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Abstract

Modulated symmetries are internal symmetries that act in a non-uniform, spatially mod-
ulated way and are generalizations of, for example, dipole symmetries. In this paper, we
systematically study the gauging of finite Abelian modulated symmetries in 1+ 1 dimen-
sions. Working with local Hamiltonians of spin chains, we explore the dual symmetries
after gauging and their potential new spatial modulations. We establish sufficient condi-
tions for the existence of an isomorphism between the modulated symmetries and their
dual, naturally implemented by lattice reflections. For instance, in systems of prime qu-
dits, translation invariance guarantees this isomorphism. For non-prime qudits, we show
using techniques from ring theory that this isomorphism can also exist, although it is not
guaranteed by lattice translation symmetry alone. From this isomorphism, we identify
new Kramers-Wannier dualities and construct related non-invertible reflection symme-
try operators using sequential quantum circuits. Notably, this non-invertible reflection
symmetry exists even when the system lacks ordinary reflection symmetry. Throughout
the paper, we illustrate these results using various simple toy models.
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1 Introduction

Gauging is a formal procedure used throughout theoretical physics, where starting from a the-
ory T with global symmetry S, gauging S produces a new theory T/S with global symmetry
S∨ [1]. The so-called dual symmetry S∨ is determined by S and details of the gauging pro-
cedure, i.e., discrete torsion [2]. Since T/S can be constructed from gauging S, it can be
presented as an S gauge theory in which S∨ is the magnetic symmetry. Even when S is an
ordinary symmetry, S∨ can be various types of generalized symmetries. Therefore, given the
relationship between S and S∨, gauging provides a systematic way to construct theories T/S
with possible generalized symmetries. See [3–11] for reviews on generalized symmetries.

When S is a finite symmetry, S∨ is always nontrivial and finite, and there exists a gauging
procedure for S∨ in which T/S returns to T (i.e., T= (T/S)/S∨). Therefore, the theory T and
T/S contains the same physical information. In particular, the phases and phase transitions of
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T are in a one-to-one correspondence to those of T/S and can be inferred from the latter [12,
13]. This relation reflects a more fundamental correspondence between finite symmetries S
and classes of gapped boundaries of related topological orders Z(S) in one-higher dimension,
known as SymTFTs [12,14–26].

An important class of finite symmetries are those that satisfy S∨ = S. For such S, the corre-
sponding isomorphism between local symmetric operators in T and T/S is called a Kramers-
Wannier (KW) duality [27–31].1 For example, when S is an invertible 0-form symmetry in
1+ 1D, S∨ = S whenever S is described by a finite Abelian group. In d + 1D, gauging a p-
form symmetry S, leads to a (d − p− 1)-form symmetry S∨ [32]. Therefore, a KW duality can
exist only if for each q-form symmetry, its corresponding dual (d − q− 1)-form symmetry also
appears in S [33,34]. KW dualities can also arise from gauging subsystem symmetries [35,36],
dipole symmetries [36,37] and non-invertible symmetries [38–40].

Since local Hamiltonians are sums of local symmetric operators, a KW duality maps an S-
symmetric Hamiltonian H to an S-symmetric Hamiltonian H∨. Because H and H∨ are related
by gauging, there is a canonical isomorphism between their Hilbert spaces, and we denote by
DKW the operator implementing the KW duality,

DKW H = H∨DKW . (1)

The duality operator DKW is always non-invertible, annihilating states charged under the S
symmetry. In the contexts of Hamiltonian lattice models, various KW duality operators DKW
have been constructed (see, for instance, Refs. 35,37,41–52).

When H = H∨, DKW commutes with the Hamiltonian H and the KW duality becomes a
non-invertible symmetry of H, enlarging the S symmetry already present. As for ordinary
symmetries, the KW symmetries can be used to characterize spontaneous symmetry break-
ing [44, 49, 52–55] and symmetry protected topological phases [47, 49]. They can also have
’t Hooft anomalies that constrain the dynamics of the systems [33,44,52–54,56–60].

1.1 Modulated symmetries

While the dual symmetries S∨ arising from gauging invertible finite 0-form symmetries [15,
32, 61–65] and higher-form/higher-group symmetries [66–68] has received much attention,
there has yet to be an exploration of S∨ obtained by gauging finite modulated symmetries.
Modulated symmetries are internal symmetries that act in a non-uniform, spatially modulated
way. They have been explored in various settings and shown to give rise to slow thermaliza-
tion and Hilbert space fragmentation [69–76], UV/IR mixing [77–79], and fractons [80–85].
Furthermore, they have been used in characterizing symmetry-enriched topologically ordered
phases [79, 86–91], spontaneous symmetry broken phases [92–98], and symmetry protected
topological phases [99–109].

For invertible 0-form symmetries, the above colloquial definition of modulated symmetries
is formalized as follows. Suppose the internal symmetries are described by a group Gint, and
the spatial symmetries by Gspace. When the internal symmetries are not modulated, the to-
tal symmetry group is Gsym = Gint × Gspace. However, when internal symmetries are spatially
modulated, their symmetry transformation is position-dependent, so Gspace has a nontrivial
action on Gint. Letting this action be described by the group homomorphism

ϕ : Gspace→ Aut(Gint) , (2)

1Strictly speaking, a KW duality is not an actual duality because it is an isomorphism between only local sym-
metric operators of two theories. A genuine duality, such as electromagnetic duality, provides an isomorphism
between all operators of two theories, symmetric or charged, local or non-local.
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where Aut(Gint) is the automorphism group of Gint, the total symmetry group is the semidirect
product2

Gsym = Gint ⋊ϕ Gspace . (3)

Each group element g ∈ Gint is represented by a unitary operator U (g)fg
, where { fg} are func-

tions describing the operator’s spatial modulation. In this paper, we assume space is a latticeΛ,
which makes { fg(a)} lattice functions with a ∈ Λ. Assuming the internal symmetry operators
are onsite, under a lattice transformation s ∈ Gspace represented by T (s), they transform as3

T (s) U (g)fg
T (s)† = U (g)fg◦s

≡ U (ϕs(g))
fϕs(g)

, (4)

which shows how the modulated functions { fg} encode the group homomorphism ϕ. When

using unitary operators U (g)fg
to describe a modulated symmetry (3), it is important to ensure

U (g)fg
are closed the under lattice symmetries. In particular, if a Hamiltonian commutes with

U (g)fg
and T (s), then it must also commute with U (ϕs(g))

fϕs(g)
. Furthermore, Eq. (4) implies that

U (g)fg
= U (g)fg◦s

if T (s) = 1, which gives rise to constraints, for example, from lattice translations
with periodic boundary conditions. In this paper, we work in one-dimensional space and re-
quire Gspace to include at least lattice translations.

For modulated subsystem and higher-form symmetries (e.g., see Refs. 86, 110–113), the
above definition needs slight modification. For these generalized symmetries, the symmetry
operators Sa(Σ) are labeled by the symmetry element a and the closed subspace Σ on which
they act. For higher-form symmetries, Sa(Σ) and Sa(Σ′) are equivalent if Σ and Σ′ are in
the same (cellular) homology classes [Σ′] = [Σ], while for subsystem symmetries, Sa(Σ′) and
Sa(Σ) need not be equivalent. When acting the operator T (s) representing the proper trans-
formation s ∈ Gspace on Sa(Σ), the most general transformation is

T (s) Sa(Σ) T
(s)† = Sas

(Σs) . (5)

If a = as, then Sa(Σ) is a non-modulated operator; otherwise, it is modulated.
A canonical example of a modulated invertible 0-form symmetry is a U(1) dipole symmetry.

On a d-dimensional infinite latticeΛ, a U(1) dipole symmetry is a U(1)×1+d internal symmetry4

with conserved symmetry charge operators

N =
∑

a∈Λ
na , P j =

∑

a∈Λ
a j na , (6)

where na is the local boson number operator at site a ∈ Λ and a j corresponds to the j-th
component of lattice vector a for j = 1, . . . , d. Therefore, systems with U(1) dipole symmetry
conserve both total particle number and dipole moment under Hamiltonian time evolution.
The internal U(1)×1+d symmetry is generated by the unitary operators

U (α)1 = exp[ i αN] , U (β)a j
= exp

�

i β P j

�

, (7)

2The semidirect product of H and N is a group G = N ⋊ϕ H defined by the group homomorphism
ϕ : H → Aut(N) that describes the action of H on N . The group elements of G are (n, h) ∈ N ×H and they obey
the group multiplication (n1, h1) · (n2, h2) = (n1 ·ϕh1

(n2), h1 · h2). It is straightforward to verify using the group
multiplication rule that N is a normal subgroup of G and that h n h−1 = ϕh(n).

3Throughout this paper, we assume spatial symmetries act on operators as a passive transformation.

4For a group G, we use the notation G×n :=

n copies of G
︷ ︸︸ ︷

G × G × · · · × G.
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where U (β)a j
are modulated symmetry operators. Under a lattice translation by the lattice vector

x , these modulated symmetry operators satisfy

Tx U (β)a j
T †

x = U (β)a j+x j
≡ (U (β)1 )

x j U (β)a j
. (8)

Therefore, the total symmetry group is

Gsym = U(1)×1+d ⋊ϕ Gspace , (9)

where ϕ : Gspace→ Aut(U(1)×1+d) captures (8) and other transformations deduced from (6).

1.2 Summary

Consider translation invariant systems of ZN qudits residing on sites j of a one-dimensional
spatial chain and acted on by the clock and shift operators Z j and X j , respectively. We sup-
pose such systems have finite invertible modulated symmetries generated by the symmetry
operators

Uq :=
∏

j

(X j)
f (q)j , (10)

with q = 1,2, · · ·n. The lattice functions f (q)j ∈ ZN encode the homomorphism ϕ and are lin-
early independent over ZN . Therefore, the internal symmetry group Gint is finite Abelian and
a subgroup of Z×n

N . Gauging this Gint modulated symmetry amounts to gauging the Gint sub-
symmetry of the total Gsym = Gint ⋊ϕ Gspace symmetry which has a nontrivial homomorphism
ϕ : Gspace→ Aut(Gsym).

In this paper, we systematically study the gauging of such finite Abelian modulated sym-
metries. After gauging the modulated Gint symmetry, the dual symmetry group has the general
form

G∨sym = G∨int ⋊ϕ∨ Gspace . (11)

The spatial modulations of the dual symmetry are described by the group homomorphism

ϕ∨ : Gspace→ Aut(G∨int) . (12)

In all of the examples we consider in this paper, and something we expect to be generally true,
the dual and original internal symmetry groups are isomorphic to each other: G∨int ≃ Gint.
When ϕ∨ = ϕ and G∨sym ≃ Gsym, the modulated symmetry is invariant under gauging. How-
ever, more generally, the dual symmetry will have a new type of spatial modulation causing
ϕ∨ ̸= ϕ and G∨sym ̸≃ Gsym.

We start our study in Section 2 by first considering the case when N = p is a prime integer.
In this case, each Uq is a Zp symmetry operator, so the internal symmetry group is Gint = Z×n

p .
After warming up with simple examples, we investigate general aspects of gauging these mod-
ulated Z×n

p symmetries. We first prove that the algebra of local symmetric operators—the
so-called bond algebra—is generated by

B=

®

X j ,
∏

ℓ

Z
∆ j,ℓ

ℓ

¸

,
j+n
∑

ℓ= j

∆ j,ℓ f (q)
ℓ
= 0 mod p , (13)

where∆ j,ℓ is a unique (up to multiplicative factors) Zp valued matrix with finite support n+ 1.

We show that functions f (q)j are highly constrained when N = p is prime to be only a sum of
exponential times polynomial functions

f (q)j =
∑

α

�

c(q)α,1 + c(q)α,2 j + · · ·+ c(q)α,nα
jnα−1

�

x j
α , (14)
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where c(q)α,i and xα are elements in the algebraic extension of Zp determined by ∆ j,ℓ. Further-

more, f (q)j must be periodic with certain finite periodicity.
Using this, we gauge the modulated Z×n

p with the translation invariant Gauss’s law

G j = X j

∏

ℓ

X
∆T

j,ℓ

ℓ,ℓ+1 = 1 , (15)

where X j, j+1 acts on newly introduced Zp qudits residing on links 〈 j, j + 1〉 of the lattice. Using
the Gauss operator G j , the symmetry operators (10) can be written as

Uq =
∏

j

(G j)
f (q)j . (16)

Therefore, implementing (15) causes Uq = 1 and trivializes the entire modulated symmetry.
This Gauss’s law gives rise to the gauging map

∏

ℓ

Z
∆ j,ℓ

ℓ
7→ Z†

j, j+1 , X †
j 7→

∏

ℓ

X
∆T

j,ℓ

ℓ,ℓ+1 . (17)

The image of B under (17) yields the dual bond algebra B∨, and we show that the dual
modulated Z×n

p symmetry (i.e., the commutant of B∨) is generated by

U∨q :=
∏

j

(Z j, j+1)
f (q)− j ≡ M

 

∏

j

(Z j, j+1)
f (q)j

!

M−1 , (18)

where M : j→− j is the site-centered reflection operator. Therefore, there is a canonical iso-
morphism U∨q ≃ M Uq M−1 between the modulated Z×n

p symmetry and its dual modulated Z×n
p

symmetry, which implies the existence of an isomorphism

B≃ M B∨M−1 . (19)

When the system is reflection symmetric, M B∨M−1 ≃B∨ and the isomorphism (19) implies
B≃B∨. In other words, when a translation-invariant Hamiltonian of Zp qudits has reflec-
tion symmetry, ϕ∨ = ϕ and G∨sym ≃ G∨sym, so the modulated Z×n

p symmetry is self dual under
gauging.

We then explore the gauging of the modulated symmetry (10) with general non-prime N
in Section 3. While the gauging procedure used for prime qudits does not apply for general N ,
using techniques from ring theory—the concept of regular matrices over commutative rings
(see Appendix A)—we identify a sufficient condition for which the modulated symmetry can
be gauged using the Gauss’s law (15) with ZN qudits. In this case, the bond algebra again takes
the form (13), and there exists the canonical isomorphism (19) between B and B∨ naturally
implemented by the reflection operator M .

For the modulated symmetries for which the Gauss’s law (15) cannot be used, our explo-
ration is primarily done through examples. In particular, we explore various types of poly-
nomial symmetries, which we gauge using a sequential gauging procedure. This is done by
gauging Gint one sub-symmetry at a time, prioritizing at each step on gauging subgroups closed
under the translation T action. For the modulated symmetries (10), this causes one type of
“gauge field” to act as the “matter field” of another. To illustrate the idea, let us overview
the gauging of the ZN quadrupole symmetry discussed in Section 3.2.3. This is a modulated
Gint = ZN ×ZN ×ZN/gcd(2,N) symmetry that is generated by the operators

U =
∏

j

X j , D =
∏

j

X j , Q =
∏

j

X j2− j , (20)
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which satisfy
T U T−1 = U , T D T−1 = U D , T Q T−1 = D2 Q . (21)

This symmetry can be sequentially gauged in three steps. We first gauge the ZN subgroup gen-
erated by U since it is closed under T . Upon doing so, U → 1 and the ZN subgroup generated
by D becomes invariant under translation. Therefore, the next subgroup to be gauged is this
ZN subgroup generated by D. With the trivialization D→ 1, the remaining ZN/gcd(2,N) sub-
group generated by Q is no longer spatially modulated and is the last subgroup to be gauged.
Among other examples, in Section 3.2.4 we use the sequential gauging procedure to gauge a
ZN order-m multipole symmetry, whose symmetry operators are

∏

j

(X j)
∑m

k=0 ck jk
, (22)

with ck ∈ Z. When m= 1 (resp. m= 2), this is a ZN dipole (resp. quadrupole) symmetry.
We prove that this symmetry is self-dual under gauging if and only if m! is coprime to N , in
which case the sequential gauging processes is unitarily equivalent to gauging using the Gauss’s
law (15). Additionally, we present a modified version of the order-m multipole symmetry that
is self-dual under gauging for all N and can always be gauged using (15).

As we demonstrate throughout Sections 2 and 3, the isomorphism B≃ M B∨M−1 exists
for a large class of finite Abelian modulated symmetries and values of N . In Section 4, we dis-
cuss the implications of this isomorphism in greater detail, relating it to new Kramers-Wannier
dualities and a non-invertible reflection operator DM. In particular, we consider a generaliza-
tion of the transverse field Ising model to ZN qudits models with modulated symmetries (10),
where Gint = Z×n

N . This generalized Ising model can realize all modulated symmetries dis-
cussed in Section 2 when N = p is prime and a large class of modulated symmetries for
non-prime N . We prove that the bond algebra of its modulated symmetries is always of the
form (13), and so its modulated symmetries can always be gauged using the Gauss’s law (15).
This generalized Ising model has a self-dual point (i.e., a J = h point) at which its Hamiltonian
commutes with DM regardless if it commutes with M . This non-invertible reflection operator
generates the transformations

DM

∏

ℓ

Z
∆ j,ℓ

ℓ
= X− j DM , DM X j =

∏

ℓ

Z−∆− j,ℓ

ℓ
DM , (23)

and satisfies the fusion algebra

DM DM = C
n
∏

q=1

�

1+ Uq + · · ·+ UN−1
q

�

, D†
M =DM C ,

Uq DM =DM Uq =DM ,

(24)

where C is charge conjugation (X , Z) 7→ (X †, Z†). From its fusion algebra, DM is non-
invertible since DM DM is proportional to a projector. When the generalized Ising model has
ordinary reflection symmetries, the modulated symmetry is self-dual under gauging, and the
model’s Hamiltonian commutes with the canonically defined Kramers-Wannier symmetry op-
erator

DKW := T−⌊
n+1

2 ⌋M DM , (25)

where ⌊·⌋ is the floor function. We find that depending on details of ∆ j,ℓ, DKWDKW sometimes
implements a lattice translation T and/or charge conjugation C. Using sequential quantum
circuits, we construct explicit expressions for these non-invertible symmetry operators DM and
DKW for ZN dipole symmetries and Zp exponential symmetries.

We end with Section 5, presenting some final remarks and discussing open questions raised
by our work.
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2 Finite Abelian modulated symmetries from prime qudits

This section explores a simple class of modulated symmetries in systems of Zp qudits residing
on sites j of a one-dimensional infinite spatial chain. We restrict ourselves to qudits for which
p is a prime number. The Hilbert space of such models has the tensor product decomposition

H =
⊗

j

C[Zp] , C[Zp] := Cp . (26)

Furthermore, the Zp qudit at site j is acted on by the unitary clock and shift operators Z j and
X j obeying

Z j Xi =ω
δi j
p Xi Z j , (Z j)

p = (X j)
p = 1 , (27)

where ωp := e2π i/p is the p-th root of unity. In the Z eigenbasis, the clock and shift operators
act on states

�

�· · · , n j−1, n j , n j+1, · · ·
�

, where n j ∈ {0,1, · · · p− 1} for all j, as

Z j

�

�· · · , n j−1, n j , n j+1, · · ·
�

=ω
n j
p

�

�· · · , n j−1, n j , n j+1, · · ·
�

, (28)

X j

�

�· · · , n j−1, n j , n j+1, · · ·
�

=
�

�· · · , n j−1, (n j + 1 mod p), n j+1, · · ·
�

. (29)

Models constructed from Zp qudits can have finite Abelian modulated symmetries. Here,
we consider translation invariant models with finite symmetries generated by the unitary op-
erators

Uq =
∏

j

(X j)
f (q)j , (30)

where q = 1, 2, · · · , n labels the finite set of lattice functions S = { f (1), f (2), · · · , f (n)} for which
each f (q)j ∈ Zp.5 Since the operators Uq are representations of group generators, we assume

the lattice functions f (q)j are linearly independent over the field Zp (i.e.,
∑

q Cq f (q)j ̸= 0 mod p
with Cq ∈ Zp unless Cq = 0). Therefore, since p is a prime number, the operators Uq gener-
ate an internal symmetry described by the group Gint = Z×n

p whose elements we denote by

(g(1), g(2), · · · , g(n)) ∈ Gint. When n> 1, this symmetry always acts in a spatially modulated
way, as described by the functions f (q)j . Consequently, the lattice translation symmetry group
Gspace = Z, generated by T : j 7→ j + 1, has a nontrivial action on Gint described by

T Uq T−1 =
∏

j

(X j)
f (q)j+1 ≡

n
∏

a=1

(Ua)
N (q)a . (31)

Denoting by g(q) = s the generator of Gint = Z×n
p represented by Uq, this defines a group ho-

momorphism ϕ : Z→ Aut(Z×n
p ) for which (31) becomes

ϕ1 ( (1, · · · , 1, s, 1, · · · , 1) ) =
�

sN (q)1 , sN (q)2 , · · · , sN (q)n

�

, (32)

and the total symmetry group is the semidirect product

Gsym = Z×n
p ⋊ϕ Z . (33)

When the model is invariant under site-centered reflections M : j 7→ − j as well, the total spatial
symmetry group becomes the infinite dihedral group: Gspace = Z⋊Z2 ≃ D∞, where the Z2
action on Z is M T M−1 = T−1. The total symmetry group is then

Gsym = Z×n
p ⋊ϕ D∞ , (34)

5In practice, f (q)j are typically referred to by functions ef (q)j ∈ Z satisfying f (q)j = ef (q)j mod p.
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where ϕ includes the action of translations and site-centered reflections on the internal sym-
metry group Gint = Z×n

p .
The rest of this section is dedicated to gauging the Z×n

p subgroup of Gsym—gauging the
modulated symmetry—and finding the symmetry of the gauged model—the dual symmetry
G∨sym of Gsym. Before gauging the general Gint symmetry generated by (30), we consider some
simple examples in Section 2.1 to warm up. We then return to the general symmetry (30) in
Section 2.2.

2.1 Some simple examples

2.1.1 Exponential symmetries

Let us first consider a model with a modulated Zp symmetry generated by

U =
∏

j

X a j

j , (35)

where a can be any element of {1,2, · · · , p− 1}6 and a−1 is identified with ap−2 because by
Fermat’s little theorem a−1 = ap−2 mod p. In what follows, we assume p > 2 and a > 1 so U
generates a modulated symmetry. A simple translation invariant Hamiltonian commuting with
this Zp symmetry operator is

H = −J
∑

j

Za
j Z

†
j+1 − h

∑

j

X j +H.c. (36)

Under translations by one lattice site, the symmetry operator U transforms as

T U T−1 = Ua , T−1 U T = Uap−2
. (37)

Therefore, the total symmetry of H is described by the group

Gsym = Zp ⋊ϕ Z , (38)

where the action of Z on Zp is deduced from (37) and described by the group homomorphism
ϕ. Denoting by g the generator of Zp, ϕ obeys

ϕ1(g) = ga , ϕ−1(g) = gap−2
. (39)

To gauge the Zp modulated symmetry, we introduce new Zp qudits onto links 〈 j, j + 1〉
of the lattice that are acted on by the clock and shift operators Z j, j+1 and X j, j+1. With these
additional degrees of freedom, the original Hilbert space (26) enlarges to

Hext =
⊗

j

C[Zp ×Zp] , C[Zp ×Zp] := C2p . (40)

The Gauss operator G j , that implements the gauging by relating X j to the new Zp qudits, takes
the general form

G j = X j

∏

ℓ

X
∆
ℓ, j

ℓ,ℓ+1 , (41)

and is defined such that it satisfies
∏

j

�

G j

�a j

= U . (42)

6For non-prime ZN qudits, a must be coprime to N for the symmetry operator (35) to be well defined when
j < 0.
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This definition ensures that the only states that exist in the physical Hilbert space,

Hphy :=Hext
�

�

�

G j=1
, (43)

which is the subspace of Hext obeying Gauss’s law G j = 1, are those in the U = 1 symmetric
sector. Eq. (42) provides a defining constraint on ∆

ℓ, j in (41). Namely, ∆
ℓ, j must satisfy

∑

j

∆ℓ, j a j = 0 mod p . (44)

The simplest translation invariant ∆
ℓ, j satisfying this is

∆ℓ, j = aδℓ, j −δℓ, j−1 , (45)

from which the Gauss operator becomes

G j = X−1
j−1, j X j (X j, j+1)

a . (46)

Notice that when a = 1, Eq. (35) generates a non-modulated symmetry, and this Gauss oper-
ator reduces to the ordinary Gauss operator of a Zp symmetry.

Gauss’s law imposes a redundancy on operators acting on Hphy. Indeed, the unitary oper-

ator
∏

j G
λ j

j generates the gauge redundancy

Z j ∼ω
−λ j
p Z j , Z j, j+1 ∼ω

−aλ j+λ j+1
p Z j, j+1 . (47)

The gauged model’s Hamiltonian is found by minimally coupling Z j, j+1 to the original model’s
Hamiltonian (36). Doing so, we find the translation invariant Hamiltonian

H∨ = −J
∑

j

Za
j Z†

j, j+1Z
†
j+1 − h

∑

j

X j +H.c. (48)

The symmetry operators of H∨ are nontrivial gauge-invariant operators that commute
with H∨. Certainly, any operator constructed from Z j, j+1 commutes with H∨, but not all such
operators are gauge-invariant. Those that are gauge-invariant are generated by

U∨ =
∏

j

Za− j

j, j+1 . (49)

Therefore, in agreement with Ref. 97, we find that the dual symmetry of an exponential sym-
metry is also an exponential symmetry, but with a replaced by a−1 ≡ ap−2.

Since U∨ is a Zp symmetry operator, like the original model, the internal symmetry of the
gauged model is Zp. However, because their modulated functions differ, the total symmetry
group of H∨ is different from H. Indeed, the dual symmetry group is

G∨sym = Zp ⋊ϕ∨ Z , (50)

where the group homomorphism ϕ∨ describes the relation

T U∨ T−1 = (U∨)a
p−2

, T−1 U∨ T = (U∨)a . (51)

When a ̸= ap−2 mod p, which is obeyed by all a ̸= ±1 mod p, this action of Z on Zp is different
from Eq. (37), and ϕ∨ is different from ϕ so the dual symmetry group G∨sym ̸≃ Gsym.
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Before concluding this example, let us present the gauged model (48) in a more convenient
basis where the physical Hilbert space Hphy admits a tensor product decomposition. This does
not modify the dual symmetry G∨sym and is equivalent to gauge fixing using the unitary gauge.
This basis transformation is implemented using the unitary operator W that satisfies

W X j W † = X j−1, j X j X−a
j, j+1 , W Z j W † = Z j ,

W X j, j+1 W † = X j, j+1 , W Z j, j+1 W † = Za
j Z j, j+1 Z

†
j+1 ,

(52)

and has the explicit form

W =
∏

j

p
∑

α=0

Zαj P(α)j , (53)

where P(α)j is a projector to the X j−1, j X−a
j, j+1 =ω

α
p subspace. After performing this unitary

transformation, Gauss’s law becomes G j = X j = 1, which projects out the qudits on sites. The
gauged model’s Hamiltonian then becomes

H∨ = −J
∑

j

Z j, j+1 − h
∑

j

X †
j−1, j X a

j, j+1 +H.c. , (54)

and the physical Hilbert space is Hphy =
⊗

j C[Zp] and spanned by the eigenstates of Z j, j+1.
In this basis, H∨ is related to H by exchanging the X and Z type operators, exchanging the
coupling J↔ h, and then performing a spatial reflection.

2.1.2 Sums of exponentials symmetry and trigonometric symmetry

A more general type of modulated symmetry involving exponential functions is the one gen-
erated by

U{ai} =
∏

j

(X j)
∑

i ci a j
i , (55)

and the translated operators T nU{ai}T
−n with n ∈ Z, where ci and ai are elements in the al-

gebraic extension of Zp satisfying
∑

i ci (ai) j ∈ Zp for all j. In some special cases, when ai are
phases,

∑

i ci (ai) j can be written as a sum of trigonometric functions. Here we will consider
two examples of such symmetries.

Example 1: In the first example, we consider a Zp ×Zp modulated symmetry generated
by

U1 =
∏

j

(X j)
(a j
+−a j

−)/(a+−a−) , U2 =
∏

j

(X j)
(a j+1
+ −a j+1

− )/(a+−a−) , (56)

where a± = (±
p

5− 3)/2. Importantly, (a j
+ − a j

−)/(a+ − a−) ∈ Z for all j, which is straightfor-
ward to verify using the Binomial expansion. While seemingly complicated, it is a symmetry
of a fairly simple model

H = −J
∑

j

Z j−1 Z3
j Z j+1 − h

∑

j

X j +H.c. , (57)

since a2
± + 3a± + 1= 0.

In additional to the internal Zp ×Zp symmetry (56), the Hamiltonian (57) is invariant un-
der lattice translations T : j 7→ j + 1 and site-centered reflections M : j 7→ − j, making its total
spatial symmetry group Gspace = Z⋊Z2 ≃ D∞. Since the Zp ×Zp symmetry (56) is modu-
lated, the total symmetry group is

Gsym = (Zp ×Zp)⋊ϕ D∞ , (58)
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where the group homomorphism ϕ : D∞→ Aut(Zp ×Zp) captures

T U1 T−1 = U2 , T U2 T−1 = U p−1
1 U p−3

2 ,

M U1 M−1 = U p−1
1 , M U2 M−1 = U3

1 U2 .
(59)

To gauge this Zp ×Zp modulated symmetry, we introduce Zp qudits onto the links 〈 j, j + 1〉
of the infinite chain that are acted on by the clock and shift operators Z j, j+1 and X j, j+1. The
Gauss operator describing the gauging is

G j = X j X j−1, j X 3
j, j+1 X j+1, j+2 , (60)

and because
∏

j

(G j)
(a j
+−a j

−)/(a+−a−) = U1 ,
∏

j

(G j)
(a j+1
+ −a j+1

− )/(a+−a−) = U2 , (61)

implementing Gauss’s law G j = 1 projects the enlarged Hilbert space into the U1 = U2 = 1
symmetric subspace. Furthermore, due to Gauss’s law, the unitary

∏

j(G j)
λ j generates the

gauge redundancy

Z j ∼ω
−λ j
p Z j , Z j, j+1 ∼ω

−(3λ j+λ j+1+λ j−1)
p Z j, j+1 . (62)

The gauged model’s Hamiltonian is found by minimally coupling Z j, j+1 in (57), which yields

H∨ = −J
∑

j

Z†
j, j+1 Z j−1 Z3

j Z j+1 − h
∑

j

X j +H.c. (63)

However, performing the unitary transformation

X j 7→ X j X−1
j−1, j X−3

j, j+1 X−1
j+1, j+2 , Z j, j+1 7→ Z j, j+1 Z j−1 Z3

j Z j+1 , (64)

rotates the physical Hilbert space into a basis where X j = 1 and

H∨ = −J
∑

j

Z j, j+1 − h
∑

j

X j−1, j X 3
j, j+1 X j+1, j+2 +H.c. (65)

In this basis, H∨ is the same as H with the X and Z type operators exchanged and J↔ h.
Therefore, the internal symmetry of the gauged model is also Zp ×Zp and generated by

U∨1 =
∏

j

(Z j, j+1)
(a j
+−a j

−)/(a+−a−) , U∨2 =
∏

j

(Z j, j+1)
(a j+1
+ −a j+1

− )/(a+−a−) . (66)

Since these modulated functions are the same as those in (56), the total dual symmetry group
G∨sym ≃ Gsym, and the Zp ×Zp modulated symmetry (56) is self-dual.

Example 2: In the second example, we consider a system of Zp = Z2 qudits (i.e., qubits)
with a Z2 ×Z2 modulated symmetry generated by

U1 =
∏

j

(X j)
2p
3

sin
�

2π j
3

�

, U2 =
∏

j

(X j)
2p
3

sin
�

2π( j+1)
3

�

, (67)

whose exponents are given by the trigonometric functions. Note that 2p
3

sin
�

2π j
3

�

∈ {−1, 0,1}
for all j. A Hamiltonian symmetric under this symmetry (67) is given by

H = −J
∑

j

Z j−1 Z j Z j+1 − h
∑

j

X j +H.c. (68)
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In additional to the internal Z2 ×Z2 symmetry (67), the Hamiltonian (68) has a spatial sym-
metry Gspace = Z⋊Z2 ≃ D∞ generated by lattice translations T : j 7→ j + 1 and site-centered
reflections M : j 7→ − j. The total symmetry group is

Gsym = (Z2 ×Z2)⋊ϕ D∞ , (69)

where the group homomorphism ϕ : D∞→ Aut(Z2 ×Z2) captures the modulation of the in-
ternal Z2 ×Z2 symmetry,

T U1 T−1 = U2 , T U2 T−1 = U1U2 ,

M U1 M−1 = U1 , M U2 M−1 = U1 U2 .
(70)

This Z2 ×Z2 modulated symmetry can be gauged using Z2 qubits with Gauss operator

G j = X j X j−1, j X j, j+1 X j+1, j+2 . (71)

After implementing Gauss’s law G j = 1, the symmetry is trivialized U1 = U2 = 1 due to the
relation

∏

j

(G j)
2p
3

sin
�

2π j
3

�

= U1 ,
∏

j

(G j−1)
2p
3

sin
�

2π j
3

�

= U2 . (72)

The gauged model’s Hamiltonian is found by minimally coupling Z j, j+1 in (68), which yields

H∨ = −J
∑

j

Z j, j+1 Z j−1 Z j Z j+1 − h
∑

j

X j +H.c. (73)

The internal symmetry of the gauged model is also Z2 ×Z2 generated by the gauge invariant
operators

U∨1 =
∏

j

(Z j, j+1)
2p
3

sin
�

2π j
3

�

, U∨2 =
∏

j

(Z j, j+1)
2p
3

sin
�

2π( j+1)
3

�

. (74)

Since these modulated functions are the same as those in (67), the total dual symmetry group
G∨sym ≃ Gsym, and the Z2 ×Z2 modulated symmetry (67) is self-dual.

2.1.3 Polynomial symmetries

We now consider models with a Z×m+1
p modulated symmetry generated by the unitary opera-

tors
Un =

∏

j

X jn

j , (75)

where n= 0, 1, · · · , m− 1, m. As shown in Appendix B, any translation invariant model that
commutes with

∏

j X
p( j)
j , where p( j) is an m-th order polynomial with integer coefficients,

has the Z×m+1
p symmetry generated by Un. A simple Hamiltonian that commutes with these

symmetry operators is

H = −J
∑

j

∏

ℓ

Z[∂
m+1] j,ℓ

ℓ
− h

∑

j

X j +H.c. , (76)

where ∂ is the lattice derivative matrix whose matrix elements are ∂ j,ℓ = δ j+1,ℓ −δ j,ℓ, and
∂ m+1 is the (m + 1)-th power of the matrix ∂ . Indeed, because

∑

ℓ[∂
m+1] j,ℓ ℓ

n = 0 for all
n ∈ {0, 1, · · · , m}, all operators Un commute with the Hamiltonian H.

The Hamiltonian H is invariant under lattice translations and reflections, making its spatial
symmetry group Gspace = D∞. Since the internal Z×m+1

p symmetry is a modulated symmetry,
the spatial symmetry group has a nontrivial action on it, and the total symmetry is

Gsym = Z×m+1
p ⋊ϕ D∞ . (77)
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The group homomorphismϕ : D∞→ Aut(Z×m+1
p ) describes the action of D∞ on Z×m+1

p arising
from

T±1 Un T∓1 =
n
∏

k=0

U
n!(±1)n−k

k!(n−k)!

k , M Un M−1 = U (−1)n
n . (78)

We now gauge theZ×m+1
p subgroup of Gsym. Because of translation’s action on Um, choosing

Gauss’s law that sets Um = 1 enforces

m−1
∏

k=0

U
m!xm−k
k!(m−k)!

k = 1 , (79)

for any x ∈ Z, whose only solution is Un = 1 for all n. Therefore, to trivialize the Z×m+1
p

modulated symmetry generated by (75), it is sufficient to trivialize the Um symmetry operator.
We do this by introducing Zp qudits onto links 〈 j, j + 1〉 of the lattice, which are acted on by
the clock and shift operators Z j, j+1 and X j, j+1, and consider the Gauss operator

G j = X j

∏

ℓ

X
[∂ m+1]ℓ, j
ℓ,ℓ+1 . (80)

Since ∂ is a lattice derivative, this Gauss operator satisfies
∏

j

(G j)
jn
= Un . (81)

Therefore, implementing Gauss’s law G j = 1 trivializes the entire Z×m+1
p symmetry group, and

the unitary operator
∏

j(G j)
λ j generates the gauge redundancy

Z j ∼ω
−λ j
p Z j , Z j, j+1 ∼

∏

i

ω
−[∂ m+1] j,iλi
p Z j, j+1 . (82)

In light of this redundancy, we minimally couple the new qudits to H and find the gauged
model’s Hamiltonian

H∨ = −J
∑

j

Z†
j, j+1

∏

ℓ

Z[∂
m+1] j,ℓ

ℓ
− h

∑

j

X j +H.c. (83)

Using Gauss’s law and gauge fixing to the unitary gauge, we choose a basis in which the
physical Hilbert space is spanned by the Zp qudits on links and H∨ can be written as

H∨ = −J
∑

j

Z j, j+1 − h
∑

j

∏

ℓ

X
[∂ m+1] j,ℓ

ℓ,ℓ+1 +H.c. (84)

This Hamiltonian’s terms are the same as the original ones with the X and Z-type operators
exchanged and J↔ h. Therefore, the symmetries of H∨ are the same as those of H with its
internal symmetries generated by

U∨n =
∏

j

Z jn

j, j+1 , n ∈ {0, 1, · · · , m− 1, m} , (85)

so the dual symmetry group G∨sym is isomorphic to the original symmetry group:

G∨sym ≃ Gsym = Z×m+1
p ⋊ϕ D∞ . (86)
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2.2 General case

We now return to the general modulated symmetry

Gsym = Z×n
p ⋊ϕ Gspace , (87)

whose internal Z×n
p symmetry is generated by the symmetry operators (30) defined by a set of

linear independent lattice functions S = { f (1), f (2), · · · , f (n)} that is closed under translations.

2.2.1 The bond algebra

To go beyond working with a particular symmetric Hamiltonian, we can construct and study
an algebra of symmetric operators B[S] known as the bond algebra [114].7 All symmetric
Hamiltonians are constructed from operators of the bond algebra, so any statements regard-
ing gauging inferred by B[S] will apply to all symmetric Hamiltonians. Furthermore, the
commutant of B[S] is the algebra describing the symmetry operators’ fusion rules.

All operators constructed from X j are symmetric under the symmetries Uq in (30). In

contrast, Z j transforms nontrivially for generic f (q) as

UqZ jU
†
q =ω

f (q)j
p Z j . (88)

Using Z j , we can construct a class of local symmetric operators
∏

ℓZ
Dj,ℓ

l acting on only qudits
near the site j, and where each Dj,ℓ obeys

∑

ℓ

Dj,ℓ f (q)
ℓ
= 0 mod p , (89)

for all f (q) ∈ S. Since the set of function S is closed under translations, without a loss of
generality, we can choose a translation-invariant Dj,ℓ that satisfies

Dj,ℓ = Dj+1,ℓ+1 =⇒ Dj,ℓ = D1,1+ℓ− j . (90)

As a matrix, this is the statement that the first row of Dj,ℓ determines all other rows.
For generic S, there will be numerous matrices Dj,ℓ satisfying (89). However, we can

construct a basis of translation-invariant matrices, denoted as {∆(a)j,ℓ =∆
(a)
j+1,ℓ+1}, such that

any matrix Dj,ℓ can be decomposed into a weighted sum of these basis matrices and their
translated counterparts as

Dj,ℓ =
∑

a,k

C (a)k ∆
(a)
j,ℓ+k . (91)

Each basis matrix ∆(a)j,ℓ should obey the same condition (89) as Dj,ℓ, which is given by

∑

ℓ

∆
(a)
j,ℓ f (q)
ℓ
= 0 mod p . (92)

Generally, each ∆(a) is a sparse matrix with a finite interaction range ra encoding local-
ity. Without a loss of generality, we assume that ∆(a)j,ℓ = 0 if ℓ < j or ℓ > j + ra − 1, and

∆
(a)
j, j , ∆

(a)
j, j+ra−1 ̸= 0 mod p.

7Using bond algebras to study the gauging of (non-modulated) symmetries was also done in Refs. 15, 19, in
which the bond algebra was called the algebra of local symmetric operators.
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In general, one might expect that there are multiple∆(a)j,ℓ in the basis. However, as we now

show, for Zp qudits with translation invariance, there is always a single ∆(a)j,ℓ from which all
Dj,ℓ can be constructed. To this end, using the finiteness of the interaction range ra and setting
j = 1, we simplify the annihilation condition (92) to

ra
∑

ℓ=1

∆
(a)
1,ℓ f (q)

ℓ
= 0 mod p , (93)

which can then be expressed as a matrix equation












f (1)1 f (1)2 . . . f (1)ra

f (2)1 f (2)2 . . . f (2)ra
...

...
f (n)1 f (n)2 . . . f (n)ra

























∆
(a)
1,1

∆
(a)
1,2
...
∆
(a)
1,ra













=









0
0
...
0









mod p . (94)

Let F (a)j,ℓ = f ( j)
ℓ

be the n× ra matrix appearing in the equation. Then, the basis matrices {∆(a)j,ℓ}
with interaction range less than or equal to ra span the kernel of F (a). The number of such
matrices is given by the dimension of the kernel of F (a), denoted by nullity(F (a)). Since the
matrix elements of F (a) are elements of a field (i.e., Zp with p a prime number), we can use the
rank-nullity theorem [115, Theorem 3.2] to relate nullity(F (a))with rank(F (a)), the dimension
of the subspace generated by the rows of F (a). For ra ≥ n, the rank-nullity theorem gives us

rank(F (a)) + nullity(F (a)) = ra . (95)

Since each f (q) is assumed to be linearly independent, we have

rank(F (a)) = n =⇒ nullity(F (a)) = ra − n . (96)

From Eq. (96) the first nontrivial ra ≥ n solution∆(a) exists for interaction range ra = n+1,
which is unique and will simply be denoted by ∆. From Eq. (94), its matrix elements are (up
to a multiplicative constant)

∆ j,ℓ =



















1 , if ℓ= j ,

−
n
∑

k=1

( eF−1)ℓ− j, k f (k)1 , if ℓ= j + 1, j + 1, · · · , j + n ,

0 , if else,

(97)

where eF is the n× n matrix with eF j,ℓ = f ( j)
ℓ+1, which is invertible by the assumption that f (q) are

linearly independent. For ra > n+ 1, there are ra − n linearly independent solutions to (93).
However, these linearly independent solutions can all be constructed using the range ra = n
solution ∆ j,ℓ by

∆
(ka)
1, j = (0, · · · , 0

︸ ︷︷ ︸

ka zeros

, ∆1,1, ∆1,2, · · · ,∆1,1+n, 0, · · · , 0
︸ ︷︷ ︸

ra−ka−n−1 zeros

)T , (98)

where ka = 0, 1, · · · , ra − n− 1. For example, the ra = n+ 2 solutions to (93) form a two-
dimension vector space, spanned by the basis vectors∆(0)1, j = (∆1, j , 0)T and∆(2)1, j = (0,∆1, j−1)T.

From Eq. (96), there are no nontrivial interaction range ra = n solutions. In fact, by trans-
lation invariance, this implies that there are no ra < n solutions. Indeed, the existence of ra < n
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solutions would imply the existence of a range ra = n solution using the construction (98). And
since by Eq. (96) no ra = n solutions exists, there must also be no nontrivial ra < n solutions.

The above proves that all symmetric operators
∏

ℓZ
Dj,ℓ

ℓ
can be constructed from

products of the operators T x
∏

ℓZ
∆ j,ℓ

ℓ
T−x , x ∈ Z, that act only on the n+ 1 sites

j − x , j − x + 1, · · · , j − x + n. Therefore, the bond algebra B[S] of symmetric operators is
generated by

B[S] :=

®

X j ,
∏

ℓ

Z
∆ j,ℓ

ℓ

¸

. (99)

Finding the commutant of B[S], and hence the symmetry operators, is equivalent to find-
ing all operators (30) such that

f (q) ∈ ker (∆) . (100)

Interestingly, due to translations, this significantly restricts the allowed lattice functions S.
Indeed, the annihilation condition (92) for the generating matrix ∆ j,ℓ can be written as

∆1,1 f (q)j +∆1,2 f (q)j+1 + · · ·+∆1,1+n f (q)j+n = 0 mod p . (101)

Since we assume ∆1,1,∆1,1+n ̸= 0 mod p and that p is a prime number, ∆1,1 and ∆1,1+n both
have multiplicative inverses in Zp, respectively denoted by ∆−1

1,1 and ∆−1
1,1+n. Therefore, after

specifying n initial values, say the value of f (q)j at sites j = 1, . . . , n, the lattice functions f (q)j
can be solved recursively using the following two recurrence relations,

f (q)j+n+1 = −∆
−1
1,1+n

�

∆1,1 f (q)j+1 +∆1,2 f (q)j+2 + · · ·+∆1,n f (q)j+n

�

mod p ,

f (q)j = −∆−1
1,1

�

∆1,2 f (q)j+1 +∆1,3 f (q)j+2 + · · ·+∆1,1+n f (q)j+n

�

mod p .
(102)

The linearly independent solutions f (q)j can then be parametrized by their initial conditions,

i.e. the value of f (q)j at sites j = 1, . . . , n, which spans a n-dimensional vector space. Note that
under translations, such lattice functions are periodic with period at most pn, which is the total
number of possible initial conditions to the recurrence relation (102).

After specifying the initial conditions, the general solutions to (101) are determined by the
roots of the characteristic equation [116]

∆1,1 +∆1,2 x + · · ·+∆1,1+n xn = 0 mod p , (103)

over the field Zp, from which

f (q)j =
∑

α

�

c(q)α,1 + c(q)α,2 j + · · ·+ c(q)α,nα
jnα−1

�

x j
α , (104)

where xα is the α-th root of (103), nα is its multiplicity, and the coefficients c(q)α,i are deter-

mined by the initial conditions { f (q)1 , . . . , f (q)n }. Note that both xα and c(q)α,i are generally not
elements in Zp but rather elements in the algebraic extension of Zp. Therefore, the most gen-
eral modulated symmetries of a translation invariant Hamiltonian of Zp qudits are given by
lattice functions of the type (104), which are sums of exponential times polynomial functions.
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2.2.2 Gauging

Having constructed the bond algebra (99), we now gauge the Z×n
p subgroup generated by (30)

of the total symmetry group
Gsym = Z×n

p ⋊ϕ Gspace . (105)

Since we always assume lattice translation symmetry, Gspace is either Z⋊Z2 ≃ D∞ or Z de-
pending on if the model has reflection symmetry or not, respectively.

Because p is a prime number and each Zp symmetry generator Uq of Z×n
p is constructed

from only the X j operator, the entire symmetry group can be gauged using only one Zp qudit.
Indeed, we introduce a Zp qudit on each link 〈 j, j + 1〉 that is acted on by the clock and shift
operators Z j, j+1 and X j, j+1, respectively. Doing so enlarges the Hilbert space H =

⊗

j C[Zp]
to

Hext =
⊗

j

C[Zp ×Zp] . (106)

We now gauge Z×n
p by constructing a Gauss operator G j such that implementing Gauss’s law

G j = 1 projects states in Hext to the symmetric sector of the original Hilbert space. Since the
Gauss operator G j is a product of the X j operator and operators acting on the new qudits (i.e.,
Zℓ,ℓ+1 and Xℓ,ℓ+1), we require it to obey

∏

j∈Λ
(G j)

f (q)j = Uq , (107)

for all { f (q)}. Indeed, upon enforcing Gauss’s law G j = 1, the symmetry operators satisfy
Uq = 1 for all remaining states in the physical Hilbert space

Hphy :=Hext
�

�

�

G j=1
. (108)

A Gauss operator that satisfies (107) for a general modulated symmetry (30) is8

G j := X j

∏

ℓ

X
∆T

j,ℓ

ℓ,ℓ+1 , (109)

with ∆T
j,ℓ ≡∆ℓ, j . Due to the Gauss’s law, the unitary operator G[λ] :=

∏

j∈Λ G
λ j

j , where
λ j ∈ Zp, generates the gauge redundancy

Z j ∼ω
−λ j
p Z j , Z j, j+1 ∼ω

−
∑

ℓ∆ j,ℓ·λℓ
p Z j, j+1 . (110)

Since Z j is not gauge-invariant, the bond algebra (99) is also no longer gauge-invariant. How-
ever, by minimal coupling, we can produce the new gauge-invariant bond algebra

B∨[S] :=

�

X j , Z†
j, j+1

∏

ℓ

Z∆ j,ℓ

ℓ

�

, (111)

which includes the operators from which all Hamiltonians of the gauged model are con-
structed.

8As with all gauging procedures, there are multiple ways to gauge this modulated symmetry, which correspond
to choosing different Gauss laws. We discuss an interesting alternative Gauss operator that is position-dependent
and breaks lattice translation symmetry in Appendix C.
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It is convenient to gauge fix and choose a basis of Hphys in which the old and new Zp qudits
are decoupled. First using Gauss’s law to express X j in terms of X j, j+1 operators, we rewrite
the gauged bond algebra as

B∨[S] =

�

∏

ℓ

X
−∆T

j,ℓ

ℓ,ℓ+1 , Z†
j, j+1

∏

ℓ

Z∆ j,ℓ

ℓ

�

. (112)

We then gauge fix to the unitary gauge using a unitary operator W that rotates the physical
Hilbert space to a basis in which9

W X j W † = X j

∏

ℓ

X
−∆T

j,ℓ

ℓ,ℓ+1 , W Z j, j+1 W † = Z j, j+1

∏

ℓ

Z
∆ j,ℓ

ℓ
,

W Z j W † = Z j , W X j, j+1 W † = X j, j+1 ,

(113)

which causes the gauged bond algebra to become

B∨[S] =

�

Z j, j+1,
∏

ℓ

X
∆T

j,ℓ

ℓ,ℓ+1

�

. (114)

In this new basis, Gauss’s law becomes X j = 1. Therefore, implementing Gauss’s law is equiv-
alent to projecting out the original Zp qudits and treating the new Zp qudits as the physical
degrees of freedom which make up the tensor product Hilbert space Hphys =

⊗

j C[Zp]. There-
fore, gauging induces a map between the local symmetric operators of the original and gauged
model described by

∏

ℓ

Z
∆ j,ℓ

ℓ
7→ Z†

j, j+1 , X †
j 7→

∏

ℓ

X
∆T

j,ℓ

ℓ,ℓ+1 . (115)

2.2.3 Dual symmetry

Having found the gauged bond algebra B∨[S], we can now find the dual symmetry group
G∨sym from its commutant. In what follows, we will construct the dual symmetry in the basis
for which B∨[S] is given by Eq. (114). In this basis, the gauged bond algebra is strikingly
similar to the original bond algebra (99). Indeed, the commutant of B∨[S] is generated by
modulated operators

U∨q =
∏

j

Z
f ∨ (q)j

j, j+1 , (116)

where
∑

ℓ

∆T
j,ℓ f ∨ (q)
ℓ

= 0 mod p . (117)

So while the modulated functions f (q) of the original internal symmetry span ker(∆), the
modulated functions f ∨ (q) of the dual internal symmetry span ker(∆T).

Recall that due to translation invariance, which we have assumed throughout, the matrix
elements ∆ j,ℓ must take the form

∆ j,ℓ =∆1,1+ℓ− j , (118)

9The explicit form of the operator W is given by

W :=
∏

j

Wj , Wj :=
p−1
∑

α=0

Zαj P(α)j ,

where P(α)j is the projector onto the
∏

ℓ X
−∆T

j,ℓ

ℓ,ℓ+1 =ω
α
p subspace.
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and therefore, its transpose is

∆T
j,ℓ =∆1,1+ j−ℓ =∆− j,−ℓ . (119)

Therefore, there is a canonical isomorphism between the original bond algebra B[S] and
gauged bond algebra B∨[S] implemented by the site-centered reflection operator M that maps
site j to − j:

B∨[S]≃ M B[S]M−1. (120)

This isomorphism applies to their commutants as well, and therefore U∨q ≃ MUqM−1 which
implies that the dual symmetry can be generated by10

f ∨ (q)j = f (q)− j . (121)

Therefore, the internal part of the dual symmetry is Z×n
p and generated by

U∨q =
∏

j

Z
f (q)− j

j, j+1 = M

 

∏

j

Z
f (q)j

j, j+1

!

M−1 = M Uq M−1 , (122)

so the total dual symmetry is described by the group

G∨sym = Z
×n
p ⋊ϕ∨ Gspace . (123)

When Gspace = Z and the gauged model is not reflection-symmetric, ϕ∨ will differ from ϕ and
G∨sym ̸≃ Gsym. In particular, from Eq. (122), the group homomorphisms are related by

ϕ∨k ( · ) = ϕ−k( · ) , (124)

where k ∈ Z. However, when Gspace = D∞, because lattice reflections are also a symmetry, the
dual symmetry will be isomorphic to the original one: G∨sym ≃ Gsym.

3 General finite Abelian modulated symmetries

Section 2 explored a specialized class of translation invariant models constructed from Zp
qudits with p a prime number. The restriction of p to a prime number constrained the inter-
nal symmetry to be direct products of Zp and introduced simplifications that allowed us to
gauge general modulated symmetries and find their dual symmetries. This section explores
more general finite modulated symmetries in systems of ZN qudits with general non-prime N .
While Zp was a field—each non-zero element has a multiplicative inverse—ZN is generally a
commutative ring (see Appendix A.1). This introduces numerous number theoretic subtleties,
making developing a procedure to gauge general finite Abelian modulated symmetries much
more challenging. Because of this, we do not attempt to arrive at the most general under-
standing. Instead, in addition to discussing tractable general aspects, we focus on examples
that emphasize numerous subtleties of gauging general finite Abelian modulated symmetries
and subtleties of their dual symmetries.

10This agrees with the result of Section 2.1.1, where the dual symmetry of f j = a j is given by is reflected partner
f ∨j = a− j (see Eq. (49)).
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3.1 Aspects of a general theory

Let us consider the modulated symmetries generated by

Uq =
∏

j

X
f (q)j

j , (125)

where X j acts on the ZN qudit at site j and q = 1, 2, · · · , n label the set of independent ZN -
valued lattice functions S = { f (1), f (2), · · · , f (n)}. To define what independence means here,
we introduce the n× ra matrix

F (a) =













f (1)1 f (1)2 . . . f (1)ra

f (2)1 f (2)2 . . . f (2)ra
...

...
f (n)1 f (n)2 . . . f (n)ra













. (126)

When N = p is prime, F (a) is a matrix over the field Zp, and we define independence as the
condition that rank(F (a)) = n for all ra ≥ n. Recall that the rank of a matrix over a field is
defined as the dimension of the vector space spanned by the rows of the matrix, so this notion
of independence is equivalent to the notion of linear independence. For general N , however,
ZN is not a field but a commutative ring, which causes the notion of vector spaces and the
above rank function to no longer apply. For general N , the rank function rank(F (a)) is naturally
generalized by the determinantal rank ρ(F (a)), defined as the largest integer ℓ such that there
exists an ℓ× ℓ sub-matrix of F (a) with non-zero determinant. Therefore, the requirement that
the ZN functions { f (1), f (2), · · · , f (n)} are independent means that ρ(F (a)) = n for all ra ≥ n.11

Since X j at different sites commute and X N
j = 1, the operators Uq generate a finite internal

symmetry described by an Abelian group. Recall that an operator
∏

ℓZ
Dj,ℓ

ℓ
is symmetric if

∑

ℓ

Dj,ℓ f (q)
ℓ
= 0 mod N , (127)

for all f (q) ∈ S. For a system with L sites, Eq. (127) is an ordinary matrix equation when N is
prime, with D an L × L matrix and | f (q)〉 an L-dimensional vector. For general N , where the
notion of vector spaces no longer apply, (127) is most naturally formulated using R-modules
(See Appendix A.1 for an introduction). In particular, the matrices D are elements in the
ring ML(ZN ) of L × L matrices with entries in ZN , and | f (q)〉 are elements in the module Z×L

N
over ML(ZN ). The condition (127) then becomes the requirement that D ∈ML(ZN ) is in the
annihilator AnnML(ZN )(S) of the subset S = { f (q)} ⊂ Z×L

N .

We denote by {∆(a)j,ℓ} a basis for all Dj,ℓ satisfying (127), which in terms of R-modules are
the generators of the ideal AnnML(ZN )(S). As argued in Section 2.2.1, which remains true for
all N , locality and translation invariance allows us to recast (127) for {∆(a)} as

F (a) ·∆(a) = 0 mod N , (128)

where F (a) is defined in (126) and

∆(a) =
�

∆
(a)
1,1, ∆(a)1,2, · · · , ∆(a)1,ra

�T
, (129)

11We emphasize that this notion of independence is not the same as linear independence for modules (in the
context of S, this is the requirement that

∑

q aq f (q) = 0 implies that aq = 0). To illustrate this distinction, consider

S = { f (1)j = 1, f (2)j = 2 j} with N = 4. In this case, f (1) and f (2) are linearly dependent since 2 f (2)j = 0 mod 4 but
they are independent according to the definition in the main text as ρ(F (a)) = 2 when ra ≥ 2.
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where ra is the interaction range of ∆(a).
When N is prime, we applied the rank-nullity theorem (95) to F (a) in Section 2.2.1 to

prove that all matrices D can be constructed from a single ∆ matrix, with minimal interaction
range r = n+ 1. The gauging procedure introduced in Section 2.2.2 assumed and relied on
this result. When N is not prime, however, the usual tools from linear algebra cease to apply,
so this result may no longer hold, and the matrices D can require multiple∆(a) basis matrices.
For general N , the theory of linear equations over rings is necessary [117], relevant aspects of
which are reviewed in Appendix A.2.

Below, we outline a sufficient condition for the existence of a unique ∆ matrix for general
N . An important concept we will need is the regularity of a matrix. The n× ra matrix F (a)
with elements in ZN is regular if it has a generalized inverse, which is an ra × n matrix G(a)
with elements in ZN satisfying

F (a) · G(a) ·F (a) = F (a) . (130)

Notice that when N is prime, the generalized inverse G(a) always exists, so every F (a) is regular.
When F (a) is regular, we can construct the matrix

M(a) = Ira
− G(a) ·F (a) . (131)

Because of Eq. (130), each column vector of M(a) is in the kernel of F (a). Furthermore, each
vector ∆(a)1, j in the kernel of F (a) can be decomposed into a linear combination of the column

vectors of M(a) with coefficient given by the components of ∆(a)1, j , i.e.,

∆
(a)
1, j =

∑

i

∆
(a)
1,i M

(a)
j,i . (132)

Thus, the kernel of F (a) is the submodule spanned by the column vectors of M(a), and the
dimension of the kernel is given by the determinantal rank of M(a)

nullity(F (a)) = ρ(M(a)) . (133)

If the determinantal rank of M(a) satisfies

ρ(M(a)) = ra − n , (134)

we have nullity(F (a) = ra−n as in Eq. (96). Then, following a similar argument below Eq. (96)
for prime qudits, we conclude there is a unique ∆ with minimal interaction range n+ 1 and
all the generators of the kernel of F (a) with ra > n+ 1 can be constructed from the ra = n+ 1
generator.

Given a general F (a), one can systematically check whether it is regular using a decom-
position theorem and Rao-regularity [117, 118], as reviewed in Appendix A.2. However, in
practice, it is typically straightforward to directly check for a given F (a) if there exists a G(a) sat-
isfying (130). For regular matrices F (a) in which Eq. (134) holds, from our previous arguments
there exists a unique ∆, with interaction range n+ 1, generating AnnML(ZN )(S). Therefore, in
this case, the modulated symmetry (125) can be gauged using the Gauss operator (109) from
Section 2.2 using ZN qudits. Otherwise, there can exist multiple inequivalent generators ∆(a)

of AnnML(ZN )(S), which can cause the gauging procedure from Section 2.2 to fail.
In the rest of this section, instead of further pursuing a general formalism for gauging these

modulated symmetries, we explore gauging through examples with regular and non-regular
F (a) matrices. In these examples, there exists a convenient basis for S = { f (1), f (2), · · · , f (n)}
in which each

f (q)j = mq
ef (q)j , (135)
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where mq is the largest element of {1,2, · · · , N − 1} such that ef (q)j ∈ Z for all j. In this basis,
the operators Uq become the minimal generators

Uq =
∏

j

(Xmq

j )
ef (q)j , (136)

and each are ZN/gcd(mq ,N) symmetry operators. Therefore, the internal symmetry group Gint is
the direct products of ZN/gcd(mq ,N) and the total symmetry group is

Gsym =
�

ZN/gcd(m1,N) ×ZN/gcd(m2,N) × · · · ×ZN/gcd(mn,N)
�

⋊ϕ Gspace , (137)

where the group homomorphism ϕ : Gspace→ Aut(Gint) describes the action of Gspace on Uq as
determined by the lattice functions S.

For general f (q)j and N , the techniques developed in Section 2.2 will no longer apply, and
a new formalism is required. Indeed, while using a Gauss operator like the one in Section 2.2
can trivialize all symmetry operators Uq, it may “over-gauge” the symmetry by trivializing ad-
ditional onsite unitary operators that are not symmetry operators. A promising strategy to
avoid over-gauging is to sequentially gauge Gint one ZN/gcd(mq ,N) subgroup at a time. In par-
ticular, one can first gauge subgroups that are closed under the translation group action. After
doing so, subgroups that have not been gauged and previously not closed under translations
can become closed, which are the subgroups that are gauged next.

Because Gint is a finite Abelian group, we generally expect the dual internal symmetry G∨int
to be the Pontryagin dual group Hom(Gint, U(1))≃ Gint. Indeed, this is because we expect the
dual internal symmetry operators are always able to end on the original symmetry’s charged
operators and remain gauge invariant (i.e., the symmetry charges become gauge charges after
gauging, and the dual symmetry operators are the Wilson lines). Therefore, since the sym-
metry charges are described by the irreducible representations of Gint, they fuse according to
the group Hom(Gint, U(1))≃ Gint, and the dual internal symmetry operators must as well by
gauge invariance. However, the dual group’s action ϕ∨ will generally not be the same as ϕ,
so the total dual symmetry group

G∨sym =
�

ZN/gcd(m1,N) ×ZN/gcd(m2,N) × · · · ×ZN/gcd(mn,N)
�

⋊ϕ∨ Gspace , (138)

is generally not isomorphic to Gsym.

3.2 Examples

We now explore examples of gauging general finite Abelian modulated symmetries using the
aforementioned sequential gauging strategy.

3.2.1 A Z2 ×Z4 modulated symmetry

In this example, consider a system of Z4 qudits on an infinite chain whose Hamiltonian com-
mutes with the Gint = Z4 ×Z2 modulated symmetry generated by

UZ4
=
∏

j

X j , UZ2
=
∏

j

(X j)
2 j . (139)

Using these modulated functions, the F (a) matrices take the form

F (a) =
�

1 1 . . . 1
2 4 . . . 2 ra

�

mod 4 . (140)
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If the symmetry (139) has only one ∆, it would have range r = 2+ 1 and span the kernel
ker(F (3)). However, the kernel of

F (3) =
�

1 1 1
2 4 6

�

mod 4 , (141)

is two-dimensional, spanned by

∆
(3)
1 =

�

2 −2 0
�T

mod 4 , ∆
(3)
2 =

�

1 0 −1
�T

mod 4 . (142)

Therefore, the matrices F (a) are non-regular, and the gauging procedure from Section 2.2
cannot be used.

The bond algebra of this symmetry is

B :=
¬

X j , (Z jZ
†
j+1)

2, Z jZ
†
j+2

¶

. (143)

If the Hamiltonian is translation invariant, the total symmetry group is

Gsym = (Z4 ×Z2)⋊ϕ Z , (144)

where the group homomorphism ϕ : Z→ Aut(Z4 ×Z2) captures the translation symmetry ac-
tion

T UZ4
T−1 = UZ4

, T UZ2
T−1 = U2

Z4
UZ2

. (145)

As we now show, this simple example demonstrates how when N is not prime, finite Abelian
modulated symmetries are not always self-dual.

We gauge this modulated symmetry sequentially, first gauging the Z4 subgroup generated
by UZ4

, which makes UZ2
non-modulated, and then gauging the Z2 symmetry generated by

UZ2
. In what follows, we explicitly do each step of the gauging.
To gauge the Z4 subgroup, we introduce Z4 qudits onto the links of the lattice that are

acted on by X j, j+1 and Z j, j+1. Since UZ4
is not modulated, the Gauss operator relating them

to the original Z4 qudit operators is

G(1)j = X j X j−1, jX
†
j, j+1 . (146)

The Gauss’s law G(1)j = 1 introduces the gauge redundancy

Z†
j ∼ iλ

(1)
j Z†

j , Z j, j+1 ∼ iλ
(1)
j −λ

(1)
j+1 Z j, j+1 , (147)

which by minimal coupling causes the bond algebra to become

Bintermediate :=
¬

X j , (Z j Z j, j+1 Z
†
j+1)

2, Z j Z j, j+1 Z j+1, j+2 Z
†
j+2

¶

. (148)

The nontrivial operators commuting with Bintermediate are generated by

U∨Z4
=
∏

j

Z j, j+1 , UZ2
=
∏

j

X 2
j, j+1 . (149)

They form a Gintermediate
int = Z4 ×Z2 symmetry. Since neither of these operators is modulated,

the total symmetry group of a translation invariant model is Gintermediate
sym = (Z4 ×Z2)×Z. Im-

portantly, on a length L ring, they satisfy

U∨Z4
UZ2
= (−1)L UZ2

U∨Z4
, (150)
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and therefore Gintermediate
sym is realized projectively in systems with an odd number of lattice

sites. This is a manifestation of a Lieb-Schultz-Mattis (LSM) anomaly involving the Z4 ×Z2
internal symmetry and translations. A similar relation between LSM anomalies and modulated
symmetries was found in Refs. [119–121].

We next gauge the Z2 subgroup of the original symmetry using Z2 qudits that are on the
links of the lattice and acted on by σx

j, j+1 and σz
j, j+1. Since the Z2 subgroup is generated by

UZ2
the Gauss operator in this step of the gauging is defined as

G(2)j = X 2
j, j+1 σ

x
j−1, jσ

x
j, j+1 . (151)

There are now two Gauss’s laws, G(1)j = G(2)j = 1, which enlarges the gauge redundancy (147)
to

Z†
j ∼ iλ

(1)
j Z†

j , Z j, j+1 ∼ iλ
(1)
j −λ

(1)
j+1+2λ(2)j Z j, j+1 , σz

j, j+1 ∼ (−1)λ
(2)
j +λ

(2)
j+1σz

j, j+1 , (152)

and upon minimal coupling, the intermediate bond algebra becomes

B∨ :=
¬

X j , (Z j Z j, j+1Z
†
j+1)

2, Z j Z j, j+1σ
z
j, j+1Z j+1, j+2Z

†
j+2

¶

. (153)

The nontrivial operators commuting with both B∨ and the Gauss operator G(2)j are generated
by

U∨Z4
=
∏

j

Z j, j+1(σ
z
j, j+1)

j , U∨Z2
=
∏

j

σz
j, j+1 , (154)

and form a Z4 ×Z2 modulated symmetry.
The dual internal symmetry group is G∨int = Z4 ×Z2 and therefore G∨int ≃ Gint. The dual

symmetry group G∨sym = (Z4 ×Z2)⋊ϕ∨ Z ̸≃ Gsym because translations act on the dual symmetry
operators as

T U∨Z2
T−1 = U∨Z2

, T U∨Z4
T−1 = U∨Z4

U∨Z2
. (155)

Because this differs from (145), the dual group homomorphism ϕ∨ ̸= ϕ and G∨sym ̸≃ Gsym.

3.2.2 ZN dipole symmetry

Having covered an example of a finite Abelian modulated symmetry that is not self-dual in
systems of ZN qudits with N not prime, let’s consider an example that is self-dual for all N .
We consider a ZN dipole symmetry, which is a Gint = ZN ×ZN symmetry generated by

U =
∏

j

X j , D =
∏

j

(X j)
j , (156)

where X j is the shift operator acting on the ZN qudit at site j of an infinite chain. The F (a)
matrix for the ZN dipole symmetry generators (156) is the 2× ra matrix

F (a) =
�

1 1 1 · · · 1
1 2 3 · · · ra

�

mod N . (157)

It is a regular matrix for all ra ≥ n= 2 because the ra × 2 matrix,

G(a) =













2 −1
−1 1
0 0
...

...
0 0













mod N , (158)
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is always a generalized inverse. Explicitly computing the M(a) matrix, as in Eq. (131),

M(a) =

















0 0 1 2 . . . ra − 2
0 0 −2 −3 . . . −(ra − 1)
0 0 1 0 . . . 0
0 0 0 1 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 1

















, (159)

we see that besides the two first columns (that are zero), all the other columns are independent
of each other, which implies that the determinantal rank ρ(M(a)) = ra − 2 obeys Eq. (134).
Therefore, the ZN dipole symmetry always has a unique minimal ∆ of range n+ 1= 3 that
generates all the symmetric Z-operators in the bond algebra. Indeed, the kernel of F (a) with
ra ≥ n+ 1= 3 is spanned by the ra − 2 vectors

∆
(ka)
1, j = (0, · · · , 0

︸ ︷︷ ︸

ka zeros

, 1, −2, 1, 0, · · · , 0
︸ ︷︷ ︸

ra−ka−3 zeros

)T mod N , (160)

where ka = 0, 1, · · · , ra − 3, and the ZN dipole symmetry can be gauged using the techniques
from Section 2.2 for all N . However, in the rest of this section, we show how to gauge it using
the sequential gauging strategy and prove that doing so is unitarily equivalent to the gauging
from Section 2.2.

From Eq. (160), the bond algebra of the ZN dipole symmetry is

B :=
¬

X j , Z j−1 Z −2
j Z j+1

¶

. (161)

If the Hamiltonian is translation invariant, the total symmetry group is

Gsym = (ZN ×ZN )⋊ϕ Z , (162)

where the group homomorphism ϕ : Z→ Aut(ZN ×ZN ) captures the translation symmetry
action

T U T−1 = U , T D T−1 = U D . (163)

We sequentially gauge the symmetry using the Gauss operators

G(1)j = X jX
(1)
j−1, j(X

(1)
j, j+1)

† , G(2)j = X (1)j, j+1X (2)j−1, j(X
(2)
j, j+1)

† . (164)

The Gauss’s law G(1)j = 1 trivializes U and renders D non-modulated. Subsequently, the Gauss’s

law G(2)j = 1 further trivializes D. These Gauss’s laws introduce the redundancy

Z†
j ∼ω

λ
(1)
j

N Z†
j , Z (1)j, j+1 ∼ω

λ
(1)
j −λ

(1)
j+1−λ

(2)
j

N Z (1)j, j+1 , Z (2)j, j+1 ∼ω
λ
(2)
j −λ

(2)
j+1

N Z (2)j, j+1 , (165)

where ωN := exp[2π i/N], and the gauged model’s bond algebra is

B∨ :=
¬

X j , Z (2)j−1, j Z (1)j−1, j (Z
(1)
j, j+1)

† Z j−1Z−2
j Z j+1

¶

. (166)

Its commutant is generated by the gauge-invariant operators

U∨ =
∏

j

Z (1)j, j+1(Z
(2)
j, j+1)

j , D∨ =
∏

j

Z (2)j, j+1 . (167)
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These generate a ZN ×ZN symmetry that obeys

T U∨ T−1 = D∨U∨ , T D∨ T−1 = D∨ , (168)

and, therefore, generate a ZN dipole symmetry. Hence, the dual symmetry group is isomorphic
to the original one, and ZN dipole symmetry is self-dual for all N .

Recall from Section 2.1.3 that for Zp qudits with p prime, Zp dipole symmetry can be
gauged using a single Gauss operator (80) with m= 1. The Gauss operators (164) can be
related to (80) using the unitary transformation

Z (2)j−1, j 7→ Z (2)j−1, j (Z
(1)
j−1, j)

† Z (1)j, j+1 , X (1)j−1, j 7→ X (1)j−1, j X (2)j−1, j (X
(2)
j−2, j−1)

† . (169)

In this new basis, the Gauss operators (164) become

G(1)j = X j (X
(2)
j−2, j−1)

† (X (2)j−1, j)
2 (X (2)j, j+1)

† , (170)

G(2)j = X (1)j, j+1 . (171)

The Gauss operator G(1)j is now the same as (80) with m= 1. Furthermore, from the Gauss’s

law G(2)j = 1, we can ignore the ZN qudits acted on by X (1) and Z (1). Therefore, a ZN dipole
symmetry, for general N , can be gauged using only one type of ZN qudits with the Gauss
operator (170).

3.2.3 ZN quadrupole symmetry

Having gauged a ZN dipole symmetry in the previous example, it is interesting to won-
der about a general ZN multipole symmetry. However, before doing so in the next ex-
ample, let us consider a ZN quadrupole symmetry in a system of ZN qudits. This is a
Gint = ZN ×ZN ×ZN/gcd(2,N) symmetry generated by the unitary operators

U =
∏

j

X j , D =
∏

j

X j
j , Q =

∏

j

X j2− j
j . (172)

U and D are ZN symmetry operators, while Q is a ZN/gcd(2,N) symmetry operator because j2 − j
is always an even integer.

If the F (a) matrices are regular, then a single ∆ with range r = 3+ 1 would generate the
bond algebra and the symmetry can be gauged using the procedure from Section 2.2. However,
the kernel of

F (4) =





1 1 1 1
1 2 3 4
0 2 6 12



 mod N , (173)

is generally two-dimensional, spanned by

∆
(4)
1 =

�

−1 3 −3 1
�

mod N , ∆
(4)
2 =

�

N
gcd(2,N) 0 N

gcd(2,N) 0
�

mod N . (174)

Therefore, when N is even and ∆(4)2 nontrivial, all F (a) are non-regular. For odd N , however,

∆
(4)
2 is trivial and

F (a) =





1 1 1 1 · · · 1
1 2 3 4 · · · ra
0 2 6 12 · · · ra(ra − 1)



 mod N , (175)
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is regular for all ra ≥ n= 3 since

G(a) =

















3 −2 2−1

−3 3 −1
1 −1 2−1

0 0 0
...

...
...

0 0 0

















mod N , (176)

is a generalized inverse. Notice that G(a) is well-defined only for odd N , when 2−1, the ZN
inverse of 2, exists. In what follows, we gauge the symmetry for general N using sequential
gauging and show that when N is odd, gauging this way is unitarily equivalent to the procedure
defined in Section 2.2. This is possible because Eq. (134) holds, ρ(M(a)) = ra − 3, which can
be seen from the explicit from

M(a) =





















0 0 0 −1 −3 . . . −2−1(ra − 3)(ra − 2)
0 0 0 3 8 . . . (ra − 3)(ra − 1)
0 0 0 −3 −6 . . . −2−1(ra − 2)(ra − 1)
0 0 0 1 0 . . . 0
0 0 0 0 1 . . . 0
...

...
...

...
...

. . .
...

0 0 0 0 0 . . . 1





















. (177)

Besides from the first three, all other columns of M(a) are independent from each other, which
implies that ρ(M(a)) = ra − 3.

The bond algebra of the ZN quadruple symmetry is

B :=
¬

X j , (Z j Z j+2)
N/gcd(2,N), Z−1

j−1 Z
3
j Z
−3
j+1 Z j+2

¶

. (178)

If the Hamiltonian is translation invariant, the total symmetry group is

Gsym = (ZN ×ZN ×ZN/gcd(2,N))⋊ϕ Z , (179)

where the group homomorphism ϕ : Z→ Aut(ZN ×ZN ×ZN/gcd(2,N)) captures the translation
symmetry action

T U T−1 = U , T D T−1 = U D , T Q T−1 = D2 Q . (180)

We sequentially gauge this ZN quadrupole symmetry using two species of ZN qudits on
links, acted on by X (1)j, j+1 and X (2)j, j+1, and a single species of ZN/gcd(2,N) qudit on links acted on

by X (3)j, j+1. The Gauss operators relating these qudits with the original ZN qudits are

G(1)j = X j (X
(1)
j−1, j)

† X (1)j, j+1 ,

G(2)j = X (1)j−1, j (X
(2)
j−1, j)

† X (2)j, j+1 ,

G(3)j = (X
(2)
j−1, j)

gcd(2,N) (X (3)j−1, j)
† X (3)j, j+1 .

(181)

The Gauss operator G(3)j has X (2)j−1, j raised to gcd(2, N) because after setting G(1)j = G(2)j = 1,

Q =
∏

j(X
(2)
j, j+1)

2. The Gauss’s law G(1)j = 1 trivializes U and makes D a non-modulated sym-

metry, then G(2)j = 1 trivializes D and makes Q a non-modulated symmetry, and lastly G(3)j = 1
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trivializes Q. These Gauss’s laws induce the gauge redundancy

Z j ∼ (ωN )
−λ(1)j Z j , Z (1)j, j+1 ∼ (ωN )

λ
(1)
j+1−λ

(1)
j −λ

(2)
j+1 Z (1)j, j+1 ,

Z (2)j, j+1 ∼ (ωN )
λ
(2)
j+1−λ

(2)
j −gcd(2,N)λ(3)j+1 Z (2)j, j+1 , Z (3)j, j+1 ∼ (ωN )

gcd(2,N)[λ(3)j+1−λ
(3)
j ] Z (3)j, j+1 .

(182)

Upon minimal coupling, the gauged bond algebra becomes

B∨ :=
­

X j , (Z j (Z
(1)
j, j+1)

† Z (1)j+1, j+2 Z (2)j+1, j+2 Z j+2)
N/gcd(2,N),

Z (3)j, j+1 (Z
(2)
j−1, j)

† Z (2)j, j+1 Z (1)j−2, j−1 (Z
(1)
j−1, j)

−2 Z (1)j, j+1 Z−1
j−2 Z

3
j−1 Z

−3
j Z j+1

·

.
(183)

The gauge invariant operators commuting with B∨ describe a ZN ×ZN ×ZN/gcd(2,N) sym-
metry, and are generated by

U∨ =
∏

j

(Z (3)j, j+1)
j( j−1)/2 (Z (2)j, j+1)

− j Z (1)j, j+1 ,

D∨ =
∏

j

(Z (3)j, j+1)
j(Z (2)j, j+1)

−1 ,

Q∨ =
∏

j

Z (3)j, j+1 .

(184)

U∨ and D∨ are both ZN symmetry operators, while Q∨ is a ZN/gcd(2,N) symmetry operator.
They transform under lattice translations as

T U∨ T−1 = D∨ U∨ , T D∨ T−1 =Q∨ D∨ , T Q∨ T−1 =Q∨ , (185)

which is described by the group homomorphism ϕ∨ : Z→ Aut(ZN ×ZN ×ZN/gcd(2,N)). There-
fore, the dual symmetry group is G∨sym = (ZN ×ZN ×ZN/gcd(2,N))⋊ϕ∨ Z. When N is odd, the
symmetry operators are all ZN operators and ϕ∨ = ϕ with the identification

Q∨ ≃ U , D∨ ≃ D , (U∨)2 ≃Q . (186)

Therefore, when N is odd, the dual symmetry group G∨sym is isomorphic to Gsym. Indeed, when
N is odd, the unitary transformations

X j 7→ X j (X
(2)
j−1, j) (X

(2)
j, j+1)

−2 (X (2)j+1, j+2) ,

X (1)j, j+1 7→ X (1)j, j+1 X (2)j, j+1 (X
(2)
j+1, j+2)

† ,

Z (2)j, j+1 7→ Z (2)j, j+1 Z (1)j−1, j (Z
(1)
j, j+1)

† Z†
j−1 Z

2
j Z

†
j+1 ,

(187)

then
X (2)j−1, j 7→ X (2)j−1, j X (3)j−1, j (X

(3)
j, j+1)

† ,

Z (3)j, j+1 7→ Z (3)j, j+1 Z (2)j−1, j (Z
(2)
j, j+1)

† ,
(188)

cause the Gauss’s laws to enforceX j = X (1)j−1, j = X (2)j−1, j = 1 and the dual bond algebra to become

B∨ =
­

X (3)j−1, j (X
(3)
j, j+1)

−3 (X (3)j+1, j+2)
3 (X (3)j+2, j+3)

−1, Z (3)j, j+1

·

(odd N) , (189)

which is isomorphic to B with odd N . However, when N is even, ϕ∨ ̸= ϕ and the dual symme-
try group is not isomorphic to the original symmetry. Therefore, a ZN quadrupole symmetry
is self-dual only for odd N .
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When N is a prime number p, as discussed in Section 2.1.3, the Zp quadrupole symmetry
can be gauged in one-step using Zp qudits on links, acted on by X j, j+1, and imposing Gauss’s
law on the physical Hilbert space

G j = X j (X j−1, j)
−1 (X j, j+1)

3 (X j+1, j+2)
−3 X j+2, j+3 = 1 . (190)

It is natural to wonder whether this one-step gauging generalizes to the case when N is not
prime if the Zp qudits on links are replaced by ZN qudits. In this case, however, the Gauss’s
law (190) trivializes not just the symmetry generators of the ZN quadrupole symmetry

U =
∏

j

G j = 1 , D =
∏

j

(G j)
j = 1 , Q =

∏

j

(G j)
j2− j = 1 , (191)

but also the operator
∏

j

X j( j−1)/2
j =

∏

j

(G j)
j( j−1)/2 = 1 . (192)

When N is odd, this operator is the symmetry operator Q(N+1)/2, but for even N it is not a
symmetry operator. Therefore, when gcd(2, N) ̸= 1, we over gauge the symmetry, and this
one-step gauging does not correctly gauge the ZN quadrupole symmetry.

While the ZN quadrupole symmetry (172) is self-dual for only odd N , we can consider a
closely related modulated Z×3

N symmetry generated by

U =
∏

j

X j , D =
∏

j

X j
j , eQ =

∏

j

X j( j−1)/2
j . (193)

The bond algebra for this symmetry is

B :=
¬

X j , Z−1
j−1 Z

3
j Z
−3
j+1 Z j+2

¶

. (194)

When N is odd, the bond algebra is identical to (178), and the symmetry reduces to the ZN
quadrupole symmetry. However, for even N , the bond algebra has one less generator compared
to (178), and the symmetry differs from the ZN quadrupole symmetry by the operator (192).
Unlike the ZN quadrupole symmetry, this modulated Z×3

N symmetry can be gauged using the
Gauss’s law (190) for all N , and is consequently self-dual for all N as well.

3.2.4 ZN multipole symmetry

Having gauged ZN dipole and quadrupole symmetries, this example discusses a ZN order-m
multipole symmetry. The symmetry operators of a ZN order-m multipole symmetry take the
general form

∏

j

(X j)
∑m

k=0 ck jk
, (195)

where ck ∈ Z. When m= 1 (resp. m= 2), it is a ZN dipole (resp. quadrupole) symmetry.
Importantly, (195) is not a Z×m+1

N symmetry operator for general N . Indeed, a set of minimal
generators for the symmetry are

Un =
∏

j

(X j)
P(n)j , P(n)j =

n−1
∏

k=0

( j − k) , (196)

where P(0)j = 1 and n= 0,1, · · · , m. These generators are independent because Un acts as 1 at

site j = 0, 1, · · · , n− 1 and as (X j)n! at site j = n. The generator Un is a ZN/gcd(n!,N) operator

because n! is always a divisor of P(n)j . Therefore, the internal symmetry group is

Gint = ZN/gcd(0!,N) ×ZN/gcd(1!,N) ×ZN/gcd(2!,N) × · · · ×ZN/gcd(m!,N) . (197)
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If the Hamiltonian is translation invariant, the total symmetry group is Gsym = Gint ⋊ϕ Z, where
the group homomorphism ϕ : Z→ Aut(Gint) captures the translation symmetry action

T Un T−1 =

¨

Un , n= 0 ,

Un (Un−1)n , else.
(198)

We gauge the symmetry sequentially, first trivializing U0, then U1, then U2, etc. A key
identity we use while gauging is

∂ [P(n)j ]≡
∑

k

∂ j,k P(n)k = n P(n−1)
j , (199)

where ∂ denotes the lattice derivative. Let us start from where we left off in the quadrupole
case, using the notation

an = gcd(n!, N) , (200)

Since a0 = 1, a1 = 1, and a2 = gcd(2, N), the clock operators X (i) (i = 1,2, 3) act on ZN/ai−1

qudits and the Gauss operators are

G(1)j = X j (X
(1)
j−1, j)

† X (1)j, j+1 , (201)

G(2)j = (X
(1)
j−1, j)

a1/a0 (X (2)j−1, j)
† X (2)j, j+1 , (202)

G(3)j = (X
(2)
j−1, j)

a2/a1 (X (3)j−1, j)
† X (3)j, j+1 . (203)

Implementing the corresponding Gauss’s laws causes the symmetry operators (196) to become

Un =
∏�

X (3)j, j+1

�∂ 3[P(n)j ]/a2
, (204)

where Un = 1 for n= 0, 1,2 and U3 is a non-modulated operator.
To perform the next step in the sequential gauging procedure, it is important to take into

account that 3! is a divisor of all ∂ 3[P(n)j ], which follows directly from (199). Therefore, the

next Gauss operator G(4)j must be

G(4)j = (X
(3)
j−1, j)

a3/a2 (X (4)j−1, j)
† X (4)j, j+1 , (205)

where we used a3/a2 = gcd(3!/a2, N/a2). Furthermore, because (X (3)j, j+1)
N/a2 = 1, X (4)j, j+1 must

act on ZN/a3
qudits for the Gauss’s law G(4)j = 1 to be consistent. The Gauss’s law G(4)j = 1

causes the symmetry operators (204) to become

Un =
∏�

X (4)j, j+1

�∂ 4[P(n)j ]/a3
, (206)

and now Un with n≤ 3 is trivialized while U4 becomes a non-modulated operator.
Following the same logic as above, since 4! is a divisor of ∂ 4[P(n)j ], the sub-symmetry

generated by U4 is gauged using the Gauss operator

G(5)j = (X
(4)
j−1, j)

a4/a3 (X (5)j−1, j)
† X (5)j, j+1 , (207)

where X (5) act on ZN/a4
qudits. From here, the pattern arising from sequential gauging be-

comes clear. The entire modulated symmetry is gauged using the Gauss operators

G(1)j = X j (X
(1)
j−1, j)

† X (1)j, j+1 , G(k)j = (X
(k−1)
j−1, j )

ak−1/ak−2 (X (k)j−1, j)
† X (k)j, j+1 , (208)
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where k = 2, 3, · · · , m+ 1 and X (k) act on ZN/ak−1
qudits. Notice that each G(n)j is a ZN/an−1

operator, reflecting how the symmetry group is Gint = ZN/a0
×ZN/a1

× · · · ×ZN/am
as claimed.

Gauge invariant operators constructed from only {Z (k)} are the gauged model’s symme-
tries. They are generated by

U∨n =
∏

j

m
∏

k=n

(Z (k+1)
j, j+1 )

eP(k−n)
j , eP(n)j =

(−1)n

n!
P(n)j , (209)

where n= 0,1, · · ·m. For clarity, let us expand the expressions of U∨n for some n,

U∨m =
∏

j

Z (m+1)
j, j+1 ,

U∨m−1 =
∏

j

(Z (m+1)
j, j+1 )

− j Z (m)j, j+1 ,

U∨m−2 =
∏

j

(Z (m+1)
j, j+1 )

j( j−1)/2(Z (m)j, j+1)
− j Z (m−1)

j, j+1 .

(210)

Since each U∨n is a ZN/an
symmetry operator, the dual internal symmetry group G∨int ≃ Gint.

The total dual symmetry group is G∨sym = Gint ⋊ϕ∨ Z, where the translation symmetry action
on G∨int is described by ϕ∨ and arises from

T U∨n T−1 =

¨

U∨n , n= m ,

U∨n (U
∨
n+1)

† , else.
(211)

For general N , this differs from how translations act before gauging, given by (198), soϕ∨ ̸= ϕ
and G∨sym ̸≃ Gsym. In particular, while the ZN/am

operator Um before gauging was modulated,
the ZN/am

operator U∨m after gauging is not a modulated operator. However, when am = 1,
which implies an = 1 for all n= 0, 1, · · · , m, the symmetry operators are all ZN operators and
ϕ∨ = ϕ with the identification

(U∨m−n)
(−1)n n! ≃ Un . (212)

Therefore, a ZN order-m multipole symmetry is self-dual if and only if N is coprime to m!.
When N is coprime to m!, the Gauss operators become

G(1)j = X j (X
(1)
j−1, j)

† X (1)j, j+1 , G(k)j = X (k−1)
j−1, j (X

(k)
j−1, j)

† X (k)j, j+1 , (213)

and using a sequential unitary transformation, they become

G(1)j = X j

∏

ℓ

(X (m+1)
ℓ−1,ℓ )

[∂ m+1]ℓ, j , G(k)j = X (k−1)
j−1, j . (214)

Notice that G(1)j is equivalent to the Gauss operator from the prime qudit case in Section 2.1.3.

Let us end this example by emphasizing that using the Gauss operator G(1)j in (214) to
gauge the multipole symmetry for general N is incorrect. Indeed, while implementing the
corresponding Gauss’s law trivializes the symmetry operators (196), it trivializes additional
onsite unitary operators that are not a part of the order-m multipole symmetry. In particular,
it trivializes the operators

eUn =
∏

j

X
eP(n)j

j , (215)

where n= 2, 3, · · · , m and eP(n)j is given in Eq. (209). When N is coprime to m!, these opera-
tors are all symmetry operators listed in (196). When N is not coprime to m!, some of these
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operators will not be symmetries, and, therefore, this Gauss’s law over gauges the order-m
multipole symmetry for general N . One could instead consider the modulated Z×m+1

N sym-
metry generated by eUn for n= 0, 1,2, 3, · · · , m. This symmetry is correctly gauged using the
Gauss operator G(1)j in (214) and is self-dual for all N .

4 Kramers-Wannier dualities and non-invertible reflection
symmetries

In Section 2, we showed that for translation invariant systems of prime qubits, there is a canon-
ical isomorphism between the bond algebras before and after gauging finite Abelian modulated
symmetries implemented by the reflection operator (recall Eq. (120)). When the local degrees
of freedom are not prime qudits, we demonstrated through examples in Section 3 that this iso-
morphism can hold but is not guaranteed by lattice translation symmetry. In this section, we
study a non-invertible reflection symmetry arising from this canonical isomorphism and the
gauging procedures presented in the previous sections. We do so in the context of a general-
ized Ising model of ZN qudits, which has a modulated Z×n

N symmetry that always supports the
aforementioned isomorphism between bond algebras. After some general exposition on the
model’s non-invertible reflection symmetry, we specialize to particular modulated symmetries
and construct explicit expressions for non-invertible reflection and KW symmetry operators.

4.1 Generalized Ising model for modulated symmetries

Here, we consider a class of models that generalizes the transverse field Ising model to systems
with finite Abelian modulated symmetries. These generalized Ising models are defined on a
one-dimensional lattice with ZN qudits on sites j, acted on by X j and Z j . Their Hamiltonians
are parametrized by a ZN -valued matrix ∆ j,ℓ specifying the Z-type interactions:

H := −
∑

j

¨

J
∏

ℓ

Z
∆ j,ℓ

ℓ
+ hX j +H.c.

«

. (216)

We impose translation invariance on the Hamiltonian with periodic boundary conditions
j ∼ j + L, where L is the number of lattice sites. This implies that ∆ j,ℓ must satisfy

∆ j,ℓ =∆ j+k,ℓ+k =∆1,1+ℓ− j , (217)

for any integer k ∼ k+ L. To avoid long-range interactions, we assume∆ j,ℓ has a finite support
of n+ 1 sites by choosing, without a loss of generality,

∆ j,ℓ = 0 if ℓ < j or ℓ > j + n , ∆ j, j , ∆ j, j+n ̸= 0 mod N . (218)

These generalized Ising models can have finite Abelian modulated symmetries

U f =
∏

j

(X j)
f j , (219)

parametrized by ZN -valued functions f j . For U f to commute with the Hamiltonian (216),
these lattice functions must solve

∑

ℓ

∆ j,ℓ fℓ =∆1,1 f j +∆1,2 f j+1 + · · ·∆1,1+n f j+n = 0 mod N , (220)
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where we use translation invariance (217) to expand the expression. However, Eq. (220) does
not have a nontrivial solution for every ∆ j,ℓ, and when this is the case, it means the Hamil-
tonian (216) does not have the symmetry (219).12 In the rest of this section, we will restrict
ourselves to the subclass of Hamiltonians (216) for which both ∆1,1 and ∆1,1+n are coprime
to N . As we next show, such generalized Ising models always have nontrivial modulated sym-
metries (219).

When ∆1,1 and ∆1,1+n are coprime to N , they have ZN multiplicative inverses, respec-
tively denoted by ∆−1

1,1 and ∆−1
1,1+n. Using these, we can derive from (220) the left and right

recurrence relations

f j−1 = −∆−1
1,1

�

∆1,2 f j +∆1,3 f j+1 + · · ·∆1,1+n f j+n−1

�

mod N , (223)

f j+n = −∆−1
1,1+n

�

∆1,1 f j +∆1,2 f j+1 + · · ·∆1,n f j+n−1

�

mod N . (224)

Using these, we can solve for f j recursively after specifying the initial conditions f1, f2, · · · , fn.
From the theory of linear recurrence relations, this reveals that there are n linearly independent
generating solutions to Eq. (220), which can be parametrized by their initial conditions. We
denote these generating solutions by f (q)j for q = 1,2, · · · , n, and without a loss of generality,
choose them to satisfy the initial conditions

f (q)j = δ j,q , for j = 1,2, · · · , n . (225)

Therefore, the Hamiltonian then has a Z×n
N modulated symmetry generated by

Uq =
∏

j

X
f (q)j

j . (226)

Since there are a finite number of initial conditions (225), the generating solutions f (q)j must
repeat themselves after a certain shift of j. In other words, these modulated symmetries are
periodic with a finite periodicity. Because of the periodic boundary conditions, these mod-
ulated symmetries are generically explicitly broken unless their periodicity matches with the
number of lattice sites L [78,107]. In order to preserve all of the Z×n

N symmetry upon enforcing
periodic boundary conditions, L must be chosen such that13

f (q)j+L = f (q)j mod N , for all q . (227)

From here on, we will assume that L is always chosen to accommodate these constraints (227).
The modulated symmetries can characterize different phases of the generalized Ising

model (216) through their spontaneous symmetry breaking patterns. When J = 0 and h> 0,

12As an example, consider N = 4 and n= 2 where ∆1,1 = 2, ∆1,2 = 1, and ∆1,3 = 2. In this case, Eq. (220)
becomes

2 f j + f j+1 + 2 f j+2 = 0 mod 4 , (221)

to which there are no nontrivial solutions. Indeed, taking mod 2 on both sides of the equation gives f j+1 = 0 mod 2
for all j, and thus f j = 2g j . Substituting f j = 2g j back to the equation, we obtain f j+1 = 2g j+1 = 0 mod 4. This
means that the Hamiltonian,

H = −
∑

j

¦

J Z2
j Z j+1Z2

j+2 + hX j +H.c.
©

, (222)

has no symmetries of the form (219) when N = 4.
13If L does not satisfy the constraint (227), the Z×n

N modulated symmetry will be broken down to its subgroup. In
this case, we can still make sense of the full symmetry by resorting to the notion of bundle symmetries introduced
in [107].

34

https://scipost.org
https://scipost.org/SciPostPhys.18.1.021


SciPost Phys. 18, 021 (2025)

the model has a non-degenerate gapped ground state that preserves all of the modulated sym-
metries and describes a disordered phase. When J > 0 and h= 0, the local operators Z j com-
mute with the Hamiltonian and obtain non-vanishing expectation values in the ground state
subspace. The ground state is then ordered and spontaneously breaks all the modulated sym-
metry. Since the corresponding expectation value acquired by Z j is generally site-dependent,

the spatial symmetries are also generically spontaneously broken.14 Away from these fixed
points, the ground states of Hamiltonian (216) may go through multiple intermediate phases
and phase transitions between ordered and disordered phases. It would be interesting to study
the phase diagram of these generalized Ising models, which we leave for future works.

4.2 KW dualities as non-invertible reflections

The assumption that ∆1,1 and ∆1,1+n are coprime to N in the generalized Ising model (216)
provides a powerful simplification of the modulated Z×n

N symmetry’s bond algebra. Indeed, let
us consider the F matrix defined in (126) with r > n:

F =











f (1)1 f (1)2 . . . f (1)r

f (2)1 f (2)2 . . . f (2)r
...

...
. . .

...
f (n)1 f (n)2 . . . f (n)r











=











1 0 . . . 0 f (1)n+1 . . . f (1)r

0 1 . . . 0 f (2)n+1 . . . f (2)r
...

...
. . .

...
...

. . .
...

0 0 . . . 1 f (n)n+1 . . . f (n)r











, (228)

where we used the initial conditions (225). This F matrix is regular in the sense that it has a
generalized inverse G satisfying F · G ·F = F . The generalized inverse G and the M matrix
(see Eq. (131)) are given by

G =























1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0























, M=

























0 0 . . . 0 − f (1)n+1 . . . − f (1)r

0 0 . . . 0 − f (2)n+1 . . . − f (2)r
...

...
. . .

...
...

. . .
...

0 0 . . . 0 − f (n)n+1 . . . − f (n)r
0 0 . . . 0 1 . . . 0
...

...
. . .

...
...

. . .
...

0 0 . . . 0 0 . . . 1

























. (229)

Since the (r − n)× (r − n) dimensional sub-matrix in the bottom right corner of M is an iden-
tity matrix with determinant 1, the determinantal rank ρ(M) is at least r − n. Additionally,
the determinantal rank ρ(M) can be at most r − n because any ℓ× ℓ dimensional sub-matrix
of M with ℓ > r − n necessarily has a column of zeros, resulting in a determinant of 0. There-
fore, we have ρ(M) = r − n. Consequently, every product of Z operators that commute with
the modulated symmetries are products of

∏

ℓZ
∆ j,ℓ

ℓ
, as proven in Section 3.1. Therefore, the

bond algebra is generated by only the terms that appear in the Hamiltonian (216):15

B :=

®

X j ,
∏

ℓ

Z∆ j,ℓ

ℓ

¸

. (232)

14The precise ground state degeneracy is given by GSD= |Gint|, which varies with respect to the number of lattice
sites L. It is given by N n when L satisfies the constraints (227). Otherwise, it is smaller than N n.

15If ∆1,1 and ∆1,1+n are not coprime to N , the operator
∏

ℓZ
∆ j,ℓ

ℓ
in the Hamiltonian (216) may not generate all

Z-only symmetric operators. For example, consider N = 4 and n= 2 where ∆1,1 = 1, ∆1,2 = 1, and ∆1,3 = 2. In
this case, Eq. (220) becomes

f j + f j+1 + 2 f j+2 = 0 mod 4 , (230)

35

https://scipost.org
https://scipost.org/SciPostPhys.18.1.021


SciPost Phys. 18, 021 (2025)

Since the Z symmetric terms in the bond algebra (232) of the generalized Ising
model (216) are generated by a single ∆ j,ℓ, the modulated symmetry (226) can be gauged
using the procedure from Section 2.2.2 with ZN qudits. Furthermore, it implies there is also
a canonical isomorphism between the bond algebra B and the dual bond algebra B∨ imple-
mented through lattice reflections (recall Eq. (120)).

The gauging map from B to the dual bond algebra B∨ is

∏

ℓ

Z
∆ j,ℓ

ℓ
7→ Z†

j, j+1 , X †
j 7→

∏

ℓ

X
∆T

j,ℓ

ℓ,ℓ+1 . (233)

This gauging map implies the existence of a non-invertible operator eDKW that implements the
KW transformation

eDKW

∏

ℓ

Z
∆ j,ℓ

ℓ
= X j

eDKW , eDKW X j =
∏

ℓ

Z
−∆T

j,ℓ

ℓ
eDKW . (234)

Indeed, the KW transformation is related to (233) by first shifting the link degrees of freedom
to sites, i.e., (X j, j+1, Z j, j+1) 7→ (X j ,Z j), and then conjugating by an inverse Hadamard operator

H−1
j : (X j , Z j) 7→ (Z j , X

†
j ). The operator eDKW is non-invertible because it obeys eDKW Uq = eDKW

for all q and, therefore, has a nontrivial kernel spanned by states with nontrivial symmetry
charge. On the other hand, because U∨q

eDKW = eDKW, eDKW has a nontrivial left kernel spanned

by states charged under U∨q =
∏

j X
f (q)j

− j .
Since the canonical isomorphism between B and B∨ is implemented by the reflection

operator M , the operator eDKW commutes with the Hamiltonian (216) for J = h only if M also
commutes with it. On the other hand, the non-invertible reflection operator,

DM := M eDKW , (235)

always commutes with the Hamiltonian when J = h, and relates the J > h and J < h portions
of the Hamiltonian’s phase diagram. DM is a non-invertible reflection operator since it imple-
ments the non-invertible KW transformation and then the reflection transformation j→− j.16

Using the KW transformation (234), it satisfies

DM

∏

ℓ

Z
∆ j,ℓ

ℓ
= X− j DM , DM X j =

∏

ℓ

Z−∆− j,ℓ

ℓ
DM , (236)

where we used Eq. (119) to simplify ∆T. From these transformation rules, we find that the
non-invertible reflection operator obeys

DM DM = C
n
∏

q=1

N−1
∑

a=0

Ua
q ,

D†
M =DM C ,

Uq DM =DM Uq =DM ,

(237)

whose only nontrivial solutions are f j = constant. Indeed, taking mod 2 on both sides of the equation gives
f j + f j+1 = 0 mod 2 for all j. Then using that 2 f j+1 + 2 f j+2 = 0 mod 4, we can simplify the original equation to
f j = f j+1 mod 4, whose solution is f j = constant. This means that the symmetries of the Hamiltonian

H = −
∑

j

¦

J Z jZ j+1Z2
j+2 + hX j +H.c.

©

, (231)

are generated by
∏

j X j , whose Z-only symmetric operators are generated by Z jZ†
j+1, not Z jZ j+1Z2

j+2.
16Similar non-invertible reflection symmetry has been found in continuum field theories, such as Maxwell’s

theory of electromagnetism and non-Abelian supersymmetric gauge theories [122].

36

https://scipost.org
https://scipost.org/SciPostPhys.18.1.021


SciPost Phys. 18, 021 (2025)

where C= H2 implements charge conjugation (X , Z) 7→ (X †, Z†). Interestingly, the non-
invertible reflection operator’s fusion rules depend only on the internal symmetry group and
not on how the symmetry is modulated.

When the Hamiltonian (216) commutes with M , it then also commutes with eDKW at J = h.
Indeed, when H is translation and reflection-invariant,∆ j,ℓ must respectively satisfy Eq. (217)
and ∆ j,−ℓ = σ∆−( j+n),ℓ, where σ = ±1 encodes whether the first term in (216) is mapped to
itself (σ = 1) or its Hermitian conjugate (σ = −1) under reflections. These constraints on∆ j,ℓ
can be combined into

∆T
j,ℓ = σ∆ j−n,ℓ , (238)

which we use to write the KW transformation (234) as

eDKW

∏

ℓ

Z
∆ j,ℓ

ℓ
= X j

eDKW , eDKW X j+n =
∏

ℓ

Z−σ∆ j,ℓ

ℓ
eDKW . (239)

In this form, it is clear that eDKW commutes with the Hamiltonian when J = h. However, the
operator eDKW is not the only non-invertible symmetry that commutes with the Hamiltonian at
J = h since it can be composed with any other symmetry operator (e.g., DM is still a symmetry
operator). Using this freedom, we canonically define the KW self-duality symmetry to be

DKW := T−⌊
n+1

2 ⌋ eDKW , (240)

where ⌊·⌋ denotes the floor operation. Importantly, this definition differentiates between the
number of independent lattice functions n being even or odd. From its transformation of
symmetric local operators, we find the KW symmetry operator DKW satisfies

DKW DKW = H1+σ T (n mod 2)
n
∏

q=1

N−1
∑

a=0

Ua
q ,

Uq DKW =DKW Uq =DKW ,

D†
KW =DKW H1+σ (T †)(n mod 2) .

(241)

This algebra depends on n through whether it is even or odd. Indeed, when n is odd, the
operator DKW squared delivers a translation by one lattice site. For example, when (216) is
the usual transverse field Ising model (n= 1), this recovers the known fusion rules of the KW
duality symmetry of non-modulated finite Abelian symmetries [42–44, 48]. In this case, the
corresponding continuum KW symmetry will emanate from the lattice translations [43, 123].
However, when n is even, the DKW symmetry operator does not mix with spatial symmetries
and is an internal non-invertible symmetry. Such n only arise when the generalized Ising
model (216) has modulated symmetries. This agrees with the fusion algebras of the Z2 dipole
symmetry KW operator constructed in Refs. 46,47,52 and theZN dipole symmetry KW operator
from Ref. 37.

The fusion algebra of the DKW operator also depends on the modulation of the symme-
try through σ. Indeed, when σ = −1, (DKW)

2 does not act by charge conjugation C= H2.

This is the case for the uniform ZN symmetry, where
∏

ℓZ
∆ j,ℓ

ℓ
= Z†

j Z j+1 transforms as

M : Z†
j Z j+1→ (Z

†
−( j+1)Z− j)† and so σ = −1. However, when the symmetry of the gener-

alized Ising model is modulated, σ can be +1. In this case, (DKW)
2 acts by charge conjugation

C= H2, which is nontrivial for N > 2.
In summary, the fusion algebra (241) of the lattice DKW symmetry operator has two pos-

sible fingerprints of the modulated symmetry. Firstly, it can differ from a uniform abelian
symmetry by DKW being purely internal while local and DKWDKW not performing a lattice
translation. Secondly, DKWDKW can also act by charge conjugation C= H2. These two signa-
tures reflect how the DKW operator can be constructed by gauging a modulated symmetry.
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4.3 Constructing the KW operator

So far, our discussion relied on the transformations implemented by non-invertible operators
eDKW, DM, and DKW, but what are the explicit forms for these non-invertible operators? For
uniform symmetries, i.e., constant function f j = 1, it has been shown in Refs. [42, 43, 45,
48] that the corresponding non-invertible operators implementing the self-duality symmetry
on finite chains (with periodic boundary conditions) can be constructed as products of local
unitary operators – the so-called sequential circuits – multiplied by appropriate projectors onto
symmetric subspaces. Importantly, the Hamiltonian (216) for an infinite chain acts on an
infinite dimensional Hilbert space. Hence, a sequential circuit implementing the KW duality
would consist of products of infinitely many unitaries, which might be potentially ill-defined.
In what follows, we make the so-far general discussion more explicit by first constructing a
naïve eDKW operator on an infinite chain for any modulated symmetry. We will then specialize
to a finite ring of length L with three example modulated symmetries.

4.3.1 Construction on infinite chain

Recall that in Section 4.1, we proved that in the generalized Ising model (216), when∆ j, j and
∆ j, j+n are coprime to N , all symmetric operators written only using Z can be constructed by

taking translated products of
∏

l Z
∆ j,ℓ

ℓ
. Without loss of generality, we can choose the elements

of ∆ j,ℓ to be

∆ j, j = 1 , ∆ j, j+1 = g1 , ∆ j, j+2 = g2 , · · · , ∆ j, j+n−1 = gn−1 , ∆ j, j+n = gn , (242)

where g
ℓ

with ℓ= 1, · · · , n are ZN -valued parameters, whose explicit form when N is prime
is given by Eq. (97). With this choice, the Hamiltonian (216) becomes

H = −
∑

j

¦

J Z j Z
g1
j+1 · · ·Z

gn−1
j+n−1 Z

gn
j+n + hX j +H.c.

©

. (243)

Let us now consider the sequential product of infinitely many unitary operators

eDKW := · · ·H j+1 CZ j+1 H j CZ j H j−1 CZ j−1 · · · , (244)

where H j is the Hadamard operator and CZ j is a modified controlled Z operator with ∆ de-
pendence, (see Appendix D for their explicit definitions). We define the Hadamard operator
to act as H j : (X j , Z j) 7→ (Z

†
j , X j), while the modified controlled Z operators act as

CZ j Z j CZ†
j = Z j ,

CZ j X j CZ†
j = Z−gn

j−n Z−gn−1
j−(n−1) · · ·Z

−g2
j−2 Z−g1

j−1 X j ,

CZ j XℓCZ†
j = XℓZ

−g j−ℓ
j , ℓ= j − 1, j − 2, · · · , j − n .

(245)

Observing that local operators X j and Z j Z
g1
j+2 · · ·Z

gn−1
j+n−1 Z

gn
j+n are only affected by a finite

number of unitaries, we deduce the transformation rules

eDKW Z j Z
g1
j+1 · · ·Z

gn−1
j+n−1 Z

gn
j+n = X j

eDKW , (246)

eDKW X j = Z−gn
j−n · · ·Z

−g2
j−2 Z−g1

j−1 Z−1
j
eDKW . (247)

These are nothing but the KW duality transformations in Eq. (234). When Hamiltonian (243)
is invariant under reflection, Eq. (238) applies and enforces

gn = σ , gn−k = σ gk , (248)
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where k = 1,2, · · · , n− 1. In this case, the operator eDKW then commutes with the Hamiltonian
and becomes a non-invertible symmetry. While the eDKW defined in Eq. (244) is a product
of unitary operators, it can still be non-invertible because it is an infinite product of unitary
operators.

Starting from eDKW, we can construct the operators DM and DKW by composing eDKW with
spatial symmetries following Eqs. (235) and (240), respectively. The spatial symmetries can
be explicitly represented as products of swap gates [124]

Si, j :=
1
N

N−1
∑

α,β=0

(ωN )
αβ X αi Zβi X−αj Z−βj , (249a)

S2
i, j = 1 , Si, j = S j, i , Si, j S j, k Si, j = Si, k , (249b)

which exchanges all operators written in terms of Z and X that are localized at site j with
those localized at site i. Then, the translation and reflection operators are given by

T := · · · S j+1, j S j, j−1 S j−1, j−2 · · · , (250a)

M := S1,−1 S2,−2 S3,−3 · · · , (250b)

respectively.17

4.3.2 Non-invertible reflection for exponential symmetry

As a first example, we construct the non-invertible operator DM explicitly for the case of an
exponential symmetry with periodic boundary conditions. For simplicity, we consider prime
Zp qudits at sites j of a closed chain with L sites. This symmetry was explored in Section 2.1.1
and is generated by the operator

Ua =
L
∏

j

X a j

j , (251)

where a ∈ {2,3, · · · p− 2} is fixed.
For this exponential symmetry, the generalized Ising model Hamiltonian becomes

H = −
∑

j

¦

J Z j Z
−a−1

j+1 + hX j +H.c.
©

, (252)

where periodic boundary conditions are implicitly imposed. For Ua to be a symmetry of H,
periodic boundary conditions require

T L Ua T−L = UaL

a
!
= Ua . (253)

This can always be satisfied by taking L = 0 mod (p− 1), which we assume is true throughout
this example.18 This Hamiltonian is invariant under translations but is not reflection symmetric
for the a we restrict to. Relatedly, the Zp symmetry operator Ua satisfies

M Ua M† =
L
∏

j=1

X a− j

j = Ua−1 , (254)

and is, therefore, not closed under reflections.

17Note that while the reflection operator M is not written in terms of local operators, it can be using (249b):
S j,− j = S− j,− j+1 · · ·S j−3, j−2 S j−1, j−2 S j, j−1 S j−1, j−2 · · ·S− j+1,− j .

18Depending on the choice of a, additional values of L can be allowed that support the exponential symmetry.
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The non-invertible reflection operator (235) is then constructed as follows. We first define
the operator

eDKW :=
p

p Pa−1 W HL CZL HL−1 CZL−1 · · · H3 CZ3 H2 CZ2 , (255)

where H j is the usual Hadamard operator while CZ j is now a modified controlled Z operator
with nontrivial action

CZ j X j CZ†
j = Za−1

j−1X j , CZ j X j−1 CZ†
j = X j−1 Z

a−1

j . (256)

The unitary operator W acts only on the first and last sites, j = 1 and j = L, as

W X1 W † = Z−1
1 X1 Z

−1
1 Za−1

L , W XL W † = Za−1

1 XL . (257)

Furthermore, the operator Pa−1 is the projector onto the subspace where Ua−1 = 1. The fact
that this projects to Ua−1 = 1 is related to how, as discussed in Section 2.1.1, gauging the
exponential symmetry Ua delivers a dual symmetry generated by Ua−1 .

The non-invertible reflection symmetry is then defined as the composition

DM = M eDKW , (258a)

where M is the version of operator (250b) for a finite lattice. As we show in Appendix D.2,
this operator acts on local operators as

DM Z j Z
−a−1

j+1 = X− j DM , DM X j = Z−1
− j Z

a−1

− j+1 DM . (258b)

It is straightforward to see that this action commutes with the Hamiltonian (252) when
J = h. Therefore, although the Hamiltonian is not invariant under either reflection or the
non-invertible KW duality alone, it has a non-invertible reflection symmetry.

4.3.3 Double exponential symmetry

For this example, we restrict to prime qudits for simplicity and consider the modulated Zp ×Zp
symmetry generated by

U1 =
∏

j

X a j

j , U2 =
∏

j

X a− j

j . (259a)

For this symmetry, translation and site-centered reflection symmetries act as

T U1 T−1 = Ua
1 , T U2 T−1 = Ua−1

2 ,

M U1 M† = U2 , M U2 M† = U1 ,
(259b)

respectively. In contrast with the previous example in Section 4.3.2, the symmetry group is
now closed under the reflection transformation. Furthermore, periodic boundary conditions
imply the constraints

T L U1 T−L = UaL

1
!
= U1 , T L U2 T−L = Ua−L

2
!
= U2 , (260)

which are satisfied when L = 0 mod p− 1.
Since there are two independent modulated symmetries, n= 2 in Eq. (242). The single

∆i, j that annihilates the two functions f (1)j = a j and f (2)j = a− j has support on r = n+ 1= 3
sites and is parametrized as

∆ j,ℓ = δ j,ℓ − (a+ a−1)δ j,ℓ−1 +δ j,ℓ−2 ≡ (δ j+1,k − a−1δ jk)(δk,ℓ−1 − aδkℓ) . (261)
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This corresponds to choosing g2 = 1 and g1 = −a− a−1 in Eq. (242). It is even under reflection
and hence σ = +1. With this choice, Hamiltonian (243) becomes

H = −
∑

j

¦

J Z j Z
−a−a−1

j+1 Z j+2 + hX j +H.c.
©

. (262)

The KW self-duality symmetry is then implemented by the non-invertible operator

DKW = p P1 P2 T−1 W HL CZL HL−1 CZL−1 · · · H3 CZ3 , (263a)

where CZ j and H j are appropriate controlled Z and Hadamard operators (see Appendix D for
the explicit definitions) that implement the transformations

H j X j H
†
j = Z†

j , H j Z j H
†
j = X j ,

CZ j Z j CZ†
j = Z j , CZ j X j CZ†

j = Z−1
j−2 Z

a+a−1

j−1 X j , (263b)

CZ j X j−2 CZ†
j = X j−2 Z

−1
j , CZ j X j−1 CZ†

j = X j−1 Z
a+a−1

j ,

while the only nontrivial action by W is given by

W XL−1 W † = Z−1
1 XL−1 , W XL W † = Za+a−1

1 Z−1
2 XL , (263c)

W X2 W † = Za+a−1

1 Z−1
2 X2 Z

−1
2 Z−1

L , W X1 W † = Z−1
1 X1 Z

−1
1 Za+a−1

2 Za+a−1

L Z−1
L−1 .

Finally, P1 and P2 are two projectors onto the U1 = 1 and U2 = 1 subspaces, respectively. One
verifies that the operator (263) implements the KW duality transformation as prescribed in
Eq. (234). While the operator (263) consists of sequentially applying the same operators, H j
and CZ j in the bulk of the chain, at the boundaries it acts differently via the unitary operator W ,
which is required to impose periodic boundary conditions consistently. Despite this difference
and not being manifestly translation invariant, the KW duality operator (263) commutes with
translation operator T .

4.3.4 ZN dipole symmetry

The final example we consider is the case of a ZN dipole symmetry, which is a modulated
ZN ×ZN symmetry generated by the two unitary operators

U =
∏

j

X j , D =
∏

j

X j
j . (264a)

Here, we allow N to be any integer since there is no significant difference in the gauging
procedure for N being prime or not, as we showed in Section 3.2.2. This symmetry group is
closed both under translation and site-centered reflection symmetries, which act as

T U T−1 = U , T D T−1 = U D ,

M U M† = U , M D M† = D† ,
(264b)

respectively. Periodic boundary conditions imply

T L D T−L = U L D
!
= D , (265)

which is satisfied when L = 0 mod N .
The simplest ∆ j,ℓ that annihilates both the constant and polynomial degree 1 functions

has interaction range r = n+ 1= 3 and is given by

∆ j,ℓ = δ j,ℓ − 2δ j,ℓ−1 +δ j,ℓ−2 ≡ ∂
2
j,ℓ , (266)
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which corresponds to g2 = 1 and g1 = −2 in Eq. (242) and σ = +1. With these, Hamiltonian
(243) becomes

H = −
∑

j

¦

J Z j Z
−2
j+1 Z j+2 + hX j +H.c.

©

, (267)

and the KW self-duality symmetry is implemented by the non-invertible operator

DKW = N PU PD T−1 W HL CZL HL−1 CZL−1 · · ·H3 CZ3 , (268a)

where CZ j and H j implement the transformations (see Appendix D for the explicit definitions
of all these operators)

H j X j H
†
j = Z†

j , H j Z j H
†
j = X j ,

CZ j Z j CZ†
j = Z j , CZ j X j CZ†

j = Z−1
j−2 Z

2
j−1 X j , (268b)

CZ j X j−2 CZ†
j = X j−2 Z

−1
j , CZ j X j−1 CZ†

j = X 2
j−1 Z

−2
j ,

and W

W XL−1 W † = Z−1
1 XL−1 , W XL W † = Z−1

2 Z2
1 XL ,

W X2 W † = Z2
1 Z
−1
2 X2 Z

−1
2 Z−1

L , W X1 W † = Z−1
1 X1 Z

−1
1 Z2

2 Z
2
L Z
−1
L−1 . (268c)

Finally, PU and PD are two projectors onto the U = 1 and D = 1 subspaces, respectively. Just as
in the previous section, the operator (268), indeed implements the KW duality transformation
as prescribed in Eq. (241). As announced in Eq. (241), DKW satisfies the algebra,

DKW DKW = C
N
∑

a,b=1

Ua Db , (269)

which agrees with the algebras obtained in Refs. 46, 47, 52 for Z2 qubits and Ref. 37 for ZN
qudits.19

5 Outlook

In this paper, we explored a systematic formalism for gauging finite Abelian modulated sym-
metries in 1+ 1D lattice models. Having worked in the Hamiltonian formalism and with bond
algebras, our gauging procedure depended on an appropriate choice of Gauss’s law to trivial-
ize the modulated symmetry. By implementing this gauging procedure, we explored the rich
landscape of dual modulated symmetries and constructed new Kramers-Wannier dualities and
non-invertible symmetries. Our results open the door to a handful of interesting follow-up
directions, which we summarize here.

By studying how modulated symmetries are gauged, our work narrowed in on the kine-
matic features of modulated symmetries. Nevertheless, there are additional related kinematic
aspects that were outside the scope of this work but quite interesting to explore. For instance,
we performed an untwisted gauging of modulated symmetries (i.e., gauging with a trivial dis-
crete torsion class), and extending this to twisted gauging is worthwhile. This could be done
using SPT entanglers for modulated symmetries [107] or by modifying the Gauss operators as
Ref. 50 did for non-modulated symmetries. Furthermore, it would be interesting to understand
our results from two related perspectives. First is from the standpoint of the symmetry defects,

19See Ref. 36 for the analog of the duality operator DKW in continuum theories with dipole symmetries.
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whose mobility would be affected by the symmetry being modulated. The second is using the
framework of topological holography, where symmetry defects and charges are described by
topological defects of a gapped theory in one higher dimension, which we are pursuing as a
follow-up in Ref. [121] (see also [125–128] for some progress along this direction). A final
kinematic follow-up is generalizing our formalism to higher dimensions, where gauging an
invertible Abelian modulated symmetry in d + 1D would lead to a dual symmetry described
by a nontrivial d-group formed by lattice symmetry group and dual (d − 1)-form modulated
symmetry.

Using kinematic aspects to guide investigations into dynamical properties of models is
fruitful, and our results provide such theoretical guidance. For instance, it would be interesting
to use our results to study the dynamical consequences of the non-invertible KW self-dual
symmetry for modulated symmetries. This non-invertible symmetry could appear at critical
points between modulated symmetry preserving and symmetry breaking phases. Unlike in the
non-modulated cases studied, the lattice translations necessarily become nontrivial in the IR
due to the modulated symmetries. Furthermore, the non-invertible reflection symmetry can
be anomalous. For instance, this was shown to be possible for particular dipole symmetries in
Ref. [37], and it would be interesting to systematically study this for more general modulated
symmetries. Understanding how it characterizes gapped and gapless phases is an important
follow-up that we leave for ongoing future work.
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A Relevant aspects of ring theory

In this appendix, we review aspects of ring theory that are relevant to the main text—
particularly Section 3.

A.1 Rings and modules

Let us first review the definition of rings and some fundamental aspects of modules. A ring R
is a set equipped with operations

+: R× R→ R , ·: R× R→ R , (A.1)

referred to as addition and multiplication, respectively. Furthermore, for R to be a ring, it must
form an Abelian group under addition + and a monoid under multiplication ·, and multiplica-
tion must be distributive with respect to addition. These requirements are sometimes called
the ring axioms, and they explicitly mean that all a, b, c ∈ R must obey:

1. + is associative: (a+ b) + c = a+ (b+ c),
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2. + is commutative: a+ b = b+ a,

3. additive identity: ∃ 0 ∈ R such that a+ 0= a,

4. additive inverse: ∃ −a ∈ R for each a such that a+ (−a) = 0,

5. · is associative: (a · b) · c = a · (b · c),

6. multiplicative identity: ∃ 1 ∈ R such that 1 · a = a · 1= a,

7. left distributivity: a · (b+ c) = (a · b) + (a · c),

8. right distributivity: (b+ c) · a = (b · a) + (c · a).

When the non-zero elements a ∈ R each have a multiplicative inverse and form an Abelian
group under multiplication, R is a field. Therefore, rings are often thought of as generalizations
of fields. When · is commutative but each non-zero a ∈ R does not have a multiplicative inverse,
then R is called a commutative ring.

A subring S of a ring R is a subset that itself is a ring under the same binary operations of R
restricted to the subset. This implies that the group (S,+) is a subgroup of (R,+), and that the
monoid (S, ·) is a submonoid of (R, ·). A subring is called an ideal if for each s ∈ S and r ∈ R,
rs and sr are in S. When only all rs (resp. sr) are in S, then the subring is called a left (resp.
right) ideal.

Three simple examples of rings are:

1. The reals R is a ring, where addition + and multiplication · operations are the ordinary
addition and multiplication of real numbers. Since the multiplication of real numbers is
commutative and each non-zero real number has a multiplicative inverse, R is, in fact,
a field.

2. The integers Z is also an example of a ring, where + and · are the ordinary addition and
multiplication of integers. While multiplication of integers is commutative, not every
non-zero integer has a multiplicative inverse. Therefore, Z is not a field but a commu-
tative ring.

3. For general N ∈ Z>0, ZN ≃ Z/NZ is a commutative ring, where + and · are the addition
and multiplication modulo N . When N is a prime number p, each n ̸= 0 mod p in Zp
has a multiplicative inverse n−1 = np−2 mod p by Fermat’s little theorem. Therefore, ZN
is a field when N is a prime number.

4. The set of square n× n matrices with entries in R forms a ring Mn(R) whose two binary
operations are matrix addition and matrix multiplication. Since matrices do not com-
mute, Mn(R) is a ring that is noncommutative. More generally, given a ring R, there is
the matrix ring Mn(R) of n× n square matrices with entries in R.

Having reviewed the basic aspects of rings, we can now discuss modules. A module is a
generalization of a vector space using rings. Recall that a vector space V over a field F is an
Abelian group (V,+) with scalar multiplication ∗: F × V → V . This scalar multiplication is a
binary function that maps any scalar a ∈ F and vector v ∈ V to another vector a ∗ v ∈ V . A
module is a generalization of V in which the field of scalars F can be a ring R. A module M
over the ring (R,+R, ·) is an Abelian group (M ,+) with an operation ∗: R×M → M that, for
all m1, m2 ∈ M and r1, r2 ∈ R, obeys

1. r1 ∗ (m1 +m2) = r1 ∗m1 + r1 ∗m2,

2. (r1 +R r2) ∗m1 = r1 ∗m1 + r2 ∗m1,
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3. (r1 · r2) ∗m1 = r1 ∗ (r2 ∗m1),

4. 1 ∗m1 = m1,

where 1 is the multiplicative unit of R. When R is a field, the module M becomes a vector
space over the field R. A subgroup (N ,+) ⊆ (M ,+) forms a submodule of M if r ∗ n ∈ N for all
n ∈ N . Furthermore, given a subset S of a module M over a ring R, the annihilator AnnR(S) of
S is the ideal

AnnR(S) = {r ∈ R | r ∗ s = 0 for all s ∈ S} . (A.2)

Some simple examples of modules are:

1. Every Abelian group G forms a module over the ring Z. Given an integer n> 0

and g ∈ G, the scalar multiplication ∗: Z× G→ G satisfies n ∗ g =
n times

︷ ︸︸ ︷

g + g + · · ·+ g,
(−n) ∗ g = −(n ∗ g), and 0 ∗ g = eg , where eg is the identity element in G.

2. Matrices acting on vectors in an n-dimensional vector space V over the field F forms a
module over the ring Mn(F). The operation ∗: Mn(F)× V → V corresponds to a matrix
M acting on a vector v⃗ and returning the vector M ∗ v⃗. More generally, modules can
describe vectors and matrices whose elements form a ring. For instance, the Z×n

N module
over the ring Mn(ZN ) can be understood as n dimensional vectors with elements in ZN
acted on by n× n matrices with elements in ZN where all addition and multiplication is
modulo N .

A.2 Matrices over commutative rings

Given a field, the theory of linear algebra is a mature topic for studying matrices whose el-
ements are in the field. Much progress has also been made in solving linear equations over
commutative rings. In this paper, understanding matrices over commutative rings is essential
for Section 3.1 of the main text, where we use the rank-nullity theorem for matrices over com-
mutative rings. This appendix reviews relevant aspects of matrices over commutative rings,
such as the generalized rank-nullity theorem.

An important notion for matrices over rings is that of regular matrices. Let R be a commu-
tative ring equipped with multiplication · and addition +. An n× r matrix F over R is said to
be regular if there exists an r × n matrix G over R such that

F · G ·F = F . (A.3)

The matrix G is called the generalized inverse of F , and a given F can have multiple gen-
eralized inverses. A necessary and sufficient condition for F to be regular is provided by the
decomposition theorem [117,118]. Before we state this theorem, we need to introduce several
relevant concepts.

For a1, . . . , ak ∈ R, the ideal generated by a1, . . . , ak is defined as

[a1, . . . , ak] =

¨ k
∑

i=1

ri · ai

�

� ∀ ri ∈ R

«

. (A.4)

When the ideal [a] is generated by a single element a, i.e., k = 1, we call it a principal ideal.
For example, suppose R= ZN . For any a ∈ ZN coprime to N , that is gcd(a, N) = 1, the principal
ideal generated by a is [a] = ZN . Otherwise, [a] is strictly smaller than ZN . Furthermore, if
a is a prime divisor of N , then [a] is a maximal ideal in ZN , meaning there exists no other
proper ideal of ZN containing [a].
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An element e ∈ R is idempotent if it obeys e · e = e. In the following, we denote by E(R)
the set of all idempotent elements in R. Let us contextualize this definition in the example
R= ZN . Assuming N has the prime factorization

N = pr1
1 . . . prk

k , (A.5)

ZN always has 2k idempotent elements. Since ZN ≃ Zp
r1
1
× · · · ×Zp

rk
k

, idempotents of ZN can
be inferred from idempotents of Zp

ri
i

. If ei ∈ Zp
ri
i

is idempotent, then

e2
i = ei mod pri

i =⇒ ei(ei − 1) = 0 mod pri
i , (A.6)

which implies that pri
i is a divisor of ei and ei − 1 and, since ei and ei − 1 are coprime,

ei = 0 mod pri
i or ei = 1 mod pri

i . Because e ≡ (e1, · · · , ek) ∈ ZN is an idempotent of ZN if
and only if each ei is an idempotent of Zp

ri
i

, the ring ZN has 2k idempotents. When N is a
prime number p, the only Zp idempotent elements are E(Zp) = {0, 1}. More generally, E(F)
for any field F is the set containing only the additive and multiplicative identity of F (i.e.,
E(F) = {0, 1}). When N is not prime, while 0 and 1 are still idempotents, there are other
nontrivial idempotent elements as well. For instance, when N = 10, the idempotent elements
are E(Z10) = {0, 1,5, 6}.

The last notion we need to introduce before stating the decomposition theorem is that of
Rao-regular matrices. To do so, we first recall that an ℓ× ℓ minor of an n× r matrix F is
the determinant det(Fℓ) of an ℓ× ℓ sub-matrix Fℓ of F . We denote by Dℓ(F) the ideal in R
generated by the ℓ× ℓ minors of F , and by ρ(F) the determinantal rank of F , which is the
largest ℓ such that Dℓ(F) ̸= 0. Then, a matrix F over R with determinantal rank ρ(F) = t is
Rao-regular if there exist an idempotent e ∈ R such that

D1(F) = Dt(F) = [e] . (A.7)

Such idempotents are called Rao-idempotents.
Having introduced all the necessary concepts, we can now state the decomposition theorem

(see Ref. 117 for the proof).

Theorem 1 (Decomposition theorem) An n× r matrix F over the commutative ring R with
determinantal rank t := ρ(F) is regular if and only if there exist idempotents e0, . . . , et ∈ E(R)
such that

i) e0 + e1 + · · ·+ et = 1 and ei · e j = 0 for 0≤ i, j ≤ t and i ̸= j,

ii) for i = 0, 1, . . . , t, each matrix Fi := eiF is either the zero matrix or a Rao-regular matrix.

Given a regular matrix over a commutative ring, there is a generalization of the rank-
nullity theorem. To state it, however, we must first review how the notions of rank and nullity
for matrices over fields generalize for matrices over commutative rings. In what follows, we
introduce the minimal terminology required to state the generalized rank-nullity theorem and
refer the reader to Ref. 117 for further details.

The generalization of the rank function is fairly straightforward. Given an n× r matrix
F over the commutative ring R with idempotents e ∈ E(R), it is defined as the integer-valued
function over E(R) such that

RF (e) := ρ(eF) . (A.8)

When R= F is a field, E(F) = {0,1} and RF (1) recovers the usual rank for matrices over a
field.

The generalization of nullity is a bit more involved. Consider the (left) module R×r over
the matrix ring Mr(R). This describes r dimensional vectors with elements in R acted on by
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r × r matrices over R. We now assume that the n× r matrix F is regular and denote by G
a generalized inverse of it. The kernel ker(F) of F is then the sub-module of R×r generated
by the columns of the matrix (Ir − G · F), where Ir is the r × r identity matrix. The nullity
of F is then given by an appropriate generalization of its kernel’s dimension. To define such
a dimension-function, let us consider the p-th exterior product ∧p(M) of a module M whose
elements are the p-th fold tensor product elements m1 ⊗ . . .⊗mp with the equivalence relation
m1 ⊗ . . .⊗mp = 0 if mi = m j when i ̸= j. Letting ρ̃(M) denote the largest positive integer p
such that ∧p(M) ̸= (0) for the finitely generated sub-module M of R×r , the dimension-function
is defined as

DM (e) = ρ̃(eM) , (A.9)

where e ∈ E(R). Although this definition seems rather intricate, DM with M = ker(F)matches
precisely our usual notion of nullity.

Given the above definitions, we can now state the generalized rank-nullity theorem for
matrices over commutative rings. Denoting by A a regular matrix over R and e ∈ E(R), we
define the binary function

χA(e) =

¨

1 , if e A is the zero matrix or Rao-regular with Rao-idempotent e,

0 , if else.
(A.10)

The purpose of this function is to check if A is Rao-regular and if e is a respective Rao-
idempotent. The generalized rank-nullity theorem, proven in Ref. 117, is then:

Theorem 2 (Rank-nullity theorem) Let F be an n× r regular matrix over a commutative ring
R. Then

χF χIr−G·F
�

RF +Dker(F) − r
�

= 0 , (A.11)

where ker(F) is the null space of F and G is a generalized inverse of F .

The functions χF and χIr−G·F in (A.11) ensure that the matrices F and (Ir − G ·F), respec-
tively, are Rao-regular. If their respective Rao-idempotent e = 1 we can implicitly evaluate the
functions in Eq. (A.11) which simplifies to

RF +Dker(F) = r , (A.12)

where RF = ρ(F). When all rows of the n× r matrix F are independent over R, the determi-
nantal rank ρ(F) = n and (A.12) becomes

Dker(F) = r − n , (A.13)

which can be a useful result when showing the uniqueness of generators of AnnML(ZN )(S).

An example

As an example, let us consider the commutative ring R= ZN , with general N , and the 3× 4
matrix

F (4) :=





f (1)1 f (1)2 f (1)3 f (1)4

f (2)1 f (2)2 f (2)3 f (1)4

f (3)1 f (3)2 f (3)3 f (3)4



 mod N =





1 1 1 1
1 2 3 4
0 2 6 12



 mod N . (A.14)

This matrix is relevant to the ZN quadrupole symmetry from Section 3.2.3, where f (1)j = 1,

f (1)j = j, and f (3)j = j2 − j. It is easy to check by brute force that any generalized inverse of
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F (4), if exists, must take the form

G(4) =







a b c
6− 3a −3b− 3 2−1 − 3c
3a− 8 3b+ 5 3c − 1
3− a −b− 2 2−1 − c






, (A.15)

where a, b, c ∈ ZN are parameters chosen such that all the matrix elements G(4)i j ∈ ZN and 2−1

is the multiplicative inverse of 2 module N . However, 2 ∈ ZN only has a multiplicative inverse
when N is odd. Furthermore, for even N , one can never eliminate the factors of 2−1 through
convenient choices of parameters a, b, and c. Explicitly, there is no parameter c such that

G(4)13 = c , G(4)23 = 2−1 − 3c , G(4)33 = 3c − 1 , and G(4)43 = 2−1 − c , (A.16)

are all integers mod N for N even. Therefore, G(4) exists only if gcd(2, N) = 1, so F (4) is
regular only when N is odd.

Let us also illustrate the decomposition theorem through the matrix F (4) in Eq. (A.14).
When N is even, it is clear that [1] ̸= [2, 6] and F (4) is not Rao-regular. We can further prove
thatF (4) is not regular as it does not obey the Decomposition Theorem. For concreteness, let us
consider N = 12, whose idempotent set is E(Z12) = {0,1, 4,9}. The decomposition involving
the nontrivial idempotent elements that obey condition i) is e0 = e1 = 0, e2 = 4, and e3 = 9,
such that

F (4) = F (4)0 +F (4)1 +F (4)2 +F (4)3 , (A.17)

with F (4)i = eiF (4). For i = 0 and 1, the matrices F (4)i are all zero. The nontrivial matrices are

F (4)2 =





4 4 4 4
4 8 0 4
0 8 0 0



 , and F (4)3 =





9 9 9 9
9 6 3 0
0 6 6 0



 . (A.18)

The first evidence that this decomposition fails the Decomposition Theorem is that both matri-
ces have determinantal rank ρ(F (4)2 ) = ρ(F

(4)
3 ) = 3, which should be forbidden. Second, a di-

rect violation of the theorem is that bothF (4)2 andF (4)3 are not Rao-regular since D1(F
(4)
2 ) = [4]

and D3(F
(4)
2 ) = [8] ̸= [4]. Similarly, D1(F

(4)
3 ) = [9] and D3(F

(4)
3 ) = [6] ̸= [9].

B Polynomial symmetries and translation invariance

In this appendix, we prove a statement made in Section 2.1.3 of the main text. We consider
a system of Zp qudits, where p is a prime number, on sites j of an infinite chain and acted on
by the clock and shift operators Z j and X j . We posit the existence of a translation invariant
Hamiltonian that commutes with the modulated symmetry operator

Up( j) =
∏

j

X p( j)
j , (B.1)

where p( j) =
∑m

n=0 cn jn is an order m< p− 1 polynomial with cn ∈ Z. Here, m is restricted by
Fermat’s little theorem jp−1 = 1 mod p. Since we assume Up( j) is a symmetry of a translation
invariant Hamiltonian, Up( j+x) for any integer x must also commute with the Hamiltonian.

While the modulated functions {p( j + x)} are closed under translations, they are seemingly
dependent on the choice of coefficients cn defining p( j). However, as we now argue, there is a
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choice of generators independent of cn. Firstly, since Up( j) and Up( j+x) are symmetry operators,

Up( j+x)U
†
p( j) is as well. Then, using the binomial expansion, p( j + x) can be written as

p( j + x) = p( j) +
m−1
∑

k=0

� m
∑

n=k+1

cn

�

n
k

�

xn−k

�

jk , (B.2)

from which we see that while the modulated lattice functions of Up( j) and Up( j+x) are m-th

order polynomials, the modulated lattice function of Up( j+x)U
†
p( j) is an (m− 1)-th order poly-

nomial for all x . Conjugating this symmetry operator by the translation operator T y , the oper-
ator Up( j+x+y)U

†
p( j+y) must also commute with the Hamiltonian, and therefore the (m− 2)-th

order polynomial modulated symmetry Up( j+x+y)U
†
p( j+y)U

†
p( j+x)Up( j) does too. This procedure

can be repeated m times until we construct a complicated set of modulated operators that
commute with the Hamiltonian whose modulated functions are

¨ m
∑

n=0

cn jn ,
m−1
∑

n=0

c(a,m−1)
n jn ,

m−2
∑

n=0

c(b,m−2)
n jn , · · · , c(c,1)

0 + c(c,1)
1 j , c(d,0)

0

«

, (B.3)

where a, b, · · · , c, d in the superscripts labels different polynomials obtained from this proce-
dure.

We can simplify (B.3) using the Zp structure. The above tells us that any translation in-
variant Hamiltonian commuting with (B.1) also commutes with

∏

j

X c(d,0)
0

j , (B.4)

where c(d,0)
0 is an (unimportant) constant constructed from the coefficients cn of the orig-

inal polynomial p( j). Since p is prime, there exists an element [c(d,0)
0 ]−1 ∈ Zp such that

[c(d,0)
0 ]−1c(d,0)

0 = 1 mod p and

 

∏

j

X c(d,0)
0

j

![c(d,0)
0 ]−1

=
∏

j

X j . (B.5)

Therefore,
∏

j X j must also commute with the Hamiltonian. Multiplying this operator with
the modulated operators whose modulated functions were (B.3), we can find a new set of
commuting operators whose modulated functions are

¨ m
∑

n=1

cn jn ,
m−1
∑

n=1

c(a,m−1)
n jn ,

m−2
∑

n=1

c(b,m−2)
n jn , · · · , c(c,1)

1 j , 1

«

. (B.6)

This can be repeated for the modulated operators with polynomials c(c,1)
1 j to replace them with

a single modulated operator with polynomial j and then drop all j terms in higher order poly-
nomials to reduce (B.6) to

¦

∑m
n=2 cn jn,

∑m−1
n=2 c(a,m−1)

n jn,
∑m−2

n=2 c(b,m−2)
n jn, · · · , j, 1

©

.
Repeating this for each order of polynomial reduces the set of polynomials to
{ jn : n ∈ {0, 1, · · · , m− 1, m}}. Therefore, if an mth order polynomial modulated operator
commutes with a translation invariant Hamiltonian, the operators

U jn =
∏

j

X jn

j , n ∈ {0,1, · · · , m− 1, m} , (B.7)

must also commute, which are generators of a Z×m+1
p modulated symmetry.
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C Position-dependent Gauss’s laws

In this appendix, we discuss an alternative way of gauging the modulated symmetries from
Section 2. Recall such symmetries acted on translation invariant systems of Zp qudits, where
p is a prime integer, and were generated by

Uq =
∏

j

(X j)
f (q)j , (C.1)

with q = 1, 2, · · · , n. Since this generates finite symmetry in a translation invariant system,
each lattice function f (q)j satisfies

f (q)j = f (q)
j+x (q)

mod p , (C.2)

with x (q) denoting the smallest such positive integer. Therefore, the symmetry’s spatial mod-
ulation is periodic with period

x := lcm(x (1), x (2), · · · , x (n)) . (C.3)

Indeed, the symmetry operators Uq can be written as non-modulated operators with respect
to the enlarged length x unit cell:

Uq =
∏

j∈x Z

� x
∏

k=1

(X j+k)
f (q)j+k

�

. (C.4)

Here, to gauge the symmetry we introduce n-types of Zp qudits onto link 〈 j, j + 1〉 that are

respectively acted on by X (q)j, j+1. The Gauss’s laws relating these new qudits to the originals are

G(q)j = X j (X
(q)
j−1, j)

f (q)j−1(X (q)j, j+1)
− f (q)j+1 = 1 , (C.5)

which trivialize the entire Z×n
p symmetry since

Uq =
∏

j

(G(q)j )
f (q)j . (C.6)

These Gauss’s laws introduce the gauge redundancy

Z j ∼ (ωp)
∑

q λ
(q)
j Z j , Z (q)j−1, j ∼ (ωp)

λ
(q)
j f (q)j−1−λ

(q)
j−1 f (q)j Z (q)j−1, j , (C.7)

which is generated by
∏

j,q(G
(q)
j )
λ
(q)
j .

Before gauging, the bond algebra is generated by

B :=

*

X j ,
j+n
∏

ℓ= j

Z
∆ j,ℓ

ℓ

+

, (C.8)

where ∆ j,ℓ obeys
∑ j+n
ℓ= j ∆ j,ℓ f (q)

ℓ
= 0 for all q = 1, · · · , n. After gauging, the bond algebra can

be made gauge invariant by minimal coupling, which leads to

B∨ :=

*

X j ,
j+n
∏

ℓ= j

Z
∆ j,ℓ

ℓ

j+n−1
∏

ℓ= j

 

n
∏

q=1

�

Z (q)
ℓ,ℓ+1

�∇(q)j,ℓ

!+

, (C.9)
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where ∇(q)j,ℓ obeys

∇(q)j, j−1 =∇
(q)
j, j+n = 0 mod p ,

∆ j,ℓ + f (q)
ℓ−1∇

(q)
j,ℓ−1 − f (q)

ℓ+1∇
(q)
j,ℓ = 0 mod p , for ℓ= j, · · · , j + n .

(C.10)

The solution to these equations is

∇(q)j,ℓ = ( f
(q)
ℓ

f (q)
ℓ+1)
−1

ℓ
∑

k= j

f (q)k ∆ j,k mod p , for ℓ= j − 1, · · · , j + n , (C.11)

where ( f (q)
ℓ

f (q)
ℓ+1)
−1 denotes the Zp inverse of f (q)

ℓ
f (q)
ℓ+1.

While the Gauss operator (C.5) trivializes the modulated symmetry, it depends explicitly
on the lattice site j through the modulated functions f (q)j . Therefore, gauging with it projects
the lattice translation symmetry down to the subgroup generated by T x . Importantly, since
the modulated symmetry operators (C.1) all commute with T x , gauging with (C.5) does not
preserve the symmetry’s spatial modulation and is equivalent to gauging the non-modulated
operators (C.4) with respect to the enlarged length x unit cell. This is why we did not use this
Gauss operator to gauge the full modulated Z×n

p symmetry in Section 2. However, this Gauss
operator may still be useful for gauging sub-symmetries of a modulated symmetry that are not
closed under lattice translations.

Let us end this appendix by proving that the Gauss operator (C.5) gauges the sym-
metry with respect to the length x unit cell. We do so using the unitary transformation
U =

∏

q, j : j ̸∈x Z U (q)j , where U (q)j satisfies

U (q)j G(q)j (U
(q)
j )

† = (X (q)j, j+1)
f j+1 . (C.12)

After rotating the Hilbert space using U , since p is a prime integer, the Gauss’s laws G(q)j for

j ̸∈ x Z set X (q)j, j+ = 1 for j ̸∈ x Z. However, the n-types of Zp qudits on links 〈 jx , jx + 1〉 with
jx ∈ x Z survive the transformation, and are constrained by the remaining Gauss’s laws

eG(q)jx
:=

x
∏

k=1

(G(q)jx+k)
f (q)jx+k = (X (q)jx , jx+1 X (q)†jx+x , jx+x+1)

f (q)jx
f (q)jx+1

x
∏

k=1

(X jx+k)
f (q)jx+k . (C.13)

Therefore, gauging using the Gauss operators (C.5) is equivalent to trivializing (C.4) using the

length-x unit cell with n-types of Zp qudits on jx ∈ x Z that are acted on by (X (q)jx , jx+1)
f (q)jx

f (q)jx+1 .

D Details on Kramers-Wannier self-duality symmetry

In this appendix, we provide the details on non-invertible KW duality operators on infinite and
finite chains that are defined in Section 4.3. Following the discussion in Section 4, we assume
that ∆ j,ℓ can be parameterized as (recall Eq. (242))

∆ j, j = 1 , ∆ j, j+1 = g1 , ∆ j, j+2 = g2 , · · · , ∆ j, j+n−1 = gn−1 , ∆ j, j+n = gn , (D.1)

where gn are coefficients valued in either Zp with prime p or ZN with non-prime N , and n is
the number of independent modulated symmetries.
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D.1 KW duality on infinite chain

As we discussed in Section 4.3, on an infinite chain, the eDKW operator can be constructed as
the sequential circuit out of product of infinitely many unitary operators

eDKW := · · · H j+1 CZ j+1 H j CZ j H j−1 CZ j−1 · · · . (D.2a)

Here, H j is the Hadamard operator

H j :=
1
p

p

p−1
∑

α,β=0

ω−αβp X α−βj P(β)Z j
, P(α)Z j

:=
1
p

p−1
∑

β=0

ω−αβp Zβj , (D.2b)

with P(α)Z j
being the projector onto the Z j =ω

α
p subspace, and (ii) CZ j is a modified controlled

Z operator with ∆ dependence and is defined as

CZ j :=
p−1
∑

α=0

Zαj P
(α)
j , P

(α)
j :=

1
p

p−1
∑

β=0

ω−αβp

�

Z−gn
j−n · · ·Z

−g2
j−2 Z−g1

j−1

�β
. (D.2c)

In the above, P(α)j is a projector onto the Z−gn
j−n · · ·Z

−g2
j−2 Z−g1

j−1 =ω
α
p subspace. It is straightfor-

ward to verify that these operators implement the transformations

H j X j H
†
j = Z†

j , H j Z j H
†
j = X j , (D.3a)

and

CZ j Z j CZ†
j = Z j ,

CZ j X j CZ†
j = Z−gn

j−n Z−gn−1
j−(n−1) · · ·Z

−g2
j−2 Z−g1

j−1 X j ,

CZ j XℓCZ†
j = XℓZ

−g j−ℓ
j , ℓ= j − 1, j − 2, · · · , j − n .

(D.3b)

Observing that local operators X j and Z gn
j−n Z

gn−1
j−n+1 · · ·Z

g1
j−1 Zi are only affected by a finite

number of unitaries, we deduce the transformation rules

eDKW Z j Z
g1
j+1 Z

g2
j+2 · · ·Z

gn
j+n = X j

eDKW , eDKW X j = Z−gn
j−n Z−gn−1

j−n+1 · · ·Z
−g1
j−1 Z−1

j
eDKW . (D.4)

D.2 Non-invertible reflection for exponential symmetry

We consider the Zp exponential symmetry (p ≥ 3) defined in Eq. (251). The KW transforma-
tion is implemented by the non-invertible operator D̃KW defined as

D̃KW =
p

p Pa−1 W HL CZL HL−1 CZL−1 · · · H3 CZ3 H2 CZ2 . (D.5)

Here, H j is the Hadamard operator defined in Eq. (D.2b), while the modified controlled Z
operator CZ j is

CZ j =
p−1
∑

α=0

Zαj P
(α)
j , P

(α)
j :=

1
p

p−1
∑

β=0

ω−αβp

�

Za−1

j−1

�β
. (D.6)

The unitary operator W acts on the first and last sites of the lattice and defined as

W :=
1
p

p−1
∑

α,β=0

ω−αβp Zα1
�

Z−1
1 Za−1

L

�β
, (D.7a)
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with its only non-trivial actions being

W X1 W † = Z−1
1 X1 Z

−1
1 Za−1

L , W XL W † = Za−1

1 XL . (D.7b)

The unitary operator W consists of controlled Z-type operators that is modified for the bound-
ary terms. The operator (D.2) on infinite chain then can be understood as the L→∞ limit
of the operator (D.5). Finally, Pa−1 is a projector onto the subspace which is symmetric under
Ua−1 ≡ M Ua M†.

To verify that the operator (D.5) indeed implements the duality transformation, we act by
the unitary operators on the symmetric local operators sequentially. Let us momentarily focus
on how the symmetric operators

Z2 Z
−a−1

3 , X2 ,

Z3 Z
−a−1

4 , X3 , (D.8)

are transformed. Under the unitary CZ2 we have

Z2 Z
−a−1

3 7→ Z2 Z
−a−1

3 , X2 7→ Za−1

1 X2 ,

Z3 Z
−a−1

4 7→ Z3 Z
−a−1

4 , X3 7→ X3 . (D.9)

Next, acting with the unitary H2 gives

Z2 Z
−a−1

3 7→ X2 Z
−a−1

3 , Za−1

1 X2 7→ Za−1

1 Z−1
2 ,

Z3 Z
−a−1

4 7→ Z3 Z
−a−1

4 , X3 7→ X3 . (D.10)

Now, acting with the pair of unitaries CZ3 and H3 gives

X2 Z
−a−1

3 7→ X2 , Za−1

1 Z−1
2 7→ Za−1

1 Z−1
2 ,

Z3 Z
−a−1

4 7→ X3 Z
−a−1

4 , X3 7→ Za−1

2 Z−1
3 . (D.11)

We note that with these three steps, the first line matches the duality transformation (D.4).
Acting with the remaining pairs of H and CZ operators up to the unitary W implements

Z2 Z
−a−1

3 7→ X2 , X2 7→ Za−1

1 Z−1
2 ,

Z3 Z
−a−1

4 7→ X3 , X3 7→ Za−1

2 Z−1
3 ,

...
... (D.12a)

ZL−1 Z
−a−1

L 7→ XL−1 , XL 7→ Za−1

L−1 Z
−1
L ,

which is the duality transformation (D.4) for all symmetric operators in the bulk except the
remaining three

Z1 Z
−a−1

2 7→ Z1 X
−a−1

2 X−a−2

3 X−a−3

4 · · ·X−a1−L

L ,

ZL Z
−a−1

1 7→ XLZ
−a−1

1 , (D.12b)

X1 7→ X1 X
a−1

2 X a−2

3 X a−3

4 · · ·X a1−L

L .

The unitary W has a non-trivial action on these remaining three operators. It transforms them
into

Z1 Z
−a−1

2 7→ Z1 X
−a−1

2 X−a−2

3 X−a−3

4 · · ·Z−a−L

1 X−a1−L

L ,

ZL Z
−a−1

1 7→ XL , (D.13)

X1 7→ Z−1
1 X1 Z

−1
1 Za−1

L X a−1

2 X a−2

3 X a−3

4 · · ·Za−L

1 X a1−L

L .
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Notice that the middle term now transforms according to Eq. (D.4). Using the fact that aL = 1,
which follows from imposing periodic boundary conditions, we can simplify the first and the
last terms to

Z1 Z
−a−1

2 7→ X−a−1

2 X−a−2

3 X−a−3

4 · · ·X−a1−L

L ,

X1 7→ Za−1

L Z−1
1 X1 X

a−1

2 X a−2

3 X a−3

4 · · ·X a1−L

L . (D.14)

Finally, noting that the first and second string operators are nothing but X1 U−1
a−1 and Ua−1 , the

action of the projector Pa−1 delivers

Z1 Z
−a−1

2 7→ X1 ,

X1 7→ Za−1

L Z−1
1 , (D.15)

which completes the duality transformation (D.4).

D.3 Double exponential symmetry

We consider the modulated Zp ×Zp symmetry (p ≥ 3) generated by two Zp exponential sym-

metries with f (1)j = a j and f (2)j = a− j for a ∈ Zp. We find n= 2 and set g1 = −a− a−1 and

g2 = 1 in Eq. (D.4). As claimed in Section 4.3, the corresponding duality eDKW operator is
given by

eDKW = p P1 P2 W HL CZL HL−1 CZL−1 · · ·H3 CZ3 . (D.16)

Here, H j is the Hadamard operator defined in Eq. (D.2b), while the modified controlled Z
operator CZ j is

CZ j =
p−1
∑

α=0

Zαj P
(α)
j , P

(α)
j :=

1
p

p−1
∑

β=0

ω−αβp

�

Z−1
j−2 Z

a+a−1

j−1

�β
. (D.17)

The unitary operator W only acts on the first and last n = 2 sites of the lattice and is defined
as

W :=WL−1 WL W1 W2 ,

WL−1 :=
1
p

p−1
∑

α,β=0

ω−αβp Z−α1 ZβL−1 ,

WL :=
1
p

p−1
∑

α,β=0

ω−αβp Z−α2 Z(a+a−1)α
1 ZβL ,

W1 :=
1
p

p−1
∑

α,β=0

ω−αβp Z−α1 Z−(a+a−1)β
2 Zβ1 ,

W2 :=
1
p

p−1
∑

α,β=0

ω−αβp Z−α2 Zβ2 ,

(D.18a)

with its only nontrivial actions being

W XL−1 W † = Z−1
1 XL−1 , W XL W † = Za+a−1

1 Z−1
2 XL , (D.18b)

W X2 W † = Za+a−1

1 Z−1
2 X2 Z

−1
2 Z−1

L , W X1 W † = Z−1
1 X1 Z

−1
1 Za+a−1

2 Za+a−1

L Z−1
L−1 .
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The unitary operator W consists of controlled Z-type operators that is modified for the bound-
ary terms. For the double exponential symmetry, the duality operator (D.2) on infinite chain
then can be understood as the L→∞ limit of the operator (D.16). Finally, the projectors P1
and P2 projects onto the subspace which is symmetric under both exponential symmetries.

As in the previous section, to verify that the operator (D.16) indeed implements the duality
transformation, which can be seen through the sequential action of the unitary operators.
Acting with all the unitary operators up to W , implements

Z3 Z
−a−a−1

4 Z5 7→ X3 , X3 7→ Z−1
1 Za+a−1

2 Z−1
3 ,

Z4 Z
−a−a−1

5 Z6 7→ X4 , X4 7→ Z−1
2 Za+a−1

3 Z−1
4 ,

...
... (D.19a)

ZL−3 Z
−a−a−1

L−2 ZL−1 7→ XL−3 , XL−1 7→ Z−1
L−3 Z

a+a−1

L−2 Z−1
L−1 ,

ZL−2 Z
−a−a−1

L−1 ZL 7→ XL−2 , XL 7→ Z−1
L−2 Z

a+a−1

L−1 Z−1
L ,

which is the duality transformation (D.4) on the local symmetric operators except the remain-
ing six

ZL Z
−a−a−1

1 Z2 7→ XL Z
−a−a−1

1 Z2 ,

ZL−1 Z
−a−a−1

L Z1 7→ XL−1 Z1 ,

Z2 Z
−a−a−1

3 Z4 7→ Z2 X
−w1
3 X−w2

4 X−w3
5 · · ·X−wL−3

L−1 X−wL−2
L ,

Z1 Z
−a−a−1

2 Z3 7→ Z1 Z
−a−a−1

2 X w0
3 X w1

4 X w2
5 · · ·X

wL−4
L−1 X wL−3

L ,

X1 7→ X1 X
−w0
3 X−w1

4 X−w2
5 · · ·X−wL−4

L−1 X−wL−3
L ,

X2 7→ X2 X
w1
3 X w2

4 X w3
5 · · ·X

wL−3
L−1 X wL−2

L ,

(D.19b)

where

w j :=
j
∑

α=0

a j−2α . (D.19c)

While the first two terms remain local, the last four are mapped to non-local string operators.
The final unitary operator W maps these six operators to

ZL Z
−a−a−1

1 Z2 7→ XL ,

ZL−1 Z
−a−a−1

L Z1 7→ XL−1 ,

Z2 Z
−a−a−1

3 Z4 7→ Z2 X
−w1
3 · · ·X−wL−3

L−1 X−wL−2
L ZwL−3−(a+a−1)wL−2

1 ZwL−2
2 , (D.20)

Z1 Z
−a−a−1

2 Z3 7→ Z1 Z
−a−a−1

2 X w0
3 · · ·X

wL−4
L−1 X wL−3

L Z−wL−4+(a+a−1)wL−3
1 Z−wL−3

2 ,

X1 7→ Z−1
1 X1 Z

wL−4−(a+a−1)wL−3−1
1 ZwL−3+a+a−1

2 Z−1
L−1 Z

a+a−1

L X−w0
3 · · ·X−wL−3

L ,

X2 7→ Z−1
2 X2 Z

−1
2 Z−1

L X w1
3 · · ·X

wL−2
L Za+a−1−wL−3+(a+a−1)wL−2

1 Z−wL−2
2 .

We recall that when imposing periodic boundary conditions we demand L = 0 mod p− 1, and
therefore L = n (p− 1) for some positive integer n. Using this fact, we obtain

wL−3 + a+ a−1 = a−3

�L−3
∑

α=0

a−2α + a4 + a2

�

= a−3
n (p−1)−1
∑

α=0

a−2α

= n a−3
p−2
∑

α=0

a−2α = 0 mod p , (D.21)
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where in reaching the last line, we have used the facts that (i) ap−1 = 1 mod p and, thus, the
terms in the summation are periodic with period p− 1, and (ii) the summation of even powers
of a vanishes modulo p. Similarly, one can show that

wL−2 = −1 mod p , wL−4 = −a2 − a−2 − 1 mod p . (D.22)

Therefore, one finds that all the Z operators with exponents wi in Eq. (D.20) simplify to

ZL Z
−a−a−1

1 Z2 7→ XL ,

ZL−1 Z
−a−a−1

L Z1 7→ XL−1 ,

Z2 Z
−a−a−1

3 Z4 7→ X−w1
3 · · ·X−wL−3

L−1 X−wL−2
L ,

Z1 Z
−a−a−1

2 Z3 7→ X w0
3 · · ·X

wL−4
L−1 X wL−3

L ,

X1 7→ Z−1
L−1 Z

a+a−1

L Z−1
1 X1 X

−w0
3 · · ·X−wL−3

L ,

X2 7→ Z−1
2 Za+a−1

1 Z−1
L X2 X

w1
3 · · ·X

wL−2
L .

(D.23)

Through similar manipulations, one verifies that the last two string operators in Eq. (D.20)
can be expressed in terms of products of exponential symmetry operators and hence become
identity when hit with the projectors P1 and P2. The first two strings are then simply mapped
to X2 and X1, respectively. To summarize, the operators on the left-hand side of Eq. (D.23)
are mapped to

ZL Z
−a−a−1

1 Z2 7→ XL ,

ZL−1 Z
−a−a−1

L Z1 7→ XL−1 ,

Z2 Z
−a−a−1

3 Z4 7→ X2 ,

Z1 Z
−a−a−1

2 Z3 7→ X1 ,

X1 7→ Z−1
L−1 Z

a+a−1

L Z−1
1 ,

X2 7→ Z−1
L Za+a−1

1 Z−1
2 .

(D.24)

which completes the KW transformation (D.4).

D.4 ZN dipole symmetry

For a ZN dipole symmetry, we find n= 2 and set g1 = −2 and g2 = 1 in Eq. (D.4). As claimed
in Section 4, the corresponding KW duality operator is given by

eDKW = N PU PD W HL CZL HL−1 CZL−1 · · ·H3 CZ3 . (D.25)

Here, H j is the Hadamard operator defined in Eq. (D.2b), while the modified controlled Z
operator CZ j is

CZ j =
p−1
∑

α=0

Zαj P
(α)
j , P

(α)
j :=

1
p

p−1
∑

β=0

ω−αβp

�

Z−1
j−2 Z

2
j−1

�β
. (D.26)
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The unitary operator W only acts on the first and last two sites of the lattice and is defined as

W :=WL−1 WL W1 W2 ,

WL−1 :=
1
p

p−1
∑

α,β=0

ω−αβp Z−α1 ZβL−1 ,

WL :=
1
p

p−1
∑

α,β=0

ω−αβp Z−α2 Z2α
1 ZβL ,

W1 :=
1
p

p−1
∑

α,β=0

ω−αβp Z−α1 Z−2β
2 Zβ1 ,

W2 :=
1
p

p−1
∑

α,β=0

ω−αβp Z−α2 Zβ2 ,

(D.27a)

with its only nontrivial actions being

W XL−1 W † = Z−1
1 XL−1 , W XL W † = Z−1

2 Z2
1 XL ,

W X2 W † = Z2
1 Z
−1
2 X2 Z

−1
2 Z−1

L , W X1 W † = Z−1
1 X1 Z

−1
1 Z2

2 Z
2
L Z
−1
L−1 . (D.27b)

The unitary operator W consists of control-Z-type operators that is modified for the boundary
terms. For dipole symmetry, the KW duality operator (D.2) on infinite chain then can be
understood as the L→∞ limit of the operator (D.25). Finally, the projectors PU and PD
project onto the symmetric subspace, i.e., U = 1 and D = 1.

As in the previous section, to verify that the operator (D.25) indeed implements the duality
transformation, we act by the unitary operators on the symmetric local operators sequentially.
Acting with all the unitary operators up to W , implements

Z3Z
−2
4 Z5 7→ X3 , X3 7→ Z−1

1 Z2
2 Z
−1
3 ,

Z4Z
−2
5 Z6 7→ X4 , X4 7→ Z−1

2 Z2
3 Z
−1
4 ,

...
... (D.28a)

ZL−3Z
−2
L−2ZL−1 7→ XL−3 , XL−1 7→ Z−1

L−3 Z
2
L−2 Z

−1
L−1 ,

ZL−2Z
−2
L−1ZL 7→ XL−2 , XL 7→ Z−1

L−2 Z
2
L−1 Z

−1
L ,

which is the KW duality transformation (D.4) on the local symmetric operators except the
remaining six

ZL Z
−2
1 Z2 7→ XL Z

−2
1 Z2 ,

ZL−1 Z
−2
L Z1 7→ XL−1 Z1 ,

Z2 Z
−2
3 Z4 7→ Z2 X

−2
3 X−3

4 X−4
5 · · ·X

2−L
L−1 X 1−L

L ,

Z1 Z
−2
2 Z3 7→ Z1 Z

−2
2 X3 X

2
4 X 3

5 · · ·X
L−3
L−1 X L−2

L ,

X1 7→ X1 X
−1
3 X−2

4 X−3
5 · · ·X

3−L
L−1 X 2−L

L ,

X2 7→ X2 X
2
3 X

3
4 X 4

5 · · ·X
L−2
L−1 X L−1

L ,

(D.28b)

While the first two terms remain local, the last four are mapped to non-local string operators.
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The final unitary operator W maps these six operators to

ZL Z
−2
1 Z2 7→ XL ,

ZL−1 Z
−2
L Z1 7→ XL−1 ,

Z2 Z
−2
3 Z4 7→ Z−L

1 Z L
2 X−2

3 X−3
4 X−4

5 · · ·X
2−L
L−1 X 1−L

L ,

Z1 Z
−2
2 Z3 7→ Z L

1 Z−L
2 X3 X

2
4 X 3

5 · · ·X
L−3
L−1 X L−2

L ,

X1 7→ Z−1
1 X1 Z

−1
1 Z2

2 Z
2
L Z
−1
L−1 X

−1
3 X−2

4 X−3
5 · · ·Z

1−L
1 Z L−2

2 X 3−L
L−1 X 2−L

L ,

X2 7→ Z2
1 Z
−1
2 X2 Z

−1
2 Z−1

L X 2
3 X

3
4 X 4

5 · · ·Z
L
1 Z1−L

2 X L−2
L−1 X L−1

L .

(D.29)

Note that each string resembles the dipole symmetry operator. In particular, using the fact that
consistency with periodic boundary conditions requires L = 0 mod N , we can cancel all terms
the raised to the power L and obtain the six terms

ZL Z
−2
1 Z2 7→ XL ,

ZL−1 Z
−2
L Z1 7→ XL−1 ,

Z2 Z
−2
3 Z4 7→ X−2

3 X−3
4 X−4

5 · · ·X
2
L−1 X

1
L ,

Z1 Z
−2
2 Z3 7→ X3 X

2
4 X 3

5 · · ·X
−3
L−1 X−2

L ,

X1 7→ Z−1
L−1 Z

2
L Z
−1
1 X1 X

−1
3 X−2

4 X−3
5 · · ·X

3
L−1 X

2
L ,

X2 7→ Z−1
L Z2

1 Z
−1
2 X2 X

2
3 X

3
4 X 4

5 · · ·X
−2
L−1 X

−1
L .

(D.30)

Using the fact that projectors PU and PD sets U = 1 and D = 1, one verifies that the last two
strings are trivialized while the first two strings are just equal to X2 and X1, respectively. To
summarize, the operators on the left-hand side of Eq. (D.28b) are mapped to

ZL Z
−2
1 Z2 7→ XL ,

ZL−1 Z
−2
L Z1 7→ XL−1 ,

Z2 Z
−2
3 Z4 7→ X2 ,

Z1 Z
−2
2 Z3 7→ X1 ,

X1 7→ Z−1
L−1 Z

2
L Z
−1
1 ,

X2 7→ Z−1
L Z2

1 Z
−1
2 ,

(D.31)

which completes the KW transformation (D.4).
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