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Abstract

We study finite temperature dynamical correlation functions of the magnetization op-
erator in the one-dimensional Ising quantum field theory. Our approach is based on a
finite temperature form factor series and on a Fredholm determinant representation of
the correlators. While for space-like separations the Fredholm determinant can be effi-
ciently evaluated numerically, for the time-like region it has convergence issues inherited
from the form factor series. We develop a method to compute the correlation functions
at time-like separations based on the analytic continuation of the space-time coordi-
nates to complex values. Using this numerical technique, we explore all space-time and
temperature regimes in both the ordered and disordered phases including short, large,
and near-light-cone separations at low and high temperatures. We confirm the existing
analytic predictions for the asymptotic behavior of the correlations except in the case
of space-like correlations in the paramagnetic phase. For this case we derive a new
closed form expression for the correlation length that has some unusual properties: it
is a non-analytic function of both the space-time direction and the temperature, and its
temperature dependence is non-monotonic.
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1 Introduction

The transverse field Ising model, or quantum Ising chain, is one of the most paradigmatic
theories in quantum many-body physics [1,2]. It is a simple but insightful quantum mechan-
ical system that serves as a toy model to study phase transitions and quantum magnetism.
It can also be realized experimentally in compounds such as CoNb2O6 [3], BaCo2V2O8 [4],
SrCo2V2O8 [5] as well as in quantum simulators employing trapped atoms [6].

By the quantum-classical mapping, it is related to the classical 2D Ising model. While the
latter is the canonical example of continuous phase transitions, the quantum Ising chain is
a paradigm of quantum criticality. Its importance stems, on the one hand, from its simplicity
and, on the other hand, from the fact that it is exactly solvable by mapping it to a system of free
fermions. However, this mapping is a nonlocal transformation, rendering the calculation of
various physical quantities a highly nontrivial task. Crucially, the most important observable,
the magnetization, can be expressed in terms of the fermions only in a complicated way, which
explains why the model remains an actively researched area [7,8].

Here we revisit the dynamical (two-time) correlation functions of the magnetization in
the quantum Ising chain, both at zero and finite temperatures. We focus on the vicinity of its
quantum critical point where the correlation length is much larger than the lattice spacing and
the physics is described, in the scaling limit, by the Ising quantum field theory.

As mentioned above, the nonlocal relation between the magnetization and the fermionic
degrees of freedom poses profound challenges to calculating these correlators. There are var-
ious possible approaches to attack this problem. A simple and intuitive method, the so-called
semiclassical approach was proposed in Ref. [9]. It is based on the idea that at low tempera-
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tures, the excitations form a dilute gas and thus behave essentially classically. While it allows
for the derivation of analytic expressions that give accurate results at low temperatures, it is not
known how to turn it into a well-controlled, systematic method beyond the low-temperature
regime.

Another approach is based on the knowledge of exact matrix elements of the magnetiza-
tion in energy eigenstates, called form factors, that can be utilized in a spectral expansion.
Unfortunately, the form factors are singular functions of the particle momenta, which makes
the summation of the form factor series a notoriously hard problem [10–15]. Nevertheless,
using the so-called representative state approach and exploiting the special structure of the
Ising form factors, a partial resummation of the series was achieved in the recent Ref. [8],
which allowed the authors to determine the asymptotic behavior of the dynamical correla-
tion functions in the Ising spin chain. In the low-temperature limit, their results recover the
semiclassical predictions. We note that the form factor expansion was also used to compute
correlations in frequency and momentum space [15–18]. In a series of recent works, a method
based on effective form factors was developed [19–21], but the dynamical correlators of the
Ising model have not been studied yet.

There is another infinite series representation of the correlators in the Ising field theory
based on “finite-temperature form factors” or, in a complementary formulation, on exact finite
volume form factors [7, 22, 23]. In its original formulation, it can only be used for space-like
separations (outside the light cone), but it is free of singularities and served as the basis of a
few further analytic studies that focused on the asymptotic behavior [22,24,25].

Our starting point is the same finite temperature form factor series but we focus mainly
on its numerical evaluation. Due to the special structure of the form factors, the correlation
function can be reformulated as a Fredholm determinant [7,26,27]. This, in principle, opens
the way to powerful techniques to determine its asymptotic behavior [28]. We leave this to
the future and restrict ourselves to the numerical evaluation of the Fredholm determinant
with the goal of exploring all the relevant regimes of the correlation function in terms of the
ordered/disordered phase, the temperature, and the space-time separation. Despite the fact
that the form factor series is well-behaved only for space-like separations, we develop a method
to obtain numerical results also in the time-like region (inside the light cone).

Besides the numerical investigations, we also derive an apparently new analytical result
for the asymptotic behavior of the correlator for large space-like separations in the paramag-
netic phase. The result, which to our knowledge has not appeared in the literature, has some
unusual features, e.g. a non-analytic and non-monotonic temperature dependence.

The paper is structured as follows. In Sec. 2, we review the fundamentals of the one-
dimensional transverse Ising model and its scaling quantum field theory. In Sec. 3 we review
the zero and finite temperature form factor series representation of the correlation functions.
We also discuss the Fredholm determinant representation and how to evaluate it numerically,
including our novel method in the time-like domain. Section 4 is devoted to the zero temper-
ature correlation function, which serves as a benchmark for the numerical method. Section 5
contains our main results on the finite temperature correlations. We investigate the high tem-
perature limit and study small and large separations in the space-like and time-like regions.
We also compare our results to the existing theoretical predictions for the asymptotics and
find agreement except in one case, where we present a new analytical expression. We give our
summary and conclusions in Sec. 6. Some more involved derivations and technical details on
the numerical method can be found in the appendices.
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2 The quantum Ising chain and Ising field theory

The transverse field Ising model is a chain of interacting S = 1/2 spins arranged in a one-
dimensional lattice. Each spin interacts with its nearest neighbors and is subject to a trans-
verse magnetic field. The Hamiltonian describing this system captures the interplay of these
interactions and is given by the following expression:

H = −J
N
∑

j=1

�

σ̂z
j σ̂

z
j+1 + gσ̂x

j

�

. (1)

In this equation, J > 0 sets the energy scale of the problem, g is the relative strength of the
external magnetic field compared to that of the nearest neighbor interaction, and σ̂αj are the
respective Pauli operators at site j. The index j runs over the N lattice sites of the chain and
we impose periodic boundary conditions, σ̂N+1 = σ̂1. The system has a quantum critical point
at g = 1 that separates the two phases of the model. For g < 1, the σ̂z → −σ̂z symmetry is
spontaneously broken and the system is in the ferromagnetically ordered phase with 〈σ̂z〉 ̸= 0.
In the disordered or paramagnetic phase, the symmetry is restored and 〈σ̂z〉= 0.

The Hamiltonian (1) can be mapped to a system of free spinless fermions [29] (For an
excellent and concise discussion, see Appendix A of Ref. [30]). The Jordan–Wigner transfor-
mation maps it to a quadratic expression in terms of the fermions which, employing a unitary
transformation in the space of fermionic operators, can be brought to the canonical form

HR/NS =
∑

k j∈R/NS

ε(k j)γ̂
†
k j
γ̂k j
+ ER/NS

0 (N) , (2)

where NS and R refer to the sectors of the theory as discussed shortly. Here γk are fermionic
operators satisfying {γ†

k,γq}= δk,q, and the dispersion relation is

ε(k) = 2J
Æ

1− 2g cos(k) + g2 . (3)

Note that at the critical point, g = 1, the dispersion relation ε(k) = 4J | sin(k/2)| is gapless. By
performing perturbative calculations around g = 0 and g =∞, these particle-like excitations
can be interpreted as domain walls between ordered domains of opposite magnetization in the
ferromagnetic phase, and as spin flips in the transverse direction in the paramagnetic phase.

The Hilbert space splits into two sectors related to the boundary condition on the fermionic
operators. In the Ramond (R) sector they have periodic, while in the Neveu–Schwarz (NS)
sector they have antiperiodic boundary condition, which implies the quantization of momenta

k j =
2π
N

j , j = −
N
2

, . . . ,
N
2
− 1 (Ramond), (4a)

k j =
2π
N
( j + 1/2) , j = −

N
2

, . . . ,
N
2
− 1 (Neveu–Schwarz). (4b)

It turns out that in the ferromagnetic phase, the number of fermions is always even,1 while in
the paramagnetic phase, states of an odd number of fermions are in the Ramond sector and
states of an even number of fermions are in the Neveu–Schwarz sector. The Fock vacua of the
two sectors have different energies denoted by ER

0 (N) and ENS
0 (N). For finite N , they satisfy

ENS
0 (N)< ER

0 (N), so the ground state is always in the NS sector. However, in the ferromagnetic
phase, the energy difference of the vacua of the two sectors becomes exponentially small in
N , signalling the spontaneous symmetry breaking occurring in the infinite system.

1This can be intuitively understood by the fact that the number of domain walls on a ring must be even.
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We emphasize that the mapping from spins to fermions is nonlocal, so despite the quadratic
Hamiltonian, the calculation of spin observables, e.g. their correlation functions, is a highly
nontrivial task.

In the vicinity of the second order quantum phase transition, the correlation length be-
comes much larger than the lattice spacing, and the large scale behavior of the system can be
described by a continuum theory. This scaling quantum field theory is the model that we study
in this work. While there is no quantum phase transition at finite temperature, the field theory
remains a good description near the critical point as long as the temperature is low compared
to the lattice energy scale J . Due to universality, the scaling field theory describes all models
in the Ising universality class such as spin chains having more complicated, e.g. next nearest
neighbor, interactions that become irrelevant in the continuum limit.

The scaling limit is obtained by approaching the critical point, sending the lattice spacing
to zero while sending the Ising interaction to infinity as

g → 1, a→ 0, J →∞ : Na = L = fixed, 2J |1− g|=∆= fixed, 2Ja = c = fixed. (5)

Here the length L of the system, the energy gap ∆, and the velocity c is kept fixed. In this
limit, the Hamiltonian (2) in the R and NS sectors becomes (with a slight abuse of notation)

HR/NS =
∑

p j∈R/NS

ϵ(p j)η̂
†
p j
η̂p j
+ ER/NS

0 (L) , (6)

where p j = ħhk j/a are the momenta with spacing ∆p = 2π/L, and the dispersion relation
becomes the relativistic

ϵ(p) =
Æ

∆2 + p2c2 , (7)

which signals that the scaling field theory is relativistically invariant. Equation (7) shows that
c plays the role of the speed of light and the fermions have mass m=∆/c2.

In what follows, we shall focus on the thermodynamic limit, L →∞, where summations
like that in Eq. (6) become integrals. We will use extensively the relativistic rapidity θ in
terms of which the momentum and energy are given by p = mc sinhθ and E = mc2 coshθ ,
respectively. From hereon, we set both the speed of light and Planck’s constant to 1, i.e. we
work in units where c = 1,ħh= 1.

3 Dynamical correlation functions of the magnetization

We will be concerned with the equilibrium correlation function of the magnetization operator
σ̂(x , t) in the field theory. In our normalization, it is related to σ̂z

j on the lattice by

σ̂(x = ja) = (2a)−1/8σ̂z
j , (8)

so its expectation value in the ferromagnetic ground state is given by 〈σ̂(x)〉= m1/8.
The dynamical correlation function of the magnetization at finite temperature is

C(x , t;β) = 〈σ̂(x , t)σ̂(0,0)〉β =
Tr
¦

e−β Ĥσ̂(x , t)σ̂(0,0)
©

Tr e−β Ĥ
, (9)

where β is the inverse temperature and the operators are in the Heisenberg picture,

σ̂z(x , t) = eiH t e−iP x σ̂z(0,0)eiP x e−iH t . (10)

At zero temperature,
C(x , t) = 〈0|σ̂z(x , t)σ̂z(0, 0)|0〉 , (11)

5
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where |0〉 denotes the ground state. With our normalization, the short distance singularity of
the correlators is given by [31]

〈σ̂(x , 0)σ̂(0, 0)〉β ∼x→0

2−1/6e1/4A−3

x1/4
, (12)

where A= 1.2824271291 . . . is Glaisher’s constant.
Let us note that in the space-like region, the correlators are real functions. Indeed,

〈Ô1Ô2〉
∗
= 〈Ô†

2Ô†
1〉, so if the two operators are hermitian and commute with each other then

〈Ô1Ô2〉
∗
= 〈Ô1Ô2〉. In a relativistic field theory, two operators with space-like separations must

commute due to causality, so C(x , t;β)∗ = C(x , t;β) for x2 > t2. Therefore, the imaginary
parts of the correlators are non-trivial only for time-like separations.

By dimensional arguments, the correlation function must have the form

Cf/p(x , t;β) = m1/4C̃f/p (mx , mt; mβ) , (13)

where C̃f/p is a dimensionless function and the subscript refers to the ferromagnetic and para-
magnetic phase.

3.1 Form factor expansion

A possible approach to evaluate the correlation functions is using a spectral expansion obtained
by inserting a resolution of identity in terms of energy and momentum eigenstates between
the operators and expanding the thermal trace in the same basis. In the Ising field theory,
these eigenstates are the multiparticle states of free fermions, |θ1, . . . ,θk〉, characterized by
the rapidities of particles that satisfy

Ĥ |θ1, . . . ,θk〉=

� k
∑

i=1

m cosh(θi)

�

|θ1, . . . ,θk〉 ,

P̂ |θ1, . . . ,θk〉=

� k
∑

i=1

m sinh(θi)

�

|θ1, . . . ,θk〉 .

(14)

In infinite volume, the rapidities are continuous and the corresponding resolution of identity
is given by

I=
∞
∑

k=0

1
k!

∫ ∞

−∞

dθ1

2π
· · ·
∫ ∞

−∞

dθk

2π
|θ1, . . . ,θk〉 〈θ1, . . . ,θk| . (15)

The operator matrix elements between these multiparticle states are called form factors, and
the spectral representation in terms of multiparticle states (here and in integrable models in
general) is usually referred to as the form factor expansion.

3.1.1 Zero temperature

At zero temperature, the correlation function is evaluated in the ground state so the form
factor expansion is given by

C(x , t) =
∞
∑

k=0

1
k!

k
∏

i=0





∞
∫

−∞

dθi

2π
eimx sinhθi−imt coshθi



 |〈θ1, . . . ,θk| σ̂(0,0) |0〉|2 . (16)
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The matrix elements of the magnetization operator are known explicitly. The only nonzero
matrix elements of the σ̂ operator are between states belonging to different sectors. The form
factors between the ground state and the multiparticle states in an infinite system are given
by [32]

〈θ1, . . . ,θk| σ̂ |0〉= i[n/2]m1/8
∏

1≤i< j≤k

tanh

�

θi − θ j

2

�

, (17)

where k must be even in the ferromagnetic phase and odd in the paramagnetic phase, other-
wise the matrix elements are zero. In conclusion, the zero temperature correlation functions
of the magnetization can be expressed as

C(x , t; 0) = m1/4
∞
∑′

N=0

1
N !

N
∏

j=0





∞
∫

−∞

dθ j

2π
eimx sinhθ j−imt coshθ j





∏

1≤k<l≤N

tanh2
�

θk − θl

2

�

, (18)

where the primed sum runs over nonnegative even integers in the ferromagnetic phase and
over positive odd integers in the paramagnetic phase.

In the space-like region, x2 > t2, the series (18) is a convergent large distance expansion.
This can be seen by shifting the integration contour parallel to the real axis to the Im(θ̃ ) = π/2
line where the exponents become

imx sinh(θ + iπ/2)−imt cosh(θ + iπ/2)=−mx coshθ+mt sinhθ = −m
p

x2 − t2 cosh(θ − θ0) , (19)

where tanhθ0 = t/x . This shows that the N th term decays as ∼ e−N m
p

x2−t2 . The truncated
form factor series was numerically evaluated in [31].

In the time-like region, t2 > x2, a different contour deformation can be used to make the
integrands decay at large rapidities. The sign of the real and imaginary parts of the rapid-
ity must be the same for large rapidities, which can be achieved by a contour deformation
θ → θ + is(θ ) leading to

imx sinh(θ + is(θ ))− imt cosh(θ + is(θ ))

= m
p

t2 − x2
�

−i cos s(θ ) cosh(θ − θ ′0)− sin s(θ ) sinh(θ − θ ′0)
�

, (20)

where now tanhθ ′0 = x/t. It follows that as θ →±∞, sign(s(θ )) = sign(θ ) should hold: the
optimal choice is a regularized version of s(θ ) = π/2sign(θ − θ ′0), e.g. π/2 tanh[α(θ − θ ′0)].
Note that the real part can be arbitrarily small, so we cannot make a claim about the exponen-
tial suppression of multiparticle terms similar to the space-like case.

3.1.2 Finite temperature

The finite temperature generalization of the form factor expansion is a notoriously difficult
task [14, 15]. The reason is that due to the thermal trace, it becomes a double sum that
contains multi-particle matrix elements like [32]

〈θ1, . . .θn|σ̂|θ ′1, . . .θ ′m〉= i[(n+m)/2]m1/8

∏

1≤i< j≤n
tanh

�

θi−θ j
2

�

∏

1≤k<l≤m
tanh

�

θ ′k−θ
′
l

2

�

n
∏

i=1

m
∏

k=1
tanh

�

θi−θ ′k
2

�

. (21)

Unfortunately, these form factors have singularities, so-called kinematic poles, when a rapidity
in the bra state is equal to another in the ket state. Since all the rapidities are integrated over,
this implies that the naive finite temperature form factor expansion is divergent, and a more
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careful analysis is needed to obtain meaningful results [11–13]. A possible approach is to
use finite volume regularization [14, 15, 33, 34], but it has to be worked out for each term
separately, so the (partial) resummation of the series remains a difficult task.

However, in the Ising field theory, a well-defined form factor series was derived in Refs.
[7, 22]. It was obtained by using finite temperature form factors and also by analytically
continuing a Euclidean correlation function computed by swapping the roles of space and
Euclidean time. The original correlation function is defined on an infinite cylinder whose
circumference corresponds to the inverse temperature. Swapping space and time yields a finite
system with periodic boundary condition, at zero temperature. In this picture, the correlation
function can be computed by a zero-temperature form factor expansion, provided that the
finite volume form factors are available. The Ising model is, to our knowledge, the unique
system where these are known exactly. For the quantum Ising chain, they were extracted from
calculations in the classical 2D Ising model [35–37]. The corresponding Ising field theory form
factors follow from the scaling limit, but they were also derived independently within the field
theory [38].

For the sake of completeness, we present the derivation based on finite volume form factors
in Appendix A. The result is the form factor series for the finite temperature two-point function,

C(x , t;β) = m1/4S(mβ)2e−∆E(β)x (22)

×
∞
∑′

N

1
N !

∑

ε1,...,εN=±

N
∏

j=0

∞+iε jδ
∫

−∞+iε jδ

dθ j

2π
eimε j(x sinhθ j−t coshθ j)+ε jη(θ )

ε j

�

1− e−ε j mβ coshθ j
�

∏

1≤k<l≤N

tanh
�

θk − θl

2

�2εiε j

,

where, just like in the T = 0 case in Eq. (18), the first primed sum runs over nonnegative even
integers in the ferromagnetic phase and over positive odd integers in the paramagnetic phase.
The temperature-dependent factors are given by the integrals

S(mβ)= exp

�

(mβ)2

2

∫ ∞

−∞

dθ1dθ2

(2π)2
sinhθ1 sinhθ2

sinh(mβ coshθ1) sinh(mβ coshθ2)
log

�

�

�

�

coth
�

θ1 − θ2

2

�

�

�

�

�

�

, (23)

∆E(β)=
∫ ∞

−∞

dθ
2π

m coshθ log

�

1+ e−mβ coshθ

1− e−mβ coshθ

�

, (24)

and

η(θ ) =

∞
∫

−∞

dθ ′

πi
1

sinh(θ − θ ′)
log

�

1+ e−mβ coshθ ′

1− e−mβ coshθ ′

�

. (25)

Finally, δ > 0 is a small positive constant governing the contour prescription.
The finite temperature series (22) is much more complicated than its zero temperature

counterpart (18). The temperature-dependent statistical factors in the denominator and the
summation over ε j = ±, which can be interpreted as summing over particle and hole excita-
tions, make it similar to the Leclair–Mussardo proposal [11], but there are important differ-
ences. First, the contour prescription avoids the kinematic poles of the form factors present
when εi = −ε j and makes the expression well-defined and finite. Note that the direction of
the contour shifts depends on ε, that is, it is the opposite for particles and holes. Second, there
are additional temperature-dependent factors (23), (24), (25) beyond the thermal statistical
factors that are missing from the Leclair–Mussardo formula. The e−∆E x term gives a qualita-
tively important feature: it encodes an exponential decay in x having a purely thermal origin.
Finally, the statistical factors are not of Fermi–Dirac but of Bose–Einstein type, which may be
related to the semilocality properties of the magnetization and the fermion creating operators.
To derive these features from a naive low-temperature form factor expansion would require a
partial resummation of infinitely many terms.
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Equation (22) has one vital restriction: in its present form, it can only be used for spatial
separations, i.e. in the |x |> |t| region. Here the space and time-dependent exponentials can be
made decay for large rapidities by increasing the contour shifts up to δ = π/2−δ′ with δ′ > 0
being a positive number necessary to avoid the poles of the thermal denominator. This follows
from an analysis similar to Eq. (19) and implies that the terms of the series are exponentially
suppressed in the number of particles, so it is a large-distance expansion.

For time-like separations, each term in the series is divergent because the contour prescrip-
tion makes the space-time exponentials blow up for large rapidities. To make the integrals
convergent, we would need to deform the contours similarly to Eq. (20). But this is nontrivial
because then the contours would have to pass the kinematical poles of the form factors when
the rapidity of a particle and a hole coincide. To solve this issue, we would have to sum up the
resulting pole contributions as it was suggested in Ref. [7]. We discuss a workaround to this
problem below in Sec. 3.2.1.

3.2 Fredholm determinant representation

The infinite form factor series (22) can be recast in terms of a Fredholm determinant [7,26].
We provide an outline of this procedure below with additional details available in Appendix B.

The key observation is that the double product can be expressed as a determinant. Intro-
ducing the ui = eθi variables,

∏

1≤i< j≤k

tanh

�

θi − θ j

2

�2εiε j

=
∏

1≤i< j≤k

�

ui − u j

ui + u j

�2εiε j

=
∏

1≤i< j≤k

�

εiui − ε ju j

εiui + ε ju j

�2

= det

�

2εiui

εiui + ε ju j

�k

i, j=1

,

(26)

where the second equality can be checked to hold for all four εi, j = ±1 combinations, and the
third one is the result of the Cauchy identity

det

�

1
x i + y j

�k

i, j=1

=

∏

1≤i< j≤k
(x j − x i)(y j − yi)

∏

1≤i, j≤k
(x i + y j)

, (27)

applied in the special case x i = yi = εiui . Upon substituting Eq. (26) into Eq. (22), the
combination of ferromagnetic and paramagnetic correlators become

C±(x , t;β)≡ Cf(x , t;β)± Cp(x , t;β) = m1/4S(mβ)e−∆E xDet
�

I+ K̃±x ,t;β

�

, (28)

where the Fredholm determinant is defined as

Det
�

I+ K̃±x ,t;β

�

=
∞
∑

N=0

∑

ε1,...εN=±

∫ ∞

−∞

dθ1 . . . dθN

N !
det

h

K±
εi ,ε j |x ,t;β(θi ,θ j)

iN

i, j=1
, (29)

with the kernel

K±
ε,ε′|x ,t;β(θ ,θ ′) =

±eimε(x sinh(θ+iεδ)−t cosh(θ+iεδ))+εη(θ+iεδ)

2πε(1− e−εmβ cosh(θ+iεδ))

�

2ε eθ+iεδ

ε eθ+iεδ + ε′ eθ ′+iε′δ

�

. (30)

In the space-like region, this Fredholm determinant can be numerically evaluated in the
following way [39]. Utilizing the contour shifts with 0 < δ < π/2, the integrand decays
exponentially as |θ | →∞, so the rapidity integrals can be restricted to a finite [−ϑ,ϑ] interval.
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Discretizing this interval by dividing it into n equal pieces of length ∆θ = 2ϑ/n gives the
discrete set of rapidities {θa}= {θ1 = −ϑ, . . . ,θn = ϑ−∆θ}. Then (suppressing some variables
for the ease of notation) the Fredholm determinant Det(I + K) can be approximated by the
determinant of a 2n× 2n matrix,

D(n) = det[I+∆θ K̃(n)] , (31)

where

K̃(n) =

�

{K++(θa,θb)} {K+−(θa,θb)}
{K−+(θa,θb)} {K−−(θa,θb}

�

2n×2n
. (32)

In the limit n → ∞, the finite determinant approaches the Fredholm determinant,
D(n)→ Det(I+K).

The zero temperature series can also be formulated as a Fredholm determinant (see also
Appendix B). This simpler Fredholm determinant can be formally obtained from the finite
temperature one by implementing the contour prescriptions (19) for space-like and (20) for
time-like separations through δ(θ ), and fixing all ε j to +1, i.e. dropping the discrete sum in
Eq. (29) and restricting the K̃ matrix to its K++ block involving the kernel

K±x ,t(θ ,θ ′) =
±1
2π

eimε(x sinh(θ+iεδ)−t cosh(θ+iεδ))

�

2 eθ+iδ

eθ+iδ + eθ ′+iδ

�

. (33)

3.2.1 Numerical method in the time-like region

As we mentioned already, applying the method to the finite temperature time-like region is
infeasible, because for |x | < |t|, the exponential in the numerator of the kernel (30) blows
up for large rapidities. This means that each term in the form factor series (22) is ill-defined,
and they may be possible to convert into well-defined expressions only by a nontrivial contour
deformation [7].

Surprisingly, there is an alternative route that makes sense of the series and allows us
to extract finite numerical results from the Fredholm determinant. The idea is to keep the
contours of Eq. (22) intact while analytically continuing the ζ = t/x value to the complex
plane. Then the calculations can be carried out in the time-like region, Reζ > 1, for sufficiently
small imaginary parts and the physical results are obtained by extrapolating the results back
to the real line. However, the exponentials for particles and holes require opposite Imζ, so
the series must be generalized by writing

C(x , t;β)→ C(x ,ζ+,ζ−;β) , (34)

where ζ+ and ζ− are the complex parameters used in the particle (ε = +) and hole (ε = −)
terms:

C(x ,ζ+,ζ−;β) = m1/4S(mβ)2e−∆E(β)x (35)

×
∞
∑′

N

1
N !

∑

ε1,...,εN=±

N
∏

j=0

∞+iε jδ
∫

−∞+iε jδ

dθ j

2π
eimxε j(sinhθ j−ζε j

coshθ j)+ε jη(θ )

ε j

�

1− e−ε j mβ coshθ j
�

∏

1≤k<l≤N

tanh
�

θk − θl

2

�2εiε j

.

The physical correlators correspond to the Reζ+ = Reζ− and Imζ+ = Imζ− = 0 values.
The strategy is to perform simulations sufficiently close to the desired physical point and then
extrapolate the results to obtain the physical values.

It is a simple exercise to check that in the Reζ± > 1 time-like region, the condition for
decaying exponentials is

Imζ+ < − tanδ (Reζ+ − 1) , (36a)
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Figure 1: Sketch of the method used in the finite temperature time-like domain. The
parameter ζ = t/x is analytically continued to the complex plane separately for the
particles (ζ+) and the holes (ζ−). The physical points corresponds to Reζ+ = Reζ−
and Imζ+ = Imζ− = 0. The red wedge-like region corresponds to the domain where
the integrands blow up. The size of the forbidden sector is proportional to δ, the
imaginary part of the rapidities.

for particles and
Imζ− > tanδ (Reζ− − 1)− β/x , (36b)

for holes. Note that here the temperature-dependent denominator also contributes to the
asymptotic behavior, leading to a less restrictive criterion for the imaginary value of ζ−.

Figure 1 provides a schematic drawing of the method described above. Equations (36)
imply that there is a forbidden region in the complex ζ plain where certain terms in Eq. (35)
diverge. It is also clear that the size of this region is proportional to δ, the complex rapidity
shift. Therefore in order to perform calculations sufficiently close to a physical point, a respec-
tive small δ must be chosen. Performing several of these calculations can, in principle, enable
us to extrapolate our results to the desired physical points.

There are, however, two caveats that concern the validity of this procedure; both of them
are linked to the size restriction on the δ rapidity shift. First, if δ is small, the relative rapidity
values between particles and holes can become small, which reinstates the problem of kine-
matic poles. Indeed, for such parameter configurations, the Fredholm determinant kernels
display sharp peaks concentrated on O(δ) rapidity domains, which means that our discretiza-
tion has to be fine enough to incorporate this new feature. Second, when the complex rapidity
shift is tiny and the ζ± parameters are close to their respective boundaries in Figure 1, the
exponential contributions in Eq. (35) give rise to rapid oscillations. This gives another re-
quirement on the necessary rapidity discretization. In practice, both of these difficulties could
be overcome by using a less rigid contour prescription for the rapidities as long as the physical
ζ value is not too large. It turns out that the necessary matrix size needed for the calculations
is proportional to ζ− 1. Appendix C provides some details on this procedure.

4 Numerical simulations at zero temperature

Even though our main focus is the finite temperature correlations, we start by discussing the
zero temperature case. Matching the well-known analytical results in the short and large
distance limits provides a proof of principle for the numerical evaluation of the form factor
series via calculating Fredholm determinants.

11

https://scipost.org
https://scipost.org/SciPostPhys.17.6.162


SciPost Phys. 17, 162 (2024)

(a) Time-like separation, real part. (b) Time-like separation, imaginary part.

(c) Space-like separation.

Figure 2: Zero temperature correlation functions for small separations. In the time-
like domain, the real and imaginary parts are shown in separate plots. In all three
cases, both the paramagnetic and ferromagnetic curves approach the analytic results
(38) shown as green dashed lines. The dimensionless C̃ is defined in Eq. (13).

At zero temperature, the correlation functions are Lorentz invariant, i.e. they only
depend on the relativistic interval, so C(x , t) = C(

p
x2 − t2, 0) for space-like and

C(x , t) = C(0,
p

t2 − x2) for time-like separations. This can be seen explicitly from Eqs. (19)
and (20). Therefore it is enough to consider the equal time (static) correlator C(x , 0) and the
autocorrelation function C(0, t). Below we investigate these functions in both phases of the
model.

4.1 Near the light cone

For small separations, mx ≪ 1, the equal-time correlation function is unaffected by the
mass and as mx → 0, we should recover the conformal field theory correlator (12) in
both the paramagnetic and ferromagnetic phases. By Lorentz invariance, it implies that for
0< m2(x2 − t2)≪ 1, the correlation function should behave as2

Cf/p(x , t)∼
2−1/6e1/4A−3

(x2 − t2)1/8
. (37)

2Note that this is a property of the field theory and does not imply a similar short distance behavior in the spin
chain.
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This expression can be viewed as the conformal result, depending on x2 + τ2, analytically
continued to real time as τ = i t. It is not obvious that the same analytic continuation works
also in the time-like regime but we will see shortly that the formula (37) applies in the time-
like case, too. The equal-time and equal-space correlation functions thus behave for small
separations as

Cf/p(x , 0)
x→0
−−→ 2−1/6e1/4A−3 x−1/4 , (38a)

Cf/p(0, t)
t→0
−−→ 2−1/6e1/4A−3e−iπ/8 t−1/4 . (38b)

We computed these correlators by numerically evaluating the Fredholm determinant, as
discussed in Sec. 3.2. The results are plotted in Fig. 2 together with the predictions in
Eqs. (38). We find that both the ferromagnetic and paramagnetic correlators approach the
conformal power laws.

For the equal time correlator, similar numerical results can be obtained by computing the
first few terms of the form factor series (18), e.g. by using a Monte Carlo integration technique
as was done in Ref. [31]. However, to achieve the precision of our numerical results, the
contribution of several terms must be taken into account.

4.2 Large separations

As mentioned earlier, for space-like separations, the form factor expansions are large-distance
expansions in the sense that the N -particle terms in the series are suppressed as e−Nm

p
x2−t2 , so

we can extract their asymptotic behavior as m
p

x2 − t2→∞ by calculating the first non-trivial
terms in Eq. (18). Although such a general statement is not true for time-like separations,
below we provide numerical evidence that this is indeed the case.

In the paramagnetic phase, the first term is a one-dimensional integral that can be evalu-
ated analytically using the identity

∫ ∞

−∞

dθ
2π

eimx sinhθ−imt coshθ =
1
π

K0

�

m
p

x2 − t2
�

, (39)

where K0 is the zeroth modified Bessel function of the second kind. Therefore, the large-
separation behavior of the paramagnetic correlators is given by

Cp(x , 0)≈
1
π

K0

�

m
p

x2 − t2
�

≈
m1/4

p
2π

e−m
p

x2−t2

p
m (x2 − t2)1/4

. (40)

In particular, for the equal-space and equal-time correlators,

Cp(x , 0)
x→∞
−−−→

m1/4

p
2π

e−mx

p
mx

, (41a)

Cp(0, t)
t→∞
−−−→

m1/4

p
2π

e−imt−iπ/4

p
mt

. (41b)

In the ferromagnetic phase, the first nontrivial term is the two-dimensional integral

1
2

∫ ∞

−∞

dθ1dθ2

(2π)2
eimx(sinhθ1+sinhθ2)−imt(coshθ1+coshθ2) tanh2

�

θ1 − θ2

2

�

. (42)

Upon introducing the u= θ1+θ2 and v = 1
2(θ1−θ2) variables, we can carry out the u integral

using Eq. (39), which yields the asymptotics

m−1/4Cf(x , 0)
x→∞
−−−→ 1+

1
2π2

∫ ∞

−∞
dvK0

�

2m
p

x2 − t2 cosh v
�

tanh2(v)≈ 1+
e−2m

p
x2−t2

8πm2(x2 − t2)
. (43)
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(a) Ferromagnetic phase, space-like separation. (b) Paramagnetic phase, space-like separation.

(c) Ferromagnetic phase, time-like separation,
real part.

(d) Paramagnetic phase, time-like separation,
real part.

Figure 3: Asymptotic behavior of the zero temperature correlation functions. The
left (right) column corresponds to the ferromagnetic (paramagnetic) phases. Our
numerical results are shown in red dots, the blue dashed lines represent the first
terms of the form factor series, Eq. (40) and the integral in Eq. (43).

For time-like separations,
p

x2 − t2 is replaced by i
p

t2 − x2.
For the x = 0 autocorrelation functions, the explicit expressions in Eqs. (41) and (43)

agree with the leading terms in the scaling limit of the asymptotic expansion of the lattice
autocorrelation function computed in Ref. [40].

We compare the asymptotic predictions (the Bessel function in (40) and the integral in
(43)) with the numerical evaluation of the Fredholm derminant in Fig. 3. In all cases, the
results of the simulations follow the asymptotic expressions remarkably well. For time-like
separations, we only plot the real parts but we checked that the imaginary parts show equally
good agreement. This shows that the first terms in the form factor expansion give the asymp-
totic behavior also for time-like separations.

5 Finite temperature results

After discussing the zero temperature correlation functions, we turn to the main subject of
our work, the finite temperature dynamical correlation functions. These correlators are not
Lorentz invariant anymore, which, together with the additional temperature dependence, im-
plies a much richer set of characteristics. We first study them in the limit of small separations
and then study their high temperature features. Then we turn to the investigation of their
asymptotic behavior in the limit of large separations. In all these cases we study both the
ferromagnetic and paramagnetic correlators.

14

https://scipost.org
https://scipost.org/SciPostPhys.17.6.162


SciPost Phys. 17, 162 (2024)

(a) Ferromagnetic phase. (b) Paramagnetic phase.

Figure 4: Dynamical correlation functions at inverse temperature mβ = 1 for dif-
ferent ζ = t/x rays plotted against the Lorentz invariant separation. The conformal
expression (37) is shown in a blue dashed line.

(a) Real part. (b) Imaginary part.

Figure 5: Finite temperature time-like correlation functions for small separations
performed at ζ= 1.5 and mβ = 1. The conformal expression (37) is shown in a blue
dashed line.

5.1 Small separations

If the separation of the two operators is smaller than the two inherent length scales of the
theory, 1/m and β , the effects of both the mass gap and the temperature become negligible.
As a consequence, the correlators are governed by the zero temperature conformal result (37)
which is also Lorentz invariant.

We check this behavior in Fig. 4 by plotting multiple dynamical correlation functions at
inverse temperature mβ = 1 for different space-like ζ = t/x < 1 rays against the Lorentz
invariant separation. The plots confirm that all the curves follow the same asymptotic behavior
given by (37) for small separations. For larger distances, Lorentz invariance breaks down, as
expected, and the space-time dependence of the correlators becomes more complicated.

Using our time-like algorithm described in Sec. 3.2.1, we also study the time-like domain
where the form factor series in its form in Eq. (22) breaks down. We show our results for
the real and imaginary part of the correlation functions at ζ = 1.5, obtained by the extrapo-
lation procedure of Sec. 3.2.1, in Fig. 5. The plots demonstrate that the correlators obey the
conformal law for small separations even in the time-like case.
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Figure 6: Near light cone behavior. Correlation funtions at mβ = 1 and mx = 1 as a
function of 1− ζ. The green dashed line is a linear fit with slope −1/8.

We emphasize that recovering the conformal short-distance behavior would require the
calculation of many terms in the form factor expansion, so the results in Fig. 4 demonstrate
that the evaluation of the Fredholm determinant indeed amounts to a resummation of the
form factor series. Moreover, the ζ > 1 results provide an important crosscheck of the validity
of our time-like algorithm and extrapolation scheme.

We close this section by looking at the behavior of the correlation function near the light
cone. In the absence of Lorentz invariance, this is not equivalent to short separation. We
present numerical results in Fig. 6 for mβ = 1 at mx = 1 as a function of 1− ζ, the distance
from the light cone. We find evidence for a power law divergence with exponent −1/8 but
with a temperature-dependent prefactor:

Cf/p(x ,ζx;β)
ζ→1
−−→ m1/4χ(mx , mβ)(1− ζ)−1/8 , (44)

where χ(mx , mβ) is a nonsingular proportionality factor. It would be interesting to analyze
how the χ(mx , mβ) function depends on its arguments, but we leave this to future work.

5.2 High temperatures

At temperatures much larger than the mass, T ≫ m, the effects of the mass gap are negligible,
and the correlators should follow the finite temperature conformal field theory predictions.
Analytically continuing the conformal result [41] from imaginary to real time yields

Cf/p(x , t;β)
mβ→0
−−−−→

�

π

β

�1/4 2−1/6e1/4A−3

�

sinh
�

π
β (x + t)

�

sinh
�

π
β (x − t)

��1/8
. (45)

Note that for x ± t ≪ β , we recover the zero temperature result (37), because then the sepa-
ration is again smaller than both β and 1/m.

In Fig. 7, we show the static correlation function at mβ = 0.1 and mβ = 0.03 inverse
temperatures alongside with the prediction of Eq. (45). As can be seen, the correlators are
close to the conformal result, and as the temperature increases, this approximation becomes
more accurate.

To check the formula at finite t, we present the dynamical correlator in Fig. 8 for a fixed
mx = 0.005 spatial separation at mβ = 0.005 inverse temperature as a function of ζ in the
space-like region. We can see that our numerical results are in agreement with the conformal
expression (45). In particular, near the light cone ζ= 1, the correlation functions diverge with
a power law ∼ (1− ζ)−1/8. This is in agreement with the more general Eq. (44) where now
the prefactor χ(mx , mβ) follows from Eq. (45).
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(a) mβ = 0.1. (b) mβ = 0.03.

Figure 7: Static correlation functions at high temperatures. The blue dashed lines
represent the conformal expression (45).

(a) (b)

Figure 8: High temperature dynamical correlation functions for β = 0.005 and
x = 0.005 as a function of ζ= t/x . The blue dashed line represents Eq. (45).

Finally, let us discuss the high-temperature behavior of the time-like correlators. We plot
the real part of the correlators for ζ = 1.5 as functions of mx in Fig. 9. It can be seen that
as the temperature increases, the difference between the phases vanishes and the time-like
correlators are also governed by Eq. (45).

5.3 Asymptotic behavior of the finite temperature correlations

Let us now turn to the asymptotic behavior of the correlation functions for large separations
along space-time rays, i.e. in the limit mx , mt → ∞ with ζ = t/x fixed. We follow the
direction of increasing ζ: we start with the ζ = 0 equal-time case, then we proceed to the
space-like ζ < 1 domain, and finish our discussion with the ζ > 1 time-like region.

5.3.1 Decay of the equal-time correlations

We start our investigations with the static case, where there are exact analytical results for the
asymptotics. The large distance behavior was derived in Ref. [42] using the Jordan–Wigner
transformation and by evaluating the asymptotic behavior of the determinant of a Toeplitz
matrix using the Szegő lemma. The result is a purely exponential decay,

Cf/p(x , 0;β)
x→∞
−−−→ β−1/4 g(±mβ)e−x/β f (±mβ) , (46)

17

https://scipost.org
https://scipost.org/SciPostPhys.17.6.162


SciPost Phys. 17, 162 (2024)

(a) mβ = 0.01. (b) mβ = 0.001.

Figure 9: High temperature simulation results for the time-like ζ = 1.5 plotted on
log-lin scale. The blue dashed line represents Eq. (45).

where the upper and lower signs correspond to the ferromagnetic and paramagnetic phases.
The functions f (s) and g(s) are given by

f (s) =

∫ ∞

0

d y
π

log coth
�

1
2

Æ

s2 + y2

�

+ |s|Θ(−s) , (47)

and

g(s) = exp

�

∫ 1

s

d y
y

�

f ′(y)2 −
1
4

�

+

∫ ∞

1

d y
y

f ′(y)2
�

. (48)

We note that for the ferromagnetic and paramagnetic phase f (mβ) = β∆E(β) and
f (−mβ) = β∆E(β) +mβ , respectively (c.f. Eq. (24)). Moreover, we confirmed numerically
the nontrivial integral identity g(mβ) = (mβ)1/4S(mβ)2, where S(mβ) is defined in Eq. (23).

Note that the pure exponential decay in Eq. (46) seemingly contradicts Eqs. (41) and (43),
but it is not the case since the mβ →∞ and mx →∞ limits do not commute. This is trivial in
the ferromagnetic phase, as the correlation function approaches a constant at zero temperature
due to the presence of order, while it decays to zero at any finite temperature. This is however
reflected by the fact that the correlation length diverges as mβ →∞. But in the paramagnetic
case, even though the correlation length approaches 1/m, the zero temperature asymptotic
behavior has an extra ∼ (mx)−1/2 power-law on top of the exponential decay which is missing
at finite temperature.

In Fig. 10, we plot the static (t = 0) correlators for three different temperatures along
with the prediction of Eq. (46). In all cases, our results match the asymptotic formula (46)
perfectly even at relatively small mx distances.

5.3.2 Asymptotic behavior in the space-like region

We proceed by discussing the asymptotic behavior of the dynamical correlation functions at
large space-like separations.

The various analytical approaches all predict that in the ferromagnetic region, the time
dependence of the asymptotics comes from a factor [8,9,22,24]

∼ exp

�

−
∫

dp f (p;β)|x − v(p)t|
�

, (49)

where v(p) = p/ϵ(p) is the velocity. Since |v(p)| < 1 is bounded by the speed of light,
|x − v(p)t| = |x | for spatial separations, |x | > |t|, implying that the time-dependence dis-
appears. Our numerical analysis confirmed that the asymptotic behavior in the ferromagnetic
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(a) Ferromagnetic phase. (b) Paramagnetic phase.

Figure 10: Asymptotic behavior of static correlation functions at three different tem-
peratures. The dashed lines represent the analytical result (46).

phase is independent of 0≤ ζ < 1, so it is given by Eq. (46). Therefore, we focus on the para-
magnetic case where, as we shall see, the asymptotic behavior has a nontrivial ζ-dependence.

Since for space-like separations, Eq. (22) is a large-distance and large-time expansion, the
asymptotic behavior can be obtained by its first term. This implies that for large separations,
the paramagnetic correlation functions can be calculated as

Cp(x , t;β)
x ,t→∞
−−−−→ Casym

p (x , t;β) = m1/4S(mβ)2e−∆E x

×
∫ ∞

−∞

dθ
2π

�

eim(x sinhθ−t coshθ )

1− e−mβ coshθ
eη(θ ) +

e−im(x sinhθ−t coshθ )

emβ coshθ − 1
e−η(θ )

�

. (50)

Our task is now to extract the asymptotic behavior of this integral. It turns out that it
can be done by tracing back our steps we took to derive the form factor series in Appendix A.
Changing variables in the second term as θ = ϑ + iπ allows us to write the two separate
integrals as a single complex contour integral:

Casym
p (x , t;β) = m1/4S(mβ)2e−∆E x

∮

C

dθ
2π

eim(x sinhθ−t coshθ )+η(θ )

1− e−mβ coshθ
, (51)

where the contour C is a counterclockwise curve consisting of the Im(θ ) = δ and Im(θ ) = π−δ
lines. The poles of the integrand lie along the Imθ = π/2 line at

θk = sinh−1
�

2π
mβ

k
�

+ iπ/2 , k ∈ Z . (52)

Using the residue theorem,

∮

C

dθ
2π

eim(x sinhθ−t coshθ )+η(θ )

1− e−mβ coshθ
= 2πi

∞
∑

k=−∞

1
2π

eim(x sinhθk−t coshθk)+η(θk)

mβ sinh(θk) e−mβ coshθk
, (53)

we obtain the following, more convenient representation:

Casym
p (x , t;β) = m1/4S(mβ)2e−∆E x

∞
∑

k=−∞

exp
�

−x
q

m2 + q2
k + tqk

�

e2κ(qk)

β
q

m2 + q2
k

, (54)
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where qk = 2πk/(mβ) and we used that η
�

sinh−1(q) + iπ/2
�

= 2κ(q) where κ(q) is defined
in Eq. (A.5). This is a sum of decaying exponentials (recall that |x | > |t|), so the asymptotic
behavior for a given ζ and mβ will be given by the slowest decaying exponential,

Casym
p (x , t;β) = m1/4S(mβ)2e−∆E x

exp
�

−x
Ç

m2 + q2
k0
+ tqk0

�

e2κ(qk0
)

β
Ç

m2 + q2
k0

, (55)

where

k0 = argmin
k∈Z

�√

√

1+
4π2

m2β2
k2 − ζ

2π
mβ

k

�

. (56)

Importantly, this means that since k0 can only take discrete (integer) values, the correlation
length given by

ξ(ζ;β) =

�√

√

m2 +
4π2

β2
k2

0 − ζ
2π
β

k0 +∆E(β)
�−1

, (57)

is not an analytic function of ζ and β: it is continuous, but at specific parameters it has cusps.
To demonstrate this, in Fig. 11 we plot ξ(ζ;β) for mβ = 5 as a function of ζ, and for ζ = 0.5
as a function of mβ .

The location of the cusps can be determined from the condition that the argument in
Eq. (56) is equal at two consecutive integers, k = ℓ− 1 and k = ℓ. For β fixed, this gives

ζℓ =

√

√

ℓ2 +
m2β2

4π2
−

√

√

(ℓ− 1)2 +
m2β2

4π2
, ℓ= 1, 2, . . . , (58)

for the rays where the cusps appear. For ℓ ≪ mβ/(2π), they are evenly spaced,
ζℓ ≈ (2ℓ− 1)π/β , while as ℓ→∞, ζℓ ≈ 1−m2β2/(8π2ℓ2), showing that there are infinitely
many cusps accumulating as ζ→ 1. For a fixed ray ζ, the cusps are at

mβℓ =
π

ζ

Æ

(2ℓ− 1)2 − ζ2
Æ

1− ζ2 , ℓ= 1,2, . . . (59)

As ℓ→∞, they become evenly spaced, mβℓ ≈ (2ℓ− 1)
p

1− ζ2π/ζ.
Interestingly, besides the cusps, the correlation length is not monotonically decreasing as

a function of temperature (see Fig. 11b). This counterintuitive behavior takes place for

2πℓ
Æ

1− ζ2/ζ < mβ < π
Æ

(2ℓ+ 1)2 − ζ2
Æ

1− ζ2/ζ , ℓ= 1,2, . . . (60)

At ζ = 0, the minimum is at k0 = 0, and the inverse correlation length is simply
ξ(0;β)−1 = ∆E(β) +m in agreement with Eq. (47). Comparing the full expressions in Eqs.
(46) and (55) and recalling that S(mβ)2 = (mβ)−1/4 g(mβ), we obtain the nontrivial relation

g(mβ)/g(−mβ) = mβe−2κ(0) = mβe−η(iπ/2) , (61)

where g(s), κ(q), and η(θ ) are defined in Eqs. (48), (A.5), and (25), respectively.
Upon increasing ζ at a fixed β , k0 = 0 remains the solution of Eq. (56) up to some ζ1 (see

Fig. 11a), which means that the asymptotic behavior of the dynamical correlation function will
be the same as the static one for 0 ≤ ζ ≤ ζ1. When approaching the light cone, k0→∞, the
cusps become suppressed. Then the discreteness of k0 can be neglected in the minimization
(56), and the inverse correlation length becomes the relativistic m

p

1− ζ2. The same happens
as mβ →∞ for a fixed ζ (see the blue dashed lines in Fig. 11).

To check the validity of Eq. (55), we numerically calculated the paramagnetic correlation
functions at temperatures mβ = 5 and mβ = 1 for four different rays; these results are de-
picted in Fig. 12. We can see that the simulated data matches the theoretical results perfectly.
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(a) mβ = 5. (b) ζ= 0.5.

Figure 11: Theoretical result for the non-analytic correlation length of the paramag-
netic correlation functions in the space-like region (a) at fixed mβ = 5 as a function
of ζ = t/x; (b) at a fixed ray ζ = 0.5 as a function of mβ . The blue dashed line
shows the function (1− ζ2)−1/2.

(a) mβ = 5. (b) mβ = 1.

Figure 12: Numerical results (dots) for the dynamical correlation functions in the
paramagnetic phase at inverse temperatures mβ = 5 and mβ = 1. Different colors
indicate different ζ= t/x rays. The dashed lines represent the asymptotic Eq. (55).

Note that at mβ = 5, the asymptotic correlators differ from the static (ζ= 0) curve only above
ζ≈ 0.5, in harmony with the first cusp in Fig. 11a, while for mβ = 1, this threshold increases
to ζ≈ 0.85. This is a general feature of Eq. (57): the effects of a temporal separation are only
significant at low temperatures; at high temperatures, only those regions are affected that are
close to the light cone.

This finding is different from the available theoretical results in the literature [8, 9, 24].
These are not exactly the same but they have the same semiclassical low-temperature limit,
and share the general form

Cp(x ,ζ;β)
x→∞
−−−→ A(x ,ζ;β)e−x/ℓ(β) . (62)

Here ℓ(β) is either equal to ∆E(β) or has the same low-temperature behavior, and A(x ,ζ;β)
is the zero-temperature result with or without an additive finite temperature correction. This
expression predicts a correlation length that depends continuously on both β and ζ. Due to
the exponentially decaying A(x ,ζ;β), the correlation length differs from the t = 0 one for any
ζ > 0, and there is a ∼ x−1/2 decay besides the exponential.
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(a) Real part. (b) Imaginary part.

Figure 13: Asymptotic behavior of the dynamical correlation functions at the time-
like ζ = 1.5 space-time ray in the ferromagnetic phase plotted on log-lin scale for
three different temperatures. The dashed lines represent the best fits with fixed slope
given by the correlation length (65).

To understand the discrepancy better, consider the low temperature expansion of the inte-
grand of Eq. (50), leading to3

m1/4e−∆E x 1
π

�

K0

�

m
p

x2 − t2
�

+

∫ ∞

−∞
dθ cos(mt coshθ −mx sinhθ )e−mβ coshθ

�

. (63)

This is of the form (62) and it agrees with the scaling limit of the lattice result of Ref. [8].
As discussed above, its asymptotic behavior is not given by Eq. (55), which shows that the
mβ →∞ and x →∞ limits do not commute. In this sense, our results correspond to the
large x behavior for a fixed β and ζ, while that of Ref. [8, 9, 24] corresponds to the small
temperature behavior for a fixed large x and t.

5.3.3 Asymptotic behavior in the time-like region

Finally, we analyze the asymptotic characteristics of the two-point function for time-like sepa-
rations. Even though the original series (22) is not well-defined in this domain, our numerical
method discussed in Sec. 3.2.1 allows us to extract physically meaningful results. We compare
our numerics to theoretical predictions available in the literature. One of our main references
is the work [8] which performed an elaborate form factor calculation, combined with the rep-
resentative state method, in the quantum Ising spin chain.

First, we discuss the ferromagnetic phase. Let us start by quoting the available theoretical
results in the literature. Taking the scaling limit of the corresponding result of Ref. [8] we
obtain

Cf(x ,ζ;β)
x→∞
−−−→ C̃(β)exp (−x/ξ(ζ,β)) , (64)

where C̃(β) is an undetermined temperature dependent constant and

ξ(ζ,β)−1 =

∫ ∞

−∞

dp
2π

log coth

�

β
p

m2 + p2

2

�

�

�

�

�

�

1−
ζp

p

m2 + p2

�

�

�

�

�

, (65)

is the inverse correlation length. In the low-temperature limit, this agrees with the semiclas-
sical result of Ref. [9] and with the result of Ref. [22].

3Here we used that as mβ →∞, η(θ )→ 0 and S(mβ)→ 1.
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(a) mβ =∞. (b) mβ = 2.

(c) mβ = 1. (d) mβ = 0.5.

Figure 14: Asymptotic behavior of the time-like paramagnetic correlation functions
for ζ = 1.5. The blue dots represent the simulated correlators divided by the expo-
nential decay of Eq. (64) and an additional square root factor. The dashed lines are
harmonic fits of the form Asin(ωx +φ).

We computed the ferromagnetic correlators for ζ = 1.5 for three different temperatures
with the results shown in Fig. 13. Here the dashed lines represent the best linear fits with
slopes given by Eq. (65). As it is clear from the plots, the dataset matches these fits perfectly
well. The offsets of the fitted lines would allow us to numerically determine the unknown
amplitude C̃(β).

We now turn to the asymptotics of the paramagnetic correlator for time-like separations.
Here the results of Ref. [8] state that the correlation length is the same as in the ferromagnetic
phase, but the amplitude has a nontrivial x-dependence. It is a natural assumption [8, 9, 24]
that at low temperature, it is close to the zero-temperature result Eq. (39), but its temperature
dependence is currently unknown.

To test these claims and to investigate this unknown feature, we performed numerical
simulations at ζ= 1.5 and at four different temperatures. In Fig. 14 we show the real part4 of
the correlators divided by the exponential decay in Eq. (64) and by an additional

p
mx factor

motivated by the asymptotic behavior (41a) of the zero temperature Bessel function. As can be
seen in the plots, the datasets shown in blue dots describe oscillations of constant amplitude,
providing evidence for a subleading square root decay on top of the exponential decay in
Eq. (64). The frequency ω extracted from the data is close to the zero temperature value
m
p

ζ2 − 1 coming from the Bessel function. We observed a slight temperature dependence
of the frequency, but at present, we cannot give any definite claims about this. We leave the
investigation of this question to the future.

4The imaginary parts can be treated identically and give very similar results.
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6 Summary and outlook

In this work, we studied the zero and finite temperature dynamical correlation functions of
the magnetization operator in the one-dimensional Ising quantum field theory. Our approach
was based on the finite temperature form factor series of Refs. [7,22]which, due to the special
structure of the form factors, allowed for a Fredholm determinant representation of the cor-
relators amenable to numerical evaluation. Even though the form factor series in its original
form is well-defined only for space-like separations, we developed a method that allowed us to
compute correlation functions at time-like separations, at least for not too large ζ= t/x rays.
This method was based on the analytic continuation of the ζ parameter to complex values and
involved an extrapolation to the physical point.

Using this numerical technique, we were able to explore, remarkably, all space-time and
temperature regimes in both phases of the theory. We benchmarked our method with zero-
temperature calculations as well as by recovering the conformal field theory behavior at small
separations and high temperatures. We found that the analytic continuation from imaginary
to real times works even in the time-like regime. Then we investigated the behavior of corre-
lations near the light cone and at large separations, where several analytical predictions were
available. Apart from the space-like paramagnetic correlator, we found perfect agreement
with the scaling limit of the asymptotic results of Ref. [8] derived in the spin chain. Since
in the low-temperature limit, these expressions agree with other approaches [9, 22, 24], we
confirmed these predictions as well.

The only exception where we found an unexpected deviation from these predictions was
the paramagnetic space-like correlation function. Here we analytically obtained a purely ex-
ponential decay along each ray defined by ζ = t/x . Surprisingly, the correlation length has
some unusual characteristics. Namely, it is a non-analytic function of both the direction ζ
and the temperature mβ (c.f. Fig. 11). Similar non-analytic behaviors were observed for
equal time correlators in the XXZ spin chain [43], the t-J model [44], and the Lieb-Liniger
model [45] using the quantum transfer matrix approach. Moreover, the temperature depen-
dence of the correlation length is non-monotonic, and rather counter-intuitively, it can increase
with increasing temperature. We also pointed out that limits of large separation and low tem-
perature do not commute in this case. To the best of our knowledge, these features have not
been noticed before in the literature.

In the future, we would like to investigate this particular case in the spin chain. Our
preliminary numerical results show that the unusual features are not peculiarities of the field
theory but are also shared by the spin chain. It may be possible to derive the asymptotic
behavior using the ballistic fluctuation approach of Refs. [46–48]. It would also be interesting
to extend the numerical approach to the entire time-like domain and to investigate whether
the analytic continuation of ζ, applied in our numerical algorithm, can also be used to derive
analytical results.
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A Derivation of the finite temperature form factor series

In this Appendix, we provide the derivation of the infinite series representation of the correla-
tion function. Our discussion is based on Refs. [7,22].

The idea is to focus on the correlator in imaginary time. The geometry of the Euclidean
space-time is that of a cylinder, infinite in the spatial (x) direction and periodic in the imaginary
time (τ) direction with period β , the inverse temperature. Exploiting relativistic invariance,
the correlation function can be calculated by swapping the roles of space and time, when
the cylinder geometry corresponds to the same field theory in finite volume β with periodic
boundary conditions and, importantly, at zero temperature. The correlation function can be
computed via a zero-temperature form factor expansion using the exact finite volume form
factors that can be obtained from the corresponding lattice results [35–37] but were also com-
puted in the field theory in Ref. [38]. Here we only need the elementary form factors where
one of the states is the ground state. We recall from Sec. 2 that in finite volume, the ground
state is always in the Neveu–Schwarz (NS) sector and σ̂ has nonzero matrix elements between
states belonging to different sectors. If the volume is β ,

R〈k1, . . . , kN |σ̂|0〉NS = i[N/2]m1/8S(mβ)
N
∏

j=1

eκ(qk j
)

q

βϵ(qk j
)

∏

i< j

qki
− qk j

ϵ(qki
)− ϵ(qk j

)
, (A.1)

where qk = 2π/β k with k integer (Ramond sector),

S(mβ) = exp

�

β2

2π2

∫ ∞

0

dp1ω
′(p1)

sinh(βω(p1))

∫ ∞

0

dp2ω
′(p2)

sinh(βω(p2))
log

�

�

�

�

p1 + p2

p1− p2

�

�

�

�

�

, (A.2)

and

κ(q) =
ϵ(q)
π

∫ ∞

0

dp
ϵ(q)2 + p2

log tanh
�

βϵ(p)
2

�

. (A.3)

In terms of the rapidity variables, qk = m sinhθk, ϵ(qk) = m cosh(θk), and

R〈k1, . . . , kN |σ̂|0〉NS = i[N/2]m1/8S(mβ)
N
∏

j=1

e−η̃(θk j
)/2

q

mβ cosh(θk j
)

∏

i< j

tanh

�

θki
− θk j

2

�

, (A.4)

where

η̃(θ ) =

∞
∫

−∞

dθ ′

π

1
cosh(θ − θ ′)

log

�

1+ e−mβ coshθ ′

1− e−mβ coshθ ′

�

, (A.5)

and S(mβ) is alternatively given by Eq. (23).
A two-point function on the cylinder can be computed with the zero-temperature form

factor expansion

〈σ̂(τ, x)σ̂(0, 0)〉= m1/4S(mβ)2e−∆E(β)|x |
∞
∑

N=0

1
N !

N
∏

j=1

∞
∑

k j=−∞

e−|x |ϵ j−iτq j+2κ(q j)

βϵ j

∏

i< j

�

qi − q j

ϵi + ϵ j

�2

, (A.6)

where q j = qk j
and ϵ j = ϵ(qk j

) and ∆E(β), given in Eq. (24), is the energy difference of
the Ramond and Neveu–Schwarz ground states. Notice the unusual products in the exponent
which are due to the space and time being exchanged. The infinite sums over the k j integers
can be converted into contour integrals. Consider the contour integral on the complex ϑ-plane

∮

C

dϑ
2π

e−mτ coshϑ+im|x | sinhϑ−η̃(ϑ−iπ/2)

1− e−mβ coshϑ
, (A.7)

25

https://scipost.org
https://scipost.org/SciPostPhys.17.6.162


SciPost Phys. 17, 162 (2024)

where the contour C consists of two parallel lines running below and above the Imϑ = π/2 line.
The simple poles of the integrand come from the zeros of the denominator at ϑk = iπ/2+ θk
where

m sinhθk = −i m coshϑk =
2π
β

k = qk , (A.8a)

m coshθk = −i m sinhϑk = ϵ(qk) . (A.8b)

Expanding the denominator around each pole to the first order, by the residue theorem we
obtain

∮

C

dϑ
2π

e−mτ coshϑ+im|x | sinhϑ−η̃(ϑ−iπ/2)

1− e−mβ coshϑ
=
∞
∑

k=−∞

e−|x |ϵ(qk)−iτqk+2κ(qk)

βϵ(qk)
. (A.9)

Replacing the sum over each k j by such a contour integral leads to a product of integrals over
the rapidity variables ϑ1, . . . ,ϑN (note that the index here is different from the k index in Eqs.
(A.8)). The double product will be recovered by the residue theorem from the factor

∏

i< j

�

−i m coshϑi + i m coshϑi

−i m sinhϑi − i m sinhϑ j

�2

=
∏

i< j

tanh

�

ϑi − ϑ j

2

�2

. (A.10)

Pushing the upper contours to Imθ j = π − δ parameterized as ϑ j = θ j + iπ − iδ turns the
hyperbolic functions to sinh/ cosh(ϑ j)→− sinh/ cosh(θ j − iδ) and the integral over the real
θ j receives a sign due to the direction of the contour. Similarly, pushing the lower contours to
Imθ j = δ parameterized as ϑ j = θ j + iδ results in sinh/ cosh(ϑ j)→ sinh/ cosh(θ j + iδ). The
contour shifts yield a pair of integrals over each θ j . After analytically continue to real time by
setting τ = i t, we obtain the result (22), where η(θ ) = ±η̃(θ ± iπ/2), and the sign ε = ±
indexing holes and particles corresponds to the choice of upper and lower contour.

B Correlation functions as Fredholm determinants

In this appendix, we show that the form factor expansions in Eqs. (18) and (22) can be rep-
resented as Fredholm determinants. First, we review the definition of Fredholm determinants
and then show that their formalism matches that of the form factor expansions perfectly. It
leads to new expressions for the correlation functions that give the foundation for an efficient
numerical algorithm discussed in Sec. 3.2.

B.1 Fredholm determinants

To develop the theory of Fredholm determinants, let us first consider the integral equation

u(θ ) +

∫ b

a
dθ ′K(θ ,θ ′)u(θ ′) = f (θ ) , (B.1)

where u(θ ) and f (θ ) are complex functions and K(θ ,θ ′) is a complex kernel. This is the
continuum version of a matrix equation for u, a viewpoint that soon becomes very useful for
our purposes. In an abstract notation, we can write this as

(I+K)u= f , (B.2)

where I is the identity and K is an appropriate integral operator. Now, we can ask whether
such an equation has a solution, i.e. what is the determinant of the I + K transformation.
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However, since it is not a finite-dimensional object, this calculation raises a few obstacles. To
surpass these, the strategy is the following: we discretize Eq. (B.1) by splitting the [a, b]
interval into N equal pieces, calculate the determinant in this finite space and then take the
N →∞ limit. After the discretization, we get the following matrix equation:

 

N
∑

j=1

δi j + h
N
∑

j=1

K(θi ,θ j)

!

u(θ j) = f (θi) , (B.3)

where h = (b− a)/N . In this case, we can approximate the desired determinant with

D(N) = det
�

δi j + hK(θi ,θ j)
�

. (B.4)

As described above, we expect that D(N)→ det(I+K) as N →∞.
Next, we can proceed by expressing D(N) as a polynomial in h:

D(N) =
N
∑

m=0

amhm . (B.5)

It turns out that the am coefficients can be expressed as subdeterminants of the matrix
Ki j ≡ K(θi ,θ j) with the following identity:

D(N) = 1+ h
N
∑

i=1

|Kii|+
h2

2

N
∑

i, j=1

�

�

�

�

Kii Ki j
K ji K j j

�

�

�

�

+
h3

6

N
∑

i, j,k=1

�

�

�

�

�

�

Kii Ki j Kik
K ji K j j K jk
Kki Kk j Kkk

�

�

�

�

�

�

+ . . . (B.6)

Now, we can easily take the N →∞, h→ 0 limit of this expansion to arrive at

det(I+K) =
∞
∑

k=0

∫ b

a

dθ1 . . . dθk

k!
det

�

K(θi ,θ j)
�k

i, j=1 . (B.7)

This can be viewed as the definition of a Fredholm determinant. Notice the similarity between
this result and the zero temperature form factor expression (18). We would arrive at a Fred-
holm determinant representation of the correlators if we could find such kernel functions that
generate the form factors as their subdeterminants. In the next section, we will do precisely
that, but first, we have to generalize the theory a bit further until it becomes applicable to
finite temperatures.

The Fredholm determinant representations differ between zero and finite temperatures
due to an extra summation for the ε signs in Eq. (22). However, we can adapt our previous
formalism to this case, too, by slightly modifying the initial integral equation:

uε(θ ) +
∑

ε′=±

∫ b

a
dθ ′ Kε,ε′(θ ,θ ′)uε′(θ

′) = fε(θ ) . (B.8)

It is reminiscent of a matrix equation of size 2N , so it is natural to introduce the notations
ũ= ({u+(θ )}, {u−(θ )}), f̃ = ({ f+(θ )}, { f−(θ )}), ξ= ({θi}, {θi}) and

K̃ =

�

{K++(θi ,θ j)} {K+−(θi ,θ j)}
{K−+(θi ,θ j)} {K−−(θi ,θ j)}

�

. (B.9)

In this language, the discretized equation becomes

ũ(ξi) + h
2N
∑

j=1

K̃(ξi ,ξ j)ũ(ξ j) = f̃ (ξi) , (B.10)
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which means that we can apply Eq. (B.6) to get the following approximation for the Fredholm
determinant:

D(N) = 1+ h
2N
∑

i=1

|K̃ii|+
h2

2

2N
∑

i, j=1

�

�

�

�

K̃ii K̃i j
K̃ ji K̃ j j

�

�

�

�

+ . . . (B.11)

Now, using the fact that for a general g function
2N
∑

i=1

g̃(ξi) =
∑

ε=±

N
∑

i=1

gε(θi) , (B.12)

we get the final result

det(I+ K̃) =
∞
∑

k=0

∑

ε1,...εk=±

∫ b

a

dθ1 . . . dθk

k!
det

�

Kεi ,ε j
(θi ,θ j)

�k

i, j=1
, (B.13)

which has exactly the desired structure. As we will see in the next section, this result gives the
foundations for the Fredholm determinant representation of the finite temperature correlation
functions.

B.2 Representing the correlation functions as Fredholm determinants

As previously noted, there is a striking similarity between the formalism of Fredholm determi-
nants and form factor expansions. When we align the kernel functions with the form factors,
we can discover Fredholm determinant representations for the correlation functions, which
proves highly beneficial for numerical analysis. In this section, we carry out the computations
necessary for this purpose.

First, let us consider the zero temperature case, as it has a much simpler formalism. We
would like to give Fredholm determinant representations for Eqs. (18) using Eq. (B.7). Fol-
lowing [7,26], it is useful to introduce the

C±(x , t) = Cf(x , t)± Cp(x , t)

= m1/4
∞
∑

k=0

(±1)k

k!

k
∏

i=1





∞
∫

−∞

dθi

2π
eimx sinhθi−imt coshθi





∏

1≤i< j≤k

tanh2

�

θi − θ j

2

�

(B.14)

combinations, since it removes any restrictions from the domain of k. Here, however, we
have to deal with a little complication. While this formula is perfectly well-defined, during a
numerical analysis, it fails to converge since the exponential terms oscillate very fast for large
rapidities. However, as discussed in Sec. 3.1, by extending the rapidities to the complex plane
in a clever way, we can circumvent these issues, although we have to use different contours for
space-like and time-like separated (x , t) points. For space-like separations, a simple contour
shift will suffice,

Γ : R→ C , θ → θ + iδ , (B.15)

while for time-like separations we need to use an appropriate rapidity-dependent shift, e.g.

Γ : R→ C , θ → θ − iδ tanh(θ ) . (B.16)

In both cases, δ is a sufficiently small positive constant. Implementing these contour shifts,
we get the following result:

C±(x , t) = m1/4
∞
∑

k=0

(±1)k

k!

k
∏

i=1





∞
∫

−∞

dθi

2π
eimx sinh Γ (θi)−imt cosh Γ (θi)Γ ′(θi)





×
∏

1≤i< j≤k

tanh2

�

Γ (θi)− Γ (θ j)

2

�

,

(B.17)
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where the Γ function is given by Eq. (B.15) outside, and by Eq. (B.16) inside the light cone.
Note that in the first case, the derivative term simply gives unity, since the contour is just a
constant shift.

Now, we are ready to tackle the task of giving a Fredholm determinant representation for
Eq. (B.17). The heart of this calculation is the determinant identity

∏

1≤i< j≤k

tanh2

�

Γ (θi)− Γ (θ j)

2

�

= det

�

2eΓ (θi)

eΓ (θi) + eΓ (θ j)

�k

i, j=1

. (B.18)

To prove this, we just need to introduce the ui = eΓ (θi) variables and notice that the resulting

∏

1≤i< j≤k

�

ui − u j

ui + u j

�2

= det

�

2ui

ui + u j

�k

i, j=1

, (B.19)

expression is trivially true by the famous Cauchy determinant identity

det

�

1
x i + y j

�k

i, j=1

=

∏

1≤i< j≤k
(x j − x i)(y j − yi)

∏

1≤i, j≤k
(x i + y j)

, (B.20)

applied for the special case x i = yi = ui . If we combine Eqs. (B.18), (B.17) and (B.7), we
arrive at the Fredholm determinant representations

C±(x , t) = m1/4det
�

I+K±x ,t

�

, (B.21)

where the kernels are given by

K±x ,t(θ ,θ ′) =
±1
2π

eimx sinh Γ (θ )−imt cosh Γ (θ )Γ ′(θ )
2eΓ (θ )

eΓ (θ ) + eΓ (θ ′)
. (B.22)

Finally, using these results, we can express the ferromagnetic and paramagnetic correlation
functions in the following way:

Cf(x , t) =
1
2

m1/4
�

det
�

I+K+x ,t

�

+ det
�

I+K−x ,t

��

,

Cp(x , t) =
1
2

m1/4
�

det
�

I+K+x ,t

�

− det
�

I+K−x ,t

��

.
(B.23)

Equations (B.23) and (B.22) complemented by (B.15) and (B.16) are the most important
results of this section regarding the zero temperature case.

The remaining step is to develop analogous results for finite temperatures. First we intro-
duce the finite temperature analogy of Eq. (B.14) using Eq. (22):

C±(x , t;β) =m1/4S(mβ)2e−∆E x
∞
∑

k=0

(±1)k

k!

∑

ε1,...,εk=±

∞+iε jδ
∫

−∞+iε jδ

dθ1 . . . dθk

(2π)k

×
k
∏

i=1

�

eimεi(x sinhθi−t coshθi)

1− e−εi mβ coshθi
εie
εiη(θi)

�

∏

1≤i< j≤k

tanh

�

θ j − θi

2

�2εiε j

.

(B.24)

Introducing the ui = eθi variables, the form factor term can be expressed as a determinant:

∏

1≤i< j≤k

tanh

�

θ j − θi

2

�2εiε j

=
∏

1≤i< j≤k

�

ui − u j

ui + u j

�2εiε j

=
∏

1≤i< j≤k

�

εiui − ε ju j

εiui + ε ju j

�2

= det

�

2εiui

εiui + ε ju j

�k

i, j=1

= det

�

2εie
θi

εieθi + ε je
θ j

�k

i, j=1

,

(B.25)
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where the third equality holds because it holds for all four εi, j = ±1 combinations, and the
fourth one is the result of the Cauchy identity given in Eq. (B.20).

Upon substituting Eq. (B.25) into Eq. (B.24) and introducing the new variables
θ̃i = θi − iεiδ, the correlators become

C±(x , t;β) =m1/4S(mβ)2e−∆E x
∞
∑

k=0

(±1)k

k!

∑

ε1,...,εk=±

∞
∫

−∞

dθ̃1 . . . dθ̃k

(2π)k

×
k
∏

i=1

�

eimεi(x sinh(θ̃i+iεiδ)−t cosh(θ̃i+iεiδ))

1− e−εi mβ cosh(θ̃i+iεiδ)
εie
εiη(θ̃i+iεiδ)

�

det

 

2εie
θ̃i+iεiδ

εieθ̃i+iεiδ + ε je
θ̃ j+iε jδ

!k

i, j=1

.

(B.26)

Then, using Eq. (B.13), we see that

C±(x , t;β) = 2πC(β)2e∆E x m1/4det
�

I+ K̃±x ,t;β

�

, (B.27)

where the kernels are given by

K±
ε,ε′|x ,t;β(θ ,θ ′) =

±εeimε(x sinh(θ+iεδ)−t cosh(θ+iεδ))+εη(θ+iεδ)

2π(1− e−εmβ cosh(θ+iεδ))

�

2εeθ+iεδ

εeθ+iεδ + ε′eθ ′+iε′δ

�

. (B.28)

C Algorithm for time-like separations

In this appendix, we present some additional details about the numerical scheme introduced in
Section 3.2.1. This discussion will mostly concern optimization techniques useful for reducing
computational time. Additionally, we will provide an approximate computational complexity
formula for the algorithm.

First, it is advantageous to realize that we are not restricted in using the same δ rapidity
shift for particles and holes. Furthermore, we can make these shifts rapidity-dependent as
long as kinematic poles are disallowed. We should change our perspective to exploit the full
potential coming from these additional degrees of freedom. Let us fix the real and imaginary
parts of the ray parameters,

−Imζ+ = Imζ− ≡ Imζ ,

Reζ+ = Reζ− ≡ Reζ ,
(C.1)

and then adjust the contours accordingly.
The conditions in Eqs. (36) are reformulated as

δ+ < δc+ = arctan
�

Imζ
Reζ− 1

�

,

δ− < δc− = arctan
�

Imζ+ β/x
Reζ− 1

�

,
(C.2)

where δ± are the rapidity shifts for particles and holes. However, these constraints come from
large positive rapidities: negative rapidities do not cause any singular behavior in Eq. (36a)
or Eq. (36b). Therefore, we can incorporate an appropriate rapidity-dependence in Eq. (C.2)
to loosen the constraints. For the particles, an appropriate choice is

δ+(θ ) =
π

8
(1− tanhθ ) . (C.3)

This function approaches zero for large rapidities, so it satisfies Eq. (C.2) on the relevant
domain while becoming approximately π/4 for small rapidities and hence reducing the os-
cillatory behavior there. We could use a similar contour prescription for holes but for any
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reasonable choice of mβ , x and Reζ, the thermal part of Eq. (C.2) regularizes the expression
such that the oscillatory behavior does not pose any serious issue. Therefore, we used

δ− =
δc−

2
, (C.4)

as the hole rapidity shifts. The factor of 2 is a numerical choice that proved sufficient for all
practical purposes.

Next, it is important to discuss the relevant rapidity range θ ∈ [ϑ1,ϑ2]. As stipulated by
the condition in Eq. (C.2), the integrand of Eq. (35) vanishes exponentially for large (positive
or negative) rapidities. This exponential cutoff is governed by the

fε(θ ) =
eimxε(sinh(θ+iεδε(θ ))−(Reζ−iεImζ) cosh(θ+iεδε(θ )))

1− e−εmβ cosh(θ+iεδε(θ ))
(C.5)

envelope. Then, we can introduce a parameter A> 0 characterizing the accuracy of the com-
putations and calculate the relevant rapidity range by numerically solving the

| f+(θ )|= e−A, | f−(θ )|= e−A (C.6)

equations. These have two solutions corresponding to L1± and L2±, respectively, so

L1 =min{L1+, L1−} ,
L2 =max{L2+, L2−} .

(C.7)

For most calculations, we used the A = 10 value. Note that for a wide range of parameter
choices, the value of L2 can be approximated by

L2 ≈ log
�

2A
mxImζ

�

, (C.8)

which will turn out to be useful for estimating the computational complexity.
The last step is to analyze the rapidity discretization. For simplicity, we consider a constant

∆θ step size between sampling points, but the approach can easily be generalized to an adap-
tive method. For generic parameter settings, the thermal part of δc− in Eqs (C.2) and (C.4)
are large enough such that kinematic poles do not pose any problem. Therefore the oscillatory
behavior of the integrands gives the relevant criterion for the discretization. Due to the afore-
mentioned thermal effects and the contour prescription of Eq. (C.3), only the large rapidity
behavior of the particle contributions is significant. Therefore, we can use the rapidity L2 to
set the condition

|g ′(L2)|∆θ = 1 , (C.9)

where g(θ ) is the relevant oscillatory factor:

g(θ ) = imx (sinh[θ + iδ+(θ )]− (Reζ− iImζ) cosh[θ + iδ+(θ )]) . (C.10)

A numerical solution of this equation completes the algorithm: after these considerations, the
simulations are completely analogous to the space-like case.

We can approximate the solution of Eq. (C.9). For a generic parameter choice δ+(L2)≈ 0,
so from Eq. (C.8) we obtain

∆θ ≈
Imζ

A(Reζ− 1)
. (C.11)

Therefore, we can make a rough estimate of the number of rapidity points we need:

N ≈ L2/∆θ =
A(Reζ− 1)

Imζ
log

�

2A
mxImζ

�

. (C.12)

The most important message of this formula is that N ∼ (Reζ − 1). Since calculating the
determinant of the discretized matrix takes O(N3) steps, it is unfeasible to perform simulations
for large ζ values.
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(a) Linear fit. (b) Second order fit.

Figure 15: Extrapolation scheme for calculating the physical correlation functions
corresponding to Imζ = 0 (red stars). The blue dots represent simulation data for
mx = 19.5, Reζ = 1.5, and mβ = 1; the green dashed lines are the extrapolating
functions. On the left, a linear fit was used for the smallest five Imζ values, while on
the right all points are part of a quadratic fit.

C.1 Extrapolation scheme

As discussed in Sec. 3.2.1, the last part of the time-like algorithm is an extrapolation procedure
by which we estimate the results at the physical Reζ+ = Reζ−, Imζ+ = Imζ− = 0 point.

Here we show an example for this extrapolation procedure at mβ = 1 in Fig. 15. Fixing
Reζ+ = Reζ− = 1.5, we used the same imaginary ray parameter Imζ for particles and holes
and investigated the convergence properties as Imζ→ 0. For all parameter settings, we found
that sufficiently close to the physical point,

Cp, f (x ,ζ+,ζ−,β)≈ Cp, f (x ,ζ,β) + c1Imζ+O(Imζ2) , (C.13)

where c1 is a (complex) numerical constant. Therefore we could obtain the physical correlators
by fitting a line on the Cp, f (ζ) vs Imζ curve and reading off the y intercept. This process is
presented in Fig. 15a. However, decreasing the imaginary part of ζ is computationally costly:
for certain parameter settings, especially for large mx values, it was not possible to reach the
applicability range of Eq. (C.13). In these cases, we used a quadratic fit,

Cp, f (x ,ζ+,ζ−,β)≈ Cp, f (x ,ζ,β) + c1Imζ+ c2Imζ2 +O(Imζ3) , (C.14)

as shown in Fig. 15b. This protocol proved to be sufficient in all cases.
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