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Abstract

A varying number of particles is one of the most relevant characteristics of systems of
interest in nature and technology, ranging from the exchange of energy and matter with
the surrounding environment to the change of particle number through internal dynam-
ics such as reactions. The physico-mathematical modeling of these systems is extremely
challenging, with the major difficulty being the time dependence of the number of de-
grees of freedom and the additional constraint that the increment or reduction of the
number and species of particles must not violate basic physical laws. Theoretical mod-
els, in such a case, represent the key tool for the design of computational strategies for
numerical studies that deliver trustful results. In this manuscript, we review comple-
mentary physico-mathematical approaches of varying number of particles inspired by
rather different specific numerical goals. As a result of the analysis on the underlying
common structure of these models, we propose a unifying master equation for general
dynamical systems with varying number of particles. This equation embeds all the previ-
ous models and can potentially model a much larger range of complex systems, ranging
from molecular to social agent-based dynamics.
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1 Introduction

The conception of many-particle (or equivalently, many-body) systems has played a central role
in modern theoretical and mathematical physics, from the many-electron systems of quantum
mechanics to the tracers of fluid dynamics. Many-particle models are ubiquitous in condensed
matter and provide the paradigm of reference for studying the properties of any existing sub-
stance. It is also an interesting approach per se in assessing the cascade of scales that char-
acterize the physics of matter, since, in principle, it allows to systematically pass from the
microscopic quantum mechanical resolution, up to the continuum hydrodynamics [1]. The
models used in physics are in general based on an interaction potential, usually of a two-
body nature, (e.g. electrostatic, Lennard-Jones) and the corresponding interlinked Newton’s
equations of motion (or Schrédinger equations in quantum mechanics). This means that par-
ticle systems can be mathematically described as dynamical systems moving along calculable
trajectories, enabling powerful mathematical and physical machinery to model, simulate and
analyze them.

Most of the machinery developed to model and simulate molecular or particle-based dy-
namical systems focuses on systems with a constant number of particles, this means they are
closed but not necessarily isolated from heat exchange. However, this is not the case in many
real-world applications, where we often have to focus on subsystems that exchange material
with their surroundings; we refer to such systems as open systems. For instance, living cells
constantly exchange molecules and energy with their environment; they consume chemical en-
ergy and dissipate heat. In terms of physical chemistry, every living system must be a nonequi-
librium open system —a closed system has no life [2]. These nonequilibrium processes at the
molecular scale often drive fundamental phenomena such as symmetry breaking, phase tran-
sitions and entropy production with profound impact on our understanding of living systems
at meso- and macroscopic scales [3-5]. Moreover, the exchange of heat and matter is one of
the main processes driving weather and climate phenomena, such as tipping events [6]. This
manifests in the need for multiscale models [7], as well as reduced/coarse-grained models [8]
and stochastic closure techniques [9]. Thus, to understand, model and simulate these pro-
cesses, it is fundamental to develop mathematical and physical machinery to handle systems
with varying particle number.

From a mathematical perspective, it is a complex problem. The main difficulty is the on-
the-fly change in the number of degrees of freedom of the system. At a differential equation
level, the number of equations would change as the system changes particle number. The
solution is to lift the dynamics to the space of densities/distributions, where the dynamics be-
come linear, albeit infinite-dimensional and thus complicated to analyze. This is analogous to
switching representation from a nonlinear dynamical system to the linear Liouville equation,
or in the case of stochastic dynamical systems to a Fokker-Planck equation. However, note
some information is lost in the process, as we can no longer track individual particles. Follow-
ing this reasoning, some theoretical machinery has been developed in previous works to han-
dle systems with varying particle number. We will overview the main ones in this manuscript.
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Other similar approaches often employ methods based on quantum field theory [ 10-13], which
are not a requirement to neither write nor understand the equations. From a computational
perspective, one possible solution would be to consider a large enough closed subsystem that
includes a substantial part of the environment. In this context, numerical methods of particle
simulation have enormously risen in the past decades, improving our capability of perform-
ing precise calculations of large many-particle systems (see e.g. [14,15]). However, despite
the growing computational power, many systems of major interest are not yet affordable with
standard available models, so we need alternative solutions that combine novel mathematical
developments with computational approaches.

In recent years, multiscale models and simulations have been developed to improve the
efficiency of particle-based simulations. The basic idea is that one retains the degrees of free-
dom strictly required by the problem and simplifies the degrees of freedom that are not directly
involved in the process of interest at coarser levels [16]. A prototype situation in most of the
many-particle models is the necessity of coarse-graining the environment around the region of
interest while retaining all the necessary details in the region itself; since the region of interest
is subject to particle number fluctuations, the necessity of developing open many-particle sys-
tems rises naturally [17]. Moreover, once a mathematical model for the dynamics with varying
number of particles is developed, it can organically be adapted and applied to systems where
the particle number fluctuations are provided not only by the external environment but also
by the change of composition of a system, when for example in a mixture different species
interact forming a third one. Despite the high dimensionality of the resulting mathematical
model, it can be used as a guiding framework to unify models at multiple scales and to derive
physically consistent multiscale numerical schemes.

The concept of subsystem is closely related to the concept of subdynamics for which there
is a vast literature available. For example, the model proposed by Prigogine and cowork-
ers [18,19], the model of Emch and Sewell [20], and the model of Robertson [21,22], to cite
but a few. The idea is based on the projection method of Zwanzig [23] for quantum systems
(used also for classical systems). The evolution of the probability density of the system in
the von Neumann or Liouville equation is projected on a subspace with a reduced number
of variables and the rest of the system is formally coarse-grained. The models discussed in
this paper share the idea of integrating/coarse-graining the degrees of freedom outside the
subsystem, however they add the explicit treatment of the number of particles as a variable
of the problem. This characteristic is not explicitly mentioned in the literature cited above,
thus leaving the impression that the number of particles of the subsystem is assumed to be
fixed. In a system with varying number of particles one should explicitly discuss the normal-
ization of the probability density of the subsystem; this operation is substantially different
from the case of a fixed number of particles. In addition, the equations proposed in [18-22],
while mathematically rigorous and certainly elegant, are characterized by a rather complex
structure difficult to implement in modern computational simulation techniques. Instead, for
computational implementation, one needs models that are characterized by a certain level of
mathematical rigor but at the same time are constructed to efficiently capture the relevant
physics. The model of Bergman and Lebowitz [24,25], discussed later on, can be considered
the first historical attempt towards such an effort and became a source of inspiration for most
of the progress reported here.

In this work, we first review two frameworks to handle classical systems with varying num-
ber of particles (motivated by different physical problems and numerical approaches). We in-
troduce these frameworks and investigate the relations between them to show how a general
master equation for systems varying number of particles emerges. The two main different
points of view correspond to: (i) the approach based on Liouville-like equations of a subsys-
tem embedded in a reservoir where the degrees of freedom are either explicitly integrated out,
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reducing the effect of the environment on the boundary conditions of the subsystem of inter-
est [26,27], or implicitly integrated out into a coupling term [24]; and (ii) a master equation
where the diffusion process based on the Fokker-Planck operator is coupled with a reaction
process that can change the number of particles. In this case, the particle description of the
environment is not considered and its effect is modeled empirically a priori [12, 28]. The
first approach is inspired by molecular simulations where the microscopic single molecular
trajectories with explicit chemical details are accessible and thus the probability distribution
function of the phase space of system and environment can be explicitly sampled [29]. This
means that a simulation of an open system with the simplified environment obtained analyti-
cally by formal integration of its related degrees of freedom should deliver the same result as
an equivalent subsystem in a simulation of the entire system; as a consequence, the validity
of the theoretical model of the open system can be directly tested numerically (see e.g. [30]).
The second approach is inspired by problems occurring at a larger scale than the microscopic
molecular scale, e.g. processes at the scale of biological living cells, where the number of
molecules is large enough to render molecular models intractable but not large enough to
consider macroscopic approaches that neglect inherent stochastic fluctuations [31]. From a
physics perspective, in this approach, molecules are represented as particles undergoing dif-
fusion and chemical reactions are coarse-grained into events that simply change the chem-
ical composition of the system. Thus, the effect of the environment is modeled empirically
through the diffusion constant, the reaction rates and the stochastic effects. This model does
not only provide a probabilistic model for reaction-diffusion processes [12,28] but also serves
as a starting point to derive other models at different scales. This yields a unifying theory
that serves as the backdrop to derive numerical schemes that are consistent across multiple
scales [32,33,51].

Independently from the original inspiration, both models deal with varying number of
particles and thus must retain a common general structure within a unique framework. In
this work, we proceed with the formal analysis of the similarities and differences between the
two approaches. Based on this comparison, a generalized structure emerges in the form of
a unitary equation, from which the previous approaches are special cases. This generalized
structure can be used for any dynamical system in an open setting, enabling a broader range of
applications within physics and beyond. To finalize, we discuss mathematical perspectives and
potential problems of interest in physical and chemical applications both from an analytical
and numerical point of view. We further discuss possible applications of the general master
equation beyond the fields that initially motivated the equation.

The paper is structured as follows. To motivate the reader, section 2 focuses on an intu-
itive overview of the final general master equation for systems with varying particle number,
which emerges naturally in section 5. However, the equation itself is originally motivated by
the specific approaches presented in sections 3 and 4. More specifically, in section 3, we ex-
plore two approaches to handle systems with Hamiltonian structure that are in contact with a
material reservoir(s). In section 4, we show how to write the master equation to describe the
probabilistic dynamics of reaction-diffusion processes, and we extend this to systems where
the diffusion is governed by Langevin dynamics. In section 5, we show how the mathematical
similarities between the approaches from sections 3 and 4 inspire formulating the general mas-
ter equation and how it recovers the previous approaches as special cases. Finally, in section 6,
we discuss the perspectives and future scope of this work in the context of physical modeling,
numerical simulations and applications in other fields.
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2 A general master equation for systems with varying number of
particles

The general master equation presented in this section was inspired by the frameworks pre-
sented in sections 3 and 4. For educational purposes, we first carry out an intuitive derivation
of the equation. We formulate the master equation for systems with varying number of parti-
cles starting from a general random dynamical system perspective. This together with section 5
constitute the main results of the paper.

We first consider a random dynamical system with fixed dimension n, e.g. a system with
a fixed number of particles. The dynamics of the trajectories of the systems are given by the
system of stochastic differential equations

x =F(x), 1)

where x could represent many things, depending on the application at hand. In physics, it
could represent the position of particles or perhaps the positions and velocities of particles. In
other fields like social systems, it could represent the position of an agent in opinion space [34]
or the population of individuals of a certain species [35]. The function F incorporates the
deterministic drift as well as noise components. One can equivalently write the dynamics of
the probability distribution of the system in phase space given by the corresponding Fokker-
Planck equation

0
Efn - Anfn: (2)

with A, the infinitesimal generator of the Fokker-Planck equation for the corresponding n
particle system, and f, := f,(t,x) the probability density of the system being at x at time ¢,
which naturally integrates to one when integrating over the whole phase space. Reasonable
boundary conditions for f, are usually reflective in a bounded domain or vanishing at infinity
for a non-bounded domain.

To write a similar description for a system with a variable number of particles, one cannot
write it in the form of eq. (1) since the dimension of the system changes as time evolves.
However, we can write something similar to the master equation from eq. (2). Consider the
family of distributions f = (fg, f1,- -+, fn- - ), Where f, := f,(t,x™) is the probability density of
having n particles (or whatever else we are modeling) at positions or states x™ = (x1,...,X,)
at time t. The phase space now has a much more complex structure with continuous and
discrete degrees of freedom, so the normalization condition is

ijn(t,xn)dx"= 1, 3)
n=0

where the integral is over the whole available space. The master equation for the system with
varying particle number can then be written as a family of Fokker-Planck equations, one for
each n-particle level. These are then coupled by operators Q,,,, that transfer probability from
the m-particle state to the n one modeling processes that change the particle number (e.g.
interactions with a material reservoir or reactions). These operators form a coupling matrix,
which incorporates into the master equation

fO -AOfO QOO QOl cee QOn cee fO
fl Alfl QlO Qll an fl
fn Anfn QnO in s an s fn
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Each row of the equation corresponds to the dynamics of the n-particle distribution. If the
coupling matrix is removed, one obtains a set of uncoupled Fokker-Planck equations, each for
a different particle number. If the space dependence is removed, one recovers a continuous-
time Markov chain, where the operators Q,,,, become transition rates. This master equation
for systems with varying particle number can be written more compactly by focusing on the
nth component

d
(E_An)fnzgnfi (5)
with Q,f = Z Qunfm- Although these infinite sums might seem problematic at first, in
m=0

practical cases most Q,,,,, are zero and the sums remain finite, as we will see later. Moreover,
in analogy with stochastic matrices in continuous-time Markov chains, we expect each matrix
column to sum to zero to enforce the conservation of probability. As in this case, we have
a matrix of operators and space dependence, the probability conserving condition translates
into the following constraint imposed into the coupling operators

ZJ (Qun ) (X")dx" =0, ©)
n=0

for n,,, any given test arbitrary probability density for m particles and where the integrals run
over the whole available space. Each of these integrals represents the probability flux associ-
ated with a transition. By forcing their sum to be zero, we enforce that the net probability flux
leaving one state(s) is the same as the one entering another state(s). Thus, enforcing proba-
bility conservation. As a final note, there is a connection between this description and hybrid
switching diffusions [36-39]. However, in the particle context, hybrid switching diffusions can
only account for a change in the state of a particle but cannot incorporate or remove particles.

In the next sections we will review the derivation of master equations of this form written
for specific contexts, which have inspired the generalization above that applies to a larger
class of systems with varying number of particles [10,12,25-28]. In sections 3 and 4, we will
explore specific physical systems that involve varying particle number. Then, in section 5, we
will show how these specific systems inspired the general master equation (eq. (5)) and how
they are recovered as particular cases.

3 Liouville-like equations for classical open systems

The two approaches reported in this section were developed (the first one) or used (the second
one) to conceptually frame a numerical method for the molecular simulation of open systems
that exchange energy and matter with a large reservoir. The specific numerical code embed-
ded in this theoretical framework is the Adaptive Resolution Simulation (AdResS) [29,40,41];
however, any molecular simulation approach that is characterized by the system-reservoir ex-
change of energy and particles could be framed as well in such models. The models presented
here have been used as inspiration for designing and rationalizing the system-reservoir cou-
pling [30,42,43]. Systems of molecular simulation are in general characterized by an explicit
particle-particle Hamiltonian and by its corresponding phase-space probability density. This
latter is not known explicitly, however it is statistically sampled either through a single long
trajectory or through a collection of short trajectories, each with an initial condition uncor-
related to the initial condition of the others. As a consequence the statistical calculation of
physical quantities is done by sampling and averaging the physical quantity of interest along

6
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Figure 1: Graphical representation of the open system and associated formalism.
The open system (2, with its boundary surface 9, is defined as a subsystem of U
with n particles. The reservoir is defined as a large system, U\Q = Q,, with N —n
particles, since U contains N particles. The n dimensional domain of the phase-space
of particles in € is defined as S™ = R3" x Q" while the N —n dimensional domain of
the phase-space of particles in Q, is defined as SN = R* W= x Q("™N)_ This figure
is adapted from Fig.1 of [27].

such trajectories [14]. The natural complete framework for the treatment of these systems
is the Liouville equation, thus it seemed natural to manipulate the Liouville equation of the
total system to obtain an equivalent equation for a subsystem where the surrounding (rest
of the total system) has been explicitly integrated out in its particle degrees of freedom or,
alternatively, the particle degrees of freedom have been empirically removed by modeling the
reservoir as a generic thermodynamic bath.

3.1 From a large system of N particles to an open subsystem of n particles

The model of open system based on the Liouville equation of the total system of [26] is here
described in its essential features. Let us consider a large dynamical system of N particles in
equilibrium (called here Universe, U) and define an open subsystem, (2, containing n particles
(with the corresponding reservoir, U\Q2 = Q,, of N —n particles, with N >> N —n), as illus-
trated pictorially in fig. 1. Starting from the Liouville equations for the probability in phase
space of the Universe and integrating out all the degrees of freedom of U\Q2 = Q. one would
wish to derive a Liouville-like equation for the particles in  taking into account that particles
can freely move from the subsystem to the reservoir and vice versa. The Hamiltonian of the

Universe is defined as:
N =2

b;
Hy = Z oM Vi(@Y), 7
i=1

with p; the momentum of the i-th particle, M is the mass of an individual particle; the potential
of particle-particle interaction is defined as: V,,(q") = Zf’zl Z;V:L i %V(Ej 7 —q;), with i and
J labeling two different molecules with corresponding positions g; and G;. The corresponding
probability density in phase-space is given by:

Fy :RY x (U xRV - R(t,XV) - Fy(t,XV), (8)
where

f FydxN =1, 9
SN

with XV € S¥ = (U x R®*)" the space of the position and momentum variables of the N
particles.
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The Liouville equation for U is then given by:

J0Fy
— = AyNFy, 10
Ep: NEn (10)
with Ay the Liouville operator for an N particle system
N
AnFy ={Fy,Hy} = > [ Vg, - (BiEy) + V5, - (FiFy)],

(1D
i=1

{*,*} are the canonical Poisson brackets, V; = p;/M; is the velocity of the ith particle and the
total force, F;, acting on particle i is given by

N
Fi=-V V@) == D> V4V(@—1)). (12)
j=Lj#i
The Hamiltonian of the subsystem (2 is accordingly defined as:
n }—52 n n 1
= -t ZvV(d: —a: d..d:
Hn—ZZM+Zsz(qJ 4 (3,4,€9), (13)
i=1 i=1 j#i
while the corresponding phase-space probability density is:

fo iRt xS" S R; (£,X")— f,(t,X™),

for (n=0,...,N),
n N n =N =N
fo(t,X™) = N Fy(t,X",E))dE, , (14)
(SC)an
HN e m Lam ] L}
E, =[En41,--,EN—nls where =

i =(d,p)esN™.
The collection of n-particle functions, ( fn)ﬁfzo defines the probability density with the nor-

malization condition derived from the normalization of F for the universe (e.g. (9)). As a
consequence one has that:

N

ZJ f fa(t,(q,p)) dpdq =1.

n=0

(15)
Q" (R3)

The integration of eq. (10) w.r.t. the variables of Si\’ ™ implies a straightforward calculation
procedure which does not carry any relevant conceptual aspects and thus it is not reported
here; the corresponding details of can be found in [26,43], here the final results are reported:

d
af;n + Anfn = \IJH +¢Z+1 >

(16)
U, == 5 - (P @) fult, X1 X, X079), (17)
i=1
Fou(@) Z—J V5. V(G —4;)f5 (X;1X;)dX; . (18)
SC
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The latter corresponds to the mean field force that the outer particles exert onto the ith particle
in Q. The quanity f; (Xo,/|Xi) is defined as the conditional distribution of an outer particle
at the given state of an inner particle; one can assume that it is known or a model can be
proposed. Furthermore,

¢Z+1=(n+1)J J @i ) (Fror (X" @G PO — i (XM f @B ) dPpidoy. (19)

39 (p;-11)>0

In eq. (19) f7 (4;,—p;) corresponds to the (modeler’s) assumption of the reservoir’s one par-
ticle distribution calculated at the interface boundary d€. It must be also added that the
addition of an external thermostat in the reservoir does not change the equation and allows
us to extend the model to situations of non-equilibrium like thermal gradient [27]. In gen-
eral, such a theoretical framework rationalizes the AdResS molecular dynamics protocol, but
in principle, as said above, it can be applied to any other molecular simulation method that
aims at considering a varying number of molecules.

3.2 The Bergman-Lebowitz equation of open systems

Bergmann and Lebowitz, and Lebowitz and Shimony in two seminal papers [24,25], have pro-
posed an equation based on the extension of the Liouville equation that models open systems
embedded in a reservoir of particles and energy. The essence of the model is to consider an
impulsive, Markovian interaction between the reservoir and the system; the reservoir is con-
sidered stationary and not influenced by the changes occurring in the system, thus the ther-
modynamic state point of the reservoir is fixed. The interaction between the system and the
reservoir is modeled as a discontinuous transition of the system from a state with N particles
(X™) to one with M particles (Y™), where X" corresponds to the canonical variables (position
and momenta). The change of the state of the system state is described by a time-independent
Markovian transition kernel, K,,,,(X",Y™). The kernel, K,,,,(X",Y™), corresponds to the prob-
ability per unit time that the system at Y™ makes a transition to X" as a result of the interaction
with the reservoir. The probability density, f,(X",t), in some point X" of the phase space is
then regulated by an extension of the Liouville equation:

D nfn+Z f QY (K (X", Y (Y, )~ Ko (V" XM, (X7, 0], (20)

The first term of eq. (20) corresponds precisely to the Liouville equation for the n particle
system (eq. (11)), while the second term establishes a coupling with the reservoir(s). This last
term is composed of negative or positive contributions corresponding either to the outflux/loss
of probability from the current n state or to the influx/gain of probability into the current state,
respectively.

If the kernel satisfies the condition of flux balance:

o
Z J [e—ﬂH(Xm)+[5umKnm(Xn’ Ym) _ Kmn(Ym,Xn)e—ﬁH(X”)+ﬁpm]de =0, 21)

it follows that the stationary Grand Ensemble is the Grand Canonical ensemble; here 3 = ,(%T
where kj, is the Boltzmann constant and T the temperature, while u is the chemical poten-
tial of the system. The key difference between the approach of section 3.1 and the approach
of Bergman and Lebowitz lies in the assumption about the reservoir and the corresponding
term of system-reservoir exchange in the equation. The model of section 3.1 does not require
any assumption about the reservoir, but directly integrates its particle’s degrees of freedom.

9
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As a consequence, the system-reservoir coupling term is explicitly written in terms of particle
quantities without any stochastic assumption. In the model shown here, the reservoir is mod-
eled a priori without any explicit link to its particle resolution and the system-reservoir cou-
pling term is modeled, as a consequence, with a probabilistic process. The model of Bergman
and Lebowitz has been very important for the numerical implementation of the open system
approach AdResS in an intermediate step. Such a model, differently from the model of sec-
tion 3.1, could not provide an explicit numerical receipt for the system-reservoir coupling,
nevertheless it allowed for a physical qualitative interpretation of the coupling conditions of
the AdResS code [42,44].

4 Master equations for reaction-diffusion processes

Molecular dynamics are limited to the study of complex biochemical phenomena at the scale of
living cells. While the most sophisticated molecular simulations can achieve simulations of a
few macromolecules in the scale of micro- or milliseconds when being optimistic, biochemical
processes at these scales often involve thousands or millions of macromolecules and occur
over timescales of seconds. Moreover, the chemical events at the molecular scale happen at
a much faster scales than those relevant to life processes, and thus their detailed molecular
kinetics do not play a key role in the dynamics. It is thus appropriate to consider particle-based
reaction-diffusion models (fig. 2), where molecules are represented as particles undergoing
random motion due to thermal fluctuations of the solvent (diffusion), and chemical reactions
due to instantaneous reaction events, which often occur after chancy encounters between two
or more molecules. The relevant features of the molecular scale are captured in the diffusion
coefficients and the reaction rate functions.

Particle-based reaction-diffusion models are often the standard model to describe biochem-
ical processes at the scale of living cells. At these scales, the so-called chemical diffusion
master equation (CDME) provides a probabilistic model in terms of the number of particles
of each of the chemical species involved, as well as their spatial configuration [10, 12, 28].
One of the original objectives of developing the CDME was to serve as an underlying ground
model upon which one can construct particle-based reaction-diffusion simulations consistently.
Moreover, one can in principle recover most other reaction-diffusion models as limits of the
CDME, e.g. in the well-mixed limit, one recovers the well-known chemical master equation
(CME) [31,45-47]; in the thermodynamic limit, one recovers reaction-diffusion PDEs; and
when doing spatial discretizations, one recovers the reaction-diffusion master equation [48]
or the spatiotemporal master equation [49]. Thus, it serves as a unifying framework from
which one can develop numerical schemes that are consistent across scales. For instance,
some mathematicians are interested in branching and annihilating Brownian motion [50] and
its connection to the Kolmogorov-Petrovsky-Piskunov-Fisher (KPPF) equation. Following an
applied mathematics/mathematical physics approach, one can frame these processes in terms
of the CDME and study the limiting cases to recover the KPPF reaction-diffusion PDE, as done
recently for other reaction systems [51]. This could yield alternative insights to the research
community in that field, as well as methodologies for multiscale simulations.

One of the main virtues of the CDME is its capability to handle systems with varying number
of particles while maintaining spatial resolution. This is an inherent characteristic of the CDME
since reaction events often change the number of particles in the system. In this section, we
will overview the CDME for a simple example, and we will show how it extends when the
diffusion term is replaced by Langevin dynamics.

10
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Figure 2: Illustration of particle-based models. a. Change of resolution from molec-
ular to particle resolution, where each molecule is considered as one bead. b. A
particle-based reaction-diffusion process for A+ A — A, where A(y, x;, x,) is the po-
sition dependent rate function. Figure (a) is adapted from Fig.1(a) of [52].

4.1 Chemical diffusion master equation: coupling diffusion with reaction pro-
cesses

As a starting point, we follow [28] and consider a system with a varying number of parti-
cles, all corresponding to one chemical species, enclosed in a finite domain X (with reflecting
boundaries in the boundaries of X). The configuration of the system is given by the number
of particles and their positions, so its probability distribution is given as an ordered family of
probability density functions:

f:(fOiflﬁfZ""me‘"); (22)

where f, := f,(t,q") is the probability density of finding n particles at the positions

=(qy,---,9,) € X" at time t, or simply q if clear from context. The phase space of these
distributions is depicted in fig. 3. As the particles are statistically indistinguishable from each
other, the densities must be symmetric with respect to permutations of labels, for instance,
f3(t,x,y,2) = f3(t,x,2,y) = f3(t,y,x,2) and so on. The probability distribution should be
normalized, thus

ST flt@)dg =1. (23)
n Xn

For a system with M reactions, the nth component of the CDME has the general form

af

— (r)
S ann+ZR f. (24)

r=1

The generator of the CDME is decomposed into the reaction and diffusion components: D is
the diffusion operator and R(") corresponds to the reaction operator for the rth reaction. Each
reaction operator can be split into two contributions

RO = G — £, (25)

representing the gain or loss of probability respectively due to the rth reaction in a given
configuration.

To exemplify the formulation of the CDME for a reaction involving only one chemical
species, we focus on the following reaction (fig. 2b.)

A+A—A. (26)
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Number of particles (A)

Figure 3: Phase space for a general reaction-diffusion process involving one chemical
species. The space X represents the phase space of one particle A (e.g. R®), and the
distributions described by the chemical diffusion master equation reside in this phase
space. Figure adapted from Fig.1(a) of [51].

The rate at which a reaction event occurs is given by A(y;x) > 0, and it depends on the
positions x = (x1, x5) € X2 of the reactants and the position y € X of the products. Note that
the rate function must be symmetric with respect to the positions of the reactants (as well of
the products if more than one), i.e. A(y;x;,x5) = A(y; X5, x;). The nth component of the
CDME then is given by

9fu

ot :ann+gnfn+1_[’nfn: (27)

where D,, G,,, L, refer to the corresponding diffusion, gain and loss operators, respectively.
Note as we are only considering one reaction, we dropped the upper index. Reactions at the
n-particle state transfer probability to the (n — 1)-particle state, so they are represented by
the loss term. Reactions at the (n + 1)-particle state transfer probability to the n-particle state
state, so they are represented by the gain.

For non-interacting particles, the diffusion operator D,, is the infinitesimal generator of the
n-particle Fokker-Planck equation.

n n

annzzvi'(Aifn)+ Z Vi (DyVifa) (28)
i=1 i,j=1

where A; = A;(q, t) is the drift, D;; = D;;(q) are the 3 x 3 diffusion matrices and V; denotes

differentiation with respect to ith component of the position q [12]. If the drift is consequence

of an interaction potential U(q) then

n
A== D;V,U. (29)
=

In the absence of drift and assuming isotropic diffusion, D, would simply be the Laplacian,
D, = Z?:l DVI.2 with a scalar diffusion constant D. Considering this structure and assuming
there are no reactions, the CDME would correspond to an infinite family of uncoupled Fokker—
Planck equations for the particle positions, where each member of the family corresponds to
a different number of particles.

The loss operator acting on the n-particle density will output the total rate of probability
loss of f,, due to all possible combinations of reactants. It is given in terms of the loss per
reaction L; ;, which acts on 2 particles at a time, with (i, j) denoting the indexes of the particles
that it acts on. The loss per reaction quantifies how much probability is lost to the current state
due to one reaction, it is thus the integral over the density and the rate function A over all the
possible positions of the products:

(Lif.) (@) = fn(q)f AMy;qi;)dy, (30)
X
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with ¢ € X" and where q; ; = (q;,q;) represent the ith and jth components of q. The total
loss is then the sum of the loss per reaction over all possible reactions,

Lo= > L. (31)

1<i<j<n

The form of the ordered sum guarantees that we count all the possible ways of picking
up k particles without double counting. Similarly, the gain operator acting on the n-particle
density will output the total rate of probability gain of f,,. It can be expressed in terms of the
gain per reaction resulting from 2 reacting particles producing one product with index k. The
gain per reaction, termed Gy, quantifies how much probability is gained by the current state
due to one reaction, it is thus the integral over the density and the rate function A over all the
possible positions of the reactants:

(Grpn+1)(q) = f AMqi; 2)Pn1(q\ iy, 2)d 2, (32)
x2

with g € X" and where the subscript \{k} means that the entry with index k is excluded from
the tuple q of particle positions. The total gain is then the sum of the gain per reaction over
all possible reactions,

n

_n(n+ 1)1

Gn=—"F— ;Gk (33a)
_(n+1) ¢
== ;Gk: (33b)

where in the first line, the first fraction represents all the possible ways of picking two particles
of the same species from state n + 1, and the second fraction and sum represent all the ways
of adding a particle into the n state (while preserving symmetry). Gathering all the terms, the
CDME then has the form

0 = n
—fg(tq)=Zvan+(n+1)Zf Aqr; 2)fr1(qy\ iy 2)dz — Z fn(q)f My;q;,)dy,
y=1 k=1JX2 X

2 1<i<j<n

where the notation omitted the time dependence of f, for simplicity. The extension to mul-
tiple species is reported in the following subsection. The CDME for general one-species and
multiple-species reactions were formulated in detail in [12,28].

Multiple species extension

To exemplify the CDME for a reaction involving multiple species, we follow [28] again and
consider the reaction
A+B—-C, (34)

with rate function A(y; x4, xg), where x, and xj are the locations of one pair of reactants
and y is the location of the product. The stochastic dynamics of the system are described in
terms of the distributions f; j (q“,qb ,qc), where a, b, ¢ indicate the numbers of A, B, and C
particles, respectively, and q¢ indicates the positions of the A particles, q° of the B particles,
and q°¢ of the C particles. The normalization condition eq. (23) generalizes to multiple species

oo
>, J fane(a%9°,q°)dq*dq’ dqc =1. (35)
XaxXbxXe

a,b,c=0
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Applying analogous reasoning as before, we can derive the CDME for the bimolecular reaction
[28]. Here we just state the final equation

afabc = b <
be B c
ot _ZDﬁfa,b,c +Zvaa,b,c +ZD§ fa,b,c

b
MZJ anz z )fa+1 b+1,c— 1((‘1 ,2), (q ,2"), ‘I\{g})dZdZ (36)

X
fachZJ yqua d_)/,
X

u=1r=1

where to simplify notation, the dependence of p, ; . on time t has been omitted, as well as its
dependence on the positions (x(a),x(b), x(c)) if clear from context. The first line corresponds
to the diffusion of each chemical species, the second line to the gain term and the last one to
the loss. The works [12,28] developed a comprehensive and formal mathematical framework
to formulate the CDME for any given reaction system.

4.2 Langevin dynamics with varying number of particles

There is a close mathematical link between section 3 and section 4.1; the resulting equations
from both approaches describe the dynamics of densities in the phases space of systems with
varying number of particles. In section 4.1, we introduced the diffusion operator, as well as
the densities, only dependent on the position of the particles. However, one can in principle
define these operators on more general dynamics. For instance, the state of the system can
also depend on the velocities of the particles, as well as on the interactions between particles.
In section 3 we had already incorporated velocities, but in a classical context, where there was
no stochastic component and the changes in particle number were due to being in contact with
a reservoir. A natural question arises: what is the physical/mathematical connection between
these approaches?

In this section, we focus on Langevin dynamics with varying copy numbers as a middle
ground to hint at the similarities between the classical open systems approach from section 3
and the stochastic reaction-diffusion approach from section 4.1. This will hint at a general
approach to model the dynamics of systems with varying number of particles, enabling richer
models of open systems.

To start, consider the Langevin dynamics of a system with n point particles in a spatial do-
main X with positions and velocities ¢ € X" and v € V", where V is the space of one-particle
velocities (in general R®). The particle’s masses are m, and they are under an interaction po-
tential U(q) with a configuration-dependent friction tensor 1) to model velocity-dependent hy-
drodynamic interactions (assuming approximation of pair-wise additivity [53]), then Langevin
dynamics are given by

dg(t)=v(t)dt  m-dv(t)=—n-v(t)dt—V,U(q)dt+/2kgTn*dw(t),  (37)

where w(t) corresponds to a 3n dimensional vector of independent Wiener processes or
standard Brownian motion; kg is the Boltzmann constant, and T is the temperature. The
corresponding Fokker-Planck equation for these dynamics —also named Klein-Kramers equa-
tion [54]— determines the dynamics of the probability density f,(t,q, v) in phase space, and
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it is given by [53]

af, .
at" =K.f,,  with (38)
n n
1 1 kpT
K,= (—vi-v,fn+—V_U-Vv_fn)+ —Vv,-ni~(v-fn+—B Vv_fn), (39)

where /C,, simply denotes the infinitesimal generator of this Fokker-Planck equation for an n
particle system with positions and velocities—in three dimensions, the equation would be a
Fokker-Planck equation in 6n dimensions. We would like to now incorporate processes that
change the number of particles. This can be framed quite generally following section 4.1
in terms of reactions. Reaction events can be thought of more generally as instantaneous
events that follow a Poisson process in terms of rate functions A. Note these rates must not be
constant; they can depend on time, on the state of the system or on external variables. The
master equation for this process will have the same form as the CDME in eq. (24), but now
instead of the diffusion operator, we have the Klein-Kramers one

Ofn
ot

M
Kufat D RUS. (40)
r=1

Here M denotes the number of processes changing the number of particles, and we assume that
f =Uo,f1s-++»fn>---) now also depends on the velocities. Note we again assume the densities
are symmetric with respect to particle indexing permutations and that the normalization from
eq. (23) requires additional integration over the velocity variables

Zf fa(q,v)dq dv=1. (41)
n=0J X1xVyn

In addition, the rate functions within the R operators could also depend explicitly on the ve-
locities of particles, allowing for richer particle-base models and generalizing the depth of field
of the CDME. The approach presented here based on Langevin dynamics is an ideal starting
ground to couple open particle-based models with fluids and to incorporate hydrodynamic and
electrostatic interactions. As a final remark, note that if we take the overdamped limit of the
Langevin dynamics, we in principle recover the CDME from section 4.1.

5 Previous models as special cases

In this section, we first show what are the mathematical connections between the approaches
from sections 3.1 and 3.2 and the other two approaches in sections 4.1 and 4.2. Based on the
insight gained in section 4.2, we compare to the previous results and show how this inspired the
general master equation for classical systems with varying number of particles from section 2.

In both previous sections 3 and 4, we introduced equations to describe the dynamics of
densities in the phase space of systems with varying number of particles. The first insight is
that mathematically the n-particle Liouville equation is a special case of the n particle Fokker-
Planck equation (Klein-Kramers eq.). To show this, we start with the classical approach from
section 3.1. The resulting equation for the distribution dynamics in the phase space of the open
system is given by a family of Liouville n-particle equations coupled by the terms ¥,, + @Z*l
(eq. (16))

d 1 .
aftn + Zl (v?h ’ (‘_;lfn) + vp'l. . (Flfn)) = \,I;n + ¢Z+1' (42)
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The Bergman-Lebowitz model from section 3.2 shares the same mathematical structure but
with different coupling terms due to different conceptual starting points of view: section 3.1
employs an explicit particle reservoir whose coupling with the open system has been achieved
by explicit integration of its degrees of freedom, while section 3.2 employs a reservoir modeled
a priori with a stochastic term for the exchange with the open system. In practice, the Bergman-
Lebowitz model conceptually lies in between the other two approaches shown here. We can
compare this equation with the nth component of the master equation eq. (40) from section 4.2

0 fn
at

M
- ’Cnfn = Z Rg)f 5 (43)
r=1

with
n

1 o1 kpT
Knfn= Z (_Vi ' vqifn + ;vqu ’ vvifn) + Z ;vvi © Mij (ijn + BTVijn) . (44)

i=1 i,j=1
We can rewrite the first term of the diffusion operator in exactly the same form as eq. (42)

n

1 o1 kpT
Kufa== 2 (Va4 29 @)+ D vy (vif + 0w, ), )

i=1 i,j=1

where F; is the net force acting on particle i due to potential-based interactions and
V,, = Vv;/m. If the noise term of the Langevin equation is removed, the second term of K, f,,
vanishes recovering exactly the Liouville equation. Thus, the Liouville equation can be mathe-
matically understood as a special case of the Fokker-Planck equation for Langevin dynamics in
the deterministic limit. Note the emphasis on “mathematically” since from a physical perspec-
tive Langevin dynamics are often understood as a coarse-grained representation of classical
molecular dynamics.

The second insight is that these equations have an analogous mathematical structure. One
part is essentially a transport term for the n-particle density given by a Fokker-Planck equa-
tion, which simplifies to a Liouville equation in deterministic cases. The other part is a cou-
pling term that models the change in the number of particles across the family of densities
f=Uof1s-++>fn>---). We can write both equations in the form of eq. (5):

0
(E_An fn = an . (46)
—_—
n-particle coupling
transport term term

We can recover all models investigated in the previous sections as follows:

* Section 3.1, Liouville-like equation for an open subsystem:
Aofn = Mofns and Q.f =¥, +@. (47)

In this case, the dynamics of the system are deterministic with Hamiltonian structure,
so we only need the Liouville operator for the transport part. All the physics for the
coupling between the subsystem with n particles and the larger system (universe) with
N particles are condensed in the coupling term. As an additional verification of physical
consistency, it was further shown that in equilibrium and under the hypothesis of short-
range interactions, this approach recovers automatically the standard stationary grand
canonical distribution [26].
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* Section 3.2, Bergman-Lebowitz equation of open systems:

Jimﬂl_ﬁ-Anfﬁ: and

00 48
Quf = ). f QYK (X, T (Y7, )= Ko (Y, X, (5 0] )
m=0

Once again the dynamics of the transport process are deterministic with Hamiltonian
structure, so we can use again the Liouville operator. However, the interaction with the
reservoir is modeled stochastically using the Markovian transition kernel K,,,,,. This can
be understood under the same light as the reaction in section 4.1. We can even separate
the terms into a general loss and a gain term Q,, = G, — £, where

Lf=> J Y™ (Ko (Y7, XM)f, (X", 0)], (49)
m=0

Guf = J Y™ (Ko (X", Y™, (Y, )] (50)
m=0

In this sense, this approach is a middle ground between the approach in section 3.1 and
the one in section 4.1.

* Section 4.1, Chemical diffusion master equation for reaction diffusion:

M
Aufa = Dufy,  and  Quf > > ROF. (51)
r=1

In this case, the transport dynamics are stochastic, but they correspond to Brownian
dynamics (overdamped Langevin dynamics to be precise), so there is no velocity de-
pendence. Thus the transport part is governed by the Fokker-Planck generator for the
standard Brownian diffusion of n-particles: D,,. The reaction operators Rg) transport
probability between configurations with different number of particles. These can be sep-
arated into the gain and loss parts: Rglr) = g,([) — Eg). The total gain and loss due to all
the reactions is

M M
Go=.GV,  Ly=>LD. (52)
r=1 r=1

Following [28], we can use the local rate functions for each reaction with these relations
and write a global Markovian transition kernel in the form of egs. (49) and (50), which
establishes a direct connection with the Bergman-Lebowitz approach. The main differ-
ence is that, in the Bergman-Lebowitz approach, this kernel can depend on velocities
while here it would only depend on positions.

* Section 4.2, Langevin dynamics with varying particle number:

M
Anfo = Kofnr  and  Quf — > RUf. (53)
r=1

From a mathematical point of view, this case covers the most general transport dynamics
from all the examples presented; all the other cases are special cases of this one. Here,
the transport dynamics are stochastic and track positions and velocities. Thus, the trans-
port operator is given by the generator of the Klein-Kramers equation; the Fokker-Planck
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equation for Langevin dynamics. In the overdamped limit, we recover the diffusion op-
erator D,, from section 4.1. Alternatively, if we remove the noise term, we recover the
Liouville operator H,, from sections 3.1 and 3.2. The coupling term works exactly as
before, with the slight difference that now the reaction rate functions can also depend
on the velocity. Following the same reasoning as before, we could once again write this
in the form of egs. (49) and (50), but unlike the overdamped Langevin case, we would
also have a dependence on velocities.

All the cases are special cases of eq. (46). However, its mathematical structure is even more
general and does not need to be constrained to Langevin dynamics, Hamiltonian structure or
a specific form of the coupling terms. The Liouville/Fokker-Planck term can be written for
very general deterministic or stochastic dynamical systems, and the coupling terms can model
reactions, interactions with external reservoirs or any other process that changes the number
of particles. The only constraint is that every term in the equation must conserve the total
probability. We know the Fokker-Planck equation part is probability preserving, so we only
need to make sure that the couplings Q, f also preserve the total probability ( egs. (15), (23)
and (41)) following eq. (6). This was shown in [24, 26] for classical molecular dynamics and
in [12] for reaction-diffusion dynamics. For other specific applications, one must construct the
corresponding transport and coupling operators.

6 Perspectives: Physical, numerical and beyond

The general formulation of the master equation for systems with varying particle number pre-
sented in this work provides a novel and synergistic link between different fields and how they
handle open settings. Through its general formulation, it unveils new perspectives and opens
up the application scope to a diverse range of fields within and beyond physics. There is ample
potential for future applications, specifically in the design of multiscale theory and simulation
of complex systems. In this section, we discuss new perspectives inspired by this work, as well
as current and future applications.

From a physics perspective, understanding the dynamics of systems with varying number of
particles requires imposing fundamental physical constraints to eq. (46). In most cases, these
systems will have —partly— a Hamiltonian structure, which is represented by the Liouville
part of the equation (section 3). Thus, in the spirit of the Bergman-Lebowitz approach, it is
illustrative to present an alternative separation of eq. (46) into the following components:

9 fu
ot _Anfn = 7:1fn + an > (54)
S——o— ~— ~—
n-particle heat material
Liouville exchange exchange

where the infinitesimal generator in eq. (46) for the corresponding Fokker-Planck equation is
A, = A, +T,. The terms represent the Liouvillian dynamics (Hamiltonian); the contribution
due to stochastic fluctuations, often a thermostat modeling heat exchange with a reservoir(s);
and the coupling terms capturing the material/particle exchange with a reservoir(s). If we
assume Langevin dynamics, the thermostat will have the form of section 4.2 and A, — K;
however, eq. (54) is not limited to Langevin thermostats. The material exchange can model
reactions, interactions with a reservoir or any other process that changes the number of par-
ticles. Analyzing and manipulating these components could offer insights into the intricate
interplay between system dynamics and its surroundings, shedding light on emergent behav-
iors, equilibrium states and non-equilibrium phenomena. As an example in a simpler context,
it has been shown that, in well-mixed biochemical systems, reservoir interaction drives phe-
nomena fundamental for life processes such as symmetry breaking, entropy production and
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phase transitions [3,4,31]. The form of eq. (54) hints at the possibility of performing a two-
level coarse-graining of a Hamiltonian system. First, coarse-graining the fast-scales, e.g. the
solvent dynamics into a thermostat. Then, a second coarse-graining following section 3.1 to
model the material exchange of the subsystem with the environment. Although these two
effects produced by different types of reservoir interaction were also captured in a seminal
work [24] with equations in the form of eq. (20), the approach discussed in this work is more
general and conceptually different.

In the context of coarse-graining techniques, the Mori-Zwanzig formalism stands out as
a powerful tool for capturing the relevant/slow dynamics of complex systems while account-
ing for memory effects and non-Markovian behavior. Although it is not trivial how to ap-
ply it to systems with varying particle number, it sheds light on what kind of dynamics we
should expect in the coarse-grained variables. When applying the Mori-Zwanzig formalism to
a Hamiltonian system, it not only yields a noise term representing the thermostat but also a
term modeling non-Markovian memory effects. What are the memory effects emerging from
the coarse-graining due to particle exchange with the reservoir? Can these memory effects
be incorporated into the master equation eq. (54)? Can we incorporate memory effects into
reaction-diffusion processes and what is their relevance? These are open questions motivated
by this work that are tremendously relevant to the physics community.

The quantum mechanical perspective could also be framed in similar terms, particularly
through analysis of frameworks like the Lindblad equation [55], a generalization of the von
Neumann’s equation that describes the time evolution of density matrices/operators for open
quantum systems subject to dissipative processes. Von Neumann’s equation is the quantum
analog to Liouville’s equation, where the classical Poisson bracket is substituted by the com-
mutator and the density by the density matrix/operator. The Lindblad equation corresponds
to von Neumann’s equation with an additional term to model the interactions with the envi-
ronment. This term is constructed using the so-called jump operators that can be understood
as modeling probability “jumping” from one state to another due to interactions with the en-
vironment, analogously to the 9, f term in eq. (54). It is natural to suggest that one may
be able to construct a framework, following the ideas of this manuscript, similar but alterna-
tive to the Lindblad master equation, to describe the exchange of particles between arbitrary
quantum systems and the environment. Recently an approach similar to that of [26] and ap-
plied to the von Neumann equation has been proposed by one of the authors [56], while the
other author reviewed field theory inspired representations of reaction-diffusion systems [13],
which perhaps aids in extending these ideas to a quantum setting. Nevertheless, a more pre-
cise connection to quantum systems and situations out of equilibrium requires a more detailed
analysis beyond the current scope and is left for future work.

From a numerical perspective, multiscale simulations play a pivotal role in understanding
complex open systems. By having a master equation for the underlying continuous particle-
based process, like the one presented in this work, one has a ground model from which coarser
models emerge from the bottom up through discretizations, mean-field limits or moment ex-
pansions. In particular, systems in contact with material reservoirs are essential for real-world
applications, such as molecular dynamics, biochemical kinetics and weather modeling. Reser-
voirs in these systems can exhibit dynamic behavior and undergo changes in properties over
time. Modeling such reservoirs accurately requires sophisticated simulation techniques that
account for multiscale phenomena and ensure physical consistency across scales. The formal
derivation of the master equation and the coupling term with accurate statistical properties
provides a guiding protocol for designing physically well-founded coupling schemes. Some ex-
amples of numerical schemes that handle the coupling with dynamic reservoirs accurately are
in models related to this work [16,29,32,33,51], including thermodynamic aspects [33,57].
Moreover, these master equations can be used to derive meso/macroscopic models by calcu-
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lating expectations, higher moments [32,58] or even by applying probabilistic limits, such as
the law of large numbers, the central limit theorem or large deviation principles [33,59, 60].
Through these methodologies, a physical and mathematical consistency is established across
scales, often in the form of relations between the parameters of the models used at different
scales. Then these relations can be used to develop numerical schemes that are physically
consistent across multiple scales [39,61-63].

In the context of data-driven modeling and simulation, a large range of methods have been
recently constructed based on the Koopman operator [64-68]. One can intuitively construct
the Koopman operator of system with fixed number of particles n as follows: (i) the infinites-
imal generator of the process is given by 4,, from eq. (46), this could be the Liouville, the
Fokker-Planck generator or something more complex (Q,, is not relevant for now as the parti-
cle number is fixed); (ii) the solution of the equation is given in terms of the exponential of the
infinitesimal generator .4,,, which for a chosen time-step defines a propagator. This propagator
can be understood as the Ruelle or Perron-Frobenius operator, which propagates probability
densities forward in time; (iii) the adjoint of this operator is the Koopman operator and in-
stead of propagating probability densities, it propagates observables. This last property is why
it is suitable for data-driven methods. To the best of our knowledge, we are not aware of the
construction or application of the Koopman operator for particle-based systems with varying
copy numbers. This work delivers the infinitesimal generator for general dynamical systems
with varying particle number, A, + Q,, from eq. (46). This is the first cornerstone to derive
the corresponding Koopman operator. Obtaining such an operator would enable applications
in a diverse range of fields.

Many of these methods and techniques based on the general master equation can be ap-
plied to fields beyond physics. As the equation describes a general random dynamical system, it
can be applied to complex systems with varying particle number beyond reaction-diffusion and
molecular systems. This will potentially have significant applications in the development of nu-
merical schemes and multiscale modeling of the spread of diseases [69-71], innovations [72],
opinion dynamics [34, 73], and power, transportation and communication systems [74, 75]
among others.

To finalize, we list some relevant examples of how the master equations presented in this
work aid in the numerical simulation of complex molecular systems. In particular in the treat-
ment of multiscale molecular simulations that go beyond equilibrium, for example, systems in
a temperature gradient [42]. Such a situation can be realized by embedding the open system
in two distinct reservoirs, each at a different thermodynamic condition. In such a case the pre-
scription for the simulator is reduced to the boundary conditions of the equation of section 3
at the interface between the system and each reservoir. In general, the embedding of the open
system in multiple reservoirs at different thermodynamic conditions allows the design of nu-
merical algorithms, where the reservoir can be modeled as a thermodynamically fluctuating
(in time) region via the fluctuating hydrodynamics method [30]. The instantaneous thermo-
dynamic condition of the reservoir corresponds to boundary conditions for the open systems
which then it is simulated and whose averaged molecular properties are given, in the next
step, as input to the reservoir; the procedure is then repeated thus producing the dynamics
of the open system. Without the information on the boundary conditions of the equations of
section 3, such a numerical scheme could not be implemented with such a physical consistency.

In the realm of reaction-diffusion processes, the chemical diffusion master equation can
be expanded in terms of classical creation and annihilation operators acting on the basis of
the underlying space (a Fock space) [12,28]. Based on this formulation, it is straightforward
to develop Galerikin discretizations of the master equation [12]. This immediately yields the
so-called reaction-diffusion master equations [49,76], where the space is discretized in voxels,
and the diffusion is modeled as jumps between neighboring voxels. However, unlike previous
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standard derivations [76], the scaling of the rates for nonlinear reactions (involving two or
more particles) is automatically adjusted to the size of the lattice grid chosen, which enforces
a consistent convergence to the micro and macroscopic scale [12,32,77]. It further provides
a relation between the microscopic parameters and the partial differential equation model
at the macroscopic scale [32], enabling particle-based simulations that are consistent with
the macroscopic model and thus facilitating the implementation of reservoirs as macroscopic
models that are coupled to a particle-based model [32].

The methodologies emerging from the theoretical constructs presented in this work do not
only have the potential to provide physical insight, numerical schemes and solutions to the
master equations of a large range of complex systems with varying particle number; they also
have unifying capabilities and potential to bring insights into the underlying physics through
the analysis of convergence properties, stability, and approximation errors. Exploring the ap-
plication of these methods in diverse complex systems will allow researchers from several
fields to uncover novel phenomena, unify models across scales and design efficient multiscale
computational strategies for studying systems with varying number of particles.
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