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Abstract

Machine learning algorithms have the capacity to discern intricate features directly
from raw data. We demonstrated the performance of top taggers built upon three ma-
chine learning architectures: a BDT that uses jet-level variables (high-level features,
HLF) as input, a CNN (a miniature version of ResNet) trained on the jet image, and a
GNN (LorentzNet) trained on the particle cloud representation of a jet utilizing the 4-
momentum (low-level features, LLF) of the jet constituents as input. We found significant
performance enhancement for all three classes of classifiers when trained on combined
data from calorimeter towers and tracker detectors. The high resolution of the tracking
data not only improved the classifier performance in the high transverse momentum re-
gion, but the information about the distribution and composition of charged and neutral
constituents of the fat jets and subjets helped identify the quark/gluon origin of sub-
jets and hence enhances top tagging efficiency. The LLF-based classifiers, such as CNN
and GNN, exhibit significantly better performance when compared to HLF-based clas-
sifiers like BDT, especially in the high transverse momentum region. Nevertheless, the
LLF-based classifiers trained on constituents’ 4-momentum data exhibit substantial de-
pendency on the jet modeling within Monte Carlo generators. The composite classifiers,
formed by stacking a BDT on top of a GNN/CNN, not only enhance the performance of
LLF-based classifiers but also mitigate the uncertainties stemming from the showering
and hadronization model of the event generator. We have conducted a comprehensive
study on the influence of the fat jet’s reconstruction and labeling procedure on the effi-
ciency of the classifiers.
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1 Introduction

Since its commencement, the Large Hadron Collider (LHC) [1] at CERN has been looking for
evidence of physics beyond the Standard Model (BSM). While the discovery of the Higgs [2,3]
is a remarkable success for the LHC experiment, it serves to reinforce solely the legitimacy of
the Standard Model (SM). The absence of any solid evidence supporting BSM physics has mo-
tivated researchers to progressively explore higher energy scales. Such high energies facilitate
the production of boosted heavy SM particles like the top quark, W/Z-boson, and the Higgs
boson. The hadronic decays of the boosted SM particles lead to a collimated cluster of quarks,
manifesting as large radius (large-R) single jets (fat jets) with distinctive features. At the LHC,
the sub-structure features of fat jets resulting from the hadronic decay of boosted top quarks,
W/Z-bosons or the Higgs boson have been widely utilized1 to search for heavy BSM resonances
within various new physics scenarios such as supersymmetry [6–8], extra-dimensional models,

1Considering the hadronically decaying boosted top quarks or W/Z bosons offers several advantages when
designing search strategies for the heavy BSM resonances that decay into massive SM particles. On the one hand,
the enhanced hadronic decay branching ratios of top quarks or W/Z bosons lead to a higher signal rate. The
hadronic decay products of top quarks or W/Z bosons being visible at the LHC detectors enables the kinematic
reconstruction of the decay cascade for specific BSM resonances [4,5].
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leptoquark models, different gauge and field extensions of the SM [4, 5, 9–11], etc. Efficient
identification of the particle identity of the fat jet becomes essential to improve the sensitivity
of the LHC and future colliders. This necessitates a substantial shift in the analysis strategy
and demands the development of new and innovative methodologies for tagging the particle
identities of the fat jets.

Traditional methods for jet-tagging rely on constructing high-level discriminants from the
jet substructure information, the so-called jet substructure observables2 [19–30]. The useful-
ness of jet substructure observables in distinguishing large-R jets resulting from hadronically
decaying boosted heavy SM particles over QCD quark/gluon jets has been demonstrated and
widely accepted by experimental collaborations [31–36]. Incorporating machine learning-
based techniques into the task of jet classification opens up new and unique directions. These
methods leverage the fine granularity of the LHC detectors to construct highly specialized
observables from the four-momentum of the constituents of the jet. Over the past decade, var-
ious neural network-based architectures have been developed [37–62] and have demonstrated
substantial enhancement in the classification efficiencies compared to traditional substructure-
based techniques. Apart from architectural complexity, these algorithms differ in the represen-
tation of the input dataset. While Linear classifiers [49] and BDTs [63,64] are trained on jet-
level observables constructed from the jet substructure information, Convolutional Neural Net-
works (CNNs) [40,41,44,52,54,55,65–72], Recurrent Neural Networks (RNNs) [71,73–75],
Graph Neural Networks (GNNs) [46, 57, 76–86], Recursive Neural Networks (RvNNs) [45,
61, 87, 88], Fisher’s Linear Discriminant [56], Locally Connected Networks [53], etc. are
directly trained on pure or transformed four-momentum data3 of the jet constituent. On
the other hand, Multi-Layer Perceptrons (MLPs) can be trained on both jet-level observable
data [48,89–92] as well as constituents four-momentum data [39,51,58,73].

In the present analysis, we focus on classifying fat jets resulting from hadronically decaying
boosted top quarks from light quarks and gluon jets (here onwards, QCD jets). Theoretically,
the top quark is especially interesting because of its high Yukawa coupling. The large top
Yukawa coupling plays not only a crucial role in the computation of electroweak precision
observables [93] and determining the vacuum stability [94] of the SM, but also significantly
influences the masses and interactions of several BSM resonances, many of which have en-
hanced couplings with the top quark, resulting in a top quark rich final state at the LHC. As
the heaviest SM particle, the top quark decays into a b quark and a W±-boson. The subsequent
W±-boson decays can yield either a 3-quark final state or a combination of a b-quark and an
SM-charged lepton, accompanied by missing transverse energy. Conventional searches at the
LHC primarily rely on the leptonic decays of top quarks to suppress the huge SM QCD back-
ground. Although leptonic decays reduce the SM background contributions, the suppressed
leptonic branching ratios of the top quark lead to reduced signal strength. Additionally, missing
transverse energy from the elusive neutrinos in the final state complicates the reconstruction
of the top quark’s 4-momentum and the decay cascade of BSM resonances which lead to the
top-rich final states. While the hadronic decays of the top quark simultaneously solve these
two issues, the hadronic decay of the top quark into three resolved jets suffers from a huge
QCD background. Effectively distinguishing these large-R jets arising from boosted top quark
decays from QCD jets is key to suppress QCD background for BSM scenarios featuring top

2Jet substructure observables are not only valuable for tagging boosted SM heavy particles like top quarks,
Z/W-bosons, and Higgs bosons, but their significance in distinguishing between quark and gluon jets has also been
demonstrated recently in the literature [12–18].

3While representation of a jet as a gray-scale (single layer) or color (multi-layer) image are used to train convo-
lutional neural networks (CNNs) [40,41,44,52,54,55,65–71], Fisher discriminant analysis [56], locally connected
networks [53], and Multi-Layer Perceptrons (MLPs) [50], the Graph Neural Networks GNNs) [46, 57, 76–86] are
trained on the particle cloud (graph) representation of jets. Similarly, jet-based tree-structured data [45,61,87,88]
can also be used in Recursive Neural Networks (RvNNs) and GNNs.
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quark-rich final states at the LHC. In this work, we have focused on three different machine-
learning algorithms to distinguish top jets from QCD jets:

• A Boosted Decision Tree that uses high-level features for training.

• A miniature version of the ResNet [95] that uses image representation of jets as input.

• LorentzNet [76], a symmetry-preserving GNN founded upon the concept of Lorenz equiv-
ariance.

We have also considered composite classifiers by stacking a BDT-based classifier on top of
the ResNet and LorentzNet to leverage the high-level features in BDT and low-level inputs in
CNN/GNN in a single tagger.

The calorimeters at the LHC have a fixed granularity, and as the transverse momentum
of top jets increases, the energy deposition by jet constituents becomes more compact. This
compactness results in reduced resolution in variables constructed using calorimeter towers.
To address this issue, researchers have turned to the finer spatial granularity of inner detec-
tors, leveraging tracking information to improve their analyses. Moreover, the principles of
Quantum Chromodynamics (QCD) and various experimental findings suggest that jets initi-
ated by light quarks or gluons exhibit distinct differences in the distribution and composition
of charged and neutral hadrons during their hadronization process.4 Given this context, it is
essential to investigate the impact of tracking information on top-tagging algorithms, as it can
significantly enhance their performance.

This work will study the critical importance of combining information from calorimeter
towers and the tracker detector. This combined information provides insights into the compo-
sition and distribution of charged and neutral hadrons within a jet, ultimately playing a crucial
role in determining the performance of the classifiers. Additionally, we will study the effect of
different Monte-Carlo generators on the performance of top tagging algorithms. We will also
study the dependence of the classifier’s performance on the transverse momentum of the fat
jets.

The rest of the paper is organized as follows. In Section 2, we discuss the dataset used to
train the classifiers. Section 3 discusses the various model architectures used for our analysis.
In Section 4 and 4.5, we discuss the effect of tracking information and truth-level identifica-
tion efficiency on classifier performance. In Section 4.6, we discuss the variation of classifier
efficiency with the transverse momentum of the fat jets. Finally, Section 5 summarises our
observations.

2 Dataset

A significant portion of our analysis focuses on establishing the importance of incorporating
the information from tracker and calorimeter towers into the datasets5 used for training and
testing the Machine Learning (ML) based classifiers designed to identify hadronically decay-
ing boosted top jets over the QCD light quark and gluon jets. To fulfill this objective, we have
trained our classifiers on datasets generated following two different approaches. One dataset
(denoted as DATAcalo in the rest of the manuscript) only incorporates the information stored as
energy deposits in the hadronic and electromagnetic calorimeter towers. The second dataset
denoted as DATAt rck extends the previous one by incorporating the information regarding the

4Exploiting the characteristics of light quark and gluon hadronization, several classifiers [96–98] based on
tracking information have been developed for the classification of quark vs. gluon jets.

5By dataset, we imply the signal (hadronically decaying boosted top quark) and background (QCD generated
quark and gluon) fat jets used for our analysis.
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electric charge of the charged constituents from the trackers. In the former case, we have
generated the datasets following the prescription of Ref. [99]. The authors of Ref. [99] have
studied various top taggers and assessed their performance based on a dataset that only con-
tains information on the jet constituents coming from the calorimeter energy deposits. Though
that dataset6 serves its purpose of comparing the performance of various top taggers, as we will
demonstrate in the subsequent sections, the same dataset is inadequate in providing a given
ML algorithm’s optimal performance. To make our case, we have compared the performance
of LorentzNet, a symmetry-preserving Graph Neural Network (GNN) for top tagging [76], on
datasets generated using these two approaches. We have also performed similar exercises for
the Boosted Decision Tree (BDT) and Convolutional Neural Network (CNN) based top taggers.

Another objective of this work is to study the performance of top taggers for different
transverse momentum ranges of the hadronically decaying top quark. For this section of the
analysis, we have divided the pT range between 300 to 1500 GeV into six bins of size 200
GeV each. We then generate large-R jets resulting from the hadronically decaying boosted top
quarks (the signal jets) and QCD production of light quarks and gluons (the background jets)
in these bins and train and test our classifiers for each pT bin.

All large-R7 signal and background fat jets are generated in MG5_AMC@NLO [106] with
the NNPDF21LO [107] PDF. The hadronically decaying boosted top samples are generated
from the SM process pp → t t̄. Similarly, for the background fat jets (QCD production of
quark and gluon), we have used the process pp → j j (where j includes u, c, d, s, g and their
anti-particles). Subsequent decay of the top quarks and showering and hadronization of the
light quarks and gluons are simulated in Pythia8 [108]. To simplify the analysis, we have
not included the effect of Multi Parton Interaction (MPI) and PileUp. Finally, we have used
Delphes [109]with the default ATLAS card to include the detector efficiencies and resolutions.
The fat jets are reconstructed in Fastjet [110] using the anti-kT algorithm. To reconstruct the
sub-jets inside a fat jet, we use the jet trimming [111] algorithm with default parameters
Rt r im = 0.2 and pT,t r im = 0.05, which gives us subjets with R= 0.2. For each pT range defined
in the previous paragraph, we have generated one million top quarks and one million QCD jets
for our final analysis. For training purposes, we selected 600k fat jets from each category while
reserving 200k from each class to validate and test the classifiers. For training and testing the
composite classifiers (see section 3), we have generated additional 400k fat jets from each
category for training and 200k from each category for testing.

Before proceeding to the next section, we mention the convention followed in our analysis
to construct the constituents of a fat jet, namely the tracks and calorimeter towers. Through-
out our analysis, we adopt two different conventions; in one, we use the TrackMerger/tracks
and Calorimeter/towers classes of Delphes to construct the tracks and towers. We refer to
them as tracks and towers in the subsequent sections. In the second convention, we use
the HCal/eflowTracks to construct the tracks while we combine the ECal/eflowPhotons and
HCal/eflowNeutralHadrons classes to construct the calorimeter towers. These are referred to
as Etracks and Etowers in the subsequent discussion. The only difference between the two
approaches is that, in the latter case, Delphes performs a matching between the track and
calorimeter energy deposits to filter out the calorimeter towers originating from the charged
particles and classify them as tracks.

6The same dataset have been used in several subsequent analyses [57, 78, 100–105] for accessing the perfor-
mance of their proposed classifiers

7The reconstruction radius (radius of the cone used to define the fat jets in FastJet) plays a crucial role in
determining the identification efficiencies of fat jets resulting from boosted top quarks. We will discuss this issue
in the next section.
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2.1 Truth-level tagging (TLT)

The quality of the training dataset has a big impact on how well a classifier performs. In our
specific example, the classifier’s performance is significantly influenced by the purity of the
signal (hadronically decaying boosted top quarks) datasets.8 Improved classifier efficiency re-
sults from using more pure signal data in training. Therefore, to prepare the signal samples for
training and analyzing the performance of any classifier, we need a method to select only those
fat jets that are properly reconstructed. We achieve this objective by matching the fat jets and
the constituent sub-jets with their partonic counterparts. This process is referred to as truth-
level tagging (TLT), and we name the efficiency of a hadronically decaying boosted top quark
to be associated with a properly reconstructed fat jet as the truth-level identification efficiency
(εt ruth

S ). To ensure a valid comparison with the performance of the available classifiers in the
existing literature, we adopt the following simple truth-level tagging criteria, introduced in
Ref. [99] and subsequently employed in several other references [57, 78, 100–105]: A fat jet
to be tagged as a top fat jet at truth level, we require that both the partonic top and its three
daughter quarks lie within the cone of that fat jet. No truth-level tagging criteria are applied
to the QCD fat jets.

The truth-level identification efficiency depends on two factors: the reconstruction radius
(R) of the fat jet and the transverse momentum of the hadronically decaying top quark. If
the transverse momentum of the top quark is not large enough, the decay products of the top
quark will not be collimated enough, and we will require a large radius fat jet to capture all the
hadrons arising from the hadronization of the three light quarks resulting from top decay. At
the same time, if we have a top quark with very high transverse momentum, all the hadronic
constituents resulting from the high-pT top quark will reside inside a small cone. In this case,
if we choose a very large radius of reconstruction, the fat jet will pick contributions from the
background radiation, which will directly affect the resolution of various features of the fat jet
and hence, the performance of the classifiers. The way out is to use a jet tagging algorithm
with a variable radius of reconstruction [112,113], which is beyond the scope of our analysis.
Instead, we work with different reconstruction radii for fat jets in the six transverse momentum
regimes mentioned in the previous section. In Figure 1, we present the variation of truth-level
identification efficiency (εt ruth

S ) with the radius of fat jets for the six pT bins. For our final
analysis, we choose the reconstruction radius for the top fat jets in the different pT bins such
that we can achieve a notable εt ruth

S without being concerned about the distortion of crucial
jet characteristics caused by background radiation. Ergo, we reconstruct fat jets in [300, 500]
GeV and [500, 700] GeV pT bins with a R= 1.2. While for the remaining four pT bins, we fix
the value of R at 0.8.

2.2 Extracting the data

The classifiers addressed in the remaining manuscript can be categorized into three pri-
mary groups: Boosted Decision Tree (BDT-classifiers), Convolutional Neural Network (CNN-
classifiers), and Graph Neural Network (GNN-classifiers). The nature and structure of training
and testing datasets for these three classifier groups differ significantly. While the BDT classi-
fiers use high-level variables/features (HLF) (invariant mass of the fat jet, N-subjettiness, etc.)
as input, GNN or CNN classifiers, on the other hand, use low-level features (LLF) such as the
four-momentum of the constituents or jet image constructed from the transverse momentum
of the jet constituents. We will discuss the nature and structure of the datasets used for training
and testing these three groups of classifiers in the following.

8One or more constituents may reside outside the jet reconstruction cone, rendering the signal sample impure.
For instance, in the case of a fat top jet, the final fat jet is fundamentally a W-jet rather than a top-jet if the b-quark
sits outside the reconstruction cone.
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Figure 1: The variation of truth-level identification efficiency with the jet radius in
different transverse momentum ranges.

2.2.1 BDT

The BDT uses high-level variables/features (HLFs)9 for classification. For each signal and
background fat jet, we use the information of the constituent tracks and calorimeter towers to
construct the desired high-level features.10 In this work, we studied two different BDT-based
classifiers. The first BDT classifier, referred to as the tower-based BDT classifier or BDTcalo,
utilizes the five most commonly used high-level features (HLFs) for top tagging: the invariant
mass, three ratios of N-subjettiness variables, and the b-tagging information. In the case of
the second BDT classifier, referred to as the track-based BDT classifier or BDTt rck, supplemen-
tary HLFs are designed using information from the tracker detector. The goal of the tracker
detector at the LHC is to trace the paths of charged hadrons, thereby offering insights into the
electrically charged constituents of the jet. The HLFs used for BDTcalo and BDTt rck classifiers
are discussed in the following:

As discussed above, the BDTcalo uses five HLFs,

• The invariant mass of the fat jets :

M =
√

√

∑

i

(Ei)2 −
∑

i

(pi)2 , (1)

where the sum runs over all constituents of the fat jet.

• The N-subjettiness variable τN :

τN =
1
∑

k pT kRβ0

∑

k

pT kmin(∆Rβ1,k..∆RβN ,k) , (2)

where the sum runs over the constituents with transverse momentum pT,k, R0 is the
radius parameter used in the clustering algorithm, β = 1 is the thrust parameter, and

9These are functions of low-level variables like the four-momentum and position in the η−φ plane of the jet
constituents.

10For this section of our analysis, we have used the track and tower class of Delphes to construct the fat jet
constituents.
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∆Ri,k characterize the separation between the constituent k and the candidate sub-jet
i. In our analyses, we use three ratios of the N-subjettiness variables τ43, τ32, and τ21,
where τmn = τm/τn.

• b-tag: We consider a fat jet b-tagged when there is at least one b-tagged ∆R= 0.4 sub-
jets inside the cone of the fat jet, i.e., ∆R(J , jb)< R0.

In the BDTt rck classifier, we extend the above list by including 21 HLFs. Most of these HLFs
are discussed in [18,98,114–117], we summarise them here for completeness:

• Nt r k : It characterizes the number of tracks inside a jet.

• wt r k : The pT weighted width of the tracks:

wt rk =

∑

t rk∈J pT,t rk∆Rt rk,J
∑

t rk∈J pT,t rk
. (3)

• wcalo: the ET weighted width, defined as:

wcalo =

∑

i∈J pT,i∆Ri,J
∑

i∈J pT,i
, (4)

where the sum runs over the jet constituents with transverse momentum pT,i .

• E f r ac: the ratio of the energy of the hardest constituent to the jet’s energy:

E f rac =
Ehardest

EJ
. (5)

• Cβ : the two-point energy correlation function:

Cβ =

∑

i, j∈J ET,i ET, j(∆Ri,J )β

(
∑

i∈J ET,i)2
. (6)

For our analysis, we use a value of 0.2 for β .

• The Jet Charge: the pT weighted sum of the charge of the constituent tracks:

Qk =

∑

i qi(pTi)k
∑

i pT,i
, (7)

where k, the regularisation exponent, has a value of 1 for our analysis.

• ∆Rsub: The ∆R separation between the sub-jets inside a fat jet. They constitute a set
of three variables ∆R1,2, ∆R2,3, and ∆R3,1. The numbers in the subscript denote the
pT -ordered sub-jets.
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Note that the variables (Nt rk, wt rk, wcalo, E f rac , Cβ , and Qk) are defined for each sub-jet
inside a fat jet. For our analysis, we store the information of the first three highest pT sub-
jets. Therefore, they constitute a set of 18 variables for each fat jet. The absent variables are
zero-padded for a fat jet with less than three sub-jets.

In summary, the BDTcalo classifier uses a set of five variables, and the BDTt rck classifier uses
a list of 26 variables of which five are the ones used in BDTcalo, three are the ∆R separation
between the three highest pT subjets and six features (Nt rk, wt rk, wcalo, E f rac , Cβ , and Qk)
for each of these three subjets.

2.2.2 CNN

The Convolutional Neural Network (CNN) uses grid-shaped data or images for classification
tasks. The units in an image are referred to as pixels, and each pixel is associated with the
pixel intensity. For our analysis, we have used the transverse energy11 of the tracks and towers
as pixel intensities. As mentioned in Section 2, we use two different datasets to demonstrate
the importance of tracking information in enhancing the performance of the classifiers.

The first dataset only uses the information of the calorimeter energy deposits12 to construct
the images. Therefore, these images have only one layer and are of dimension 64 × 64. The
process of constructing these images is slightly different than the conventional methods. We
demonstrate this with a simple example. Suppose we have a fat jat with R=0.8. If we convert
it into an image with dimension 64 × 64, we end up with pixels of dimension 0.025×0.025 —
significantly smaller than the HCal resolution. To circumvent this, we first divide the jet into
pixels of size 0.1×0.1, commensurate with the HCal resolution. This will result in an image
with dimension 16×16. To get the final image with dimension 64×64, we further divide each
pixel of intensity ET,i into a 4×4 grid where each final pixel caries an intensity ET,i/16. In the
subsequent discussions, we refer to the CNN trained on this dataset as CNNcalo.

In the second dataset, we use the information of both tracks and calorimeter towers to
construct a two-layer image of dimension 2× 64× 64. Here, we make use of the Etrack and
Etower classes of delphes. We adhere to the above image generation procedure for the layer
constructed from the Etower class. The situation is, however, different for the layer constructed
from the Etrack class. At LHC, the position of the tracks in theη−φ plane can be measured with
high accuracy. This allows us to split the jet directly into a 64× 64 image. In the subsequent
discussions, we named the CNN trained using the second dataset CNNt rck.

To boost our taggers’ performance, we process each image using a similar method as de-
scribed in [40,118]. The pre-processing steps make use of the sub-jets inside a fat jet. In Figure
2, we present the evolution of top and QCD images13 through subsequent preprocessing stages.
For better comparison, we present the top and QCD images side-by-side. First, we centralize
the images such that the sub-jet with the highest ET shifts to the origin of the η−φ coordinate
system (see the first row of Figure 2). We see a widespread distribution of constituents in
the top image. The energy in the QCD jets is distributed near the center, demonstrating its
origin from a single parton. Next, we rotate the image so that the next-to-highest ET sub-jet
lies below the first sub-jet. In the absence of a second sub-jet, we rotate the image around
the jet-energy centroid until the image’s principal axis [56,119] becomes vertical. We present
the resulting average images in the second row of Figure 2. We see the clear appearance of a
second hard structure for the top jet and a diffusive radiation pattern for the QCD jets. Then,
we reflect the image such that the sum of pixel intensities on the right-hand side of the image

11The transverse energy is defined as E
coshη .

12Here, we utilize the tower class of delphes to reconstruct the constituent information of the fat jets.
13The images demonstrated here result from averaging over 10000 individual images. This averaging makes the

structures in the image more visible.
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is higher than that on the left-hand side (third row of Figure 2). Finally, we normalize the
image by dividing each pixel intensity by the sum of the intensities of all pixels.

2.2.3 GNN

Like CNN, we construct two datasets to study the performance of GNN. The first dataset uses
the tower class of Delphes to construct the jet constituents, while the second uses the Etrack
and Etower classes. In both these cases, we store the four-momentum of the first 200 highest
pT constituents and their charge for each fat jet. If the fat jet has less than 200 constituents,
we fill the remaining entries with zero. For the Etowers and towers, we set the charge to be
zero, while for the Etracks, the charge can take value±1. There is one important point to note:
at the LHC, the mass of the tracks is measured from the curvature in the magnetic field and
the momentum of the tracks. Later they match this mass with the mass of a physical particle
by following a matching scheme. Nevertheless, we have refrained from incorporating details
regarding the particle identity of the charged track. Instead, our approach solely relies on the
electric charge information of the constituents. This decision not only diminishes the classi-
fier’s sensitivity to the specifics of the hadronization model but also minimizes uncertainties
stemming from the tagging or mis-tagging efficiencies of charged hadron identities. In the sub-
sequent discussions, we follow a simplified approach and make the Etracks massless by hand
to mask the identity of the charged hadron to the classifiers, i.e., we only use the information
of the three momenta of the Etracks and set the energy as the magnitude of three momenta.

3 Models

In this section, we will discuss the architecture of the Machine Learning (ML) classifiers used in
our analysis. We have organized our discussion in order of the complexity of the ML classifiers.
First, we discuss a simple cut-based classifier, the Boosted Decision Tree. Next, we discuss the
architecture of a CNN classifier that works with image-shaped data. Finally, we will demon-
strate the architecture of a Graph Neural Network (GNN) where the input is graph-structured
data.

3.1 BDT

The BDTcalo (see 2.2.1) classifier uses a small set of HLFs, emphasizing the importance of
invariant mass, N-subjettiness variables, and b-tagging information in discriminating signal top
fat jets from QCD light quark and gluon background jets. The classifier BDTt rck focuses more
on the HLFs resulting from identifying the jet’s charged constituents from the tracker detector.
In addition to the above variables, BDTt rck includes several other track-based features that
characterize the composition of charged and neutral hadrons inside the sub-jets and the fat
jet. For a consistent performance comparison, both BDTs have the same hyper-parameters
and are trained using the TMVA 4.3 toolkit [120] integrated into ROOT 6.24 [121] analysis
framework. Table 1 summarizes these hyper-parameters.

3.2 CNN

The CNN model used in our analysis is a miniature version of the original ResNet model [95].
The ResNet architecture was originally designed to solve the vanishing gradient problem in
very deep Neural Networks. ResNet uses the principle of residual connections that allows
it to maintain a stable gradient propagation throughout the network. This residual/skipped
connection passes the input of the ResNet block directly to the output along with the learned
features. Mathematically,

x i+1 = x i + F(x i) , (8)

10

https://scipost.org
https://scipost.org/SciPostPhys.17.6.166


SciPost Phys. 17, 166 (2024)

1.0 0.5 0.0 0.5 1.0
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

10 5

10 4

10 3

10 2

10 1

100

101

Tr
an

sv
er

se
 E

ne
rg

y 
(G

eV
)

1.0 0.5 0.0 0.5 1.0
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

10 5

10 4

10 3

10 2

10 1

100

101

Tr
an

sv
er

se
 E

ne
rg

y 
(G

eV
)

1.0 0.5 0.0 0.5 1.0
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

10 5

10 4

10 3

10 2

10 1

100

101

Tr
an

sv
er

se
 E

ne
rg

y 
(G

eV
)

1.0 0.5 0.0 0.5 1.0
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

10 5

10 4

10 3

10 2

10 1

100

101

Tr
an

sv
er

se
 E

ne
rg

y 
(G

eV
)

1.0 0.5 0.0 0.5 1.0
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

10 5

10 4

10 3

10 2

10 1

100

101

Tr
an

sv
er

se
 E

ne
rg

y 
(G

eV
)

1.0 0.5 0.0 0.5 1.0
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

10 5

10 4

10 3

10 2

10 1

100

101

Tr
an

sv
er

se
 E

ne
rg

y 
(G

eV
)

Figure 2: Different image preprocessing stages of the top image (left) and the corre-
sponding QCD image (right). The first row represents the images after the translation
preprocessing step, the second row presents the images after rotation, and the third
row shows the images after reflection. More on these preprocessing steps is provided
in the text.
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Table 1: Summary of optimised BDT hyperparameters.

BDT hyperparameter Optimised choice

NTrees 1000
MinNodeSize 5%
MaxDepth 4
BoostType AdaBoost
AdaBoostBeta 0.1
UseBaggedBoost True
BaggedSampleFraction 0.5
SeparationType GiniIndex
nCuts 40

where x i represents the input to the ResNet Block, x i+1 is the output, and F(x i) represents
the residual function, a collection of non-linear operations.14 The architecture of the ResNet
block and the full CNN model is presented in Appendix A.

The ResNet model is trained with PyTorch on a single Nvidia Tesla K80 GPU. The model
is trained for 35 epochs with a batch size of 32. We use the ADAMW [122] optimizer with a
weight decay of 10−2 and an initial learning rate of 10−3 to minimize the Cross-Entropy loss
function. We reduce the learning rate by half for the first five epochs. After that, the learning
rate is reduced at a rate of 10%, and for the last five epochs, we reduce the learning rate by 90
% per epoch. We check the model’s performance after every epoch on the validation dataset,
and the model with the best validation accuracy is used for the final test.

3.3 GNN

We use the LorentzNet [76], a symmetry-preserving deep Neural Network, for the GNN part of
our analysis. LorentzNet utilizes the Lorentz group equivariance principle [78] to construct the
Neural Network’s layers. This means under Lorentz transformation, the output of the neural
network follows the transformation of the input, i.e.,

x → F(x) , and Λ(x)→ F(Λ(x)) =⇒ F(Λ(x)) = ΛF(x) . (9)

Here, x is the input to the neural network layer, F(x) is the output, and Λ represents the
Lorentz transformation.

The graph neural network operates on graph-structured data [123, 124]. A graph is a
collection of nodes and edges, i.e., G(V, E), where V = x ⊕h denotes the nodes, and E denotes
the edges between the nodes. Each node is characterized by a node coordinate x, which in
our case is the four-momentum of the jet constituents, and a node attribute/embedding h,
which for our analysis is the charge of the constituents. LorentzNet does not assume any
prior knowledge regarding the relationship between the nodes. In other words, it uses fully
connected graphs. For a detailed discussion on the model, its implementation, the optimizer
used, and the learning rate scheduler, See [76].

We implemented the LorentzNet with PyTorch and trained it on a cluster with four Nvidia
Tesla K80 GPUs. We pass the data in batches of size 16 on each GPU. The model is trained
for a total of 35 epochs. At the end of each epoch, we test the model performance with the
validation dataset, and the one with the best validation accuracy is saved for testing.

14The Convolution and Normalisation operations are few examples.
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3.4 Composite models

So far, we have discussed six different classifiers denoted as simple in the later part of the
manuscript. A simple BDTcalo that only uses the features extracted from the calorimeter energy
deposits of a fat jet without considering the tracking information. Next, we have an extended
version of the simple BDTcalo, the simple BDTt rck classifier, which extends the previous dataset
by including complementary information from the tracking detectors. Then, we discussed
the one-dimensional CNNcalo and GNNcalo classifiers, which only use the information of the
calorimeter towers inside a fat jet. The CNNt rck, on the other hand, uses 2-dimensional images
where the second layer comprises the tracks that constitute the fat jet. Similarly, we have
GNNt rck, which uses the charged hadrons and neutral hadrons four-momentum from tracks
and towers to construct particle clouds/graphs.

We expect that during training, the CNN/GNN can extract important characteristics of
the fat jets from these low-level features that can discriminate between the signal and back-
ground jets. However, some information about the high-level features is lost during the data
pre-processing, which can be extremely valuable for the classification task. For example, as
demonstrated in [55], the rotation and normalization preprocessing steps in generating the
images for CNN smear the information of the invariant mass of a fat jet. Similarly, the b-
tagging information of a fat jet is not included in the CNN and GNN classifiers but can be
useful for the classification task. The BDTs also have one obvious disadvantage. They rely
on the user-supplied HLFs rather than extracting features directly from data. This limits their
ability to automatically learn the complex features present in the data.

From the above discussion, it is clear that the simultaneous use of both LLFs and HLFs
can help explore complementary directions in the feature space and improve the performance
of the classifiers. One naive way of incorporating both HLFs and LLFs in an analysis is to
stack classifiers that use these features on top of one another. We refer to them as com-
posite classifiers. The idea is first to use a classifier (a CNN/GNN) that uses LLFs to ex-
tract a preliminary classification score and later use this score as an HLF in a second clas-
sifier (a BDT) along with other HLFs. In this work, we have studied the performance of
eight such composite Models; CNNcalo+BDTcalo (CcaloBcalo), CNNcalo+BDTt rck (CcaloBt rck),
CNNt rck + BDTcalo (Ct rckBcalo), CNNt rck + BDTt rck (Ct rckBt rck), GNNcalo + BDTcalo
(GcaloBcalo), GNNcalo + BDTt rck (GcaloBt rck), GNNt rck + BDTcalo (Gt rckBcalo), and
GNNt rck + BDTt rck (Gt rckBt rck). In the next section, we will demonstrate the performance
of all these models in discriminating top jets from QCD jets.

4 Classifier performance
In this section, we will discuss the performance of the different classifiers for top tagging. For
a consistent comparison with the results of [57, 76, 78, 99–105], we generate top and QCD
samples in the 550 GeV < pT < 650 GeV range and reconstruct the fat jets with R = 0.8.
The generation process is the same as discussed in Section 2. At the same time, to check
the dependency of the classifier performance on the showering and hadronization models of
the Monte Carlo event generator, we have generated a second QCD sample15 using Herwig
[125,126]. We train the classifiers using the Pythia-generated dataset and save the model that
performs best on the validation set for further analysis. We perform two final tests, one using
the Pythia-generated signal and background sample and the other where the signal jets are
generated using Pythia while background jets are generated using Herwig.

15The reason for this choice lies in the truth-level identification efficiency. The parton-level information in a
Herwig-generated dataset differs from that in a Pythia-generated sample. This results in different TLIEs. Subse-
quently, the resulting top samples are inadequate for comparing the classifiers’ performance. However, since we
do not perform any truth-level identification for the QCD jets, they can be used for the task.
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To facilitate a better understanding of the discussion, below, we present the definitions of
the different tagging efficiency frequently used in our paper:

• εc
S refers to the classifier efficiency, i.e., the faction of truth-tagged top jets identified by

the tagger as top jets.

• 1/εc
B refers to the background rejection associated with the classifier efficiency. Here,

εc
B represents the fraction of QCD jets that get mis-tagged as top jets by the tagger. Note

that we have not used any truth-level tagging criteria for the QCD jets in our analysis.

• εtag
S refers to the top-tagging efficiency, i.e., the fraction of top jets (generated without

any truth level tagging criteria) identified by the classifier as top jets.

• 1/εtag
B refers to the background rejection associated with the top-tagging efficiency.

In Figure 3, we present the performance of the classifiers in the form of their Receiver
Operator Characteristic (ROC) curves. The solid lines represent the ROC curves for the dataset
where both signal and background samples are generated using Pythia. On the other hand,
the dotted curves characterize the sample where the background jets are generated in Herwig.
In Table 2, we present the background rejection of all the classifiers corresponding to 70 and
50 % classifier efficiency (second and third column) as well as top-tagging efficiency (fourth
and fifth column). The background rejection within the parentheses in Table 2 represents the
results obtained from the dataset simulated in Herwig. This section will address the results in
the second and third columns. For a detailed discussion of the results in the fourth and fifth
columns, see Section 4.5. In the following discussion, we will use the background rejection at
50% classifier efficiency (εc

S) as a metric to compare the performance of different simple and
composite classifiers introduced here and also with existing top taggers in the literature.

Before delving extensively into the discourse of comparing the performance of various sim-
ple and composite classifiers, validating our approach (event simulation, sample preparation,
etc.) by comparing our results with existing literature is crucial. We have provided a brief
discussion on the validity of our analysis in Appendix B.

4.1 The performance of tower-based simple classifiers

The top left plot of Fig. 3 shows the ROC curves for BDTcalo, CNNcalo, and GNNcalo classi-
fiers in green, red, and blue, respectively. From the ROC curves, we can make the following
comments:

• Comparing the performance of GNNcalo with CNNcalo and all LLF-based classifiers in
Ref. [99]we can safely conclude that GNN classifiers like the LorentzNet [76] or GNNcalo
perform better than other LLF-based classifiers.

• Interestingly, the simple HLF-based BDTcalo classifier has a comparable performance
with the GNNcalo and it performs better than CNNcalo and all the CNN and GNN-based
classifiers presented in Refs. [76,99].

The poor performance of CNNcalo is because the jet image preprocessing steps described in
Section 2 dilute the jet mass information, an extremely important discriminant for classifying
top jets over QCD jets. The GNNcalo, despite using complete 4-momentum information of
the jet constituents, is trained using the calorimeter tower data. In contrast, the HLFs for
training the BDTcalo are derived from the fat jets constructed with Etracks and Etowers (see
section 2). The superior energy/momentum resolution of tracks results in better performance
for the BDTcalo compared to GNNcalo.
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Figure 3: Thr ROC curves for the different classifiers for top and QCD samples in
the pT range 550-650 GeV. The solid lines correspond to signal and background sam-
ples generated using Pythia, while the dotted line corresponds to the case where the
background sample is generated using Herwig

4.2 Comparision of track and tower-based simple classifiers

Figure 3 (top right panel) shows the performance of the BDT, CNN, and GNN trained and
tested using DATAt rck

16 namely the BDTt rck, CNNt rck, and GNNt rck classifiers for both Pythia
and Herwig-generated datasets. We see a significant performance boost—over 100%—for
CNN and GNN-based classifiers trained and tested with DATAt rck compared to tower-based
classifiers (top left panel of figure 3). There are two main reasons for this improvement:

1. The use of high-quality datasets (DATAt rck) resulting from the superior resolution of the
LHC tracker detector.

2. Incorporating data on both neutral and charged hadron compositions of fat jets into the
training and testing datasets that enables the classifiers to differentiate substructures
originating from the hadronization of a partonic gluon (in QCD jets) and a light quark (in
the top decay product) more accurately. It has already been known, both from theoretical

16DATAt rck was defined in section 2.
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Table 2: Background rejection at 50 and 70 % background efficiencies. The terms
in the bracket represent the results for the Herwig-generated dataset. The second
and third columns correspond to a dataset where the top samples satisfy the truth-
level tagging criteria. For the fourth and fifth columns, no such tagging criteria are
imposed.

Classifier 1/εc
B(εc

S = 0.7) 1/εc
B(εc

S = 0.5) 1/εtag
B (εtag

S = 0.7) 1/εtag
B (εtag

S = 0.5)

BDTcalo 119(105) 467(398) 22 125
CNNcalo 70(57) 211(178) 17 76
GNNcalo 139(106) 444(341) 24 139
BDTt rck 175(159) 579(610) 33 180
CNNt rck 124(90) 423(299) 25 120
GNNt rck 311(214) 1322(789) 42 274
CcaloBcalo 176(175) 682(619) 31 179
CcaloBt rck 208(204) 811(737) 35 222
Ct rckBcalo 249(218) 1023(768) 43 253
Ct rckBt rck 257(221) 995(799) 46 249
GcaloBcalo 260(241) 969(842) 43 261
GcaloBt rck 278(256) 1141(894) 52 281
Gt rckBcalo 489(397) 1641(1604) 65 468
Gt rckBt rck 493(399) 1736(1666) 68 500

principles17 and a large collection of experimental measurements [128–131], that jets
initiated by gluons differ significantly from those initiated by light-flavor quarks. For
example, gluon jets have higher charged particle multiplicity, a softer fragmentation
function, are less collimated than quark jets, etc. Including the tracker data allows the
classifier to leverage these differences and enhance its performance.

An evident drawback of developing a tool reliant on the hadronization of light quarks and
gluons is the inherent discrepancies in the modeling of quark and gluon jets in Monte Carlo
simulations. However, event generators like Pythia and Herwig incorporate sophisticated ex-
perimentally fine-tuned models for hadronization developed through decades of experimental
studies and perturbative QCD calculations. Despite minor discrepancies between these event
generators (as well as between the event generators and experimental data), giving rise to
the systematic uncertainty, hadronization models used in Pythia and Herwig serve as a solid
foundation for building improved classifiers for top tagging.

Figure 3 (top panel) also shows around 25 % improvement in the performance of BDTt rck
compared to BDTcalo. This can be ascribed to the use of subjet-based features constructed from
the track and calorimeter tower constituents of the fatjet. To illustrate this point, we present
in Appendix B the ranking18 and covariance matrix19 of a few important variables used in
training the BDT classifiers. Appendix B shows that along with the jet mass, the features of

17The fundamental principle underlying the differentiation between quark and gluon jets is rooted in the ob-
servation that gluon splitting is stronger than quark splitting, as dictated by perturbative QCD. This distinction
becomes evident by directly comparing the splitting probabilities for gluons, such as g → g g and g → uq̄, with
those for quarks, like q→ qg [127]. Therefore, on average, gluon jets are broader and encompass a higher particle
multiplicity than quark jets with similar pT .

18The variable ranking demonstrates the importance of the variables for the classification.
19Two variables that are least correlated represent independent directions in the feature space and, when used

simultaneously, can considerably improve the performance of a classifier.
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the second sub-jet play a crucial role in the classification task. Figure 3 (top right panel) also
shows a comparable performance between the BDTt rck and CNNt rck classifiers. As discussed
in Section 3.4, the pre-processing steps in CNN smear the invariant mass distribution for the fat
jets, which plays a key role in the discrimination of top from QCD jets. Therefore, performances
of simple CNN classifiers (CNNcalo and CNNt rck) can be improved significantly when used in
association with BDT classifiers. Potential improvements in such composite classifiers will be
explored in the next section.

4.3 The performance of composite classifiers

Figure 3 presents the ROC curves for the composite CNN (CcaloBcalo, CcaloBt rck, Ct rckBcalo, and
Ct rckBt rck, middle panel) and GNN (GcaloBcalo, GcaloBt rck, Gt rckBcalo and Gt rckBt rck, bottom
panel) classifiers (see section 3.4 for definitions). Incorporating the lower-level information of
CNN with the higher-level information of BDT improves CNN performance by over 100%. As
discussed in the previous section, the information on the HLFs, like invariant mass and b-tag,
are not present in the CNN score. Therefore, when used together in a composite classifier, they
significantly enhance performance.

Combining the GNN score with HLFs from BDTcalo improves GNNcalo performance by
about 100% in GcaloBcalo and GNNt rck performance by about 25% in Gt rckBcalo (see Table 2).
The marginal enhancement in performance observed for Gt rckBcalo can be attributed to the fact
that the training datasets for GNNt rck already encompass comprehensive information about
the constituent tracks and towers, making additional HLFs from BDTcalo less impactful. To
illustrate this, we present the ranking of HLFs used in Gt rckBcalo and GcaloBcalo in Table 12 of
Appendix D. In contrast to GcaloBcalo, where the highest-ranked variable is the invariant mass
of the fat jets (and consequently, it is frequently employed for node splitting), the GNN score
takes the top-ranking position in Gt rckBcalo, demonstrating the importance of this variable.

While CcaloBt rck shows around 20% performance boost over CcaloBcalo, attributed to the
complementary nature of the track-based HLFs in BDTt rck alongside the calorimeter tower-
based LLFs used in CNNcalo, the performance of Ct rckBt rck is comparable to Ct rckBcalo. This is
again due to the training dataset of CNNt rck that already includes all the relevant information
from both tracks and towers for classification. We see almost similar behavior for the track
and tower-based composite GNN classifiers.

We expect GNNt rck with the full tracking information to be efficient enough to extract
all relevant features of the fat-jet and hence to have a similar performance as Gt rckBcalo
and Gt rckBt rck. Surprisingly, composite GNN classifiers still significantly outperform ordinary
track-based GNN classifiers. This behavior is due to masking the mass information of the fat-
jet constituents arising from tracks (See Section 2.2.3). To validate this point, we retrain the
GNNt rck classifier with a dataset with unmasked tracking information and present our findings
in Table 3. As per our expectation, the GNNt rck classifier with full unmasked tracking infor-
mation has a comparable performance with Gt rckBt rck. So, is it really necessary to introduce a
composite classifier when we can achieve the same performance by training the original clas-
sifier with the complete information? To investigate the matter further, we performed another
study where instead of testing the classifiers on a pythia-generated dataset, we tested it on
data where the Background sample is generated using Herwig. The motivation for this study
is to check the effect of systematic uncertainties arising from using different Monte-Carlo event
generators on the performance of the classifiers. As it is evident from the second row of Table
3, the Composite track-based GNN classifier has better control over these uncertainties than
the ordinary GNN classifier trained with full unmasked tracking information. We present a
detailed discussion in the next section.
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Table 3: The first row presents the background rejection at 50% classifier efficiency
for GNNt rck classifier trained and tested using a dataset with the full unmasked
tracking information and that of the Gt rckBt rck classifier trained and tested with the
masked dataset. The second row represents similar results, but the testing is per-
formed using a background sample generated using Herwig7.

MC generator GNNt rck Gt rckBt rck

Pythia8 1769 1736
Herwig7 1025 1666

4.4 Systematic uncertainties of different simple and composite classifiers

To investigate the systematic uncertainties arising from the showering and hadronization mod-
els of event generators, we evaluated the performance of classifiers using datasets generated
by Pythia and Herwig. The solid and dotted lines in each plot of Figure 3 represent the ROC
curves corresponding to Pythia and Herwig, respectively, generated testing datasets for a spe-
cific classifier.

The performance of the BDT classifiers (BDTcalo and BDTt rck), which rely on HLFs, re-
mains largely unaffected by the choice of Monte-Carlo generators. These HLFs exhibit minimal
sensitivity to jet modeling, leading to reduced systematic uncertainties for BDT classifiers. In
contrast, due to the direct correlation between the LLFs of the fat jets and the jet modeling
within the Monte-Carlo generators, CNN/GNN classifiers trained on Low-Level Features (LLFs)
of jets show significant sensitivity to the showering and hadronization model used, resulting
in large systematic uncertainties (as depicted in the top panel of Figure 3). For tower (track)
based CNN/GNN classifiers, these uncertainties can reach up to 30% (40%). The higher sen-
sitivity of track-based CNN/GNN classifiers to the jet modeling of the Monte-Carlo generator
results from the fact that these classifiers are trained on DATAt rck that encompass the finer
details of the showering and hadronization processes. In contrast, for tower-based classifiers,
the limited resolution of the calorimeter smooths out some of these dependencies.

Remarkably, composite classifiers not only enhance top-tagging performance but also show
reduced systematic uncertainties compared to simple LLF-based classifiers. Note that in com-
posite classifiers, scores from LLF-based CNN/GNN classifiers are treated as additional HLF
in conjunction with other HLFs of the track and tower-based BDTs discussed in section 2.2.1.
Interestingly, while the scores from LLF-based classifiers introduce higher systematic uncertain-
ties, other HLFs of the BDT classifiers remain relatively insensitive to variations in Monte-Carlo
generators.

The ranking of HLFs used in composite classifiers, as depicted in Tables 10, 11, 12 and 13
of Appendix D, illustrates that alongside the scores from LLF-based classifiers, the other HLFs
also make substantial contributions to the classification task. For instance, for the composite
classifiers like CcaloBcalo, Ct rckBcalo, CcaloBt rck, Ct rckBt rck, GcaloBcalo, and GcaloBt rck, jet mass
holds the highest ranking among the HLFs. The utilization of the LLF-based score as a classi-
fying feature is restricted to about 36 % (19 %) for Gt rckBcalo (Gt rckBt rck), where score takes
precedence as the highest ranking variable. This reduced reliance on the score as the main
classifying feature mitigates the classifier’s overall systematic uncertainties stemming from the
inherent uncertainties of the score.

While composite classifiers were introduced to enhance the performance of simple LLF-
based classifiers by incorporating high-level physical features of the fat jets, the reduction
in systematic uncertainties has emerged as an additional benefit. Optimal utilization of the
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Table 4: Background rejection at 50% signal efficiency for GNNt rck corresponding
to the datasets with R= 0.8 and R= 1.2.

Variable 1/εc
B (εc

s = 50%) 1/εtag
B (εtag

s = 50%)

R= 0.8 1298 274
R= 1.2 711 424

HLFs can boost the classifier performance while reducing dependence on the Monte Carlo
generators. A comprehensive study of the performance optimization of composite classifiers
while simultaneously mitigating systematic uncertainties is crucial. Nonetheless, it lies outside
the boundaries of the present work, which we intend to explore in future investigations.

4.5 The interplay between truth-level identification, classifier efficiency, and
top-tagging efficiency

The classifier’s tagging efficiency (εc
S) and background rejection (1/εc

B), discussed in the previ-
ous section, depend on the purity of the training/testing datasets, which in turn is influenced by
the truth-level tagging (TLT) criteria. The truth-level tagging/identification efficiency (εt ruth

S )
quantifies the fraction of hadronically decaying top quark-initiated fat jets with a given re-
construction radius (R) that meets the TLT criteria. Smaller R values for a given pT range
increase the chances of obtaining impure jets, where one or more top decay products fall out-
side the reconstruction cone. These impure jets are filtered out by the TLT criteria, reducing
εt ruth

S . For example, the R= 0.8 jets in the pT range [550, 650] GeV, as discussed in Section 4,
have a εt ruth

S of approximately 55%. Though strict TLT improves the sample purity, classi-
fiers trained on such a high-purity sample may struggle to identify top-initiated fat jets that
fall outside the TLT criteria. This is evident when we compare the background rejection rates
for a given top-tagging (fourth and fifth columns) and classifier efficiency (second and third
columns) in Table 2. Clearly, excellent classifier performance does not necessarily translate
to higher top-tagging efficiency. Increasing εt ruth

S can help reduce this disparity. To enhance
εt ruth

S , one option is to relax the TLT criteria. However, doing so results in a less pure sample,
leading to poorer classifier performance. Alternatively, using appropriate fat jet reconstruction
radii (R) in different pT regions ensures that all top quark decay products remain within the
reconstruction cone, thus improving εt ruth

S .
In this section, we explore the impact of varying the reconstruction radius (R) on Truth-

Level Tagging (TLT) and, consequently, on determining the classifier’s tagging efficiency (εc
S)

and top-tagging efficiency (εtag
S ). We present our findings for the GNNt rck classifier trained

and tested with two different sets of track-based samples of signal and background fat jets
falling within the pT range of [550,650] GeV. One sample used R = 0.8 while the other used
R= 1.2 for fat jet reconstruction. The truth level tagging criteria are the same as discussed in
Section 2. Figure 4 shows our results, with the blue curve corresponding to R = 0.8 jets and
the red curve to R= 1.2 jets.

Figure 4 (left panel) shows the ROC curves when the test dataset is prepared with appro-
priate TLT criteria. Table 4 (second column) summarises the resulting background rejection
factor corresponding to 50 % signal efficiency. The 1/εc

B for the classifier trained/tested with
R= 0.8 fat jets is close to 1300, which is 70 % higher than that of the classifier trained/tested
with R = 1.2 fat jets. Using larger-radius jets introduces increased noise contributions from
various sources. This noise can obscure the characteristic distributions of fat jets and impact
the classifier’s performance. While the classifier trained and tested with R = 0.8 jets may
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Figure 4: The ROC curves of the GNNt rck classifier for two reconstruction radii of the
fat jet, R= 0.8 (blue) and R= 1.2 (red). The left plot represents the performance for
a dataset that satisfies truth-level identification criteria. No such criteria are imposed
for the dataset used in the right plot.

appear impressive, as discussed previously, it does not guarantee optimal top-tagging perfor-
mance. To illustrate this, we conducted tests with the same classifiers on a dataset where we
did not impose any TLT criteria. The results of these tests are presented in the right panel of
Figure 4 and the third column of Table 4. As anticipated, we observed a decrease in the per-
formance of both classifiers when TLT criteria were not enforced. Interestingly, the classifier
trained with R = 1.2 fat jets outperformed the one trained with R = 0.8 fat jets. The findings
from this section have motivated us to explore the possibility of using different reconstruction
radii (R) for fat jets in the six distinct pT regions that we will discuss in the following section.

4.6 Effect of fat jet transverse momentum on the performance of the classifier

In this section, we present the change in the classifier’s performance with increasing trans-
verse momentum of the fat jet. As discussed in Section 2, we present the performance of six
classifiers, BDTcalo, BDTt rck, CNNt rck, GNNt rck, Ct rckBcalo, and Gt rckBcalo in six pT ranges.
We summarise our result as six plots corresponding to these pT ranges in Figure 6. Each plot
presents six ROC curves, one for each classifier. For a consistent comparison of the perfor-
mance of the classifiers, we present the background rejection at 50 % classifier efficiency (εc

S)
in Table 5. A diagrammatic representation of this result is presented in the left plot of Figure
5. Note that the fat jets in the pT range [300, 500] GeV and [500, 700] GeV have different
R-parameters (R = 1.2) and hence different truth-level identification efficiency than those in
the remaining pT bins where fat jets are constructed with a RR of R = 0.8 (see the discussion
in 2). Therefore, comparing the classifier’s performances for fat jets belonging to these two
groups is unsuitable.

In the second and third columns of Table 5, we present the background rejection for the
BDTcalo and BDTt rck classifiers, respectively. We see a gradual decrease in performance with
increasing pT . It is because the invariant mass of the QCD jets scales with its transverse mo-
mentum, and as we go higher in pT , the probability of QCD jets faking as top increases. The
BDTt rck classifier performs better than the BDTcalo because of the inclusion of additional track-
ing information. The fall in background rejection with pT is also smaller for BDTt rck than
BDTcalo.

The fourth and fifth columns of Table 5 represent the background rejection for the CNNt rck
and GNNt rck classifiers. In both cases, the [300, 500] GeV pT jets have a smaller 1/εc

B than
the [500, 700] GeV pT jets. This is because, as demonstrated in Section 2.1, an R-parameter
1.2 is inefficient in capturing all the constituents of the [300, 500] GeV fat jets and reduces the
performance. We see almost comparable performance for the jets in the remaining pT bins for
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Table 5: Background rejection at 50 % classifier efficiency for the six transverse
momentum range.

pT [GeV] BDTcalo BDTt rck CNNt rck GNNt rck Ct rckBcalo Gt rckBcalo

300-500 388 456 159 587 762 1413
500-700 136 276 184 765 455 1178
700-900 168 345 278 845 538 1409
900-1100 79 247 256 971 466 1175
1100-1300 56 167 214 882 318 872
1300-1500 39 127 217 877 273 850
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Figure 5: The variation of background rejection at 50% classifier efficiency (left) and
50% top-tagging efficiency (right) of the six classifiers corresponding to the six pT
ranges considered in this paper.

Table 6: Background rejection at 50 % signal efficiency for the six transverse momen-
tum range. Here, the testing is performed on a dataset without truth-level tagging.

pT [GeV] BDTcalo BDTt rck CNNt rck GNNt rck Ct rckBcalo Gt rckBcalo

300-500 95 119 54 121 157 250
500-700 83 152 110 303 243 581
700-900 84 166 147 421 258 582
900-1100 57 148 168 534 279 789
1100-1300 45 124 157 540 234 651
1300-1500 34 101 167 609 217 662

both classifiers. The slight reduction in performance in the case of CNNt rck can be ascribed to
the fact that with increasing pT , the jet constituents get more collimated and look similar to
that of a QCD jet.

Finally, in columns six and seven, we present the background rejection for the Ct rckBcalo
and Gt rckBcalo classifiers. In the case of Ct rckBcalo, we see considerable improvement com-
pared to CNNt rck. This is because the preprocessing steps in CNN smear out the invariant
mass of the fat jet. This information is restored when we combine CNNt rck with BDTcalo re-
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Table 7: Signal efficiency corresponding to a background rejection factor (1/εtag
B )

of 1000 for the six transverse momentum range. Here, the testing is performed on a
dataset without truth-level tagging.

pT [GeV] BDTcalo BDTt rck CNNt rck GNNt rck Ct rckBcalo Gt rckBcalo

300-500 22 25 16 27 30 35
500-700 20 27 22 38 32 42
700-900 20 28 26 40 32 43
900-1100 15 26 27 43 34 46
1100-1300 12 23 26 42 29 44
1300-1500 10 21 25 42 29 43
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Figure 6: ROC curves for the classifiers corresponding to the six pT ranges considered
in this paper.

sulting in a performance improvement (for a detailed discussion see Section 4.3). However,
this improvement gradually decreases with increasing pT as the performance of the BDT de-
creases. The GNNt rck classifier trained on the four-momentum data of the jet constituents can
reconstruct some information about the fat jet mass. Therefore, when combined with BDTcalo,
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the performance gain is not as high as in the case of Ct rckBcalo. Here also, as we move higher
in pT , the performance gain gradually diminishes, and for the last two pT bins, we see almost
comparable performance between Gt rckBcalo and GNNt rck.20

In Table 6, we present the background rejection at 50 % top-tagging efficiency (εtag
S ) eval-

uated on top samples generated without any truth-level tagging criteria. A diagrammatic
representation of this result is presented in the right plot of Figure 5. As discussed in Section
4.5, the motivation for this table is to demonstrate the performance of these classifiers in a
collider analysis. As expected, we see an overall degradation in performance for all classifiers.
This behavior can be ascribed to improperly reconstructed fat jets in the testing sample. In
Table 7, we present the top-tagging efficiency (εtag

S ) corresponding to a background rejection
factor of 1000 for all the classifiers considered in our analysis. The results are evaluated using
top samples generated without any truth-level tagging criteria.

5 Summary and outlook

We have conducted an in-depth analysis of the performance of three machine learning algo-
rithms: the high-level feature (HLF)-based BDT, and the low-level feature (LLF)-based CNN
(a miniaturized version of ResNet) and GNN (Lorentznet). Our study focused on their ability
to discriminate between fat jets originating from hadronically decaying top quarks and the
hadronization of light quarks and gluons. The novel findings of our research are encapsulated
as follows:

1. A substantial portion of our study is devoted to emphasizing the significance of leverag-
ing combined information from the calorimeter towers and tracker detectors at the LHC. We
found a significant increase in the classifier’s performance due to including the jet constituents’
electric charge information (tracking data for charged constituents and tower data for neutral
constituents) in the training and testing of the LLF-based classifiers like the CNN and GNN.
Furthermore, HLF-based classifiers like BDT also exhibit performance enhancements when in-
corporating track-based HLFs like the number of tracks inside a jet, the pT weighted width of
the tracks, the ET weighted width of the jet, etc., into the classification task. We found that
the high resolution of the tracking data not only improved the classifier performance in the
high-pT regions as demonstrated in Ref. [39], but the information about the distribution and
composition of charged and neutral constituents of the jets coming from the tracks and towers
also significantly enhance the performance of the classifiers over the whole pT range. This per-
formance enhancement can be attributed to the fact that, according to the QCD principles and
various experimental results, jets initiated by light quarks or gluons exhibit distinct differences
in the distribution and composition of charged and neutral hadrons. Consequently, informa-
tion about the charged and neutral constituents of a jet in the form of tracking and tower data
helps identify the quark/gluon origin of sub-jets within a fat jet and hence enhances top tag-
ging efficiency (for an in-depth discussion, please refer to section 4.2). Among the group of six
simple classifiers discussed in sections 4.2 and 4.1, we found that the track-based GNN clas-
sifier (GNNt rck) consistently outperformed the others. However, it is important to note that
despite their high performance, LLF-based classifiers like GNNt rck have a significant drawback:
they are heavily dependent on the jet modeling provided by the Monte Carlo simulator, such
as Pythia or Herwig, which introduces substantial systematic uncertainties. We also analyzed
the classifier dependence on the showering and hadronization model of the Monte-Carlo gen-

20Although Gt rckBcalo does not show any performance gain compared to GNNt rck, as discussed in Section 4.4,
composite classifiers come with reduced dependence on Monte-Carlo generators and hence Gt rckBcalo results in
supressed systematic uncertainty compared to GNNt rck.
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erator (see section 4.4). While track-based LLF classifiers like CNNt rck and GNNt rck exhibited
notable dependency on the Monte Carlo generators, composite classifiers (as discussed in sec-
tion 4.3) demonstrated reduced dependency.

2. To further boost the performance of our simple HLF and LLF-based classifiers, we have
developed a series of composite classifiers by stacking a BDT on top of a CNN/GNN. These
composite classifiers leverage the strengths of CNN/GNN in extracting specialized observables
from low-level inputs and combine them with the effectiveness of BDT in handling complex fea-
tures. The result is a set of classifiers that exhibit comparable or superior performance. Please
refer to section 4.3 for a comprehensive discussion. In addition to performance enhancement,
the composite classifiers demonstrate reduced dependence on the jet modeling of the Monte
Carlo generators (see section 4.4). The reduced Monte-Carlo generator dependency of the
composite classifiers reduces the systematic uncertainties (resulting from the uncertainties in
the showering and hadronisation model) to below 20%. Note that the composite classifiers
do not solely rely on the event generator-sensitive scores from the LLF-based CNN/GNN clas-
sifiers. They also heavily utilize generator-insensitive HLFs such as jet mass, N-subjectness,
b-tag, and others for the classification task. The combined use of CNN/GNN scores and other
Monte Carlo generator-insensitive HLFs not only reduces overall generator dependency but
also enhances their performance significantly.

3. We have done a comprehensive study on the interplay between truth-level identification
(εt ruth

S ), classifier efficiency (εc
S), and top-tagging efficiency (εtag

S ). Strict reconstruction and
identification criteria increase the purity of the sample, simultaneously decreasing εt ruth

S . A
classifier trained on such pure samples is biased, and the performance cannot be efficiently
generalized to new unseen data. We showed that properly selecting the reconstruction radius
can improve the εt ruth

S and help mitigate this issue.
Additionally, we have demonstrated the variation in classifier performance with the trans-

verse momentum of the fat jets. Quark and gluon jets, largely composed of QCD emissions,
have an invariant mass that scales with jet pT . This affects the performance of BDT classifiers
where the invariant mass of the fat jet plays a key role in the classification task, and we see a
considerable fall in BDT performance with increasing transverse momentum. The CNN clas-
sifier also shows a slight decrease in performance with pT . This can be ascribed to the fact
that the collimation of the constituents increases with transverse momentum, resulting in a
top jet that resembles more with the QCD counterpart. The LorentzNet, on the other hand, is
based on a Lorentz equivariant architecture and, as claimed by [76], shows almost consistent
performance with pT .
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Figure 7: Diagrammatic representation of the ResNet Block without downsampling
(left) and with downsampling (right).

A The CNN model

In the left panel of Figure 7, we present a diagrammatic representation of a single ResNet block.
It incorporates two convolution operations with size 3 × 3 filters, unit stride, and padding.
Therefore, these convolution blocks cannot help us reduce the size of the input image. The
number of input and output channels is also the same for the convolution operations. To
reduce image size, we introduce a second convolution block, as represented in the right panel
of Figure 7. Here, the first convolution layer has a stride two and unit padding and hence
can reduce the height and width of the input image by half. The second convolution layer in
the main network is similar to the previous ResNet block. Now, for the residual connection
to work, the size of the input image must match the reduced size of the output image. We
achieve this using a third convolution layer with size 1×1 filters, stride two, and no padding.
In the subsequent discussion, we refer to this step as downsampling.

We present the full CNN architecture in Figure 8. First, we have an Input network that
comprises the following sequence of operations:

Conv2D(cin, cout)→ BatchNorm2D→ Relu .

Here, the convolution layer uses 3× 3 filters with unit stride and padding, cin and cout repre-
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Figure 8: Schematic Diagram of the CNN architecture used in our analysis. The
bracket number represents the channels in the input and output images. For the
Output Net, they represent the number of nodes in the input and output layers.

sent the number of channels in the input and output images, respectively. Then, we have nine
ResNet blocks stacked one after the other. The ones represented in red do not perform down-
sampling of the image, whereas the green ones do. then we have the Output network, which
we can represent as AdaptiveAveragePooling(1,1) → F lat ten → Linear(dout , 2), where
dout represents the number of channels in the output image. Finally, we apply the softmax
activation function to get the probability as the CNN score.

B Validation of our analysis

To establish confidence in our results, validating our approach (event simulation, sample
preparation, etc.) by comparing our results with existing literature is crucial. In the top left
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Table 8: method-specific ranking of the input features of BDTcalo.

Variable Ranking

M 0.7832
τ32 0.0878
b-tag 0.0844
τ2,1 0.0272
τ43 0.0173

plot of Fig. 3, we have shown the ROC curves for BDTcalo, CNNcalo, and GNNcalo classifiers in
green, red, and blue, respectively. The GNNcalo classifier is a slight modification of LorentzNet
introduced in [76], with the difference that instead of using the mass of the constituents as
node embedding, we used their charge,21 and our training process has a smaller batch size of
16. This results in a slight difference in the classifier performance. For 50% classifier efficiency
(εc

S) of GNNcalo, we obtain a background rejection close to 444, while in [76], the correspond-
ing background rejection was 498. In [99], the authors have demonstrated the performance of
several classifiers on a similar dataset. CNNcalo shows comparable performance to the CNNs
presented in Ref. [99]. The similar performance observed between GNNcalo and LorentzNet
as discussed in [76], and between CNNcalo and the different CNN-based classifiers mentioned
in Ref. [99], provides validation for our methodology.

C Correlation and ranking among variables for BDTcalo and
BDTt r ck

Table 8 presents the ranking among the variables used in BDTcalo. The variables ranked higher
are the ones used most frequently for node splitting. In Figure 9, we present the covariance
matrix of these variables for the top jets and QCD jets.

Table 9 presents the ranking among the variables used in BDTt rck. Note that BDTt rck uses
26 variables, and we present only the most important of them here. In Figure 10, we present
the covariance matrix of the top seven highest-ranked variables for the top jets.

D Correlation and ranking among variables for composite classi-
fiers

This section presents the model-independent ranking and correlation among the variables used
in the composite classifiers. The variable ranking for CcaloBcalo and Ct rckBcalo are presented
in Table 10. We have similar results for CcaloBt rck and Ct rckBt rck in Table 11, for GcaloBcalo
and Gt rckBcalo in Table 12, and for GcaloBt rck and Gt rckBt rck in 13.

The covariance matrix of CcaloBcalo and Ct rckBcalo are presented in Figure 11, for CcaloBt rck
and Ct rckBt rck in Figure 12, for GcaloBcalo and Gt rckBcalo in Figure 13, and for GcaloBt rck and
Gt rckBt rck in Figure 14.

21Note that the training and testing samples used in the classifiers in the left panel of Fig. 3 are generated from
the tower data and hence do not have information about the jet constituent’s mass or charge.
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Figure 9: Correlations among the input features of BDTcalo for the top jets (left) and
the QCD jets (right).

Table 9: method-specific ranking of the input features of BDTt rck.

Variable Ranking

M 0.247
Cβ(2) 0.0906
τ32 0.068
Nt rk(2) 0.0558
∆R1,2 0.045
τ2,1 0.0415
b-tag 0.0412
wt rk(2) 0.0385
Nt rk(1) 0.0339
Cβ(1) 0.0316
wt rk(1) 0.0312
∆R1,3 0.0305
wcalo(2) 0.0302
τ43 0.0264

Table 10: method-specific ranking of the input features of CcaloBcalo(left) and
Ct rckBcalo(right).

Variable Ranking

M 0.3818
score 0.2685
τ2,1 0.1071
τ32 0.1008
b-tag 0.076
τ43 0.0656

Variable Ranking

M 0.3625
score 0.309
τ2,1 0.099
τ32 0.09
b-tag 0.0714
τ43 0.0676
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M
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τ32

Ntrk(2)

ΔR12

τ21

b-tag

M Cβ(2) τ32 Ntrk(2) ΔR12 τ21 b-tag

1 0.03 0.01 0.06 0.28 0.11 0.08

0.03 1 0.22 0.51 0.04 0.14

0.01 0.22 1 0.14 -0.4 -0.16 -0.01

0.06 0.51 0.14 1 -0.02
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Figure 10: Correlations among the input features of BDTt rck for the top jets (left)
and the QCD jets (right).
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Figure 11: Correlations among the input features of CcaloBcalo(top row) and
Ct rckBcalo(bottom row) for the top jets (top left) and the QCD jets (top right).
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Table 11: method-specific ranking of the input features of CcaloBt rck(left) and
Ct rckBt rck(right).

Variable Ranking

M 0.1811
score 0.1328
wcalo(2) 0.0814
∆R1,2 0.05
Nt rk(2) 0.0493
wt rk(2) 0.0462
τ32 0.0434
b-tag 0.03918
wt rk(1) 0.03639
τ2,1 0.03602

Variable Ranking

M 0.1801
score 0.1554
∆R1,2 0.0793
wcalo(2) 0.042
b-tag 0.03857
τ32 0.03797
Nt rk(2) 0.03731
wt rk(2) 0.03452
τ2,1 0.03169
Cβ(1) 0.03011

M

score

wcalo(2)

ΔR12

Ntrk(2)

wtrk(2)

τ32

M score wcalo(2) ΔR12 Ntrk(2) wtrk(2) τ32

1 0.19 0.28 0.06 0.02
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Figure 12: Correlations among the input features of CcaloBt rck(top row) and
Ct rckBt rck(bottom row) for the top jets (top left) and the QCD jets (top right).
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Table 12: method-specific ranking of the input features of GcaloBcalo(left) and
Gt rckBcalo(right).

Variable Ranking

M 0.3458
score 0.322
τ2,1 0.103
τ32 0.094
b-tag 0.0693
τ43 0.0646

Variable Ranking

score 0.3517
M 0.3142
τ2,1 0.0968
τ32 0.093
b-tag 0.075
τ43 0.069

M

τ21

τ32

τ43

b-tag

score

M τ21 τ32 τ43 b-tag score

1 0.11 0.02 -0.23 0.05 0.15
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Figure 13: Correlations among the input features of GcaloBcalo(top row) and
Gt rckBcalo(bottom row) for the top jets (top left) and the QCD jets (top right).
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Table 13: method-specific ranking of the input features of GcaloBt rck(left) and
Gt rckBt rck(right).

Variable Ranking

M 0.1696
score 0.1652
wcalo(2) 0.067
∆R1,2 0.0568
wt rk(2) 0.0438
Nt rk(2) 0.0407
wt rk(1) 0.03836
b-tag 0.03775
τ32 0.0369
τ2,1 0.0311

Variable Ranking

score 0.1889
M 0.1624
∆R1,2 0.0755
b-tag 0.0408
wcalo(2) 0.0354
τ32 0.0351
wt rk(2) 0.03265
τ2,1 0.0321
Cβ(1) 0.03
wt rk(1) 0.02931
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Figure 14: Correlations among the input features of GcaloBt rck(top row) and
Gt rckBt rck(bottom row) for the top jets (top left) and the QCD jets (top right).

32

https://scipost.org
https://scipost.org/SciPostPhys.17.6.166


SciPost Phys. 17, 166 (2024)

References

[1] L. Evans and P. Bryant, LHC machine, J. Instrum. 3, S08001 (2008), doi:10.1088/1748-
0221/3/08/S08001.

[2] G. Aad et al., Observation of a new particle in the search for the Standard Model
Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716, 1 (2012),
doi:10.1016/j.physletb.2012.08.020.

[3] S. Chatrchyan et al., Observation of a new boson at a mass of 125 GeV with the CMS ex-
periment at the LHC, Phys. Lett. B 716, 30 (2012), doi:10.1016/j.physletb.2012.08.021.

[4] S. Ashanujjaman, D. Choudhury and K. Ghosh, Search for exotic leptons in final states
with two or three leptons and fat-jets at 13 TeV LHC, J. High Energy Phys. 04, 150 (2022),
doi:10.1007/JHEP04(2022)150.

[5] S. Ashanujjaman and K. Ghosh, Type-III see-saw: Search for triplet fermions in final states
with multiple leptons and fat-jets at 13 TeV LHC, Phys. Lett. B 825, 136889 (2022),
doi:10.1016/j.physletb.2022.136889.

[6] G. Aad et al., Search for charginos and neutralinos in final states with two boosted
hadronically decaying bosons and missing transverse momentum in pp collisions atp

s = 13 TeV with the ATLAS detector, Phys. Rev. D 104, 112010 (2021),
doi:10.1103/PhysRevD.104.112010.

[7] G. Aad et al., Search for new phenomena in final states with large jet multiplicities and miss-
ing transverse momentum using

p
s= 13 TeV proton-proton collisions recorded by ATLAS in

run 2 of the LHC, J. High Energy Phys. 10, 062 (2020), doi:10.1007/JHEP10(2020)062.

[8] K. Ghosh, K. Huitu, J. Laamanen and L. Leinonen, Top quark jets as a probe
of the constrained minimal supersymmetric Standard Model with a degenerate top
squark and lightest supersymmetric particle, Phys. Rev. Lett. 110, 141801 (2013),
doi:10.1103/PhysRevLett.110.141801.

[9] G. Aad et al., Search for vector-boson resonances decaying into a top quark and a bottom
quark using pp collisions at

p
s= 13 TeV with the ATLAS detector, J. High Energy Phys.

12, 073 (2023), doi:10.1007/JHEP12(2023)073.

[10] G. Aad et al., Search for single vector-like B quark production and decay via B→ bH(bb)
in pp collisions at

p
s= 13 TeV with the ATLAS detector, J. High Energy Phys. 11, 168

(2023), doi:10.1007/JHEP11(2023)168.

[11] G. Aad et al., Search for top-philic heavy resonances in pp collisions at
p

s= 13 TeV with the
ATLAS detector, Eur. Phys. J. C 84, 157 (2024), doi:10.1140/epjc/s10052-023-12318-9.

[12] A. J. Larkoski and E. M. Metodiev, A theory of quark vs. gluon discrimination, J. High
Energy Phys. 10, 014 (2019), doi:10.1007/JHEP10(2019)014.

[13] P. T. Komiske, E. M. Metodiev and J. Thaler, An operational definition of quark and gluon
jets, J. High Energy Phys. 11, 059 (2018), doi:10.1007/JHEP11(2018)059.

[14] J. Davighi and P. Harris, Fractal based observables to probe jet substructure of quarks and
gluons, Eur. Phys. J. C 78, 334 (2018), doi:10.1140/epjc/s10052-018-5819-8.

33

https://scipost.org
https://scipost.org/SciPostPhys.17.6.166
https://doi.org/10.1088/1748-0221/3/08/S08001
https://doi.org/10.1088/1748-0221/3/08/S08001
https://doi.org/10.1016/j.physletb.2012.08.020
https://doi.org/10.1016/j.physletb.2012.08.021
https://doi.org/10.1007/JHEP04(2022)150
https://doi.org/10.1016/j.physletb.2022.136889
https://doi.org/10.1103/PhysRevD.104.112010
https://doi.org/10.1007/JHEP10(2020)062
https://doi.org/10.1103/PhysRevLett.110.141801
https://doi.org/10.1007/JHEP12(2023)073
https://doi.org/10.1007/JHEP11(2023)168
https://doi.org/10.1140/epjc/s10052-023-12318-9
https://doi.org/10.1007/JHEP10(2019)014
https://doi.org/10.1007/JHEP11(2018)059
https://doi.org/10.1140/epjc/s10052-018-5819-8


SciPost Phys. 17, 166 (2024)

[15] C. Frye, A. J. Larkoski, J. Thaler and K. Zhou, Casimir meets Poisson: Improved
quark/gluon discrimination with counting observables, J. High Energy Phys. 09, 083
(2017), doi:10.1007/JHEP09(2017)083.

[16] D. Ferreira de Lima, P. Petrov, D. Soper and M. Spannowsky, Quark-gluon tagging with
shower deconstruction: Unearthing dark matter and Higgs couplings, Phys. Rev. D 95,
034001 (2017), doi:10.1103/PhysRevD.95.034001.

[17] J. Gallicchio and M. D. Schwartz, Quark and gluon jet substructure, J. High Energy Phys.
04, 090 (2013), doi:10.1007/JHEP04(2013)090.

[18] J. Gallicchio and M. D. Schwartz, Quark and gluon tagging at the LHC, Phys. Rev. Lett.
107, 172001 (2011), doi:10.1103/PhysRevLett.107.172001.

[19] T. Plehn and M. Spannowsky, Top tagging, J. Phys. G: Nucl. Part. Phys. 39, 083001 (2012),
doi:10.1088/0954-3899/39/8/083001.

[20] D. E. Kaplan, K. Rehermann, M. D. Schwartz and B. Tweedie, Top tagging: A method for
identifying boosted hadronically decaying top quarks, Phys. Rev. Lett. 101, 142001 (2008),
doi:10.1103/PhysRevLett.101.142001.

[21] J. Thaler and L.-T. Wang, Strategies to identify boosted tops, J. High Energy Phys. 07, 092
(2008), doi:10.1088/1126-6708/2008/07/092.

[22] J. Thaler and K. van Tilburg, Identifying boosted objects with N-subjettiness, J. High Energy
Phys. 03, 015 (2011), doi:10.1007/JHEP03(2011)015.

[23] J. Thaler and K. van Tilburg, Maximizing boosted top identification by minimizing N-
subjettiness, J. High Energy Phys. 02, 093 (2012), doi:10.1007/JHEP02(2012)093.

[24] S. Marzani, G. Soyez and M. Spannowsky, Looking inside jets, Springer, Cham, Switzer-
land, ISBN 9783030157081 (2019), doi:10.1007/978-3-030-15709-8.

[25] T. Plehn, G. P. Salam and M. Spannowsky, Fat jets for a light Higgs boson, Phys. Rev. Lett.
104, 111801 (2010), doi:10.1103/PhysRevLett.104.111801.

[26] T. Plehn, M. Spannowsky, M. Takeuchi and D. Zerwas, Stop reconstruction with tagged
tops, J. High Energy Phys. 10, 078 (2010), doi:10.1007/JHEP10(2010)078.

[27] A. J. Larkoski, S. Marzani, G. Soyez and J. Thaler, Soft drop, J. High Energy Phys. 05,
146 (2014), doi:10.1007/JHEP05(2014)146.

[28] J. M. Butterworth, A. R. Davison, M. Rubin and G. P. Salam, Jet substructure as a new
Higgs-search channel at the large Hadron collider, Phys. Rev. Lett. 100, 242001 (2008),
doi:10.1103/PhysRevLett.100.242001.

[29] G. P. Salam, Towards jetography, Eur. Phys. J. C 67, 637 (2010),
doi:10.1140/epjc/s10052-010-1314-6.

[30] M. Dasgupta, A. Powling and A. Siodmok, On jet substructure methods for signal jets, J.
High Energy Phys. 08, 079 (2015), doi:10.1007/JHEP08(2015)079.

[31] D. Adams et al., Towards an understanding of the correlations in jet substructure, Eur. Phys.
J. C 75, 409 (2015), doi:10.1140/epjc/s10052-015-3587-2.

34

https://scipost.org
https://scipost.org/SciPostPhys.17.6.166
https://doi.org/10.1007/JHEP09(2017)083
https://doi.org/10.1103/PhysRevD.95.034001
https://doi.org/10.1007/JHEP04(2013)090
https://doi.org/10.1103/PhysRevLett.107.172001
https://doi.org/10.1088/0954-3899/39/8/083001
https://doi.org/10.1103/PhysRevLett.101.142001
https://doi.org/10.1088/1126-6708/2008/07/092
https://doi.org/10.1007/JHEP03(2011)015
https://doi.org/10.1007/JHEP02(2012)093
https://doi.org/10.1007/978-3-030-15709-8
https://doi.org/10.1103/PhysRevLett.104.111801
https://doi.org/10.1007/JHEP10(2010)078
https://doi.org/10.1007/JHEP05(2014)146
https://doi.org/10.1103/PhysRevLett.100.242001
https://doi.org/10.1140/epjc/s10052-010-1314-6
https://doi.org/10.1007/JHEP08(2015)079
https://doi.org/10.1140/epjc/s10052-015-3587-2


SciPost Phys. 17, 166 (2024)

[32] A. Altheimer et al., Boosted objects and jet substructure at the LHC. Report of BOOST2012,
held at IFIC Valencia, 23rd-27th of July 2012, Eur. Phys. J. C 74, 2792 (2014),
doi:10.1140/epjc/s10052-014-2792-8.

[33] A. Altheimer et al., Jet substructure at the Tevatron and LHC: New results, new tools,
new benchmarks, J. Phys. G: Nucl. Part. Phys. 39, 063001 (2012), doi:10.1088/0954-
3899/39/6/063001.

[34] A. Abdesselam et al., Boosted objects: A probe of beyond the Standard Model physics, Eur.
Phys. J. C 71, 1661 (2011), doi:10.1140/epjc/s10052-011-1661-y.

[35] R. Kogler et al., Jet substructure at the Large Hadron Collider, Rev. Mod. Phys. 91, 045003
(2019), doi:10.1103/RevModPhys.91.045003.

[36] A. J. Larkoski, I. Moult and B. Nachman, Jet substructure at the Large Hadron Collider:
A review of recent advances in theory and machine learning, Phys. Rep. 841, 1 (2020),
doi:10.1016/j.physrep.2019.11.001.

[37] X. Ju and B. Nachman, Supervised jet clustering with graph neural networks for Lorentz
boosted bosons, Phys. Rev. D 102, 075014 (2020), doi:10.1103/PhysRevD.102.075014.

[38] J. A. Aguilar-Saavedra, F. R. Joaquim and J. F. Seabra, Mass unspecific super-
vised tagging (MUST) for boosted jets, J. High Energy Phys. 03, 012 (2021),
doi:10.1007/JHEP03(2021)012.

[39] A. Butter, G. Kasieczka, T. Plehn and M. Russell, Deep-learned top tagging with a Lorentz
layer, SciPost Phys. 5, 028 (2018), doi:10.21468/SciPostPhys.5.3.028.

[40] S. Macaluso and D. Shih, Pulling out all the tops with computer vision and deep learning,
J. High Energy Phys. 10, 121 (2018), doi:10.1007/JHEP10(2018)121.

[41] G. Kasieczka, T. Plehn, M. Russell and T. Schell, Deep-learning top taggers or the end of
QCD?, J. High Energy Phys. 05, 006 (2017), doi:10.1007/JHEP05(2017)006.

[42] M. Farina, Y. Nakai and D. Shih, Searching for new physics with deep autoencoders, Phys.
Rev. D 101, 075021 (2020), doi:10.1103/PhysRevD.101.075021.

[43] T. Heimel, G. Kasieczka, T. Plehn and J. Thompson, QCD or what?, SciPost Phys. 6, 030
(2019), doi:10.21468/SciPostPhys.6.3.030.

[44] F. A. Dreyer, G. P. Salam and G. Soyez, The Lund jet plane, J. High Energy Phys. 12, 064
(2018), doi:10.1007/JHEP12(2018)064.

[45] G. Louppe, K. Cho, C. Becot and K. Cranmer, QCD-aware recursive neural networks for jet
physics, J. High Energy Phys. 01, 057 (2019), doi:10.1007/JHEP01(2019)057.

[46] E. A. Moreno et al., JEDI-net: A jet identification algorithm based on interaction networks,
Eur. Phys. J. C 80, 58 (2020), doi:10.1140/epjc/s10052-020-7608-4.

[47] I. Henrion, J. Brehmer, J. Bruna, K. Cho, K. Cranmer, G. Louppe and G. Rochette, Neural
message passing for jet physics (2017), https://dl4physicalsciences.github.io/files/nips_
dlps_2017_29.pdf.

[48] A. Chakraborty, S. H. Lim and M. M. Nojiri, Interpretable deep learning for two-
prong jet classification with jet spectra, J. High Energy Phys. 07, 135 (2019),
doi:10.1007/JHEP07(2019)135.

35

https://scipost.org
https://scipost.org/SciPostPhys.17.6.166
https://doi.org/10.1140/epjc/s10052-014-2792-8
https://doi.org/10.1088/0954-3899/39/6/063001
https://doi.org/10.1088/0954-3899/39/6/063001
https://doi.org/10.1140/epjc/s10052-011-1661-y
https://doi.org/10.1103/RevModPhys.91.045003
https://doi.org/10.1016/j.physrep.2019.11.001
https://doi.org/10.1103/PhysRevD.102.075014
https://doi.org/10.1007/JHEP03(2021)012
https://doi.org/10.21468/SciPostPhys.5.3.028
https://doi.org/10.1007/JHEP10(2018)121
https://doi.org/10.1007/JHEP05(2017)006
https://doi.org/10.1103/PhysRevD.101.075021
https://doi.org/10.21468/SciPostPhys.6.3.030
https://doi.org/10.1007/JHEP12(2018)064
https://doi.org/10.1007/JHEP01(2019)057
https://doi.org/10.1140/epjc/s10052-020-7608-4
https://dl4physicalsciences.github.io/files/nips_dlps_2017_29.pdf
https://dl4physicalsciences.github.io/files/nips_dlps_2017_29.pdf
https://doi.org/10.1007/JHEP07(2019)135


SciPost Phys. 17, 166 (2024)

[49] P. T. Komiske, E. M. Metodiev and J. Thaler, Energy flow polynomials: A com-
plete linear basis for jet substructure, J. High Energy Phys. 04, 013 (2018),
doi:10.1007/JHEP04(2018)013.
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