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Abstract

Motivated by recent experiments on Google’s sycamore NISQ platform on the spin trans-
port resulting from a non-unitary periodic boundary drive of an XXZ chain, we study a
classical variant thereof by a combination of analytical and numerical means. We find the
classical model reproduces the quantum results in remarkable detail, and provides an
analytical handle on the nature and shape of the spin transport’s three distinct regimes:
ballistic (easy-plane), subdiffusive (isotropic) and insulating (easy-axis). Further, we
show that this phenomenology is remarkably robust to the inclusion of bond disorder
– albeit that the transient dynamics approaching the steady states differs qualitatively
between the clean and disordered cases – providing an accessible instance of ballistic
transport in a disordered setting.
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1 Introduction

The Heisenberg chain and its descendants, especially the XXZ model, have long served as
canonical models of magnetism and played a tremendously important role in the understand-
ing of low-dimensional systems [1–5]. In particular, the quantum S = 1

2 XXZ chain is a
quintessential example of the connection between anomalous equilibrium hydrodynamics and
integrability [6–25]; and even non-integrable spin chains can evince anomalous dynamics for
remarkably long timescales [26–32].

Beyond the (near-)equilibrium paradigm, recent years have seen an increased interest in
far-from-equilibrium phenomena [33–52] and the physics of open [53–69] and driven (Flo-
quet) systems [70–86], where the transport phenomenology can differ markedly from the
linear response regime.

In this vein, recent experimental work on Google’s noisy intermediate-scale quantum
(NISQ) platform [87] has investigated the effect of edge driving on the S = 1

2 XXZ chain,
and yielded a detailed – in particular, fully spatially-resolved – spin transport phenomenology
on a chain of L = 26 sites, comprising non-equilibrium steady states (NESS) of ballistic, subdif-
fusive, and insulating nature (for easy-plane, isotropic, and easy-axis anisotropy, respectively),
backed up by numerics as well as prior work on NESS [33].

Another paradigmatic approach to altering the transport and hydrodynamics of a given
system is the introduction of disorder. This often leads to parametrically slower dynamics
compared to the clean system – turning, say, diffusion into subdiffusion [88–91] or (many-
body) localisation [92–96]. However, the asymptotic behaviour of disordered models is often
particularly difficult to sleuth out: analytic solutions are usually unavailable, numerics on
quantum systems are typically limited to small sizes, and the outsized effects of rare (Griffiths)
regions [97,98] and long crossovers [99–106] can obscure the true infinite-time dynamics.

Here, we report a study of a boundary-driven classical XXZ chain – closely analogous to the
Google experiment [87] – considering both clean and bond-disordered versions of this system.

We obtain a detailed and largely analytic set of results, supported by numerical simula-
tions. Our main findings are the following: first, we show that the NESS for this set-up can
be, relatively straightforwardly, explicitly derived; this, in particular, yields the anomalous ex-
ponent for the isotropic case ∆ = 1. And second, surprisingly, these steady-states and all of
their associated transport phenomenology agree in considerable detail with the experimental
results on the quantum system [87], providing a rich and notable non-equilibrium instance of
a quantum-classical correspondence.
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Figure 1: Overview of the different dynamical regimes, and comparison to the quan-
tum experiments. The figures in the second row are copied, for ease of comparison,
from Ref. [87]. From left to right: easy-plane (∆ = 0.6), isotropic (∆ = 1), and
easy-axis (∆= 1.5). Value of Sz(n, t) is shown in each case. The easy-plane features
a front which spreads ballistically across the chain. There is no transport across the
chain in the easy-axis case: a domain wall (which is stable under these dynamics) is
formed. In the isotropic case, the spin excitations can only move subdiffusively, but
will eventually reach the other side.

Further, we show that the phenomenology of the clean system – in particular, the three
transport regimes (ballistic, subdiffusive, and insulating) – is remarkably robust to the addi-
tion of bond disorder. This model thus provides an analytically tractable instance of ballistic
transport in a disordered setting, in the sense that the (distribution of) currents through the
NESS – and thus the conductance of the chain – is independent of the system size. However,
the relaxation timescales for reaching the steady state are diffusive in the sense that they scale
quadratically in the system size. The transport regimes of the clean model only break down
at strong disorder, where weak bonds can decompose the chain into disconnected segments,
and a tunable subdiffusive exponent appears, in analogy to Ref. [106].

In the following, we define the model and derive the aforementioned results in turn.

2 Model

We consider a classical chain of unit-length spins Si ∈ S2 with boundary-driven Floquet dy-
namics. A single time-step t 7→ t +δt consists of three parts (cf. Fig. 1):

• odd bonds (1, 2), (3, 4), . . ., (L − 1, L) evolve between times t and t +δt/2,

• even bonds (2, 3), (4, 5), . . ., (L − 2, L − 1) evolve between times t +δt/2 and t +δt,

• Finally, the boundary spins are reset, S1 = −ẑ, SL = +ẑ (cf. iSWAP(π/2) gates of the
quantum experiment [87]).
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Within each half-timestep, the bond dynamics are generated by the restriction of the XXZ
Hamiltonian to the pair of sites being evolved,

H = −
L−1
∑

i=1

Ji

�

S x
i S x

i+1 + S y
i S y

i+1 +∆Sz
i Sz

i+1

�

. (1)

That is, the equations of motion are

Ṡµi = ε
µνλJνi Sνi+1Sλi , Ṡµi+1 = ε

µνλJνi Sνi Sλi+1 (J x
i = J y

i = Ji , J z
i = Ji∆) , (2)

for the bond (i, i + 1) being evolved. The anisotropy ∆ is the principal tuning parameter.
Below, we first consider a clean system, Ji = 1, in §3, followed by the bond disordered case
in §4.

Now, in the bulk of the system, the z-magnetisation is locally conserved, and the spin
current across bond i over the time-step t 7→ t +δt is given by

¨

ji(t) = −Sz
i (t +δt/2) + Sz

i (t) , i odd,

ji(t) = −Sz
i (t +δt) + Sz

i (t +δt/2) , i even.
(3)

Crucially, however, magnetisation can flow into and out of the system at the boundaries,
at the moment when the boundary spins are reset.

Now, experiments on the quantum S = 1
2 version of this model [87] prepared the initial

state
|ψ〉= |↓↑↑ . . . ↑↑〉 , (4)

which, since |↓↑〉 is not an eigenstate of the two-site S = 1
2 XXZ Hamiltonian, evolves non-

trivially with time. Classically, however, perfectly anti-parallel spins do not evolve, requiring
a small initial perturbation to seed the dynamics. In our simulations, we tilt the second spin
in the XZ plane, and use the initial state

S1 = −ẑ , S2 = χ x̂ +
Æ

1−χ2 ẑ ,

S3 = . . .= SL = +ẑ , (5)

where, in what follows, we set χ = 0.01. This leads to a delay in the onset of the dynamics, and
the injected current rises exponentially up to a time t ≈ 102δt, Fig. 3(a). After this delay, the
dynamics proceeds essentially in the same manner as in the quantum case, and, in particular,
we show that the asymptotics are fundamentally equivalent.

3 Clean spin transport

Fig. 1 shows the numerically obtained spatiotemporal behaviour of Sz for different ∆, and a
comparison with the quantum case: ballistic transfer of spin between the boundaries for∆< 1
(easy-plane), and no spin transport because of the formation of a domain wall for∆> 1 (easy-
axis). At the isotropic point (∆ = 1), the spin transport is subdiffusive. In the following, we
present an analytical understanding by deriving these non-equilibrium steady states (NESS).

3.1 Non-equilibrium steady states

At late times, under the Floquet dynamics of Eq. (1), we approach a non-equilibrium steady-
state (NESS) which satisfies the stroboscopic condition

Si(t) = Si(t +δt) , ∀i . (6)
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Figure 2: Comparison of the NESS obtained from the finite-frequency simulations
(t = 105δt, δt = π/2, dots and dotted line) and the infinite-frequency consistency
equations (8) (dashed lines). The spatial oscillations in the easy-plane case are a
finite-frequency effect.

We consider first the limit of small time-steps δt → 0 (or large driving frequencyω→∞).
This limit is well-defined, and corresponds to the continuous-time dynamics of the XXZ Hamil-
tonian (1), subject to the boundary conditions S1 = −ẑ, SL = +ẑ. The steady-state condition
becomes

Ṡi(t) = 0 , ∀i , ω→∞ . (7)

These equations may be solved to arbitrary precision. Explicitly, the z-components Sz
i = zi

satisfy
zi
q

1− z2
i

=∆
Jizi+1 + Ji−1zi−1

Ji

q

1− z2
i+1 + Ji−1

q

1− z2
i−1

, (8)

with z1 = −1, zL = +1, and the in-plane components have a constant azimuthal angle.
We note that the steady-states obtained from Eq. (8) strongly resemble the steady-states

of the quantum model in a similar limit [33], though we point out that there is no a priori
reason for this correspondence, particularly since the ω→∞ limit of the quantum model is
integrable, and the classical model is not. We show an example steady-state for each of the
dynamical regimes in Fig. 2.

3.2 Transport regimes

The spin current in the steady-state determines the asymptotic transport regime. Strictly speak-
ing, of course, the infinite-frequency NESS has no currents (it is defined by every spin being
static), and the finite-frequency NESS is defined by the stroboscopic condition (6) and is, thus,
in general, a different state. In the high-frequency limit, however, we approximate the finite-
frequency NESS with the infinite-frequency NESS, but we apply the finite-frequency dynamics
to obtain the asymptotic, steady-state values of the current j∞(L) = j(t →∞; L).

Since we are considering a boundary-drive, i.e., there is no driving in the bulk, any steady-
state current is proportional to the conductance G(L) ∼ L1−1/α, where α is the dynamical
exponent of the hydrodynamic scaling relation x ∼ tα. And since any steady-state current
must be uniform, it suffices to consider the current on the final bond, for which we have

G(L)∼ j∞(L)∼ 1− zL−1 (9)

(see App. A).
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Figure 3: Non-equilibrium spin transport in the clean model. (a) Time-dependence
of the injected current j1(t) in the three different regimes: there is no decay, corre-
sponding to ballistic transport, in the easy plane; t−2/3 decay at the isotropic point
implies subdiffusion; and t−1 decay corresponds to localisation in the easy-axis case.
The initial exponential increase up to t ≈ 102δt is a transient effect due to the na-
ture of the initial state (5). (b) Steady-state spin current as a function of ∆; only the
easy-plane (∆ < 1) supports an L-independent current. The dotted line shows the
linear dependence on 1 −∆ near the isotropic point. (c) Steady-state spin current
as a function of L at the isotropic point, which decays ∼ L−2 as predicted by the
infinite-frequency analysis (10).

It remains only to calculate the steady-states to find the conductances and corresponding
transport exponents. In the easy-plane case we find that zL−1 = ∆ is length-independent;
the exact solution at the isotropic point is zL−1 = cos(π/L); and in the easy-axis case we find
1 − zL−1 ∼ e−L (we discuss these solutions in more detail in App. B). That is, we have the
conductances, and corresponding dynamical exponents,











G ∼ 1−∆ ⇒ α= 1 , ∆< 1 (ballistic),
G ∼ L−2 ⇒ α= 1/3 , ∆= 1 (subdiffusive),
G ∼ e−L ⇒ α= 0 , ∆> 1 (localised).

(10)

The appellation of the regimes – ballistic, subdiffusive, localised – follow from the identification
of the scaling behaviour of the corresponding conductances in the case of ‘standard’ transport
phenomena in response to the establishment of a potential difference across a chain.

3.3 Finite-frequency simulations

We verify the predictions of the infinite-frequency calculation by performing numerical simu-
lations of the dynamics at finite frequency. Starting from the initial state (5), we find the fol-
lowing (cf. Fig. 1): for easy-plane anisotropy (∆ < 1), a ballistic magnetisation front crosses
the chain, and the NESS is attained at long times – the spin profile symmetrises between the
−ẑ and +ẑ boundaries, oscillates around Sz = 0 near the middle of the chain, and a spatially-
uniform, non-zero spin current flows through the bulk.

In the easy-axis (∆ > 1), a sharp domain wall quickly develops near the left-boundary,
and the injection of spin into the chain effectively halts. The true NESS is symmetric about the
centre of the chain, but this state will only be attained after some exponential timescale (in
the system size), as, once the domain wall is a few sites away from the boundary, the system
is in a very good approximation of a steady state (as measured by Eqs. (8)).

The isotropic point (∆= 1) is the transition between these ballistic and localised regimes,
and the magnetisation profile builds up subdiffusively.

The dynamical exponent can be measured at finite time by the injected current j1(t). This
can be understood from the following hydrodynamic argument: the boundary drive injects
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magnetisation through the edge of the system at a constant rate, except that this will be slowed
if there is a build-up of spin near the boundary. Since the magnetisation is not driven across
in the bulk, the scaling relation implies that, by time t, it will spread a distance x ∼ tα into
the chain. That is, it moves away from the edge at an effective rate tα/t, which is precisely
the current that can be injected at time t, i.e., j1(t)∼ tα−1.

We plot the injected current for three representative anisotropies in Fig. 3(a). As noted
in the discussion of the initial state, there is an initial exponential increase (from j1(0) ∼ χ2)
as the system moves away from the unstable stationary state (−ẑ,+ẑ,+ẑ, . . .), but after this
delay we find the dynamical regimes predicted by the infinite-frequency calculation,











j1(t)∼ const. , ∆< 1 ,

j1(t)∼ t−2/3 , ∆= 1 ,

j1(t)∼ t−1 , ∆> 1 .

(11)

We also verify explicitly in Fig. 3(c) that the conductance at the isotropic point scales as
G(L)∼ L−2.

3.4 Classical-quantum correspondence

The classical model we have studied here exhibits a striking similarity to the quantum experi-
ments [87]; indeed, the only real difference in the observed phenomena is a transient, initial
time lag due to the nature of the initial state (5) (cf. Fig. 3(a)).

The spatio-temporal pictures (Fig. 1) are qualitatively very similar: in both the classical
and quantum cases the ballistic front in the easy-plane is clearly visible; in the easy-axis, the
domain wall is also easily observed in both pictures.

More concretely, the transport regimes, measured by the decay of the injected current j1(t),
are precisely equivalent in both the classical model and the quantum experiments, and are in
accordance with the predictions of the infinite-frequency analysis of the steady-states in §3.1.

Indeed, it is this similarity in the steady-states that appears to be responsible for the detailed
correspondence between the quantum and classical cases. As further evidence for this, we
show in App. C that moving closer to an integrable point has no effect on the asymptotic
transport, so long as the NESS is the same.

4 Disordered spin transport

Having shown that the clean classical model has the same transport regimes as the quantum
model [87], we next investigate how the phenomenology is affected by the introduction of
random couplings. We will primarily consider the easy-plane regime, and, in §4.4, the isotropic
point. The easy-axis case is not particularly interesting: there is no transport in the clean case,
and, unsurprisingly, there is also no transport in the disordered case.

Now, the fact that the ballistic and subdiffusive regimes appear in a real experiment implies
at least perturbative stability on the length-scales probed; in the following, we show that
this phenomenology is remarkably robust, with even ballistic conductance persisting in the
presence of disorder. We will see, however, that the approach to the steady state is qualitatively
affected by the introduction of random couplings.

Concretely, we study the model (1) with couplings Ji drawn independently from the uni-
form distribution over the interval [1 −W, 1], where W is the disorder strength. We keep
the two outer bonds fixed at J1 = JL−1 = 1, as these provide the connection to the external
reservoirs. We use the same initial state (5) as in the clean model.
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Figure 4: Infinite-frequency analysis of the disordered transport. (a) Conjectured
minimum value (as a function of disorder realisation) of 1−zL−1 ∼ G(L) as a function
of disorder strength W for various easy-plane anisotropies. (b) Probability density of
1− zL−1 for various disorder strengths at ∆ = 0.8, obtained by numerically solving
the consistency equations (8) for 3× 105 independent realisations of disorder. The
vertical lines denote the (conjectured) minimum possible value, cf. (a), with no sets
of random couplings found to violate the bound.

100 102 104 106

t/δt

10−1

10−4

j1(t)
W = 0.2

W = 0.5

W = 0.8

W = 1.0

∝ t−2/3

∆ = 0.8(a)

100 102 104 106

t/δt

10−1

10−4

j1(t)
W = 0.2

W = 0.5

W = 0.8

W = 1.0

∆ = 1(b)

Figure 5: Non-equilibrium spin transport in the disordered model. (a) Time-
dependence of the disorder-averaged injected current j1(t) for ∆ = 0.8 and se-
lected disorder strengths W ; there is no decay, corresponding to ballistic transport,
for W < 1. The current decays subdiffusively (α = 1/3) for W = 1. (b) Decay of
j1(t) at the isotropic point ∆= 1, where subdiffusive decay is observed for all disor-
der strengths.

4.1 Transport observables

We will continue to characterise the spin transport using the steady-state current j∞(L), and,
at finite-time, the injected current j1(t). The introduction of disorder, however, raises two
important points: (i) the steady-state current will depend on the particular sample of disor-
dered couplings, and (ii) the timescales on which the steady-state is attained may become, in
practice, inaccessible.

We deal with (i) by considering the full probability distribution of steady-state currents
ρ( j∞) and not just the disorder-average j∞. We will return to (ii) when we perform finite-
frequency simulations in §4.3.

4.2 Stability of the ballistic regime

Again, we begin by considering the steady-states in the infinite-frequency limit, given by the
consistency equations (8), but now with random couplings. We show that, in the easy-plane,
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Figure 6: Ballistic conductance in the disordered chain. Histograms of the distri-
bution of steady-state currents, ρ( j∞(L)) for ∆ = 0.8 and W = 0.2 (a), W = 0.5
(b), and W = 0.8 (c). Each histogram is constructed from the final values jL−1(t f )
for t f = 106δt, δt = π/2, over 104 realisations of disorder. We find that ρ( j∞) is
independent of system size, at least up to L = 1024, and that, as predicted by the
infinite-frequency analysis, the steady-state current distribution has a nonzero lower
bound. Note that for W = 0.8, due to the increased relaxation times (cf. Fig 7), we
have, only for this figure, started from the initial state S2 = . . . = SL−1 = x̂ in order
that the steady states are reached before the end of the simulation.

so long as there is some lower bound to the coupling strengths (i.e., W < 1 ⇒ Ji > 0), the
ballistic regime survives in the sense that G(L) ∼ j∞ ∼ O(L0). This stability derives from
the fact that the disordered consistency equations are fundamentally limited in the extent to
which they can modify the NESS of the clean model (We show examples of typical disordered
steady states in App. D). In particular, the presence of disorder does not change the fact that
the infinite-frequency steady states are monotonic, that zi ≈ 0 in the bulk; and there remains
a finite difference between zL−1 and zL = 1, which determines the transport properties.

To establish that the ballistic regime survives, we need to show that there remains a finite,
length-independent difference between zL−1 and zL = 1, for any configuration of disorder,
since, cf. Eq. (9), this yields a finite conductance G(L)∼ 1− zL−1.

We conjecture that the minimum conductance G(L) (as a function of the disorder realisa-
tion) is obtained from the couplings J2 = . . .= JL−2 = 1−W , and that this, indeed, corresponds
to a finite, length-independent lower bound on G(L). We show this minimum difference as a
function of the disorder strength W , for various anisotropies ∆< 1, in Fig. 4(a).

We do not have a proof that this is the minimum. However, we show histograms of the
probability density of 1 − zL−1 for ∆ = 0.8 and selected W in Fig. 4(b), lending numerical
credence to our assertion that the conductance G(L) ∼ 1 − zL−1 has a finite lower bound in
the easy-plane – none of the 3 × 105 randomly drawn sets of couplings are found to violate
the conjectured bound.

4.3 Finite-frequency simulations with disorder

We again verify the predictions of the infinite-frequency analysis with finite-frequency simula-
tions. For each W and ∆ considered, we evolve over 104 independent realisations of disorder.

We show in Fig. 5(a) that the disorder-averaged injected current j1(t) continues to show
ballistic behaviour at finite time: for W < 1, j1(t) approaches a constant, finite value, and
does not decay. This is the same ballistic behaviour as seen in the clean model, cf. Fig. 3(a).

Further, we show the steady-state current distribution ρ( j∞(L)) for∆= 0.8 and W = 0.2,
0.5 and 0.8 in Fig. 6, and find the ballistic behaviour predicted by the infinite-frequency analy-
sis. That is, the distribution is length-independent – at least up to the system sizes of L = 1024
for which we can attain the NESS in our simulations – and bounded below by some finite
value.
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Figure 7: (a) Disorder-averaged crossing times t∗ as a function of system-size for
selected disorder strengths – we find that, whilst we expect t∗ ∼ L2 in the limit of
large systems, we can observe superdiffusive, or even ballistic scaling t∗ ∼ L up to
chain lengths L ≈ 103. (b) Distribution of crossing times ρ(t∗) for various system
sizes for∆= 0.8 and W = 0.8. We find that a diffusive scaling collapse describes the
data reasonably well.

We should address, however, the question of the timescale on which the length-
independent steady-state distribution is set up. Indeed, this timescale need not (and, we will
show, does not) have the same length-scaling as the steady-state current: the arguments of
§4.2 imply that the steady-state current is primarily determined by the bonds near the edge of
the chain; but to attain the NESS from the initial state (5) the magnetisation must propagate
across the full length of the chain, which clearly involves every bond.

To account for this, we define a crossing time t∗ as the first time for which the extracted
current jL−1(t∗)> 10−4 – though the exact threshold, is, of course, arbitrary – and determine
how this time scales with the system size.

It is here that the disordered nature of the chain becomes visible – the distribution of
crossing times t∗ exhibits diffusive, not ballistic, behaviour, on the longest length-scales we can
simulate. We show in Fig. 7 that the crossing time scales as t∗ ∼ L2 (i.e., diffusively); though
we show in Fig. 7(a) that it can appear to be superdiffusive or even ballistic up to surprisingly
large system sizes L ≳ 103 (depending on W ), which would be relevant to experiments on
near-term quantum devices.

4.4 Subdiffusion at strong disorder

Finally, let us briefly address what happens when the disorder strength reaches W = 1. The
arguments of §4.2 no longer apply, and, as shown in Fig. 5(a), we find a subdiffusive scaling of
the disorder average of the injected current, j1(t) ∼ t−2/3. We discuss a possible explanation
for this observation in App. E.

We note that this is the same subdiffusive exponent (α= 1/3) as observed at the isotropic
point in the clean case, and we show in Fig. 5(b) that, in fact, this subdiffusive exponent is
observed for all disorder strengths at the isotropic point.

5 Conclusions

In this work, we have provided a comprehensive analysis of the boundary driven classical
XXZ chain. We have first shown that the classical chain reproduces the phenomenology of the
quantum experiments in exquisite detail [87], and provided an analytical understanding of
the transport regimes in terms of the non-equilibrium steady states.
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We have further shown that the ballistic regime in the easy-plane survives the introduction
of bond disorder, in the sense that the conductance in the steady state is independent of the
system size, approaching some limiting distribution (cf. Fig. 6). And, whilst the timescale on
which the NESS is attained grows diffusively at the longest system sizes, even this measure
of the transport can appear to be ballistic for surprisingly long chains. Moreover, we have
provided an analytic understanding of the remarkable stability of the ballistic conductance in
terms of the infinite-frequency steady states.

This work immediately raises two further research directions. Firstly, how generally, and
under which conditions, does there appear such a detailed agreement between small-spin
quantum dynamics on one hand, and classical dynamics on the other? And, secondly, how
far-reaching is the robustness against the addition of disorder of varying types and strengths
– in particular, is this ballistic conductance in the presence of disorder also observed in the
quantum case? We note that the latter items lend themselves to immediate implementation
on the same platform as the original experiment of Ref. [87].
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A Finite-frequency dynamics

In this appendix we derive the relationship between the values of the spins in the steady-state
and the conductance of the chain. We first note that any steady-state current must be spatially
uniform, so it suffices to consider only the final two spins SL−1 and SL . Now, at the start of
a given timestep, SL(t) = +ẑ, and, at the end of the timestep t + δt, SL is reset to +ẑ. The
magnetisation extracted through the boundary is, therefore,

jL−1(t) = 1− Sz
L(t +δt/2) (A.1)

(where we have assumed that L is even such that the bond (L−1, L) evolves over the first half
of the timestep, but this detail is not important). At the isotropic point ∆ = 1, the dynamics
of a single bond is particularly straightforward: both spins precess around the total conserved
value SL−1 + SL . Denoting SL−1(t) by zL−1, one thus obtains

jL−1 =
1
2
(1− zL−1)(1− cos(δt/2)) . (A.2)

By assumption, this is the steady-state current, and thus j∞(L)∼ G(L)∼ 1− zL−1. We note
that this calculation does not depend on whether we are using the infinite-frequency NESS,
or the finite-frequency NESS satisfying the stroboscopic condition (6). The proportionality,
j∞(L)∼ 1− zL−1, continues to hold away from the isotropic point, cf. Fig. 3(b).
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B Solution of the consistency equations

We next discuss the solutions of the consistency equations (8), which yield the infinite-
frequency steady states. Numerically, the equations can be solved to arbitrary precision (in
both the clean and disordered cases), as described in the supplementary of Ref. [28].

In the clean case, we can discuss the solutions in more detail. In the easy-plane case, as
stated in the main text, we find zL−1 ∼∆, L→∞, which implies a length-independent steady-
state current and ballistic spin transport. At the isotropic point, the solution can be written
down exactly,

zn = sin
�

π

L

�

n−
L + 1

2

��

, (B.1)

which is easily verified by substituting it back into the consistency equations (8). We thus
obtain

zL−1(L) = 1−
π2

8
L−2 +

π4

384
L−4 + . . . , (B.2)

and therefore
G(L,∆= 1)∼ 1− zL−1 ∼ L−2 . (B.3)

Finally, in the easy-axis case, the solution is given asymptotically by the topological soliton

zn ∼ tanh
��

n−
L + 1

2

�

arccosh(∆)
�

, L→∞ (B.4)

(this solution is derived in the supplementary of Ref. [52]). Only exponentially small devi-
ations from this state are necessary to fulfil the boundary conditions at finite size, and the
conductance G(L)∼ e−L is exponentially suppressed.

C Effect of integrability

We turn our attention now to the role of integrability in determining the transport regimes.
We show in this appendix that the Ishimori chain, which is fully integrable, exhibits the same
phenomenology in the long-time asymptotics.

We thus consider the corresponding Hamiltonian to generate the bond dynamics (cf. Eq. 1),
though each timestep still consists of the same three parts: namely, that the odd bonds evolve
over the first half-timestep; the even bonds evolve over the second half-timestep; and then the
boundary spins are reset to S1 = −ẑ, SL = +ẑ. The same initial state (5) as the main text is
used.

The classical integrable Ishimori chain [6] has the Hamiltonian

H = −J
∑

i

log (1+ Si · Si+1) . (C.1)

To investigate the effect of proximity to an integrable model, we interpolate between the Ishi-
mori chain and the classical Heisenberg chain with the following Hamiltonian:

H = −2Jγ−1
∑

i

log
�

1+ γ
Si · Si+1 − 1

2

�

, (C.2)

which is the integrable Ishimori chain when γ= 1, and the non-integrable classical Heisenberg
chain when γ→ 0. We are only considering the clean, isotropic case in this appendix.
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Figure 8: Injected spin current j1(t) of the (clean) isotropic chain (C.2) for various
values of the integrability parameter γ. In all cases, the same subdiffusive transport
is observed, with α= 1/3; which is also the transport exponent in the isotropic case
of the quantum experiment [87]. L = 1024, δt = π/4.

We show the time-dependence of the injected current (cf. Fig. 3(a)) for various values of γ
in Fig. 8. The short time dynamics does depend on γ, but in all cases, including the integrable
case γ = 1, the same decay j1(t) ∼ t−2/3 is observed as for the classical Heisenberg chain
shown in the main text, implying subdiffusive transport with α= 1/3. This is consistent with
the picture developed in the main text, where the asymptotic transport can be deduced almost
entirely from the NESS.

Indeed, the continuous-time equations of motion for the interpolating Hamiltonian are

Ṡi = 2Si ×
�

Si−1

2− γ+ γSi · Si−1
+

Si+1

2− γ+ γSi · Si+1

�

, (C.3)

and so the infinite-frequency consistency equations (Ṡi = 0) are

2zi−1

q

1− z2
i − 2zi

q

1− z2
i−1

2− γ+ γ
q

1− z2
i

q

1− z2
i−1 + γzizi−1

+
2zi+1

q

1− z2
i − 2zi

q

1− z2
i+1

2− γ+ γ
q

1− z2
i

q

1− z2
i+1 + γzizi+1

= 0 . (C.4)

For any γ, these are solved by the same infinite-frequency NESS,

zn = sin
�

π

L

�

n−
L + 1

2

��

, (C.5)

which may be verified by direct substitution.
We note in passing that the short time dynamics do seem to more closely resemble the

quantum case (where there is no delay time) near the integrable point. However, this is likely
just an artefact of how the initial state was chosen – with a fixed rotation χ = 0.01 for the
second spin (cf. Eq. (5)). In all these classical cases, starting with S2 = −ẑ is an unstable
steady state, so the rotation remains necessary (unlike the quantum case). But the energy of
this state increases as we approach the integrable point (and, indeed, diverges for χ → 0,
γ→ 1), which is presumably responsible for the reduced delay time.
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state 1

state 2

state 3
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∆ = 0.8

W = 0.5

Figure 9: Typical disordered steady states (in the ω→∞ limit) for the easy-plane
(∆ = 0.8), shown for W = 0.5 and four different realisations of disorder. The black
dashed line is the clean steady state. This demonstrates graphically that the stabil-
ity of the ballistic conductance derives from the fact that the steady states are only
slightly modified by the introduction of disorder.

D Typical disordered steady-states

In this short appendix we discuss the typical steady states of the bond disordered systems,
shown in Fig. 9. As discussed in the main text, the stability of the ballistic conductance in the
easy-plane case is derived from the lower bound on 1− zL−1; that is, the fact that the disorder
is limited in the extent to which it can modify the steady states. We see in Fig. 9 that the entire
steady state is only weakly modified by the introduction of bond disorder.

E Subdiffusion at strong disorder

Finally, let us consider the transition away from the ballistic regime at strong disorder: the
arguments of §4.2 do not apply if there is no nonzero lower bound to the coupling strengths,
Ji ≥ Jmin > 0, and, as shown in Fig. 5(a), the exponent jumps from ballistic (α = 1) to
subdiffusive (α= 1/3) behaviour at W = 1.

However, the explanation does not appear to be so simple as noting that there is no longer
any minimum difference between zL−1 and zL = 1 in the steady state. Indeed, simply sampling
a few realisations of disorder and inspecting the infinite-frequency NESS indicates that there
is no sudden change in the typical steady states (since, typically, the bonds near the edge of
the chain will not be vanishingly small).

The previous analysis, however, has neglected the fact that, for any NESS, a very small Ji
in the bulk limits the total current. For W < 1, we could reasonably neglect this detail as our
primary interest lies in the transport exponent, and the lower bound to Ji implied that each
bond could support some minimum current.

To try to gain some insight into the nature of the strongly-disordered transport, let us
consider the power-law disorder distributions used in Ref. [106]. That is, each bond Ji is
drawn from the probability density

p(J) = (1−η)J−η , J ∈ [0,1] , (E.1)

for some exponent η ∈ (−∞, 1]. The uniform distribution (with W = 1) is recovered for
η= 0.
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Figure 10: Time-dependence of the disorder-averaged injected current j1(t), for the
power-law distributions of disorder, Eq. (E.1). The power-law asymptotes use the
subdiffusive exponentα(η) predicted by Eq. (E.3). Again, 104 realisations of disorder
have been averaged over. L = 1024.

Now, the expected value of the minimum coupling for a chain of length L scales as

min
i=1,...,L

Ji ∼ L−
1

1−η . (E.2)

Assuming, since this is a global bottleneck, that this value is directly proportional to the con-
ductivity (not the conductance), we obtain

G(L)∼ L−
1

1−η−1 ⇒ α=
1

2+ 1
1−η

, (E.3)

which correctly returns α = 1/3 at η = 0 (cf. Fig. 5(a)). We plot the decay of the injected
current j1(t) in Fig. 10 for a few different values of η, and observe reasonable agreement with
the subdiffusive exponents predicted by the above scaling analysis.
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