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Abstract

The observed Standard Model is consistent with the existence of vector-like species with
electric charge a multiple of e/6. The discovery of a fractionally charged particle would
provide nonperturbative information about Standard Model physics, and furthermore
rule out some or all of the minimal theories of unification. We discuss the phenomenol-
ogy of such particles and focus particularly on current LHC constraints, for which we
reinterpret various searches to bound a variety of fractionally charged representations.
We emphasize that in some circumstances the collider bounds are surprisingly low or
nonexistent, which highlights the discovery potential for these species which have dis-
tinctive signatures and important implications. We additionally offer pedagogical dis-
cussions of the representation theory of gauge groups with different global structures,
and separately of the modern framework of Generalized Global Symmetries, either of
which serves to underscore the bottom-up importance of these searches.
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1 Introduction

The fundamental charge quantum of QED What is the fundamental quantum of electric
charge in the infrared quantum electrodynamics of our universe? This is an important particle
physics question which is as yet unresolved. The Bayesian prior of high energy theory ortho-
doxy expects the answer to be e, the electric charge of the electron. If the Standard Model
fields are ever unified in SU(5) or SO(10), this is necessarily true.1

But a lesson one could contemplate from recent decades of Beyond the Standard Model
physics is that grand theories about the ultraviolet which we have come to love seem not to
be realized in quite the way we thought. We have not produced superparticles, nor directly
detected dark matter, nor found exotic kaon decays, nor observed an electron electric dipole
moment. And we have not seen protons decay. We should indeed always be questioning which
of our cherished principles to cling to, and which to consider counterfactually.

Notably, with less ambitious unification schemes we can have a smaller quantum of electric
charge. As examples, in Pati-Salam theories (where we do not have full gauge coupling unifi-
cation) the fundamental infrared charge can be e/2, and in theories of trinification (where we
must add additional fermions) the quantum can be e/3. If the Standard Model matter never
organizes into one of these minimal unified theories, then the fundamental quantum of charge
can be e/6.2 In more exotic scenarios that would even more generally challenge our usual UV
paradigms, the charge could be even smaller.

The core message of our work is that particles with O(1) electric charges are an important
probe of ultraviolet physics which have a universal infrared understanding. And it is not un-
reasonable to believe that they could exist near the electroweak scale to be found at the energy
frontier. After all, we have only recently uncovered the full chiral spectrum of the Standard
Model; it is certainly possible that this matter content cannot tell apart different UV scenarios
but that our discovery of the least-massive vector-like states will distinguish them further.

1For a reminder of the experimental and theoretical reasons which would point one toward this preference, see
Witten’s beautiful 2002 Heinrich Hertz Lecture ‘Quest for Unification’ [1].

2Early work on extended models of unification which feature fractionally charged particles includes [2–9], and
early discussions of the appearance of fractionally charged particles in string theories include [10–13].
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Table 1: Colored particles in the Standard Model after electroweak symmetry break-
ing. i is the generation index and here we use Dirac fermions. The charge is given
in units of e.

ui di g

SU(3)C 3 3 8

U(1)EM
2
3 −1

3 0

One may be misled into thinking that the question of the smallest charge of quantum
electrodynamics is ultimately a question about normalization, and should not make much dif-
ference physically. It is true that the perturbative physics of QED is not modified in any case.
But the nonperturbative physics is modified, as we will discuss in detail below.

And while the nonperturbative physics of the Standard Model is difficult to access with only
the SM degrees of freedom, the discovery of a new particle can reveal nonperturbative aspects
of the Standard Model physics. We learn that the allowed charges of magnetic monopoles, the
spectrum of fractional instantons, and the possible Aharonov-Bohm phases are all modified.
And as we have just said, the possibilities for the Standard Model species to unify in the ul-
traviolet depend crucially on this nonperturbative physics. This means that determining the
fundamental charge quantum of QED could falsify large classes of models of grand unification,
or potentially all of them.

From QCD to QED Do not be confused by the charges of the quarks—by quantum electrody-
namics we mean a long-distance theory far below the scale of confinement where the degrees
of freedom are leptons and hadrons. The particular pattern of Yang-Mills representations we
see borne out in the Standard Model unavoidably implies that all colorless hadrons have charge
quantized in units of e, the electron’s charge.

We can see this with a quick representation-theoretic argument, and we’ll understand
what’s happening more generally in Section 6. Let us begin with the Standard Model hav-
ing flowed to energies below electroweak symmetry breaking. At these energies it is sensible
to speak of quarks as Dirac fermions, as in Table 1. Of the known colored particles, each quark
ψa

i in the fundamental 3 representation has electric charge qi which obeys 3qi = 2 (mod 3),
and their antiparticles the 3̄ anti-fundamental ψ̄ j b necessarily have 3q j = 1 (mod 3). The
gluons in the adjoint 8 are of course electrically uncharged.

The only invariant tensors of SU(3)C are δa
b, ϵabc , and ϵabc , and we seek to build composite

operators which are colorless. Working (mod 3), we see δa
b pairs a 1 with a 2, and the Levi-

Civita symbol composes three of the same charge—either way resulting in an electric charge
∑

3qi = 0 (mod 3). Dividing through by three, this is exactly the condition that every hadron
has electric charge an integer multiple of e. For an arbitrarily complex bound state, ultimately
color indices can only be contracted in these ways, and the same argument applies.

So with the particles of the Standard Model, there are no asymptotic states with fractional
charge. But it is not clear from this argument whether this fundamentally must be the case, or
whether this relationship might be broken once we discover new BSM particles. Indeed we do
not know the answer, which ultimately must be settled by empirical data. We can understand
the issue systematically and gauge-invariantly as being a question about a certain generalized
symmetry which infrared physics may or may not have.

Generalized Global Symmetries While the local, perturbative physics is not modified by
the charge quantum, the nonperturbative physics certainly is. A useful strategy to understand
these aspects systematically is by enlarging our notion of symmetries to include symmetries of
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extended operators that appear in our field theories, such as Wilson and ’t Hooft loops. Symme-
tries that act on such one-dimensional line operators are known as ‘one-form symmetries’—to
be contrasted with symmetries that act on local, point operators which are called ‘zero-form
symmetries’.

From the modern field theory perspective, which such one-dimensional gauge-invariant
operators exist is part of the data needed to define a quantum field theory [14–19]. As a
basic picture one can think of these operators as accessing the response of the system to a
probe particle in a particular representation in the limit where the probe particle is infinitely
massive so that it has a well-defined worldline. Note that we do not specify that the worldline
must be a geodesic, or even timelike. With a spacelike worldline, one is familiar with using
a Wilson loop operator exp(i

∮

γ
A) to understand the Aharonov-Bohm effect where we think

about adiabatically moving an electron on the spatial path γ around a solenoid (or possibly a
cosmic string).

As such, to fully understand the quantum field theory describing the particles of the Stan-
dard Model, we must also analyze the symmetries of the one-dimensional gauge-invariant op-
erators we can write down, whether in the electroweak phase or at lower energies. In the full
Standard Model the different ‘global structures of the gauge group’ (to be reviewed below) are
exactly the question of whether the Standard Model has a discrete group of electric one-form
global symmetries, or whether (some of) these electric one-form symmetries should actually
be gauged to instead produce extra magnetic one-form global symmetries. This trade-off is as
could be expected from Dirac quantization.

Furthermore, this generalized symmetry language will provide a unifying, general under-
standing of what we learn from experimentally probing the existence of fractionally charged
particles at the energy frontier. The question of the charge quantum of quantum electrody-
namics can be rephrased universally in terms of emergent global electric one-form symmetry.
We will introduce these concepts pedagogically in Section 7.

Such one-form symmetries are data about the field theory which are in some sense non-
perturbative. That is, they are needed to have a more refined understanding of the Yang-Mills
theory which goes past what minimal coupling, a Lagrangian procedure which only knows
about local fields, depends upon. The Lagrangian depends only on perturbative data which
are local in field space. In order to learn information about the global structure of the field
space, we must have data which allow us to probe paths in field space, not just points. This
is why there is new understanding to be gained by thinking about extended operators in our
QFTs.3

The energy frontier As we have motivated above, searches for fractionally charged parti-
cles are some of the highest stakes experimental probes we have at the energy frontier. The
observation of a particle with electric charge e/6, be it fundamental or hadronic, fermionic
or bosonic, would unequivocally falsify all minimal grand unified theories. Perhaps no other
single new particle discovery could teach us so much about the far ultraviolet of our universe,
so it is well worth devoting experimental effort to searching for such particles.

Great energy frontier searches sensitive to fractionally charged particles have been under-
taken in recent years by CMS (e.g. [20]) and ATLAS (e.g. [21]) but efforts have mainly been
focused on SUSY-motivated scenarios. To the extent that we can design searches sensitive to
the electric charges, fractionally charged particles can provide extremely distinctive signatures,
since as discussed above there are strictly no particles with these properties in the Standard
Model. We take here a first step toward a more general paradigm by reinterpreting existing

3Of course it is also natural to think about maps of higher-dimensional manifolds into field space, and one may
indeed talk about n-dimensional operators and n-form symmetries, but in this work we will only use the concepts
of Wilson and ’t Hooft lines and their 1-form symmetries.
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searches for various benchmark SM quantum numbers which result in fractionally charged
states.

We discuss the production cross-sections in Section 2 and give analytic expressions in Ap-
pendix A for general representations. There is a rich variety of phenomenologies of fractionally
charged particles produced at the energy frontier depending on their quantum numbers, which
we discuss roughly in Section 3, emphasizing where further dedicated theoretical or experi-
mental study is needed to have a better handle on their signatures. In Section 4 we place
bounds by reinterpreting various searches we find to be sensitive to fractionally charged par-
ticles with caveats for reasonable assumptions we have had to make as phenomenologists in
the process. The constraints we find are summarized schematically in Figure 4, and the reader
should be struck by the laxity of the bounds for certain combinations of quantum numbers.

Given the enormous amount these searches could teach us about the universe quite gen-
erally, it is well worth both theorists and experimentalists revisiting the possibilities for these
searches, optimizing them for electric charges at least down to e/6, and thinking about possible
new strategies for detection.

Previous work on SM global structure Recent motivation for thinking about fractionally
charged particles comes from discussions of the ‘global structure’ of the Standard Model gauge
group, as we will introduce pedagogically in Section 6. The basic point is that various distinct
gauge groups can nonetheless share the same structure close to the identity, which is all that is
probed by minimal coupling. Nonetheless the representation theory for these different gauge
groups is modified. And indeed, the Standard Model gauge group has just such an ambiguity,
being

GSMn
≡ (SU(3)C × SU(2)L × U(1)Y )/Zn , (1)

for n = 1,2, 3,6 (where ‘Z1’ is slang for 1). We do not yet know which is realized in nature,
but GSMn

allows particles of infrared electric charge ne/6, and so the discovery of a particle
with charge q < e will distinguish between them.

The different possibilities for the global structure of the Standard Model gauge group were
laid out first by Hucks [22]. The impact on the allowed line operators was studied recently
by Tong [19], where it was made clear that with access to only the Standard Model degrees
of freedom the different theories cannot be distinguished on flat space. The consequences of
the global structure on a space of nontrivial topology have been explored in depth in [23].
Recently multiple groups have investigated how the discovery of an axion and the careful
measurement of its couplings to different gauge groups also provides constraints on the global
structure [24–26]. This essentially promotes the discussion in [19] about the range of the SM
theta angles to a new dynamical probe—as we likewise here emphasize that a discovery of
a new fractionally charged particle directly probes the allowed line operators by upgrading
them to dynamical particles.

Some complementary perspectives on fractionally charged particles have recently appeared
as well. In [27] the authors focus on a classification of representations consistent with general
fractional charges and global structures. In particular the case where the quantum of hyper-
charge is smaller than expected in the SM is treated in full depth, which we will comment on
only briefly below. In [28] the authors focus on the effects of fractionally charged particles in
the Standard Model Effective Field Theory (SMEFT). Indeed fractionally charged particles are
an interesting case of SMEFT operators being generated only at loop level, since they transform
non-trivially under gauge rotations for which all SM particles are neutral, which implies that
they must couple in pairs to SM matter. But resultingly the ability of SMEFT to investigate the
existence of fractionally charged particles is quite limited, and we will see the energy frontier
is our best probe. In some sense this is necessarily true from the generalized symmetry per-
spective because the emergent symmetry one finds below the mass of the lightest fractionally
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Table 2: For a given representation of SU(2)L and SU(3)C , fractionally charged par-
ticles are avoided only with this assignment of hypercharge. Here we list the require-
ments for some sample representations, but a full explanation of the structure is given
in Section 6 and in particular for the Standard Model in and below Equation 25.

SU(3)C SU(2)L 6Y mod 6
– – 0
– 2 3
– 3 0
3 – 4
6 – 2
8 – 0
3 2 1
6 2 5
8 3 0

charged particle is a global one-form symmetry under which Wilson loops are charged, but
local fields are strictly blind to.4

2 LHC production

The primary phenomenological goal of this paper is to revisit collider bounds on fractionally
charged particles, fleshing out their different signatures and how they are dictated by the par-
ticle’s quantum numbers. The scenario we focus on is a single new Dirac fermion or complex
scalar, denoted by ψ, sitting in an ‘exotic’ representation of the SM gauge group such that
the electric charge of ψ is some multiple k ∈ Z of e/6 (excluding k = 0,±6, . . . obviously).5

In Table 2 we show some example non-Abelian representations and which hypercharge they
must have to produce only integer electric charges in the far IR. Away from this choice, the
electric charge will be fractional, in a multiple of e/6. As we will derive in Section 6, these are
well-motivated to consider from the structure of the Standard Model.

We will label ψ by its full quantum numbers and its electric charge when necessary,
ψ(SU(3),SU(2),Y ),Q, though when the context is clear we will drop subscripts other than the
charge. We denote the electric charge in fractions of e throughout, e.g. using Q = 1/3 for e/3.
For color singlet ψQ, the electric charge is given by the usual combination of τ3 and Y , while
for colored ψ the charge of the outgoing states is more subtle as ψQ will combine with SM
matter to form color singlet, exotically charged ‘hadrons’.

We assume the only interactions ψQ has are gauge interactions dictated by its quantum
numbers. As mentioned above, interactions involving a single ψQ and SM matter are forbid-
den, and we will ignore interactions between pairs of ψ (really ψ̄QψQ, etc.) and the SM, such
as H†Hψ̄QψQ. For fermionic ψ, all such interactions are non-renormalizable, while for scalar
ψQ the Higgs portal term is marginal (as is the quartic interaction (ψ†

QψQ)2). Nevertheless,
we will neglect this possibility as we expect it to play little role in the collider phenomenology
for reasonable values of the couplings. For this initial study, we will also largely ignore the

4This ‘in principle’ statement is a bit too quick. There is no ‘smoking gun’ in SMEFT for the existence of frac-
tionally charged particles, as some integer-charged particles can turn on all the same operators in full generality.
But we anyway always must interpret some SMEFT deviation in terms of models that only add a few new particles,
as you cannot directly reverse the renormalization group flow.

5As ψ is necessarily electrically charged, it cannot be a Majorana fermion or a real scalar.
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possibility of multiple exotically charged states. For certain quantum number assignments, it
is possible to arrange for more renormalizable interactions between the exotic and SM sectors,
such as Hψ̄Qψ

′
Q′ when one of ψQ,ψ′Q′ is an SU(2) doublet and Yψ′ − Yψ = 1/2.6 Multi-exotic

interactions could lead to interesting phenomenology, but are beyond the scope of this paper.
Within this setup, ψQ must be pair produced at colliders via its gauge interactions. The

dominant production mechanism depends on whether or not the particles carry SU(3) quan-
tum numbers, irrespective of the spin of ψQ. For color singlets, the particles are produced in
Drell-Yan q̄q→ ψ̄QψQ via ŝ channel photon and Z . If ψQ is an SU(2) singlet, the entire cross
section is proportional to Q2

ψ
, while the cross section for ψQ in larger SU(2) multiplets will

contain pieces proportional to (τ3)ψ, the entries of the diagonal SU(2) generator appropriate
for ψQs representation. When (τ3)ψ ̸= 0, these terms typically dominate the cross section as
each power of Qψ (which we have assumed to be < 1) comes with a factor of sin2 θW ∼ 1/4.
For ψQ in non-trivial SU(2) representations, there is also a charged current production mode,
q̄q′→ ψ̄QψQ±1 + c.c. via ŝ channel W±.

If ψQ carries SU(3) quantum numbers, QCD production g g → ψ̄QψQ, q̄q → ψ̄QψQ be-
comes the dominant mechanism. Of these, g g is the larger channel when ψQ is light, but q̄q
takes over for heavier ψQ. The crossing point depends somewhat on the representation and
spin of ψQ but is O(1 TeV) for a Dirac fermion color triplet.

The partonic cross sections for pp → ψ̄QψQ production are compiled in Appendix A for
both fermionic and scalar ψQ. For now, we opt for analytic expressions over adding new
particles to Monte Carlo programs such as MadGraph [29]. In part, this is because we are
focused on pair production where the expressions are still simple, but the analytic expressions
also allow us to consider exotic color representations (such as a decouplet) which are not
easily implemented in MadGraph. Throughout this paper we will only consider lowest order
calculations, as our goal is to roughly illustrate the current bounds rather than focus on a
particular search or ψQ.

Folding parton distribution functions into the partonic cross sections (Appendix A), we
find the LHC proton level cross sections pp→ ψ̄ψ. We use NNPDF3.0nlo parton distribution
functions [30,31] with αs = 0.118, factorization/renormalization scales of µ̂F = µ̂R =

p
ŝ and

assume a collider center of mass energy of 13 TeV. We have also imposed the parton-level cut
|ηψ|< 2.5 so that these particles appear in the tracker volume.

The proton level cross sections for some illustrative ψQ are shown below in Figs. 1 and
2 below. In Fig. 1 we show the cross section for SU(2) singlet ψQ, either charged only under
hypercharge (left panel), or under several different color representations (right panel). Figure
2 shows the cross sections for color singletψQ sitting in non-trivial SU(2) representations, both
via neutral current (left panel) and charged current (right panel).

The cross sectionsψQ charged only under hypercharge are quite small, O(1pb×Q2
ψ
) for a

fermionic ψQ and Mψ = 100GeV and falling precipitously as Mψ increases to O(2 fb×Q2
ψ
) at

Mψ = 500GeV. Charging ψQ under SU(3), the cross section jumps by orders of magnitude,
σ(pp → ψ̄QψQ) ∼ 3pb (60 pb) for a 500GeV color triplet fermion (color octet). The cross
section for color singlet, SU(2) charged ψQ sits between these two, O(5 fb) for Drell-Yan pro-
duction of either state in a 500 GeV doublet ψQ, and O(10 fb) (O(5 fb)) for charged current
production via W + (W−). For other SU(2) representations, both types of cross section grow
with the size of the multiplet; labelling the SU(2) part of the ψQ state as |I0, i3〉, Drell-Yan
∝ i2

3 , while the charged current is∝ (I0(I0+1)− i3(i3+1)). The LHC cross section for a few
different SU(2) multiplets (both Drell-Yan and charged current pieces) are shown in the right
panel of Fig. 2.

6More exotic terms, such as φQ′ψQ f (where we have used φQ′ for an exotic scalar in this context, ψQ for a
fermion, and f a SM fermion) are also possible, either with or without flavor structure.
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Figure 1: Left panel: Lowest order pair production cross section for ψQ charged
solely under hypercharge, Q = 1/6 (blue), Q = 1/3 (red), Q = 1/2 (green), Q = 2/3
(brown). Right panel: lowest order LHC cross section for colored ψQ as a function
of Mψ (only QCD interactions are considered). For a fixed mass, the cross section in-
creases with the size of the representation: red (triplet), green (sextet), blue (octet),
brown (decouplet) and orange (15-plet (Dynkin label (21)). In both panels we as-
sume a center of mass energy

p
s = 13 TeV and use solid lines are for Dirac fermions

and dashed lines for charged scalars.
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Figure 2: Cross sections for ψQ under different SU(2) representations, all with
Y = 1/3. The red line shows the cross section for the (τ3)ψ = 1/2 component
of a SU(2) doublet, while the green shows the (τ3)ψ = 1 component of an SU(2)
triplet. As in Fig. 1, solid lines are for Dirac fermions while dashed are charged
scalars. The blue lines (dot dashed for fermions, dotted for scalars) repeat the SU(2)
singlet, Y = 1/3 curves from Fig. 1 for comparison. Changing the hypercharge, the
curves for the doublet and triplet cases would barely move, as the cross section is
dominated by the SU(2) portion. Right panel: Charged current cross section (via
W+) for doublets, triplets, and SU(2) singlet for comparison.

For fixed quantum numbers, the cross sections for fermionic ψQ are larger than their
scalar counterparts by roughly an order of magnitude. This difference stems from the fact
that fermions contain more degrees of freedom and that angular momentum conservation de-
mands the amplitude to produce a pair of scalars from a pair of massless quarks/gluons is
proportional to the final state velocity and therefore suppressed close to threshold.
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3 Collider signatures of fractionally charged particles

To explore how ψQ can be bounded at the LHC, we turn to the experiments. There are a few
searches for fractionally charged particles at the LHC in the literature. The searches assume the
fractionally charged particle is stable (or metastable), and rely on anomalously low dE/d x in
the tracking system and odd time-of-flight measurements to distinguish from background. The
predominant energy loss mechanism of charged particles is via the electromagnetic interaction.
For a range of quasi-relativistic velocities, this loss is described by the Bethe-Bloch equation.
In this range, dE/d x is independent of the particle’s mass, but it is proportional to Q2.

The CMS analysis [20] is the most recent and most easily translated to the scenarios we
envision. In Ref. [20], events were triggered using information in the muon system, then in-
vestigated for tracks with anomalously low dE/d x . Events are required to have either one
or two tracks, and the number of tracker hits with low ionization is used to discriminate sig-
nal from SM background. The CMS technique is optimal for Q ∼ 2/3; particles with higher
electric charge leave fewer low dE/d x signals, while the analysis efficiency for lower charge
states drops precipitously as lower charge leads to fewer tracker hits and therefore smaller
signal/noise which inhibits track reconstruction. For Q ≃ 1/3, the efficiency is so poor that
the bound drops to the minimum considered signal mass, 50 GeV.

A second reference we rely on is an ATLAS analysis for long lived gluinos/stops/sbottoms,
Ref [21] (other searches, either for stable particles or optimized for metastable variations, can
be found in Ref. [32, 33]). Upon hadronization, gluinos/stops/sbottoms all form ‘R-hadrons’
with integer charge, with the fraction with charge ±1 playing the largest role in the analysis.
This search relies on large missing energy and/or the muon system for triggering. Given that
R-hadrons are strongly interacting particles, the usage of the missing energy trigger may seem
out of place. However, heavy exotic hadrons deposit negligible energy in the calorimeter, so if
they are not picked up by the muon system because they are neutral (either truly neutral, as
in charge zero R-hadrons, or effectively neutral for ψQ hadrons with small Q), most of their
energy will escape undetected. Of course, in order for this undetected energy to register as
missing energy in an event, it must be balanced by something visible, either a charged exotic
hadron or initial state radiation.

Regardless of how they are triggered, retained events with at least one energetic track are
further scrutinized, using time-of-flight information (as determined from tracker info, muon
system, or both) to separate signal from background. Because this analysis is designed for
|Q|= 1 particles, it is not easily adapted to fractional charges much less than one. However, it
is useful for estimating bounds when Q ≳ 2/3, where the CMS search loses sensitivity.

While Ref. [20,21] are most relevant for our purposes, we’ll see that ψ in some corners of
parameter space are best bounded by LHC searches unrelated to fractionally charged or stable
particles, such as the invisible width of the Z [34], monojet-style searches [35] that look for
unbalanced, energetic jets, and disappearing tracks searches [36] that look for tracks which
end suddenly. We will introduce more details of these searches when we encounter a scenario
where they are needed.

The steps needed to go from a pp → ψ̄QψQ cross section to a bound, and exactly which
bound is best, differ greatly depending on howψ is charged under the SM groups. In the next
subsections, we explore some of the options.

We note also that electroweak precision observables are less constraining than collider
bounds for the benchmark scenarios we consider. In large part this is because we are consid-
ering the simplest case of a single new fractionally-charged particle—with only gauge interac-
tions, these do not contribute to S or T , which are generally the most constraining. In a more
general study of multiple fractionally-charged particles, which could include trilinear interac-
tions with SM species, nonzero contributions could be generated. It would be interesting to
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understand the constraints from precision observables on these slightly-non-minimal models
to map out the full space of well-motivated fractionally charged particle signatures.

3.1 Solely U(1)Y charges
This is the simplest scenario, as Qψ = Y , so there is no hadronization or SU(2) partners to
worry about. This scenario is also the closest to the signal model used by CMS. The only
difference is that CMS assumes a particle which only couples to the photon, while we include
couplings both to photon and Z as dictated by Y . As a result, we find slightly different masses
corresponding to the quoted cross section limits.

3.2 SU(3)C charges
Colored ψQ particles will quickly hadronize after being produced at the LHC. And if ψ does
not have the hypercharge demanded in Table 2, then all of the hadrons containing oneψQ will
be fractionally charged. Hadronization with the light quarks of the Standard Model will result
in a variety of fractional charges for hadrons containing ψ. These will differ in electric charge
by units of e, depending upon how many up-type versus down-type quarks are included.

At least as a first pass at reinterpreting the CMS search for colored representations, we
follow the Lund string model [37] as used in Pythia [38] with application to R-hadrons [39].
In this model, the ψQ, ψ̄Q sit at the endpoints of color strings which fragment. When the
strings break, colored remnants join up with ψQ to form color singlet handrons.

For color triplets, the strings break into quark-antiquark or diquark-antidiquark pairs. The
three light quarks are taken to arise democratically in string breaking, modulo a phase space
factor for the strange: (u : d : s ∼ 1 : 1 : 0.3); the diquark fraction is suppressed by an amount
set by data [40, 41]. Following this model [39, 42], triplet ψQ form mesons with ū, d̄, s̄ and
the abundance of the ‘down-type’ mesons compared to ‘up-type mesons’ is 60:40. ψQ baryons
arise less frequently, ∼ 10% of the time, with the light quark composition roughly following
the same (u : d : s) ratio as in ψQ mesons.

Color octets are treated as if they connect to two strings, one giving a quark/antidiquark
and the other an antiquark/diquark – which then combine with the octet to form a color singlet.
The flavor composition for the gluino R-hadron case can be found in Ref. [39] and is well
approximated by taking each quark/antiquark as independent and with the same (u : d : s)
ratio as above. For our scenario, the only difference is the charge of the hadrons will be shifted
by whatever fractional charge ψQ carries.7

For more exotic color representations, there is no R-hadron literature to borrow from, so
we make the assumption that the bound state involving the fewest constituents are the most
likely to form, and use the same (u : d : s) ratio to determine the flavor (and therefore charge)
of the hadrons.

The type of interpretation outlined above ignores the possibility that exotic hadrons change
their electric charge via hadronic interactions as the traverse the calorimenter. For our pur-
poses, this means that we assume the muon system triggering works out as it would in the
color singlet case. Charge flipping has been modeled somewhat for R-hadrons [39,43], which
we could export to exotic color triplets or octets. However, the behavior of the bound states
depends on their composition (baryonic vs. mesonic, and involving quarks vs. antiquarks),
and varies depending on the phenomenological model used, so we will neglect it for this initial
study. For all exotic hadrons, we ignore the mass splitting between the different exotic states
and assume that the excited (higher spin) bound states immediately decay to the lowest bound
state.

7Color octets can also bind with gluons (a string breaks to g g, with one g binding to ψQ and the other binding
to remaining string fragments). Reference [39] takes to be O(10%) of ψ-gluon bound states, though in our case
these states will retain whatever electric charge ψ carries (and therefore interact with the tracker/muon system),
while in the gluino case this fraction is invisible.
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When using these simple hadronization rules to determine the charge of exotic hadrons,
we often find some fraction of the bound states have charge∼ 1, e.g. 5/6 from a color tripletψ
with Y = 1/2 (aψQ d̄ meson), or 7/6 from a color octet with Y = 1/6, (aψud̄). The proximity
of these charges to ±1 makes the technique in CMS ineffective. To determine bounds in this
scenario, we will instead reinterpret R-hadron searches from Ref [21], making the assumption
that the R-hadron bounds are driven by the Q = ±1 ‘meson’ (i.e. (ψRq̄)8 for R-hadrons from
color triplet ψR or ψRqq̄ for color octet ψR) bound states and that the experiments are not
sensitive to the difference between Q ≃ ±1 and ±1. For color representations not studied
in R-hadron analysis, we will set bounds by equating (cross section × fraction of events with
at least one exotic hadrons with near integer charge) = R-hadron cross section × fraction of
events with at least one ±1 charge R-hadrons. We note that there are searches for exotic,
multiply charged particles, but these searches begin at Q = ±2 [33].

This sort of reasoning will allow us to roughly reinterpret tracker based searches for some
colored representations, but we emphasize that for detailed constraints dedicated simulations
of hadronization and detector response for these fractionally charged representations should
be done.

3.3 SU(2)L charges

When ψQ sits in a non-trivial SU(2) representation, it splits upon EWSB into a multiplet of
(2I + 1) states, for representation I , with components separated by |∆Q| = 1. At tree-level,
and in the absence of operators such as H†Hψ̄QψQ as we have assumed, the components of
ψQ are mass-degenerate. Loops of W/Z bosons break this degeneracy, introducing a split-
ting of αemmW/π ∼ O(100) MeV, though with a degree of variation depending on the exact
quantum numbers of ψQ. For a multiplet with hypercharge Y containing a state with charge
Q = (τ3)ψ + Y and a state with charge Q′ = (τ′3)ψ + Y the one-loop mass difference between
the two is [44,45]:

MQ′ −MQ =
α2M
4π

�

(τ′23 −τ
2
3)

�

f

�

mW

Mψ

�

− c2
W f
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��
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where Mψ is the tree-level mass, cW = cosθW , sW = sinθW , and
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/4 , for a scalar, 9

In the majority of cases, the state with smaller |Q| is the lightest. For Mψ≫ mW , mZ and using
mZ = mW/cW , we see that the mass splitting asymptotes to

∆M ≃ 160MeV× (τ′3 −τ3)(τ
′
3 +τ3 + 2Y + 2 Y / cosθW ) . (3)

While there can clearly be cancellations, the general trend is that the splitting grows with the
hypercharge of the multiplet and the τ′3 value of the excited state.10

This multiplet structure has several implications for how ψQ appears at the LHC.

• Even if one component ofψ has Q ≲ 1/3 – where the CMS search has limited sensitivity –
it will always be accompanied by a component with larger charge. For example, a SU(2)
doublet with Y = 1/3 has one state with Q = −1/6, but also a state with Q = 5/6.

8We use a subscript R for the heavy gluino/stop/sbottom in a R-hadron.
9The factor k is UV divergent but can be absorbed by counterterms for the mass and ψQ quartic.

10Note that for Y = 0, |τ′3|= |τ3| the mass splitting vanishes. For ψ a Weyl fermion in the n-dim representation,
ψ̄ϵn transforms the same way (ϵn is n copies of the SU(2)L Levi-Civita), and there is an SU(2) flavor symmetry
between them. After SU(2)L symmetry-breaking this flavor symmetry disallows any mass splitting between the
fermions of the same charge.
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Figure 3: Decay length for the excited state(s) in an SU(2) doublet ψ (left panel)
and SU(2) triplet ψ (right panel). In the left panel the blue line shows the choice
Y = 1/3 (Q = −1/6,Q′ = 5/6) while the green and red show Y = 2/3 (Q = 1/6,
Q′ = 7/6) and Y = 1/6 (Q = −1/3,Q′ = 2/3) respectively. In all cases the τ3
component of the multiplet has the lowest (magnitude) charge. The solid lines are
the results for fermionic ψ while scalar ψ are dashed. In the right panel, the red
lines show Y = 1/6 while blue show Y = 2/3. There are more lines as there are
more possible decays. The solid (dashed) red shows the decay length for Q = 7/6 to
Q = 1/6 decay, while the dotted (dot-dashed) show Q = −5/6 to Q = 1/6. Unlike
the case when Y = 0, the lifetimes of the τ3 = +1 and τ3 = −1 components are not
equal. For the blue lines, the choice Y = 2/3 means the τ3 = −1 component has the
smallest |Q| and is the lightest. Therefore, the solid (dashed) lines show the decay
of Q = 5/3 to Q = 2/3 while the dotted (dot-dashed) show the decay of Q = 2/3 to
Q = −1/3.

• The phenomenology of the heavier, larger charge state depends crucially on its lifetime
(and therefore crucially onψ’s quantum numbers, which dictate the mass splitting). For
mass splittings> mπ, the two-body decayψQ+1→ψQ+π+ dominates, while for smaller
splitting ψQ+1 mostly decays to ψQ + e ν̄e (three-body), with a small branching fraction
to ψQ +µν̄µ. The decay length for an illustrative set of SU(2) and Y choices are shown
below in Fig. 3. The decay lengths asymptote at large Mψ/mW , as expected from the
mass splitting formulae, while at smaller Mψ/mW there are significant differences for
fermion vs. scalar ψ and cusps where the two-body decay to ψQ +π± turns on or off.11

For the selection of charges in Fig. 3, none of the excited states would be considered
prompt. Several choices, such as the Q = 7/6, SU(2) doublet state (green in the left panel
of Fig. 3), or the Q = 5/3, SU(2) triplet state (blue in the right panel of Fig. 3) have decay
lengths of O(cm) and would lead to displaced vertices or kinked tracks. A second category of
excited states, such as the Q = 2/3 state in a SU(2) doublet with Y = 1/6 or the Q = 2/3
state in an SU(2) triplet with Y = 2/3 have accidentally small mass splitting from the lightest
state in their respective multiplet, and are therefore effectively stable on collider scales. The
roughly bi-modal distribution of decay lengths can be traced back to whether or not the higher
charge state can decay to the lower charge state by emitting a pion.

11The one exception to the general mass splitting trend is the red dot-dashed line in the right panel of Fig. 3, the
mass difference between the Q = 2/3 and Q = −1/3 components of a scalar SU(2) triplet with Y = 2/3, which
decreases for larger Mψ (leading to longer decay lengths). This is due to the fact that, while Eq. (2) generically
increases the mass of the larger |Q| state, there are exceptions. For example, for an SU(2) triplet and Y = 1/3,
the lightest state is the Q = −2/3 component rather than the Q = 1/3 component. The proximity of Y = 2/3
to Y = 1/3, where the ‘inverted mass’ situation occurs, leads to the different behavior of the mass splitting as a
function of Mψ.
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Of course, we can have ψQ in non-trivial representations of both SU(3) and SU(2), in
which case the phenomenology becomes even richer, as each SU(2) component will undergo
hadronization, leading to a zoo of fractionally charged bound states with a variety of lifetimes.

4 Reinterpreted LHC bounds for assorted representations

In this section we show a sampling of the LHC bounds on different exoticψQ by reinterpreting
a variety of searches. Given the huge number of scenarios with fractionally charged ψQ, we
obviously cannot explore them all here. The goal of this benchmark study is to show roughly
where things stand, identify different signal classes and detection strategies, and point out
challenges and hidden assumptions in current searches.

• As our first benchmark, we take ψ to be a color and SU(2) singlet with Y = Q
a multiple of 1/6 (obviously avoiding multiples that result in integer charge). This
benchmark maps directly onto the CMS search in Ref. [20]. Using the quoted
cross section numbers to bound fermionic (scalar) ψQ: Q = 1/6 – no LHC bound,
Q = 1/3 Mψ > 88 GeV (45 GeV), Q = 1/2 Mψ > 610 GeV (340GeV), Q = 2/3
Mψ > 650GeV (370GeV). It is worth mentioning that the bounds for the lower charge
regime, |Q| = 1/3, have loosened substantially in Ref. [20] compared to previous itera-
tions, Ref. [46,47]. The loosening of the bounds can be traced to a mismodeling in the
efficiency of the muon trigger for low charge [20].

For the lower charge scenarios, we must look to other searches for bounds. One obvious place
to look is the invisible Z partial width. If we require Γ (Z → ψ̄QψQ) ≤ 1.5MeV, the 1-sigma
uncertainty on the invisible width [34], fermionicψQ with |Q|= 1/6 are ruled out except right
at ∼ mZ/2 where the phase space suppression is severe. However, if relax the constraint to
2× this uncertainty, the bound disappears. For scalar ψQ, |Q| = 1/6 there is no bound even if
we impose the stronger condition of Γ (Z → ψ̄QψQ)≤ 1.5MeV.

We can also approximate |Q|≲ 1/3 as invisible and constrain these scenarios using monojet
style analyses pp→ /ET + j [35], with theψQ playing the role of the missing energy. Reference
[35] quotes model independent cross section limits on pp → /ET + j in bins beginning with
σl im < 736 fb for pT, j > 200GeV. Requiring such an energetic jet suppresses the cross section
by O(200−500) depending on Mψ (larger suppression for lighterψQ).12,13 For fermionicψQ,
the monojet analysis places a bound of only ∼ few GeV, while for scalar ψQ the cross section
is so low there is no LHC bound even for massless ψQ.

Light (∼ few GeV), fractionally chargedψQ could also be similarly to millicharged matter, a
topic of intense work and interest recently [48]; depending on the exact mass and charge, such
scenarios are ruled out by fixed target experiments, rare meson decay, star cooling, etc. See
e.g. Ref. [49,50] for a summary of limits on millicharged matter. The most relevant bound for
the range of masses and charges we are interested in comes from the SLAC anomalous single
photon e+e−→ γX search, which rules out fermionicψQ lighter than 10GeV for Q > 0.08 [51–
53]. We know of no reinterpretation of this experiment in terms of a fractionally charged,
complex scalar, but assume the mass bound will be in the same ballpark.

Next, let us keep the hypercharge and SU(2) assignments the same but take ψQ to be a
color triplet. As we change the hypercharge assignment, we change the charge of the exotic
hadrons that form, and the hadron charge determines how strict the bound is. For example:

12We derive this factor by running pp→ τ+τ−(+ j) in MadGraph and varying the mass of the τ.
13The large pT, j values are needed to suppress the irreducible background from Z(ν̄ν) + j. The suppression this

causes for our signal is much less than in dark matter models where pp → /ET + j proceeds through a contact
interaction, as the latter grows with the energy.
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• Y = 0: following the argument in Sec. 3.2 above, ψ forms exotic mesons with |Q|= 2/3
40% of the time, and |Q| = 1/3 60% of the time. The |Q| = 2/3 limits from CMS are
much more stringent, so equating the cross section for the production of at least one
|Q| = 2/3 particle – ((0.4)2 + 2× 0.4× 0.6)×σ(pp → ψ̄QψQ) = 0.64 ×σ(pp → ψψ)
to the CMS |Q| = 2/3 bound, we find masses less than 1.8 TeV (1.4TeV) are excluded
for fermionic (scalar) ψ. Note that Y = 1/3 results in hadrons with the same |Q| and
therefore is subject to the same bounds.

• Y = 1/6: For this choice, all ψQq̄ bound states have |Q| = 1/2. From the CMS bound,
we find masses less than 1.9TeV (1.5 TeV) are excluded for fermion (scalar) ψQ.

For our next two examples, we consider more exotic color representations, and for convenience
define di which is either a down or strange quark:

• Color octet with Y = 1/6: ψ(8,0,1/6),1/6. Within our framework, this state leads to
hadrons with charge Q = 1/6 (ψuū,ψd̄id j ,ψg) 55% of the time, and Q = 7/6 (ψd̄iu) or
Q = −5/6 (ψdi ū) each 22% of the time. As the CMS search is insensitive to |Q|≲ 1/3 or
∼ 1, this is a scenario where we turn to stable R-hadron searches [21] to place bounds.
From this breakdown, we see that 67% of events contain at least one |Q| ∼ 1 hadron.
Equating 0.2×σ(pp → ψ̄ψ) to the gluino R-hadron cross section bound of ∼ 1 fb, we
find masses less than 2.0 TeV (1.65 TeV) are excluded for fermion (scalar) ψQ. In apply-
ing the R-hadron bounds, we are assuming the Q = 1/6 can be treated as neutral for the
purposes of missing energy triggers.

• A color sextet with Y = 0: ψ(6,0,0),0 After hadronization, this yields states with charge
Q = −4/3 (ψūū), Q = 2/3 (ψd̄i d̄ j) and |Q| = 1/3 (ψūd̄i + c.c.) with fractions
∼ 20% : 30% : 50%. The strongest bound comes from the |Q| = 2/3 fraction.

The fraction of events with at least one |Q| = 2/3 particle is ∼ 50%, and equating
0.5×σ(pp→ ψ̄ψ) to the CMS |Q|= 2/3 limit, we find masses less than 2.2 TeV (1.8 TeV)
are excluded.

Finally, we consider benchmark color singlet ψ in non-trivial SU(2) representations. We
pick from the examples used in the decay length plot, Fig. 3:

• An SU(2) doublet with Y = 2/3, leading to one state with Q = 1/6 (ψ(0,2,2/3),1/6) and
one with Q = 7/6 (ψ(0,2,2/3),7/6). The Q = 7/6 state decays within O(cm), leaving a
disappearing track signature. In the context of the CMS search, the Q = 7/6 state just
adds to the cross section for Q = 1/6 production, but as CMS is not sensitive to Q = 1/6
this gives no bound. Limits on the invisible Z decay width bound Mψ ≳ 45GeV for
either spin ψQ. Additionally, as the LHC production cross section is much larger than
the SU(2) singlet case, it is possible to bound this ψQ using monojet searches. The total
production for |Q| = 1/6 is the sum of the Drell-Yan cross sections for |Q| = 1/6 and
|Q| = 7/6 along with the charged current production pp → ψ̄1/6ψ7/6 + c.c.. Adding
these and comparing to the 95% CL allowed cross section for pT, j > 200 GeV, we find
a monojet bound of ∼ 50 GeV (fermionic). However, we can place a stronger bound by
utilizing the disappearing track signal from the |Q| = 7/6 state. In a disappearing track
search, events triggered with large missing energy are investigated for tracks which end,
signaling the decay of a charged state into a nearly degenerate neutral state. This search
strategy has been applied to the scenario of nearly degenerate higgsinos (electroweak
doublets with Y = 0), placing a bound of 190 GeV. Applying this strategy to the scenario
here, one issue is that the mass splitting between Q = 7/6 and Q = 1/6 is larger than
the higgsino case. For an electroweak doublet, the mass splitting in Eq. 3 is∝ Y , and
Y = 2/3 is larger than the higgsino value of Y = 1/2. As a result, the lifetime of the
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excited state is shorter, leading to shorter tracks and a less efficient search. Taking the
difference in lifetime into account and applying the cross section bound from Ref. [36],
we find the current scenario is excluded for ψQ masses below 115 GeV (70 GeV).

• An SU(2) doublet with Y = 1/6. The only difference compared to the case above is that
the states now have charge Q = −1/3 and Q = 2/3, with the Q = 2/3 slightly heavier.
However, as Y is smaller, so is the mass splitting, to the point that for Y = 1/6 the mass
splitting drops below mπ. As a result, the lifetime of the excited state is significantly
longer than in the previous case, O(20m), and we can consider it to be collider stable.
We can therefore bound this scenario by ignoring the Q = −1/3 component and equating
the total cross section for Q = 2/3 production, pp→ ψ̄2/3ψ2/3 + pp→ ψ̄−1/3ψ2/3 + c.c
to the |Q|= 2/3 limit from CMS [20]. We find masses below 1.1TeV (750GeV) are ruled
out.

• An SU(2) triplet with Y = 2/3, leading to states with Q = −1/3,Q = 2/3,Q = 5/3.
The Q = 5/3 decays rapidly to the Q = 2/3, which then flies O(cm) before decaying to
the Q = −1/3. Only the Q = −1/3 particle survives to the muon system, so if we rely
on the fractionally charged bound the limits are low; summing Drell-Yan production of
all three charged states along with their charged current counterparts and applying the
limit from Ref. [20], we find limits of Mψ > 350 GeV (200 GeV). The lifetime of the
Q = 2/3 is long enough that one expects it should leave a trace in disappearing track
searches. The limit from Ref. [36] on nearly degenerate electroweak triplets (a wino) is
650 GeV, though extrapolating this to the present scenario is not straightforward as the
efficiency for the Q = 2/3 will be worse than the wino. Not only is the electric charge
smaller, but the Q = 2/3 to Q = −1/3 mass splitting is larger (and thus its lifetime
shorter) than in the charged to neutral wino case, and the sensitivity in Ref. [36] falls
precipitously with mass splitting. Part of this lack in sensitivity can be compensated
by a larger cross section, since we can lump the production of Q = 5/3 and Q = 2/3
together as the effective disappearing track signal. However, we find this enhancement
is insufficient. The bounds fall so quickly for larger mass splittings that we estimate
limits from disappearing track searches are < 100 GeV, worse than the fractional charge
bounds relying on |Q|= 1/3.

The bounds from these benchmark scenarios are illustrated below in Fig. 4, and we can
use our experience with those setups to extrapolate to other multiplets to some extent. ForψQ
charged solely under hypercharge, bounds come from the CMS dedicated fractionally charged
search. The fractionally charged bounds are maximzed near Q = 2/3; for larger charge, the
technique fails and is superseded by time-of-flight based searches, while for smaller charge the
sensitivity drops precipitously. Monojet style searches are an interesting avenue to explore,
but these perform best for heavier ψQ – where the cross section is even lower – or contact
interactions from a heavy mediator (which do not apply to our setup). For colored ψQ, the
large production cross section pushes the current limits much higher, roughly 1.8TeV for color
triplets fermions. The bounds increase with the size of the SU(3) representation and, at least
at the level of our study, are fairly insensitive to the hypercharge of ψQ.

Comparing the above numbers we see that the scenarios we can recast into the CMS frac-
tional charge search have slightly stronger limits than those we interpret as R-hadrons, as
fractional charge signatures have an additional handle – low dE/d x – to separate signal from
background. We see the most variability in the bounds for color singlet, SU(2) charged ψQ,
as the signatures in the detector depend strongly on the charges and lifetimes of all the states
in the multiplet. If the excited states are short lived, they add to the cross section for the
lowest |Q| state, but this boost can be insufficient to strongly bound the scenario if the light-
est state has |Q| ≤ 1/3. Disappearing track searches, which target the decay of the excited
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Figure 4: Graphic illustrating the mass bounds for the benchmark fractionally Dirac
fermions, the details of which are discussed in the text. The bounds for fractionally
charged complex scalars are lower than the fermionic case by ∼ 20%.

state, can provide another handle, though we find they are hampered by the fact that excited
state lifetimes for fractionally charged scenarios are typically shorter than in scenarios familiar
from supersymmetry (e.g. Y = 1/2 for pure higgsino or Y = 0 for wino). If the excited state
happens to be long-lived, the bounds to jump significantly, as the higher charge state gives us
another handle on the setup. The SU(2) charged scenarios are also the most complicated, as
the number of processes one needs to consider (Drell-Yan for each component, charged current
between pairs of components) grows with the size of the multiplet.

We emphasize that all of these bounds are just an estimate. We have ignored higher order
QCD corrections, which for inclusive cross sections are encapsulated into a K factor that is
typically ∼ 1− 2. More significantly, we have assumed that the triggering efficiency – either
in the muon system efficiency or using /ET – for fractionally charged particles with other (non-
hypercharged) quantum numbers (or much larger mass) is not significantly different than in
Ref. [20].

We conclude this section with some items worth thinking about in order to maintain a
robust collider search program for fractionally charged particles.

• The LHC is an evolving apparatus, with many detector upgrades planned for the high
luminosity phase. Some ways these upgrades will affect searches for fractionally charged
particles include:

– The ability to trigger using tracker information alone (at both ATLAS and CMS) may
help increase sensitivity in regions where the CMS analysis is limited by the muon
trigger efficiency. It is worth noting that the upgraded outer portion of the tracker
will be upgraded to a digital device to facilitate the high data transfer rate needed
for track triggering. However, this comes with the price that ionization energy
on the individual hits is no longer kept. Multiple hits are combined together into a
single output, so there will be less granular dE/d x information. Exactly how much
this impacts the analysis strategy for fractionally charged particles in Ref. [20] has
not yet been studied.

– The introduction of a timing layer in CMS between the tracker and ECAL will im-
prove time-of-flight measurements, enhancing signal discrimination based on ve-
locity or displaced vertices [54–56].

– Reference [57] explored how the low dE/d x search could be improved, especially
for low Q, by moving from a muon trigger to a /ET trigger. Detector upgrades are
expected to increase the efficiency for lower /ET events [58], which should help this
approach further.
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• The bounds above primarily rely on tracker information, using other systems only to trig-
ger. More precise bounds, or perhaps even novel signals, could be achieved by improved
modeling of the interaction of colored, fractionally charged particles as they traverse
the detector. Current models are limited to heavy color triplets/octets that are lumped
into hadrons with integer charge, and even within this subset there are considerable
differences among models in the charge vs. neutral and meson vs. baryon fractions as a
function of distance traversed [42,43,59].

• Some improvement in the most challenging cases is already underway from the milliQan
experiment, which is forecasted to probe up to 45 GeV for a fermion of charge e/6 using
LHC Run 3 data [60].

• Some percentage of ψQ produced at the LHC will stop inside the detector as a result of
their energy loss to the detector material. The fraction that stop depends on the mass
of ψQ, its charge, and its color representation. The stopped, stable ψQ may form atomic
or nuclear bound states which will have a fractional charge that cannot be screened
by Standard Model material. It is not clear to us whether there might be discovery
potential in looking for later trajectories being subtly affected by this small persistent
electric charge localized somewhere in the detector. If nothing else, it may be interesting
to attempt to search disused detector parts for embedded fractional charges.

5 Cosmology

Not only would the discovery of a fractionally charged particle tell us an enormous amount
about ultraviolet particle physics—it would also tell us a huge amount about the early universe.
So for completeness we offer a brief discussion here.

Since the lightest fractionally charged particle is necessarily stable, strong constraints on
the relic abundance of particles with O(1) electric charges are present. Our understanding
thereof is mainly from the fantastic Dunsky, Hall, Harigaya papers [61,62] as we briefly sum-
marize in Section 5.1.

These imply that such a species could only ever have been in thermal equilibrium with
the Standard Model if there were large Boltzmann factor suppression. That is, discovering a
fractionally charged particle of mass Mψ gives an upper bound on the reheating temperature
Treheat ≲ Mψ/r. In Section 5.2 we give some basic estimates of r depending on both the details
of reheating and the quantum numbers of ψ.

This means that just as such an energy frontier discovery would falsify some of our grand
models of ultraviolet physics, it would also falsify the high-scale inflation models that have
been proposed in these frameworks. Of course all we know experimentally is that there was
a Standard Model plasma in a radiation era at the temperatures of Big Bang Nucleosynthesis
Treheat ≳ TBBN, but there need not have been an era of much hotter temperature [50,63–65].

5.1 Abundance constraints

There have been various lab-based searches for fractionally charged particles in which a sample
of some material is tested for fractional charge. Indeed the ensuing constraints on fractional
charges present in the sample are very strong, but extrapolating to a constraint on the relic
abundance is fraught with difficulties. The dust in our proto-planetary disk originated in an
earlier generation of stars that underwent supernovae, and that which formed the Earth has
undergone billions of years of geological activity. That is to say, tracking the evolution of heavy
particles from an initial relic abundance through this non-trivial evolution requires great care.
Some of these issues are discussed further in [62,66].
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However, in fact there is a better source of constraints on the relic abundance from the flux
of fractionally charged particles on the Earth. In general, virialized dark matter which strongly
interacts with SM particles is unable to reach underground direct detection experiments that
are shielded by the Earth’s atmosphere and meters of rock (see e.g. [66–68]). However, the
electric charges of the states we are considering mean that there is necessarily a component
which gets boosted by supernova shocks, as impressively understood in [61]. Indeed for the
GeV - TeV mass range of interest at the energy frontier and the O(1) electric charges of our
states, a relic abundance of such particles collapses into the Milky Way disk as it forms along
with the baryons, thermalizes with the ISM, and undergoes Fermi acceleration from supernova
shock waves. These accelerated particles appear on Earth in the form of cosmic rays, and their
large boosts would allow them to penetrate the Earth down to deep underground detectors,
providing strict upper limits on such a flux. In the range of parameter space of interest to us,
the strictest bounds come from experiments like IceCube [69], searches for lightly ionizing
particles like MAJORANA [70] and MACRO [71], and searches for magnetic monopoles like
ICRR [72] and Baksan [73]. These constraints are extremely strong, giving upper bounds on
the relic abundance 10−10 − 10−16 as a fraction of the dark matter abundance, depending on
the exact charge and mass.

5.2 Thermal plasma production

The bounds on the relic abundance can roughly be translated into an upper bound on the
reheating temperature Treheat ≲ Mψ/r where Mψ is the mass of the lightest fractionally charged
particle. If we assume instantaneous reheating of all species with SM quantum numbers to a
temperature Treheat≪ Mψ, we get a Boltzmann suppressed equilibrium abundance of ψQ:

nψ = gψ

�Mψ Treheat

2π

�3/2

exp
�

−Mψ/Treheat

�

, (4)

where gψ is the number of degrees of freedom of ψQ. This gives a relic abundance relative to
dark matter of

Ωψ

ΩDM
=
�Mψ nψ
ρDM

��

s0

s∗

�

, (5)

where s0 is the entropy today, s∗ is the entropy at Treheat and ρDM is the average dark mat-
ter energy density. Given a bound on Ωψ/ΩDM , we can translate Eq. 5 into a bound on
r = Mψ/Treheat. If we impose Ωψ/ΩDM ≤ 10−16, the most stringent bound in the parame-
ter space of interest according to Ref. [61], this translates to

r ∼ 65 , (6)

with only weak dependence on Mψ. If the nψ produced were large we should include the
effects of annihilations like for a standard freeze-out, as done in [74], but since the allowed
regime is so small we can ignore this process.

Above we assumedψQ is instantaneously in equilibrium at Treheat. As a test of how sensitive
the r value derived is to our assumptions of the reheating process, we can imagine an extreme
scenario where only the SM matter is reheated at Treheat (which may be more or less contrived
depending on the quantum numbers of ψ). In this case, an abundance of ψQ is built up via
freeze-in, generated from collisions among energetic SM particles on the Boltzmann tails of
their equilibrium distributions. The frozen in abundance of ψ can be estimated using the
results of Ref. [75]. Specifically, if we assume a threshold cross section times relative velocity
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of σSM SM→ψ̄QψQ
v ∼ ce f f

16πM2
ψ

, where ce f f is a combination of couplings and factors counting

degrees of freedom (both initial and final), we find

Ωψ

ΩDM
∼

135
p

5/2 Mpl ce f f e−2/r(2/r + 1) s0

256π7 g3/2
∗ ρDM

. (7)

For QCD production (assuming six SM fermion flavors and ignoring all SM masses), ce f f ∼ 75,
while production of ψQ charged only under hypercharge has ce f f ∼ 0.1 Y 2

ψ
. Plugging in num-

bers, the freeze-in case decreases r by O(15) relative to the case of directly reheating ψ, with
only some mild dependence on the value ce f f .

We note that the strong bound on Ωψ/ΩDM we have taken above may be loosened slightly
for certain quantum numbers of ψ. In particular, there do exist colored representations for
which all hadrons formed with SM partons have fractional electric charge, but which also have
bound states with zero electric charge, such as Q ∼ (3, X )0 where X = 1, 3, · · · . Triply-exotic
(QQQ) bound states (for Q a fermion) are neutral “dark” baryons and one could investigate
them as a component of DM, much as in the “colored DM” story [66,76,77]. However, there
is a severe danger posed by the existence of mixed bounds states such as (Qq̄) (for q̄ a SM
quark) which have fractional charges, so must have extremely suppressed relic abundances
as discussed above. As understood for colored DM, the QCD phase transition automatically
gives some suppression of the fractionally charged abundance, since H(ΛQC D)≪ Λ−1

QC D. Then
after the QCD phase transition, many scatterings occur among the mixed bound states, which
depletes their abundance in favor of the much more tightly bound (QQQ) by some orders of
magnitude, ΩQq̄ ∼ 10−4ΩQQQ. This leads to a less stringent restriction on Treheat/Mψ than in a
case without electrically-neutral bound states by about O(10).

6 Global structure of gauge theory

In this section we give a basic review of some group and representation theory and its ap-
pearance in gauge theories. Our focus is on conceptual understanding moreso than technical
detail. The key point is to understand the differences between symmetry groups which are
identical for infinitesimal symmetry transformations near the identity (they have the same Lie
algebra) but differ for large symmetry transformations (they have different Lie groups as the
result of non-trivial ‘global structure’). This will allow us to appreciate the distinct possibilities
for the gauge group of the Standard Model. Some pedagogical references for the group theory
are [78,79].

6.1 Abelian warmup: R vs. U(1)

Often in particle physics we are interested in continuous symmetry groups which have a notion
of infinitesimal transformations which are close to the trivial, identity transformation. The
earliest such example in a field theory (and indeed the farthest infrared example) is the theory
of electromagnetism.

As groups When we consider a gauge field theory based on a symmetry group, the gauge
bosons correspond to the generators of the group. Electromagnetism has only one photon, so
we are interested in groups with only one generator. In fact, the photon corresponds to the
generator of U(1)EM gauge transformations, a global element of which we can represent as

U(θ ) = eiθQ , (8)
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Figure 5: The group U(1) constructed by quotienting R/Z. We can think about the
quotient projecting the real line down to the circle such that every integer maps to
the identity element.

a circle’s worth of transformations which compose by complex multiplication

U(θ )U(η) = ei(θ+η)Q ,

with θ ,η ∈ [0,2π). But alternatively we may view this as a mapping of θ ∈ R onto the unit
circle. Indeed, if we look nearby the identity transformation we cannot tell U(1) from R

U(θ )≃ 1+ iθQ , (9)

where we have expanded for small θ . Then we could alternatively think about just defining
the group operation

U(θ )U(η)≡ 1+ i(θ +η)Q . (10)

This is a group which is not compact—θ has no finite period now; the group is just R equipped
with addition. While U(1) and R differ as Lie groups, they share the same Lie algebra.

Thinking in the other direction, if we had begun with R with the group operation of addi-
tion, we could see the relation to U(1) by considering the quotient group R/Z≃ U(1). That is,
we may view U(1) as coming from an R group where we have imposed the additional equiv-
alence relation θ ∼ θ + 2πZ—two elements of the group are now identified if they differ by
an integer (the factor of 2π is a normalization convention of the period). We diagram this
structure in Figure 5, and of course this is exactly what the exponential map above does.

Thinking about the physics, the perturbative, low-energy dynamics of the vector gauge
bosons depend only on the gauge transformations which are close to the identity. That is,
Maxwell’s equations and the covariant derivative depend only on the Lie algebra of the gauge
group. Yet the two theories differ in important ways, as we discuss presently.

Electric representations: In fact, there are nonperturbative aspects of physics which do de-
pend on the global properties of the gauge group, and the closest at hand is simply the repre-
sentation theory. In physics our objects transform in representations of the relevant symmetry
groups, and the representation theory of groups with different global structures may differ.

20

https://scipost.org
https://scipost.org/SciPostPhys.18.1.004


SciPost Phys. 18, 004 (2025)

The question in the one-dimensional case is: Which charges should be allowed? A field
ψ(x) with charge q transforms under a U(θ ) transformation as ψ(x)→ψ(x)exp(iqθ ). If the
group is R, then any charge q ∈ R is fine. But if the gauge group is U(1), then U(2π) ≡ 1, a
rotation around the full circle is equivalent to an identity transformation. Each field must be
trivially mapped back to itself by an identity transformation, but a field of general charge q
transforms to ψ(x)exp(2πqi). The requirement exp(2πqi) ≡ 1 implies that for a U(1) group
we must have q ∈ Z and charge is quantized.

Thus, we see that the representation theory depends crucially on the global structure of
the group, rather than just its local structure near the identity. Turned around, this means
that by discovering particles with particular representations, you can learn about the global
structure. If you discover two particles ψ,χ with relatively irrational charges qψ/qχ /∈Q then
the gauge group must be R instead of U(1). Note that you only need to discover two because
for any real number can be approximated arbitrarily closely by a sequence of aqψ + bqχ for
a, b ∈ Z.14

Magnetic representations: Gauge theories may also allow representations which carry mag-
netic, rather than electric charge. In the low energy theory of electromagnetism, these are the
familiar Dirac monopoles. Of course it is simple enough to postulate a monopole magnetic
field

B⃗ =
g

4π
r̂
r2

, (11)

but in a quantum mechanical theory (where Aharonov-Bohm teaches us we really must talk
about the potential Aµ) such configurations connect to rich, deep physics. See e.g. Preskill’s
classic [81] for an in-depth introduction.

Figure 6: The Dirac monopole as the limit where a semi-infinite solenoid becomes
the Dirac string.

14We note for fun that this fact was used to intriguing effect in the ‘irrational axion’ of [80].
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The problem is that when we define the magnetic field in terms of the vector potential,
B⃗ = ∇× A⃗, the absence of magnetic monopoles in the Maxwell equations follows necessarily,
∇ · B⃗ = ∇ · (∇× A⃗) ≡ 0 because the divergence of a curl is identically zero. In the relativistic
theory this is often referred to as the ‘Bianchi identity’, εµνρσ∂νFρσ = 0.

As Dirac understood, their construction in the low-energy theory of the gauge field Aµ(x)
requires a singular line in the electromagnetic field in some direction from the monopole off
to infinity known as a ‘Dirac string’. This is on display in his

ADirac(x) =
g

4πr
tan
θ

2
φ̂ , (12)

in polar coordinates with φ the azimuthal angle and θ the polar angle. This indeed gives rise
to the monopole magnetic field above, but this potential is singular from r = 0 out to all r
along the line θ = π. This is not a deficiency of Dirac; any function A(x) which produces this
magnetic field will unavoidably have such a singular line, which we call a ‘Dirac string’. An
isolated singularity at r = 0 appears also of course in the electric field of an elementary charged
particle—this can essentially be ignored in the low-energy theory and relativistic quantum field
theory teaches us how to deal with it using renormalization. But a line-like singularity can lead
to physical effects which we do not want and must avoid, as follows.

One can think of a monopole so constructed as being one end of an infinitely-thin solenoid
where the other end has been sent off to infinity.15 The magnetic flux g of the monopole
flows into it from infinity through the solenoid, creating a monopole magnetic field at its end.
The famous Dirac quantization condition arises from requiring that the Dirac string is truly
unphysical, so that we can really view the solution as just the point monopole. Given an
electrically charged particle with charge e and dragging it in a closed path around the would-
be Dirac string of a monopole with magnetic charge g, the charge picks up an Aharonov-Bohm
phase

exp

�

ie

∮

γ

A⃗ · ds⃗

�

= exp

�

ie

∫∫

(∇⃗ × A⃗)d2 x

�

= exp ieg , (13)

which is a physical phase we could measure in an interference experiment. Then, in order for
the Dirac string to truly be unphysical, the charge g of a fundamental monopole must satisfy

eg = 2πn , n ∈ Z . (14)

The smallest-charge monopole is found for n = ±1, and of course the most stringent require-
ment is from the electrically-charged particle with the least charge. That is, if qmin satisfies
Eq. 14, then so will every multiple of qmin, so we have implicitly used this normalization of e
in writing that equation.

Alternatively to this construction (and more than 40 years later) Wu and Yang showed that
magnetic monopoles can be described in a manifestly singularity-free language by using some
concepts from topology [86]. In fact historically it is these ideas that have sparked theoretical
physicists’ enduring fascination with topology in field theory, but let us try only to appreciate
some elementary points.

From this point of view, the unphysical Dirac string appears in the naive description be-
cause there is no way to express the vector potential Aµ(x) globally as a function for all x . In
topological language we must instead think of fields as sections of certain fiber bundles, but ele-
mentarily we can imagine we must describe the gauge field using two functions AµN/S(x)with an

15It is not clear to us who first discussed the Dirac string in this language, though Dirac’s paper [82] invites
this interpretation easily enough. We refer to Felsager [83] for one construction, [84] for some explicit formulae,
and [85] for an experiment at creating an approximate monopole in the lab by taking just such a limit.
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Figure 7: The local descriptions AµN/S(x) of the vector potential in their separate
patches, and the transition function on their overlap.

overlapping range of validity. Thinking in spherical coordinates, AµN(x) is defined for polar an-
gles θ ∈ [0, (π+δ)/2) and AµS(x) is defined on the ‘southern hermisphere’ θ ∈ ((π−δ)/2,π]
where the small δ addition to the domains ensures that these two descriptions overlap on a
small ring around the equator. They have the explicit expressions

AN(x) =
g

4πr sinθ
(1− cosθ ) φ̂ , (15)

AS(x) =
−g

4πr sinθ
(1+ cosθ ) φ̂ . (16)

If we have two overlapping descriptions on the equator they must surely somehow match,
and this is possible despite them being different functions locally because there is an underlying
U(1) gauge redundancy. That is these functions describe the same physics on the equator if
they agree up to a U(1) gauge transformation, which we can see as

On overlap: AµN (x) = AµS(x)− ie−iα(x)∂ µeiα(x) , α(x) = g
φ

2π
k . (17)

Then morally speaking the different monopole solutions are classified by the value of this
gauge transformation on a path around the equator U(φ) : φ → U(1) as φ = 0..2π with
U(0) = U(2π). In fact the collection of such paths is familiar in algebraic topology as the
‘fundamental group’ π1(G) of a space G. In the case of a U(1) group, π1(G) = Z tells us that
there are magnetic monopoles labeled by any integer charge.

In contrast, in the case of anR gauge group there is no way to draw a closed path inRwhich
cannot be shrunk down to a single point, so π1(G) = 1 is trivial and this group does not have
any magnetic monopoles. One may have intuited this already from the Dirac quantization
condition and the results above about electric representations. Since in an R gauge group
the electric charge can be an arbitrarily small real number, the Dirac quantization cannot be
satisfied for any magnetic charges.

6.2 Global structure of non-Abelian groups

Case study 1: SU(N) vs. SU(N)/ZN Recall that the group SU(N) consists of N×N complex
matrices which are unitary (V †V = 1) and special (det V = 1). The structure of infinitesimal
transformations in SU(N) is generated by traceless hermitian N × N matrices

U(θ a) = 1i
j + iθ a (T a)ij , (18)

where a = 1..N2 − 1. These T a generate the Lie algebra of SU(N) in a way that generalizes
the familiar Pauli matrices of SU(2). The group SU(N) is non-Abelian but it has a nontrivial
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‘center’ ZN , where the center of a group is the subgroup of elements which commute with all
others,

ZN ⊂ SU(N) :
§

exp
�

2πk
N

i
�

1N

ª

k=0..N−1
, (19)

which is generated by the element ωN = exp
�2π

N i
�

1N . We can sensibly form the quotient
group SU(N)/ZN where we ‘mod out’ by the center subgroup. This group can be thought
of as SU(N) with the equivalence relation ωN ∼ 1N imposed. But this does not change the
structure of transformations near the identity; the Lie algebra remains the same.

In the quotient group any two elements of SU(N) which differ by a center element are
now identified. In particular, each element of the center is now identical to 1N . Thinking now
about the representation theory, this means that such elements must necessarily act trivially
on each field.

If we think about the familiar SU(N) representations, this is not the case for all of them.
Consider a field ψa in the fundamental representation of SU(N), which transforms generally
as ψa → ψaV b

a . Then in particular under an (ωN )ba transformation it picks up an N th root of
unity phase. In SU(N) this is as it should be, but this is nonsensical for a representation of
SU(N)/ZN , in which this element was literally the identity—then the fundamental represen-
tation of SU(N) is not an allowed representation of SU(N)/ZN !

The field theory of SU(N)/ZN is a theory of adjoint fields, including of course the gauge
bosons which are necessarily present. An adjoint representation can be thought of as the
product of a fundamental and antifundamental with the trace removed, with the math
N ⊗ N̄ = (N2 − 1) ⊕ 1. With equal number of fundamental and antifundamental indices,
Aa

c → (V
†)cdAa

c(V )
b
a is easily seen to be invariant under a center transformation. The SU(N)/ZN

theory allows arbitrary matter which is in either the adjoint or irreps which can be built from
it and the Levi-Civita symbol ϵa1...an

.
The global structure also here crucially changes the topological properties of the gauge

group, just as did the quotient in the Abelian case. We can see this again in the allowed
magnetic representations, which are controlled by the fundamental group π1(G). This can be
thought of elementarily as simply the group of topologically equivalent maps of circles into
G, π1(G) ≃ {φ : S1 → G}. The question is what sorts of closed loops we can draw in G. For
SU(N) it is a fact that π1(SU(N)) = 1 and there are no magnetic monopoles. But now let us
consider the following diagonal generator of SU(N)

T N2−1 =









1
1

...
−(N − 1)









, (20)

which is a hermitian, traceless matrix you can think of as the generalization of the Pauli σ3 to
SU(N). Of course close to the identity we can think of an infinitesimal transformation in this
direction θ a = δa

N2−1θ ,

U(θ a) = 1+ iθT N2−1 +O(θ2) , (21)

just as in SU(N). But now in SU(N)/ZN we will see something interesting if we go a large
distance in this direction, say θ = 2π/N . The higher order terms form into the exponential

U(θ a) = exp
�

i
2π
N

T N2−1
�

= exp
�

i
2π
N

�

1 , (22)

and because −(N −1) = 1 (mod N) we see that by following a path along the T N2−1 direction
we have ended up at an element of the ZN center. In SU(N) there’s nothing special to say
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about this, but in SU(N)/ZN this means that you can go far out along this direction and end
up back at the origin! So now there is a map φ : [0,2π) 7→ G where φ(θ ) = U(θ/N) and this
gives us one-dimensional loops around SU(N)/ZN .

This means that in addition to the electric representations discussed above, SU(N)/ZN
also has magnetic representations. In this case there are not monopoles of any integer charge
as in π1(U(1)) = Z but rather only N distinct closed loops π1(SU(N)/ZN ) = ZN and so only
N distinct monopoles. If you wind N times around SU(N)/Z you end up with a path that can
be deformed into lying only in SU(N), where it can be shrunk to a point.

The familiar example of this is SU(2) which has π1 (SU(2)) = 1, and you will re-
call is only locally isomorphic to the rotation group SO(3), while globally double-covering
it. Then the quotient group SU(2)/Z2

∼= SO(3) is isomorphic to 3D rotations and has
π1 (SU(2)/Z2) = π1 (SO(3)) = Z2. The fact that looping N times around SU(N)/ZN returns
you to the identity is nothing more than ‘Dirac’s belt trick’—in 3D space taking the belt buckle
on a loop in φ : [0,2π) 7→ SO(3) puts it in a topologically twisted sector yet going around
twice returns it to the identity.

Case study 2: SU(N)×U(1) vs. U(N) In the case of a product group there may be a more
subtle choice of global structure which interrelates the allowed representations of the group
factors. In fact U(N)∼= (SU(N)× U(1))/ZN differs in its global structure from SU(N)×U(1),
though the fact that they are equivalent locally is often used when analyzing perturbative
physics.

In this case the quotienting is done by a diagonal combination of the ZN center sub-
groups of the two factors, and identifies them with each other exp 2πi

N 1N ∼ exp 2πi
N Q.

This means that every field must be invariant under the diagonal combination of rotations,
exp 2πi

N 1N × exp −2πi
N Q ≡ 1.

There is in general for SU(N) representations a notion of ‘N -ality’ which simply tracks
how the field transforms under a ZN center transformation. A fundamental has N -ality of 1,
as we saw above, and in the SU(N)/ZN theory the representation theory required N -ality of
0 (mod N). Here in the U(N) theory the quotient instead correlates the N -ality of the rep-
resentations with the Abelian charge. A fundamental must have a charge under Q which is
1 (mod N) such that it is invariant under the quotiented subgroup. Since every representation
may be constructed by taking tensor products of fundamental and anti-fundamental represen-
tations, this informs us of the charge Q (mod N) which each SU(N) representation must have
in order to be an allowed representation of (SU(N)× U(1))/ZN . The two-index φab either
symmetric or anti-symmetric irrep comes from N ⊗ N = N(N − 1)/2 ⊕ N(N + 1)/2 so must
have U(1) charge 2 (mod N). The adjoint φa

b is built from N ⊗ N̄ = N2 − 1⊕ 1 so must have
U(1) charge 0 (mod N), and so on.

Now what of the magnetic representations? Early physics work in this direction includes
[10,87–90], in which much further detail may be found. In SU(N)×U(1) the two factors are
separate, and π1(SU(N)) = 1 does not have monopoles while π1(U(1)) = Z gives the simple
monopoles familar from the Abelian case above.

Turning to (SU(N)× U(1))/ZN , the structure is a bit subtle. The fundamental group
π1(U(N)) = Z tells us we have distinct monopoles for any integer, but in this case the spectrum
of monopoles is skewed away from just being the Z-valued monopoles of the Abelian group.
Let us picture the different classes of closed paths. Of course one thing we can do is simply
go all the way around U(1) as U(φ) = exp(iφQ) and wrap around the U(1) direction to get a
monopole with only U(1) magnetic flux.

However, now if we go a fraction of k/N around the circle, the quotient combined with
our understanding of the SU(N)/ZN case above tells us exp

�

i 2πk
N T N2−1
�

∼ exp
�

i 2πk
N Q
�

. Then
we can return to the origin not by continuing around the U(1) direction, but by taking a path
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Table 3: Representations of the Standard Model fields under the subgroups of the
gauge symmetries, switching notation from the earlier sections in which we used
Dirac fermions and the standard convention for the normalization of hypercharge.
Herein we speak of Weyl fermions—as appropriate for the Standard Model in the
unbroken phase—and henceforth we normalize U(1)Y so the least-charged particle
has unit charge. This will make various statements simpler to see.

Q i ui d i Li ei H

SU(3)C 3 3 3 – – –

SU(2)L 2 – – 2 – 2

U(1)Y +1 −4 +2 −3 +6 −3

along T N1−1 in SU(N) that when we get close to the origin looks like U(θ ) = 1+ iθT N2−1.
So this case is something of a mixture of the two we have seen before. There are k ∈ Z

magnetic monopoles, but they now have both Abelian and non-Abelian magnetic fluxes for
k ̸= 0 (mod N). It is only in the case k ∈ NZ for which they have U(1) magnetic flux only.

6.3 The Standard Models

The case of the Standard Model is not much more difficult than the above examples we have
discussed. As you know, the Standard Model is a Yang-Mills theory with a certain continuous
gauge group which near the identity includes factors of SU(3)C , SU(2)L , and U(1)Y . The
perturbative physics of these theories, including the spectrum of gauge bosons, is controlled
by the local structure of gauge transformations which are close to the identity transformation.
Thinking just of the symmetry group, we may write a general such infinitesimal group element
as

U(θ1,θ i
2,θ a

3 ) = 1+ iθ1Y + iθ i
2T i

2 + iθ a
3 T a

3 , (23)

where θ1,2,3 parametrize the transformations in the hypercharge, weak, and strong directions,
and T3, T2, Y are the generators of the respective subalgebra. Thinking about the SM as a
Yang-Mills theory we wish to upgrade this invariance from global to local transformations
which depend on spacetime position θi 7→ θi(x). Then as is familiar we must introduce vector
gauge bosons in the adjoint representation and couple them to our charged fields.

The transformations close to the identity explore only the Lie algebraic structure, and in
fact are not sensitive to the ‘global structure’ of the gauge group. This is what we see in the
covariant derivative to minimally couple charged particles to a gauge field

Dµ = ∂µ − i g1QY Bµ − i g2TαR2
Wα
µ − i g3T a

R3
Ga
µ , (24)

which explores only the local structure of the gauge group, just as the position derivative
explores only the local structure of the spacetime manifold. That means we are only experi-
mentally sure of this local information, and in fact there are multiple possible Lie groups which
have this same Lie algebra.

The four different possibilities are

GSMn
≡ (SU(3)C × SU(2)L × U(1)Y )/Zn , (25)

where n= 1, 2,3, 6 and we use the slang term Z1 ≡ 1 for convenience. As far as we are aware,
this was first laid out systematically in a little-known 1990 solo paper by a UCSB grad student
[22] but has been well-publicized in recent years [19]. The options with n> 1 can be viewed
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Table 4: How each SM field transforms under a center transformation by the gener-
ator of each noted subgroup.

Q i ui d i Li ei H

Z3 ⊂ SU(3)C ei2π/3 e−i2π/3 e−i2π/3 1 1 1

Z2 ⊂ SU(2)L −1 1 1 −1 1 −1

Z3 ⊂ U(1)Y ei2π/3 e−i2π/3 e−i2π/3 1 1 1

Z2 ⊂ U(1)Y −1 1 1 −1 1 −1

as quotient groups of GSM1
where we quotient out certain diagonal center transformations as

follows.
In the group GSM2

= GSM1
/Z2, we impose an equivalence relationship between the Z2

center subgroups of SU(2)L and of U(1)Y . That is, (−1)12 ∼ exp(iπY ), working now in the
normalization that the least-hypercharged particle has unit charge (see Table 3). In the group
GSM3

= GSM1
/Z3, we impose an equivalence relationship between the Z3 center subgroups of

SU(3)C and of U(1)Y . That is, exp(2πi/3)13 ∼ exp(i2πY /3). In the group GSM6
we impose

both of these quotients simultaneously.
Of course we can always consider these as abstract quotient groups, as in the constructions

of the previous sections. But we have also observed the particles of the SM, which transform
in a variety of representations. To see if we can legitimately consider these other possibility for
global structure, we must check that the representation theory of any of these options actually
allows for the needed particles.16 Indeed, it does work, as may be checked easily from the
data in Table 3. In the case of the Z2 quotient, we see that the fields which are SU(2) doublets
all have odd hypercharge, and the fields which are SU(2) singlets all have even hypercharge
(and the SU(2) triplet W a of course has zero hypercharge) which means that indeed none of
the fields are charged under this diagonal Z2 center transformation. The Z3 subgroup may be
checked just as easily and the conclusion is the same, meaning that indeed there is a four-fold
ambiguity in the global structure of the gauge group of the SM.

It is useful also to note that a particular global structure may be demanded by the UV
embedding of the SM in a unified gauge group. Either of SO(10) or SU(5) demand the Z6
quotient. Less stringently, Pati-Salam SU(4)C ×SU(2)L ×SU(2)R requires the Z3 quotient and
trinification SU(3)C × SU(3)L × SU(3)R needs the Z2 quotient.

Given an embedding of the SM gauge algebra in a UV theory, we can see the global structure
demanded simply by examining the decomposition of the fundamental irreps of the UV under
this breaking, and asking which center elements they are invariant under. For example, the em-
bedding of the SM in SU(5) is such that the fundamental decomposes as 5→ (3,1)+2⊕(1, 2)−3,
and we see manifestly that these are invariant under the Z6 center. Since all irreps of SU(5)
can be found in tensor products of 5 and 5̄, the embedding of the SM in SU(5) produces only
representations which are invariant under the Z6. More formally, of course, one can find group
theoretically that it really is SU(3)× SU(2)×U(1)/Z6 which is actually a subgroup of SU(5),
as has been known since 1980 at latest [97].

16One must additionally check that each of these versions of the Standard Model is free of global anomalies,
which is indeed true as discussed in [91–96].
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From the above argument, it is clear that finding a representation which is charged under
the Z6 center falsifies the embedding into SU(5). More generally, discovering a particle with
electric charge e/6 (either at colliders or elsewhere) would rule out all the minimal unified
models of the universe.17 A new particle with charge e/2 would tell us we can have Pati-Salam
but it cannot be further embedded into SO(10), and a new particle of charge e/3 would allow
a unified theory like trinification but rule out its embedding in E6.

Some additional possibilities: Thinking just as low-energy effective field theorists, there are
a couple further possibilities are useful to note. For one, it is conceivable that the hypercharge
assignments we have in Table 3 are not actually in terms of the charge quantum. That is, we
could discover a particle which has hypercharge 1/N that of the left-handed quark doublet
field Q. This would rule out all the UV unification models we normally think about, but is
possible. In terms of thinking about the global structure of the SM gauge group, this would
effectively tell us that the U(1)Y circle is actually a factor of N ‘larger’ than we had thought.
Correspondingly the magnetic monopole charges are a factor of N larger as a result of Dirac
quantization. Recently [27] has fully classified which such possibilities are consistent with
the various SM quotients. It would be interesting to understand which of these could still be
consistent with new unification models.

Most exotically, we can think about RY , in which irrrational charges are allowed. At a
generic point in some constraint plot of fractionally charged particles, one can have this in
mind as the alternate hypothesis that is being tested. It is true that we expect theories of
quantum gravity do not contain non-compact gauge groups like R (see e.g. [15, 100]), but it
is not obvious there is anything wrong with them strictly as quantum field theories. Flipped
around, we can say that searches for irrationally fractionally charged particles are testing deep
principles of UV physics. These ideas are also subject to precision tests of atom neutrality for
example using interferometry [101–103].18

Finally we mention that these are not the only possible ambiguities in the gauge group
of the Standard Model. In [105] (App. B.1) we introduced the SM+, in which the SM is
extended by gauging ZB−Nc L

Nc Ng
×ZL

Ng
, which is the Standard Model’s anomaly-free, generation-

independent, global zero-form symmetry. This entails no modification of the local dynamics,
but ensures absolute proton stability. We will further explore these and related possibilities in
future work [106].

7 Generalized Global Symmetries

As fundamental physicists we are deeply familiar with the power of symmetries and how a
proper understanding of the symmetries of a system can aid in both our description of the
theory and in finding a further ultraviolet description thereof. In the previous section we
discussed the ambiguity in the global structure of the Standard Model gauge group as general,
bottom-up motivation for searching for fractionally charged particles. Focusing on a limit
perturbatively close to the free theory, this may seem like just such a symmetry analysis, but

17Notably this statement only applies for the minimal theories of so-called ‘vertical’ unification; that is theo-
ries which consolidate one generation of SM fermions into fewer irreps. Unification among generations may be
compatible with the existence of any of these fractionally charged particles. Obviously so when the horizontal
gauge group is factorized from the Standard Model gauge group e.g. [98], but even in non-factorized cases such
as color-flavor unification [99].

18Of course all experimental measurements have a finite precision, so in some strict sense it is not possible to
‘prove’ an electric charge to be irrational. Regardless, even measuring a rational charge with very large denominator
(when expressed irreducibly) would be challenging to UV physics, as it has proven hard to find large charges in
string theory [104].
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really gauge ‘symmetries’ are not symmetries—they are redundancies of our description. This
is evident in the existence of descriptions where we never need speak of a gauge redundancy,
such as the ‘on-shell approach’, and has been hammered home to us by discovering dualities
where the same physics can be understood in terms of gauge theories with different groups.
So it is useful instead to focus on global symmetries, which do have physical content that is
independent of any choice of description. In this section we discuss how the possible global
symmetries of the Standard Model also provide a bottom-up motivation for the search for
fractionally charged particles.

In the framework of Generalized Global Symmetries, symmetries correspond to the ex-
istence of certain operators which have topological correlation functions. These are known
as ‘symmetry defect operators’ (SDOs), can be thought of as implementing the global sym-
metry transformation by ‘acting on’ (or ‘sweeping past’) the charged objects, and beautifully
generalize familiar notions like Noether charges and Gauss’ law.

In the following we will aim to describe relevant basic ideas of Generalized Global Symme-
tries in an elementary fashion intending to convey some conceptual lessons. For further detail,
generalization, and technicalities we refer to the seminal [17] and to some reviews aimed to be
accessible for particle physicists [107–109].19 But we will eschew any topic whose introduc-
tion would require cohomology, as well as many interesting GGS possibilities broader than the
basics we require. Ideas and technology from GGS are gradually being utilized in (or towards)
particle physics applications, for example [23–26,91,92,95,96,98,99,117–146].

Familiar (zero-form) Noether charges A familiar symmetry which acts on local fields (so
the charged operators are zero-dimensional) has an associated Noether charge. In the case of
a continuous symmetry (for simplicity, U(1)X ) we may build this out of a Noether current Jµ

which obeys the conservation equation ∂µJµ = 0. From this current we can build a family of
topological, unitary operators by exponentiating its integral over any three-manifold Σ3,

Uα(Σ3) = exp

�

iα

∫

Σ3

Jµεµνρσd xνd xρd xσ
�

, (26)

where εµνρσJµ ≡ ⋆J is the Hodge dual. We refrain from the index-free notation of differential
forms, but mention that the benefit thereof is to emphasize that the metric tensor is not needed
to define these operators—they are supposed to be topological, after all.

The familiar Noether charge restricts Σ3 to be all of space at a given time, and the topo-
logical invariance of the charge is then the fact that it can be moved forward or back in time
and the charge remains the same. But this more covariant set of operators is well-defined for
any Σ3, and the conservation ∂µJµ = 0 implies that any deformations of this surface do not
change the correlation functions of Uα(Σ3). Let us discuss further how to think about this,
drawing from [107] among others.

We consider smoothly deforming Σ3 to Σ′3, where for now we assume doing so does not
cross any charged operators. That is, the spacetime volume in between these is a four-manifold
Σ4 bounded by these two three-surfaces, ∂Σ4 = Σ3

⋃

Σ′3, and Σ4 does not have any charged
operators in it. We compute the product of an SDO on Σ3 implementing a rotation by α and
an SDO on Σ′3 implementing a rotation by −α using the generalized Stokes’ theorem

Uα(Σ3)U−α(Σ
′
3) = exp

�

iα

∫

Σ3

Jµεµνρσd xνd xρd xσ − iα

∫

Σ′3

Jµεµνρσd xνd xρd xσ
�

(27)

= exp

�

iα

∫

Σ4

∂µJµd4 x

�

= 1 . (28)

19We note also introductions and reviews a bit further afield such as [110–116].
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Where we have used current conservation to find the volume integral vanishes and we get 1
on the right-hand side. Since these SDOs are unitary operators, we learn Uα(Σ3) ≃ Uα(Σ′3).
That is correlation functions containing an insertion of Uα(Σ3) are invariant under deforming
Σ3, so the SDOs are topological as we said above.

Now, the above equations assumed that there are no charged particle in the volume Σ4
between the initial and final surfaces. How do the SDOs behave when we move the surface
Σ3 past a local field ψ(y) charged under U(1)X ?

Recall that the Ward identity encodes how the conservation of a symmetry current jibes
with the existence of operators sourcing that current. That is, we must upgrade the classical
∂µJµ(x) = 0 to an operator equation which tells us what to do with a charged fieldψ(y). One
derives the consequences of the symmetry in the quantum mechanical theory by performing
a symmetry transformation for a general correlation function calculated by a path integral,
demanding the action is invariant under the symmetry, and observing the consequences for
the charged operators—for example in Section 14.8 of Schwartz [147]. In the Abelian case
we have simply

∂µJµ(x)ψ(y) = δ(4)(x − y)qψψ(y) . (29)

This tells us that while ∂µJµ(x) = 0 away from other operators, there are important contact
terms when this symmetry current hits an operator charged under this symmetry. One should
properly view such statements as taking place inside arbitrary correlation functions separated
from other local operators,

〈. . .∂µJµ(x)ψ(y) . . . 〉= δ(4)(x − y)qψ〈. . .ψ(y) . . . 〉 , (30)

where the ‘. . . ’ is a stand-in for any other operators away from x , y . The action of the Ward
identity will be crucial in understanding the use of the symmetry defect operators.

Now let us repeat the computation above of deforming Σ3 to Σ′3 but now in the case where
doing so does cross a charged operator. A simple case has Σ3 as a hypersphere S3 and the local
operator ψ(x) at a point x which is inside Σ3. We consider then shrinking Σ3 down Σ3→ Σ′3
so x is now outside of this surface, as in Figure 8, and then acting with the inverse SDO. Overall
this acts on ψ(x) as

Uα(Σ3)ψ(x)U−α(Σ
′
3) = exp

�

iα

∫

Σ4

∂µJµd4 x

�

ψ(x) =ψ(x)eiαqψ . (31)

Where we have used the Ward identity and the fact that x ∈ Σ4, and we refer to [107] for
further detail. We note also that if no other charged operators were in Σ3 to begin with, then
conceptually we can skip this second step of acting with U−α(Σ′3) and just imagine shrinking
Σ3 all the way down to a point after it passes x .

We can state the result more generally by saying that these SDOs act by ‘linking’, and
writing Uα(Σ3)ψ(x)U−α(Σ′3) = ψ(x)e

iαqψLink(Σ3,x). In the situation we have described, the
‘Linking number’ Link(Σ3, x)) = 1. The ‘Linking number’ is a topological invariant of a con-
figuration in d spacetime dimensions between a p-dim submanifold Σp and a d − p − 1-dim
submanifold Σd−p−1. This action by linking keeps track of the charge inside the SDO when we
move a charged operator from the interior to the exterior or vice-versa. To gain some intuition,
it is useful to think about the case d = 3 (say, 3-space at some fixed time), where it’s easy to
visualize that a p = 0 point is either inside or outside a d − p−1= 2 sphere, and a p = 1 loop
can be linked with another d − p− 1= 1 loop.20

20We note for fun that general linking numbers can be defined by certain topological quantum field theories
[148].
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Figure 8: A local operator ψ(x) charged under a U(1) zero-form symmetry and the
action of a symmetry defect operator Uα(Σ3) on it by linking as described in the text.
One dimension is suppressed.

Discrete symmetries We note also that a useful aspect of this formalism is a unified lan-
guage for both continuous and discrete symmetries. A discrete ZN symmetry doesn’t have
an associated current because the Noether procedure requires a notion of infinitesimal trans-
formation. However, there are still well-defined SDOs that we can write down and have the
expected properties when they act on charged operators,

U 2πk
N
(Σ3)ψ(x) =ψ(x)exp

�

i
2πk
N

qψLink(Σ3, x)
�

. (32)

This suffices as a definition in the case of a discrete symmetry by describing how U(Σ3) behaves
in arbitrary correlation functions. Of course it may be useful—and depending on the scenario
it may be more-or-less easy—to realize the SDO as the integral over Σ3 of some local operator.
Sometimes we are thinking about a ZN subgroup of what is (or began as) a U(1) symmetry,
and we can realize Uα(Σ) as an integral over a current with the angle restricted to ZN . This
is effectively an operator which measures a global charge (mod N), and will be the relevant
case for us below with the electric one-form symmetry of electromagnetism.

In other cases when the symmetry is really intrinsically ZN , it is sometimes useful to in-
troduce an auxiliary U(1)-valued field and then project out its dynamics. This becomes an
invaluable technique when one wants to understand discrete gauge theories, and we refer
to [107] for an expansive discussion of this topic.

7.1 One-form symmetries

Yang-Mills theories have long been appreciated to include some gauge-invariant one-
dimensional operators known as Wilson loops and ’t Hooft loops. These are not local operators
because they are defined on a 1-dimensional path γ through spacetime which is either a closed
loop or an infinite line.21 Physically a Wilson loop can be seen as the effect of a massive parti-
cle of charge q traversing the path γ, and in the limit where the mass is taken to infinity these
Wilson loops capture fully their physical effects. In the Abelian case, the Wilson loop simply
integrates the vector potential along this path as

Wq(γ)≡ exp iq

∫

γ

Aµd xµ . (33)

21Which are closed loops on the one-point compactification of spacetime.
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Figure 9: The familiar form of Gauss’ law on a timeslice (left) and the more covariant
interpretation of the Gaussian surface as a symmetry defect operator Uα(Σ2) acting
on Wilson lines charged under a global one-form symmetry.

In the general non-Abelian case the Wilson loops are instead labeled by a representation
over which we take the trace WR(γ) ≡ Trexp i

∫

γ
Aa
µT a

R d xµ. The ’t Hooft loops are defined
analogously for magnetic representations but with the electromagnetic dual vector potential
A 7→ Ã.22

Now the question of which representations our theory allows can be understood field theo-
retically and gauge-invariantly by examining these line operators and the possible symmetries
they might enjoy, which are called one-form symmetries since they act on one-dimensional
operators.

We recall Gauss’ law in electromagnetism where you think about integrating the electric
field over some closed 2-dimensional spatial manifold Σ2 and finding some notion of an en-
closed charge Qencl =

∫

Σ2
E⃗ ·dA⃗. But we can more clearly and more covariantly think about this

by recognizing the generalized symmetry structure behind Gauss’ law: The Gaussian surface
computes a Noether charge for a one-form symmetry!

Pure electromagnetism in fact has both an electric one-form symmetry and a magnetic one-
form symmetry. The photon equation of motion and the Bianchi identity reveal the conserved
two-index currents which generate these one-form symmetries,

∂µFµν = 0 , ∂µε
µνρσFρσ = 0 . (34)

The familiar Gaussian surface can in fact be covariantly upgraded and exponentiated to realize
SDOs supported on any two-dimensional surface Σ2

Uα(Σ2) = exp

�

iα

∫

Σ2

εµνρσFρσdSµν

�

. (35)

The SDOs are topological except when they cross Wilson lines and their correlation functions
are controlled by

Uα(Σ2)Wq(γ) =Wq(γ)exp (iαqLink(Σ2,γ)) . (36)

This is just the analogue of what we observed above for zero-form symmetries. Now we can talk
about the allowed representations in terms of the electric one-form symmetries of the Wilson
lines of the theory. Analogously to the argument in terms of gauge transformations, if the

22For completeness we recall that the dual potential is related to the vector potential in the following nonlocal
way. The field strength is Fµν = ∂µAν − ∂νAµ, and its Hodge dual is F̃µν = ϵµνρσFρσ. This dual field strength is
related to the dual potential as F̃µν = ∂µÃν − ∂νÃµ.
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electric one-form symmetry is compact (U(1) or a ZN subgroup) then there is a transformation
by α= 2π which should act as the identity

U2π(Σ2)Wq(γ)≡Wq(γ) , (37)

and this is seen by the above equation to imply q ∈ Z, since the linking number is an integer.
On the other hand it is conceivable that the electric one-form symmetry is R, though with
the same difficulties discussed above that this is thought not to occur in a theory of quantum
gravity.

7.2 One-form symmetry-breaking

There is an important qualitative difference between 0-form and (n > 0)-form symmetries
when it comes to their breaking. For a zero-form symmetry, the charged operators are zero-
dimensional local operators—precisely the sort which can appear in a Lagrangian density gov-
erning the local dynamics of a theory. This means that such symmetries may be explicitly
broken by adding a charged operator to the Lagrangian. For a familiar example, if we add a
Majorana mass for neutrinos L+= (H̃ L)(H̃ L)/Λ then we explicitly break the zero-form global
U(1)L lepton number symmetry.

On the other hand, for a higher-form symmetry the charged objects are extended operators.
These don’t appear in the Lagrangian, and indeed no deformation of the Lagrangian with
additional operators can break a higher-form symmetries. Rather, these symmetries can only
break if, as you go to high energies, you see that the charged extended operators are realized
as dynamical objects in a more-fundamental theory. For example, when you see that (some
of) the Wilson lines of electromagnetism are in fact in our universe completed into dynamical
charged particles like electrons and protons.

A useful qualitative picture to have of this breaking is of the ‘endability’ of the Wilson
lines [149, 150]. For simplicity we consider an Abelian gauge symmetry where the Wilson
lines are labeled by a charge, but the translation to general representations of non-Abelian
symmetries is obvious. Consider an ‘open’ Wilson line

Wq(γ; x , y) = exp

�

iq

∫ y

x
A

�

, (38)

Aµ→ Aµ + ∂µλ ⇒ Wq(γ; x , y)→ eiqλ(y)Wq(γ; x , y)e−iqλ(x) , (39)

which implies that in the infrared the only gauge invariant line operators are closed loops or
infinite lines. This is also why it is possible for the SDOs U(Σ2) to have topological correlation
functions with the Wilson lines—if Σ2 is linked with γ, it cannot be unlinked by any smooth
deformation. Indeed this is the definition of a topological invariant, and this is what breaks
when we go to higher energies and see dynamical charged matter.

When we have access to the electron, we can write a gauge-invariant, bilocal line operator

ψ̄(y)Wq(γ; x , y)ψ(x) , (40)

which ends on matter fields of charge q. Now it is easy to see why the appearance of the dy-
namical electron breaks the electric one-form symmetries which acted on the integer-charged
Wilson lines in the far infrared.

In Figure 10 we depict a time-like Wilson line beginning and ending on a charged fermion,
and a Gaussian surface on a time-slice which would measure the charge of the Wilson line.
But the surface Σ2 can be smoothly deformed up or down the Wilson line and ‘slide off’ the
end, where it can be shrunk to a point. Then the correlation functions of Σ2 cannot any longer
be topological and depend only on data like Link(Σ2,γ) because this topological linking is no
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Figure 10: Bilocal line operator one can write cutting a Wilson loop. Such a possibility
explicitly breaks any symmetries acting on the Wilson loop because e.g. an SDO on
Σ2 cannot have non-trivial topological correlation functions any longer when it can
smoothly ‘slide off’ the Wilson line.

longer well-defined. So the appearance of the dynamical ψ field means that any one-form
symmetry under which Wq(γ) is charged must necessarily be broken. Of course this holds true
also for a Wilson line of charge nq, n ∈ Z, which can end on n of these charged fields. But if
the charge q of ψ is not the minimum electric charge, there will still be Wilson lines that are
not ‘endable’, and so there may remain an electric one-form symmetry.23 We now discuss this
possibility in more detail, specializing to QED.

7.3 Standard Model one-form symmetry

As suggested by the preceding sections, in the full theory of the Standard Model the different
global structures correspond to different one-form symmetries. But in fact the latter statement
is more general. The existence of a heavy fractionally charged particle implies the existence
of an emergent electric one-form symmetry at low energies. We can understand any exam-
ple universally at low energies where this matches on to an electric one-form symmetry of
QED. We reserve a discussion of the electric one-form symmetry in the electroweak phase for
Appendix B.

At energies far below the electron mass E ≪ me, none of the Wilson lines of electromag-
netism can be ‘cut’ or ‘screened’ by dynamical matter, and there is a U(1)(1)e electric one-form
symmetry corresponding to θ ∈ [0, 2π). This is responsible for Gauss’ law.

When we approach energies of order the electron mass E ≳ me, the continuous electric one-
form symmetry is necessarily broken. In terms of our Gaussian surface SDOs, the statement
is that for general θ , these surfaces will no longer be topological. As shown in [151] we can
interpret this violation of the topological invariance of the Gaussian surface as the electric
charge being ‘screened’ and relate it to the running of the fine-structure constant α. And
indeed we have long appreciated that at these high energies, charges are screened by virtual
electron-positron loops. The Uehling potential [152] describing the one-loop photon vacuum
polarization tells us the corrected form of the charge q(r) one measures for a Wilson line

23The case of an R gauge theory has some slight subtleties in the language one must use to discuss one-form
symmetry-breaking, as discussed in Section 6 of [150].
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operator of charge q using a Gaussian sphere of radius r,

q(r ≫ me) = q

�

1+ e2 e−2me r

p

64π3mer
+ . . .

�

, q(r ≪ me) = q
�

1− e2 log mer
6π2

+ . . .
�

, (41)

where we have given the asymptotic forms. Indeed at energies below the electron mass the
electric one-form symmetry becomes good exponentially rapidly dq(r)/dr ≈ 0, while above
the electron mass the electric one-form symmetry is clearly broken as the Gaussian surface is far
from topological. The question is whether the electron can screen all charges, or whether there
may remain some unbroken electric one-form symmetry corresponds to fractional charges
which the electron cannot screen.

The Gaussian surface in Eq. 35 is normalized such that the electron has q = 1, and

Uθ (Σ2)Wγ(q) =Wγ(q)exp (iθqLink(Σ2,γ)) . (42)

Clearly U2π(Σ2) acts trivially on the electron, and on every particle with charge a multiple
of the electron’s. But if there is remaining discrete electric one-form symmetry at energies
above the electron’s mass, then there are some Wilson lines with 0 < q < 1 in units of the
electron charge. Correspondingly, some Uθ (Σ2) which act trivially on all Wilson lines of SM
representations act non-trivially only on these new Wilson lines, and so remain topological at
E > me. The SM gauge group with the quotient Zn has discrete electric one-form symmetry
Z6/n above the electron’s mass.

If instead there is no remaining electric one-form symmetry above the electron’s mass, as
in the case where the SM is embedded in SU(5) in the UV, then every Wilson line has q ∈ Z. So
if we consider θ = 2π then the Gaussian surface will act trivially on any operator, and there
are no nontrivial Uθ (Σ2) which remain topological.

So the language of generalized global symmetry conceptually unifies the low-energy ex-
perimental signatures by focusing on the symmetry-breaking. In Section 6 above we saw that
the SM gauge group could have different global structures. Or it could be that the left-handed
quarks Q i do not actually have the minimum of hypercharge and there is a less-charged par-
ticle. Or the hypercharge gauge group could even be RY . In any of these cases, the signature
in the far infrared where experimentalists work is simply the existence of fractionally charged
particles, and we have a unifying statement of what we may learn from such searches as fol-
lows

By discovering a particle with fractional electric charge qψ and mass mψ we learn the
SM has an emergent electric one-form symmetry at E ≪ mψ. If qψ = n/N (in units

of the electron charge e) with gcd(n, N) = 1 then the SM has emergent Z(1)N electric
one-form symmetry. The unbroken one-form symmetry is measured by the Gaussian
surfaces

Uk(Σ2) = exp

�

i2πk

∫

Σ2

F

�

, (43)

with θ = 2πk, k = 1..N . And in the case where qψ /∈Q then the one-form symmetry
is Z(1), and each k ∈ Z makes for a distinct Gaussian surface.

The fact that these Gaussian surfaces remain topological continues to mean that these
fractional charges cannot be screened by matter at lower energies. That is, if we surround
a heavy fractional charge with a conductor made out of Standard Model particles, it will be
unable to prevent a nonzero electric field in its volume.
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Magnetic monopoles The low-energy theory of QED also has a magnetic one-form symme-
try as seen by the existence of ’t Hooft lines and the non-existence of any magnetic monopoles
to cut them in the infrared theory. Just as the electric one-form symmetry of the far infrared
is always U(1)(1), the magnetic one-form symmetry group is also U(1)(1). But the existence
of a discrete electric one-form symmetry above the electron mass controls how the charge of
the ’t Hooft lines is related to the electron’s electric charge. That is, with no electric one-form
symmetry, Dirac quantization implies the fundamental magnetic charge is g = 2π/e. With ZN
worth of electric one-form symmetry, the quantum of magnetic flux is instead g = 2πN/e.

8 Conclusions

In this work we have called attention to the interesting physics of fractionally-charged particles
from both the theoretical and observational perspectives. We have seen that their existence
may be tied to the structure of the Standard Model as a quotient group, and correspondingly
their discovery would probe nonperturbative aspects of SM physics which could rule out mini-
mal unification schemes from the infrared. More generally, the language of Generalized Global
Symmetries provides an interpretation of the existence of heavy, fractionally-charged states in
terms of an emergent symmetry possessed by the observed Standard Model.

On the empirical front, we have reinterpreted various LHC searches to derive energy fron-
tier constraints on fractionally-charged particles for a variety of Standard Model represen-
tations. In some cases they possess signatures which are well-covered by existing searches
(modulo subtleties in particle-detector interactions which we have ignored and deserve fur-
ther attention), but in other cases the constraints on these exotic, electrically-charged particles
from energy frontier searches are weak or nonexistent. Further exploration of possible exper-
imental strategies is clearly warranted to ensure a robust observational program for these
striking new particles which could teach us an enormous amount about the universe.
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A Fractionally charged particle partonic cross sections

In this appendix we summarize the partonic cross sections for ψQ pair production. The ex-
pressions are organized by the spin of ψQ and whether or not ψQ is charged under SU(3).

We begin with color singlets. For a fermionicψQ with charge Qψ = (τ3)ψ+Y , where (τ3)ψ
is the eigenvalue of the third generator of SU(2) appropriate for ψQ ’s SU(2) representation,
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we find:

dσ̂EW (q̄q→ ψ̄QψQ)

d t̂
=

dimψ

192πŝ2

�8e4Q2
qQ2
ψ

�

2M4
ψ
+ 2M2

ψ
(ŝ− t̂ − û) + t̂2 + û2

�

ŝ2
(A.1)

+
4g4

Z

�

2M2
ψ

ŝ xL xR

�

q2
L + q2

R

�

+
�

M2
ψ
− t̂
�2 �

q2
L x2

R + q2
R x2

L

�

+
�

M2
ψ
− û
�2 �

q2
L x2

L + q2
R x2

R

�

�

Γ 2
Z m2

Z +
�

m2
Z − ŝ
�2

−
8 e2 g2

ZQqQψ
�

m2
Z − ŝ
�

ŝ
�

m4
Z +m2

Z

�

Γ 2
Z − 2 ŝ
�

+ ŝ2
�

�

M4
ψ
(qL + qR)(xL + xR) +M2

ψ(ŝ(qL + qR)(xL + xR)

− 2 t̂ (qL xR + qR xL)− 2 û (qL xL + qR xR)) + t̂2 (qL xR + qR xL) + û2 (qL xL + qR xR)
�

�

,

dσ̂EW (q̄q′→ ψ̄Qψ
′
Q′)

d t̂
=

dimψ e4(I(I + 1)− i3(i3 ± 1))

192πŝ2 sin4 θW

� t̂2 + û2 + 2 M2
ψ
(ŝ− t̂ − û) + 2 M4

ψ

(m2
W − ŝ)2 + Γ 2

W m2
W

�

. (A.2)

Here ŝ, t̂, û are the partonic Mandelstam variables, gZ = e/ cosθW , qL , qR = τ3−Qq sin2 θW and
xL , xR = (τψ)3 −Qψ sin2 θW factors for ψQ. The quark factors Qq, qL , qR depend on whether
up-type or down-type quarks initiate the collision, while Qψ, xL , xR depend on which SU(2)
representation and hypercharge ψQ carries. If ψQ is an SU(2) singlet, xL , xR ∝ Qψ so the
entire partonic cross section scales as Q2

ψ
. Note ψQ must have vectorial charge assignment,

meaning xL = xR. The factor of dimψ is the size of ψQ ’s SU(3) representation, should we
want to know the electroweak production in that case; dimψ = 1 when ψQ is a color singlet.

The second expression, σ̂EW (q̄q′ → ψ̄Qψ
′
Q′), shows the charged current production cross

section for ψQ in a SU(2) multiplet of size I(I + 1). For production via W+, i3 = (τψ)3 for
the lower charge state within the ψ multiplet and we take the + sign, i3(i3+1), while for W−

production we take the minus sign and i3 = (τψ)3 for the higher charge ψ state.
Keeping the representation the same but switching to scalar ψQ, the expressions become:

dσ̂EW (q̄q→ ψ̄QψQ)

d t̂
=

dimψ

192π ŝ2

�2e4Q2
qQ2
ψ

�

ŝ2 − ( t̂ − û)2 − 4 M2
ψ

ŝ
�

ŝ2

+
g4

Z x2
L(q

2
L + q2

R)
�

ŝ2 − ( t̂ − û)2 − 4 M2
ψ

ŝ
�

Γ 2
Z m2

Z + (m
2
Z − ŝ)2

(A.3)

−
2 g2

Z e2 Qq Qψ x2
L(qL + qR)(m2

Z − ŝ)
�

ŝ2 − ( t̂ − û)2 − 4 M2
ψ

ŝ
�

ŝ(Γ 2
Z m2

Z + (m
2
Z − ŝ)2

�

,

dσ̂EW (q̄q′→ ψ̄Qψ
′
Q′)

d t̂
=

dimψ e4(I(I + 1)− i3(i3 ± 1))

768π ŝ2 sin4 θW

�

ŝ2 − ( t̂ − û)2 − 4 M2
ψ

ŝ
�

(m2
W − ŝ)2 + Γ 2

W m2
W

, (A.4)
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Ifψ carries SU(3) quantum numbers, QCD production g g → ψ̄QψQ, q̄q→ ψ̄QψQ becomes
the dominant mechanism. For fermionic ψ at leading order, we have

dσ̂(g g → ψ̄QψQ)

d t̂
=
πα2

s C2(ψ)

64 ŝ2







−
18
�

2M6
ψ
− 3M4

ψ
( t̂ + û) + 6M2

ψ
t̂ û− t̂ û( t̂ + û)
�

ŝ
�

M2
ψ
− t̂
��

M2
ψ
− û
�

(A.5)

+ dimψ
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2M2
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�

�

M2
ψ
− t̂
��

M2
ψ
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�

−
2C2(ψ)
�

M4
ψ
+M2

ψ
(3 t̂ + û)− t̂ û
�

�

M2
ψ
− t̂
�2 −

2C2(ψ)
�

M4
ψ
+M2

ψ
( t̂ + 3û)− t̂ û
�
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M2
ψ
− û
�2











,

dσ̂QC D(q̄q→ ψ̄QψQ)

d t̂
=
πα2

s dimψ C2(ψ)
�

2M4
ψ
+ 2M2

ψ
(ŝ− t̂ − û) + t̂2 + û2

�

9 ŝ4
. (A.6)

Here dimψ is the size of the ψ SU(3) representation, C2(ψ) is the appropriate quadratic
Casimir, and we have used dimG C(ψ) = dimψ C2(ψ) to remove all instances of the index
C(ψ) and clean up the formulae. For scalar ψQ, the analogous expressions are:

dσ̂QC D(q̄q→ ψ̄QψQ)

d t̂
=
πα2

s dimψ C2(ψ)
�

ŝ2 − ( t̂ − û)2 − 4 M2
ψ

ŝ
�

36 ŝ4
, (A.7)

dσ̂(g g → ψ̄QψQ)

d t̂
=
πα2

s dimψ C2(ψ)

128 ŝ2
( t̂2û2 +M4

ψ
( t̂2 + û2)− 4 M6

ψ( t̂ + û) + 5 M8
ψ)

×

¨

C2(ψ)

�

1

ŝ2(M2
ψ
− t̂)2

+
1

ŝ2(M2
ψ
− û)2

�

+
2(C2(ψ)− 1)

ŝ2(M2
ψ
− t̂)(M2

ψ
− û)

«

. (A.8)

B Electroweak phase one-form symmetry

We have focused on the electric one-form symmetry in the U(1)QED phase of the SM, but let
us turn briefly to the TeV-scale phase, noting that a more technical discussion may be found
in [23].

An electric one-form symmetry in the far IR matches on to some electric one-form symmetry
of the SM, so the general statement is that there are some Wilson lines which are not endable
by the SM matter. The one-form symmetry has rank 1, so we need only one new Wilson line
to generate any that is allowed but not realized by the SM matter. We may think of Wilson
lines as fusing via the composition of representations.

Then we can always for simplicity choose an SU(3) × SU(2) singlet representation with
some hypercharge. In the cases of the ‘global structure’ we can think of these as Wilson lines in
the representation R= (1,1, q)with q = 1,2, 3 for Z6/q electric one-form symmetry. More gen-
erally, sticking with this normalization where the left-handed quark doublet has hypercharge
q = 1, some q = k/N where gcd(k, N) = 1 has ZN electric one-form symmetry and q /∈ Q
has Z.

By combining these and Wilson lines in the known SM representations one can build the
colored or weakly charged representations that give rise to fractionally charged particles as
well. However, it is a more subtle task to write down the symmetry defect operators as the
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integral of some sort of current, since the centers of SU(3)C , SU(2)L are intrinsically discrete.
But we know these two-dimensional SDOs measure certain combinations of the non-Abelian
center symmetry fluxes and the hypercharge flux. The SM fields do not carry these combina-
tions of charges and so these SDOs act trivially upon them.

In general such operators are known as Gukov-Witten operators [153, 154]. For detailed
calculations involved the generalized symmetries it may be useful to introduce auxiliary fields
to write the SDOs in a local-looking form, but this goes beyond our remit. For this purpose
one would likely wish to begin with the SU(3)C × SU(2)L × U(1)Y theory and view the extra
ZN electric one-form symmetry as deriving from gauging the ZN discrete magnetic symmetry
of this theory.

The magnetic one-form symmetry of the Standard Model remains group-theoretically U(1)
no matter the choice of global structure, but the hypermagnetic monopoles may possess also
discrete color- and weak- magnetic fluxes in the case where the global structure is non-trivial.
We refer to [19,96] for further detail. Note if we haveRY there are no magnetic representations
at all, so no magnetic one-form symmetry.
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