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Abstract

We calculate the low-temperature spectral function of the symmetric single impurity An-
derson model using a recently proposed dynamical exchange-correlation (xc) field for-
malism. The xc field, coupled to the one-particle Green’s function, is obtained through
analytic analysis and numerical extrapolation based on finite clusters. In the Kondo
regime, the xc field is modeled by an Ansatz that takes into account the different asymp-
totic behaviors in the small- and large-time regimes. The small-time xc field contributes
to the Hubbard side-band, whereas the large-time to the Kondo resonance. We illustrate
these features in terms of analytical and numerical calculations for small- and medium-
size finite clusters, and in the thermodynamic limit. The results indicate that the xc field
formalism provides a good trade-off between accuracy and complexity in solving impu-
rity problems. Consequently, it can significantly reduce the complexity of the many-body
problem faced by first-principles approaches to strongly correlated materials.
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1 Introduction

Quantum impurity models (QIMs), where one impurity with a small number of discrete levels
is coupled to a noninteracting bath with continuous degrees of freedom, have been extensively
studied during the past decades. Originally proposed to study the Kondo effect [1] where a
localized spin is screened by conducting electrons due to many-body correlations, QIMs remain
to this date the focus of vast interest for their applicability to different topical areas, such as
quantum transport through nanoscale devices [2–4], tunneling spectroscopy [5–7], magnetic
phase manipulation [8], and many-body entanglement [9,10]. Moreover, the single-impurity
Anderson model (SIAM) [11], one of the basic QIMs variants, is used as an auxiliary system
for dynamical mean-field theory (DMFT) [12], a tool in first-principles studies of strongly
correlated systems in- and out-of equilibrium [13–15].

Because of this important usage, several types of quantum impurity solvers for the SIAM
have been developed. The thermodynamic properties of the SIAM can be exactly solved by
the numerical renormalization group (NRG) [16], the continuous-time quantum Monte Carlo
(QMC) algorithm [17] and Bethe-Ansatz-based analytic approaches [18–20]. However, the
direct application of these solvers to the spectral properties of the SIAM is restricted by factors
such as the high computational cost of the original NRG, and the dynamical sign problem or
artifacts introduced by the analytic continuation in QMC. Hence advanced solvers arise with
sophisticated numerical methods, including generalized NRG [21–24], functional renormal-
ization group [25,26], configuration interaction approximations [27], distributional exact di-
agonalization (ED) [28,29], steady-state density functional theory (DFT) [30–32], expansion
QMC [33–35], and non-wave-function-based tensor network approaches [36,37].

Nonetheless, in spite of these significant advances, there remains a demand for a theoretical
treatment of the SIAM which can i) capture spectral weights and energy scales of the Kondo
peak and the Hubbard bands in a conceptually and physically transparent way, and ii) be
computationally inexpensive in order to make those ab initio treatments that use the SIAM as
an auxiliary system more numerically affordable.

Recently, a Green’s function-based dynamical exchange-correlation (xc) field formalism
[38] was proposed. Given the key quantity in the framework, the dynamical xc field (Vxc),
the single-particle Green’s function, and thus the spectral function, can be solved by a direct in-
tegral in the time domain. The Vxc has been calculated exactly for one-dimensional (1D) finite
lattice models [39,40] and within the random-phase approximation for the homogeneous elec-
tron gas [41]. For those systems, the temporal behavior of the Vxc, V xc(t)∼ V0+

∑

n Ane−iωn t ,
can be seen as the sum of a constant term (complex for the homogeneous electron gas) plus
a small number of oscillating terms accounting for quasiparticle-like excitations. Accordingly,
the spectral weight is mainly distributed among a sharp peak (from the constant term V0) and
continuous satellite bands that emerge from the oscillating terms in Vxc. Thus, a central task
in the approach is to determine the parameters defining Vxc, which naturally implies the in-
troduction of approximate estimates. For example, when applied to 1D half-filled Hubbard
lattice and spin-1

2 antiferromagnetic Heisenberg lattice at zero temperature, the formalism
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approximates the exact lattice Vxc using finite clusters [39, 40]. Consequently, the spectral
functions are calculated with a good trade-off between accuracy and computational cost. The
quasiparticle-like excitations in the Vxc and the favourable spectral results may be explained
by a dynamical screening effect: at zero-temperature, exchange potential and many-body cor-
relations together suppress many degrees of freedom and lead to only few (if not only one)
dominant excitations ωn.

In the local moment regime, some central features of the SIAM local spectral function have
an immediate interpretation in terms of the Vxc language. Namely, the Hubbard band and the
sharp Kondo resonance peak may be recognised as coming from a ‘constant’ term and several
‘quasiparticle-like’ excitation energies. However, the width of the Kondo peak, which is related
to the Kondo temperature TK, is exponentially small in the Coulomb interaction U , which is
different from the Dirac-δ peak brought by a constant V0. Moreover, in the mixed valence
regime, the lack of sharp peak seems to contrast with previous Vxc results from homogeneous
lattice models [39,40]. Therefore, in this paper, we perform a systematic study of the symmet-
ric SIAM from the perspective of the Vxc formalism. Our purpose is two-fold: i) by studying
the Vxc of a QIM at finite temperature (T), we examine how the low-T thermal excitation and
the inhomogeneous setup of the system are reflected in Vxc; ii) we expect to shed new light
on the SIAM by investigating the real-time response of the impurity, which is not always easily
accessed in conventional self-energy-based approaches. By working directly in real time, it
avoids the problem of analytic continuation associated with imaginary-time approaches.

This paper is organized as follows. In Sec. 2, we extend the Vxc formalism, originally
proposed for zero-temperature (zero-T) systems [38], to finite-temperatures (finite-T). This
is followed by an application of the developed description to the symmetric SIAM at half-filling,
at temperatures upto around the Kondo temperature TK, in Sec. 2.1. In Sec. 3, we first calculate
the Vxc analitically on a dimer and numerically on a finite cluster. Based on that, we propose
an Ansatz for the SIAM Vxc, from which the local spectral function is obtained. Quantities
such as the Kondo temperature and the height of the Kondo peak are re-interpreted within the
Vxc framework. Finally, we provide our conclusive remarks and an outlook in Sec. 4.

2 Theory

We first derive the general finite-T Vxc formalism and then apply it to a discrete cluster at
thermal equilibrium which represents an impurity coupled to a bath. The low-T Vxc is obtained
by taking the limit T → 0. We will use atomic units throughout this paper.

For a system with chemical potential µ at finite temperature T = 1/β , the generalized
time-independent Hamiltonian is

K̂ = Ĥ −µN̂ . (1)

With r = (r,σ) the space-spin variable, ψ̂(r) the field operator and ρ̂(r) the density operator,
we have

Ĥ =

∫

drψ̂†(r)h0(r)ψ̂(r) +
1
2

∫

drdr ′ψ̂†(r)ψ̂†(r ′)v(r, r ′)ψ̂(r ′)ψ̂(r) , (2)

where the single-particle term h0(r) = −
1
2∇

2 + V ext(r) is a sum of kinetic energy and the ex-
ternal field V ext, v(r, r ′) = 1

|r−r′| is the Coulomb interaction, and the particle-number operator
reads

N̂ =

∫

drψ̂†(r)ψ̂(r) =

∫

drρ̂(r) . (3)
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The Vxc formalism is based on the finite-T time-ordered single-particle Green’s function
[42]

iḠ(r t, r ′ t ′) := 〈〈ψ̂(r t); ψ̂†(r ′ t ′)〉〉= Tr{ρ̂GT [ψ̂(r t)ψ̂†(r ′ t ′)]} , (4)

where T is the real-time time-ordering symbol,

ρ̂G = Z−1
G e−β K̂ , (5)

is the statistical operator,

ZG = Tr[e−β K̂] , (6)

is the grand canonical partition function, and

ψ̂(r t) = eiK̂ tψ̂(r)e−iK̂ t , (7)

and its conjugate ψ̂† are the Heisenberg-picture field operators. The 〈〈..〉〉 symbol denotes
the thermal ensemble average of the time-ordered operators. The equation of motion of the
Green’s function in the Vxc scheme is

[i∂t − h(r)]Ḡ(r t, r ′ t ′)− V xc(r t, r ′ t ′)Ḡ(r t, r ′ t ′) = δ(t − t ′)δ(r − r ′) , (8)

where h(r t) = h0(r)+V H(r)−µ contains the Hartree field V H(r) =
∫

dr ′v(r, r ′)Tr{ρ̂Gρ̂(r ′)}.
The Vxc is defined according to:

V xc(r t, r ′ t ′)iḠ(r t, r ′ t ′) :=

∫

dr ′′v(r, r ′′)〈〈ρ̂(r ′′ t)ψ̂(r t); ψ̂†(r ′ t ′)〉〉 − V H(r)iḠ(r t, r ′ t ′) . (9)

We note that for systems in equilibrium, the Vxc in the frequency domain and the self-energy
Σ, defined such that

∫

dr ′′d t ′′Σ(r t, r ′′ t ′′)Ḡ(r ′′ t ′′, r ′ t ′) = V xc(r t, r ′ t ′)Ḡ(r t, r ′ t ′) , (10)

are related by the following expression:

1
2π

∫

dω′V xc(r, r ′;ω−ω′)Ḡ(r, r ′;ω′) =

∫

dr ′′Σ(r, r ′′;ω)Ḡ(r ′′, r ′;ω) . (11)

A correlator g can be defined to factorize the high-order term 〈〈ρ̂(r ′′ t)ψ̂(r t); ψ̂†(r ′ t ′)〉〉 [38]:

〈〈ρ̂(r ′′ t)ψ̂(r t); ψ̂†(r ′ t ′)〉〉= iḠ(r t, r ′ t ′)g(r, r ′, r ′′; t, t ′)ρ(r ′′) , (12)

where ρ(r ′′) = Tr
�

ρ̂Gρ̂(r ′′)
	

is the ensemble average of the electron density. We can define a
dynamical xc hole

ρxc(r, r ′, r ′′; t, t ′) =
�

g(r, r ′, r ′′; t, t ′)− 1
�

ρ(r ′′) , (13)

which fulfills a sum rule when the number of electrons is conserved (the derivation essentially
follows that of the zero-T case [38] except that ground-state expectation value is replaced by
thermal average)

∫

dr ′′ρxc(r, r ′, r ′′; t, t ′) = −θ (t ′ − t) , (14)
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where θ is the Heaviside step function. Substituting the higher-order term in Eq. (9) with the
xc hole, the xc potential can be written as

V xc(r t, r ′ t ′) =

∫

dr ′′v(r, r ′′)ρxc(r, r ′, r ′′; t, t ′) , (15)

which shows that the finite-T xc field can be interpreted as the Coulomb potential of a finite-T
xc hole. Furthermore, the xc hole fulfills an exact constraint

ρxc(r, r ′, r ′′ = r; t, t ′) = −ρ(r) , (16)

which follows from the fact that the higher-order term 〈〈ρ̂(r ′′ t)ψ̂(r t); ψ̂†(r ′ t ′)〉〉, and thus
the correlator g, vanishes at r ′′ = r, since ρ̂(r)ψ̂(r) = ψ̂†(r)ψ̂(r)ψ̂(r) = 0. Here we may
see an advantage of the Vxc-Framework: the definition of finite-T Vxc introduced here is a
natural extension from the zero-T formalism, with ground-state expectation values replaced
by thermal ensemble averages. The sum rule and the exact constraint which the xc hole fulfills
take the same form as the T = 0 case. Moreover, the time-dependence of the external field can
be included in a formally straightforward way (h(r)→ h(r t) in Eq. (8), thus V H(r t) and ρ(r t)
depends on time). In practice, however, Vxc can have a more complicated behavior when the
system is driven by a time-dependent potential from its ground-state or thermal equilibrium
state. The low-T properties of the equilibrium SIAM Vxc is shown in the following section.

2.1 Vxc formalism for the SIAM

The SIAM Hamiltonian reads

ĤSIAM = ε f (n̂ f ↑ + n̂ f ↓) + Un̂ f ↑n̂ f ↓ +
∑

kσ

�

εk ĉ†
kσ ĉkσ + (vk f̂ †

σ ĉkσ +H.c.)
�

. (17)

Here f̂ †
σ ( f̂σ) creates (annihilates) an electron with spin σ on the impurity site, n̂ f σ = f̂ †

σ f̂σ
is the corresponding number operator, ĉ†

kσ (ĉkσ) creates (annihilates) a bath electron with
energy εk. Furthermore, vk is the hybridization amplitude, and ε f and U are the impurity
on-site energy and Coulomb interaction, respectively. We consider a symmetric SIAM at half-
filling, which means

U + 2ε f = 0 , (18)

and the ensemble average

n f σ = Tr{ρ̂G n̂ f σ}= 0.5 . (19)

We also choose the number of fermionic sites (impurity + bath) L to be even. The local
spectral function can be obtained from the impurity Green’s function, which can be written in
the Lehmann representation as

iḠ f f ,σ(t,β) = 〈〈 f̂σ(t); f̂ †
σ(0)〉〉

= θ (t)Z−1
∑

mn+

e−βEm e−i(En+−Em)t
�

�〈n+| f̂ †
σ|m〉
�

�

2

− θ (−t)Z−1
∑

mn−

e−βEm ei(En−−Em)t
�

�〈n−| f̂σ|m〉
�

�

2
, (20)

where we set t ′ = 0 since the system is in equilibrium, m, n+ and n− label eigenstates with
L, L + 1 and L − 1 electrons, respectively, and Z =

∑

m e−βEm is the partition function.
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The system has particle-hole symmetry, therefore we focus on the positive time, namely the
particle part,

iḠp
f f ,σ(t > 0,β) = Z−1

∑

m

e−βEm

∑

n+

an+,m;σe−iωn+ ,m t , (21)

where ωn+,m = En+ − Em are the excitation energies and an+,m;σ =
�

�〈n+| f̂ †
σ|m〉
�

�

2
their corre-

sponding weight. The equation of motion of the Green’s function reads
�

i∂t − ε f − V H − V xc
σ (t,β)
�

Ḡ f f ,σ(t,β) = δ(t) , (22)

where the Hartree term V H = Un f σ̄ is proportional to the density of impurity electron with
opposite spin σ̄ ̸= σ. Here, we emphasize that the Vxc is a result of the Coulomb interac-
tion and can be interpreted as the Coulomb potential of the xc hole, which can be seen from
Eq. (15). However, for the SIAM, the hybridization between the impurity and the bath is also
a crucial factor influencing the spectral properties. A dynamical hybridization field, also di-
rectly coupled to the Green’s function in the equation of motion, can be defined within the
Vxc-Framework. We incorporate the hybridization field into the Vxc so that the equation of
motion has a simpler form, and with a given Vxc, the Green’s function can be directly solved.
To investigate the hybridization effect, we consider the noninteracting case (U = 0 in Eq. (17)).
At zero-T , the impurity Green’s function G f f ,σ can be analytically solved as

G f f ,σ(ω) =
1

ω− ε f −∆(ω)
, (23)

where

∆(ω) =
∑

k

|vk|2

ω+ − εk
, (24)

is the hybridization function. ∆(ω) can be calculated analytically by modeling the continuous
bath as a tight-binding ring with Nc sites and hopping strength th, and the impurity site couples
to one site with strength V (see Fig. 1). In this model, the SIAM parameters are given by
εk = 2th cos(k) and vk =

Vp
Nc

. When |ε f |, V ≪ 2|th|, we approach the so-called wide-band

limit (WBL), thus the hybridization function can be treated as a constant for |ω| ≪ 2|th|,

∆(ω) = iΓ = i
πV 2

4th
. (25)

Accordingly, we can solve the hybridization field:

V xc
nonint,WBL(t) = iΓθ (−t) . (26)

The physical picture is as follows: the infinitely wide bath band leads to a broadening of
the impurity level ε f , which is represented by a purely imaginary hybridization field. This
hybridization effect exists also for non-WBL or interacting cases.

2.2 The SIAM Vxc at low-temperature

The Vxc coupled to Ḡp
f f ,σ can be obtained from the equation of motion. For the symmetric

SIAM at half-filling, ε f + V H = 0, applying the Lehmann representation of Ḡp
f f ,σ (Eq. (21))

into Eq. (22) and solving for the Vxc, we have

V xc
p,σ(t,β) =

∑

m e−βEm
∑

n+
an+,mωn+,me−iωn+ ,m t

∑

m e−βEm
∑

n+
an+,me−iωn+ ,m t . (27)
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Figure 1: The 1D tight-binding system used to model an impurity coupled to a con-
tinuous bath. When periodic boundary conditions are used for the Nc noninteracting
sites ( t̃h = th), we have the effective SIAM parameters εk = 2th cos(k) and vk =

Vp
Nc

.

When t̃h=0, the model approaches the SIAM setup in the large Nc limit.

We focus on the low-temperature case (referred to as low-T) such that e−βEm is negligible
except for the lowest two eigenstates m= 1, 2. Under this assumption, the Vxc can be written
as (the derivation is in Appendix A)

V xc
p,σ(t,β) = V xc

p,σ(t, T = 0) + Ṽp,σ(t)e
−β(E2−E1) , (28)

which is the zero-temperature V xc
p,σ(t, T = 0) plus a correction from a time-oscillating term

Ṽp,σ(t) and an exponentially small factor. Both the zero-T V xc and the oscillating term Ṽ are
determined by the interaction on the impurity site and the hybridization between the impurity
and the bath. In the next section, we calculate analytically the low-T Vxc of a dimer where the
interaction is nonzero on one site and present the Vxc of an SIAM on a finite cluster determined
numerically. Our aim is to investigate the influence of the interaction U and the hybridization
V on the Vxc, for the dimer and the cluster, respectively. We will then propose an Ansatz for the
finite-T SIAM Vxc and relate the Ansatz parameters to the Kondo physics in the thermodynamic
limit.

3 Results

3.1 Analytic insights from a dimer

We use a dimer with interaction U only on one site and hopping V between the sites to derive
the analytic Vxc:

Ĥdimer = ε f (n̂ f ↑ + n̂ f ↓) + Un̂ f ↑n̂ f ↓ + V
∑

σ

( f̂ †
σ ĉσ +H.c.) , (29)

where we fix ε f = −
U
2 and the dimer at half-filling. We consider the T = 0 case first. We study

the large-interaction regime (U ≫ V ) to obtain insights for the SIAM in the Kondo regime.
The particle part of Vxc has an approximate form (for the derivation, see Appendix B)

V xc
p,σ(t, T = 0)≈ωp −λΩeiΩt , (30)

where ωp =
q

U2

16 + 4V 2 +
q

U2

16 + V 2, λ ≈ 36V 2

U2 , and Ω =
Ç

U2

4 + 4V 2. Eq. (30) indicates that
the dimer Vxc, similar to the cases mentioned in Sec. 1, can be seen as a sum of a constant term
and a quasiparticle-like exponential term. Given the Vxc, the corresponding Green’s function
can be obtained by solving the equation of motion,

Ḡp
f f ,σ(t, T = 0) = Ḡp

f f ,σ(0
+, T = 0)e−i(V H+ωp)t ei

∫ t
0 λΩeiΩ t̄ d t̄

≈ g+
�

(1−λ)e−i(ε f +V H+ωp)t +λe−i(ε f +V H+ω0)t
�

, (31)
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where ω0 = ωp − Ω ∼
V 2

U , g+ = Ḡp
f f ,σ(0

+, T = 0). For the symmetric model at half-filling,

g+ = −0.5i and ε f + V H = 0. The zero-T spectral function can be obtained with particle-hole
symmetry,

Adimer(ω, T = 0) =
1−λ

2
δ(ω+ωp) +

λ

2
δ(ω+ω0) +

λ

2
δ(ω−ω0) +

1−λ
2
δ(ω−ωp) . (32)

Despite the obvious difference in complexity between the dimer and the SIAM, some physics
of the SIAM can be outlined from the analytic expression of the dimer Vxc: for large U , two
peaks (ω = ±ωp) of the spectral function are present, which correspond to impurity levels
ε f ,ε f +U . The excitation with energy Ω creates two central peaks atω= ±ω0 ≈ 0. However,
for the dimer the spectral weights of the central peaks, λ2 ∼ (

V
U )

2, vanish as U increase. The
lack of Kondo resonance can be naturally understood as the impurity site is coupled to a single
site instead of a continuous bath. This is directly reflected by the Vxc: as U increases, the
exponential term (with amplitude λΩ∼ V 2

U ) becomes negligible.
For low-T , the time-oscillating term in Eq. (28) can be written as

Ṽp,σ(t)

V xc
p,σ(t, T = 0)

≈ λ′eiΩ′ t −λ′′eiΩ′′ t , (33)

where λ′,λ′′ ∼ V 2

U2 , Ω′ ∼ U and Ω′′ ∼ V 2

U (see full expressions in Eqs. (B.27),(B.28), and (B.29)
in Appendix B). The Vxc is then

V xc
p,σ(t,β)≈ωp −λΩeiΩt + e−β∆0ωp(λ

′eiΩ′ t −λ′′eiΩ′′ t) , (34)

where ∆0 ∼
V 2

U . Note that we require low temperature condition e−β∆0 ≪ 1. The particle
spectral function is

Adimer(ω> 0,β)∼=
1−λ− e−β∆0ωp(

λ′′

Ω′′ −
λ′

Ω′ )

2
δ(ω−ωp) +

λ

2
δ(ω−ω0)

+
e−β∆0ωp

λ′′

Ω′′

2
δ(ω− ω̃p)−

e−β∆0ωp
λ′

Ω′

2
δ(ω− ω̃0) , (35)

where ω̃0 = ωp −Ω′ and ω̃p = ωp −Ω′′. The first two terms on the RHS of Eq. (35) corre-
spond to the original peaks at zero-T , while the last two terms, with weights proportional to
e−β∆0 , represent two small peaks (referred to as thermal peaks in the text below) close to the
original zero-T peaks, respectively. These thermal peaks arise from expanding the Lehmann
representation of the Green’s function to the order e−β∆0 . Effectively, the peak at finite-T can
be seen as the original peak at zero-T absorbing a thermal peak with close frequencies. Thus
the temperature-induced broadening of the SIAM spectral peaks may be explained in the Vxc
picture: at low-T , thermal fluctuations induce new peaks close to the original peaks. The energy
difference between the original peak and the thermal peak gives effectively the width of the
finite-T spectral peak.

3.2 Including hybridization with a finite cluster at zero-T

To investigate the combined effects of the interaction U and the hybridization V , we numeri-
cally solve the Vxc for a finite cluster (corresponding to the t̃h = 0 case in Fig. 1)

Ĥcluster = ε f (n̂ f ↑ + n̂ f ↓) + Un̂ f ↑n̂ f ↓ + V
∑

σ

( f̂ †
σ ĉ1σ +H.c.) +

Nc−1
∑

i,σ

(th ĉ†
i,σ ĉi+1,σ +H.c.) , (36)
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Figure 2: The Vxc of a 50-site cluster at half-filling, with parameters
ε f = −2.5, U = 5, th = −1, T = 0. Left: real part of V xc(t). Right: real part of
V xc(ω), calculated with broadening factor η= 0.1.

where Nc is the number of noninteracting sites. In the limit Nc → ∞, we reproduce the
continuous bath (equivalent to εk = 2th cos(k), vk =

Vp
Nc

in Eq. (17)). We use the ITensor

library [43,44] to perform the time-dependent variational principle (TDVP) [45,46] algorithm
on a symmetric cluster with L = Nc + 1= 50 sites at zero-T (the algorithm performs better in
system with open boundary conditions, hence we use a chain setup instead of a periodic one.
See detailed treatment in Appendix C). We show in Fig. 2 ReV xc(t) with different V values.
Also, we plot ReV xc(ω) to analyze the excitation terms contained in the Vxc. For fixed model
parameters ε f = −2.5, U = 5, th = −1, ReV xc(t) with different V can be seen to have three
main features. i) It oscillates around some constant values close to U+V

2 . The constant terms
increase with V and correspond to the sharp peaks of ReV xc(ω) atω= 0. ii) The local maxima
of ReV xc(t) are approximately equally separated (e.g. for V = 1, the time intervals between
local maximums are almost 1.85), which may be described by a factor Ae−iωp t . The excitation
energy ωp corresponds to the peaks of ReV xc(ω) at ω ∼ −3. Both the amplitude A and the
energy |ωp| decrease as V turns smaller, as shown in the inset of Fig. 2 (right panel). iii) For
V = 1, the local maximum of ReV xc(t) around t = 1 is much larger than other local maximal
values. Correspondingly, ReV xc(ω) exhibits non-Lorentzian structures for ω < −5. Similar
larger local maximum at small time also exists for V = 0.5, 0.2. As shown in the inset of Fig. 2
(left panel), for V = 0.5, the local maximum at t ∼ 2 is nearly twice as large as the local
maximum at t ∼ 4. This drop in local maxima suggests that ωp may contain an imaginary
part.

Features i) and ii) can be already found in the analytic expression of the dimer Vxc. How-
ever, feature iii) emerges only when the impurity is coupled to a large number of noninteracting
sites. Therefore, we attribute feature iii) to the hybridization effect. As mentioned in Sec. 2.1,
the Vxc here incorporates the hybridization field, which is a purely imaginary constant for the
noninteracting case in the WBL. We note that the constant term of the cluster Vxc has a very
small imaginary part. As a result, the spectral function exhibits sharp peaks at ω∼ U

2 , instead
of proper Hubbard side-bands. This can be attributed to the qualitative difference between
the Anderson-type chain with 50 sites and the SIAM where the bath has continuous degrees
of freedom.

To summarize the finite-cluster results, ReV xc(t) exhibits an oscillating behavior, which
suggests that the Vxc can still take the form V xc(t) =Ae−iωp t +C. However, the hybridization
between the impurity and the bath requires a complex C, so that ReC and ImC determine the
peak location and the width of the Hubbard band, respectively. Moreover, the local maxima
of ReV xc(t) change in time, suggesting a complex ωp. Here, we notice that Im[ωp] can be
positive, leading to V xc(t) →∞ for large positive t. Thus it is more appropriate to use the
form V xc(t) =Ae−iωp t + C, which is derived using finite clusters, in the small-time regime.
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To determine the Vxc in the large-time regime (|t l | →∞), we consider the following ob-
servation. The spectral function at low energies is largely determined by Ḡ f f ,σ(t l ,β). The
Kondo resonance peak (with half-width ΓK) in the spectral function suggests that the Green’s
function in the large-time regime takes the form Ḡ f f ,σ(t l > 0,β)∝ e−ΓK t l . Since in our formal-

ism Ḡ f f ,σ(t > 0,β)∝ e−i
∫ t

0 V xc( t̄)d t̄ , the Vxc in the large-time regime should be approximately
V xc(t l > 0)≈ −iΓK. Notably, the fact that V xc converges to −iΓK for large positive t is a direct
consequence of the Kondo effect. V xc calculated using small finite clusters lacks this feature
because the noninteracting bath is not continuous.

3.3 Ansatz of the symmetric SIAM Vxc

Based on the analytic and numerical results above, the particle part of V xc (t > 0) of the
symmetic SIAM at low-T in the small- and large-time regimes can be described as:

V xc
p,σ(t > 0,β)≈

¦ λωpe−iωp t + C , t small,
−iΓK , t large.

(37)

The physical picture is highlighted as follows: V xc in the large-time regime, dominating Ḡ f f ,σ
for large |t|, leads to the sharp Kondo resonance peak. On the other hand, V xc in the small-
time regime, with a large contribution from the constant term C, corresponds to the Hubbard
side-band broadened by the hybridization effect. We propose an Ansatz for V xc

p,σ(t > 0,β)
which captures both the large- and small-time features:

V xc
p,σ(t > 0,β) =

λ(ωp + C) + (1−λ)Ceiωp t

λ+ (1−λ)eiωp t , (38)

where λ is real, ωp and C are complex, and ωp + C = −iΓK is temperature-dependent. The
fractional form of the complete Ansatz (Eq. (38)) follows naturally from a Vxc obtained via the
equation of motion and the Lehmann representation of the Green’s function (see Eq. (27)),
where both the numerator and the denominator contain exponential factors of t. Note that
for a particle-hole symmetric system, the hole part Vxc (t < 0) can be calculated using the
symmetry relation

V xc(−t) = −V xc(t) . (39)

Following Eq. (38), the local Green’s function (t > 0) is then (see the derivation in Appendix D)

Ḡp
f f ,σ(t,β) = −

i
2

�

(1−λ)e−iC t +λe−i(C+ωp)t
�

, (40)

and the spectral function is

A(ω> 0,β) =
1−λ
2π

�

�Im[C]
�

�

(ω−Re[C])2 + (Im[C])2
+
λ

2π

�

�Im[C +ωp]
�

�

(ω−Re[C +ωp])2 + (Im[C +ωp])2
, (41)

and A for ω< 0 can be calculated using the particle-hole symmetry:

A(ω< 0,β) = A(−ω,β) . (42)

Before determining the Ansatz parameters numerically, we use the Ansatz to interpret the
Kondo spectral function. The two peaks in the spectral function can be recognized as a Hub-
bard side-band located at ω= Re[C] with half-width ΓH = −Im[C], and a Kondo peak located
at ω = Re[C +ωp] = 0 with half-width ΓK = −Im[C +ωp]. The spectral weights of the two
peaks are determined by λ. The two peaks have distinct origins. The peak location and the
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width of the Hubbard side-band are controlled by the constant term of the Vxc in the small-
time regime, which accounts for the fact that the impurity level is affected by the interaction
and broadened by the continuous bath. On the other hand, at low-T , the Vxc in the large-
time regime creates a sharp resonance peak close to ω = 0, whose width and height can be
described by the Fermi-liquid treatment [47].

Having in mind the physical meaning of the parameters, we discuss the extrapolation pro-
cedure, i.e., how the Ansatz quantities (λ,ωp,C) can be calculated with a given symmetric
SIAM with model parameters (U , V, th,β). Here, to compare with NRG results in the literature
(e.g., from Refs. [29] and [48]), we also use the WBL. We consider first the T = 0 limit, and
assume that the half-width of the Kondo peak is given by the Kondo temperature (TK) [48].
Thus,

C +ωp

�

�

�

T=0
≈ −iTK = −i

√

√UΓ
2

e−
πU
8Γ +

πΓ
2U . (43)

The peak location of the Hubbard side-band can be directly calculated, which means

Re[C]≈ U
2

. (44)

We notice that the height of the Kondo peak at T = 0 is given by 1/(πΓ ), suggesting

A(ω= 0) =
λ

πTK
+

1−λ
π|Im[C]|

=
1
πΓ

, (45)

which simplifies to λ
πTK
= 1
πΓ for TK much smaller than the Hubbard side-band half-width ΓH,

and thus λ can be determined. The last unknown parameter is the imaginary part of C, which
corresponds to ΓH. We use the Anderson-type finite-size chain spectral function to estimate
Im[C]. Note that a finite chain cannot reproduce the proper broadening caused by an infinitely
wide band. However, the relative weight between the Hubbard peak and the Kondo peak,

R=
1−λ
2λ

TK
�

�Im[C]
�

�

, (46)

can provide information of Im[C]. We extrapolate the value of R by increasing the number of
sites in the chain. We calculate the spectral function using the chain setup with an increas-
ing number of noninteracting sites Nc . From the spectral functions (as plotted in Fig. 3a),
we determine the relative weight R, which is then plotted against the total number of sites
L = Nc + 1. For a given Γ , R increases with L (we use L = 4,8, 20,30 and 40), as shown by
the scattered data points in Fig. 3b. Noticing the nearly linear increase of R at small L and
expecting a converging R at large L, we fit the R − L data using a hyperbolic-tangent func-
tional form (which eventually provides satisfactory spectral functions) for the fitting function.
Consequently, R(L =∞) can be estimated using the fitting results (see the curves in Fig. 3b).

In Fig. 4, we show the local spectral function of a symmetric SIAM in the WBL with
U = 3, th = 50, T = 0. We choose the parameters (Γ = 0.2, 0.5, and 0.9) to compare with NRG
results [29] in the WBL. The spectral function show satisfactory agreements to the NRG results.
We attribute this to the fact that the Vxc as an effective field captures the intrinsic physics of
an impurity problem. In the large-positive-time regime, V xc

p,σ(t) converges to ωp + C = −iTK,
meaning that the Kondo resonance peak is created atω= 0 and it requires no energy transfer.
In the small-positive-time regime, V xc

p,σ(t) is dominated by the complex constant C, giving rise
to the Hubbard side-band. Upon closely comparing our results with NRG, we notice that in
the Kondo regime (small Γ/U), our Kondo peaks have a smaller width than those from NRG.
This is because we assume ΓK

�

�

T=0 = TK, while in NRG-based theory, ΓK
�

�

T=0 ≈ 3.92 TK [49].
At zero-T and in the WBL, most of the Ansatz parameters can naturally be determined based
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Figure 3: a) The zero-T spectral function of L-site clusters. We use U = 3, th = 50 to
approach the WBL, and different V values to reach Γ = 0.2,0.5 and 0.9. The results
are from ED for L = 4,8 and from TDVP for L = 20. The Kondo peaks and Hubbard
peaks are highlighted by arrows. b) The relative weight R between the Hubbard peak
and the Kondo peak, as a function of the total number of sites L. TDVP is used for
L = 20,30 and 40. For each value of Γ , the data are fitted using R = R∞ tanh(aL),
where R∞ is the converged value and a is a parameter determining the converging
speed. The fitted values are R∞ = 0.165, 0.151, and 0.107 for Γ = 0.2,0.5, and 0.9,
respectively.

Figure 4: The zero-T spectral function of a symmetric SIAM. We use U = 3, th = 50
to approach the WBL, and different V values to realize desired Γ values. From the
extrapolation, we get Im[C] = −0.6,−1.3 and −1.7, respectively, for Γ = 0.2,0.5 and
0.9. The NRG results (blue dashed lines) are adapted from Ref. [29].

on some well-known results of the SIAM. Only one parameter requires a numerical extrapo-
lation. Moreover, the cluster spectral function used in the extrapolation (obtained via ED or
TDVP) is actually distinct from the SIAM spectral function: for cluster results, the Kondo peak
position is not atω= 0, and the Hubbard band is too sharp. As already noted close to the end
of section 3.2, the discrepancy can be attributed to the essential differences between a finite
cluster with tens of sites and a continuous bath. However, the Vxc scheme produces favourable
spectral functions using these finite cluster results. This indicates that the Vxc formalism, orig-
inating from very fundamental physics and using established knowledge of the target system
as a reference, is able to capture the key features of the impurity problem.

Lastly, we discuss the spectral function at finite temperatures. In the Vxc formalism, we
can see from the dimer result that thermal excitation leads to the broadening of both the
Kondo peak and the Hubbard side-band peak. For the SIAM in the WBL, as the temperature
T increases, the Kondo peak is broadened, while the Hubbard side-band remains almost un-
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changed. This thermal behavior can be effectively captured by our Ansatz, which treats the
imaginary part of the excitation energy ωp as temperature-dependent, while assuming that
other parameters remain temperature-independent. The temperature dependence can be ex-
pressed as

ωp(T ) =ωp(T = 0) + iΩT . (47)

According to our interpretation of the Ansatz parameters, ωp at finite-T corresponds to the
finite-T Kondo peak half-width ΓK as

ωp(T ) = −
U
2
+ i
�

ΓH − ΓK(T )
�

. (48)

Following Eqs. (47) and (48), we have the following relation between ΩT and ΓK(T ):

ΩT = −i
�

ΓK(T )− ΓK(0)
�

. (49)

Several expressions have been proposed to describe the temperature-dependence of the Kondo
peak half-width ΓK in the literature [50–52], which can be used to determine ΩT . For T ≲ TK,
an expression beyond Fermi-liquid theory has been derived [52]:

ΓK(T ) = 1.542TK

√

√

√

√

(1+
p

3) + (2+
p

3)

√

√

√

1+

�

T
T̃K

�2

+
p

3
2

�

T
T̃K

�2

, (50)

where T̃K ≈ 0.491TK. Note that Eq. (50) is based on the NRG correction ΓK(T = 0) ≈ 3.92TK,
which provides a good description for the SIAM in the strong Kondo regime. However, when
the hybridization Γ becomes large, the factor 3.92 overestimates the width of the Kondo peak
(see the Γ = 0.9 case in Fig. 4). To be consistent with our zero-T treatment, we rescale Eq. (50)
by a factor of 3.92. In the Fermi-liquid regime (T ≪ TK), we approximately have

ΩT = −
αT2

TK
, (51)

where α≈ 3.44. Other Ansatz parameters are estimated using the zero-T TDVP approach. The
finite-T spectral function results ( U

2th
= 2× 10−3, Γ = 0.04U) are shown in Fig 5. Compared

with NRG results [48], the finite-T Vxc result captures the correct trend of the Kondo peak
width: at T ≪ TK, the contribution of ΩT is negligible, leading to a width dominated by the
Kondo temperature. As T approaches TK, |ΩT | increases. The agreement with NRG results
worsens for T > 10TK. This may be due to our reference expression, Eq. (50), being only valid
for temperatures up to around TK [52].

4 Conclusions and outlook

In this work, we applied the exchange-correlation (xc) field formalism to the symmetric single
impurity Anderson model (SIAM) at low temperatures. The formalism introduces a dynamical
xc field (Vxc), which can be interpreted as the Coulomb potential of the xc hole. For the SIAM,
the Vxc also incorporates the hybridization effect between the impurity and the bath. We
proposed an Ansatz for the SIAM Vxc, which exhibits different asymptotic behaviors in the
small- and large-time regimes, respectively. At small t, the Vxc includes a dominant complex
constant term, C, and an exponential term with a complex quasiparticle-like excitation, ωp.
The real and imaginary parts of C correspond to the peak location and the width of the Hubbard
side-band, respectively. At large t, the Vxc converges to C+ωp, which corresponds to the Kondo
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Figure 5: The spectral function of a symmetric SIAM with U
2th
= 2 × 10−3 and

Γ = 0.04U , at temperatures from 10−2TK to 103TK. Left: The frequency is in unit
of U . Right: The frequency is in unit of TK and in logarithmic scale to highlight the
width of the Kondo resonance peak. The NRG results (bottom) are adapted from
Ref. [48].

peak half-width. Importantly, Im[ωp(T = 0)] accounts for the Kondo temperature. At zero-
T in the WBL, most parameters of the Ansatz can be calculated from the model parameters
using Fermi-liquid theory. The only unknown parameter can be estimated by an extrapolation
procedure. For low temperatures, the temperature-dependence of the Ansatz parameters is
primarily through Im[ωp], which is determined by extensions of Fermi-liquid theory, guided by
the insights from the auxiliary analytically dimer Vxc. Overall, the spectral function calculated
from the Vxc shows satisfactory agreement with the NRG results. The extrapolation procedures
involved are of low computational cost. We understand the favourable performance of the
xc field formalism as follows: the screening effect underlying the SIAM is essential for the
Kondo effect, and the xc field provides a suitable description for quasiparticle-like excitations.
Hence, the parameters in the Ansatz have clear physical meaning and can be related in a
novel perspective to key well-understood features of the spectral function. The fact that only
a few parameters require numerical treatment leads to a good trade-off between accuracy and
computational effort.
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As an outlook, QIMs beyond the symmetric SIAM at half-filling can also be interpreted
from the perspective of the xc field formalism. We have already noted that for the narrow band
SIAM or the SIAM away from half-filling, the Vxc requires a different extrapolation scheme.
Additionally, when an external magnetic field is included, the spectral function becomes spin-
dependent, and the Kondo resonance can be suppressed with increasing field. In future work,
we plan to investigate how the magnetic field affects the Vxc. Moreover, quantities such as the
dynamical spin susceptibility, the specific heat, and the size of the Kondo cloud are related to
spin correlators. We expect the spin xc field formalism can be applied to these problems.

Finally, we stress a significant feature of the xc field formalism: it manages to reduce a
complicated many-body problem to an extrapolation procedure. The extrapolation is usually
done with a (numerically) solvable finite cluster or a homogeneous system as a reference.
When the target system and the reference system exhibit explicit similarities, the extrapolation
can be done straightforwardly. In practice, the connection between the reference system and
the complex target is often less obvious. An example is the SIAM presented in this paper, where
the finite cluster spectral function differs qualitatively from the SIAM. Despite this, the xc field
formalism successfully captures the implicit correspondence, specifically the relative weight
between the Hubbard peak and the Kondo peak at T = 0. Hence, we believe that the xc field
formalism, based on the quasiparticle picture, is a viable and powerful approach for modeling
correlated many-body system and holds great potential for first-principles calculations.
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A Low temperature approximation of the Vxc

From Eq. (27) and e−βEm ≪ 1 for m> 2, the Vxc can be written as

V xc
p,σ(t,β) =

C + e−β∆0 D
A+ e−β∆0 B

, (A.1)

where

∆0 = E2 − E1 , (A.2)

A=
∑

n+

an+,1e−iωn+ ,1 t , (A.3)

B =
∑

n+

an+,2e−iωn+ ,2 t , (A.4)

C =
∑

n+

an+,1ωn+,1e−iωn+ ,1 t , (A.5)

D =
∑

n+

an+,2ωn+,2e−iωn+ ,2 t . (A.6)
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An expansion

1
A+ e−β∆0 B

≈
1− e−β∆0 B

A

A
, (A.7)

leads to

V xc
p,σ(t,β) =

C
A
+
�D

A
−

BC
A2

�

e−β∆0 , (A.8)

where C/A is just the zero-T Vxc, and all terms of order O(e−β∆) where∆>∆0 are neglected
for low-T . The time-oscillating term in the main text is then

Ṽp,σ(t) =
D
A
−

BC
A2
=

C
A

�

D
C
−

B
A

�

. (A.9)

B Analytic Vxc of an impurity-free-electron dimer

We use a dimer consisting of an interacting site ( f ) and a noninteracting site (c) to calculate
the analytic Vxc for the f site. Here we repeat the Hamiltonian in the main text:

Ĥdimer = ε f (n̂ f ↑ + n̂ f ↓) + Un̂ f ↑n̂ f ↓ + V
∑

σ

( f̂ †
σ ĉσ +H.c.) , (B.1)

where ε f = −
U
2 , V is the hopping strength and the dimer is at half-filling. With the cho-

sen dimer model, the spectral weights and the local Green’s function (Eq. (21)) are spin-
independent. For simplicity we keep the spin indices implicit in this section. With variables
depending on U , V

u=
U

2V
, (B.2)

x =
u
4
+

√

√

1+
�u

4

�2
, (B.3)

y =
u
2
+

√

√

1+
�u

2

�2
, (B.4)

and the same low-T assumption, the particle part of the Green’s function can be written as

iḠp
f f (t) = Z−1
�

[a1,1e−iω1,1 t + a2,1e−iω2,1 t] + eβu[a1,2e−iω1,2 t + a2,2e−iω2,2 t]
�

, (B.5)

where the partition function is

Z = 1+ 3eβ(u−2x)V , (B.6)

the spectral weights are

a1,1 =
(x + y)2

2(1+ x2)(1+ y2)
, (B.7)

a2,1 =
(1− x y)2

2(1+ x2)(1+ y2)
, (B.8)

a1,2 =
3

2(1+ y2)
, (B.9)

a2,2 =
3y2

2(1+ y2)
, (B.10)
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and the excitation energies are

ω1,1 = (2x − y)V , (B.11)

ω2,1 = (2x + y − u)V , (B.12)

ω1,2 = (−y + u)V , (B.13)

ω2,2 = yV . (B.14)

Following the notations in Appendix A, the zero-T Vxc is

V xc
p (t, T = 0) =

a1,1ω1,1e−iω1,1 t + a2,1ω2,1e−iω2,1 t

a1,1e−iω1,1 t + a2,1e−iω2,1 t . (B.15)

We note that in the large-interaction regime (u≫ 1),

x =
u
2
+

2
u
+O
�

1
u3

�

, (B.16)

y = u+
1
u
+O
�

1
u3

�

, (B.17)

thus

λ :=
a1,1

a2,1
=

9
u2
+O
�

1
u3

�

≪ 1 . (B.18)

The expansion of Vxc to the first order in λ gives

V xc
p (t, T = 0)≈ω2,1 −λΩeiΩt , (B.19)

where

Ω=ω2,1 −ω1,1 =
p

u2 + 4V . (B.20)

For low-T , following Eq. (A.9), we have

Ṽp(t)

V xc
p (t, T = 0)

=
a1,2ω1,2e−iω1,2 t + a2,2ω2,2e−iω2,2 t

a1,1ω1,1e−iω1,1 t + a2,1ω2,1e−iω2,1 t −
a1,2e−iω1,2 t + a2,2e−iω2,2 t

a1,1e−iω1,1 t + a2,1e−iω2,1 t . (B.21)

Noting that for u≫ 1,

a1,2

a2,1
=

3
u2
+O
�

1
u3

�

, (B.22)

a2,2

a2,1
= 3(1+

4
u2
) +O
�

1
u3

�

, (B.23)

ω1,1

ω2,1
=

3
u2
+O
�

1
u3

�

, (B.24)

ω1,2

ω2,1
= −

1
u2
+O
�

1
u3

�

, (B.25)

ω2,2

ω2,1
= 1−

4
u2
+O
�

1
u3

�

, (B.26)

we get

Ṽp(t)

V xc
p (t, T = 0)

=
24
u2

eiΩ′ t −
12
u2

eiΩ′′ t +O
�

1
u3

�

, (B.27)
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where

Ω′ =ω2,1 −ω1,2 =

�√

√u2

4
+ 4+
p

u2 + 4−
u
2

�

V , (B.28)

Ω′′ =ω2,1 −ω2,2 =

�√

√u2

4
+ 4−

u
2

�

V . (B.29)

The temperature factor,

e−β∆0 = e−β(2x−u) , (B.30)

need to be small in order for the approximation Eq. (A.7) holds.

C Calculating the Green’s function at T = 0 using TDVP

Here, we give some details regarding calculating G f f ,σ(t, T = 0) of our finite cluster using
the ITensor library [43, 44]. We first calculate the ground-state |Ψ0〉 using the density matrix
renormalization group algorithm. Then the TDVP algorithm is used to time-evolve the state
f̂ †
σ|Ψ0〉. With |Ψ(t > 0)〉 = e−iĤ t f̂ †

σ|Ψ0〉, the one-particle Green’s function at equilibrium can
be calculated:

iG f f ,σ(t > 0) = 〈Ψ0|eiĤ t f̂σe−iĤ t f̂ †
σ|Ψ0〉

= eiE0 t〈Ψ0|Ψ(t)〉 , (C.1)

where E0 is the ground-state energy. Our system is particle-hole symmetric, which means

G f f ,σ(t < 0, T = 0) = −G f f ,σ(−t, T = 0) . (C.2)

We calculate the Green’s function in the frequency domain with the Fourier transform

G f f ,σ(ω, T = 0) =

∫

G f f ,σ(t, T = 0)eiωt d t . (C.3)

The spectral function is then calculated from G f f ,σ(ω).

D Solving the Green’s function from the Ansatz of the Vxc

For the SIAM, the equation of motion of the particle Green’s function (t > 0) reads

[i∂t − ε f − V H − V xc
p,σ(t,β)]Ḡ

p
f f ,σ(t,β) = 0 , (D.1)

where ε f + V H = 0 and g+ = Ḡp
f f ,σ(t = 0+,β) = −0.5i for the symmetric SIAM. Accordingly,

the Green’s function is

Ḡp
f f ,σ(t > 0,β) = g+e−i

∫ t
0 V xc

p,σ( t̄,β)d t̄ . (D.2)

The Vxc is given by the complete Ansatz

V xc
p,σ(t > 0,β) =

λ(C +ωp) + (1−λ)Ceiωp t

λ+ (1−λ)eiωp t , (D.3)
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where λ is real and positive, and ωp and C are complex. Assuming that λ≪ 1 and Imωp > 0,
we have for positive t

V xc
p,σ(t,β) =
¦ λωpe−iωp t + C , t small,

ωp + C , t large.
(D.4)

The time integral of V xc is
∫ t

0

V xc
p,σ( t̄,β)d t̄ =

∫ t

0

λ(C +ωp)e
−iωp t̄

λe−iωp t̄ + (1−λ)
d t̄ +

∫ t

0

(1−λ)Ceiωp t̄

λ+ (1−λ)eiωp t̄
d t̄

=
C +ωp

−iωp
ln
�

λe−iωp t + (1−λ)
�

+
C

iωp
ln
�

λ+ (1−λ)eiωp t
�

= (C +ωp) + i ln
�

λ+ (1−λ)eiωp t
�

. (D.5)

Applying Eq. (D.5) to Eq. (D.2), we obtain the Green’s function

Ḡp
f f ,σ(t > 0,β) = g+

�

(1−λ)e−iC t +λe−i(C+ωp)t
�

. (D.6)

The parameters are interpreted as follows: Im[C] ∼ −ΓH, where ΓH is the half-width of the
Hubbard side-band, and Im[C +ωp]∼ −ΓK, where ΓK is the half-width of the Kondo peak and
is much smaller than ΓH in the Kondo regime. Using the results in the main text, we have
λ≪ 1,C+ωp = −iTK, and ωp = −

U
2 + i(ΓH− ΓK). They are consistent with our assumption to

derive the asymptotic properties in Eq. (D.4).
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