variable Sη,i , where the Latin index indicates
the lattice site and the Greek index η ∈ {+,−} denotes the branch of the Keldysh contour (see
for example [76]). Due to the transverse field, the averaged spins obtain a massive dispersion.
Hence, we can write the action as

s[S] =s0[S] + sh[S] + sκ[S] ,

s0[S] =−
1
2

∫

t

∑

η,i

ηSη,i

�

∂ 2
t +m2
�

Sη,i(t) ,

sh[S] =

∫

t

∑

η,i

ηhη,i(t)Sη,i(t) ,

sκ[S] =− i

∫

t

∑

η

∑

1≤i1<···<ip≤N

ηJi1...ip Sη,i1 . . . Sη,ip ,

(59)

where the second term describes the coupling to the longitudinal external field and sκ accounts
for the effect of the disorder Hamiltonian Hint.

Averaging over the Gaussian distribution of the coupling constants Ji1...ip the disorder term
is simplified to

sκ[S] =

∫

t,t ′

iJ2

p!N p−1

∑

i1<···<ip

�

∑

η

ηSη,i1 . . . Sη,ip

�2

=
iκ
4

∫

t,t ′

1
N p−1

∑

ηµ

ηµ

� N
∑

i=1

Sη,i(t)Sµ,i(t
′)

�p

,

(60)

with κ= J2. The global spherical constraint can be included using an auxiliary field zη(t) as

Z =

∫

DSDz eis[S,z] , (61)
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with

s[S, z] = s[S] +

∫

t

∑

η

ηzη
�

S2
η,i − N
�

. (62)

At this point, the action has become purely local in the site index i. Without loss of generality,
we may thus focus only on a single site, dropping the irrelevant site index.

Next, we introduce the bilocal field Q̃ηµ(t, t ′) as

1=

∫

DQ̃δ
�

Q̃ηµ(t, t ′)− Sη(t)Sµ(t
′)
�

=

∫

DQ̃Dλexp

�

i
2

∫

t,t ′

∑

ηµ

ληµ(t, t ′)
�

Q̃ηµ(t, t ′)− Sη(t)Sµ(t
′)
�

�

,
(63)

such that the disorder term becomes

sκ[Q̃] =
iκ
4

∫

t,t ′

∑

ηµ

ηµ Q̃p
ηµ(t, t ′) . (64)

We can then perform the Gaussian integral over the averaged spin fields S, which gives

Z =

∫

DQ̃DλDz eis[Q̃,λ,z] ,

s[Q̃,λ, z]=
1
2

∫

t,t ′

∑

ηµ

ηµhη(t)Gηµ(t, t ′)hµ(t
′)−
∫

t

∑

η

ηzη(t) +
1
2

Tr
�

λQ̃
�

+
iκ
4

∫

t,t ′

∑

ηµ

ηµQ̃p
ηµ(t, t ′)−

i
2

Tr ln (G) ,

(65)

where the trace is performed over time and the contour index alike, and we have introduced
the inverse spin propagator

G−1(t, t ′) =δ(t − t ′)
�

−
�

∂ 2
t +m2
�

σ3 + 2diag(z+,−z−)
�

−
�

λ11 λ12
λ21 λ22

�

(t, t ′) . (66)

We now turn our attention to the saddle point equations of the action s[Q̃,λ, z]. As these
are most conveniently written in the R/A/K basis, we introduce zc/q = z+± z− such that in the
new basis

G−1(t, t ′) =δ(t − t ′)
��

−∂ 2
t −m2 + zc(t)
�

σ1 + zq(t)1
�

−
�

λV λA

λR λK

�

(t, t ′) . (67)

4.2 Late-time solution

We assume a constant longitudinal field hc = h = (h+ + h−)/2, use that at the saddle point
quantum fields vanish, and remember that GR(t, t) + GA(t, t) = 0 to write the saddle point
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equations

0
!
=
δs
δzq(t)

= −1+
i
2

GK(t, t) +
h2

2

∫

t ′,t ′′
GR(t ′, t)GA(t, t ′′) ,

0
!
=
δs
δzc(t)

= 0 ,

0
!
=

δs

δQ̃R/K(t, t ′)
=

1
2
λR/K(t, t ′) +

iκ
4

p
�

Q̃p−1
�R/K

(t, t ′) ,

0
!
=

δs
δλA(t, t ′)

=
1
2

Q̃R(t, t ′)−
i
2

GR(t, t ′) ,

0
!
=

δs
δλV (t, t ′)

=
1
2

Q̃K(t, t ′)−
i
2

GK(t, t ′)−
h2

2

∫

t ′′,t ′′′
GR(t ′′, t)GA(t ′, t ′′) .

(68)

Here
�

Q̃p
�R/K

refers to the retarded/Keldysh component of the p-th power of the matrix Q̃.
These equations are to be compared with Eq. (3.17) in Ref. [50].

To simplify these equations even further, we specify p = 3. Furthermore, we introduce the
real fields QR(t, t ′) = iQ̃R(t, t ′) and QK(t, t ′) = Q̃K(t, t ′), which then satisfy

QK(t, t) = 2 ,

QR(t, t ′) =
�

δ(t − t ′)
�

∂ 2
t +m2 − zc(t)
�

−ΣR(t, t ′)
�−1

,

QK(t, t ′) =

∫

t ′′,t ′′′
QR(t, t ′′)ΣK(t ′′, t ′′′)QA(t ′′′, t ′) ,

(69)

with the self-energies

ΣR(t, t ′) = 3κQR(t, t ′)QK(t, t ′) ,

ΣK(t, t ′) =
3κ
2

�

�

QK
�2
(t, t ′)−
�

QR
�2
(t, t ′)−
�

QA
�2
(t, t ′)
�

+ h(t)h(t ′) ,
(70)

which are both real. In addition, ΣK is non-negative.
Following the arguments of Sec. 2, we distinguish between fast and slow fields Q f /s(t)

in the time-translation invariant ansatz Q(t) = Q f (t) + Qs(t). We then once again make
a generalized thermal ansatz QR

s (t) = −X (t)θ (t)∂tQ
K
s (t). Since the slow field varies on a

time scale that diverges as T → ∞ this implies that the retarded Green’s function decays
more quickly than the Keldysh component. Consequently, the Keldysh self-energy simplifies as
follows

ΣK
s (t) =

3κ
2

�

�

QK
s

�2
(t)−
�

QR
s

�2
(t)−
�

QA
s

�2
(t)
�

=
3κ
2

�

QK
s

�2
(t) .

(71)

From this, it follows immediately that the self-energy satisfies the generalized fluctuation-
dissipation relation ΣR

s (t) = −X (t)∂tΣ
K
s (t). Similarly, the most slowly decaying contribution

to the Keldysh component QK
s must involve ΣK

s such that we can write

QK
s =QR ◦ΣK

s ◦QA . (72)

It is now more convenient to rewrite the equations of motion of the slow field in the more
conventional form

�

QR
f

�−1
◦QR

s = Σ
R
s ◦QR , (73)
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�

QR
f

�−1
◦QK

s = Σ
K
s ◦QA+ΣR

s ◦QK
s . (74)

In the case of dissipative dynamics, these equations coincide with those derived by Sompolin-
sky and Zippelius [11,41] and solved by Cugliandolo and Kurchan [5]. As has been noted be-
fore [25], we find that these equations of motion satisfied by the p-spin model are surprisingly
similar to those derived from mode coupling theory in the context of structural glasses [26].

Assuming ultrametricity, we satisfy all conditions required for the general argument of
Sec. 2, where we showed that the matrix multiplication in replica space is identical to the
Keldysh component of the product of functions in Keldysh space. From the general matrix
multiplication follows the same statement also for matrix inversion. Hence, we conclude that
the equation for the Keldysh component of the expression

Q(t) =
�

δ(t)σ1(∂ 2
t +m2 − zc)−Σ(t)

�−1
, (75)

or equivalently the solution to (74) is similar to that obtained in replica formalism (see for ex-
ample Eq. (3.17) in Ref. [50], which differs in the conventions for mass and coupling strength).

In summary, we find

QK
s (u) =







q0 = −
q f σ0(σ f −2z)

(σ f +x(σ1−σ0)−2z)2 , u< x ,

q1 = q0 −
q f (σ1−σ0)

σ f +x(σ1−σ0)−2z , u> x ,
(76)

with the shorthand notation

ΣK
s (u) =

3κ
2

�

QK
s

�2
(u) + h2 =

¨

σ0 , u< x ,

σ1 , u> x .
(77)

Furthermore, the fast field satisfies

GK
f (t) = GR

f ◦Σ
K
f ◦ GA

f ,

ΣK
f (t) =

3κ
2
(QK

f (t) + 2q1)Q
K
f (t) ,

(78)

which we abbreviated above as q f = QK
f (t = 0) and σ f = ΣK

f (t = 0). Finally, the Lagrange

parameter z = (zc −m2)/β is fixed by the additional constraint

QK(u= 1)≡ q1 + q f ≡QK
s (t = 0) +QK

f (t = 0)
!
= 2 . (79)

Conversely to Eq. (76), the effective inverse temperature mirrors the structure of 1-step
RSB

X (q) =











0 , q < q0 ,
β x
2 , q0 < q < q1 ,
β
2 , q = q1 .

(80)

Note, that once again, it is not possible to reconstruct QK
s (t) because the information on the

time-dependence was lost during the change of variables t → X (t) in Eq. (16). Furthermore,
the breakpoint x has to be determined by an additional criterion, requiring either marginal
stability or minimization of the free energy [39,50].

Due to the equivalence between the ultrametric Keldysh and the replica formalism, we
conclude that our approach finds the same critical point and one-step RSB as reported in
Ref. [50], provided the same condition for x is used. On the other hand, at any finite time T ,
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ultrametric relations must be violated and an analysis similar to that of Ref. [26] shows that
on a finite time interval in the one-time formulation, correlations and response functions of
the spin glass phase are indistinguishable from those of a ferromagnet.

The comparison between ultrametric Keldysh and replica formalism for the p-spin model
has already been addressed by Crisanti et al. some 31 years ago [39]. Although they use a
slightly different ansatz for the generalized fluctuation-dissipation relation in the aging regime

QR(t) = −xθ (t)∂tQ
K(t) , (81)

where x ∈ [0, 1] corresponds to the position of the discontinuity in the replica formalism. In
the case of 1-step RSB without a longitudinal field, this ansatz also reproduces the replica equa-
tions. The reported difference between the dynamical and equilibrium critical temperature is
related in part to the different conditions used to fix x . This is consistent with the results pre-
viously reported in Ref. [10]. In the dynamical case, matching with the fast dynamics implies
a marginal stability condition as opposed to a minimization of the free energy in equilibrium.
Furthermore, as we had anticipated below Eq.(14) for models with a finite number of replica
symmetry breaking steps, the Keldysh Green’s function of the spherical p-spin model does not
become ultrametric at late times [5]. Consequently, the aging dynamics of the spherical p-spin
model never reaches thermal equilibrium.

An intuitive explanation of this observation can be given using the Thouless-Anderson-
Palmer free energy [90]. One finds that the dynamics of the spherical p-spin model gets stuck
in local minima that are separated from the equilibrium solution by energy barriers that diverge
in the thermodynamic limit. For comparison, the slow evolution of the Sherrington-Kirkpatrick
model is explained by an entropic effect: As the system relaxes, it evolves through a series of
saddle points with an ever decreasing number of unstable directions resulting in long, but
finite escape times [21].

5 Discussion

The results presented in this article rely on the existence of a finite temperature to which the
system equilibrates on short relative times t < τerg, see Fig. 1(b). Specifically, as we send
the center-of-mass time T →∞, the ultrametric solutions (54)(80) are parametrized by the
inverse temperature β . However, in a spin glass, no global equilibrium is reached. We identify
the absence of a global temperature as the characteristic property of the ultrametric spin glass.
This is independent of the breaking of time translation invariance at finite center-of-mass times
T . We also address to which extent these conclusions apply to quantum critical quenches at
zero temperature.

5.1 Spontaneous breaking of thermal symmetry

The non-analytic behavior of the ultrametric solution at x emerges in the temporal thermody-
namic limit T →∞ (in space, the mean-field system is assumed to be in the thermodynamic
limit by construction). The ultrametric solution corresponds to a spontaneous breaking of the
thermal (or Kubo-Martin-Schwinger, KMS) symmetry [91–94]

Sη,i(t)→ Sη,i(−t + iηβ/2) , i→−i , h→−h , (82)

which is present in the stationary state of an ergodic system with a time-independent Hamilto-
nian generator of dynamics characterized by an inverse temperature β . Via our construction,
replica symmetry breaking thus gets stringently tied to the spontaneous breaking of thermal
symmetry – or more physically speaking, of ergodicity.
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We emphasize that, since T drops out of the equations of motion at asymptotically late
times, which can be seen explicitly in Eq. (48), all microscopic details of the quench pro-
tocol disappear from the problem. The time-translation invariant discussion presented here
is, therefore, independent of the details of the aging process. It instead extracts solely the
universal property common to all classical glasses: The spontaneous breaking of thermal sym-
metry. The emergence of this broken symmetry at finite times was previously anticipated by
Kurchan [83].

For glasses, it is found that a weak long-term memory is necessary to preclude thermal-
ization on all scales. Although this implies that time translation symmetry remains broken at
any finite time T following a quench, our time translation invariant approach clarifies that the
persistence of broken time translation invariance, and thus aging, should not be equated to
ergodicity breaking in the stationary state. Instead, the emergence of reparametrization invari-
ance lifts this connection at asymptotically late times [5,6]. In the absence of reparametriza-
tion invariance, the system spin glass can retain some information about the initial state as is
the case for the mixed p-spin model [95]. It will be interesting to see to which extent this is
recovered in the ultrametric Keldysh formalism.

5.2 Zero temperature limit

The finite temperature spin glasses discussed here are solved by the classical ansatz
GR(t) ∼ β∂t G

K(t) with different scaling dimensions for response and correlation functions.
The classical scaling, therefore, requires the existence of a time scale that enters the asymp-
totic solution as inverse temperature. For a quench through the quantum critical point at zero
temperature, one, therefore, expects one of two options: Either β emerges as a result of the
finite energy density imposed upon the system during the quench, or the absence of a fixed
time scale suggests quantum scaling

GR
s ∼ GK

s . (83)

In the following, we will address the implications of quantum scaling. With Eq. (83), it is not
possible to expand the equations of motion in powers of GR. Furthermore, the failure of the
generalized thermal ansatz indicates the necessity of a dynamic Parisi function.

The characteristic observable feature of a glass is aging, which implies that correlations
GK

s (t) decay infinitely slowly as T →∞. In the quantum regime, assuming the above scaling,
the same must apply to the response function GR

s , and thus the self-energy ΣR
s . Hence, as the

infrared cutoff T−1 is sent to zero, memory integrals of the form ΣR
s ◦GK

s diverge. We empha-
size the similarity of this argument to the Mermin-Wagner theorem that prevents spontaneous
symmetry breaking due to infrared fluctuations – here, these fluctuations prevent the ergodic-
ity breaking identified in the classical case above, upon removing the infrared cutoff T →∞.
Consequently, the quantum regime characterized by Eq. (83) is always transient and bounded
by the energy density imparted upon the system by the initial quench. According to this ar-
gument, at asymptotically late times, spin glasses are necessarily classical (see also [45, 96])
with a temperature determined by the energy density after the quench.

We re-emphasize, however, that the argument here relies on the assumption of a common
scaling of retarded and Keldysh Green’s functions. This raises the question of whether more
general forms of ergodicity breaking could be realized at zero temperature.

Recent experiments are performed at very low temperatures and finite times [60–65]. In
addition to possible asymptotic symmetry-breaking phenomena, weak quenches at zero tem-
perature could also display interesting intermediate-time dynamical phenomena related to
their quantum mechanical microscopic physics.
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At the current level of the analysis presented here, it is not possible to recover the time
scales associated with the effective temperature X , which hinders the investigation of transient
regimes. However, by continuing the Wigner expansion, it is possible to systematically restore
corrections due to the boundary at t = 2T and derivatives with respect to the center-of-mass
time. It is then possible to work backward from the latest times to recover the explicit time
dependence of the aging solution, including a potential transient quantum critical regime.

6 Outlook

Recent realizations of spin glasses with Rydberg atoms are affected by decoherence due to
dephasing caused by fluctuations in the external fields (i.e. lasers) and spontaneous emission
from the Rydberg state [61, 66]. Although typical decoherence rates are several orders of
magnitude smaller than the interaction strength, such that aging dynamics are expected to
be observable, they are relevant perturbations that a more realistic description of the system
will have to take into account. This necessitates the treatment of an open system with a time
evolution governed by the Lindblad equation

∂tρ(t) = −i[H,ρ] + κ
∑

i

�

LiρL†
i −

1
2
{Li L

†
i ,ρ}
�

. (84)

Here, ρ(t) denotes the density matrix, the Hamiltonian H is that of Eq. (25), and the Hermitian
Lindblad operators Li = σ3

i describe dephasing noise that acts incoherently on all atoms. The
decoherence introduced by the Lindblad operators causes heating. Specifically, for Hermitian
Li , the stationary state has infinite temperature. Dephasing, therefore, introduces a time scale
beyond which the system becomes paramagnetic, independent of the initial quench. At late
times, dephasing needs to be taken into account by simulations of the experimental systems.

It is a strength of the Keldysh field theory that the inclusion of decoherence is very natu-
ral and requires little additional effort [76]. This is in contrast to microscopic approaches like
exact diagonalization or matrix product states, particularly in quantum systems at low temper-
atures, when the system becomes highly entangled [73]. Despite this advantage, simulations
of the glass phase, even in mean-field models, remain challenging. The reason is the weak
long-term memory, which precludes using a finite cutoff time for memory integrals. The nu-
merical effort therefore scales with time to the third power, which currently limits this method
to short times. However, these limitations can be lifted [97] and long-time simulations of the
quench dynamics will be addressed in the future [98].

Finally, we mention the connection to Sachdev-Ye-Kitaev (SYK) models, which have quan-
tum ‘spin liquid’ ground states [99]. These states are quite distinct from the spin glass ground
states considered in the present paper, as they do not have any aging behavior, and are de-
scribed by a replica diagonal saddle point. The low energy theory of SYK models exhibits an
emergent time reparameterization symmetry while preserving thermal symmetry. This has en-
abled a detailed understanding of their quantum dynamics at a finite number of spins Ns, well
beyond the Ns =∞ saddle point. The quantum spin glass states considered in the present pa-
per also have an emergent time reparameterization symmetry, but the glassy dynamics break
thermal symmetry [100]. All our analysis here has been in the Ns =∞ saddle point theory,
and it would be interesting to adapt the SYK technology to understand the structure of the
finite Ns theory. However, the broken thermal symmetry makes this task considerably more
difficult.
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