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Abstract

Understanding how non-adiabatic terms affect quantum dynamics is fundamental to im-
proving various protocols for quantum technologies. We present a novel approach to
computing the Adiabatic Gauge Potential (AGP), which gives information on the non-
adiabatic terms that arise from time dependence in the Hamiltonian. Our approach uses
commutators of the Hamiltonian to build up an appropriate basis of the AGE which can
be easily truncated to give an approximate form when the exact result is intractable. We
use this approach to study the AGP obtained for the transverse field Ising model on a
variety of graphs, showing how the different underlying graph structures can give rise
to very different scaling for the number of terms required in the AGP
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1 Introduction

The adiabatic approximation [1, 2] states that, for a sufficiently slowly varying Hamiltonian,
an initial eigenstate will remain in a corresponding eigenstate of the time-dependent problem.
This approximation forms the backbone for many current methods in quantum technologies,
including in adiabatic quantum computing [3-5], annealing [6, 7], simulation [8-10], and
the application of quantum gates [11]. The validity of the adiabatic approximation hinges on
time-variations of the Hamiltonian being slow [2,5,12]. The relevant time scale for this is set
by the inverse size of the gaps in its spectrum. In quantum many-body systems, gaps across
transition regions are known to scale inversely with the number of degrees of freedom, forcing
arbitrarily slow time-dependence in order to stay in the adiabatic regime. This has resulted in
the development of a plethora of techniques to control quantum systems and achieve desired
outcomes without the adiabatic approximation, leading to the development of shortcuts to
adiabaticity [13,14], quantum optimal control [15-18], and diabatic quantum annealing [19].
Note that the adiabatic approximation can also be defined without the requirement that any
spectral gaps exist [20,21].

For quantum many-body systems, knowing for what time-scales the adiabatic approxima-
tion breaks down is not a simple task, due to the complexity of solving the time-independent
Schrodinger equation. If the Hamiltonian changes too fast, diabatic excitations across the gaps
in the spectrum are possible and the definition of adiabaticity (following of a corresponding
eigenstate) is violated. The approach of counterdiabatic driving [ 22-24] introduces additional
driving terms to counter these diabatic excitations so that the adiabatic condition is enforced
as the solution of the time-dependent Schrodinger equation in arbitrarily fast time. However,
doing this exactly requires knowledge of the eigenstates, again requiring the solution of the
time-independent Schrodinger equation. As this is beyond the reach of current computers in
many scenarios, especially for more than just the ground state, a new approach to adiabaticity
and counterdiabatic driving needs to be developed.

Recently, an approach was introduced which defines the diabatic excitations through the
adiabatic gauge potential (AGP) which can be found variationally using the principle of least
action [25,26]. The exact AGP can be found without this variational approach, but this again
leads back to effectively solving the Schrédinger equation. The variational approach allows
for approximate counterdiabatic drives to be constructed which can take into account require-
ments of practical implementation, e.g., that the control terms are local. As a result, the
concept of the AGP has been applied to construct approximate counterdiabatic driving pro-
tocols for a variety of quantum many-body models, including to inform numerical optimal
control [27-30], as inspiration for machine learning methods [31], to improve quantum an-
nealing protocols [32-35], to improve state preparation [36,37], and to realise experimental
demonstrations [38,39].
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The AGP provides a lot of information about the dynamics of the quantum system [26],
and its ability to probe physical properties of interest is still being studied. Recently, it has
been shown that the norm of the AGP could provide an accurate measure of quantum phase
transitions for simple models [40] and there have also been studies into its use as a measure
of quantum chaos [41-43]. The AGP can be used to find optimal angles for the Quantum
Approximate Optimisation Algorithm (QAOA) in a way that incorporates the suppression of
diabatic losses into the Trotter error induced by a finite number of variational steps [44-46].
It has also been shown that the AGP can be utilised for calculating variational Schrieffer-Wolff
transformations for the calculation of many-body dynamics [47].

In this work, we present a new, efficient numerical approach for computing the AGP which
combines ideas from Refs. [25] and [48], along with the algebraic approach of Ref. [40]. Our
new method can generate an approximation of the AGP to arbitrary order, while allowing
for controlled truncation as necessary. It does this by exploiting symmetries, along with the
relevant mathematical structure of the approximate methods. This allows us to generate a
full operator basis for the AGP and to variationally determine the time-dependent coefficients
for each operator in this basis. We use this new method to study the transverse field Ising
model on arbitrary graphs [49] and explore how the graph connectivity affects the structure
of the corresponding AGP operators and their norms. This class of Hamiltonians has been
used extensively to encode solutions to combinatorial problems [44,50,51] and can provide
insights into the behaviour of diabatic effects in many-body systems due to its simplicity and
flexible structure. Within this class of problems, we explore the differences between the all-to-
all and LMG models. Whilst these models share the same ground state manifold, extra steps
are required to convert between the two models for the full hilbert space.

2 The adiabatic gauge potential

We will consider systems described by a Hamiltonian H(A(t)) whose time-dependence is en-
coded in the parameter A(t). Here we will limit the discussion to cases where a single pa-
rameter varies in time, but the approaches discussed are straightforward to generalise to
multiple parameters. The dynamics of the state, |¥(t)), of the system are governed by the
time-dependent Schrodinger equation

i () = HOW) [9(0) 0

The instantaneous eigenstates of the Hamiltonian are defined via the time-independent Schro-
dinger equation

H(A(t)) In(A())) = En(A(D)) In(A(D))) , ()

where |n(A(t))) and E,(A(t)), are the eigenstates and eigenenergies respectively. Moving
forward, we will drop the explicit time dependence from the parameter in our notation for
ease of reading.

In many cases, we wish to simply follow a particular eigenstate, commonly the ground
state, which can be accomplished by the use of the adiabatic theorem. This states that if
we initialise the system in an eigenstate and the parameters of the Hamiltonian are changed
slowly enough, then the system will remain in the corresponding eigenstate of the modulated
Hamiltonian up to a phase [1,2]. As discussed in Sec. 1, the slow time scale for the adiabatic
condition is set by the size of the gaps in the spectrum. For example, a harmonic oscillator with
frequency « will have gaps of size fico and the adiabatic condition will be given by || < w?.
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In general, the standard adiabatic condition can be stated as [52]

(m()| 8,H(A) [n(2))
(Em(2) — En(2))?

with [m(A)) the eigenstate closest in energy to the eigenstate |[n(A)). However, this puts a limit
on the speed of the process, in general, the parameters must be varied over an infinite time to
allow the state to perfectly follow the required eigenstate.

To understand the adiabticity of a system we can transform into the co-moving frame. In
general when transforming equations of motion between non-stationary frames, an extra term
known as a gauge potential appears. This ensures the laws of physics are the same in all frames.
A simple example of this effect is a person sitting on a merry-go-round, where they experience
a fictitious centrifugal force pushing them outwards. However, an external observer would
not be able to detect this force, as it arises from the gauge potential in the rotating frame,
ensuring they both observe the same dynamics. The AGP is the gauge potential which results
from the special transformation between the Hamiltonian in the original reference frame and
the frame which co-moves with the parameter change, i.e., the frame in which the Hamiltonian
is diagonal at all times. We know that the physics described by these two frames needs to be
the same, and the AGP is what enforces this, as the Hamiltonian in the co-moving frame, H(A),
only affects the phase between different eigenstates. We can write this transformation as

1, 3)

H(A) - HQ)—AA,, 4)

with all diabatic excitations being generated by A.A,, and A, denoting the AGP in the co-
moving frame which is time-dependent only through the parameter A. Since the diabatic
terms are proportional to A we can immediately reconcile this transformation with the long
time adiabatic limit by taking A — 0, where the system evolves only under H(A), which is
diagonal.

The AGP encodes information on both the spectrum and the allowed diabatic transitions.
Therefore, knowledge of the AGP can be used to counter the diabatic terms [25], by adding it
to the original Hamiltonian

Hg(A) =H(A)+AA;, (5)
then we see that by transforming to the co-moving frame
Heg(A) = HQ) + A4, — A4, =H(2), (6)

the diabatic terms are cancelled and we recover the adiabatic limit without requiring A — 0. As
the dynamics are the same in all frames, this means all diabatic terms are countered, leading
to adiabatic dynamics for any A, i.e., we have constructed a counterdiabatic, or transitionless,
drive.

We reiterate that the AGP encodes information about the diabatic transitions caused by
modulation of A. This is useful even in scenarios where we do not wish to enforce adiabatic
dynamics in arbitrarily fast time. For example, we can define the magnitude of the AGP as

Tr[ A2]
AP = —2=, (7)
dim H)L
giving a measure of how ‘adiabatic’ a dynamical path is. The definition normalises the result
by the Hilbert space dimension to allow comparisons between different system sizes.
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2.1 Exact AGP

We have shown that the AGP can be useful for countering and quantifying diabatic terms. This
raises the question: How do we compute the AGP? The operator form of the AGP in the static
reference frame can be written as [26]

A, =id,. (8)

Note from here on we will work in natural units where i = 1. Whilst this is an exact form of the
AGRB as with any operator, to perform computations we need to represent it in a particular basis.
The simplest approach is to use the eigenbasis of the Hamiltonian, which has the orthogonality
condition

(m(A)|H(A) |n(A)) =0, for n#m. )

By taking the partial differential of this condition with respect to A, we can rearrange to get
the matrix elements of the AGP
- (m(2)| 9,H(4) |n(A))

(| Ay In(2) = 5= S en (10)

which is similar to the adiabatic condition given by Eq. (3). While this form can in principle
be computed, it requires diagonalization of the Hamiltonian for every value of A. For simple
Hamiltonians where analytical solutions of the eigenstates and eigenenergies can be found,
this is possible, e.g., harmonic oscillators [53] or the transverse field Ising model [54,55].
We want to be able to derive the AGP in an arbitrary stationary basis, avoiding costly
diagonalization. It can be shown that there is a basis independent condition which is satisfied
by the exact AGP [26]
[H(A),G(A)]=0, €RY)

where
G(A) =6 H(A)—i[H(A), A, ] . (12)

As such the AGP can be expressed in any basis, and then its accuracy checked by computing if
the above quantity is zero. This condition can be converted into a matrix equation and used
to solve for the AGP algebraically [40], although this quickly becomes intractable for large or
complex systems.

2.2 Approximate AGP

Sometimes it is not possible to compute the full AGP due to the size of the Hilbert space or
complexity of the Hamiltonian. It is thus useful to define a set of operators to give an Ansatz
for an approximate AGP We can write this Ansatz as

2= (MO, (13)
k

with coefficients a; (1) and O, denoting the kth operator in an arbitrary set. The choice for
the best operator basis is problem specific, and can be very difficult to figure out a priori. In
Ref. [25] a variational approach was developed to optimise the coefficients for each operator to
obtain their approximate contribution to the exact AGP. This involves defining an appropriate
action

S(xa) =Tr[G(xa)?], (14)

where the exact AGP is replaced with an approximation y, in Eq. (12). Minimisation of the
action is equivalent to minimising Eq. (11), and so if the operator basis is complete then y,
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will be equivalent to the exact AGP. In any system with a finite Hilbert space there will exist a
finite set of operators which span the space and are able to represent the exact AGP
To give a physical interpretation of what minimising Eq. (11) means, we define

F(x)= Tr ([H(X), G(x2)]1) - (15)

1
dim(x)
This quantity F(y;) is the norm of the condition in Eq. (11), and gives a measure of how far
away from the exact AGP we are. In Ref. [26] it is shown that this term is proportional to the
average rate of change of eigenstate populations. Therefore the smaller this quantity is, the

more adiabatic the dynamics are, giving a measure of the success of an approximate expression
for the AGP

2.3 Commutator expansion Ansatz

With this knowledge an approximation of the AGP can be computed without resorting to diag-
onalization of the instantaneous Hamiltonian. However, in general, it is not possible to know
the leading set of operators which correspond to a good approximation.

To address this problem, Ref. [48] showed that the AGP can alternatively be expressed as

e—0"

0o
A)L — lim J de e—et(e—iH(l)taAH(A)eiH(l)t _MA)) (16)
0

with M, representing the diagonal terms, which are not relevant in the formulation of the
AGP As such, we focus on the first term in the integral. This can be expanded using the Baker-
Campbell-Hausdorff formula to convert between exponentials and commutators. It was shown
that only odd terms of the expansion contribute to the off-diagonal terms, giving

Ay =1 ag[HQ),[HQ), ... [HQ), 5HN)]]]. (17)
=1

21-1

This expansion can be truncated to finite order leading to an approximate Ansatz for the AGP
Then, the coefficients, ay, for each order of expansion can be obtained using the variational
approach described above. The set of nested commutators is however not necessarily orthogo-
nal, leading to a highly complicated optimisation problem with multiple local minima, making
it numerically infeasible in many cases. Here, we seek to address these issues by proposing a
new approach for computing the AGP

3 Orthogonal commutator expansion

The approximate methods outlined in Secs. 2.2 and 2.3 have required either a priori knowledge
of the terms involved in the AGE or do not necessarily provide stable convergence to the exact
result. However, in principle the nested commutator Ansatz of Eq. (17) can represent the exact
result, and as such gives all possible operators on which the AGP can have support. This can be
used as a basis for the formulation of an algebraic approach to computing the AGP [40]. On a
more fundamental level, Eq. (11) already indicates that commutation is a natural language to
describe the AGB allowing for investigation of the underlying structure of this quantity. Here,
we look to build upon the previous approaches to develop a numerical method to compute the
AGP
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Figure 1: Illustration of the growth of the operators required to compute the AGP The
starting point is d,H. We then apply left commutations of the Hamiltonian ([H,-])
to compute the next orthogonal set of operators. This process is then iterated as
described in the main text. Below each schematic of the required operators we show
the structure of the resulting matrix equation which needs to be solved.

The reason for the unstable convergence of the commutator Ansatz, is that the operator
created from each expansion is not necessarily orthogonal to all the previous ones. This has
been previously addressed using Krylov methods [56], to enforce orthogonality of the opera-
tors. We instead suggest decomposing the nested commutators into a chosen basis, and track
when each new basis vector appears. The choice of basis is in general unrestricted, similar
to the approximate AGP in Eq. (13). However, trace-orthogonal bases provide the simplest
representation because the action defined in Eq. (14) is then simply the sum of squares of the
coefficients of G(y ).

The operators that can be generated via commutation with the Hamiltonian form a vector
space. This space is a Lie-algebra with the commutator as its Lie bracket, which is referred
to as the dynamical Lie algebra in the literature [57]. Previous works have shown there are
links between the size of the Lie algebra, the controlability of a system [58], and also the
degree of quantum chaos in the system [59]. The dynamical Lie algebra consists of all effective
operations induced by variation of the Hamiltonian, so it is consistent that the AGP can be
defined using it.

The commutator anstatz indicates that the AGP consists only of operators generated via an
odd number of commutations. This means there must be a bi-partition between ‘odd’ operators
(AGP) and ‘even’ operators (the action, S). This may appear surprising at first as odd ordered
cycles can appear in these Lie algebras, for example H = 0, + 0, + A0, has a three cycle, so
this cannot be bipartite. However this Lie algebra is defined over real coefficients, such that
there is distinction between o, and io,. As the commutator between Hermitian operators
is anti-Hermitian [A,B]" = —[A, B], this swaps between a Hermitian set of operators and an
anti-Hermitian set, which provides the bi-partition. As the AGP of a Hermitian Hamiltonian
must also be Hermitian, the odd AGP parts are Hermitian. This change is reflected in Eq. (14)
where an extra factor of i is included to ensure the action is real. In general this distinction is
more of a technical one, as if an anti-Hermitian operator is used for the AGPE, the optimisation
coefficient found automatically becomes imaginary to account for this.

For clarity we look at an example of a two site Hamiltonian of the form

H=Ja§a§+A(a’1‘+0’2‘)+A(a§+0§), (18)
HH =0l +03, (19)
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where a}/ is the Pauli matrix y acting on site i. The first two nested commutations give

[H,0,H] =—iA (031' + 0%’) , (20)
[H,[H,0,H]1=—JA (005 +0%03 )+ A% (0% +0%) —AA (oY +03) . (21)
We see already that o] and o have appeared in both d,H and [H,[H, 3,H]]. By not keeping

track of the new operators we find the set of operators B; that appear after [ nested commu-
tations (taking odd operators to be Hermitian) to be

By = {ioﬁ,iag} , (22)
_{olol}, @)
B, = {io’foé,icio’z‘,ia’f,ia’zc} (24)
B; = {oﬁa%’,aivaz,a’faév,ayag (25)
B,= {ia‘iaz,la o3,i0] o*y} (26)
(27)

The AGP is then defined over all the sets where [ is odd, and we compute the action by com-
muting onto the sets where [ is even.
In general the minimisation processes gives rise to the matrix equation:

Md=f, (28)

where the AGP operator coefficients are grouped into the vector d
0=>"a,0,. (29)
p

The (p, k) matrix element of M is computed by summing the structure constants

Z c ck , (30)

where
ck = —i[H, 010 " , (31)

These map both odd operators éf”dd, Of °dd to any shared even operators (A)fe”“. Similarly /3 is
given by the connection to the initial operators d, H

Br=—> ckel. (32)

l

The zeroth structure constant here is given by
ch=a,H-0". (33)

This form is derived fully in App. A. From this it can be seen there are only non-zero matrix
elements between consecutive odd sets, B;. This leads to a block tridiagonal form of the matrix
equation which can be efficiently solved [60].

The approach is shown diagrammatically in Fig. 1, where ovals and rectangles represent
the even and odd sets of operators, B;, respectively. The lines represent connections, which
arise from commutation, between the operators in consecutive sets. In this figure we see how,
starting from the zeroth set, B, of operators which appear in J,H, we apply commutation
with the Hamiltonian to compute the next set of operators. The first of these sets, labelled 1

8
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Initialise in 6y H Commute odd set Solve equations

v

Commute even set

Compute matrix
elements

A 4

Figure 2: Flow chart of the algorithm. Commutation is repeatedly used to both
generate the next operators, and the corresponding matrix equation. Additionally
the process can be stopped at the “New operators?” to give a truncated result if the
exact result is numerically infeasible. (See App. B for further details.)

in the red rectangle, refers to the first set of AGP operators (B;). Left commutation is then
applied to this set giving the blank oval which represents the operators that define the action.
By optimising the action, we end up with a linear set of equations dependent on set one. Then
repeat this process for the second set, computing the matrix elements from shared operators
within the oval set between sets one and two. This then repeats for sets two and three, noting
there are no direct connections between sets three and one, so the equations cannot couple
these sets. As such in matrix form, we only get non-zero matrix elements between consecutive
sets (one-two, two-three). This leads to a block tridiagonal form of the matrix, as shown in
the lower section of Fig. 1.

3.1 Numerical implementation

We now show how it is possible to implement this approach numerically. The main steps are
as follows:

1. Choose a trace-orthogonal basis, where the commutation relations are know, to represent
the operators.

2. Start with d, H as the zeroth set.
3. Commute each element with the Hamiltonian, creating the next odd set.
4. Commute again each element with the Hamiltonian, creating the next even set.

5. Compute the structure constants, and build the matrix elements from the shared con-
nections.

6. Repeat steps 3-5 until no new operators are made, or truncation limit is reached.
7. Solve the resulting matrix equation.

These steps are shown in Fig. 2. App. B gives full details of our numerical implementation,
alongside a more detailed flow chart.

In many models, the size of the basis for the AGP and, therefore, of A grows exponentially
with the system size. As a result, controlled approximations are required to keep the problem
tractable. This can be done by limiting the depth of the nested commutations (i.e. the value of
[ above) which are computed, giving a truncated form of the AGP similar to the local counter
diabatic approach. The truncation depth can be varied allowing for convergence towards the
exact AGBE which is guaranteed when the all basis operators are included. Another approach
is to note that there are cases where many different a;’s are exactly equal or very similar to
each other. We can then approximate them by grouping these operators together and only
calculating a single value. An explicit example of this is given in Sec. 4.4, where we consider a

9
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single local defect in an otherwise symmetric model. By using a combination of these methods
truncation and grouping, we have an approach that can efficiently compute the approximate
AGP to a given accuracy, which goes beyond the local counter diabatic approach utilised mostly
to date, and by increasing this we can guarantee convergence to the exact AGP. In Sec. 4 we will
see that this expansion further provides physical insights into the problem due to the structure
of the operators appearing.

3.2 Overview of method

Our approach leads to a useful pictorial form for representing the AGP. The structure in Fig. 1
shows this, giving a graphical description of how operators are linked to each other via com-
mutation. The structure of this graph can lead to interesting insights into the structure of the
AGP One case where this insight is useful, is explaining the surprising benefit of adding op-
erators from sets at even orders of [ into the Hamiltonian leading to improvements in control
procedures such as COLD [61]. The effect of adding such operators, changes the ordering
and increases the connectivity of operators in the graph, which allows more operators to be
controlled, without increasing the size of the dynamical Lie-algebra.

The basis used to generate the Lie-algebra can be freely chosen, although the algebra is
much simpler if it is trace orthogonal. This then allows the choice of a physical basis relevant
to a particular experimental situation. This makes it straightforward to understand what op-
erators need to be implemented and allows understanding of the approximations which must
be made given a set of hardware limitations. Another benefit is that operators can be com-
pletely disconnected, leading to the formation of islands of operators (for an example of this
see Sec. 4.1). This ensures only the necessary operators in the basis are used to represent the
AGP

There are also numerical advantages in solving the resulting matrix equation compared to
previous algebraic approaches [40], and with clear ways of truncating the problem for large
Hilbert spaces. It would be very interesting to see how the approach compares to methods
such as the Krylov approach [56].

We have created an open source package, mAGPy [62] which implements the methods
outlined in this paper. Currently the focus is on systems of coupled spin-1/2 particles, using
a binary symplectic form to efficiently store the operators. All the results of this paper are as
such reproducible using the package.

4 Example: Ising graphs

Quantum annealing has been developed to solve combinatorial optimisation problems with a
wide variety of potential applications [32,49,63,64]. Such optimisation problems are often re-
cast into finding the ground state of an Ising-type Hamiltonian [50, 65-67] which is normally
obtained by adiabatically modifying a Hamiltonian with a trivial ground state towards the
Ising model which encodes the optimisation problem. This encoding often requires the cou-
plings between spins in the model to be turned on or off, and is not limited to the crystalline
geometries studied in condensed matter physics. This approach has been pursued in a range
of experimental setups, including superconducting qubits [68-70], trapped ions [71-73], and
Rydberg atoms [51,74]. This means that a natural example of the application of our orthogo-
nal commutator expansion approach is to calculate the AGP for generic transverse field Ising
models on various graph geometries. This is inspired by the recent advances in encoding op-
timisation problems on Rydberg atom hardware [51], though our general approach and the
findings described in this example are platform agnostic.

10
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a) Ring Chain Complete Asymmetric
b) c)
10° 20
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10%4 Complete g =
Max
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Figure 3: a) Diagrams of three special case graphs, and an example asymmetric graph
which has the maximum possible number of coefficients for N = 6. b) The scaling
of the number of non-zero unique coefficients (N 4) required to compute the exact
AGP vs. graph size. Black dots represent values for specific graphs, the coloured
lines represent the three special cases and the maximum. The purple region shows
the possible values of N 4, yellow shows the region between the maximum possible
for the Ising model studied here and the full size of operator space, and red region
shows values large than the operator space. c¢) For all N = 6 graphs, the number at
each value of N4. d) Same as c¢) but with N = 8.

The transverse field Ising model on a particular graph is given by the Hamiltonian

N
H(A)=—JZG?0§+AZO§‘, (34)
(i.7) i

where 0* and o are the usual Pauli matrices, J is the coupling constant which can be positive
or negative giving a ferromagnetic or antiferromagnetic interaction, N is the number of sites
or vertices in the graph, and (i, j) are the indexes of sites connected by an edge on a given
graph. We set J = 1 enforcing a ferromagnetic interaction, and use this as our unit of energy.
The control parameter A is the strength of the external transverse field. When the graph is that
of a chain then the Hamiltonian, Eq. (34), gives the 1D transverse field Ising model which, for
N — 00, has a phase transition at A = £J. To test the approach we have developed, we will
consider the impact of the geometry of a given graph on the adiabaticity of dynamical paths
in the Ising model. Examples of the types of graphs we will consider are shown in Fig. 3(a).
Using the orthogonal commutator expansion, we can produce a complete basis for any
graph, by commuting and grouping operators as described in Sec. 3. Details of our specific
numerical implementation are given in App. B. This importantly leads to two different factors
which affect the size of the basis; symmetries and islands. The effect symmetries have on
limiting the size of the basis is clear. The automorphism group on the graph tells us which sites
can be treated equally, meaning operators acting on equivalent sites can be swapped without

any effect. For example, in a two-qubit model, a{ o’ and aia%’ can be grouped together as
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the sites are equal. Secondly, as terms are coupled via commutation with the Hamiltonian, it
is possible for islands to appear where sections are completely disconnected. If we initialise
with 9, H in one of these islands, then there is no escape resulting in a greatly reduced number
of terms compared to the general case. We will show an example of this in Sec. 4.1 for the
ring graph. Together these two effects can allow for the AGP to be obtained via orthogonal
commutator expansion for certain graphs in large systems.

We first consider the maximum number, N'i**, of operators which could be required to form
the exact AGP for the Ising model on an arbitrary graph. This can generally be found from
how many orthogonal operators are generated by the commutation relation in Eq. (17). The
form of Ising model we have written in Eq. (34) has a Z, symmetry, which means there must
be an even total number of 0> and o® operators, as individually these break the Z, symmetry.
We can strengthen this limitation further by using the fact we have a real Hamiltonian, so the
AGP must be fully imaginary [26]. As only o” is imaginary, it is necessary and sufficient to
impose an odd number of o”, leading to an odd number of o* as well such that the total is
even. By counting all permutations of odd ¥ and o*, we get

N N— ny
NDax — 2N—ny—nZ , 35
A ZZn'n'(N—n —n,)! (35)
where n, n, are the, strictly odd, number of 0¥ and o* operators. This can be simplified to

Asymptotically, this gives 4V~ operators meaning there is a reduction by a factor of 4 from
the full operator space which is of size 4¥. However, computing the exact AGP is still a funda-
mentally exponentially scaling problem, unless there are symmetries or islands to exploit.

In Fig. 3(b) we show the value of N 4 for all non-isomorphic graphs up to size N = 8. Note,
this calculation only depends on the particular graph chosen and does not involve obtaining
the coefficients of the operators for the AGE which could be zero, and is independent of A.
The value for each graph is shown by a black dot. The four lines show results for cases where
the exact scaling is known (see Secs. 4.1-4.3). The value of N 4 lies within the purple region
which is bounded by the maximum case of Eq. (36), and a lower bound given by the most
symmetric graph structure, the ring graph. In particular, we note that for N > 6 there are
points that lie on this upper bound which are asymmetric, and have enough connectivity to
avoid islands limiting the number of operators required (see Sec. 4.4).

Figure 3(b) only shows the values which N 4 can take, but gives no indication of the amount
of graphs in which each value occurs. The amounts are shown in more detail in Fig. 3(c)-(d)
for graphs of size N = 6 and N = 8. We find that as the size of the graph increases the fraction
of all graphs which have the maximum possible value of N 4 increases. This is because the
proportion of asymmetric graphs increases along with the graph size, a known result from
graph theory [75]. For large random graphs there is very little suppression in the number of
operators required in the AGP from symmetry, and only islands can affect the results. This
means it is unfeasible to compute the exact AGP due to the exponential scaling of the number
of operators required. In such a scenario, information on the adiabaticity of a procedure could
be obtained by taking an appropriate truncation of the orthogonal commutator expansion or
by only permitting certain operators to be retained, e.g., omitting long-range operators. The
best form of approximate AGP will vary depending on the problem and this is better studied
by applying the orthogonal commutator expansion approach to specific settings. Below we
consider in detail the special graphs of the ring, chain, and complete graph, before discussing
the more general case of asymmetric graphs.
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4.1 Ring graph

The simplest graph on which to compute the AGP for the Ising Hamiltonian is the ring, where
the connected edges are those with (i,j) = (i,i + 1) and periodic boundary conditions are
applied with N+1 = 1 as shown in Fig. 3(a). This model has been well studied in the literature
[76,77] and serves as a good first step for applying the method. For extra mathematical details
of the content presented in this subsection see App. C. It can be shown that all operators which
appear in the AGP of a one-dimensional system have only one 07 and o operator, with o*
operators between them. As such, the form of these operators can be written in the form
B]i = af’afﬂ . ..af+ka§, where j —i —1 = k. In addition, the ring has an N-fold discrete
rotation symmetry and reflection symmetry around any point, meaning that all oeprators are
equivalent for a given length k. This means that the maximum number of operators to form
the exact AGP must be given by

N®=(N-1), (37)

i.e., it is linear in the system size. Putting this together the AGP is then given by
A= ay > BL. (38)
k i

In this simple case, finding the values of a; and hence the AGP turns into solving a symmetric,
idempotent, tridiagonal matrix equation with the form of Eq. (28). This can either be solved
efficiently numerically but also has a closed-form solution

A,k_l AZ(N—k) -1
o, =
KT8 a1
Note, the coefficients are given for the kth order of the commutator expansion in Eq. (17). As

we have an analytical form for the coefficients, we can directly take the infinite system size
limit, N — 00, to obtain

(39)

lim
N—-oo

R pg<a<i,
ak={( U (40)

klfkfl
(—1) 5> A>1.

We plot the first 100 a; for the infinite system in Fig. 4(a). In this figure, the even and odd
length terms are indicated by blue and red respectively, with the color fading towards white
as the size (k) is increased. This shows that a; decreases in magnitude as k increases, with it
flipping sign between positive and negative for even and odd k respectively. This means that
the more local terms such as Ul?' o7, are the most important to counteract. However, at the
point of the phase transition every a; is equal and the AGP norm diverges. We can directly

compute the norm, defined in Eq. (7), as

MR [Aik, o<ast,
N—oo - 1 1 (41)
N 3902 21’ A>1.

Note that this is divided by a factor of N; even away from the critical point the multiplicity
of each term ensures that the norm is o< N. This result shows that far above (A > 1) the
critical point the AGP is almost zero but far below (A < 1) the AGP norm converges to a
constant, as shown in Fig. 4(d). This occurs because the eigenstates of the two body interaction
term oo?, , are more affected by the perturbations of the small anisotropy of the o} term,
as the spins are strongly correlated. Whereas far above the critical point all the spins are
independent from each other, so perturbations due to the coupling are infinitesimally small.
However, the norm only asymptotically reaches zero with an inverse power law. The AGP
norm is exactly zero for A = 0 and in the limit A — o0 as these relate to Hamiltonians:
H(A=0)=),—Jojo?  and im I% = >, 0¥ which only have one term, giving no AGP as
it commutes with its derivative.
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2 1 1
Al Al Wi
Figure 4: a) Coefficients of unique terms in the thermodynamic limits of the ring
graph. Blue and red differentiate between operators with even and odd length re-
spectively, the color fades as the length of the operator increases. The critical point
is indicated at A = 1 b) Coefficients of unique terms in the N = 100 chain graph,
with the same colouring as before. Panel c¢) shows what happens when the terms
are limited to those which only have support on the middle 10 sites for the N = 100
chain, same colouring as before, d) Norm of the AGP for the ring graph and e) AGP

norm of the N = 100 chain graph.

4.2 Chain graph

The next case we consider is the chain graph. This is identical to the ring above but we break
one link giving a chain with open boundary conditions. The chain graph no longer has the
rotational symmetry of the ring graph and only has a reflection symmetry around its center.
This only provides a reduction of half from the symmetry, however the island effect for 1D
graphs still reduce the operator space. As stated before for the ring graph, we have terms of

the form o 0¥ oY . 0%, which if we count the possible combinations and take into account
i+k 7 j p

i Cit1eee
the factor of a half from symmetry, we get a quadratic scaling of

w N
N = F N —1). (42)

This allows for efficient computation of the AGP coefficients up to large system sizes. We show
results in Fig. 4(b) for a chain of N = 100 spins. We again find that there is a divergence in
these values close to the location of the phase transition as expected, and the scaling of the
divergence is the same as that seen in the ring graph. The terms which have only two operators
are, on average, the largest. They are the ones which start at a non-zero value at A = 0, but
the terms that hit the largest maximum values are terms with 0¥ on the ends. This means
that, there are different terms that are more important at different values of A.

In Fig. 4(c), we limit the terms we show to those with support only on the middle 10 sites.
As expected, far away from the boundaries, the chain graph behaves very similarly to the ring
graph. This can be seen by comparing the results to those in Fig. 4(a). As such it should be
possible to write an approximation for the chain in which we treat a number of terms around
the boundaries exactly, and then use the analytic results of the ring for the remaining terms.
We do not implement this idea here, as we can already reach large enough system sizes to see
the emergence of the thermodynamic limit. However, this approach can be used to reduce the
scaling and complexity of more difficult problems.
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Figure 5: Coefficients of the different operators in the AGP for the complete graph
for a) N = 6 and b) N = 8. The dominant term in both cases is 0¥ ¢c*. Panel c)
shows the AGP norm for N = 6 graph. Along with this are the norms obtained for
relevant LMG models as described in the main text. Panel d) gives the AGP norm for
the N = 8 graph.

4.3 Complete (all-to-all) graph

We next go on to study the complete graph which has all possible connections present, this
gives rise to an Ising model with all-to-all connectivity. In this case the AGP can contain all
possible terms that satisfy the symmetries of the Hamiltonian. Whilst this is a very large num-
ber of operators, the complete graph is vertex-transitive, meaning that all sites are equal and
hence all permutations of a term can be grouped together. This leads to an effective scaling of

N+1 2N+1
ycomplete _ {N(N +D (5 —251),  Neven, (43)

A N D (B -2 Nodd.
It is important to note the difference between N being odd and even, which can be best ex-
plained by transforming to a collective spin model. The complete graph conserves the total
spin and so can be viewed as a set of nested collective spin models which do not couple to
each other. These models are described by the Lipkin-Meshkov-Glick (LMG) Hamiltonian [78]

N/2
H complete — Z C,IIV H ]T}MG P (44)

n

where the individual LMG Hamiltonians are given by
HY =L (sm)? + As™ 45
LMG — N 4 + x*° ( )

We have defined the collective spin operators Si;, S which have a total spin S = n. The
multiplicity factor, Cflv , counts the unique ways of combing N spin half particles to get total
spin S = n. This multiplicity corrects for the inherent difference in Hilbert space dimension of
the complete graph (D ~ 2MY and the individual LMG models (D ~ N). If N is even the sum
runs over integers from O to N /2 while if N is odd it runs over half integers in the same range.
With this we can see that when N is even all the spin sectors which contribute are bosonic.
However, when N is odd, these are fermionic. This fundamental change leads to a difference
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in the scaling and the form of the AGP between the two cases. As such it makes sense when
comparing between different values of N to distinguish between when it is odd and even. We
choose to show results for even N here, however, we have computed the AGP for odd N and
find similar behaviour.

In Fig. 5 we show how the coefficients in the AGP vary with A for different system sizes. We
compare results for N = 6 in panels a) and c¢) with N = 8 in panels b) and d). These are both
even giving bosonic spin sectors for the LMG decomposition. Over the region we show, we
see that there is one term that is dominant over the other terms. This line in both plots is for
oY c*, which indicates the importance of terms consisting of only a few operators, similar to
the ring and chain graphs. However, for N = 6, there is one term with a similar magnitude to
this at small values of A. This result corresponds to the operator 0¥ (c*)> which has operator
content on each site. So whilst in most regions of parameter space, terms with only a few
operators are the most important, this is not always true.

In Figs. 5¢)-d) we show the AGP norms, which have large peaks near A = 0 which arise
from a single dominant contribution. For N = 6 we show how the contributions to the AGP
norm break down into S = 3,2, 1 spin sectors (noting the S = 0 sector is ignored as it only
has one eigenstate, and so the AGP is always zero). For each of these, we have included the
appropriate multiplicity so that the sum of these lines gives the total AGP norm, as can be seen
by the exact match between this sum and the result of a full numerical calculation.

It may be surprising that there is no significant peak at the location of the phase transition
in this model. This is because we are considering the entire operator space, which has many
separate subspaces for each of the different spin sectors. The phase transition occurs in the
ground state of the system, and as such is only present in the S = N /2 spin sector at A =1 for
N — o00. The other spin sectors, have equivalent ‘critical’ points at A = S/N. These smaller
collective spin models have a much larger multiplicity than the S = N /2 case, hence they have
a large contribution to the norm of the AGP near A = 0 which then quickly falls off. Note, that
if you are only interested in adiabatically following the ground state of this model, then the
Hilbert space can be restricted to that of the S = N /2 model as discussed above. This not only
gives a significant reduction in the size of the Hilbert space but could also give a significant
simplification in the AGB which would only describe diabatic transitions involving this state,
and any counterdiabatic driving that it informs. However, this would require the restriction of
the AGP to a specific state, which would require modification of the orthogonal commutator
expansion approach which we leave for future work.

We emphasis again the differences between the all-to-all model (complete graph) and the
LMG model of just the largest spin sector. The ground state and dynamics within the largest
spin sector of these models are identical and hence, often they are considered interchange-
able. Here we have seen that for some quantities there are differences. The all-to-all model
is equivalent to many independent LMG models, with different total spin quantum numbers
combined. We hope this example of computing the AGP norm, and seeing the ground state
phase transition being hidden behind these many LMG models, helps clarify why this distinc-
tion between models is important.

4.4 Asymmetric graphs

We now discuss what is possible when there are no symmetries present and the AGP includes
all possible operators. As we stated above, these models have the worst possible scaling as
given in Eq. (36). The asymmetry means that all permutations are unique and cannot be
grouped, and there is a sufficient degree of connectivity to break apart the one-dimensional
sections which are seen in the chain and ring.
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Figure 6: Coefficients, a;, a)-d) and AGP norm e)-h) obtained for the asymmetric
graph (as illustrated in Fig. 3(a)). Each column represents a different threshold value
for removing entries from the Hessian matrix. The values for these thresholds are
indicated at the top of each column.

To examine how our method deals with these asymmetric graphs we focus on one in par-
ticular. We take a graph constructed from a chain of length 6 and add an extra connection
between sites 2 and 4. This is in the group of graphs that first hit the upper limit shown in
Fig. 3(b), and has N4y = 992. To be able to compute the AGP corresponding to the Ising
model on this graph using previous methods would be extremely difficult. We show in Fig. 6
the results of applying the orthogonal commutator expansion to this graph. In this figure, we
show the effect of setting entries in the Hessian matrix smaller in magnitude than a particular
threshold to zero. The threshold is decreased across the figure from left to right, increasing the
number of entries included. We see that with the smallest possible threshold numerical insta-
bilities arise and cause a divergence in some of the coefficients of the AGP However, when the
threshold is set to intermediate values, as in the middle two columns, the values obtained are
stable and give rise to an AGP which accurately follows the ground state of the model. When
the threshold is too large this no longer occurs and the choice of threshold starts to affect the
calculated AGP

These results are particularly interesting when simulating the dynamics of the counter-
diabatic Hamiltonian on this asymmetric graph. Now, as the AGP norm has large differences
between the different threshold values, we may expect the fidelity with the chosen eigenstate
to be smaller for thresholds where the AGP is clearly unstable (such as when the threshold is
set to numerical tolerance). However, we find that, for following the ground state, the fidelity
is approximately &~ 1— 107> for all choices of threshold. This indicates that, either the ground
state is not affected by the terms that are varying widely, or that the fidelity is not a sensitive
enough measurement to pick up on these differences. We also tested following some arbitrary
eigenstates and found the same result of fidelity depending very little on threshold value. In
addition, we checked for threshold values much larger than those shown here, which gave
fidelities that oscillated between 0 and 1 depending on A. This means that the threshold value
does matter in general, just not between the values shown here of 10~* to 0. Further study is
required to understand the link between fidelity and the accuracy of the AGP in order to have
a better understanding the robustness of the counterdiabatic Hamiltonian.

In the stable region, we find that the a; values are all approximately bounded between
+0.5. At specific values of A they combine together to give a large norm. These values are
related to the specific geometry of the graph in a non-trivial way. However, in certain limits,
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there are connections to the calculations and scaling we found for other graphs. If we imagine
extending this graph by adding two sites to its ends, the graph would still be asymmetric but for
N = 8. This process can be repeated until we have an extremely long chain, with a small defect
of one extra connection in the center. In this limit, the results would be very similar to those
seen for the chain graph. The graph we have constructed is still asymmetric so formally has an
exponential scaling of the number of terms which are non-zero rather than quadratic. From
this analysis, we see that many of the a; values should be very similar, and hence approximate
solutions could be used to reduce the complexity of the computation. Understanding how to
appropriately use this kind of approximation of the AGP is a key fundamental step required for
progress towards calculating the AGP for arbitrarily complicated models with no symmetries.

5 Conclusions

We have outlined a new approach to calculating diabatic terms for dynamical problems. By
utilising a commutator-based approach we obtain the operators which contribute to the AGP
which fully describes the diabatic evolution. We have shown that, by starting from this commu-
tator expansion, finding the AGP can be recast into the problem of solving a block-tridiagonal
system of equations which are at most quadratic, allowing for efficient approaches to solv-
ing for the coefficients of the AGP An advantage of our approach is that the AGP is given in
terms of a physical basis (e.g. the Pauli matrices for spin-1/2) allowing for physical interpre-
tation of results. However, we have found that computing the AGP still scales exponentially
in general. This means that approximations are required for large system sizes in the majority
of cases. With our approach, three approximation methods are possible: (1) truncating the
commutation at a certain order, (2) grouping particular coefficients of terms together and (3)
placing restrictions on the operators tracked. Every extra commutation included is guaranteed
to improve the result until there are no new terms added and the exact case is reached. Simi-
larly, splitting a group of coefficients into independent terms will either improve the result or
give the same result (if the terms are actually connected via symmetry). Due to this, we can
tune the approximation until the required convergence is met, or to obtain the best possible
approximation of the AGP with a particular numerical cost.

A different approach to overcoming the problems of calculating the AGP is to construct an
orthogonal basis using Krylov methods [56]. With this approach, the difficulty in computation
is moved to the construction of the basis, as the resulting matrix equation in the chosen Krylov
basis is tridiagonal and can be analytically solved. One subtlety of this approach is determining
when to stop the generation of basis states, as there is not immediately a clear condition as
for the orthogonal commutator expansion. If the correct number of terms are included such
that the basis vectors span the entire AGPE then the results of both approaches are equivalent.
When approximations are made to the expression for the AGB either via the truncation of
the Krylov basis or commutator expansion, it is not immediately clear under what conditions
which approach will be beneficial over the other. This is an area where further study would
be interesting.

We have used our approach to study the impact of geometry on the AGP. By studying the
transverse field Ising model with different graph connectivities. Analytical results for simple
graphs, such as the ring, can be computed. In more complicated graphs, our algorithm can
be numerically implemented to compute the matrix equation, which can then be solved. In
this setting, we can envisage the AGP being a useful to enforce certain dynamical paths, e.g.,
in quantum annealing, or to inform how information spreads dynamically through quantum
many-body systems. In this way, the AGP is a property worthy of detailed future study in
dynamical problems beyond its application in the field of quantum optimal control.
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A Derivation of Hessian form

In this Appendix we present a derivation of Eqn. (28) from the main text. To calculate the
values of a;(A) we need to minimise the action S, given by:

S, =u[G3], (A1)

It is useful to note here that Gi can be used in place of GZG; as G is Hermitian. As such we
are required to compute the derivative VS; = 0 with respect to all the a;(A). We denote the
bases of A, and G, as {0?} and {O°} respectively. As we have mentioned in the main text,
the odd operator sets in Fig. 1 represent .4,, meaning the expression [H, .4, ] will map onto
all even operator sets, which represent G,. Hence left commutation with H maps {O”} onto
{OC}. Let us express this in the following way

GlzalH—i[H,ZakO?]
k

= aAH+Z(Z c,l{ak) of, (A3)
l k

where c}( =—i[H, Of] . OlG . Here 9, H is also defined on {O0®}, so we can count from k = 1 and

include k = 0 as a constant term not dependent on a:

Gi=> (Cg +> cf{ak) o¢, (A.4)
[ k

where c(l) =0,H- OIG . We then use the fact that a Hilbert space always has a trace orthonormal
basis [80]. For spin systems, a basis that satisfies this property is the generalised Gell-Mann
matrices as they are traceless, and are generalisations of the Pauli matrices for spin 1/2 to
larger spins. These provide a basis for the operator groups which can extended to the full
system by using tensor products of each of these operator group basis operators. With this
property, we get:

S, = Z (cg‘ + Z c;"an) (C(I) + Z cll(ak) tr[OlGOTﬁ]
m,l n k
= Z (c(’)” + Z cr’lnan) (Cé + Z cll{ak) So01m>
m,l n k
S,/So ZZ(C6+ZC}1an) (cé+2c}(ak) , (A.5)
l n k
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where Sy = tr[OlG OlG ] is some constant factor which we assume to be the same for all [, for
example for spin 1/2 this is S, = 2V. This expression for S, shows that this is a quadratic form
in a, meaning there is only one stationary point of S, . We can also further state that this must
be a minimum, as the AGP exists for all H, as such this value must have a lower bound. If this
was not the case then the AGP would be ill-defined, as there is always a way to further reduce
S, with no asymptotic solution for large a; possible because of the quadratic form. Now we

can compute the partial derivatives with respect to ay:

0
Ta S$,/So = Zciﬁn’p (Cé + Zc,l(ak) + (cé +Zcian) c]l<5k’p
P l k n
=>"2d (cg +Zc,l(ak) , (A.6)
1 k

where we have renamed the dummy index n to k to consolidate into one term and get a factor
.. 2 .
of 2. We can now apply the condition ES 2 = 0 to give:

ZZC ckakz Zc Co (A.7)

If we then combine all the different partial derivatives (as all must be 0), we can write a matrix

equation:
ZZC ckak = —ZZC cO,
Md=f, (A.8)
where:
Mgk = D chek (A.9)
l
d(x) = A, (A.10)
By == ckeh- (A11)
l

This is the result used in the main text.

B Numerical implementation

In this appendix we describe how we numerically implement the procedure described in Sec. 3
of the main text. To achieve this the operators which we keep to form part of the AGP and the
action must be represented in an efficient form for the computer to use. The full matrix form is
not required to evaluate the commutators. We must keep enough information be able to work
out the sign and form of a new term after application of a commutation with H. The weight
for each term will be accounted for separately when solving for the a; values. The simplest
approach to achieve this is to use strings to represent the operators, for example o 0311301
can be written as ‘xzIy’ for a model consisting of four spin-1/2 particles. Commutation can
be implemented via dictionaries. For example {y:(1, ‘2", ‘2’:(-1, ‘y’)} gives the action of [x, ]
since [x,y] = z and [x,2z] = —y. Looping over the sites applying the commutation at each
point can then generate the required result. This approach is quite straightforward, however
the size of the dictionaries can be very large if the Hamiltonian has terms with a large number
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Initialise in 6y H

Solve equations

Apply commutation P| Create left matrix Apply commutation
Combine matrices Combine matrices
Apply commutation P| Create right matrix

Figure 7: Detailed flow chart of the algorithm. Commutation is repeatedly used to
both generate the next terms, and the corresponding matrix equation. Additionally
the process can be stopped at the “New Operators?” to give a truncated result if the
exact result is numerically infeasible.

of operators as we need to account for all possible combinations, and strings are not the most
memory efficient way of representing small operator spaces. For spin-1/2 systems, the most
computationally efficient way to encode the operators would be the Pauli symplectic form that
was developed by the quantum error correction community [81].

With a given implementation of the encoding of operators and their commutations rela-
tions the steps of the algorithm can be followed, as seen in Fig. 7 as a flow chart. We now
describe each step in more detail:

Initialise in 8, H

Apply commutation

Create left matrix

First initialise the first even operator group (zero) to the derivative of
the Hamiltonian. If there are known symmetries, then operators can
be grouped by this. Note that only one operator from each symmetry
group is required to be propagated, as they have the same structure as
each other. However it is important to track the multiplicity of each
symmetry group in this case, as this will affect the coefficients of the
Hessian matrix built later.

Apply a commutator of the form [H,.] to the current operator group,
and collect the new operators for the next operator group. Note it is
important to store the operators separately for odd and even operator
groups, if the basis sets have overlap. This ensures that new operators
can be checked at later steps. Similarly to initialising, group operators
by symmetries if these are known.

It is important to track the connections between operators, so that the
Hessian matrix can be built. To track the connections between opera-
tors, we create a matrix for each operator. The columns of the matrix
represent what operator you originated from, and rows represent oper-
ator commuted onto. For each connection add the sign of the commuta-
tion, taking into account the multiplicity of symmetry groups if grouping
operators by symmetries. As such if the matrix element is zero or non-
zero then there is no connection or a connection respectively. Note in
addition we must multiply this matrix by minus one, as the Hessian is
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defined from the connections from all odd operator groups to even op-
erator groups, and in this step we are going from even to odd.

Create right matrix This step is almost identical to creating the left matrix, however the
columns and rows are flipped. So now the rows of the matrix repre-
sent what operator you originated from, and columns represent opera-
tor commuted onto. Also we do not need to multiply by minus one, as
we are tracking odd to even operator groups this step.

Combine matrices At this step combine the latest left and right matrices together into part
of the final matrix equation. This is done by computing:

MgM; MgM/]
MM; M M)’

for each of the combinations of My, M for the different operators. This
matrix can then be added to the associated blocks in the full hessian
matrix (see Fig. 1 for a visual guide). Note the first and last time this
is done, there will only be one new left or right matrix, so just take the
square part M; M LT or MRM}{ and place in the block of the associated
odd operator group.

New operators? Check whether the previous commutation generated any new operators,
if not then the full set has now been spanned for both odd and even
numbers of commutations.

Solve equations Now the full Hessian matrix equation has been generated, which can
then be solved for given values of the variable coefficients using routines
from standard linear algebra packages.

The algorithm as described above has scaling: O(Ny (N4 + Neyven)) Where Ny is the num-
ber of operators in the Hamiltonian, and N34, N,,., are the number of operators for odd,
even commutations. Implementing the symmetries of the Hamiltonian can greatly reduce the
number of operators that need to be considered. Note, that unlike other numerical algorithms
this only needs to be computed once for a Hamiltonian, as it represents all the operators sym-
bolically. Once the matrix equation is generated it will then need to be solved for specific
parameters numerically or solved analytically. Due to the structure of the matrix, banded
methods such as LU decomposition can be very efficient.

C Details of calculations for the ring graph

In this Appendix, we give more details of the calculation of the AGP for the ring graph de-
scribed in Sec. 4.1. This graph is special as we can get a full analytical solution, allowing a
thermodynamic limit to be taken. In this graph, each spin is connected to its neighbours, with
the first and last spins also being connected. It is important to note that N = 2 is a special
case, and we focus here on N > 3 where the ring is clearly defined. This gives an adjacency
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matrix of the form:

0 1 o0 ... 0 1
(1 o 1 - O\
0 1 O
(C.1)
0 1 0
o . . .1 0 1
\1 o ... ... 0 1 0}

We can define the symmetries of the graph with two generators, a clockwise rotation of all
the spins, and a mirror around the central point. In addition, the one-dimensional nature of
the ring, the terms become limited to having o terms in the bulk, with 0¥ and o* on either
end. This used in addition to the symmetries means we can group together terms with an
equal number of terms. The easiest way to show the operators are of this form is to define the
connections for each operator. We can represent these operator connections like so:

x Yy yxly yxly yxN 2y yxN"2y
o Y 2. R 2 R
N B N R N

yz yxlz yxN—2z
o~ N o~ N o N
D/ \3{/ D/ \7}('/ D\/ \"é'j
2z 2X% zx'z zxtlz zxN 72 xN—1

Here we see that the starting point J, H = Ziv oy is included, and each only has connections
to 0,0, operators. Otherwise, all connections are explored, and there is no way to break away
to different operators. Note, that the coefficient of the connections is doubled to four in every
case because there are always two different operators (that have been grouped together) that
map to the same thing. With these connections, we can write out the matrix equation for the
graph as

2 2 J
(P Vo) [
0 —JA  A24J2 as 0
: : . =] @2
A24+J2%2 —JA 0 ayn_s3 0
—JA  A%2+J% —JA an— 0
\ 0 g 2+ )\ ) \o)

There are many ways of solving such a system of equations, and in this case, we shall simply
compute the inverse of the matrix. We suggest this approach because the vector on the right-
hand side of the equation only contains a single non-zero value, meaning we have a solution

of the form: S
A = ng_j N (CB)
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Where M is our matrix, which is a symmetric Toeplitz tridiagonal matrix that is known to have
a analytical inverse [82]. To use this approach, we divide everything by —J A to get the off
diagonals to equal 1, giving the new equation:

),2 2
(7 A O Va3
a

8
0 1 —5 % 0
. =1 ¢ |, (C4
e | 0 ay-3 0
2 2
1 AT 1 \(XN_Z 0
TA
A2 472 aN—lj \ 0 j
\ 0 1 —55 }
and adjusted ay:
|
o = —aMﬁ’f , (C.5)
where M’ is this rescaled matrix. This means we have a diagonal element D = —Azjf ’. De-

pending on the value of D the form of the substitution required to find the inverse changes:

2coshw, D=2,
D=1 2cosw, —2<D<2, (C.6)
—2coshw, D <—-2.

This gives a result in operators of the new parameter . If we limit our parameters to A > 0
and J = £1 we have the following cases for D:

b _12;-1’ J=1, (C7)
e '

These functions for A > 0 have stationary points at A = 1, for J = 1 this is a maximum value
of —2, whereas for J = —1 this is a minimum value of 2. This then gives us the value of omega

for both cases J = 1 as:
A2 +1

w = arccosh (C.8)

However, the inverse of the matrix (and as such the solution to the AGP) is still dependent on
the sign of J, as expected due to this physically being the difference between ferromagnetic
and antiferromagnetic behaviour. We can then write down the first column of the inverse of
the matrix as:

__cosh w(N+1—k)—cosh w(N—1—k) J=1
2sinh w sinh N ’ -
M = (C.9)
__11k+1 cosh w(N+1—k)—cosh w(N—1—k) _
( 1) 2 sinh w sinh wN > J=-1.

This gives us for a;

cosh w(N+1—k)—cosh w(N—1—k)

164 sinh c sinh wN > J=1,
ax = (C.10)
__ 11k cosh w(N+1—k)—cosh w(N—1—k) _
( 1) 16A sinh w sinh wN ’ J=-1.

This expression is now able to be used but can be simplified further to remove the dependence
on w. The first step is to note that the value of w can be expressed as:

w=InA, (C.1D)
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which then gives the same result as in equation (C.8). Using this and the exponential defini-
tions of cosh and sinh we can expand the hyperbolic functions:

A‘Z(N-f-l—k) +1

coshowo(N+1—k)= Nk (C.12)
coshw(N—1—k) = %, (C.13)
sinh 0 = 9\22; Ly (C.14)

sinh wN = AZZNA; ! (C.15)

Substituting these into the expression for a; and rearranging gives us the final result, quoted
in the main text, for a;:

k—1 42(N—k)_
e J=1,
aE = (C.16)
k—1 9 2(N—k)
( 1)k)L AAZN 11; J=-1.

An interesting limit to look at is what happens at the critical point A — 1, which we can
compute using LHopital’s rule:

(W 20NN+
8 IN(DHT

A-1
k-1 (121
( 1)k (1) Z(NZN)((ll))ZN ; , J=—1 ,

which can be simplified to:

e
lim o = (C.18)
k1 N—k —
(—1kiNk =g,

We can then compute the AGP norm by squaring the operator, multiplying by the multiplicity
of the type of operator (always 2N for ring operators) and sum over k, giving (for both J =1
and J =—1):

. k)?
tm 14,11 —2NZ L0k
1 N— N-1 N—-1
:_(ZNZ zZNk+Zkz)
2N k=1 k=1 k=1
1 2 2
= 3 (N (N—1)—N2(N—1)+ —(N—1)(2N—1))
_ (N-1)2N 1)

C.1
102 (C.19)

This shows that exactly at the critical point the norm diverges as N2 compared to at all other
values of A where it diverges as N instead.
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