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Abstract

We study dipole Chern-Simons theory with and without a cosmological constant in 2+ 1
dimensions. We write the theory in a second order formulation and show that this leads
to a fracton gauge theory coupled to Aristotelian geometry which can also be coupled
to matter. This coupling exhibits the remarkable property of generalizing dipole gauge
invariance to curved spacetimes, without placing any limitations on the possible ge-
ometries. We also use the second order formulation to construct a higher dimensional
generalization of the action. Finally, for the (2 + 1)-dimensional Chern-Simons theory
we find solutions and interpret these as electric monopoles, analyze their charges and
argue that the asymptotic symmetries are infinite-dimensional.
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1 Introduction

Fractons [1, 2] are novel, at this point theoretical, quasiparticles with the distinctive feature
of having only limited mobility [3-5]. Their underlying (exotic) dipole symmetry falls into
the broader class of generalized symmetries [6, 7] that challenge, and hence improve, our
understanding of quantum field theories.

One puzzling aspect is their coupling to spacetime [8,9]. While the matter fields [10] can
be coupled to generic Aristotelian geometry [11, 12] the gauge theory [13, 14] that mediates
the forces puts restrictions on the admissible spacetimes [9,11,12]. The reason for the restric-
tion lies in the tension between general Aristotelian covariance and dipole gauge symmetries.
In Cartesian coordinates the latter gauge transformations with parameter A act on the gauge
fields ¢ and symmetric tensor A;; as

SpP = A, 6)\Ajj =—0;0iA, (D

where i, j are spatial indices. They couple to matter via p&¢ + JV 6A;;, which leads to the
conservation equation

which is at the heart of many of the interesting properties of this theory. It implies for exam-
ple the conservation of the electric charge Q = f pdx and the dipole moment D = f)?pdx
and that isolated monopoles cannot move. These relations also show that this theory is non-
lorentzian and that generalizing it to generic curved spacetimes is nontrivial.
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In this work we will show that it is possible to couple fracton gauge fields consistently to a
particular Aristotelian theory of gravity.! We circumvent the earlier no-go results by providing
another gauge theory, which derives from gauging the fracton/dipole algebra in a spirit similar
to the gauging of spacetime symmetry algebras to obtain Einstein gravity in the first order
formulation (see, e.g., [21,22]).? In 2 + 1 dimensions this leads to a fracton/dipole Chern—
Simons (CS) theory [26].% One of our main results is to translate this theory into second order
formulation (see Section 3 for the definition of all expressions)

S[e,Auy, Tushyy]l = f d3xe( —uph* R, + 2uK, A, (K" hPT —hHPRY?)
u ()
+ 7H8p‘”<'r,< (ap’co — 8arp)) .

This action provides a coupling of fracton gauge fields (¢,A,,,) to the Aristotelian geometry
given by (7,,h,,) and can be generalized to generic spacetime dimension. Since the gauge
fields act as Lagrange multipliers for the geometry, it exhibits similarities to JT gravity [31,32]
and BF models.

This coupling possesses the remarkable property that the action remains invariant under
the following generalization of dipole gauge transformations to curved spacetimes, without
requiring additional restrictions on the geometry

6¢p =n"gA,  6A,,=—P(P)V,0,A, 4)
where Pﬁ =h,,h"’ =6 ﬁ —nP,, is the spatial projector and n" is the vector dual to the clock
form 7, i.e.,, n"t, =1 and n"h,, = 0. This implies a generalization of dipole conservation,
i.e., 9,(eJ") = 0 where e is the integration measure (analog of ,/—g in a relativistic setup)
and where J" is the current

Jt=pnt+ v, (PEPLIPY), )

where for simplicity we have assumed that the Aristotelian metric-compatible affine connection
vV, has no torsion. These are the curved generalizations of (1) and (2) (without linearization
or further restrictions on the geometry). Hence dipole gauge invariance puts no restrictions
on the geometry (in any dimension).

Following [11,12] we show how we can couple the (2 + 1)-dimensional theory to matter
theories [10] (Section 3.5) and how we can add a cosmological constant term. In 2 + 1 di-
mensions we also construct a solution to the nonlinear equations and derive for negative and
vanishing cosmological constant the conserved charges. The geometry is spherically symmet-
ric and has nonzero electric charge and energy and we therefore interpret it as a monopole.
For negative A\ we also discuss the asymptotic symmetries which are given by an infinite di-
mensional enhancement of the fracton algebra (cf., [33,34]).

This work is structured as follows. In Section 2 we introduce the fracton Chern-Simons
theory, i.e., the first order formulation, with and without cosmological constant term. In Sec-
tion 3 we discuss the underlying Aristotelian geometry and translate to second order formu-
lation, which we use to generalize the action to generic dimensions (Section 3.4). In 2+ 1
dimensions we show that we can couple the theory to matter fields (Section 3.5). In Section 4
we find static circularly symmetric solutions, interpret them as monopoles and discuss their

1For complementary approaches, see, e.g., [15-20].

2The gauging of these symmetries and their relation to Aristotelian geometry has also been discussed in the
context of hydrodynamics [23-25].

3The existence of this CS theory already follows from the correspondence of the fracton and Carroll symme-
tries [11,27,28] and the fact that theories with Carroll symmetry allow for a CS formulation [29, 30].
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charges and asymptotic symmetries. We close by mentioning various interesting generaliza-
tions (Section 5). We have delegated technical aspects concerning the Aristotelian connection
to Appendix A, its curvature to Appendix B and Lie algebraic considerations to Appendix C.

2 Fracton Chern-Simons theory in 2 + 1 spacetime dimensions

In this section we introduce a Chern-Simons theory based on the fracton algebra, with and
without cosmological constant.

2.1 Fracton algebra and its invariant metric

The fracton/dipole algebra [35] in 2 + 1 dimensions is spanned by the set of generators
(J,H,P,,Q,D,), which are the usual generators of symmetry of Aristotelian spacetime, i.e.
spatial rotations, time and space translations, dual to the angular momentum, energy and lin-
ear momentum, as well as two generators of internal symmetry dual to electric and dipole
charge, respectively. The non-vanishing commutation relations are given by

[Japa]zeabpba [J:Da]zeabDb; [Paan]:5abQ, (6)

where a,b = 1,2 and €, = 1. Itis a nonsemisimple algebra with a nontrivial central extension
(Q) and a trivial one (H). In 2+ 1 dimensions there exist other nontrivial central extensions,
but since they do not persist for generic dimensions we will not consider them.

If we want to use the symmetries (6) to construct a Chern-Simons theory one usually re-
quires the existence of an invariant metric, that is a symmetric, ad-invariant, non-degenerate
bilinear form on the Lie algebra. The fact that this algebra is nonsemisimple makes the exis-
tence of such an invariant metric nontrivial. In contradistinction, for semisimple Lie algebras
there is of course always the Killing form (by Cartan’s criterion). For the case at hand, the
existence follows from the isomorphism of the Carroll and fracton/dipole algebras [11], and
the fact that the Carroll algebra has an invariant metric in 2 + 1 dimensions [29, 30].

For the fracton algebra (6) the most general invariant metric is given by

<J5Q>=1U“) (paJDb>=_nu’6ab’ (H,H>:‘U,H,
<J;J>:XJ) (JJH>=XJHJ (7)

which is non-degenerate for u # 0 # uy. We will see below that since uy # 0, one can without
loss of generality always set y;y equal to zero in the CS action.

2.2 Fracton/dipole CS action

With these ingredients we can write a Chern-Simons theory

SCS[A]:J(A/\dA+%[A,A]/\A) EJLCS, (8)
for the Lie algebra valued one-form A, decomposed as
A=A, dt +A;dx' = TH + e*P, + wJ + aQ + A°D,, . 9)
The Chern-Simons action for the fracton algebra (6) with invariant metric (7) is given by
S[t,e,w,a,A] = J 2uU (w ANda—egpe’ A dAP + e AA% A w) +ugTAdT

+yjoANdw+2ypwAdrT. (10)
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This theory was already discussed in [26], where the term proportional to u; was mentioned,
but left implicit. Since 7 is a relevant part of the Aristotelian geometry we will keep it explicit.

Using the fact that uy was assumed to be nonzero, we can rewrite the last three terms of
the above action as

PgTAAT+ ;o Adw+ 250 AdT = Uy (T+aw) Ad(T+aw)+pBwAdw (11)

(up to a total derivative), where a and 3 are given by

a= /by,  B=xr—xiy/bu- (12)

By performing a redefinition of 7, given by 7/ = T + aw, we can remove the term with y;p
entirely, and so without loss of generality we can set

Xsou=0. 13)

For simplicity we will furthermore assume that

XJZO. (14)

Like every CS theory in 2 4+ 1 dimensions, this theory has no local propagating degrees
of freedom and, without further input, it does not depend on any (non)lorentzian metric or
geometry. In the next sections we will however interpret some of these generators in terms
of Aristotelian geometry [11,12], e.g., we will impose additional restrictions on the vielbeine
(see (24)). This means we introduce additional structure, which does not change the degrees
of freedom, but the theory depends then on geometric quantities, like the Aristotelian analog
of a metric.

2.3 Equations of motion, and gauge transformations

The equations of motion are given by the usual curvature equals zero equations where the
curvature is
F=dA+1i[AA]l=0. (15)

In components, if we vary the fields in the action, this amounts to

o1 : dt =0, (16a)
Se?: dA® — e, w AAP =0, (16b)
oa: dw=0, (16¢)
dw: da+e*NA*=0, (16d)
A% : de® —epwAe? =0. (16e)

The gauge transformations are of the form 6A = de + [A, €] where

e=AM+CH+P,+AQ+ A°D,. a7
In components this reads
61 =d{, (18a)
Se?=dl+ Ae% el —wety ¢P, (18b)
ow=dA, (18¢)
da=dA+e*A,—A"L,, (18d)
SA® =dA® + A e A — e AP (18e)
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In Section 3 we provide a more detailed and general analysis, but let us first give some
intuition on how we can recover the dipole conservation (2) from the coupling to the fields a
and A” of the CS theory. We restrict ourselves to a flat background in Cartesian coordinates,
ie, e, = 6;‘1, 7, = &' and w = 0, which allows to simply replace tangent indices a, b into
spatial ones i, j. The charge and dipole gauge transformations are then given by

Sa; = oA+ A;, Sa, = 3.\, SA/ = 3N, SAS, =0\, (19)

and when we set A; = —; A (which is the residual gauge transformation of the gauge choice
a; = 0) we find that a, and A;; transform precisely like the gauge fields in (1), which implies
the dipole conservation law.

2.4 Adding a cosmological constant

We can deform the fracton algebra (6) by adding curvature (“cosmological constant”) A, which
results in the algebra (see Appendix C for the details)

[J:Pa]zeabpb: [JaDa]:eabDb: [Pa’Db]:(sabQ’
[Q’ Pa] = ADa’ [Pa’Pb] = /\eabJ3 (20)

with the most general invariant metric

<J>Q>=nu’a (Pa’Db)z_nueab) (H,H)ZMH,
(‘])J):XJ’ (Pa’Pb)ZAXJ6abJ (21)

which is non-degenerate for u # 0 # uy. With the connection (9) the CS action (10) is then
given by

A
Spl7,e, w,a,A] = J Zu(w Ada—egpe® AdAY + e AAY A w + Eeabe“ Aeb A a)
+ugT AdT+ Y5 (w/\dw+/\(ea/\dea+eabea/\eb/\a))), (22)

with equations of motions (for y; = 0)

5T dt =0, (23a)

de®: dA® — e AA® + NaAe® =0, (23b)
1

oa: dw+§/\eabea/\eb =0, (23c)

dw: da+e*NA*=0, (23d)

A% : de® — e Ae? =0. (23e)

Equation (23c) shows that A can be interpreted as adding a cosmological constant to the
geometry.

3 Second-order formulation

In this section we will translate the Chern-Simons action to the second-order formulation.
Roughly speaking and similar to general relativity, we integrate out w and find a connection
that is built out of the Aristotelian metric like fields 7, and h,,,. We show that the resulting
action is gauge invariant and derive how to couple it to matter. With the exception of the
matter coupling we show how we can generalize to generic dimension.

6
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3.1 Integrating out fields

We will assume that (7,,,e,") forms an invertible set of vielbeine whose inverse is given by
(n*,e*,) where

uw — a, v vV v

n“rt,=1, e e, +Tun —5M. 24)

u
We define £¥ as { = &F7, and {“ =¢& “ez, so that we have a bijective correspondence between
E¥ and (Z, %). Using the equations of motion, i.e., that F = 0 it then follows that the ({,{%)
transformations are on shell equivalent to Lie derivatives along £¥.

Since (T Y eua) are invertible, the gauge transformation can also be written as

§A, =0, +[Ay,e]=L:A,+ 3,5+ [A,, 2] +E"F,, =6A,+&"F,,, (25)
where the last equality defines SAH and where
e=8V'A,+%, ©=2AJ +AQ+AD,. (26)

Because the difference between 6A,, and SAM is proportional to the equations of motion it
follows that SAM is also a gauge symmetry of the theory. Basically this is because we have
€9 (FiuvFpis) = 0. The variation of the CS action is (up to boundary terms)

and the above conclusion follows from (F A izF) = 0 where iz denotes the interior product
with respect to the vector &.

The equations of motion allow us to solve for some of the fields algebraically in terms of
the other fields. If the set of fields we vary can be solved for that same set of fields algebraically
we are allowed to substitute these back into the action and obtain an equivalent description
in terms of fewer fields. Since the w connection is one of these fields the resulting action will
be a second order formulation of the theory.

Consider equations (16d) and (16e). The latter can be written as

due," —0ye," —€qp (couevb—wveub) =0. (28)

By contracting this equation with n* and e”. we can solve for w,, leading to

1
nfw, = Eeacn“evc (aueva - aveua) s (29a)

1
etqw, = Eecdefe”d (8Meva — 8,,eua) . (29b)

Equation (16d) can be written as

d,a,—d,a, +e, A —e A =0, (30)

from which it follows that
n"A, " =n'e’, (a“ay — 3vau) , (31a)
etpA,t — e“aAHb =—et ey (auav — Bvau) . (31b)

The second equation tells us that the most general solution to A‘;L is given by

1 ~
A= 56%(55 +nft,) (8pa,,— 8,,ap) +S“beub =:A,° +Sabeub, (32)

7
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where S is symmetric in a and b, but otherwise arbitrary, and the a, b, ... indices are raised
and lowered with a Kronecker delta, and where we defined Aua. The solution for w is equiva-
lent to imposing (16e) whereas the solution for A* = A% + S, e? where A® obeys (16d). Using
the solutions for w and A® the Lagrangian can be rewritten (up to a total derivative) as

Leg = 2,u(w A(da+e* NAY) — e pdet /\Ab) +ugTAdT
=2u (—eabdea ASP €€ —e pde? /\Ab) +ugTAdT
=2u (—eabde“ ASP.ef —w el /\Ab) +uygTAdT
=2u (—eabdea ASP e+ wA da) +ugT AdT
=ZM(aAdw—eabdea/\Sbcec)+uHT/\dT, (33)

where w is no longer an independent connection, but where $? = 5@ is an independent

variable (as are T o eua and a,).

3.2 Aristotelian geometry

The goal is to rewrite (33) in terms of an affine connection and its associated curvature as well
as possibly torsion terms of said affine connection. In order to introduce such a connection we
invoke the following vielbein postulate

Ozaurv—l“p T (34a)

uv - p?
0= 8Heva—eabwuevb—qfvepa. (34b)

If we solve these two equations for Fﬁv we obtain
b b
Fﬁv=n"8u7v+epb(8“ev —€ Cwuevc). (35)

It can be shown (see appendix A) that for Wy given in (29a) and (29b) we can write the affine
connection as

1
Ip, =nfo,7, + Sh*” (8uhve + Oyhyy — Bohyy) =P Ky (36)
where we defined
huy=08ape,%,", R =5%eM ey, (37)
as well as 1
Kyy= Eﬁnhm. (38)
This connection is metric compatible in the sense that
V,T,=0, Vih,, =0, (39)

which follows from the vielbein postulates and is thus true by design. This also implies that
V,n" =V, h"" = 0. Furthermore, it has nonzero torsion. Explicitly the torsion is given by
Tﬁv = ZF[’ZW] =nF (aﬂv — avru) + hP? (TMKW — TVKW) . (40)
The torsion is thus determined by dt and K,,. One could formulate this as saying that the
torsion is equal to the intrinsic torsion of an Aristotelian geometry [36]. Intrinsic torsion

loosely speaking is a torsion tensor that is constructed from the geometric data 7, and h,,
that is first order in derivatives.
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The Riemann tensor associated with this affine connection is

Ryyo” = =00, =TT — (> ). (41)

A straightforward calculation tells us that

Ry’ = e’el e, . (auwv—aku) . (42)
The Ricci tensor is defined as R,,; =R,,,”. It follows that
h"°R,o = ebeP ek, (Buwp -9, a)“) . (43)

3.3 Fracton gauge fields on an Aristotelian geometry

From the torsion constraint de® — e®®w A e, = 0 we can deduce (by applying the exterior
differential) that

d2e® —e®dw Aep +ePw Ade, =0 = e“Ndw =0. (44)

Using this it can be shown that the first term on the last line of (33) can be written as

¢

aNdw=¢TANdw= %epae"b (6, wy—0yw,) T A AeP =7

h*"R,,,T A el Ae?, (45)

where ¢ is given by ¢ =n"q,,. In other words we decompose the gauge potential a, as
a, =T+ Pee,’, (46)

where ¢ = n“au and ¢, = e“aau. In order to rewrite the second term on the last line of (33)
we use that

1
Ko =€V qe" Ky, = Enpeoa (apeab - 8gepb) +(a < b). “47)
Using this we can write
de® Aefey, SP. = KWSP (8,48 — 8pabac) T At A2, (48)

The last term on the last line of (33) can be written as

1 1
TAdT = Eeabepaeab (8p1'a —80%)7/\61 Ne? = EEPUKTK (8pra —30TP)T/\€1 Ae?, (49)

where P = e~ 1eP?% with P9 the Levi-Civita symbol and e = det(7,,e,"). Hence, we
obtain the following expression for the Lagrangian (33)

Leg = (—‘ucbh‘“’RW —4,uKadSbC5d[a5b]c + 'L%HEPUKTK (apra — aarp)) TAel A, (50)
Let us define the following symmetric tensor
A

oy = e,uaevbsab :Apap(‘;ev)a, (51)

where P[j =h,,h"" = Sﬁ — 1,nP. We can then finally write the action as

[P, Auy, Tyl = f d3x e(—p¢h" "Ry, + 20K, A, (HhPT —hHPRY)
(52)
u
+ %e””rk (3PTU —aan)).

9
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This is a gauge invariant coupling of an Aristotelian geometry to fracton gauge fields. We will
refer to this action as the second order formulation of the theory given in (10).

We will next consider the gauge symmetries of this theory. In particular, with a general-
ization to higher dimensions in mind, we will try to understand it independently of its Chern—
Simons formulation. We will use the 5AM transformations of (25) which we repeat here are
defined as

6A, =LA, +3,5+[A,, ], (53)

where X is given by (26). In components we have

6_aM =Lra, + 8ul_\ + eua/_\a . (54)
Likewise, we have ) )
e, =Lee, "+ Aepe,’, (55)
as well as ) )
6A, =LA,  + 0,A" + Ae®yA," — w ey AL (56)
For the clock form T we can write )
0T, =Lty (57)
Using the definition of the inverse vielbeine (24) we find
Set, =Lge!, +2elety, (58a)
Snt = Len*. (58b)

The field ¢, does not enter the action. In fact we can gauge-fix it to be zero. This is because
we have ) )
Spa=06(e’qa,)=e 8, A+ A, + ey +EH, ¢, (59)

so that for A, = —e",9,A, we can set ¢, =0=05¢,.
The diffeomorphisms and gauge transformation for the remaining second-order fields en-
tering the action are

5¢ =6(n"a,)=Ledp +n"g,A, (60)
and
6Ayy=—P{ PV, 0:A, (61)
where we used A, = —e#,9,A.

Finally we will verify that the second order action is gauge invariant with respect to the
A gauge transformation. If we take the second order action (52) and vary it with respect to
A, i.e., using (60) and (61), then after performing a few partial integrations and using the
identity (B.9),* we end up with

5;S = —2MJ d3xe AhKPhMKM( h +h*PR, ) . (63)
We can see that this identically zero since
h*Ph* | R ( 2hpoh°‘ ) =0, (64)

following from (42).

“4Since the connection has torsion it is useful to note the following when performing partial integrations
— 1
VXM =713, (eX") + T X", (62)

for any vector X*.

10
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If we add the cosmological constant term of Section 2.4 and go to the second order formu-
lation we end up with

[P, Auy, Tyl = f d3x e(—p(h*R,,, — 2\) + 2UK,, Ay (h"HPT —RHPR7)
(65)
Jad: |
+ 78”0’%,( (QPTU — 30Tp) ) .

In summary, we have brought the Chern-Simons theory based on the fracton algebra, with
and without cosmological constant, from the first order to the second order formulation. In the
second order formulation, the Lagrangian depends on the geometric quantities that describe
an Aristotelian geometry, (7,,h,,). This is analogous to the reformulation of Chern-Simons
theories based on the Poincaré or (A)dS algebras to three-dimensional gravity in the metric
formulation [37,38], but without Lorentzian boost symmetry. Additionally, our theory natu-
rally incorporates the coupling of a fractonic electromagnetic field, described by (¢,A,,) to
the Aristotelian gravitational theory, such that we have a generalization of dipole conservation
to curved and unrestricted Aristotelian geometry. Further physical implications of this theory
are discussed in [26].

3.4 Generalization to higher dimensions

It is only in the last step, equation (64), that we explicitly use that we are in 2+ 1 dimensions.
One of the benefits of the second order formulation (52) is that it can be straightforwardly
generalized to higher dimensions.

Explicitly, if we take the action

[P, Auys Ty ] = f dx e — pph" 'Ry, + 20K, A, (hHHPT —RFPRY) )+, (66)

where all fields are now defined in d + 1 dimensions, then if we modify the gauge transforma-
tion of A, under A to

5¢ =n"g,A, (67a)
_ - - 1
5A,, :—P&P;’)[VpaaA—A(Gpa—ﬁhmh“GM)}, (67Db)
in which we defined 1
Guv = R,uv - EhuvhaﬁRa/} 5 (68)

whose spatial projection is a d-dimensional Einstein tensor, it follows that (66) is gauge invari-
ant under the A transformation. Note that in (66) we left out the term proportional to uy in
(52). This is because that term does not generalise so straightforwardly to higher dimensions.
We replaced it with the action S;  which only depends on the fields 7, and h,,,. For example
we can take for the action S, j, the following [39],

Sen= % J d*x eh*Ph* (8,7, —3,7,) (8,70 —0sT,) - (69)

In principle we could take a Hotava-Lifshitz type action for S ;, whose diffeomorphism invari-
ant formulation can be given in terms of Aristotelian geometry [40].
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If we are in 2 + 1 dimensions, i.e., we consider (66) for d = 2 with (69), then we know
from the rewriting of the first order action that the 7, equation of motion (upon using all the
other equations of motion) cannot receive any contributions from the terms in (66) that are
proportional to u. If vary (66) in which we use (69) with respect to 7, we get that 7, must
obey [39],

hPh" (8,7, —8,7,) (8,70 —35T,) =0, (70)

which is equivalent (in form notation) to T Adt = 0. To get this result it is sufficient to vary
T, as 67, = Q1, where Q is an arbitrary function (while keeping h,, fixed). This says that T
must be hypersurface orthogonal which is less constraining than what we had for the 3D CS
theory in which we found that dt = 0. The variation of S; j, with respect to h,,, vanishes upon
using the condition (70). It would be interesting to work out the equations of motion of (66)
with (69) in general dimensions.

We can generalize (66) by adding a cosmological constant. The action becomes

Sp = J dlx e (—,uqb(h“”RW —2N) + 2uK, A, (RH7RPT — h“phw)) +Schs (71)
where the only modification is the appearance of a “cosmological constant” term e ¢ A, with
A= od(ge_zl) where o0 = —1,1 and { is a length (see Appendix C). The fracton gauge transfor-

mations are then modified to

5¢ =n"g,A, (72a)
o A 1 a 1 A
8Ay = —P{ P [vp Oy A— (Gpo — T7heoh FGop— ﬁhpo/\) A] : (72b)

All theories (in three or higher spacetime dimensions, with and without cosmological con-
stant) share many similarities with magnetic Carroll gravity defined in [41] and studied, e.g.,
in [42,43]. Besides the issue of interpreting the different fields entering the action, the main
difference between these two physical situations lies mainly in the treatment of the clock form
and the issue of boost-invariance. While magnetic Carroll gravity is a boost-invariant theory for
the Carrollian metric, the equivalent gauge-invariance in fractonic theories has been exploited
to arrive at the transformation laws (61) (or (67b) or (72b)). The clock form in Carroll gravity
is a dynamical object while here it is a fixed part of the geometry, subject to the constraints
obtained by variation of S_ .

3.5 Coupling to matter

In [11,12] it was shown that the complex scalar field & with global dipole symmetry can be
coupled to an arbitrary curved Aristotelian geometry leading to the following action (where
we adapted the result of [11] to the notation used here)

Secalar = J dx e[(n"8,86—i¢®)(n"3,8" +ip®") —m?|®[> — Ah*"hP9X, X1 |, (73)
where
. , 5
X, —P(’;P;’)(apéé‘o@—évpaoé)—mwtb , (74)

in which V, is covariant with respect to the Aristotelian connection (36). The parameters m?

and A are real numbers.
The Lagrangian (73) is gauge invariant under the gauge transformations

6¢=n"g,A,  6A,,=—P(PV,0,A,  52=iAe. (75)
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Comparing (72a) and (72b) with (75) we see that the coupling to (73) only works in 2 + 1
dimensions (with A = 0). We can now simply add the actions (66) and (73) and set d = 2
leading to

S= f d®x e(—puph"'R,, + 20K, A, (BhPT —hHPR¥)
+(n"8,8 —ip®) (n"0,8" +ip®d") —m2|®[2 — AR'RPOX,, X7 )+ 5., (76)

where S_ j, is for example given by (69) or by the term proportional to uy in (52).

If we now vary ¢ and A, we get equations for the curvature that are determined by the
scalar field. Hence, this theory is not necessarily restricted to maximally symmetric spacetimes
(as was the case in [9,11] where the dipole gauge theories were quadratic in the gauge fields).

4 Solutions and charges

In this Section we will derive circularly symmetric solutions of the Chern—-Simons theory (for
any A). Geometrically they share similarities with the spatial geometries of 2+ 1 dimensional
gravity, but our analysis of the charges shows that they carry electric charge and we therefore
interpret them as monopoles. We also comment on asymptotic symmetries which infinitely
enhance the fracton algebra.

4.1 Circularly symmetric solutions in 2 + 1 dimensions

In this section, we will discuss circularly symmetric solutions to the field equations (23), which
describe the field generated by an electric monopole in a curved background with and without
a cosmological constant.

We will make use of the first order formulation. Let us consider a circularly symmetric
ansatz of the form

T=N(r)dt, e! e2=rdf, a=¢((r)dt, S,=S)6,, 77)

1
= ——dr,
f(r)
where 6 is 27 periodic. We only specify S,;,, which we defined as A% =: A% 4+ $%¢® since A
will be determined by a (as we have already discussed around (32)).
The Aristotelian geometry given by T and e is completely determined by (23a), (23c) and

(23e). Indeed, the equation of motion (23a) shows that N (r) is constant. In particular, by
selecting an appropriate time normalization, N can be set to one, resulting in

T=dt. (78)
Additionally, equations (23c) and (23e) imply
w=f(r)do, (79)
with

fr)y=v-Ar2—wMm, (80)

where M is a real constant.”

>Strictly speaking there is the freedom to have both signs, i.e., f(r) = £+/—Ar2 — M, but since we can absorb
this freedom into the orientation of 8 in (79) we will restrict henceforth to the positive root.
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The fractonic fields are determined by (23b) and (23d). One finds
¢ (r)=¢ovV—-NAr2—M, S(r)=3Sy, (81)

where ¢, and S, are integration constants and A* = 6{Ar¢odt + Spe”.
In sum, the Aristotelian geometry of the circularly symmetric solution is described by the
following clock form and spatial metric:

dr?

m + r2d92, (82)

T =dt, hy,dxtdx” =
while the fractonic fields are given by (cf. (51))
¢ = ¢O V—NAr2 —M, Auv = SthW' (83)

In analogy to their lorentzian geometries we called the integration constant M, but it should
not be interpreted as a mass, but rather as a charge. This can be inferred from the fact that
the curvature of the geometry (23c) comes from the coupling a,J" rather than from coupling
to ez.

Let us first focus on the flat case, which is the well-defined limit A — 0 with metric
—%VILZ + r2d6? (for the following remarks further details are, e.g., in [44,45] and references
therein). For M = —1 this is the plane with flat metric, while for —1 < M < 0 the plane is
deformed into a cone, which is metrically flat except at the tip which can be interpreted as a
point particle. When M — 0 the geometry approaches a cylinder and when M < —1 itis a
conical excesses. When M > 0 we can think about it as a Milne universe. The ansatz in (77)
assumes a static and circularly symmetric configuration, thereby precluding the possibility of
deriving a rotating solution from it. In relativistic gravitational theories, a common technique
to obtain rotating solutions involves applying an improper boost to a static and circularly sym-
metric solution. However, this method is not applicable here due to the absence of boosts.
Nevertheless, one could consider a more general ansatz that is stationary and invariant under
the Killing vector Jy, allowing the metric to include cross terms with dtd68. We will explore
this possibility in the future.

Let us from now on focus on A < 0 where the spatial metric takes precisely the same form
as the spatial metric of a nonrotating BTZ black hole [46,47] in general relativity in 2 + 1
dimensions. However, the clock form is different since the clock form does not depend on any
integration constant of the spatial geometry as would have been the case for the lorentzian
geometry. Furthermore, the geometry does not depend on the integration constants ¢, and
Sy of the fractonic gauge fields, meaning there is no backreaction of the gauge fields on the
geometry. This is similar to the case of Einstein gravity in 2 + 1 dimensions coupled to U(1)
abelian Chern-Simons fields (see, e.g., [48]).

The gauge connection associated with this solution is given by

At=H+¢0V—/\r2—MQ+/\r(]50D1, (843)
1 So
A=———p+—22 _p, (84b)
vV—=~Ar2—M ! vV=Ar2—M !
Ag=rPy+V—-Ar2—MJ +rS,D,. (840)

In complete analogy with the Chern-Simons formulation of Einstein gravity, it is possible to
gauge away all the dependence on the radial coordinate r, such that the physical information
is encoded in an auxiliary connection a = a,dt+apd6, where A= h™! (d + a) h for some gauge
group element h. For the circularly symmetric solution, one explicitly finds that

h = exp [ Jl_AArcoth( \| 1+ %) (P, + SODl)] , (85)
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where the auxiliary connection is given by

a=(H+vV—-M¢,Q)dt+vV—MJd6. (86)

The removal of the radial dependence via (85) can only be achieved for negative values of A
and M. For vanishing cosmological constant the auxiliary connection takes exactly the same

form as (86) and the group element h simplifies to h = exp [‘/+_M (P + SODl)].

4.2 Charges and asymptotic symmetries

The charges of this theory are related to large gauge transformations. To determine them we
need to find gauge transformations that preserve the form of the auxiliary connection (86),
i.e., we must find an ¢ such that de + [a,e] = 0 and which leads to non-vanishing charges.
The charge associated with these large gauge transformations can then be obtained using the
canonical formalism [49] and it is given by the following expression [50]

5Q[s]=—2§d9(s5ae) . (87)

When a transformation changes the charge it should not be thought of as a nonphysical gauge
redundancy, but as an observable physical change.
For the case at hand large gauge transformations are generated by

e=AQ, (88)
for a constant A.° When A has no functional variation we find the electric charge
Qle]=—4nAuv—M. (89)

This shows that the integration constant M, which geometrically shares some similarities with
mass (but is not the mass of the system), is associated to the electric charge of the system.

The total energy can be obtained by considering the charge associated with time evolution
and can be derived from

0E = 2‘Cﬁ db (abag) . (90)

Then, if one assumes that 6 ¢, = 0, then the energy of the solution takes the form
E=-2nu¢,M. (X))

Therefore the total energy and the electric charge are related E ~ ¢,Q?. The constant S, does
not appear in the charges. Indeed, since A, = Soh,,,, the constant S, can be interpreted as as
labeling a particular ground state of the symmetric tensor A,,,.

Note that the components of the auxiliary connection (86) are defined along the generators
H, J and Q, which form a set of commuting generators. This suggests that a natural set of
asymptotic conditions that accommodate this solution could be given by “soft hairy asymptotic
conditions”, similar to those introduced in [51-53] whose asymptotic symmetry algebra is
given by a set of U (1) Kac-Moody current algebras. This aligns with the fact that the dipole
algebra with a negative cosmological constant is isomorphic, apart from the central element
H, to the three-dimensional Poincaré algebra. Indeed, this isomorphism allows us to map all

SWhen y, is nonzero there are more large general transformations that lead to non-vanishing charges, but they
will not provide additional information since they will be proportional to this charge.
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the known results in three-dimensional general relativity in flat space to the case of the dipole
algebra with a negative cosmological constant. Indeed, based on the results in [54], after a
suitable gauge transformation, it would be possible to write a set of asymptotic conditions in
the flat space analogue of the highest weight gauge [55-57], where

M(t,0) L(t,0) 1 H(t,0)
a— > (Q Dz)—

¢ 2

ag = —{P;)— J+LP)— H. (92)
Here { is the AdS radius related to the cosmological constant by A = —(~2. The asymptotic
symmetry algebra is then given by the three-dimensional BMS algebra with an additional U (1)
current, which contains the cosmological dipole algebra as its wedge algebra. The case when
the cosmological constant vanishes is less clear, as the previous asymptotic conditions do not
appear to have a natural flat limit. However, (86) suggests that soft hairy asymptotic conditions

might naturally be applicable. We plan to investigate this further in the future.

5 Discussion

We conclude by recalling that the main result of the paper is a metric formulation of a frac-
ton gauge theory (52) obtained from a Chern-Simon action in 2+1 dimensions, with gauge
fields A, and ¢ coupled to dynamical Aristotelian gravitation fields h,,, and 7,. We want to
emphasize that the invariance of the action under the dipole gauge transformations given by
Egs. (60) and (61) imposes no restrictions on the geometry, in stark contrast to previous no-go
results. [9,11,12]. This theory was generalized to higher dimensions without (66) and with
(71) a cosmological constant. Additionally, we showed that the three-dimensional theory can
be consistently coupled to fractonic matter fields (73).
This work opens various interesting avenues for further exploration:

Other multipole symmetries The tools we have used in this work are of course not restricted
to dipole symmetries and it could be interesting to generalize to higher multipole moments.

Supersymmetrization An immediate generalization is the supersymmetrization of the CS
theory. Again using the correspondence to Carroll symmetries [11,27,28] it is clear that such
a theory exists [58] and it could be interesting to generalize the work of Huang [26] and ours
to this framework.

Aristotelian black holes The circularly symmetric solution described in Section 4, with neg-
ative cosmological constant, shares many properties with the BTZ black hole in General Rela-
tivity. It is therefore natural to ask whether it is possible to define a notion of an “Aristotelian
black hole”. Given the significant differences between the properties of Aristotelian and Rie-
mannian geometries, one might attempt to extend the concept of an event horizon to Aris-
totelian geometries, as well as their thermal properties, as was done, for example, in the case
of Carrollian gravitational theories [59]. One possible approach is to leverage the isomorphism
between the dipole algebra with a negative cosmological constant and the three-dimensional
Poincaré algebra to describe thermal solutions within the Chern-Simons formulation of the
Aristotelian theory. In particular, we would like to study whether the flat-space generalization
of the Cardy formula [60,61] could play a significant role in describing the thermal properties
of Aristotelian black holes, as well as its connection to the BMS-type asymptotic conditions
outlined in (92).
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Fracton BF gravity There also exist generalizations to (1+1)-dimensional gravitational mod-
els [62,63] in particular there is an analog proposal for fracton BF gravity [59] to which much
of what we have done could be applied.

Relation to scalar charge gauge theories In order to make contact with more standard
gauge theories of fractons on flat space [13, 14] let us take the action (52) and choose a
background configuration which satisfies the equations of motion at 0™-order, given by the
flat Aristotelian background 7, = 1 and }_‘lij = 6;; and all other fields are zero. Lineariz-
ing the theory (52) up to quadratic order around this background yields, among others, the
term EijAl-j + ¢ 8i8jEij (where E;; is related to the metric perturbation e;; = h;; — Fli]- by
Ejj=e;;—9; jekk) which is ubiquitous in the Hamiltonian treatment of fracton gauge theories
performed, e.g., in [11]. We reserve a more thorough study of the Hamiltonian formulation
of the theory displayed in (66) or (71) and its relation to the theories (or others) described
in [11,13,14] for future works.

Infrared triangle, memory effects It was recently shown [33,34] that fracton theories allow
for interesting interrelations, called infrared triangle [64], between asymptotic symmetries,
soft theorems and (double kick) memory effects. The fracton CS theory also allows for infinite
dimensional asymptotic symmetries (cf., Section 4.2) which makes it natural to expect related
soft theorems and memory effects. What makes the case at hand an interesting challenge is
that the gauge theory is topological and therefore has no propagating degrees of freedom.

Applications to condensed matter systems We briefly suggest a possible application of our
fractonic Chern-Simons theory in the framework of topological phases of matter. We first ob-
serve that our action (22) can be seen as an one-loop effective topological field theory induced
by integrating out some massive degrees of freedom. In particular, in a (2 + 1)-dimensional
microscopic system made by non-relativistic massive fermions with conserved electric charge,
dipole and rotational symmetry but broken time-reversal symmetry, (22) can describe the topo-
logical response of the system to external probings. In fact, the first term is known in the
condensed-matter literature as first Wen-Zee term [65] and in absence of dipole conservation,
it has been employed to study several kinds of topological systems, such as quantum Hall insu-
lators and higher-order topological phases in two space dimensions [66-70]. The first Wen-Zee
term, entirely related to the charge conservation and rotational symmetry of the system, gives
rise to the shift invariant and corresponding Hall viscosity. On the other hand, the first term
related to the cosmological constant A in the same action coincides with the topological re-
sponse of an atomic insulator in two space dimensions [71], which only depends on charge
conversation and translation symmetry. Finally, the first term related to y; in (22) is known
as second Wen-Zee term and plays a role mainly in the fractional quantum Hall effect [72,73].
Thus, we expect that our (2 + 1)-dimensional fractonic theory with a non-zero cosmological
constant represents the low-energy description of suitable topological phases augmented by
the dipole symmetry, namely topological dipole phases (see [74] for an example of topological
dipole insulator) that will be investigated in detail in a future work.
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A Affine connection

The purpose of this appendix is to show that equation (36) follows from (35) in which we
substitute (29a) and (29b).
First we use completeness to write (35) as

Fﬁv =nfo,T,+ epbauevb — ebcepbevc (T“naa)a + e“de"dcog) . (A.1D)

In this equation we substitute (29a) and (29b) leading to (after some straightforward algebra)

rgvznpaur,,+hp%uz<m—hp%uhakavnK+X5v, (A.2)
where
Xﬁv = hpAhKa (elbhauakevb + e,ubhav (akelb - 8)Le;<b)) . (A.3)

Using completeness once more we can write

Xﬁv = Tvn“Xﬁa+P$‘Xﬁa, (A.4)
where we have
Xﬁan"‘ :—PSP{fakn“. (A.5)

In order to rewrite Py X ﬁa we use that
hp’lpq’fP; [egb (a,(elb — ale,{b) + cyclic permutations of o, k, 7L:| =0. (A.6)
Applying this identity to one-half of X ﬁv while using (A.4) for the other half we find
1
XSV = TVXﬁO_TlU + Ehplpfpg (akhal + aohkx - alhox) . (A.7)

After a bit of furthermore straightforward algebra we then find (36).

B Curvature

In this appendix we will collect some useful formulas for affine connections I‘ﬁv with nonzero
torsion.

The covariant derivative will be denoted by V,, the Riemann tensor by R,,,,” and the
torsion tensor by T” ,,. The latter are defined via

[V V)Xo =RuePX, — TP,V )X, (B.1a)
[V, V,]XP =—R,,,PX7 =T,V ,XP, (B.1b)
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from which it follows that

P A P A

Ryyo” =—0,I0 +0,10 TV T} +T) T, (B.2a)
P =orf

TPy, =21 . (B.2b)

The algebraic and differential Bianchi identities are

R[,uva]p = Tl[uvaa]l_v[qu vol» (B.3)
V[ARMV]UK = Tp[)LMRv]pUK . (B4)

The Ricci tensor is defined as
Ry =Ryp” . (B.5)

Our connection satisfies the property that
Fﬁ’p = au loge, (B.6)
where e = det(7,, eﬁ) is the integration measure. From this it follows that
P =0. (B.7)
The antisymmetric part of the Ricci tensor is then
2Ry = T2 TP + VTP, =V, TP, + VTP, (B.8)

Consider the differential Bianchi identity (B.4) and contract k with v. Contracting the
resulting identity with n*h*° and using the torsion tensor (40) leads to

0=V, (n*h"R,,)+ 20" h**R ,, K, (B.9)
—2(h*hP* =P hA ) [V V  Kpo — Vi (Kao LnTp) + Kao LT LlnTp — V p Koo LnTi | -

This identity is used in Section 3.3 to prove gauge invariance of the second order theory.

C Fracton algebraic considerations

We start by defining the (anti) de Sitter Carroll algebras in generic spacetime dimension d + 1

[Jab)‘]cd] = 5bc‘]ad - 5ac‘]bd - 5bd‘]ac + 5ad‘]bc > [Ba>Pb] = 5abH:
[Jabch] = 5cha - 5acBb B [H> Pa] = _/\Ba 5 (C]-)
[Jab’pc]:6bcpa_6acpb: [Pa’pb]:_/\‘]ab'

where A = 1?2 with 0 =1 (—1) for (anti) de Sitter Carroll and is related to the cosmological
constant & 1)/\ (we follow [75,76]).

We now replace the Carroll boost by dipole moment B, — D, and Carroll energy by charge
H — —Q and add a central element H to the new algebra. This curved fracton algebra is then
spanned by g = (J;,H, P,,Q, D,) and given by

[absJed] = 6bedad — Oacdba — ObaJac + Oaalpe s [Pe, Dp] =641Q,
[Jab’ ] 6bc 5acDb s [Q, ] = Da P (C.2)
[Jabapc]zébc a_5acpb: [ as b]:_ ab -
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To obtain further geometric understanding let us think about the homogeneous space where we
quotient g by h = (J,3,Q, D,). The homogeneous space is a curved Aristotelian homogeneous
space’ either R x S¢ or R x HY, for positive or negative A, respectively.

When we restrict to 2+ 1 dimensions the rotations commute and with J = —J;, we obtain
the algebra

[J’Pa]zeabpb: [JaDa]:eabDb: [Pa:Db]:5abQ’
[Q’ Pa] = /\Da 5 [Pa’Pb] = /\EabJ: (C.3)

where €;5 = 1. The most general invariant metric is

<J’Q>:.U') (Pa:Db>:_6ab.U" (H’H>:.U'H’
(JH]) =XJ5> (Pa’Pb> = XJ/\(Sab’ (C4)

which is nondegenerate for u # 0 # uy, i.e., we are free to set y; to zero. The flat limit
N\ — 0 is well defined on the Lie algebra and invariant metric and consequentially also for the
action. The main change is that we have the freedom to add an additional element (J,H) to
the invariant metric which leads to

(J,Q)=,U, (Pa,Db>=_€abM, (H’H):MH’
(‘]7‘]):%.]: (J’H>:XJH (CS)
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