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Abstract

Despite a long history of studies of vortex crystals in rotating superfluids, their melting
due to quantum fluctuations is poorly understood. Here we develop a fracton-elasticity
duality to investigate a two-dimensional vortex lattice within the fast rotation regime,
where the Lifshitz model of the collective Tkachenko mode serves as the leading-order
low-energy effective theory. We incorporate topological defects and discuss several quan-
tum melting scenarios triggered by their proliferation. Furthermore, we lay the ground-
work for a dual non-linear emergent gravity description of the superfluid vortex crystals.
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1 Introduction

Quantum vortices are topological defects in quantum superfluids which reveal quantum me-
chanics in these phases on macroscopic scales. Quantum vortex matter is an intriguing and
multidisciplinary research field [1–3]which attracts both theorists and experimentalists. While
being energetically costly excitations deep in the superfluid regime, condensation of vortices
provides a natural framework for understanding of neighbouring non-supefluid phases and
associated phase transitions [4–6].

In the superfluid regime vortices emerge in abundance at low temperatures provided the
whole system is rotated [7–10]. As discovered first by Abrikosov [11] in a closely related
context of type-II superconductors in an external magnetic field, in thermodynamic limit a
regular vortex crystal ground state can emerge. It breaks spontaneously (magnetic) transla-
tion and rotation symmetries. In the two-dimensional limit, the study of low-energy collective
excitations, known as Tkachenko waves [12], has been a subject of extensive theoretical inves-
tigation, as evidenced by works such as [13–24]. Additionally, an experimental observation
of the Tkachenko waves have been successfully conducted at extremely low temperature in a
cold atom experiment [25]. Notably, it was also suggested that the Tkachenko modes might
explain the dynamics of pulsars [26].

Given that the two transverse Cartesian coordinates of a vortex constitute a canonical pair
of variables [8,27–29], it follows that vortices represent inherently fuzzy entities with an un-
certainty area inversely proportional to the density of elementary bosons within the superfluid
phase. Consequently, as the vortex density within the crystal approaches the magnitude of
the boson density, quantum mechanical fluctuations in vortex positions become comparable
to the distances between vortices. Rough estimates relying on the Lindemann criterion and
small-scale exact diagonalization numerical simulations suggest that the vortex crystal experi-
ences quantum melting at zero temperature when the filling fraction is roughly between 1 and
10 [8]. Here, the filling fraction, to be called ν in the following, is defined as the ratio between
the boson density, nb, and the vortex density, nv . The precise nature of this quantum melting
phenomenon remains poorly understood, representing a longstanding challenge in the field.

Fracton-elasticity duality [30–37] and its predecessors [38–42] provide an excellent frame-
work to study possible melting mechanisms because it naturally incorporates disclinations and
dislocations, which are topological defects in solids [43]. One can also easily incorporate va-
cancy and interstitial defects [31,34]. In this formalism, quantum melting can be realized by
a series of phase transitions, where dynamical defect fields play the role of the Higgs fields.
This approach found practical application in the study of vortex crystals, as pioneered in [44].
In addition to computations of static interactions among various types of defects, this inves-
tigation uncovered several continuous quantum Higgs transitions triggered by condensation
of the defects. Notably, it was found that the quantum melting of the vortex crystal might be
preceeded by the condensation of vacancies or interstitials, leading to the emergence of an in-
termediate vortex supersolid phase, investigated originally in the classical finite-temperature
problem [45,46].

In this paper, we provide new insights into quantum melting of two-dimensional superfluid
vortex crystals. Our starting point is the effective theory of the Tkachenko mode, which in the
quadratic approximation reduces to a Lifshitz theory of a compact scalar field [21,24,46,47].
This is a good coarse-grained description of the superfluid vortex crystal in a fast rotation
limit, where the condensate occupies only the lowest Landau level. Within this field theory we
discuss the fate of symmetry-allowed magnetic vertex operators that create vortex defects of
the Lifshitz scalar that under special conditions correspond to vacancy and interstitial defects
in the vortex crystal. Taking inspiration from the previous work [5,48], we determine at which
filling ν such magnetic vertex operators are relevant in the renormalization group (RG) sense
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and thus destabilize the Lifshitz description of the vortex crystal. This sheds some new light
on the vortex supersolid regime discussed in [44].

Recent surge of interest in fracton models inspired the authors of [49,50] to develop frac-
tonic gauge duals of various realizations of the compact Lifshitz theory in two spatial dimen-
sions. Here, we develop a simple and elegant quadratic traceless symmetric tensor gauge
theory that is dual to the Lifshitz scalar description of the superfluid vortex crystal. Within this
framework we investigate the crystalline and fluid phases and study corresponding topologi-
cal defects and excitation modes. Using [51], we also consider and speculate about an exotic
direct quantum phase transition between the vortex solid and fluid.

While capturing the quadratic dispersion of the low-lying Tkachenko mode, the quadratic
Lifshitz theory has an important shortcoming in describing the superfluid vortex crystal as it
does not realize a non-commutative algebra of magnetic translation symmetries. Recently, a
non-linear non-commutative field theory, which reduces to the Lifshitz model in the quadratic
approximation, was proposed that incorporates all physical symmetries [24]. This theory was
used to determine the decay rate of the Tkachenko quanta at low energies. Here, starting from
the linearized fractonic duality of the Lifshitz theory of the vortex crystal, we make first steps
towards a non-linear dual of the non-linear theory [24]. We argue that this dual must be a
dynamical theory of bimetric gravity and identify some of its gauge-invariant building blocks.

2 Lifshitz effective theory of vortex crystal

2.1 Tkachenko modes

Low-energy excitations of a two-dimensional vortex crystal in a rotating superfluid emerge
from intertwined superfluid and elastic couarse-grained fluctuations. Employing the boson-
vortex duality [52,53], the leading-order quadratic effective theory [22] in the lowest Landau
level approximation1 is given by the following Lagrangian [23]

L(2) = −
Bn0

2
εi ju

i u̇ j + Beiu
i −
λ

2
b2 − Eel

�

ui j

�

. (1)

Here the building blocks are the coarse-grained crystal displacement field ui and a dual
u(1) gauge field aµ. In spirit of the boson-vortex duality, the superfluid density fluctuations
δn= n− n0 and superfluid current j i are fixed by the dual magnetic field b = εi j∂ia j and the
electric field ei = ∂t ai − ∂ia0, respectively. The first term in the Lagrangian (1), encodes the
Berry phase of vortices moving in the superfluid. Here B denotes an effective magnetic field
experienced by elementary bosons due to external rotation and n0 is the average superfluid
density. The second term in Eq. (1) represents an effective dipole energy acquired by vortices
away from their elastic equilibrium. The superfluid internal energy is a function of the super-
fluid density and in Eq. (1) it was expanded around the ground state value n0 to quadratic
order in the density fluctuations b = δn. Finally, for a two-dimensional triangular vortex crys-
tal, the elastic energy density Eel

�

ui j

�

= 2C1u2
kk+2C2ũ2

i j with ũi j = ui j−
�

ukkδi j

�

/2 being the

traceless part of the symmetric strain tensor ui j =
�

∂iu j + ∂ jui

�

/2. The coefficients C1 and C2
are the compression and shear elastic moduli, respectively.

1To go beyond the lowest Landau level approximation, one should add a kinetic superfluid contribution that in
the dual description is represented by a subleading electric term ∼ me2/(2n0), where m denotes the mass of the
elementary boson particles. This addition gives rise to the celebrated gapped Kohn mode, but does not modify the
quadratic Tkachenko dispersion (3) at low momenta [22].
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The u(1) Gauss law ∂iu
i = 0 implies immediately that the two components of the dispace-

ment field are not independent. To hardwire the transverse nature of displacements, we can
introduce a dimensionless scalar field φ such that ui = ∂̃ iφ/B, where we introduced a skew
derivative ∂̃ i = εi j∂ j . In addition to parametrizing allowed transverese displacements, the
field φ also represents a coarse-grained 2π-periodic superfluid phase [24].

Integrating now out the dual u(1) gauge field, one arrives at the quantum Lifshitz model
representation of the vortex crystal [21,24,46,47]

Lφ =
1

2λ
φ̇2 − 2C2ũ2

i j

=
1

2λ
φ̇2 −

C2

2B2
(∂i ∂̃ jφ + ∂ j ∂̃iφ)

2 ,
(2)

which encodes the low-energy transverse Tkachenko excitations with a quadratic dispersion
relation

ω2 =
2C2λ

B2
q4 . (3)

This agrees with the known low-momentum limit of the collective Tkachenko excitation of the
vortex crystal in the lowest Landau level approximation [18, 54, 55], where the shear elastic
modulus C2 is known to be [18,54]

C2 = 0.119λn2
0 . (4)

Although the low-momentum limit of the Tkachenko dispersion is encoded properly in the
Lifshitz model (2), it is only a quadratic truncation of a non-linear non-commutative Goldstone
theory [24] that respects all physical symmetries of the problem.

Remarkably, due to the transverse nature of the allowed displacements, the time-reversal
breaking Berry term from Eq. (1) completely drops out from the Lifshitz model (2). Note,
however, that in the presence of topological vortex configurations in the field φ, after inte-
gration by parts the Berry term survives at the cores of those defects. Physically, vortices of
the Tkachenko field represent vacancies and interstitials in the vortex crystal. The resulting
contribution to the action is given by

SB = −
ν

2

∫

d td2 x( j t
v∂tφ − j i

v∂iφ) , (5)

where we introduced the defect three-current jµv =
1

2πε
µνρ∂ν∂ρφ which encodes both the

density and spatial current carried by the vortices of the Tkachenko field φ.

2.2 Condensation of vacancies and interstitials

Here within the quantum Lifshitz theory, we investigate proliferation of vacancies and intersti-
tials in a two-dimensional superfluid vortex crystal at vanishing temperature.2 Microscopically,
we have in mind the supersolid scenario by Andreev and Lifshitz [56]: In the crystal, isolated
vacancies and interstitials cost finite energy to create, but due to quantum tunneling, the bot-
tom of their energy band touches zero and they become gapless. Provided this happens (which
should be verified in a microscopic calculation), here we want to clarify if such condensation of
vacancies/interstitials is an RG-relevant perturbation that destabilizes the vortex crystal phase
captured by the quantum Lifshitz model (2).

Up to surface terms, the effective theory (2) of the compact scalarφ ∈ (0,2π) is equivalent
to the z = 2 Lifshitz theory

L= 1
2λ
φ̇2 −

C2

B2
(∆φ)2 . (6)

2At finite temperature superconductors this problem was discussed in detail in an Abrikosov crystal in [45].
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We now rescale the Tkachenko field ϕ =
p
λφ, so the Lagrangian takes the canonical form

L= 1
2
ϕ̇2 −

η2

2
(∆ϕ)2 , (7)

with η2 = 2C2λ/B
2. Using now Eq. (4), one finds η ≈ 0.488λn0/B. Notice that the field

rescaling implies that ϕ ∈ (0,2π/
p
λ).

We are interested in operators that create vacancies and interstitials in the vortex crystals.
In the Lifshitz effective theory they correspond to magnetic vertex operators [48] that create
vortex defects of the field ϕ. To create such a vortex centered around a position x, one should
act on the vortex crystal vacuum with

Õm̃(x) = exp(i

∫

d2zα(z)Π(z)) , (8)

whereα(z) = m̃ arg(z−x) andΠ(z) denotes a canonical momentum density that is conjugate to
the Lifshitz fieldϕ. To account for the rescaled radius of the redefined fieldϕ, here m̃= m/

p
λ

with m an integer. Elementary vacancies and interstitials correspond to m= ±1. The magnetic
vertex operators can be added to the Lagrangian of the vortex lattice since they do not break
any global symmetry. Noteably, in the quatum Lifshitz theory the static correlation functions of
the vertex operators are known exactly [5,48] and are fixed by the parameter η, see Appendix
A. This allows to extract scaling dimensions of the vertex operators. For an elementary vortex
(m= ±1) of φ that corresponds to an elementary vacancy/interstitial we find

∆v = 0.488
n0

B/(2π)
= 0.488ν , (9)

where the filling fraction ν= nb/nv with the vortex density nv = B0/(2π). We observe that at
large filling fraction (ν→∞), where the system is deep in the Gross-Pitaevskii vortex lattice
regime, ∆v ≫ 1 and vacancies/interstitials are irrelevant. However, as ν decreases (and the
shear modulus C2 softens), the vacancy turns marginal ∆v = 2 + z = 4 at the critical filling
νc ≈ 4/0.488≈ 8.2.3

Now in a given microscopic model, if a vortex vacancy/interstitial becomes gapless at a
filling ν > νc , the perturbaton is RG-irrelevant and one expects that the Lifshitz fixed point
is stable. On the other hand, if the defect becomes gapless at ν < νc , it will distabilize the
Lifshitz fixed point because it is an RG-relevant perturbation. The detailed investigation of
such instability is left to a future work, but we anticipate that it might shed new light on the
mysterious vortex supersolid regime [34,44–46].

3 Dual tensor gauge theory

3.1 Vortex crystal

Given that the low-momentum strain of the Tkachenko excitations is symmetric and traceless,
we will dualize the Lifshitz theory (2) to a symmetric traceless gauge theory coupled to a scalar
charge [57]. To this end, first introduce the Hubbard-Stratonovich fields b and ei j

L= κ
8

ei je
i j −

λ

2
b2 −

1
2B

ei j(∂i ∂̃ jφ + ∂ j ∂̃iφ) + b∂tφ , (10)

3Notice that in this paper, following [5, 48], the bare Lifshitz theory (6) was used to calculate the va-
cancy/interstitial correlation function. The incorporation of the Berry term (5) into this calculation is left to a
future work.
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with κ= C−1
2 and ei j being a symmetric and traceless tensor. Solving the equations of motion,

one finds, b = ∂tφ/λ and ei j = 2(∂i ∂̃ jφ + ∂ j ∂̃iφ)/(κB). The field b represents fluctuations of
the coarse-grained superfluid density n in the vortex crystal [24]. On the other hand, ei j , as
the variation of the action with respect to the shear strain, is the traceless part of the stress
tensor T i j .

Now we split the Lifshitz field φ = φ(r) + φ(s), where the regular part φ(r) is smooth,
while the singular part φ(s) contains contributions from topological defects (disclinations and
dislocations) of the vortex crystal. For now, we will assume that the phase fieldφ has no vortex
singularities, i.e. εµνρ∂ν∂ρφ = 0, but only higher derivative singularites that correspond to
disclinations and dislocations. In other words, there are no vacancies and interstitials at low
energies, which justifies why the compression part of the elastic energy is dropped in our
departure point (2).

Integrating out the regular part φ(r), we find the conservation law

∂t b+
1

2B
(∂i ∂̃ j + ∂ j ∂̃i)e

i j = 0 . (11)

This equation has a simple physical interpretation as a consequence of the lowest Landau
level limit of the momentum and particle number conservations [58]. In this limit, due to the
absence of inertia, the particle number current is fixed by equating the Lorentz force and the
exerted stress which gives ji = −εi j∂kT jk/B. As a result, Eq. (11) is just the particle number
conservation equation when restricted to the lowest Landau level [58,59]

∂t n+
1
B
∂̃i∂ j T

i j = 0 . (12)

By introducing a traceless symmetric gauge potential ai j and representing the magnetic field
b and the traceless symmetric electric field ei j as

b = −
1

2B
(∂i ∂̃ j + ∂ j ∂̃i)ai j , (13)

ei j = ∂t ai j − (∂i∂ j −
1
2
δi j∆)a0 , (14)

the conservation law (11) becomes the Bianchi identity of a symmetric traceless tensor gauge
theory. Both b and ei j are invariant under the following u(1) gauge transformation

a0→ a0 + ∂tβ , ai j → ai j + (∂i∂ j −
1
2
δi j∆)β , (15)

which preserves the traceless form of the gauge potential ai j .
The gauge theory encodes only one physical degree of freedom because the two compo-

nents of the traceless symmetric tensor ai j are reduced to one due to the u(1) gauge redun-
dancy. The excitation mode of the dual tensor gauge theory

L= κ
8

ei je
i j −

λ

2
b2 , (16)

has the quadratic dispersion (3), see Appendix B. As we demonstrate in Appendix C, the simple
gauge theory (16) can be obtained from a more complicated dual theory with intertwined
tensor (dual to elasticity) and vector (dual to superfluidity) gauge fields that was derived and
analysed in Ref. [44].

The field equation for a0 is the Gauss law of the gauge theory that constraints the stress
tensor as ∂i∂ jei j = 0.
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The topological defects of the vortex lattice encoded in the singular part φ(s) of the
Tkachenko field couple naturally to the tensor gauge theory. Using integration by parts, we
end up with the following result

L= κ
8

ei je
i j −

λ

2
b2 −ρa0 + j i jai j , (17)

with the isolated disclination charge density [30,43]

ρ =
1

2B
(∂̃ j ∂̃i −

1
2
δi j∆)[∂i ∂̃ j + ∂ j ∂̃i]φ

(s) =
1

2B
∂̃ j ∂̃i[∂i ∂̃ j + ∂ j ∂̃i]φ

(s) = ∂̃ j ∂̃iu
(s)
i j , (18)

and the symmetric tensor current

j i j =
1

2B

�

∂t[∂ j ∂̃i + ∂i ∂̃ j]− [∂ j ∂̃i + ∂i ∂̃ j]∂t

�

φ(s) . (19)

With the assumption of vanishing vacancies εµνλ∂ν∂λφ
(s) = 0, and in addition

εµνλ∂ν∂λ∂tφ
(s) = 0, one can show that

j i j →
1
2

�

(∂t∂i − ∂i∂t)u
(s)
j +
�

∂t∂ j − ∂ j∂t

�

u(s)i

�

, (20)

which is simply related to the conventional disclocation current J i j = εikε jl jkl [43].
From the gauge symmetry (15), the defect density and current satisfy the conservation law

∂tρ + (∂ j∂i −
1
2
δi j∆) j

i j = 0 . (21)

The equation (21) implies conservation of particles, dipoles and the trace of the quadrupoles4

Q =

∫

d2 xρ , Qi =

∫

d2 xεi j x jρ , Qt r =

∫

d2 xx2ρ . (22)

As a result, isolated gauge charges are immobile, gauge dipoles are conserved and can only
move perpendicular to their dipole moment, while gauge quadrupoles are free to move. We
thus identify charges with lattice disclinations and dipoles with lattice dislocatioins which
can glide along their Burgers vector, but cannot climb. Mathematically, they satisfy the glide
constraint

δi j j i j = δi jJ
i j = 0 , (23)

which follows directly from Eq. (19) assuming no vortex singularities in φ(s) and ∂tφ
(s).

It is now straightforward to compute a static interaction potential between disclinations.
Integrating out the gauge field a0, one finds

L= −1
2
ρ(−q)

8C2

q4
ρ(q) . (24)

In real space it gives rise to a harmonic attractive potential. As a result, in the vortex crystal
disclinations are very costly in energy. They usually do not appear in isolation, but are bound
together into dislocations.

To determine the interaction potential between dislocations, we consider charge density
ρ induced by dipoles, i.e. ρ = εi j∂iχ j , where we introduced the Burgers vector density

χi = εab∂a∂bu(s)i [43]. In momentum space, we can rewrite Eq. (24) as

L= −1
2
χT

i (−q)
8C2

q2
χT

i (q) , (25)

4These three conservation laws also follow from the Gauss law.
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where we introduced the transverse projection χT
i (q) =
�

δi j − qiq j/q2
�

χ j(q). This agrees
with the lowest Landau level limit of the previous result [44,60]. We observe that dislocation
interact via an anisotropic long-range logarithmic potential.

In the presence of vacancies and interstitials, the construction of the dual gauge theory
must be modified because (i) the stress tensor is not traceless anymore, (ii) the Berry term (5)
is present. Moreover, the defect current j i j is not traceless either. From Eq. (19) its trace is
given by

δi j j i j =
2π
B
∂t j t

v , (26)

where we used the vacancy density j t
v =

1
2πε

i j∂i∂ jφ. In addition, in presence of a vacancy
current jk

v , the relation between the tensor current j i j (19) and the dislocation current J i j [43]
takes the form

J i j = εikε jl
h

jkl +
π

B

�

∂k j l
v + ∂l jk

v

�

i

. (27)

Combining now the last two equations, we arrive at the modified glide constraint5

δi jJ
i j − 2πB∂µ jµv = 0 . (28)

Now dislocations can climb at expense of creating or destroying vortex vacancies resulting in
the modification of the conserved charge Qt r in Eq. (21) to

Q̃t r =

∫

d2 x
�

x2ρ −
4π
B

j t
v

�

, (29)

see Appendix C. In the vortex crystal, vacancies interact via a short-range potential whose
nature depends on the interplay of the compression and shear elastic moduli [44]. Note that in
order to fix the interaction constant, one needs to go beyond our theory (2) which for example
misses elastic compression contributions to the interaction potential between vacancies.

3.2 Vortex fluid

In this section we propose a simple field theory of a fully gapped vortex fluid phase where
all global symmetries of the ground state are restored. To this end, consider a Lifshitz theory
of a compact scalar χ minimally coupled to the u(1) traceless symmetric tensor gauge theory
derived in the previous section. Physically, we can think of the scalar χ as representing the
phase of a (complex) disclination field that serves as the Higgs field in the vortex fluid phase.
Its Lagrangian is

Lχ =
τ

2
(∂tχ − a0
︸ ︷︷ ︸

Dtχ

)2 −
σ

2

��

∂i∂ j −
1
2
δi j∆

�

χ − ai j
︸ ︷︷ ︸

Di jχ

�2

. (30)

Under u(1) gauge transformations χ → χ +β , so the covariant derivatives Dtχ and Di jχ are
gauge invariant.

The corresponding field equation for χ is exactly the conservation law (21)

∂t (τDtχ)
︸ ︷︷ ︸

ρ

+
�

∂i∂ j −
1
2
δi j∆

�

(σDi jχ)
︸ ︷︷ ︸

j i j

= 0 , (31)

5We note that the definition of the vacancy current jµv = 1/(2π)εµνρ∂ν∂ρφ used in this paper differs by the
factor 1/(2π) from the definition used in Ref. [44].
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where ρ and j i j is the disclination density and symmetric tensor current. As a result the
charges Q, Qi and Qt r introduced in Eq. (22) are all automatically conserved. In the unitary
gauge Dtχ →−a0 and Di jχ →−ai j and in that particular gauge the conservation law is

τ∂t a0 +σ∂i∂ jai j = 0 , (32)

where we used that ai j is traceless.
Now we compute dispersion relations of excitation modes of the gauge theory coupled to

the Lifshitz matter. We start from the complete Lagrangian

L= κ
8

ei je
i j −

λ

2
b2 +

τ

2
(Dtχ)

2 −
σ

2
(Di jχ)

2 . (33)

The corresponding Gauss law
κ

4
∂i∂ jei j +ρ = 0 , (34)

while the Ampere law δS
δai j
= 0 is

κ

4
∂t ei j −

λ

2B
(∂i ∂̃ j + ∂ j ∂̃i)b = j i j . (35)

To solve it, we first rewrite this equation in terms of the gauge potentials a0 and ai j . Working
in the unitary gauge and using Eq. (32) allows to eliminate completely the scalar potential a0.
So one ends up with the equation for ai j

κ

4

�

∂ 2
t ai j +

σ

τ
(∂i∂ j −

1
2
δi j ∆)∂k∂l akl

�

+
λ

4B2
(∂i ∂̃ j + ∂ j ∂̃i)(∂k∂̃l + ∂l ∂̃k)akl +σai j = 0 . (36)

To simplify the calculation of the dispersion relation, we will use isotropy and consider a mode
propagating in the x-direction. For the trace components a11 = −a22 = f , Eq. (36) simplifies
to

κ

4
[∂ 2

t +
σ

2τ
∂ 4

x ] f +σ f = 0 , (37)

which leads to the gapped dispersion of the f -mode

ω2 =
2σ
κτ

q4 +
4σ
κ

. (38)

For the off-diagonal components a12 = a21 = g, we find

κ

4
[∂ 2

t +
λ

2B2
∂ 4

x ]g +σg = 0 . (39)

We observe that the g-mode (which corresponds to the gapless Tkachenko mode in the absence
of the Lifshitz matter, see Appendix B) acquires a gap due to the coupling to the Lifshitz matter
sector

ω2 =
2λ
κB2

q4 +
4σ
κ

. (40)

We thus end up with two physical modes that have the same gap ∆2 = 4σ/κ at q = 0. In
spirit, these results resemble physical excitations in a superconductor, where the longitudinal
and transverse excitation modes have the same energy gap [61].

Similarly to superconductivity, the vortex fluid exhibits a (dual) Meissner effect. Specif-
ically, in the static limit ω = 0, from the dispersion (40) we find q = eiπ/2/λL , where the
dual London penetration length is λL =

4
p

2σB2/λ. As the result, the dual magnetic field
b ∼ ∂i ∂̃ jai j which represents fluctuations of the superfluid density, near the boundary of the
system decays exponentially into the bulk.

In summary, the u(1) tensor gauge theory coupled to the Lifshitz matter represents a fully
gapped vortex fluid phase, where global symmetries (magnetic translations and rotations) are
respected by the ground state. Being produced by the dual Higgs mechanism, this phase has
many properties similar to u(1) superconductors.
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3.3 Ginzburg-Landau theory and the Higgs transition

One might wonder if the vortex crystal from Sec. 3.1 can undergo a direct quantum melting
transition to the isotropic vortex fluid from Sec. 3.2. Here we write down a simple Ginzburg-
Landau theory that achieves that.

We consider a complex scalar Ψ that represents a disclination annihilation and plays the
role of the Higgs field. Under u(1) gauge transformations it is postulated to transform as

Ψ→ eirβΨ , (41)

where r is the u(1) gauge charge of the Higgs field Ψ. We define the covariant derivative

Di jΨ
2 = Ψ∂i∂ jΨ − ∂iΨ∂ jΨ −

1
2
δi j

�

Ψ∆Ψ − ∂kΨ∂
kΨ
�

− irai jΨΨ , (42)

that transforms covariantly
Di jΨ

2→ ei2rβDi jΨ
2 , (43)

under the gauge transformations (15) and (41). This covariant derivative is the traceless
symmetric version of the one considered in Ref. [51]. Moreover, we can define the temporal
covariant derivative

DtΨ = ∂tΨ − ira0Ψ , (44)

that also transforms covariantly
DtΨ→ eirβDtΨ . (45)

From these building blocks, we now can write down the following Ginzburg-Landau La-
grangian

LΨ =
i
2
Ψ†DtΨ −

m
2
|Di jΨ

2|2 − v2Ψ
†Ψ −

v4

2
|Ψ†Ψ|2 . (46)

Notice that in contrast to the ordinary Ginzburg-Landau theory, the term with spatial deriva-
tives is quartic in Ψ and thus represents interactions. The gauged dipole symmetry Qi from Eq.
(22) prohibits quadratic terms inΨ with spatial derivatives, while the quadrupole conservation
Qt r imposes the traceless condition for the covariant derivative (42).

We can now use the parameter v2 to tune between the two phases. When v2 < 0, the
theory is in the Higgs phase. We write Ψ =

p

ψeirχ with ψ = |v2|/v4 + γ, where γ is a radial
massive fluctuation. After integrating out γ and keeping the leading order terms, we obtain

Lχ =
r2

2v4
(∂tχ − a0)

2 −
mr2v2

2

2v2
4

��

∂i∂ j −
1
2
δi j∆

�

χ − ai j

�2

. (47)

After renaming

r2/v4→ τ ,
mr2v2

2

v2
4

→ σ , (48)

we recover the effective theory of the vortex fluid, i.e., the Lifshitz scalar coupled to the dual
tensor gauge theory (30).6

On the other hand, for v2 > 0, the Higgs field Ψ is gaped and at low energies it decou-
ples from the gauge theory (16). We are thus in the vortex crystal phase that supports the
quadratically dispersing Tkachenko mode.

6One can consider a different Ginzburg-Landau Lagrangian

L′
Ψ
=

1
2
|DtΨ|2 −

m
2
|Di jΨ

2|2 − v2Ψ
†Ψ −

v4

2
|Ψ†Ψ|2 . (49)

After integrating out the massive fluctuation γ, one arrives at a similar quadratic form of the Golstone boson action
in the Higgs phase but with different coefficients.

10

https://scipost.org
https://scipost.org/SciPostPhys.17.6.164


SciPost Phys. 17, 164 (2024)

In the mean-field approximation, the quantum transition at v2 = 0 between the vortex
crystal and vortex fluid is direct and continuous. Of course, this simple picture might not
survive quantum fluctuations near v2 = 0 that could lead to split transitions, as discussed for
example in [44,49]. A careful treatment of this problem is left to a future work.

4 Towards a dual gravitational theory

The symmetric tensor gauge field ai j is reminiscent of a metric in a (linearized) theory of
gravity. Indeed, already Kleinert noticed the analogy between the tensor gauge formulation
of elasticity and Einstein’s theory of gravity, and suggested that gravity could emerge from the
defects of a crystal with lattice spacing of order the Plank length [62,63]. Later, the symmetric
tensor description of a boson liquid phase was also proposed as a gravity theory in works by
Xu and collaborators [64, 65]. Pretko also formulated the fractonic symmetric tensor gauge
theory in terms of a gravity model with both positive and negative mass matter fields [66].

In this paper we follow closely [59]. To construct the dynamical gravity from the dual
tensor gauge theory, we first introduce a symmetric and traceless dimensionless field

hi j = −l2(ϵika jk + ϵ jkaik) , (50)

that contains equivalent information to ai j . Here l = 1/
p

B is the magnetic length. Under u(1)
gauge transformations (15), hi j transforms as

hi j → hi j − l2(∂ j ∂̃i + ∂i ∂̃ j)β , (51)

which can be rewritten as
hi j → hi j − ∂iξ j − ∂ jξi , (52)

where we introduced ξi = l2∂̃ iβ that by construction satisfies ∂iξ
i = 0. We recognize the

linearized transformation of a metric tensor fluctuation under volume-preserving diffeomor-
phisms.

Now we are ready to extend to a non-linear realization of the u(1) gauge redundancy from
Sec. 3. To that end, we introduce a dynamical unimodular metric gi j that under volume-
preserving infinitesimal diffeomorphisms x i → x i + ξi = x i + ℓ2ϵi j∂ jβ transforms as

δβgi j = −ξk∂kgi j − gk j∂iξ
k − gik∂ jξ

k = −ℓ2ϵkl
�

∂kgi j + gk j∂i + gik∂ j

�

∂lβ . (53)

In the linear regime, where gi j = δi j+hi j+O
�

h2
�

, we recover the transformation (52). Notice
that in additional to the dual dynamical metric gi j , one has also a background symmetric
metric tensor gi j that measures distances between elementary bosons on a surface, where the
vortex crystal is formed. In the following, we consider a flat surface with gi j = δi j which
results in a periodic-crystal ground state. To construct invariants under volume-preserving
diffeomorphisms, we will lower indices with the dynamical metric gi j and raise them with its
inverse gi j . The extension to a non-trivial background metric gi j should give rise to a bimetric
theory7 whose construction is postponed to a future work.

Following [59], the non-linear generalization of the u(1) gauge transformations of the
field a0 that satisfies the non-commutative algebra of volume-preserving diffeomorphisms
[δα,δβ] = δ[α,β] is

δβa0 = ∂tβ − ξk∂ka0 = ∂tβ − ℓ2ϵkl∂ka0∂lβ . (54)

7A gapped bimetric theory of fractional quantum Hall fluids was proposed and analyzed in [67].
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Given these objects and their transformation properties, we will look now for the basic
building blocks of the non-linear dual gravity theory8 that correspond to the magnetic and
electric fields of the traceless tensor gauge theory (16).

From the dynamical metric gi j (and its inverse gi j), we can construct the gauge-invariant
Ricci scalar R [69] that in two spatial dimensions fixes completely the Riemann tensor.9 In
the linearized regime

R= ∂i∂ jhi j = −2b . (55)

We thus find that in the non-linear realization, the Ricci scalar R corresponds to the magnetic
field b which represents fluctuations of the coarse-grained superfluid density in the vortex
crystal.

Although the time-derivative of the dynamical metric does not transform nicely under time-
dependent gauge transformations, we can introduce a traceless “shear strain rate” tensor [70,
71]

si j = ∂tgi j +∇i v j +∇ j vi − gi j∇kvk , (56)

where the covariant derivatives were defined using the dynamical metric gi j . Here we also
introduced the velocity vector field v i = l2ϵi j∂ ja0 that under volume-preserving diffeomor-
phisms transforms as

δβ v i = −ξk∂kv i + vk∂kξ
i + ξ̇i . (57)

Under Galilean boosts (ξi = αi t), the field v i transforms by a constant shift, as expected for
a velocity. Physically, up to epsilon contractions, the tensor si j represents the traceless part of
the physical stress tensor. In the linearized regime it thus essentially reduces to to the electric
field ei j .

Since the Einstein-Hilbert integral
∫

d2 x
p
gR is fixed by the topological Euler character-

istic χE of a two-dimensional manifold, the first non-trivial term including the Ricci scalar is
∼R2. We can also raise the indices si j = gikg jlskl and construct a dynamical scalar contribu-
tion ∼ si js

i j to the non-linear theory. The combination of the two terms

L= κ

32ℓ4
si js

i j −
λ

8
R2 , (58)

reduces in the linearized effective theory (16).
Using the dynamical metric tensor gi j and the “shear strain rate” tensor si j , we can con-

struct a more general non-linear gravity action that is invariant under the non-commutative
volume-preserving diffeomorphism transformations (53), (54). A systematic construction of
a dual non-linear bimetric theory of a vortex crystal that respects all global symmetries is an
interesting future challenge.

5 Conclusions and outlook

In summary, we have explored several mechanisms relevant to the quantum-induced melt-
ing of two-dimensional vortex crystals, employing the quadratic low-energy effective Lifshitz
theory and its symmetric tensor fractonic dual as our theoretical framework. Using the dual

8The emergent gravity introduced here should not be confused with the well-established geometric theory of
defects, reviewed for example in [68]. In the latter theory the emergent metric originates directly from the strain
tensor and the emergent curvature and torsion tensors are simply related to densities of topological defects. The
two geometric descriptions are complementary and are related by a non-trivial duality transformation.

9Here we use the dynamical metric gi j and and its inverse gi j to lower and raise indices.
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description, we studied the physics of topological defects, and speculated about a direct quan-
tum phase transition from the vortex solid to the vortex liquid phase. We also took initial steps
towards a non-linear dual description which we anticipate to be a dynamical theory of gravity.

Finally, we would like to highlight several intriguing research avenues that have emerged
from this study of vortex matter in superfluids and warrant further investigation in the future:

• Vacancy/interstitial RG instability: An essential task is to gain deeper insights into the
nature of the RG instability discussed in Section 2.2 that arises for filling fractions
ν < νcr ≈ 8.2 due to the Andreev-Lifshitz condensation of vacancies and interstitials.

• Disclination Higgs transition: It is important to explore whether the direct and exotic
continuous Higgs transition, as discussed in Section 3.3, remains intact in the presence
of quantum fluctuations or if it gives way to several more conventional transitions, as
suggested in [44,49].

• Non-linear gravity theory: Using the ingredients introduced in Section 4 and employ-
ing the well-developed Newton-Cartan formalism, one should be able to construct a
non-linear dynamical dual gravity theory that is consistent with all global symmetries
inherent to the problem. Such theory is restricted to the lowest Landau level and thus
captures the physics of the vortex crystal at frequencies well below the cyclotron scale.
This theory could then be used to compute the decay rate of the Tkachenko mode which
should be compared with the result obtained in Ref. [24]. The coupling of the dynamical
metric gi j and the background metric gi j needs to be understood, and a complete theory
of the bimetric model for the rotating superfluid is awaited to be discovered.

Beyond rotating superfluids, it is well-appreciated that the Lifshitz theory emerges at low
energies at the critical Rokhsar-Kivelson point in quantum dimmer models and quantum spin
ice [5, 48, 72]. Despite originating from a model with different global symmetries, the dual
theory that we considered in this paper might inspire a study of the constrained dynamics of
the low-energy excitations at the Rokhsar-Kivelson critical point.

Note added: We would like to draw reader’s attention to the paper [73] by Yi-Hsien Du,
Ho Tat Lam, and Leo Radzihovsky, titled “Quantum vortex lattice via Lifshitz duality”, that has
some overlap with our work.
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A Vertex operators in quantum Lifshitz theory

Here following closely Refs. [5, 48], we review the known facts about vertex operators in
quantum Lifshitz model in two spatial dimensions.

Consider a quantum Lifshitz theory of a compact scalar ϕ ∈ (0,2π). The theory is defined
by the (Euclidean) Lagrangian

L= 1
2
(∂τϕ)

2 +
η2

2
(∇2ϕ)2 . (A.1)
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Consider perturbations that preserve the U(1) shift symmetry that acts as ϕ → ϕ + δ.10 In
particular, we are interested in operators that create vortex defects ofϕ with integer vorticity m

Õm(x) = exp(i

∫

dzα(z)Π(z)) , (A.2)

where α(z) = m arg(z−x) and Π(z) denotes canonical momentum density that is conjugate to
the Lifshitz field ϕ. When acting on the ground state, this operator shifts the phase to create
a singular vortex profile. The (spatial) scaling dimension of Õm is [5,48]

∆̃m = 2πηm2 . (A.3)

In other words, the equal-time correlator is given by the power-law

〈Õm(z)
†Õm(z

′)〉 ∼ |z− z′|−4πηm2
. (A.4)

Due to dynamical critical exponent z = 2, for ∆̃m < 2+ z = 4, the vortex operator becomes
RG-relevant and destabilizes the Lifshitz scale-invariant fixed point. In particular, if we start
with a large η and decrease it to the value ηc = 2/(πm2), ∆̃m becomes marginal.

One can also consider electric vertex operators of the form

On = exp(inϕ) , (A.5)

which have the (spatial) scaling dimension [5,48]

∆n =
n2

8πη
, (A.6)

and thus

〈On(z)
†On(z

′)〉 ∼ |z− z′|−
n2

4πη . (A.7)

These electric operators violate the U(1) shift symmetry and cannot be added to the Lagrangian
of the model.

B Tkachenko dispersion

We start from the Euler-Lagrange equations of the dual theory (16)

κ

4
∂t (∂t ai j − (∂i∂ j −

1
2
δi j∆)a0)

︸ ︷︷ ︸

ei j

+
λ

2B
(∂i ∂̃ j + ∂ j ∂̃i)

1
2B
(∂k∂̃l + ∂l ∂̃k)akl
︸ ︷︷ ︸

−b

= 0 . (B.1)

Now without loss of generality we work in the temporal gauge a0 = 0 and consider a wave
propagation along the x-direction such that ∂y = 0. Under these conditions, ei j = ∂t ai j
and b = ∂ 2

x ax y/B. The above field equations simplify to ∂ 2
t ax x = ∂ 2

t ay y = 0 and
κ
4∂

2
t ax y +

λ
2B2 ∂

4
x ax y = 0. The last equation gives us the quadratic dispersion ω2 = 2C2λ

B2 q4

of oscillations of the off-diagonal component ax y .

10Due to the dynamical exponent z = 2, the U(1) symmetry is not broken spontaneously, but only exhibits
algebraically-decaying correlators of U(1)-charged operators.
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C From old to new dual tensor gauge theory

The fracton-elasticity duality of vortex crystals was investigated in Ref. [44], where a gauge
theory involving symmetric tensor gauge fields (dual to elasticity) intertwined with a u(1)
vector gauge theory (dual to superfluidity). Here we demonstrate how one can derive from
that construction the dual gauge theory (16) investigated in this paper.

We start from the intertwined dual gauge theory considered in Ref [44]11

L= Lg

�

aµ
�

+
1

2Bn0
εi j

�

Bi + Bεikak

�

∂t

�

B j + Bε jl al

�

+
1
2

C−1
i j;kl

�

E i j + Bδi jat

� �

Ekl + Bδkl at

�

+ Ai jJ
i j + A0ρ + 2πaµ jµv ,

(C.1)

where the elasticity tensor Ci j;kl is given by

Ci j;kl = 8C1P(0)i j;kl + 4C2P(2)i j;kl , (C.2)

with the compression and shear projection operators

P(0)i j;kl =
1
2
δi jδkl ,

P(2)i j;kl =
1
2

�

δikδ jl +δilδ jk −δi jδkl

�

.
(C.3)

The definitions of the electric field and magnetic field in terms of the symmetric tensor gauge
field are Ei j = ∂tAi j − ∂i∂ jA0 and Bi = −ε jk∂

jAki = ∂̃kAki . The superfluid current in the dual
picture is jµ = εµνρ∂νaρ, while n0 is the superfluid background density. The electric field Ei j

and magnetic field Bi are invariant under the gauge transformations

Ai j → Ai j + ∂i∂ jβ , A0→ A0 + ∂tβ . (C.4)

The gauge theory is also invariant under the additional gauge transformation

Ai j → Ai j +
1
B
δi jξ , aµ→ aµ − ∂µξ . (C.5)

Notice that the gauge transformation (C.4) differs from the gauge transformation (15) since Ai j
is not traceless. The gauge transformations imply the conservation laws [44] for vortex crystal
topological defects (represented by the disclination density ρ and the dislocation current J i j)
and vacancies/interstitials (represented by their current jµv )

∂tρ − ∂i∂ jJ
i j = 0 , (C.6)

1
B

J i jδi j − 2π∂µ jµv = 0 . (C.7)

Combining the above equations gives us

∂tρ − (∂i∂ j −
1
2
δi j△)J i j −

π

B
△ (∂µ jµv ) = 0 . (C.8)

We observe that in the presence of vacancies, the conservation of the trace of the quadrupole
in the main text needs to be modified to dQ̃t r/d t = 0 with

Q̃t r =

∫

d2 x
�

x2ρ −
4π
B

j t
v

�

, (C.9)

11To be consistent with notation in the main text, here we use conventions for currents and gauge fields that
differ from [44].
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which implies the modified glide constraint derived in [44]. Note that a similar conclusion for
an ordinary crystal was derived in [30].

From now on, we ignore the vacancy current and lattice topological defects and derive from
Eq. (C.1) the traceless tensor gauge theory in the main text. At leading order in derivative
expansion, the first term in (C.1) does not depend on at , so the resulting Gauss law

B2δi jC−1
i j;klδ

kl at + BE i jC−1
i j;klδ

kl = 0 . (C.10)

Thus at is nothing but the trace of the symmetric tensor electric field

at = −
1

2B
E i jδi j , (C.11)

where we used that P(2)i j;klδ
kl = 0. Substituting it now back into the Lagrangian (C.1), we use

the explicit form of the projectors and find

L= Lg

�

aµ
�

+
1

2Bn0
εi j

�

Bi + Bεikak

�

∂t

�

B j + Bε jl al

�

+
κ

8
ei jekl , (C.12)

where we defined the symmetric traceless tensor ei j = E i j − δi j 1
2 Eabδab and κ = C−1

2 . Re-
stricting to the leading-order superfluid Lagrangian Lg

�

aµ
�

= −λ(εi j∂ia j)2/2, the equation
of motion for ai is

λ∂̃i ∂̃ ja j +
1
n0
∂t(B

i + Bεi ja j) = 0 , (C.13)

which approximately can be solved by

ai =
1
B
εi jB j + . . . (C.14)

Substituting this solution into Eq. (C.12), we finally get

L= −λ
2

b2 +
κ

8
ei je

i j , (C.15)

where we introduced b = − 1
B∂kBk = −

1
B∂k∂̃bAbk. This is exactly our new symmetric traceless

gauge theory (16).
Finally, if we define the traceless symmetric tensor gauge field ai j and rename A0

ai j = Ai j −
δi j

2
Akk , A0→ a0 , (C.16)

we can write the ei j and b in terms of the new gauge fields

b = −
1

2B
(∂i ∂̃ j + ∂ j ∂̃i)ai j , (C.17)

ei j = ∂t ai j −
�

∂i∂ j −
1
2
δi j∆

�

a0 . (C.18)

After the redefinitions, the gauge transformation of the traceless symmetric tensor gauge field
inherited from (C.4) reads

a0→ a0 + ∂tβ , ai j → ai j +
�

∂i∂ j −
1
2
δi j∆

�

β , (C.19)

which reproduces gauge transformations (15) from the main text.
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