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Abstract

Pairing lies at the heart of superfluidity in fermionic systems. Motivated by recent exper-
iments in mesoscopic Fermi gases, we study up to six fermionic atoms with equal masses
and equal populations in two different spin states, confined in a quasi-two-dimensional
harmonic trap. We couple a stochastic variational approach with the use of an explic-
itly correlated Gaussian basis set, which enables us to obtain highly accurate energies
and structural properties. Utilising two-dimensional two-body scattering theory with a
finite-range Gaussian interaction potential, we tune the effective range to model realistic
quasi-two-dimensional scattering. We calculate the excitation spectrum, pair correlation
function, and number of pairs as a function of increasing attractive interaction strength.
For up to six fermions in the ground state, we find that opposite spin and momentum
pairing is maximised well below the Fermi surface in momentum space. By contrast,
corresponding experiments on twelve fermions have found that pairing is maximal at
the Fermi surface and strongly suppressed beneath [M. Holten et al., Nature 606, 287-
291 (2022)]. This suggests that the Fermi sea — which acts to suppress pairing at low
momenta via Pauli blocking — emerges in the transition from six to twelve particles.
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1 Introduction

Fermionic superfluidity is a many-body phenomenon occurring in systems as diverse as liquid
helium-three, superconductors, nuclear matter, neutron stars, and ultracold quantum gases.
The key commonalities in these systems — that they flow without dissipation, have a non-
classical rotational moment of inertia, and feature an energy gap in their elementary excitation
spectrum — arise due to the pairing of fermions. Quantum gases provide an ideal experimental
arena in which to interrogate the nature of fermion pairing since many of their degrees of
freedom are highly tunable. Factors such as the number of particles, their internal states and
interactions, the system dimensionality, and the confinement geometry can all be precisely
measured and controlled [1-3]. In ultracold atomic Fermi gases, this has led to the realisation
and detailed study of the crossover from a Bose-Einstein condensate (BEC) of tightly bound
bosonic pairs to a Bardeen—Cooper—Schrieffer (BCS) superfluid of long-range Cooper pairs in
three dimensions [4-11]. Restricting these gases to two dimensions strongly alters pairing and
superfluidity [12-20], and may offer insight into unconventional forms of superconductivity
encountered in solid-state physics [21,22].

Very recently, S. Jochim’s group at Heidelberg University have experimentally probed how
the key features of Fermi superfluidity emerge at the most fundamental level — ‘from the
bottom up’ [23,24]. The group deterministically prepared nearly pure quantum ground states
for up to twenty ultracold fermions that were equally distributed between two different spin
states and confined in a (quasi-)two-dimensional harmonic trap. Their flexible experimental
set-up enabled them to tune the inter-spin interactions from the non-interacting limit into
the regime of strong binding, and to extract the single particle and spin resolved momentum
distribution of the Fermi gas at any intermediate interaction strength. They reported Cooper
pairing in a system comprising only twelve interacting particles, which manifested as a peak
in the correlations between atoms with opposing spins and momenta at the Fermi surface in
momentum space [24]. In another experiment involving as few as six particles, they observed a
few-body precursor of a quantum phase transition from a normal fluid to a superfluid [23]. The
precursor transition was signalled by a softening (i.e., a decrease in frequency) of the lowest
mode in the excitation spectrum when the attractive interaction strength was increased. In the
many-body limit, this mode becomes associated with amplitude variations of the superfluid
order parameter and is commonly referred to as the massive ‘Higgs mode’ [25]. While mode
softening in the six-atom system had previously been predicted [26], to our knowledge, the
pair momentum correlations mentioned above have not yet been theoretically calculated.
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Earlier theoretical work on two-dimensional trapped mesoscopic Fermi gases has been
focused on probing their excitations. In 2016, G. Bruun et al. [26] calculated the monopole
(zero angular momentum) excitation spectra for between six and twelve fermions interacting
via a contact potential. For closed-shell configurations, they found that the lowest energy
mode depends non-monotonically on the interaction strength and mainly consists of coherent
excitations of time-reversed pairs — which, as mentioned above, has since been confirmed by
experiment [23]. Their approach employed the harmonic oscillator basis, which is convenient
for evaluating the Hamiltonian matrix elements, however is poor at approximating the cusps
in the wave function induced by the short-range interactions [27]. This made it necessary to
use very large numbers of basis states (on the order of ~ 107) to numerically converge the
energies [26], and the size of the calculation made it difficult to solve for two-body observables
such as momentum-space pair correlations. More recently in 2022, J. Hofmann et al. [28]
approximated the excitation spectra of the same Fermi systems by using an exactly solvable
(integrable) s-wave pairing Hamiltonian known as the Richardson model [29,30]. While a full
contact interaction can couple opposite spins in any combination of harmonic oscillator states,
the Richardson model only accounts for time-reversed pairing in the same energy level (or
shell) and assumes a constant coupling strength for all pairs. As such, the formalism retains the
key matrix elements that give rise to superfluidity [31] and allowed the lowest pair excitation
mode to be approximated for the first fifteen closed-shell configurations [28]. It was hence
demonstrated how the minimum energy of pair excitations deepens with increasing particle
number and shifts toward weaker interaction strengths, consistent with experiment [23].

In this manuscript, we adopt an entirely different and highly accurate (virtually exact)
approach for calculating the energetics of two-dimensional trapped mesoscopic Fermi gases,
which additionally allows us to determine their structural properties and pair correlation func-
tions. We obtain the excitation spectra variationally, based on the now renowned technique
introduced by K. Varga and Y. Suzuki in 1995 [32,33]. The trial wave functions are chosen
to be combinations of explicitly correlated Gaussians, which permit an analytical evaluation
of the Hamiltonian matrix elements [34,35]. The non-linear variational parameters of these
trial functions, the Gaussian widths, are selected stochastically. The suitability of this method
to describe ultracold few-particle systems is three-fold [36-38]: 1) Cold atoms are sufficiently
dilute that only binary interactions are important. Since each Gaussian basis function depends
explicitly on every two-body correlation (interparticle separation) in the system, a very high
accuracy is achievable. 2) Cold atoms have universal properties that are independent of the
microscopic details of the true interaction potential, justifying the assumption of a Gaussian
interaction. 3) The Gaussian basis functions are flexible enough to simultaneously replicate
correlations that develop on any length scale, including those of the scattering potential and
the external confinement. This is because a wave function in a harmonic trap has a natu-
rally Gaussian dependence at large distances, whereas its short-range cusp is well captured
by superpositions of Gaussians. Consequently, such an approach has previously been used to
obtain numerically exact energies and structural properties (such as radial one-body densities
and pair distribution functions, but not pair momentum correlations) for spin-balanced two-
component Fermi gases subject to an isotropic three-dimensional harmonic confinement. In
2011, the three-dimensional system was solved for up to six particles at a full range of interac-
tion strengths [39], while subsequently in 2014 and 2015, the eight- [40] and ten-particle [41]
problems were also solved at unitarity. For all three atom numbers, pairing could be evidenced
by the clear two-peak structure of the (scaled) radial pair distribution functions.

In the two-dimensional calculations reported here, we employ a shape-resonant Gaussian
interaction potential — which has a large and variable effective range — to mimic and probe
the quasi-two-dimensional nature of real experimental confinement geometries [42-45]. We
are able to access the second-order pair correlations measured in experiment [24] by evalu-
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ating the matrix elements of the real-space one- and two-body fermionic density matrices in
the correlated Gaussian basis and then analytically Fourier transforming the results into mo-
mentum space. We focus on studying the correlations in the ground state for spin-balanced
two-component Fermi gases in different interaction regimes. The one distinction between our
theoretical analysis and the experiment is the number of particles. Whereas the latter involved
twelve atoms, the maximum number that we can consider is six due to computational time
constraints which are imposed by the first-quantised formulation of the explicitly correlated
Gaussian (ECG) method. Nevertheless, our calculation of the pair correlation function is new
and our findings complement the experiment in revealing how pairing emerges in the limit of
very few fermions.

This paper is organised as follows: In Sec. 2 we discuss our model of the two-dimensional
Fermi gas, including the special role played by the effective range of interactions. (Since the
ECG method has already been thoroughly detailed in the literature, we distill the essential
aspects which apply to solving the system of interest in Appendix A.) In Sec. 3 we present and
interpret our results: First, we study the excitation spectrum of the Fermi gas, focusing on
the unique behaviour of the lowest monopole mode. Subsequently, we elucidate the nature of
opposite-spin pair correlations in the ground state and we directly compare our calculations
to experiment. We investigate the effects of particle number, interaction strength, and axial
confinement strength on both the excitations and pairing. We conclude and identify avenues
for future research in Sec. 4.

2 Model

We theoretically consider equal-mass two-component Fermi gases comprising N = Ny + N|
atoms with balanced spin populations [i.e., Ny = N; = N /2, where N; (N|) is the number of
‘spin-up’ (‘spin-down’) fermions]. Such a system is exemplified by ultracold fermionic atoms of
®Li prepared in the two lowest 2S; /2 hyperfine levels. In the experiments of interest, these par-
ticles are confined to a highly anisotropic single layer of a standing-wave optical dipole trap,
which freezes out motion along the axial (z) direction. This layer is then superimposed with
an optical tweezer — or ‘microtrap’ — which provides an isotropic radial harmonic confine-
ment w, [23,24,46]. When superimposed on a large ensemble of atoms, the small microtrap
can locally enhance the chemical potential by a significant amount without modifying the
temperature of the gas [47]. This leads to a small region of increased densities deep in the
degenerate regime, and due to Fermi-Dirac statistics, all low-lying energy levels of the micro-
trap become filled with almost unit probability [46]. By inclining and lowering the trap walls
in a controlled manner, particles above a certain ‘spill threshold’ can then be deterministically
removed, leaving behind a stable mesoscopic number of atoms in the ground state [46]. The
systems of particular relevance to the current study contain as few as Ny + Ny =1+1,2+2,
or 3 + 3 particles, such that in the non-interacting ground state only the first two 2D harmonic
oscillator shells are occupied. Interactions (collisions) subsequently induced by a Feshbach
resonance between distinguishable fermions in the gas (i.e., between the different hyperfine
states) are low in energy and well described by s-wave two-body physics.
The system Hamiltonian in two dimensions reads as follows:

N 2 N
h
H:;[—ﬂvr?+vext(|ril):|+;Vim(|ri—r}'|), (D

where m is the atomic mass and r; denotes the position vector of the i" atom measured from
the trap centre. The first term corresponds to the kinetic energy of the particles, the second
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term to an external harmonic trap,

2

2
mcorr
2 U’

Vexe(I1;]) = ri = rl, (2)
and the third term to short-range pairwise interactions between fermions with unlike spins.
We model these interactions with a finite-range Gaussian potential [45] that is parameterised
by a width ry (> 0) and a depth V;, (< 0):

Vo (It = Ve P \_y e r* 3)
. —_— X —_—— — — X — ,

where [, = /h/(mw,) is the radial harmonic oscillator length scale in the 2D plane. In
the non-interacting limit of V; = 0, the Hamiltonian H in Eq. (1) has eigenvalues of
¢©® = (2n + |m| + 1)Hw,, where n = 0,1, 2, ... is the principal quantum number and
m=0, £1, £2, ... is the quantum number for orbital angular momentum.

For a fixed value of ry, the value of V, can be adjusted to generate potentials with different
free-space s-wave scattering lengths and effective ranges (or equivalently, we may fix V;, and
vary ry). We consider two particles elastically scattering via the interaction potential, Eq. (3),
in two-dimensional free space. We solve the s-wave radial Schrodinger equation for the relative
motion up to a radius much larger than ry, matching the logarithmic derivatives of the wave
functions to the asymptotic form in order to obtain the real-valued s-wave scattering phase
shift 6(k) [48]. Subsequently, by fitting the phase shift to its low-energy expansion in two
dimensions,

cot[5(k)]=%[y-f-ln(ka%)}+%k2rm+..., @

we determine both the s-wave scattering length a,p and the effective range rop [49-51].1
Here, k = |Kk| is the magnitude of the relative wave vector between the two atoms in the 2D
plane and y ~ 0.577216 is Euler’s constant. At low energy, the physics is independent of the
short-range details of the interaction potential and instead exhibits universality with respect to
both a,p and r,p. Accordingly, in our calculations we choose Gaussian widths small enough,
ro < 0.11,, to ensure that higher order expansion terms in Eq. (4) are negligible within the
energy range of interest. We have furthermore implemented a modified version of the model
potential — given by Eq. (S23) in the supplemental material of Ref. [45] — and have found
that it yields the same energies as in Fig. 2 for a given two-body binding energy (defined below)
and ryp. This confirms that effects beyond those of the effective range are indeed negligible.

In two dimensions the scattering length is always positive, a,p > 0. In a many-body pic-
ture, the two-component Fermi gas undergoes a crossover from a Bose-Einstein condensate
of diatomic molecules to a Bardeen—-Cooper—Schrieffer superfluid of Cooper pairs as a,p in-
creases. However, unlike in three dimensions, there is no unitary limit where the system
becomes scale invariant and the interaction strength (scattering length) diverges. Rather, the
strongly interacting regime is in the vicinity of In(kpa,p) = 0, where the Fermi wave vector kp
denotes the radius of the non-interacting Fermi sea at zero temperature [52].

As previously described, in cold-atom experiments a two-dimensional geometry can be re-
alised by applying a strong harmonic confinement along the axial direction, with angular fre-
quency w, and length scale [, = {/fi/(mw,). Realistically, however, the extent of the gas per-
pendicular to the 2D plane is necessarily finite. At low energy and small [, (such that kl, < 1),

INote that the precise definitions of the two-dimensional scattering length a,, and the two-dimensional effec-
tive range r,p, vary in the literature. Our particular definition of r, has units of squared length, consistent with
Ref. [45].
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Figure 1: (a) The model Gaussian interaction potential, Eq. (3), at V,/(hw,) =—70
and ry/l, = 0.1 [where lr2 = h/(mw,)]. (b) The two-dimensional scattering length
a,p (in blue) and the two-dimensional effective range ry, (in green) as functions of
the potential depth Vj, for a fixed width of ry = 0.11,.. (Note, this figure is similar to
Fig. 1 in Ref. [45].)

the two-body scattering of distinguishable fermions can be mapped onto a 2D scattering am-
plitude with an effective range given by [42-45]2

rop =—121n(2). (5)

By assigning an appropriately finite and negative value to the effective range parameter in
the purely two-dimensional model considered here, we can thus mimic the effect on the scat-
tering of a quasi-two-dimensional confining potential. In particular, through our choice of the
interaction parameters V; and r, we can attribute a value to the dimensionless effective range
roan/ lf which matches the trap aspect ratio w,/w, in a given experiment.

In practical computations, we tune the effective range to non-negligible negative values
through a shape resonance [45, 53], which arises due to the general structure of the model
potential shown in Eq. (3): the first term creates an attractive well that can support virtual
bound states, while the second term adds a small repulsive barrier that can couple these virtual
bound states to free-space scattering states — as depicted in Fig. 1(a). Figure 1(b) illustrates
the range of combinations of a, and ry, that can be obtained by fixing r, and varying V.
In this figure and in all our calculations, we restrict our attention to the regime where the

2For this mapping to be valid, we furthermore require [, to be much greater than the van der Waals range of
the interactions between atoms — i.e., rygw < [, < [, — which is always satisfied experimentally.
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potential supports a single two-body s-wave bound state in two-dimensional free space [45].2

To numerically solve the time-independent Schrédinger equation for the Hamiltonian in
Eq. (1), we employ the method of explicitly correlated Gaussians. A description of this tech-
nique is provided in Appendix A. We parameterise our results in terms of the effective range r,p
and the two-body binding energy ¢; > 0, with the latter determined by the following approach.
For every set of V, and r values that we use to numerically solve a general N; + N| problem,
we also solve the corresponding 1 + 1 problem numerically by implementing the correlated
Gaussian method. This yields the relative energy of the two-body ground state, & 111 (see
Appendix A). The total ground-state energy of one spin-T particle and one spin-| particle in the
2D harmonic trap is given by &1 = 2fiw, —¢;,. Since we know that &1 = Eom 141 + Erel, 141
and there are no centre-of-mass excitations in the ground state, &.p, 141 = fiw,, we can then
immediately obtain ¢,.

3 Results

We apply the method of explicitly correlated Gaussians to obtain numerically optimised and
converged basis sets at a wide range of attractive interaction strengths (or binding energies)
for the fermionic systems of interest. Upon diagonalising the Hamiltonian, we utilise the eigen-
values to calculate the low-energy excitation spectra of the Fermi gases and the eigenvectors
to determine their structural properties. With regard to the latter, we focus on investigating
the nature of opposite-spin pair correlations in the ground state and we directly compare our
numerics against recent experimental measurements.

3.1 Excitation spectrum

The excitation spectra of the Fermi systems are of fundamental interest since they can re-
veal signatures of pairing [26] and can be experimentally accessed in two dimensions [23].
Figure 2 displays the lowest energy fermionic excitation spectrum, i.e., the difference
AE = Eqpg — Egs between the first-excited-state (E;gg) and ground-state (Egg) energies as
a function of the two-body binding energy ;. In the upper panel (a) we compare our results
for Ny+ Ny =1+1,2+2, and 3 + 3 fermions at very nearly zero effective range (numerically,
we set ryp/ lf = —0.001 ~ 0), while in the lower panel (c) our results for 3 + 3 fermions are
compared at different fixed values of the effective range. In the middle panel (b), the ground-
and first-excited-state energies used to calculate the excitation energies of panel (a) are shown
separately as a reference.

The non-interacting ground state at £, = 0 can assume one of two configurations depend-
ing on the total number of particles N: either all of the degenerate single-particle states of
the highest energy level of the 2D harmonic oscillator are filled (‘closed shell’), or some of the
degenerate states remain empty (‘open shell’). The 1+ 1 and 3 + 3 systems both feature a
closed-shell ground state that is non-degenerate, whereas the 2+ 2 ground state is open-shell.
We restrict our consideration to ground states that are characterised by zero total orbital an-
gular momentum. For the 2 + 2 system, this means that the two highest energy opposite-spin
fermions reside in different degenerate single-particle states. Since the Hamiltonian is rota-
tionally symmetric, only monopole excitations between states with the same (i.e., zero) total

3At the point where a new bound state enters the potential both a,;, and |r,p| positively diverge. As discussed
in Ref. [45], the potential does not support a two-body bound state in the limit of V, — 0. In two dimensions
this is in stark contrast to the case of a potential that is everywhere attractive. Such a potential (even one that is
arbitrarily weak) always supports a two-body s-wave bound state in free space because the scattering amplitude
always features a pole at negative energies [52].
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angular momentum occur.* For all three atom numbers at £, = 0, the lowest monopole exci-
tation has an energy of AE = 2hw,. This can be attributed either to exciting a single particle
up two harmonic oscillator shells, or to exciting a time-reversed pair of particles (n, m, T) and
(n, —m, |) up one shell each.

As the attractive interaction strength increases from zero, €, > 0, the excitation energies
for systems with different particle numbers in panel (a) evolve very differently. A striking
feature is the non-monotonic behaviour of AE for the case of 3+ 3 fermions. As first argued in
Ref. [26]° — and later lucidly discussed in M. Holten’s PhD thesis [46] — this non-monotonicity
is indicative of pair correlations. The first excited state for 3+3 fermions is a linear combination
of three degenerate configurations: one being the result of a single-particle excitation and the
other two the result of pair excitations. The energy of the former grows with ¢; simply because
increasing the mean-field attraction felt by each particle enhances the effective confinement,
wﬁff > w, — which thereby raises the cost of exciting a single particle, AE = 2hw$ff [26]. On
the other hand, when a pair of particles is excited from the closed-shell ground state they can
use the degenerate states in the new, otherwise empty harmonic oscillator level to increase
their wave function overlap. This causes them to gain binding energy, and hence, diminishes
the cost of monopole excitations monotonically as ¢}, increases [26,46].° At a critical binding
energy (denoted by ¢;) the excitation energy AE reaches a minimum. Beyond this point the
interaction strength becomes comparable to the radial trapping frequency ¢, ~ Aw,, which
signifies that pairing then occurs not only in the excited states, but also in the ground state.
As a result, the ground-state energy starts decreasing faster than the first-excited-state energy,
such that AE begins to increase [23]. These pairing effects are dominant in the 3 + 3 system
which leads to the overall non-monotonic dependence of AE on g;. This is not the case for
1+ 1 and 2 + 2 fermions in the monopole sector, and consequently, for those systems AE
increases monotonically with ¢, instead. In Appendix B, we discuss how our results based on
the Gaussian interaction potential of Eq. (3) compare quantitatively to the contact interaction
results from Ref. [26].

We can consider approaching the many-body limit by increasing the number of particles
N — oo, while keeping the trap strength , the same.” In this case, if the ground state has
a closed-shell configuration, then the minimum value of AE at the critical binding energy ¢;
will decrease as N increases, eventually reducing to zero in the many-body limit so that pairs
are coherently excited without any energy cost [25,26]. In this limit, if €, is increased from
zero to ¢, then the many-body two-component Fermi gas will become unstable and undergo a
second-order phase transition into a superfluid state. The lowest energy monopole excitation
of the trapped superfluid corresponds to the Higgs mode with an energy equal to twice the
superfluid gap [25,46]. Our result for 3+ 3 fermions in panel (a) can thus be viewed as a few-
body precursor to the Higgs mode for the Gaussian interaction potential given by Eq. (3). In
panel (c), we investigate the effect of different quasi-two-dimensional harmonic confinements

*The m quantum numbers for all atoms sum to zero in both the ground and excited states.

> This work calculated the monopole excitation spectrum of the same system (but for contact interactions) by
using exact diagonalisation in the harmonic oscillator basis.

6Similarly, the remaining pairs of particles in the lower harmonic oscillator shell can increase their wave function
overlap and gain binding energy by occupying the degenerate states that are now free. Thus, the pair excitation
energy is a many-particle quantity that can only be accurately determined by taking the entire mesoscopic sample
into account [46].

’In free space where BCS theory applies, the many-body limit is typically approached by increasing both the
number of particles N — oo and the system volume }V — oo in such a way that the density n = N/V remains
constant. In our scenario where w, is fixed, we instead have n — oo when N — o0 and pairing is suppressed
at small enough binding energies ¢, < hw,. If we wish to make our system amenable to BCS theory, we could
keep n constant by reducing the trap strength w, while increasing N. In that case, the trapping frequency would
vanish w, — 0 for N — 00, which means the condition ¢, < fiw, would never be satisfied in the many-body limit.
Consequently, a superfluid state with a finite gap would always exist at zero temperature for any non-vanishing
interaction strength.
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Figure 2: The lowest monopole excitation spectrum for various few-body Fermi sys-
tems. (a) The excitation energy, AE = E;ps — Egg, as a function of the two-body
binding energy ¢, for Ny + Ny = 1+ 1,2+ 2, and 3 + 3 fermions at zero effective
range (ryp/ lf = —0.001 ~ 0). (b) The ground- (Egs) and first-excited-state (E;gg)
energies used to calculate AE of panel (a). Similar to panel (a), the purple, green,
and blue lines are associated with the 1 + 1, 2+ 2, and 3 + 3 systems, respectively.
(¢) The non-monotonic excitation spectrum for 3 + 3 fermions at different effective
ranges. The selected values — rz[)/lr2 =—0.2, —0.1, —0.05, —0.001 — respectively
correspond to trap aspect ratios of w,/w, ~ 1/3.5, 1/7, 1/14, 1/700. [Note that the
blue line in (a) is the same as the short-dashed gray line in (c).]
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on this ‘few-body Higgs mode’ by varying the effective range parameter ryp, introduced in
Eq. (4). We plot the lowest monopole excitation energy for 3 + 3 fermions at the following
effective ranges: rZD/lf =—0.2,—0.1,—0.05, —0.001 — which are associated with trap aspect
ratios of: w,/w, ~ 1/3.5, 1/7, 1/14, 1/700, respectively, according to Eq. (5). Notably, we
find that as the magnitude of the negative effective range increases, the minimum value of AE
decreases and shifts to smaller binding energies, i.e., £; decreases. In addition, we see that the
dependence of AE on the value of ry, (or [,) is lessened at smaller €;,. The experiment against
which we will later compare our calculated pair momentum correlations had radial and axial
trapping frequencies of w, = 27 x 1,101 Hz and w, = 27 x 7,432 Hz [24]. These frequencies
correspond to a trap aspect ratio of ~ 1/7 and an effective range of ryp/ lf =-—0.1027 ~—0.1
— designated by the thick red line in panel (c). The value of the critical binding energy for
this line is ¢; ~ 0.953fw,..

3.2 Pair correlation function

Pairing — regardless of the exact mechanism by which the particles attract each other — is
a correlation phenomenon. This means that we can extract its description from the quantum
two-body density matrix, which contains a complete set of information on all two-body corre-
lations in the system [54]. In the position representation, the two-body density matrix reads
as follows:

p(ry, 145 12, 15) = (I r)Y ()Y (1), (1)), 6)

where (---) denotes an expectation value, and wg(r) and v, (r) are fermionic field creation
and annihilation operators, respectively (with o =17, |). The diagonal matrix elements of
Eq. (6) correspond to the instantaneous correlations between all particles’ positions, whereas
the off-diagonal elements are responsible for two-particle coherence [54]. The diagonal ele-
ments are of particular interest since they are directly accessible in experiments. These ele-
ments, (1(r;)n(ry)) — written using the density operator, 1, (r) = ipj;(r)lpa(r) — specif-
ically provide the probability of simultaneously finding opposite-spin fermions at positions
r; and r,. They can equivalently be written as (ny(p;)n;(py)) — with n,(p = hk) the
momentum-space density operator — in order to give the probability of simultaneously find-
ing opposite-spin fermions with momenta p; and p,. Since the signatures of opposite-spin
pairing are predominantly evident in the momentum correlations, we focus on the latter. Note
that even in the purely non-interacting regime, coincidences of a spin-T fermion with mo-
mentum p; and a spin-| fermion with momentum p, can still occur. In this limit, the two-
particle density distribution becomes a direct product of independent single-particle densities:
(np(p)ny(p2)) = (ny(p1)){n;(p2)) [54]. We therefore subtract this quantity so as to only ac-
count for correlations caused solely by interactions, leading to the second-order correlation
function, C®, that features in S. Jochim’s experiments [24]:

CH(py, po) = (np(p)ny(p2)) — (n1(P1)) (ny(P2)) - 7

We theoretically evaluate C'?) by using the method of explicitly correlated Gaussians, relegat-
ing the details of this calculation to the appendices, while focusing the main text on a discus-
sion of our results. In Appendix C, we define the expectation values in Eq. (7) in terms of the
one- and two-body fermionic density matrices in position and momentum space. The real-
space one-body density matrix in the correlated Gaussian basis has previously been derived in
Ref. [39] for the case of an isotropic three-dimensional harmonic confinement. In Appendix D,
we perform the analogous derivation in two dimensions and then analytically Fourier trans-
form the result to determine expressions for (ny(p;)) and (n;(p,)). In Appendix E, we extend
this approach to obtain the correlated Gaussian matrix elements of the real-space two-body
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density matrix. The Fourier transformation into momentum space can again be carried out
analytically to yield an expression for (n(p;)n;(p2))-

A pertinent question is how to define (or approximate) the Fermi momentum pp = hky
in a few-body system. The harmonic trap in the radial direction provides not only a natural
length scale for the Fermi gas [, = v/h/(mw,), which sets the average interparticle spacing,
but also a natural momentum scale p, = 4/fimw,. When there are only very few particles, the
step in the momentum distribution at py for a given spin component is ‘smeared out’, with a
width on the order of p,. Thus, while the mesoscopic sample is characterised by two distinct
momentum scales p, and pr, an unambiguous definition of p does not exist because the Fermi
surface is coarse-grained [46]. One option in this case is to simply use the continuum equation
which typically defines the Fermi momentum in a many-body system pr = 4/ 2mey, where the
Fermi energy ¢ is the energy of the non-interacting ground state at zero temperature. Instead,
we choose to define pp in a manner consistent with Ref. [55] which also theoretically probes
the many-body physics of two-component Fermi gases from the few-body regime. Therein the
authors employ the local density approximation (LDA) in three dimensions to determine pg
as a smooth function of the number of particles N < 10. Although the applicability of either
the continuum equation or the LDA to such small atom numbers may be questioned, the latter
approach minimises few-body shell effects and smoothly extrapolates to the correct result in
the large-N limit. We therefore define a local chemical potential u(r) = u — Vo, (|r]), which
depends on the global chemical potential u = de/JN, where ¢ is the total energy of the trapped
gas. In two dimensions, a trapped non-interacting Fermi gas with balanced spin populations
has the particle number density,

2
n(r) = %(u— " rz) , ®8)

which gives the total number of particles,
u?
N =2N; =fd2r n(r) = —- 9
w

Above, the radial co-ordinate r = |r| is integrated from zero up to the Thomas—Fermi radius
rrr = 4/2u/(mw?). By using the definition of the trap length [,, we then immediately obtain

pr = (8N)V41/1, (10)

as the local Fermi momentum at the centre of the trap.

We first take the correlation function C'®)(p;, p,) in Eq. (7) and fix p, to a single value
denoted by p,, while allowing p; to vary. We plot the results for the ground state of the
N; + Ny = 3 + 3 Fermi system in Fig. 3. The effective range is set to the experimental
value in all panels, ryp/ lf = —0.1, and the binding energy increases across the panels from
left to right. We consider all (non-zero) binding energies measured in Fig. 2 of Ref. [24]:
gp/(Mw,) =0.79, 1.20, 1.97 — except for £, /(Aw,) = 15.908 — and two additional interme-
diate values: €, /(hw,) = 0.40, 1.59. The horizontal and vertical axes on each plot respectively
measure the x and y components of p; = py. The value of p, = p, is indicated by the black
point (e) and a dashed circle is drawn at that radius, while another dashed circle is drawn
at the radius of the Fermi momentum py. In the upper panels p, is located inside the Fermi

8At this binding energy, the 6+6 system in the experiment formed bosonic pairs that were strongly interact-
ing [24]. In the BEC limit of even higher binding energies, the particles would form non-interacting point-like
molecules that reside in the ground state of the harmonic oscillator [11]. Later in Sec. 3.3 where we determine
the number of pairs in the 3 + 3 ground state, we will find that we are never close to the deep BEC regime for our
considered range of binding energies, ¢, S 2fiw,.
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sea, whereas in the lower panels it is positioned on the Fermi surface. All panels utilise the
same colour scaling. Our figure can be directly compared against plots (a)-(j) in Fig. 2 of
Ref. [24]. As was found in experiment, for particles with different spins there are only consid-
erable second-order correlations between those which have opposing momenta. However, in
contrast to the experiment we see that pairing in the 3 + 3 system is dominant inside the Fermi
sea, rather than on the Fermi surface, at all considered binding energies. The experiment for
6+ 6 fermions instead showed pairing to be dominant on the Fermi surface at binding energies
of g, /(hw,) =0.79, 1.20, and 1.97.

In view of Fig. 3, we define the opposite-momentum pair correlator as C?(p; =p, p, =—p),
as was done in Ref. [24]. Due to radial symmetry, C®(p, —p) = C'®(p) only depends on the
magnitude of the particles’ momenta and can thus be expressed as a one-dimensional corre-
lation function. C®)(p) is plotted in its dependence on momentum p for 3 + 3 fermions in
the ground state in Fig. 4. We explore the parameter space by varying both the two-body
binding energy ¢, and the effective range r,. Each panel is associated with one of the bind-
ing energies previously considered in Fig. 3. Inside a given panel, the thick red line corre-
sponds to the experiment’s value of the effective range, rop/ lf = —0.1, whereas the thin gray
lines correspond to the other effective ranges featured in the excitation spectra of Fig. 2(c).
[Note that in every panel of Fig. 4, there is one point along the red curve that matches with
one point in the associated 2D contour plot of Fig. 3 (with the same binding energy) — but
otherwise, these figures contain different information.] Similar to in Ref. [24], we include as
a green line the limit from standard BCS theory (normalised to the correct number of parti-
cles), which is valid when the mean-field superfluid gap greatly exceeds the binding energy:
A = \/2e,ep > g [12], where g = plg/(Zm) denotes the Fermi energy. While this result
is not quantitatively accurate for only six (or twelve) particles because it neglects quantum
fluctuations, it nonetheless provides a qualitative picture of the many-body limit — namely, a
single peak at the Fermi momentum pr. The details of the BCS calculation can be found in
Ref. [24] and are reproduced here in Appendix F for completeness.

Across all panels of Fig. 4, we observe that the strength of the correlations (the maximum
height of the peak) increases with increasing binding energy. This aligns with expectations
that larger binding energies (or interaction strengths) lead to an increase in pairing. On the
other hand, the horizontal position of the peak’s maximum barely changes with the binding
energy. Within a panel, we see that increasing the magnitude of the negative effective range
(at a fixed binding energy) also enhances the pair correlations. But again, this does not shift
the peak horizontally. We therefore conclude that opposite spin and momentum pairing for
3 + 3 fermions is consistently largest at momenta significantly below the Fermi surface. This
again contrasts with the experimental measurements for 6 + 6 fermions [24], where C®(p)
was observed to peak at p = py for the same range of binding energies, ¢, < 2hw,.

In Fig. 5, we overlay the theoretical results on the experimental measurements mentioned
above at binding energies of &;/(hw,) = 0.79, 1.20, and 1.97 — taken from plots (1), (m),
and (n) in Fig. 2 of Ref. [24]. In each panel the smooth red, blue, and green curves show the
calculated opposite-momentum pair correlator C?(p) as a function of momentum p for the
ground state of 1+ 1, 2+ 2, and 3+ 3 fermions, respectively (with ryp/ lr2 = —0.1). The purple
line is the experimental data for the 6 + 6 ground state. To properly compare systems with
different particle numbers we rescale the momentum along the horizontal axis by the Fermi
momentum pr. [Note that our definition of the Fermi momentum, Eq. (10), differs slightly
from the continuum definition used in Ref. [24]. For 6+6 (3+3) fermions this difference is only
about 7% (10%).] Due to the rescaling, we can see that qualitatively — and quantitatively at
large momenta, p > pr — there is minimal difference in the pairing between the 2+2 and 3+3
systems. This may be related to the fact that the non-interacting ground state for both four and
six particles involves the same number of harmonic oscillator shells. Notably, the experimental
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Figure 4: The calculated opposite-momentum pair correlator C?)(p) as a function
of momentum p for the ground state of Ny + N = 3 + 3 fermions. The multiple
panels are associated with different interaction strengths ~ ¢, whereas the axial
confinement ~ ryp is varied within each panel. In the experiment of Ref. [24] the
measured binding energies were ¢;/(fw,) = 0.00, 0.79, 1.20, and 1.97, while the
trap aspect ratio corresponded to an effective range of ryp/ lf = —0.1 (marked by the
thick red line). The vertical gray line designates the Fermi momentum py.
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Figure 5: The opposite-momentum pair correlator C?)(p), plotted as a function of
the rescaled momentum p/pp, and compared for different particle numbers. Each
panel corresponds to a different binding energy ¢;. The smooth red, blue, and green
curves are the theoretical results for Ny + Ny = 1+ 1,2+ 2, and 3 + 3 fermions
in the ground state, respectively (at the experiment’s value of the effective range,
ran/ lr2 = —0.1), while the purple line is the experimental data for the 6 + 6 fermion
ground state. The vertical gray line designates the Fermi momentum pg.

@) (p) function peaks at pp and vanishes at p — 0,° while the theoretical C®(p) function for
fewer particles peaks well below the Fermi surface and remains finite at small momenta. We
remark that the depicted C®)(p) results for 1 + 1 fermions have been compared to the results
of another method of exact diagonalisation which uses a numerical B-spline basis set,'® and
in all cases, the agreement was found to be exact.

°It should be noted that the error bars on the experimental data in Fig. 5 are much larger at small momenta than
at high momenta. This is because C?(p) is experimentally determined by ‘counting’ pairs of atoms with opposite
spins and momenta that occur anywhere around a ‘ring’ of radius p in momentum space, and then dividing by
that radius. Due to a purely statistical effect, at very small radii the numbers of counts are also very small, which
means those data points are inherently less reliable.

10B_splines are piece-wise polynomials which can be defined through recursive relations [56]; for a review of
their application to quantum atomic and molecular physics, consult Ref. [57].
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3.3 Number of pairs

We can compute the number of opposite-momentum pairs, Ny, by integrating Cc@(p) over
two-dimensional momentum space. In Fig. 6, we plot Np,,;; (red points) as a function of interac-
tion strength ¢, for the 3+3 closed-shell ground state (with ryp/ lr2 = —0.1). This figure directly
illustrates how the system evolves from an unpaired to a paired state. For much stronger in-
teractions than those shown, ¢, > 2fw,, all the fermions form tightly bound bosonic dimers,
reminiscent of the deep BEC regime in macroscopic systems, and the number of pairs becomes
maximal, Ny = 3.1 Here, we see that for weak-to-moderate interactions only a small frac-
tion of the system is paired. The analogous experimental data for the 6+ 6 closed-shell ground
state is provided in Fig. 3 of Ref. [24]. In a closed-shell structure, all the energy levels up to
the Fermi energy are fully occupied and there is a gap of fiw, between the completely filled
and completely empty levels. This energy gap stabilises the state against small perturbations,
and consequently, pairing is suppressed at small binding energies, &, < hw, [46]. A criti-
cal binding energy &; must be reached before it becomes energetically favourable to excite
fermions into the empty higher levels and form pairs [46]. As we discussed in the final para-
graph of Sec. 3.1, we can approach the many-body limit by increasing the number of particles
N — oo, while keeping the trap strength w, fixed. In this limit, the system remains in the
normal state for ¢, < hw, and undergoes a quantum phase transition to a superfluid state
with long-range order at ¢;. On the mesoscopic scale a precursor of this phase transition can
be observed in the fermionic excitation spectra of systems with a closed-shell ground state.
The critical binding energy for 3 + 3 fermions is associated with the minimum energy of the
lowest monopole excitation in Fig. 2(c) — for ryp/ lr2 = —0.1 (i.e., the thick red line) this value
is &7 ~ 0.953Hw,. The prediction for Np,; from standard mean-field BCS theory (see either
Ref. [24] or Appendix F) is given by the solid blue line in Fig. 6. In order to describe meso-
scopic samples, the authors of Ref. [24] off-set the BCS result by the critical binding energy
as a type of first-order approximation of finite-size effects. In Fig. 6, we find that the shifted
model (dashed green line) fits our numerics (red points) very well for iw, S €, S 2hw,. Be-
low this however, the grand canonical ensemble on which the model is based leads to a sharp
onset of pairing at &, [24]. By contrast, we see that the 3 + 3 system smoothly transitions into
a paired state for £, > 0 due to the small fixed particle number. A similar smooth transition
was observed for the 6 + 6 system [24], corroborating how the ground-state paired fraction
evolves with interaction strength in mesoscopic Fermi gases.

3.4 Discussion

By comparing the results for the pair correlation function of Sec. 3.2 with those from the ex-
periment in Ref. [24], one could surmise that the transition from an atomic Fermi system with
few-body pairing to one with (qualitatively) many-body pairing occurs somewhere between
six and twelve particles. We point out that in two dimensions, as was eloquently discussed in
Ref. [58], there is a strong connection between the few- and many-body physics of fermion
pairing: Elementary quantum mechanics shows that for two isolated particles in a vacuum
(such as two distinguishable spin-1/2 fermions), a bound state always exists for an arbitrarily
weak, purely attractive interaction [58]. It can also be shown that the existence of a two-body
bound state for isolated particles is a necessary and sufficient condition for the Cooper insta-
bility of the many-body Fermi sea [12]. This connection is not present in three dimensions:
In that case, the interactions must reach a threshold strength before they are able to bind two
isolated particles. This means that pairing at arbitrarily weak interactions in three dimensions

"while our calculations suggest this to be the case, at strong binding energies of €, > 2Hw, it is challenging
to properly model the tight composite bosonic wave functions, and thus, to obtain fully numerically converged
energies and structural properties within a reasonable time frame.
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Figure 6: The number of opposite-momentum pairs Np,;; (red points) as a function
of interaction strength ¢; for the 3 + 3 fermion ground state (with ryp/ lf =—0.1).
The maximum possible number of pairs is Ny, = 3. At larger binding energies, the
mesoscopic sample can be accurately described by shifting the result from standard
BCS theory by the critical binding energy, £} ~ 0.953kw, (vertical gray line) [24].

must be entirely attributed to many-body effects [58]. When the two fermions are on top of
a non-interacting filled Fermi sea, rather than in vacuum, the density of available scattering
states is altered due to the presence of the other atoms. Momentum states beneath the Fermi
surface are unavailable due to Pauli blocking, and at weak interactions, the particles’ momenta
are restricted to a narrow shell just above the Fermi surface. The three-dimensional density of
states is proportional to the square root of the energy psp(g) o< /¢, but at the Fermi surface
it becomes constant p;p(€r) just like in two dimensions. The effectively reduced dimension-
ality of the system hence allows the formation of a two-body bound state for arbitrarily weak
attraction [58,59].

In the many-body regime, Cooper pairing tends to be concentrated at the Fermi surface
regardless of whether the system is two- or three-dimensional. This is because any two distin-
guishable particles need to scatter in order to pair (i.e., to become entangled). Likewise, the
system needs to build up a superposition of many momenta in order to form a paired state.
(This is made clear, for example, by recalling the structure of the ansatz for the superfluid
ground-state wave function in standard BCS theory [59,60].) However, Pauli blocking pre-
vents these processes from happening deep inside the Fermi sea. For the Fermi sea to pair,
some scattering states would need to be made available at low momenta — and this would
require removing some particles from the Fermi sea by scattering them across a large momen-
tum. The attractive interactions must therefore become strong enough to make it energetically
favourable for those particles to scatter out. For weak-to-moderate interactions pairing is hence
localised at the Fermi surface due to Pauli blocking, but begins to spread deeper into the Fermi
sea as the interaction strength increases [59]. For very strong interactions the Fermi surface
completely breaks up and pairing occurs at all momenta. In this limit the many-body system
transitions from Cooper pairs to molecules [24,60].

Having only very few particles thus leads to the question of how strong is the Pauli block-
ing effect of the Fermi sea? Indeed, the extent of the occurrence of Pauli blocking can be con-
sidered a measure of the extent to which the system can be legitimately called a ‘Fermi sea’.
Because the experimental C®)(p) function peaks at the Fermi momentum py for a wide range
of interaction strengths, ¢, S 2hAw,, this suggests that 6 + 6 fermions is already approaching
the number of particles required for a quantum many-body system and essentially constitutes
a Fermi sea. By contrast, the theoretical C®(p) function peaks substantially below the Fermi
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momentum in the same interaction regime. This indicates that 3+3 fermions is still a few-body
system in which the low-momentum states are paired. It would therefore be of considerable
interest to extend our calculations to 4+ 4, 5+ 5, and 6 + 6 particles to confirm this interpre-
tation. Alternatively, it would be interesting to experimentally measure the pair correlation
function for a number of particles smaller than 6 + 6 [24] to compare against our results. As
we discuss in Appendix A, the main burden on computational time for increasing particle num-
ber is the rapid increase in the number of permutations required to antisymmetrise the wave
function — which currently limits our investigation to 3 + 3 atoms. If the 6 4+ 6 calculation
were feasible timewise, then the additional full harmonic oscillator shell in the non-interact-
ing ground state may be enough to qualitatively modify the outcome from the 3 + 3 case. In
three dimensions, energies and some structural properties (but not opposite-momentum pair
densities) have previously been obtained for 4+4 [40] and 5+ 5 [41] fermions at unitarity by
using basis sets that account for the most important, but not all, correlations. However, this
approach may be less accurate at weak-to-moderate interactions. Besides particle number,
another factor which may have played a role in the difference of results is temperature, i.e.,
our calculations assumed zero temperature, while the experiment was performed at a finite
temperature which led to a ground-state fidelity of 76% [24]. Nevertheless, we expect this
to be less significant since many-body Monte—Carlo simulations have shown that temperature
affects the weight and sharpness of the pair correlation peak, rather than shifting the peak to
lower or higher momenta [61, 62].

4 Conclusions and outlook

In summary, we have used the method of explicitly correlated Gaussians to study the exci-
tations and pairing in two-dimensional trapped mesoscopic Fermi gases. For the closed-shell
configuration of 3 + 3 fermions, we reproduced the known [23, 26] non-monotonic depen-
dence of the lowest monopole mode on the attractive interaction strength. For 1+ 1, 2 + 2,
and 3 + 3 fermions in the ground state, we found that time-reversed pairing is predominant
at momenta significantly below the Fermi momentum. We explored the effects of varying the
interaction strength (binding energy) and axial confinement (effective range) on the system
properties. The difference between the experimental measurements for 6+ 6 fermions (where
pairing mainly occurred at the Fermi surface) [24] and the calculations for 3+3 fermions is yet
to be resolved. Improving the computational methodology to handle particle numbers greater
than six — or conversely, obtaining the experimental data for fewer than twelve particles —
would help to fill in this picture.

There are many avenues for future theoretical work on this topic. Means of increasing the
numerical convergence rate for stronger binding energies, ¢, > 2hw,., (in addition to higher
particle numbers) should continue to be sought. It would moreover be experimentally rele-
vant to compare our (quasi-)two-dimensional calculation to one- [63] and three-dimensional
systems and to confirm the effect of finite temperature in mesoscopic samples. Another ex-
tension would be to consider finite angular momentum sectors which become relevant in the
case of anisotropic trapping potentials or spin imbalances. For instance, could one engineer a
‘few-body probe’ of the Fermi—polaron problem [64]? Finally, in view of the large-scale quench
experiments reported in Ref. [65], it would be useful to simulate the effect of an interaction
quench in the few-body limit in order to shed further light on the dynamics of the emergence
of superfluidity in two-component Fermi gases.
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A Method of explicitly correlated Gaussians

To numerically solve the time-independent Schrodinger equation for the Hamiltonian given by
Eq. (1), we complement the stochastic variational method with the use of explicitly correlated
Gaussian basis functions [36]. In this section, we provide a concise pedagogical discussion
of the main components of this approach which apply to solving systems of trapped two-
component fermions. Other works which have implemented this technique in the same context
include Refs. [39-41,66-68].

Due to the quadratic form of both the kinetic energy and the external potential energy, the
Hamiltonian (1) can be separated into a centre-of-mass component and a relative component:
H = Heom + Hre- We define a set of independent Jacobi co-ordinates x = (%, Xy, ..., Xy),
where xy = (r; + 15 +---+1y)/N denotes the centre-of-mass position and (X1, X, ..., Xy_1)"
corresponds to relative motion degrees of freedom. The eigenfunctions of the centre-of-mass
Hamiltonian are just the well known non-interacting states of the two-dimensional harmonic
oscillator for a particle with mass M = m; +my+---+my (where in the main text m; = mV i):
HeomPeomEn) = Ecom¥eom Xy ). Thus, it only remains to solve the Schrodinger equation for
the relative motion: H ¢ W,e1(X1, Xg, - - -5 Xy—1) = ErelPrel (X1, Xa, - -, Xy_1) [69].

The Jacobi vectors x and single-particle co-ordinates y = (rl, I, Ty, e, r]l\,)T are related
by an N x N linear transformation matrix U [69]:

N N
x=Uy — x=> Uy?, 1f=>U"x (i=1...,N). (A1)
j=1 =1

Here, we have introduced a superscript on the single-particle co-ordinates to designate the
pseudospin (o =T, |) and have ordered them in such a way that the first atom is spin-up, the
second is spin-down, the third is spin-up, and so forth. Note, in addition, that x and y are
‘supervectors’ (or vectors of vectors) and the double-line font is used in this work to signify a
matrix. For two-component Fermi gases with balanced spins (N = 2N; = 2N|), we choose to
construct U in a manner following Ref. [41]: The first Ny Jacobi co-ordinates correspond to the
distances between unlike pairs of fermions. The next N;/2 [or (N;—1)/2 if N; is odd] Jacobi co-
ordinates correspond to the distances between the centres of mass of the first and second pair,
the third and fourth pair, and so on. The remaining Jacobi vectors connect the larger sub-units.
For example, in the case of N = 6 the transformation matrix is (with my,..; = m;+my+---+m;
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and myp.y =Emy+my+---+my =M):

1 -1 0 0 0 0
0 0 1 -1 0 0
U 0 0 0 0 1 — (A.2)
mll‘l/mlz mzl‘é/mlz —msl‘;T;/m34 —m4ri/m34 0 0 '

m11‘1/m1234 mzré/m1234 m31‘3/m1234 m41‘4/m1234 —m5r_1,/m56 —m61'é/m56
mlrl/M mzrg/M mBr;/M m4rﬁ/M erE/M m6ré/M

The relative Hamiltonian H,,; may be recast in terms of the relative Jacobi co-ordinates
X = (X1, Xy, ..., Xy_1)" (in the remainder of this section only, the supervector x excludes the
centre-of-mass position) [69]. The relative kinetic energy operator T can be rewritten as

-1
N—-1

. X ()
T=> V2 =y — , (A.3)

R .
= 2 =1 My

where u; is the mass associated with the Jacobi co-ordinate x;. Similarly, the harmonic trapping
potential term becomes
N-1 2
My
X 5
2 1

(A.4)
i=1

while the two-body interaction term is transformed by reformulating the interparticle distance

vector:

N N
. T
Z Z Vie(ri),  rij = ln—1l = [w(”)] X. (A.5)
i=1j=i+1
Above, w is a transformation tensor whose (i, j)-th component is an (N — 1)-dimensional
: : i — (r-1 —1
vector with the p-th element given by [w(”)]p = (U);, —(U);, [69].
We expand the eigenstates of the relative Hamiltonian in terms of explicitly correlated
Gaussian basis functions. The unsymmetrised basis functions for states with zero total relative
orbital angular momentum may be written as follows [69] using single-particle co-ordinates,

Y 1 N
¢ =[] exp[—g(ri—rj)z =exp|— >, - |, (A.6)
ij

j>i=1 ij j>i=1

and using Jacobi co-ordinates,

qSA(x):exp(—%xTAx), Z Z (U) [ (ij)]q' (A.7)

]—1+1

The N(N —1)/2 Gaussian widths a;; are treated as non-linear variational parameters which
are selected semi-stochastically and optimised by minimising the energy of the state of inter-
est. Physically, small a;; are required to describe contributions that occur at small interparticle
separations r;;, while large a;; are needed to describe contributions occurring at large r;;. Due
to the principle of Pauli exclus10n, interparticle distances are generally much longer when the
atom indices i and j correspond to identical fermions, rather than to distinguishable fermions.
Consequently, the a;; parameters are generated randomly with one concession: those corre-
sponding to same-spin fermions are restricted to be on the order of the radial harmonic trap
length [, while those corresponding to different-spin fermions are permitted to range from a
fraction of the interaction potential width r up to a couple of times [, [66]. Numerically, each
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basis function is encoded as a unique (N — 1) x (N — 1) correlation matrix A, which has the
properties of being real, symmetric and positive definite by virtue of the fact that the Gaussian
widths are positive real numbers. The property of positive definiteness ensures that the basis
functions are normalisable [69].

The correlated Gaussian technique relies on a generalisation of the variational principle
which accounts for excited states [38]. The basic principle states that the expectation value
of a Hamiltonian, say ., with respect to any normalised wave function provides an upper
bound on the exact ground-state energy. If we now assume that ¢; < g5 < --- are the exact
eigenenergies of H,j, and &; < & < --- < &y, are the variational eigenvalues of H . obtained
from the subspace spanned by N, basis functions — then the generalised principle informs us
that &1 <&, 65 <&, ..., &y, < &y,. This is proven in Sec. 3.1 of Ref. [69].

For the n'" eigenstate of 7, the expansion in the correlated Gaussian basis (ignoring sym-
metrisation for now) reads,

Np
v =>"c"g, (x), (A.8)
i=1
where the expansion coefficients cl.(n) are linear variational parameters. Minimising the vari-
ational energy &, with respect to these coefficients leads to a generalised eigenvalue prob-
lem [38,69]: H,C = EOC. Here, H,; and O are the Hamiltonian and overlap matrices,
respectively, with elements given by (in two dimensions)

(27.[)N—1

=———— (i,j=1,...,Np). (A
det[Al+A]] (11] > b b) ( 9)

(Hre)an, = (Pa | HrallPa,)s  Opn, = (@a,lPa)

The n" lowest variational eigenvalue &, corresponds to the n'" diagonal element of the diago-
nal matrix E, while the associated eigenvector ¢™ is contained in the n'® column of the matrix
C (not to be mistaken for the other C matrix defined in Appendices D and E). The generalised
variational principle guarantees that £, provides an upper bound on the n‘* exact eigenenergy
e, of H.e [38,69].

Conveniently, evaluating the matrix elements of H,.; amounts to performing simple matrix
operations on A [69]. In two dimensions the (unsymmetrised) matrix element for the relative
kinetic energy operator reads,

N
_ U; Uy
(Pa T |pa,) =R Tr[A (A + AN TAMIO, ., My = Z M (k,1=1,...,N—1).
i=1 t
(A.10)
The matrix elements for arbitrary one- and two-body operators are respectively given by
b | 1o 1. o
(@aVEDI$a) = Opy 5= | dr V@) exp( —5bir? ), (A112)
ba [ 2 1. >
(PaV(tk—1)|Pn,) = Oy 4, o d“rV(r) exp _Ebklr , (A.11b)
with
1 T _ _
b= [0®] (4 +4) "0, [0®] =Wy, (=1,...N-1), (A.12a)
1
— = [0®0]7 (A +4))  w®), (A.12b)
Kl
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which can be used to treat the confining and interaction potentials [69]. Note that in order to
endow the wave function with fermionic exchange symmetry, the antisymmetrisation operator
must be acted on the unsymmetrised basis states when calculating the Hamiltonian and overlap
matrix elements — and this is described in Appendix D.

We follow the two-step procedure detailed in Refs. [38,41] to construct the explicitly cor-
related Gaussian basis. The first step is the basis set enlargement, in which new basis functions
(new matrices A;) are added one at a time. The second step is the basis function refinement, in
which the existing A; matrices are adjusted one at a time. Both steps are cyclically repeated as
necessary until the energy of the state of interest is converged (changes by less than a preset,
very small value). Due to the fact that the basis is over-complete, the rate of convergence is
rapid [36].

To add a new basis function A; to the basis set, we generate a large number (say ‘p’) of trial
basis functions stochastically within preset parameter windows: {A; 1, A, 5, ..., A; ,}. Since
one more basis state always lowers the energy,'? we choose to keep the matrix A;; = A, that
lowers the energy of the state of interest the most. Similarly, to refine an existing basis function
A;, we generate ‘p’ trial replacement basis functions stochastically: {Al 1 A: 95 e } We
subsequently determine which one affords the lowest energy for the state of interest, labelhng
it by A’ .= A, and if this energy is lower than the original energy, then we replace A; by A’.

In both the enlargement and refinement phases, in order to determine how the energy
eigenvalues are affected by the inclusion of a given trial basis function, we do not need to
solve the full (K + 1) x (K + 1)-dimensional generalised eigenvalue problem through matrix
diagonalisation. Instead, we can exclude the concerned (i™) row and column from the Hamil-
tonian and overlap matrices, and diagonalise the resulting generalised eigenvalue problem
of size K x K. The eigenvalues of the (K + 1)-dimensional matrix can then be found as the
roots of a secular equation which depends on the eigenvalues and normalised eigenvectors of
the K-dimensional submatrix, and on the i row and column of H,. and O. The full details
— which are based on Gram-Schmidt orthogonalisation'> — are provided in Ref. [32]. Se-
lecting from a large number of trial basis functions thus becomes numerically feasible since
root-finding is computationally much faster than matrix diagonalisation, and because the
K-dimensional submatrix need only be diagonalised once. In addition, both the enlargement
and refinement subroutines can be efficiently parallelised over a number (N,) of MPI cores
on a high-performance computer [38]. We generate p/N, trial basis functions on each core,
and then compare the eigenenergies across all N, cores by using the ‘MPI_Allreduce’ function.
Once the basis function that lowers the energy the most has been chosen, this information is
synchronised across all cores by using the ‘MPI_Bcast’ function.

The results for 1+1, 2+ 2, and 3+ 3 fermions are shown in Sec. 3. The main hindrance to
theoretically considering higher particle numbers derives from the first-quantised formulation
of the ECG approach — namely, the antisymmetrisation requirement to sum over all possible
permutations of identical particles, as mentioned above and in Appendix D. For equally popu-
lated two-component systems of N fermions, this number of permutations is N, = [(N/ 2)177,
such that the evaluation of a single matrix element becomes very time consuming as the num-
ber of particles increases (refer to Table 1). Combined with basis sizes on the order of at least
thousands of states, this makes the 6 4+ 6 system of fermions considered by experiment [24]
computationally out of reach.

121f a basis of size K yields an ordered set of eigenvalues A; < A, < --+ < A, then a basis of size K + 1 will yield
an ordered set of eigenvalues y; <y, <+ <ygyp,suchthaty; KA <y, <A, < <y < A¢ < Yraa-

13 This orthogonalisation method avoids numerical instabilities caused by linear dependencies, which may oth-
erwise arise due to the over-completeness of the basis set.
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Table 1: Scaling of the number of permutations N,, with the number of particles N.

N|2 4 6 8 10 12
N,|1 4 36 576 14,400 518,400

B Comparison to a contact interaction

The spatial extent of the potential selected to model short-range binary collisions in the ul-
tracold Fermi gas can, to a small degree, quantitatively affect the lowest monopole excitation
spectrum. Below in Fig. 7, we show again our result for 3 + 3 fermions at an effective range
of rop/ lf = —0.001 ~ 0, which we obtained by using the finite-range Gaussian interaction po-
tential given in Eq. (3). Although the effective range of this potential is fixed and close to zero,
the physical width r varies between 0.01[, and 0.05!, over the depicted range of binding en-
ergies. This leads to a small downward shift in the excitation energy — which becomes larger
with increasing binding energy — when compared to an analogous calculation [26] based on
a contact interaction with zero range (ry — 0) [70,71]. Within our model, we can estimate
the zero-range limit of a contact interaction by starting with the value of AE at a particular
binding energy ¢;, and then systematically reducing the Gaussian width r, while varying the
depth V;, such that ¢, remains constant. In this way, we can construct a plot of AE versus ry
and then extrapolate to the limit of ry = 0 [41]. The process can subsequently be repeated
at all desired binding energies. Interestingly, due to the second term in Eq. (3), decreasing
the potential width for a fixed binding energy and basis size causes AE to increase. However,
since this also corresponds to a deeper potential, the result becomes less accurate. Increasing
the basis size to improve the level of accuracy, in turn, lowers AE. In general, we found that
the very deep and narrow potentials generated by this limiting procedure made it necessary
to use very large basis sets in order to numerically converge the excitation energy. Therefore,
we only performed this check at a single binding energy.

2.0 ‘ ‘ .
19 2 rap /12 = —0.001 (= 0) E
_é E —— Bjerlin et al. |
= 18| =
S ]
< [ ]
L7 g
16 : AR T T T T T T T [T TN T T Y S N :
0.0 0.5 1.0 1.5 2.0
€v/€}

Figure 7: The lowest monopole excitation spectrum for Ny +N| = 3+ 3 fermions. We
overlay our result at zero effective range (in blue) on the contact interaction result
from Fig. 1 of Ref. [26] (in green). In each case, we normalise ¢} by a critical value ¢,
which is defined as the two-body binding energy that gives the minimum excitation
energy AE.
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C Definitions of the pair correlator and density matrices

As done in Eq. (7), we define the second-order pair correlation function for opposing spins as
follows:

CA(py, py) = (n1(p1)ny(p2)) — (n1(P1)) (ny(P2)) > (C.1D
where

P(P1, P2) = (m (P (P2)) = (€] 1¢pi1€h o) (C.2)

p1(p1) = (ny(p1)) = (C;chp1T> ) (C.3)

py(p2) = (ny(p2)) = (nglcp2¢>~ (C.4)

Here, c’ (cpg) is the fermionic creation (annihilation) operator for a particle with momentum
p and pseudospm o in the language of second quantisation (with o =1, |). The “p ” de-
note momentum-space density matrix elements and these can be related to the positlon space
density matrix elements which we have calculated in the correlated Gaussian basis (refer to
Appendices D and E, below).

To this end, we make use of the relationship between the creation operators in position
[1/)2(r)] and momentum (cga) space:

1 + in-
CTG = Efdrm/;g(r)epr, (C.5)

Cop = 1 f drap,(r)e PT. (C.6)
27

Inserting these relations into the definition (C.3) of the one-body density matrix for the spin-T
atoms in momentum space yields

>y 1 ] —ipq-(r'— 1 —ips-(r'—
pT(pl) = W ff dl‘dr/ (w{(r)wT(r/»e pr-(r'=r) _ (271-)2 JJ drdr/pT(r, r/)e p1-(r'—r1) .
(C.7)
This result involves the position-space one-body density matrix for the spin-{ atoms, which

can be written as

-1
2
pT(r,r’)=U---fdrldri---drfv Y|P, T, -,rL_l,r}V)\]

XJJ drédrgdrﬁ-- d dr W (r o )\Il*(r o

B 2) 3’ 4) 3 N 1’ N 3 2) 3) 4) 5 N_l) rN 5

(C.8)

in the first quantisation picture, where ¥ = ¥, ¥, is the total N-body wave function. The
first line of Eq. (C.8) is a normalisation constant; in the second line we integrate the density
WU* over all co-ordinates except those of a single spin-T particle. Expressions analogous to
Egs. (C.7)-(C.8) can readily be written down for the spin-| case (C.4). Similarly, the two-body
density matrix for spin-T-spin-| pairs is given by

p(p1, p2) = J fdrldrldrzdrzw ()9 () | (r)4p (1)) e Pr(Fimm)eipar ()

(2m)*

(271)4f Jdrldr drzdr p(ry, rl, Iy, T )e ipy (rj—11) p—ip2- (ry— r2) (C.9)
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in momentum space, and by

-1
2
p(ry, 11, 1)) = [ff drldrﬁ . --drITV_ldrllV \I/(r{, rﬁ, e r]TV_l, rll\,)‘ ]

X JJ drgdr‘l‘ ‘e drITv_ldr]lv\If(rl, Iy, rg, ri, e rITV_l, rllv)\Il*(rll, 1, rg, rﬁ, ),

(C.10)

in position space. Above, we integrate over all co-ordinates except those of one spin-1 particle
and one spin-| particle. Note that all integrals in this section are two-dimensional, i.e, we have
written dr = d?r for brevity. Furthermore, for numerical convenience we order the atoms so
that the first one is spin-T, the second is spin-|, the third is spin-T, etc., as done in Appendix A
[see Egs. (A.1)-(A.2)].

D Derivation of the one-body terms in the pair correlator

To derive closed analytical expressions for the one-body terms in Eq. (C.1), we follow the
prescription given in Appendix A of Ref. [39] (which is in three dimensions), while making
the necessary modifications for a two-dimensional system.

When we calculated the excitation spectra in Fig. 2, we separated off the centre-of-mass
degrees of freedom and expanded the eigenstates of the relative Hamiltonian in terms of the
explicitly correlated Gaussian basis functions. These basis functions depended on a set of non-
linear variational parameters which were optimised through energy minimisation. In order
to calculate the pair correlator C'®) we now need to utilise the full N-body wave function, so
we multiply the optimised basis set by the unnormalised ground-state centre-of-mass wave
function [39]:

x> Nr?
w68 (x,) = exp| —— L, Xy = Y —. (D.1)
amta)=exp| —o5n o =2,y

The unsymmetrised (and unnormalised) basis functions that incorporate the centre-of-mass
motion thus read as follows:

Pa(x) =exp (—%XTAX) , (D.2)

where x = (X, X, ..., Xy_1, Xy)_ denotes the full set of N Jacobi position vectors defined in
Appendix A. Here, A is an N x N symmetric and positive definite correlation matrix compris-
ing N(N —1)/2 variational parameters (the A;; withi =1,..., N—1 and j > i), which are
optimised semi-stochastically. To force the centre-of-mass degrees of freedom into the ground
state, we manually set the matrix elements A;y and Ay; (withi =1, ..., N—1) to zero, while
setting Ayy to N/ aﬁo [39]. We reiterate that x is a ‘supervector’ (or vector of vectors) and the
double-line font is used in this work to designate a matrix. The Jacobi vectors x and single-
particle co-ordinates y = (yy, ..., yy)' = (rl, rﬁ, rg, e, rll\,)T are related by the N x N linear
transformation matrix U, which has been defined in Egs. (A.1)-(A.2) of Appendix A.

Now that we have set up the system, our first goal is to derive the correlated Gaussian
matrix elements of the real-space one-body density matrix for the spin-1 atoms, Eq. (C.8) (the
derivation for the spin-| atoms follows analogously):

[PT(I‘, ') ]an _ <¢A|pT|¢A’>
Opar  {Palda)

= ((O)M,)_1J~--JdZN_Zyred[fd2r15(r—r1)¢A(x)][ f dzrls(r’—r{)%/(x)]. (D.3)

25


https://scipost.org
https://scipost.org/SciPostPhys.17.6.163

e SciPost Phys. 17, 163 (2024)

In this equation we have defined y,.q = (rz, ;, r‘l‘, e, rITV_l, rllv)T, 6(:--) represents the two-
dimensional Dirac delta function, and

n)¥

det[A+A’] b4

Opnr = (Puldn) =

is the overlap matrix element [69] for the (unsymmetrised) ECG basis functions associated
with the correlation matrices A and A’. It is convenient to express the right-hand-side of Eq.
(D.3) in terms of the Gaussian generating function [69],

1
g(s; A, x)= exp(—ngAx+ sTx) , (D.5)
where s denotes an auxiliary supervector with the same dimensionality as x. The basis func-
tion in Eq. (D.2) can therefore be written as ¢,(x) = g(0; A, x). By using the fact that

x’Ax = y'UTAUy, we re-express the basis function ¢, in terms of y and separate off the
rl dependence:

1
P4(y) = g(0; B, Yred)exp[_i by (r})?— (bTyred)Tr{] : (D.6)

Here, B is an (N —1)x (N —1)-dimensional matrix given by UTAU with the first row and column
removed, b is an (N — 1)-dimensional vector given by ((UTAU);,, ..., (UTAU);x)%, and b, is
a scalar given by (UTAU);;. In addition, Eq. (D.6) contains the quantity

Yred) r _Zb) 1y] 1‘1, (D.7)

where b; denotes the j th element of the vector b. To continue we define {B’, b/, b1} analo-
gously to {B, b, b;}, substitute the expressions for ¢ ,(x) — ¢,(y) and ¢,/ (x) = ¢, (y) into
Eq. (D.3), and then evaluate the two Dirac delta functions. This yields

[pT(l‘, r/)]AA’ = (¢al P |Par) :J o 'szN_ZYred g(0; B, yreq) 8(0; B, Yred)
1 1
X EXP{—E byr® — Ebi(r/)z —(b"Ypeq) T — [(b/)TYred]Tr/} , (D.8)
which can be rewritten as

- 1
[pr(r, ¥')]an = J---JdZN 2YVea g[—(br+b'r'); B+ B/, yred]e><p{—§[b1r2 + b’l(r’)z]} .

(D.9)
Above, the quantity br is an (N — 1)-dimensional supervector with elements b;r, where
j=1,..., N—1. By employing the two-dimensional relation [69] shown below,

f JdZng(s A X) = ézgiv] (1 T~ s) (D.10)

we arrive at a compact expression for the correlated Gaussian matrix elements of the one-body
density matrix in real space:

[or(r, 1) ]pn = clexp{—%[cr2 +c/(r')? —arTr']} , (D.11)
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which depends on the following scalars,

2 N—1
¢ =b;—b'Cb, (D.13)
¢ =by—()'CY, (D.14)
a=b'cb +()'Chb, (D.15)
and on the matrix,
C=B+B)" . (D.16)

Our second goal is now to evaluate the Fourier transform of Eq. (D.11) — as defined by
Eq. (C.7) — in order to obtain the correlated Gaussian matrix elements of the one-body density
matrix in momentum space:

1

[or(P)]an = W

f f d2rd? [ py(r, v')]pp e =D, (D.17)
By defining X = +'—r, Eq. (D.17) becomes

[o1(P1)]aar = (;Tl)z JJ d*rd*X exp[—i(p7 Xy +p{Xy)]

1
x eXp{E[gl(rf +r)+ g(XI+X2) + g5 (rX, + ryXy)]} ,  (D.18)
with the scalars,
g1=a—c—c’, (D.19)
gy =—¢’, (D.20)
gs=a—2c. (D.21)

For g; < 0, the integral over r can be performed analytically:

+00 (+00 1
f f drxdryexp{i[gl(rﬁ+r§)+g2(x§+x§)+g3(rxxx+ryxy)]}
—00 —0Q

2 48182~ 85
=——”exp[ 8182~ 83 (X§+X§)] (D.22)
&1 &1

This allows the integral over X to then be carried out analytically, as well, for 4g,;g, — g§ > 0:

Tee [T 27 48182~ 83

f f dXdeyeXp[—i(p;‘Xx+pi’Xy)]{——eXp[—3 (X§+X§):|}
—00 J—0o 81 881

1672

28, X2 42
= eXp{ (p}) + ()" | ¢ - (D.23)
48,8, — g2 4g1gz—g§[ ! 1]

Thus, the correlated Gaussian matrix elements of the momentum-space one-body density ma-
trix for the spin-1 atoms are given by

~ 4c 2g
[P1(P1)]aar = - 2 exp( - 2 P%) , (D.24)
48182 — &3 48182 — &3
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with momentum p; =|p;|. We have checked that the two conditions, g; <0 and 4g, gz—g§ >0,
are indeed satisfied numerically. We can now evaluate Eq. (C.3) for the ground state (GS) by
using the derived results for [5T(P1)]AiAj (D.24) and Oy 4 (D.4):

(\I/(GS)InT(pl)|\P(GS)) B Zl Jj l[pT(pl)]AA j
(W(GS) | p(GS)) le 1©AA ;

Above, the second expression is obtained from the first by inserting two complete sets of ECG
basis states into both the numerator and denominator, and ¢; = (¢ Ail‘IJ(GS)) is the i" (real)
coefficient of the full ground-state wave function which is found by diagonalising the Hamil-
tonian (see Appendix A).

To enhance the clarity of our discussion up until this point, we have used unsymmetrised
basis functions — but of course, in reality, when we derive the ECG matrix elements we need
to appropriately antisymmetrise the fermionic basis [69]. This means that we need to act the
antisymmetrisation operator,

(nT(pl»

(D.25)

p
P=> 5P, (D.26)
i=1

on both the bra (¢, | and the ket |¢,/). Here, P represents the sum of all possible N, permu-
tation operators P; for the reordering of identical fermions, weighted by the signs s; of those
permutations. Conveniently, in the ECG approach acting a single permutation operator on a
basis function simply amounts to a redefinition of the correlation matrix A — A(i):

1 1 1 .-
P = P exp( ~gxix )= exp{ ~2x[ (1, YaTy Jx} = exp| —x"Acix| = 100,
(D.27)
where Tp, is the (N —1) x (N — 1)-dimensional permutation matrix corresponding to the ith
permutation — as defined in Eq. (2.30) of Ref. [69]. Accordingly, it is straightforward to write
down the antisymmetrised matrix element of a given operator say B:

(@ul Blou) = (Poal BIPPu) ZZ si{daw| Bloag) (D.28)

i=1j=1

which comprises le terms. If B is invariant under the exchange of any pair of identical atoms
(i.e., if it commutes with all permutation operators P;), then we can use this fact — and also
the fact that each permutation is an idempotent operator, (P;)2 =1V i — to show that

(PoalBIPy) =Ny(PhalBlda)=Np(pal BIPdy). (D.29)

Now, the right-hand side is a sum of only N, terms. These operator conditions are clearly sat-
isfied by the identity, and hence, the overlap matrix element in the denominator of Eq. (D.3)
can be antisymmetrised as follows:

il sj(2m

Opar = <¢A|¢A’> - Np<¢A|P¢A’ = p; ¢A|¢A’U) p Z det[A(+li’( )] (D.30)
Equation (D.29) additionally holds for the Hamiltonian # in Eq. (1), but not for the density
matrices in Appendix C, and thus the numerator of Eq. (D.3) must be antisymmetrised by using
Eq. (D.28). Calculations of structural properties are consequently much longer than those of
energy and excitation spectra. Note that the redefined correlation matrices A(i) and A’(j) will
affect the values of the B matrix, b vector, and b, scalar first appearing in Eq. (D.6) (as well as
their primed equivalents), and all subsequent quantities that depend on these. Equation (D.29)
is very useful since in the ECG method, the principal limiting factor on computational time for
increasing particle number N is the number of permutations N, required to antisymmetrise
the wave function, as we discussed in Appendix A.
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E Derivation of the two-body term in the pair correlator

We can directly extend the approach in Appendix D to derive a closed analytical expression for
the two-body term in Eq. (C.1). To this end, we consider the two-body density matrix for spin-
T-spin-| pairs in real space, Eq. (C.10), and we calculate its matrix elements in the explicitly
correlated Gaussian basis. The two-body equivalent of Eq. (D.3) is shown below:

[prr, v 1, T)aw _ (gulpldpar)
@AA’ N ¢A|¢A’

—(@M/)J szf“ U f d?r! 5(rT—rD6(rl—r§)¢A(x)}

fodz d2rl5(r r1)5(r’l—r§)¢A/(x)], (E.1)

where now y,q = (r3, ‘l‘, oo rITV_l, rIlV)T, while Oy, = (PP ) is still defined by Eq. (D.4).

By using Egs. (A.1) and (D.5), we rewrite the basis function ¢, in terms of y and separate off
the 1‘1 and rﬁ dependencies:

¢A(Y) = g(o: B, Yred)exp [_%bl(rl)z - %bz (ré)z - b3 (rl)T - (bl Yred)T (bz Yred)Tré] . (EZ)

Above, the (N —2) x (N —2)-dimensional matrix B is given by UZAU with the first and second
rows and columns removed. Equation (E.2) additionally contains two (N — 2)-dimensional
vectors:

b, = (UTAU),5, (UTAU) 1y, ..., (UTAU) )T, (E.3)
= (UTAD)y3, (UTAU),g, ..., (UTATU) )T, (E.4)

and three scalars: b; = (UTAU);;, by = (UTAU),,, by = (UTAU);,. To be clear, we mention
that

N
(b Yrea) 17 = > (b);_oy! 17, (E.5)
j=3

where (b;); denotes the j th element of the vector b; (with i = 1, 2). We also define analogous
quantities {B’, b, by, by, b;, by} which correspond to the basis function ¢,,. To proceed, we
substitute the expressions for ¢4 (x) = P (y) and ¢,/ (X) = ¢/ (y) into Eq. (E.1), and then
evaluate the four Dirac delta functions. This gives

[p(ry, 15 1y, 1) ]an = (alp da) = J : 'JdZN_4Yred 8(0; B, ¥rea) 8(0; B, Yrea)
X exp{—%blr% — %bzrf —bs rTTrl (b yred)TrT (b2Yred) rl}
x exp{—%bg(rpz A e A LA (AL [(b;)Tyred]Tr1} . (E6)
which can be reformulated as
[p(ry, 1‘%; r, r/l)]AA’ = deN *Yrea 8[— (biry +byr +bir] +b/ /) B+ B, Yred]

1 1 1 1
X exp{—[iblr% + Ebzrf + bngTrl + Eb;(r’T)2 + Ebg(ri)Z + bé(r’T)Tr’l}} . (E.7)
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Here b, 1y, for instance, is an (N — 2)-dimensional supervector with elements (b,);1;, where
j=1,..., N—2. By applying the identity in Eq. (D.10), we can solve the integral over y,.q to
yield an expression for the ECG matrix elements of the two-body density matrix in real space:

1
o ey, 15 11, 1)l = ayexp{ —3 [ere? + L + 2 + )2 + g
1 (W T T./ T./ T./ T,/
+ dl(rT) r, —fer r, —for 1) —f3rT Y —far) rT]}, (E.8)

which depends on the following scalars,

N-—2
a; = % s (E.9)
¢y =b;—blCby, d; = 2b% — (b})"Cb, — (b)) Cb, (E.10)
¢; =b;—(b))'Cb], f1=b]Cb] + (b)) Cb,, (E.11)
¢y = by —b.Cb,, f, =b,Cb}, + (b)) Cb,, (E.12)
¢, = by, —(b})'Cby, f3=b]Cb}, + (b})"Cb,, (E.13)
d; =2b3—bCb, —b;Cb, , fa=b,Cb] +(b))"Cb,, (E.14)
and on the matrix,
C=MB+B)" . (E.15)

Next, we Fourier transform Eq. (E.8) according to Eq. (C.9) in order to obtain the ECG ma-
trix elements of the two-body density matrix in momentum space:

~ 1 i (Fe 1) —ips- (£ —
501 Pl = g | [ 400070 i s e 0
(E.16)

By changing variables to X; = r’T— ry and X = r’l— r;, Eq. (E.16) becomes
~ a .
[6(P1, P2)]aw = @Jmfdznd%dz&dz& exp[—i(pyXy +py X} +p3X| +pyX])]

cenp( 5 { [0+ (D] a0+ 012 ey ]

Rl v + W) rl + W) v 4+ WG kY + ) }) , (E.17)
where
81=f1—C1—C;, (E.18)
gzzfz—cz—cé, (E.19)
g3 =f3+fy—dy—dj, (E.20)

are constant scalars, while

Moy = (f1 — 2e)X; + (f3 —d})X]|, (E.21)
W2 = (f4— d)DXE+ (o —25)X1 (£.22)
Ry ==L + (XY 21—y [T + (X7 2] — dj (X3XT + X7 X)), (E.23)
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are temporary functions of the integration variables X; and X (with i = x, y). In similarity to
the previous section, the integral over r| can be performed analytically for g, < 0, and then
so can the integral over r; for 4g, g5 — gg >0:

+00 +00 1
J J dr%cdr%drfdrfexp(g{gl[(r?)2+(r%)2]+g2[(rf)2+(rf)2]

—00 —00
+ g5 [r;‘ rf + r%’ rlv] + hgr’rf;) r%‘ + hgr’nJ;) r%’ + hgr’rfp) rf + hgr’rf;) rf })
s exp[_ 1/2

48182 — &3 48182 — 83

@072, [,@N7? 1072, [Han7]? (L,x) 1 (2,%) | (L) (2.y)

x (gl{[hteni; ] + I:hterrf;) ] } + 82 { I:hteni; ] + I:htemJ; ] — &3 {htenicp htemJ;) + htemJ;J htemJ;) }
_ 1672
= -

exp(zito{ﬁ [(Xﬁz + (X}V)z] +ty [(Xf)z + (le)z] T3 [X%fo +XTyle] }) » (E.24)

where we have defined

to = 48182~ &5 (E.25)
t1 = — (fa—d))?g1 — (fi —2¢/)%ga + (fa— d))(f1 —2¢]) g3 (E.26)
ty = —(fa—2c,)g1 — (f3—d;)’gs + (f3 —d)(f2 — 2¢5) g3, (E.27)
ty = —2(f4—d)(fa—2¢5) g1 —2(f3 —d)(f1 — 2¢1)g>

+[(fa—d)(fz —dy) + (f2 — 2¢5)(f1 —2¢7)]1g3 - (E.28)

Therefore, Eq. (E.17) can now be written as

_ a; 16m> .
[P(P1, P2)]an = (271)4_t JJ deszxl eXP[_l(pjch%c +pi’X%’ +py X} +p§’Xf)]
0

cexp( 3 fsu [0+ 2] wsa [0 + P s [5x4 x7x7 1)

(E.29)
which involves
sp=t1/tg—c], (E.30)
Sy = ty/to—cy, (E.31)
S3 = tg/to — d:/[ . (E.BZ)

At this point, the integral over X| can be carried out analytically for s, < O:
+00 +00
J f dX} dX| exp[—i(p3X] +py X])]
—00 —0Q0
1 xX\2 Yy2 Xy X Yy Y
x eXp(g{SZ[(Xi) + O |+ [ XX +x7x7 ]}

27 1 x x . X X
= e g {403+ @] - [P o ] s Gy D)) 9
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Subsequently, for 4s;s, — sg > 0 we can analytically evaluate the integral over X; as well:

+00 p~+00 1
f_oo J_oo dX;‘ dX{ exp[—i(pJfo+p{X{)]xexp{Esl [(Xf)2+(X%/)2]}

1 .
x exp(§{4[(p§ 24 (p3)?]—s2 [ G0+ (X7 )] + disy (p3 X7 +pgxg)})
2

81 2
=2 zexp( 2{sz[(pf)2+(p{)2]+s1[(p§)2+(p§)2]—s3(p§p§+p{p;)}). (E.34)
45159 —S3 45159 — S35

Collating and simplifying these results leads to a compact expression for the ECG matrix ele-
ments of the momentum-space two-body density matrix for spin-{-spin-| pairs:

_ a, 1672 2n 8ms,
[P, P2l = (——)(——
P(P1, P2)1aa (2m)* 4g1g2—g§ S, 45152_5§

x eXP(%{Sz (22 + (0] + 1[0+ (0] =55 (033 + ) 1 )})
$152 — 53

16a1 { 2 9 9 .o vy
— exp Sop +31p —3S3 (p p —|—p p ) ) (EBS)
(4g1g2_g§)(45152—5?2’) 45152—.5% [ 1 2 1FP2 1Py ]

with momenta p; = |p;| and p, = |p,|. We have checked numerically that g, and s, are less
than zero, while 4g,g,— g% and 4s;s, —s% are greater than zero, as required. The expectation
value (ny(p;)n;(py)) can now be evaluated with respect to the ground state in a manner akin
to Eq. (D.25). For particles with both opposite spins and opposite momenta (p; = —py = p)
this final result simplifies even further [and notice its similarity to Eq. (D.24)]:

16 2(s1 +s5+
a ex|: (51 +57 53)p2]’

(48182 — g2)(4s155—53) 45155 — 53

[o(P, —P)]an = (E.36)

with momentum p = |p|. We remark that for clarity, we have used the unsymmetrised basis
functions defined by Eq. (D.2) in the above discussion. However, in actuality, these must be
antisymmetrised according to the prescription provided at the end of the previous appendix.

F Bardeen-Cooper-Schrieffer (BCS) theory

In this appendix, we describe the BCS theoretical treatment for completeness and ease
of access. The ensuing derivation of the opposite-momentum pair correlation function,
CA(p, —p) = CA(p), was first performed in Ref. [24] and the results are relevant to Figs. 4
and 6 in the current work.

Within BCS theory, the expectation values in Egs. (C.2)-(C.4) can be directly evaluated
with respect to the ground state by applying the Bogoluibov transformation:

Cpt = UpYpr — ¥ Yipl g (ED)
Cpl = UpYpL TV YT—pT ’ (E2)
where
2 _
up_(1+8p/€p)/2; (FB)
2 _
Vp _(1_€p/5p)/2 (F4)
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The BCS spectrum of excitations is given by &, = (eg + A%)1/2 Here, e, = p*/(2m) — g is
the free electron dispersion measured relative to the Fermi energy, and the mean-field value of
the superfluid gap is A = (2¢,, sF)l/ 2 [12]. By replacing the particle creation and annihilation
operators (c; & Cpo) With fermionic quasiparticle operators (y; - Tpo), and then using the fact
that the BCS ground state is the quasiparticle vacuum, yp, [¥pcs) = 0, we arrive at

C(Z)(p) = (C;TCpTCiplc—pl> - <C1;TCPT> (Ciplc—pl>
2 A
4(e2+02)

(ES5)

The normalisation factor A is determined by fixing the single-spin atom number in the non-
interacting limit (A = 0):

o
NT :J(c;TCpT)dp:ZTENJO vﬁp dp. (F6)
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