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Abstract

Process tensor matrix product operators (PT-MPOs) enable numerically exact simula-
tions for an unprecedentedly broad range of open quantum systems. By representing
environment influences in MPO form, they can be efficiently compressed using estab-
lished algorithms. The dimensions of inner bonds of the compressed PT-MPO may be
viewed as an indicator of the complexity of the environment. Here, we show that the
inner bonds themselves, not only their dimensions, have a concrete physical meaning:
They represent the subspace of the full environment Liouville space which hosts environ-
ment excitations that may influence the subsequent open quantum systems dynamics the
most. This connection can be expressed in terms of lossy linear transformations, whose
pseudoinverses facilitate the extraction of environment observables. We demonstrate
this by extracting the environment spin of a central spin problem, the current through
a quantum system coupled to two leads, the number of photons emitted from quan-
tum emitters into a structured environment, and the distribution of the total absorbed
energy in a driven non-Markovian quantum system into system, environment, and inter-
action energy terms. Numerical tests further indicate that different PT-MPO algorithms
compress environments to similar subspaces. Thus, the physical interpretation of in-
ner bonds of PT-MPOs both provides a conceptional understanding and it enables new
practical applications.
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1 Introduction

All real-world quantum systems are invariably coupled to their surrounding environment.
When the coupling is weak, the Born-Markov approximation provides a sufficient descrip-
tion of the open quantum systems dynamics in the form of Lindblad master equations [1].
However, in many cases, as in charge or excitation transfer in chemical [2] or biological sys-
tems [3], in spin systems [4, 5], in solid-state quantum emitters [6–9], or superconducting
qubits [10, 11], the system-environment coupling is strong enough to lead to sizable non-
Markovian memory effects. Because the Born-Markov approximation becomes insufficient
in such situations, predicting the dynamics of open quantum systems then requires methods
that accurately account for effects such as renormalization of system energy scales [12, 13],
environment-assisted transitions [3, 14, 15], non-exponential decay [16, 17], the formation
of quasi-particles like polarons [12], and deviations of multi-time correlation functions from
predictions based on the quantum regression theorem [18].

Process tensor matrix product operators (PT-MPOs) provide an attractive and practical
solution to tackle such challenging problems. They can be understood as efficient represen-
tations of Feynman-Vernon influence functionals [19] [see Fig. 1(a)] in the form of matrix
product operators (MPOs) [20,21] [see Fig. 1(b)] or tensor trains [22]. PT-MPOs can be used
to simulate open quantum systems numerically exactly, i.e. they include all effects generated
by the microscopic system and environment Hamiltonians to all orders in the coupling. Any
inaccuracy is then purely the result of insufficient numerical convergence and can, in principle,
be made arbitrarily small by choosing more stringent convergence parameters.

Owing to their practicality and efficiency, PT-MPOs have seen wide adoption within a few
years of their inception [24,25]. For example, Denning et al. [9], Fux et al. [26], and Vannucci
and Gregersen [27] have used PT-MPOs to study the dynamics of semiconductor quantum
dots interacting with a phonon bath, while Richter and Hughes have described two emitters
coupled to a common waveguide [28]. We recently demonstrated a divide-and-conquer al-
gorithm for constructing periodic PT-MPOs [29], which has enabled million-time-step simu-
lations, e.g., for modelling experiments measuring quantum dot emission spectra after time-
dependent (pulsed) driving by Boos et al. [30] as well as the analysis of two-color excitation
with strongly off-resonant laser pulses by Bracht et al. [31]. Link, Tu, and Strunz described a
method to calculate periodic PT-MPOs with linear scaling with respect to memory time [32].
Impurity problems have been adressed by Abanin et al. [33] and Reichman et al. [34] using
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Figure 1: (a) Time-discretized Feynman-Vernon path integral for the reduced system
density matrix after n = 4 time steps ρ̄α4

, which involves the free system propaga-
tor M = eLS∆t and the influence functional I. The comb-like geometry is required
to account for the time-non-local information flow through non-Markovian (finite-
memory) environments. (b) The PT-MPO representation of the influence functional
with matrices Q facilitates easy evaluation of the same path integral as a sequence of
matrix multiplications. The non-local information flow is now mediated by the inner
bonds with maximal dimension χ. (c) Section of a PT-MPO obtained using Automated
Compression of Environments (ACE) [23]: A PT-MPO for an environment composed
of K non-interacting modes is constructed by combining and compressing PT-MPOs
of the individual modes one by one. The PT-MPO of a single mode k is generated by

the k-th environment Liouvillian eL
(k)
E ∆t , where the inner bonds span the k-th envi-

ronment Liouville space. A central finding of this article is that the matrices Q of the
overall PT-MPO can be explicitly linked to the full environment Liouville propagator
via Q = T eLE∆tT −1, where T are lossy (rank-reducing) transformations and T −1

are their pseudoinverses. These are themselves of MPO form. With this insight, the
utility of the inner bonds is not limited to truncating PT-MPOs at earlier time steps
(d); It also enables the extraction of environment and mixed system-environment
observables (e).

fermionic PT-MPOs. Examples involving PT-MPOs for interacting boson and spin environments
have been given by Ye and Chan [35] and Guo et al. [36], respectively. Moreover, the PT-MPO
formalism remains numerically exact when open quantum systems coupled to multiple envi-
ronments are simulated by interleaving the corresponding PT-MPOs, which are constructed
independently of each other. This has been exploited for investigations of non-additive effects
of two non-Markovian baths [37] as well as of cooperative effects in multi-quantum-emitter
systems [17], and also paves the way for scalable numerically exact simulations of quantum
networks [38]. With the algorithm Automated Compression of Environments (ACE) [23], we
have recently extended the scope of process tensor methods to environments with arbitrary
Hamiltonians composed of independent modes. Despite the emerging broad utility and prac-
tical power of PT-MPOs, an understanding of their inner structure and information content
remains lacking.

Originally, process tensors (PTs) were introduced by Pollock et al. in Ref. [24] as a means to
characterize non-Markovian quantum processes. As such, they generalize quantum channels,
which describe how quantum systems change over a fixed time interval, to a description span-
ning multiple time steps. To tackle the exponential growth of PTs with the number of time
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steps, the PT—a one-dimensional object in time—is mapped to the state of a spatially one-
dimensional many-body quantum system via a generalized Choi-Jamiołkowski state-channel
isomorphism [39, 40]. This Choi state is then efficiently represented as a matrix product op-
erator (MPO). Contemporarily, Strathearn et al. [41] developed TEMPO, which uses MPOs to
improve the performance and resolvable memory duration of the QUAPI [42, 43] variant of
Feynman-Vernon [19] path integral simulations. The fact that PTs are equivalent to Feynman-
Vernon influence functionals for spin-boson-type environments was observed by Jørgensen and
Pollock in Ref. [25]. There, it was also found that TEMPO corresponds to a particular contrac-
tion of a tensor network that also describes the PT-MPO, and that it is typically more efficient to
directly calculate the latter. Thereby, Ref. [25] has laid the grounds for using PT-MPOs as prac-
tical tools to simulate open quantum systems, beyond its original purpose for characterizing
unknown non-Markovian quantum processes [10,24].

Invariably, the dimensions χ of the inner MPO bonds [see Fig. 1(b)] play a crucial role,
as they are a key factor for the required computational resources, e.g., for storing the PT-
MPO in memory and performing operations with it. Formally, the bond dimensionality can
be linked to the Rényi entropy of the Choi state [44], borrowing from one-dimensional many-
body MPO theory [45]. Further, recent work provided an analytic bound for the PT-MPO
bond dimension for an Ohmic spin-boson environment at zero temperature [46]. There exists
broad consensus [24, 29, 44, 46] on the interpretation of the bond dimension χ as a measure
for the simulation complexity of an open quantum system, with some authors also seeking
links between χ and notions of non-Markovianity [47], or of quantum chaos [48].

By constrast, the inner bonds of many-body matrix product states are known to contain
more physical information than just their dimensions. Most notably, the entanglement spec-
trum [49] as well as the transformation behavior of inner bonds of matrix product states can be
used to identify topological order [50]. Whether or not the inner bonds of PT-MPOs also con-
tain meaningful physical information beyond their dimensions is not obvious from the deriva-
tion of PT-MPO algorithms based on Feynman-Vernon path integral expressions [25, 29, 32].
There, by construction, the inner bonds are used to encode long-range temporal correlations of
the environment. This is different in the ACE algorithm [23], where the PT-MPO is constructed
directly from the microscopic Hamiltonian of a general environment composed of mutually
noninteracting modes. PT-MPOs for individual modes are obtained by exponentiating their re-
spective Liouvillians, before these individual PT-MPOs are combined and compressed to form
the PT-MPO for the full environment [see Fig. 1(c)]. Before compression, the inner bonds of
the individual mode PT-MPOs simply denote the Liouville space, i.e. the squared Hilbert space,
of the respective environment mode, which carries complete information about the state of the
latter. It can thus be expected that some of this information survives MPO compression.

In this article, we provide a precise interpretation of the meaning of the inner bonds of
PT-MPOs and thereby of the PT-MPOs themselves. By tracking how the inner bonds are trans-
formed in every step of the ACE algorithm [23], we identify the connection between the inner
bonds of the final (compressed) PT-MPO and the Liouville space of the environment in terms
of lossy linear transformations [see Fig. 1(c)]. Along with the explicit transformation matrices
T (which vary from time step to time step), we obtain corresponding pseudoinverses T −1.
Our main result is a conceptually clear interpretation of PT-MPOs: The matrices Q forming
the bulk of the PT-MPO

Q= T eLE∆tT −1 , (1)

are simply the propagators eLE∆t of the full environment over a time step ∆t compressed to
the relevant (contemporary) subspace via T and T −1, where LE is the environment Liouvillian
in the superoperator notation described in section 2.1. This relevant subspace is implicitly and
automatically determined by MPO compression.
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As a consequence, the inner bonds carry time-local information about the dynamical evo-
lution of the environment, which can be partially reconstructed with the help of the pseu-
doinverses T −1 as indicated in Fig. 1(e). The extraction of environment and mixed system-
environment observables O is achieved by terminating the PT-MPO path sum with an object
o, which we call an observable closure and which expresses the action of o ·= TrS+E

�

OT −1 ·
	

,
where TrS+E denotes the trace over system and environment degrees of freedom. In order to
avoid the explicit storage of the matrices T −1 at each time step, we instead transform o along
the individual steps of the PT-MPO construction in the ACE algorithm.

However, because the transformation T is lossy, there is no guarantee that a given environ-
ment observable can indeed be accurately reconstructed. Comparing convergence of different
environment observables therefore allows one to probe what information is conveyed in the
inner bonds of PT-MPOs and what is eliminated by MPO compression. The comparison with
a hierarchy of Heisenberg equations of motion for operator averages reveals that first order
system-environment correlations that directly enter the Heisenberg equation of motion for sys-
tem observables are much more accurately reproduced than environment observables further
down the hierarchy that affect the system only indirectly via influencing the first order corre-
lations. We shall presently demonstrate that this insight can be utilized to devise alternative,
more accurate schemes to extract environment observables from PT-MPO simulation.

We consider a variety of examples showcasing available access to environmental and mixed
observables. First, on the example of a central spin model with total spin conservation, we
show that the total environment spin can be faithfully obtained from the inner bonds of PT-
MPOs. Next, we demonstrate the extraction of currents through a central site coupled to two
metallic leads at different chemical potentials. The convergence of environment observables
is then analyzed in more detail on the example of photon emission from a quantum emitter.
Finally, we calculate the total energy absorbed by an externally driven non-Markovian open
quantum system as well as its distribution into terms associated to only the system, to only the
environment, as well as to the system-environment interaction term, which is proportional to
system-environment correlations. On the last example, we also perform a numerical experi-
ment where we take the observable closures obtained from ACE simulations and, after fixing
the gauge freedom, apply them to inner bonds of PT-MPOs calculated using the algorithm by
Jørgensen and Pollock [25], which is based on the Feynman-Vernon path integral expression
for the influence functional and never makes reference to any particular environment Liouville
space. Yet, we find a remarkable agreement between the extracted environment observables
from both PT-MPOs, indicating that the space described by the inner bonds is essentially inde-
pendent of the PT-MPO algorithm, and hence a universal property of PT-MPOs.

This article is structured as follows: First, in Section 2, we summarize and rederive the
ACE algorithm using a superoperator notation, which differs from the original derivation in
Ref. [23] to clearly reveal the connection between the full environment Liouville space and
the inner bonds of ACE PT-MPOs before MPO compression. In Section 3, we explicitly de-
rive the transformation matrices corresponding to the compression of inner indices during the
ACE algorithm. We then discuss the resulting overall transformation matrices as well as their
pseudoinverses in Section 3.3, before describing how their explicit storage can be avoided by
tracking the transformation of observable closures in Section 3.4. The above-mentioned series
of examples is presented in Section 4. Finally, our findings are summarized and discussed in
Section 5.
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2 Theoretical background

We first introduce the Liouville space notation used throughout the paper and summarize the
basic concepts of influence functionals, PT-MPOs, and the ACE algorithm.

2.1 Notation

The time evolution of a density matrix of a general closed quantum system can be conveniently
expressed in the superoperator formalism. To this end, we utilize the isomorphism between
the Hilbert space H, which hosts “ket” states |ν〉, and its dual H∗, which contains “bra” states
〈ν|. This enables the mapping of density matrices in the space H ⊗H∗ onto vectors in the
squared Hilbert space H⊗H, which we refer to as the Liouville space, by

ρ̂ =
dim(H)−1
∑

ν,µ=0

ρνµ|ν〉〈µ| ←→ |ρ) =
dim(H)−1
∑

ν,µ=0

ρνµ|ν〉 ⊗ |µ〉=
(dim(H))2−1
∑

α=0

ρα|α) , (2)

where we have introduced combined indices α = (ν,µ) and defined the set of basis vectors
|α) = |ν〉 ⊗ |µ〉 of the Liouville space H ⊗H. Thereby, the Liouville-von Neumann equation
takes the form of a matrix-vector product

∂

∂ t
ρ̂ = −

i
ħh
�

H, ρ̂
�

= −
i
ħh
�

Hρ̂ − ρ̂H
�

←→ ∂

∂ t
|ρ) = −

i
ħh
�

H ⊗ 1− 1⊗HT
�

|ρ) = L|ρ) , (3)

with formal solution

|ρ(t)) = eLt |ρ(0)) . (4)

The inclusion of additional Markovian loss or decoherence processes via Lindblad terms and
extension to a time-dependent Hamiltonian is straightforward.

We now consider a general open quantum system, where the composite system
H = HS ⊗HE can be decomposed into system HS and environment subspaces HE , respec-
tively. Henceforth, system Hilbert space basis states will be denoted by |ν〉 and |µ〉, while |ξ〉
and |η〉 will refer to basis states of the environment Hilbert space. Instead of applying the
superoperator mapping in Eq. (2) directly to the total Hilbert space H, we choose to first re-
arrange indices in such a way that system α = (ν,µ) and environment degrees of freedom
β = (ξ,η) remain separate from each other:

ρ̂ =
∑

ν,µ

∑

ξ,η

ρν,ξ,µ,η(|ν〉 ⊗ |ξ〉)(〈µ| ⊗ 〈η|) ←→ |ρ) =
∑

ν,µ

∑

ξ,η

ρ(ν,µ),(ξ,η)|ν〉 ⊗ |µ〉 ⊗ |ξ〉 ⊗ |η〉

=
∑

α,β

ρα,β |α)⊗ |β)

=
∑

α,β

ρα,β |α,β) . (5)

In the final line of the above equation we have defined the components of the total density
matrix ρα,β = (α,β |ρ), where (α,β |= (α| ⊗ (β | with (α|= 〈ν| ⊗ 〈µ| and (β |= 〈ξ| ⊗ |〈η|. The
time-evolution of the total density matrix is then formally given by integrating the Liouville-
von Neumann equation

ρα,β(t) =
∑

α0,β0

(α,β |eLt |α0,β0)ρα0,β0
(0) , (6)
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where ρα0,β0
(0) are the coefficients of the joint initial state. To extract a physical observable

characterized by the operator Ô acting on the total Hilbert space H, we define

(Ô|=
∑

α,β

oα,β(α,β | , (7)

o(ν,µ),(ξ,η) =
�

〈µ| ⊗ 〈η|
�

Ô
�

|ν〉 ⊗ |ξ〉
�

, (8)

so that

(Ô|ρ) =
∑

α,β

oα,βρα,β = Tr
�

Ôρ̂}= 〈Ô〉 . (9)

Specifically, system observables ÔS acting only on HS are obtained by

〈ÔS〉= (ÔS ⊗ 1E |ρ) =
∑

α,β

oαIβρα,β =
∑

α

oαρ̄α , (10)

where ρ̄α =
∑

β Iβρα,β is the reduced system density matrix, oα = o(ν,µ) = 〈µ|ÔS|ν〉, and
Iβ = I(ξ,η) = δξ,η denotes the trace operation on the environment subspace. Analogously, we
define Iα = I(ν,µ) = δν,µ to describe the trace over the system degrees of freedom.

2.2 Influence functionals

Our goal is to integrate the Liouville-von Neumann equation (6) without explicitly operating on
the full environment Liouville space because this is generally numerically infeasible. Instead,
an exact representation of the effects of the environment can be formulated, where the explicit
environment degrees of freedom are traced out. The corresponding object is the influence
functional, which was first derived by Feynman and Vernon in the context of real-time path
integrals [19].

However, we shall now instead consider an alternative derivation within the superoper-
ator formalism that is obtained in three steps: First, time is discretized on a regular grid
t j = t0 + j∆t with time steps ∆t, yielding the time evolution

(αn,βn|eLtn |α0,β0) =
∑

αn−1,...,α1
βn−1,...,β1

n
∏

l=1

(αl ,βl |eL∆t |αl−1,βl−1) . (11)

To simplify notation, time arguments are henceforth implied in the index labels. For example,
the subscript j on the system Liouville space index α j indicates that ρ̄α j

denotes ρ̄α j
(t j), i.e. the

reduced system density matrix at time t j .
Second, the total Liouvillian is decomposed into L = LS + LE , where the system Liou-

villian LS only affects the system, while the environment Liouvillian LE includes the system-
environment interaction and, hence, affects both system and environment. The time evolution
within each time step is then split using the Trotter decomposition

e(LE+LS)∆t = eLE∆t eLS∆t +O(∆t2) . (12)

The implementation of a symmetric Trotter decomposition with error O(∆t3) is straightfor-
ward, but we proceed our derivation with Eq. (12) for a shorter notation.

Finally, assuming that the initial state ρα0,β0
= ρ̄α0

ρE
β0

factorizes into system ρ̄α0
and

environment parts ρE
β0

, one traces over the environment at the final time step. Then, the
reduced system density matrix at time t = tn can be expressed as

ρ̄αn
=
∑

αn−1,...,α0
α′n,...,α′1

I(αn,α′n)...(α1,α′1)
� n
∏

l=1

Mα′lαl−1

�

ρ̄α0
, (13)
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where Mα′lαl−1 = (α′l |e
LS∆t |αl−1) denotes the free system propagator and

I(αn,α′n)...(α1,α′1) =
∑

βn,...,β1

Iβn

� n
∏

l=1

(αl ,βl |eLE∆t |α′l ,βl−1)
�

ρE
β0

, (14)

is the influence functional. The sum over all possible combinations of system indices αl and α′l
in Eq. (13) becomes the integral over all system paths in the continuous-time limit described
by the Feynman-Vernon real-time path integral formalism [19].

If the environment is Gaussian, as in the case of the spin-boson model, explicit expres-
sions for the influence functional can be obtained by analytically integrating over the environ-
ment degrees of freedom βl [19], which is used in various algorithms including QUAPI [42],
TEMPO [41], and others [25,29,32]. A numerical approach for more general environments is
provided by ACE [23], where environment influences are calculated explicitly using Eq. (14).
A key element to make ACE numerically feasible is the MPO representation of the environment
influences, which we discuss next.

2.3 Process tensor matrix product operators

The Feynman-Vernon path sum in Eq. (13) yields an exact description of the open quantum
systems dynamics in the limit ∆t → 0. However, its practical application is limited by the
exponential scaling of the number of paths O(dim(HS)4n) with the number of time steps n.
A practical solution is provided by PT-MPOs [24, 25], which represent influence functionals
efficiently in the form of MPOs [20,21]

I(αn,α′n)...(α1,α′1) =
∑

dn,...,d0

Q(αn,α′n)
dndn−1

Q(αn−1,α′n−1)
dn−1dn−2

. . .Q(α1,α′1)
d1d0

. (15)

Here, Q(αl ,α
′
l )

dl dl−1
are interpreted as matrices with respect to inner bond indices dl , where bond

indices at the edges take only one value d0 = dn = 0. The MPO form makes it possible to
perform the path summation in Eq. (13) step by step. To this end, we define the extended
density matrix ραd by the iteration

ρ
α0
0 = ρ̄α0

, (16a)

ρ
αl
dl
=
∑

α′l ,αl−1,dl−1

Q(αl ,α
′
l )

dl dl−1
Mα′lαl−1ρ

αl−1
dl−1

, (16b)

which turns the sum over exponentially many paths into a linear number of matrix multiplica-
tions. The reduced system density matrix at the last time step tn is then given by ρ̄αn

= ραn
0 .

At intermediate time steps it can be obtained by ρ̄αl
=
∑

dl
qdl
ρ
αl
dl

, where the closures qdl
are

constructed from the PT-MPO as described in Ref. [23]. Thus, the brunt of the work required
to simulate the open quantum system is now shifted to bringing the influence functional into
the PT-MPO form of Eq. (15).

In principle, any tensor can be brought into MPO form by successive Schmidt decomposi-
tions or, equivalently, singular value decompositions (SVDs). It is straightforward to show [20]
that this provides an upper bound for the inner bond dimensions by d j , dn− j ≤ dim(H4 j

S ), which
is maximal at the center of the chain, e.g., dn/2 ≤ dim(H2n

S ) for even n. However, often, many
of the singular values are zero or negligibly small, which reduces the inner bond dimensions
significantly. Furthermore, to avoid exponential scaling incurred by the factorization of the
full tensor, PT-MPOs are usually built up from smaller blocks, keeping them in MPO form at all
times [23,25,29]. After adding new blocks, the PT-MPO is compressed by sweeping along the
MPO chain and reducing inner dimensions using truncated SVDs, where singular values below
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a given threshold are neglected [21]. For example, converged results have been obtained in
typical applications with compressed PT-MPOs with maximal inner dimensions χ in the range
of a few dozen to several hundreds [23,29].

2.4 Automated compression of environments

The ACE algorithm [23] enables the calculation of PT-MPOs also for non-Gaussian environ-
ments, for which no analytical expressions based on path integration are available. Instead,
Eq. (14) is directly brought into the MPO form of Eq. (15) starting from the microscopic Hamil-
tonian. ACE is based on the observation that, in our Liouville space notation, an exact PT-MPO
can be formally constructed by setting

Q(αl ,α
′
l )

βl ,βl−1
= (αl ,βl |eLE∆t |α′l ,βl−1) , (17a)

for matrices inside the MPO chain 2≤ l ≤ n− 1 and

Q(α1,α′1)
β1,β0

=
∑

β ′

(α1,β1|eLE∆t |α′1,β ′)ρE
β ′ δβ0,0 , (17b)

and

Q(αn,α′n)
βn,βn−1

= δβn,0

∑

β ′

Iβ ′(αn,β ′|eLE∆t |α′n,βn−1) , (17c)

for the first and the last MPO matrix, respectively.
Note, however, that the inner bond dimension of this PT-MPO is equal to the dimension of

the full environment Liouville space dim(HE)2. Hence, the propagatation using the iteration
Eq. (16) is as computationally expensive as solving the time evolution of the total system
comprised of system of interest and environment in Liouville space.

ACE overcomes this challenge by considering the environment as being composed of NE
independent degrees of freedom, henceforth referred to as modes. The total environmental
Hilbert space is then a product of individual subspaces HE = H(1)E ⊗H(2)E ⊗ . . .H(NE)

E , whilst

the environment Hamiltonian is given by the sum HE =
∑NE

k=1 H(k)E , where each summand

H(k)E only operates on the system and the k-th environment mode Hilbert space HS ⊗H(k)E .

Consequently, the total Liouvillian can also be written as a sum of NE terms LE =
∑NE

k L(k)E ,
where the k-th environment Liouvillian has the explicit matrix representation

(α,β (k)|L(k)E |α
′,β ′(k)) = ((ν,µ), (ξ(k),η(k))|L(k)E |(ν

′,µ′), (ξ′(k),η′(k)))

= −
i
ħh

�

〈ν,ξ(k)|H(k)E |ν
′,ξ′(k)〉δµ,µ′δη(k),η′(k)

− 〈µ′,η′(k)|H(k)E |µ,η(k)〉δν,ν′δξ(k),ξ′(k)
�

, (18)

where indices β (k) = (ξ(k),η(k)) enumerate a basis of states for the k-th environment Liouville

space. The k-th environment propagator (α,β (k)|eL
(k)
E ∆t |α′,β ′(k)) is then given by the matrix

exponential of Eq. (18).
For each individual environment mode k, a PT-MPO is constructed using Eqs. (17) with

the Liouvillian LE replaced by L(k)E . It is assumed that the inner bond dimension, which now
corresponds to the Liouville space of only a single environment mode, is manageable. The PT
for the full environment is obtained by combining the PTs for all individual modes based on
the sequential application of the symmetric Trotter decomposition,

e

K
∑

k=1
L(k)E ∆t

≈ eL
(K)
E
∆t
2

�

e

K−1
∑

k=1
L(k)E ∆t
�

eL
(K)
E
∆t
2 , (19)
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for K = 2, . . . NE , which incurs a Trotter error O(∆t3).
To keep the bond dimensions reasonably small, the PT-MPO is compressed after the inclu-

sion of each additional environment mode, as described in detail in the next section. Eventu-
ally, after having iteratively incorporated the PT-MPO of each environmental mode, one arrives
at a PT-MPO describing all effects of the microscopic Hamiltonian numerically exactly, where
the only numerical errors are due to the Trotter decomposition and the MPO compression.

3 Transformation of inner bonds of process tensors

Our goal now is to explicitly link the inner bonds of PT-MPOs Q(αl ,α
′
l )

dl ,dl−1
to the environment

propagator in Liouville space. Concretely, we show that the PT-MPO matrices obtained using
ACE can be written as

Q(αl ,α
′
l )

dl ,dl−1
=
∑

βl ,βl−1

Tdl ,βl
(αl ,βl |eLE∆t |α′l ,βl−1)T −1

βl−1,dl−1
, (20)

where Tdl ,βl
describes a lossy transformation and T −1

βl−1,dl−1
is a pseudoinverse of the corre-

sponding transformation matrix Tdl−1,βl−1
at the previous time step t l−1. To this end, we follow

the evolution of the transformation matices Tdl ,βl
and their pseudoinverses in every step of the

ACE algorithm.
As a corollary of Eq. (20), we observe that the propagated quantity ραl

dl
in Eq. (16) corre-

sponds to the total density matrix after compression of the inner bonds ραl
dl
=
∑

βl
Tdl ,βl

ραl ,βl
,

which can be written in the notation of section 2.1 as |T ρ(t)). This suggests that general
observables Ô, including environment and mixed system-environment observables, can be in-
ferred from

〈Ô(t)〉 ≈ (ÔT −1|T ρ(t)) , (21)

which, however, only holds approximately due to the lossy nature of the transformation T . Its
validity is tested on several examples in Section 4.

The advantage of Eq. (21) is that it provides an efficient way to extract environment ob-
servables without the need store the lossy transformation matrices T and T −1 explicitly. It
suffices to track only the behaviour of (ÔT −1| for given observables Ô.

3.1 PT-MPO combination

We now describe how the transformations T and T −1 in Eq. (20) are affected in the individual
combination and compression steps of the ACE algorithm [23]. We do this by induction: We

start with the trivial PT-MPO with matrices Q(αl ,α
′
l )

dl ,dl−1
= δαl ,α

′
l
δdl ,0δdl−1,0, which correspond to a

dummy environment mode of dimension dim(H(0)E )=1 with Hamiltonian H(0)E = 0. The initial
transformation matrices are Tdl ,βl

= T −1
βl ,dl
= δdl ,0δβl ,0.

In the induction step, it has to be shown that, if the MPO matrices of the PT accounting
for modes k = 1, . . . , K −1 are of the form in Eq. (20), then the resulting MPO matrices of the
PT including the influence of the mode K are also of the form in Eq. (20), and the respective
transformation matrices are related by well-defined linear operations.

Denoting MPO matrices of the input PT-MPO by Q(αl ,α
′
l )

dl ,dl−1
and that of the resulting PT-MPO

by Q̃(α̃l ,α̃
′
l )

d̃l ,d̃l−1
, it follows from the symmetric Trotter formula in Eq. (19) that

Q̃(α̃l ,α̃
′
l )

(dl ,βl ),(dl−1,βl−1)
≈
∑

αl ,α
′
l ,β
′

B(α̃l ,αl )
βl ,β ′

Q(αl ,α
′
l )

dl ,dl−1
B(α

′
l ,α̃
′
l )

β ′,βl−1
, (22)
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with matrix representation of the K-th environment Liouville propagator for half a time step

B(α̃l ,αl )
βl ,β ′

= (α̃l ,βl |e
LK

E
∆t
2 |αl ,β

′). The relation to Eq. (20) is established by identifying

Q(αl ,α
′
l )

dl ,dl−1
≈
∑

β
(1)
l ,...,β (K−1)

l

β
(1)
l−1,...,β (K−1)

l−1

Tdl ,(β
(1)
l ,...,β (K−1)

l )(αl ,β
(1)
l , . . . ,β (K−1)

l |e
K−1
∑

k=1
L(k)E ∆t

|α′l ,β
(1)
l−1, . . . ,β (K−1)

l−1 )T −1
(β (1)l−1,...,β (K−1)

l−1 ),dl−1

=⇒ Q̃(α̃l ,α̃
′
l )

d̃l ,d̃l−1
≈
∑

β
(1)
l ,...,β (K)l

β
(1)
l−1,...,β (K)l−1

T̃d̃l ,(β
(1)
l ,...,β (K)l )(α̃l ,β

(1)
l , . . . ,β (K)l |e

K
∑

k=1
L(k)E ∆t

|α̃′l ,β
(1)
l−1, . . . ,β (K)l−1)T̃

−1
(β (1)l−1,...,β (K)l−1),d̃l−1

,

(23)

where the original transformation matrices T and T −1 are changed into

T̃d̃l ,(β
(1)
l ,...,β (K)l ) = δd̃l ,(dl ,β

(K)
l )Tdl ,(β

(1)
l ,...,β (K−1)

l ) , (24a)

T̃ −1
(β (1)l ,...,β (K)l ),d̃l

= T −1
(β (1)l ,...,β (K−1)

l ),dl
δ(dl ,β

(K)
l ),d̃l

, (24b)

such that the original inner bonds dl are simply expanded to include the Liouville space of the
K-th environment mode described by basis states with indices β (K)l .

3.2 MPO compression

Combining PT-MPOs of individual environment modes increases the inner dimension of the
resulting PT-MPO. To keep the combined PT-MPO tractable, it undergoes a compression step
after every combination. Compression is achieved by sweeping along the MPO chain, first
forward, then backward, while reducing the inner dimension by truncated SVDs [23,25].

SVDs decompose arbitrary n×m matrices A

A= UΣV † , (25)

where U and V are matrices with orthogonal columns, while Σ is a diagonal matrix with
the non-negative real singular values σ j on the diagonal, which are assumed to be sorted in
descending order, i.e. σ j ≥ σk for j ≤ k. Here, we use truncated SVDs by keeping only the s
most significant singular values σ j ≥ εσ0, where ε is a given truncation threshold relative to
the largest singular value σ0, and also restricting the matrices U and V to their first s columns.
For our applications, s will be the inner bond dimension after PT-MPO compression.

In fact, the Eckart-Young-Mirsky theorem [51] states that SVDs provide the best low-rank
approximation to a general matrix for given rank s. However, MPO compression at a given
site using truncated SVD is only locally optimal if the MPO is in mixed canonical form [21].
One way to achieve this is to first perform a forward sweep with non-truncating SVDs and only
truncating during the backward sweep. Yet local optimal compression is not necessarily needed
for the most efficient algorithm. Here, we use a strategy in the spirit of the zip-up algorithm of
Ref. [52], where truncation is performed for both, forward and backward sweeps. The sizable
speed-up achieved by operating on matrices with smaller dimensions is typically well worth
the slight increase in numerical error, especially because the latter can be mitigated by using a
smaller compression threshold. As discussed in Appendix A of Ref. [29] as well as in Ref. [53],
choosing different compression parameters for different sweeps can be used to fine-tune PT-
MPO algorithms. For example, using a different threshold ε f w for forward sweeps compared to
backward sweeps εbw, one can interpolate between the locally optimal compression (ε f w = 0)
and the zip-up-like approach (ε f w = εbw). Here, we use ε f w = εbw = ε throughout this article.
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Furthermore, note that MPO compression by SVDs in general is aimed at minimizing the norm
distance between MPOs before and after compression. To our knowledge, no formal theory
linking this norm distance to a precise error bound for physical observables is available so
far. However, numerical simulations in Ref. [53] indicate that the PT-MPO norm distance and
system observables show similar convergence behavior. This provides empirical justification
for PT-MPO compression using sweeps with SVDs as described above.

Next, we summarize how MPO matrices and in particular their inner bonds are affected
by forward and backward sweeps. To simplify the notation, we henceforth imply truncation
whenever we refer to SVDs like in Eq. (25).

3.2.1 Forward sweep

First, we compress the PT-MPO by sweeping along the MPO in the forward direction, i.e., from

l = 1 to l = n. At step l, we perform an SVD on the PT-MPO matrices Q(αl ,α
′
l )

dl ,dl−1
, which we

interpret as a single matrix Adl ,((αl ,α
′
l ),dl−1) with outer indices combined with the right inner

index dl−1.

Q(αl ,α
′
l )

dl ,dl−1
=
∑

jl

←−
U dl jl

←−σ jl
←−
V

†

jl ((αl ,α
′
l ),dl−1)

. (26)

After truncation, the MPO matrix at steps l is replaced by

Q̃(αl ,α
′
l )

jl ,dl−1
=
←−
V

†

jl ((αl ,α
′
l ),dl−1)

, (27a)

while
←−
U dl jl and the singular values←−σ jl are passed on to the next MPO matrix at step l + 1

Q̃(αl+1,α′l+1)
dl+1, jl

=
∑

dl

Q(αl+1,α′l+1)
dl+1,dl

←−
U dl jl

←−σ jl . (27b)

Passing on the singular values←−σ jl , which are indicators of the local importance of the respec-
tive indices jl , is crucial for efficient compression aimed at selecting degrees of freedom that
are relevant for describing the system dynamics over many time steps.

Alternatively, the updated MPO matrices can be expressed as

Q̃(αl ,α
′
l )

jl ,dl−1
=
∑

dl

←−
T jl ,dl

Q(αl ,α
′
l )

dl ,dl−1
, (28a)

Q̃(αl+1,α′l+1)
dl+1, jl

=
∑

dl

Q(αl+1,α′l+1)
dl+1,dl

←−
T −1

dl , jl
, (28b)

with transformation matrices

←−
T jl ,dl

=←−σ −1
jl

←−
U †

jl dl
, (29a)

←−
T −1

dl , jl
=
←−
U dl jl

←−σ jl . (29b)

Assuming that the original PT-MPO matrices have been expressible in terms of environment
propagators after lossy compression as in Eq. (20), the corresponding transformation matrices
T and T −1 are themselves transformed as

T̃ jl ,βl
=
∑

dl

←−
T jl ,dl

Tdl ,βl
, (30a)

T̃ −1
βl , jl
=
∑

dl

T −1
βl ,dl

←−
T −1

dl , jl
. (30b)
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3.2.2 Backward sweep

Compression is enhanced, if the forward sweep over the PT-MPO is followed by a backward

sweep from l = n to l = 2. Here, the outer indices of the MPO matrices Q(αl ,α
′
l )

dl ,dl−1
are combined

with the left inner index dl to form the matrix A(dl ,(αl ,α
′
l )),dl−1

, whose SVD yields

Q(αl ,α
′
l )

dl ,dl−1
=
∑

jl−1

−→
U (dl ,(αl ,α

′
l )), jl−1

−→σ jl−1

−→
V

†

jl−1,dl−1
. (31)

Now, the MPO matrix at step l is updated as

Q̃(αl ,α
′
l )

dl , jl−1
=
−→
U (dl ,(αl ,α

′
l )), jl−1

, (32a)

and the singular values as well as the matrix
−→
V

†

jl−1,dl−1
are passed on the prior step l − 1

Q̃(αl−1,α′l−1)
jl−1,dl−2

=
∑

dl−1

−→σ jl−1

−→
V

†

jl−1,dl−1
Q(αl−1,α′l−1)

dl−1,dl−2
. (32b)

Analogously to the forward sweep, we cast the update into the shape of a transformation

Q̃(αl ,α
′
l )

dl , jl−1
=
∑

dl−1

Q(αl ,α
′
l )

dl ,dl−1

−→
T −1

dl−1, jl−1
, (33a)

Q̃(αl−1,α′l−1)
jl−1,dl−2

=
∑

dl−1

−→
T jl−1,dl−1

Q(αl−1,α′l−1)
dl−1,dl−2

, (33b)

with
−→
T jl−1,dl−1

= −→σ jl−1

−→
V †

jl−1dl−1
, (34a)

−→
T −1

dl−1, jl−1
=
−→
V dl−1 jl−1

−→σ −1
jl−1

. (34b)

The overall transformation matrices in Eq. (20) are modified as

T̃ jl ,βl
=
∑

dl

−→
T jl ,dl

Tdl ,βl
, (35a)

T̃ −1
βl , jl
=
∑

dl

T −1
βl ,dl

−→
T −1

dl , jl
. (35b)

3.3 Overall transformation

We are now in the position to formulate an explicit expression for the transformation matrices
in Eq. (20) relating the full environment propagator to the final PT-MPO matrices obtained by
the ACE algorithm, which is visualized in Fig. 1(c).

To this end, we concatenate for each of the NE environment modes the expansion step in
Eqs. (24) with the forward and backward sweeps in Eqs. (30) and (35), respectively. Combin-
ing

←→
T d(k)l ,(d(k−1)

l ,β (k)l )
=
∑

j(k)l

−→
T d(k)l , j(k)l

←−
T j(k)l ,(d(k−1)

l ,β (k)l )
, (36a)

←→
T −1
(d(k−1)

l ,β (k)l ),d
(k)
l

=
∑

j(k)l

←−
T −1
(d(k−1)

l ,β (k)l ), j
(k)
l

−→
T −1

j(k)l ,d(k)l

, (36b)
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the overall transformation matrices become

T
d(NE )

l ,(β (1)l ,...,β
(NE )
l )
=
∑

d(1)l ,...,d(NE−1)
l

NE
∏

k=1

←→
T d(k)l ,(d(k−1)

l ,β (k)l )
, (37a)

T −1

(β (1)l ,...,β
(NE )
l ),d(NE )

l

=
∑

d(1)l ,...,d(NE−1)
l

NE
∏

k=1

←→
T −1
(d(k−1)

l ,β (k)l ),d
(k)
l

, (37b)

where the index d(0)l is understood to be restricted to d(0)l = 0, leading to no expansion for the

double index (d(0)l ,β (1)l ) = β
(1)
l .

Several aspects of Eqs. (37) are noteworthy: First, it is instructive to compare the lossy
transformation induced by T and its pseudoinverse T −1 with a conventional projection to a
reduced subspace spanned by a set of vectors {u j}. The matrix U built by {u j} as column vectors
is a truncated unitary with its Moore-Penrose pseudoinverse [54] defined by U−1 = U†. Here,
however, the presence of the singular values and their reciprocals in Eqs. (29) and (34) leads to
transformation matrices and pseudoinverses which are not related by Hermitian conjugation
T −1 ̸= T †. In fact, T −1 is not the unique Moore-Penrose pseudoinverse of T , i.e., the column
vectors of T −1 do not span the same space as the conjugates of the row vectors of T .

For the purpose of interpretation, this implies that the relevant subspace to which inner
bonds of PTs correspond is slightly ambiguous, as it can be identified with the column space
of either T −1 or T †. For practical applications, such as the extraction of information from the
inner bonds, it entails that the pseudoinverse T −1 contains additional information and cannot
be reconstructed from T alone.

Moreover, we find from Eq. (37) that the transformation matrices T and T −1 themselves
have the structure of half-open MPOs, where each environment mode k corresponds to a site
with outer bond β (k)l , while d(k)l describe the inner bonds. The last inner bond d(NE)

l of the
tranformation matrix MPO remains dangling and is identified the inner bond dl of the final
PT-MPO at step l. The dangling bond can be closed by multiplying with ραl

dl
, the extended

density matrix obtained at step l during the ACE algorithm by interation (16). The result

ρ
αl ,β

(1)
l ,...,β

(NE )
l
=
∑

d(NE )
l

T −1

(β (1)l ,...,β
(NE )
l ,d(NE )

l

ρ
αl

d(NE )
l

=
∑

d(1)l ,...,d(NE )
l

� NE
∏

k=1

←→
T −1
(d(k−1)

l ,β (k)l ),d
(k)
l

�

ρ
αl

d(NE )
l

, (38)

is an MPO representation of the total system and environment density matrix.

3.4 Extraction of environment observables

As outlined in Eq. (21) and in line with Eq. (38), the knowledge of T −1 enables the extrac-
tion of environment observables as well as mixed system-environment observables. Starting
from Eq. (9), the expectation value of a general mixed system environment observable Ô with
Liouville space representation oα,β given by Eq. (8) is obtained by

〈Ô(t l)〉=
∑

αl ,βl

oαl ,βl
ραl ,βl

≈
∑

αl ,βl
dl ,β

′
l

oαl ,βl
T −1
βl ,dl

Tdl ,β
′
l
ραl ,β

′
l
=
∑

αl ,dl

o
αl
dl
ρ
αl
dl

, (39)

with observable closure

o
αl
dl
=
∑

βl

oαl ,βl
T −1
βl ,dl

. (40)
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Here, two issues arise if Eqs. (39) and (40) are to be used to extract environment observ-
ables in practice: First, the matrices T −1

βl ,dl
change from time step to time step. Even though

they can be represented in MPO form by Eq. (37b), storing them for all time steps l requires
large amounts of memory. This can be circumvented by fixing an operator Ô at the start and
updating the corresponding o

αl
dl

in every expansion and compression step of the ACE algo-

rithm in the same way that T −1
βl ,dl

would be updated, namely by multiplying with δ(dl ,β
(K)
l ),d̃l

as

in Eq. (24b),
←−
T −1

dl , jl
as in Eq. (30b), and

−→
T −1

dl , jl
as in Eq. (35b).

The second issue is that oαl ,βl
itself can be unwieldy in general, as βl runs over a complete

basis set for the full environment Liouville space. Here, we therefore limit the discussion to
operators of the form

Ô =
NE
∑

k=1

Â⊗ Ô(k) , (41)

where Â acts on the system Hilbert space HS and Ô(k) acts on the k-th environment mode. We
define the corresponding Liouville operators as

oα,β (1),...,β (NE ) = oα
NE
∑

k=1

o(k)
β (k)

. (42)

Then, the corresponding observable closure o
αl
dl

defined in Eq. (40) is obtained alongside the
PT in the ACE algorithm by the iteration

od(k)l
=
∑

d(k−1)
l

∑

β
(k)
l

�

od(k−1)
l

I
β
(k)
l
+ qd(k−1)

l
o(k)
β (k)

�←→
T −1
(d(k−1)

l ,β (k)l ),d
(k)
l

, (43)

where the first summand describes the expansion and transformation of od(k−1)
l

, which accounts

for contributions to the overall observable from modes 1,2, . . . , k − 1, while the second sum-
mand adds the contribution o(k)

β (k)
from environment mode k corresponding to the k-th term of

the sum in Eq. (42). The symbol I
β
(k)
l

accounts for the trace over the k-th environment mode as

introduced below Eq. (10), and qd(k)l
are the closures at intermediate time steps corresponding

to a trace over environment modes 1, 2, . . . k, which are also obtained iteratively by

qd(k)l
=
∑

d(k−1)
l

∑

β
(k)
l

qd(k−1)
l

I
β
(k)
l

←→
T −1
(d(k−1)

l ,β (k)l ),d
(k)
l

. (44)

The final observable closure oαl
dl

is identified with the result of the iteration (43) multiplied with

the system part of the operator oαl
dl
= oαlo

d(NE )
l

. Moreover, identifying qdl
= q

d(NE )
l

provides an

alternative way to that described in Ref. [23] for obtaining trace closures qdl
used to extract

the reduced system density matrix from PT-MPO calculation at intermediate time steps via
ρ̄αl
=
∑

dl
qdl
ρ
αl
dl

.

4 Examples

4.1 Proof of principle: Environment spins

First, we demonstrate a minimal example for the extraction of environment observables on the
basis of a central spin model. We consider a central spin S coupled to a bath of NE spins s(k)
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Figure 2: Dephasing of a central spin Sx , initially polarized along the x axis, in an
ensemble of NE = 25 environment spins, initially randomly oriented (see sketch on
the left). The overall environment spin projection

∑

k s(k)x is extracted from the inner
degrees of freedom of the PT-MPO. The conservation of the total spin Sx +

∑

k s(k)x is
correctly reproduced.

via the Heisenberg interaction

HE =
NE
∑

k=1

J S · s(k) . (45)

Here, we assume that the central spin is initially polarized along the x direction Sx(t = 0) = 1
2 ,

Sy(t = 0) = Sz(t = 0) = 0, while the NE = 25 environment spins are initially randomly
oriented. The central spin S is obtained as usual with ACE from the reduced system density
matrix, while the sum of environment spins

∑

k s(k) is obtained as an environment observable
by tracking the corresponding observable closure during MPO compression. The PT-MPO is
calculated for convergence parameters (J/ħh)∆t = 0.01 and ε = 10−11, for which the full
environment Liouville space dimension 425 ≈ 1015 is compressed to a maximal bond dimension
of 136.

The ensuing spin dynamics (x-component) is depicted in Fig. 2. The central spin Sx de-
phases in the bath of environment spins, yet the dephasing is incomplete due to the finite size
of the spin bath. The dynamics of the collective environment spin

∑

k s(k)x changes accord-
ingly as the total central plus environment spin Sx +

∑

k s(k)x is conserved by the Hamiltonian.
This is correctly reproduced in Fig. 2 by our numerical approach demonstrating the successful
extraction of environment observables.

4.2 Mixed system-environment observables: Currents

To infer physical insights from measurement of currents through zero-dimensional quantum
structures like single molecules or quantum dots, a comparison with theoretical predictions is
highly desirable [55]. A typical scenario for charge transport involves a single quantum site,
which is described by a two-level system (the site being either occupied or not), and which is
coupled to two metallic leads at different chemical potentials µ1 > µ2. The leads are modelled
as fermionic baths. The total Hamiltonian is H = HS +HE1

+HE2
with HEi

=
∑

k H(k)Ei
and

H(k)Ei
= ħhωi,kc†

i,kci,k +ħhgi,k

�

c†
i,kcS + c†

Sci,k

�

, (46)
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where c(†)i,k denote fermionic annihilation (creation) operators for the k-th mode of the i-th

environment, ħhωi,k and gi,k are the corresponding energies and coupling constants, and c†
S

and cS describe fermionic operators of the system mode. We set HS = 0, and assume that
the central site is initially unoccupied, the first lead is completely filled and the second lead
is completely empty (chemical potentials µ1/2 = ±∞). The energies and couplings for both
baths are obtained by uniformly discretizing the spectral densities Ji(ω) =

∑

k g2
i,kδ(ω−ωi,k)

of the shape of a bump function

Ji(ω) =

¨

κ
2π exp
�

1− 1
1−(2ω/ωBW )2

�

, |ω|< 1
2ωBW ,

0 , else.
(47)

This is a smooth function with compact support on an interval with bandwidthωBW (see inset
in Fig. 3).

The particle current flowing from the central site into lead i is equal to the change of the
total occupations of the lead due to coupling to the site. From the Heisenberg equations of
motion we find

Ii :=
∂

∂ t

∑

k

〈c†
i,kci,k〉=

i
ħh

∑

k

〈[H, c†
i,kci,k]〉= 2
∑

k

gi,kIm
�

〈c†
i,kcS〉
	

. (48)

This is a mixed system-environment observable, which depends on correlations between the
system and the environment. At first glance, this observable as well as the environment Hamil-
tonian in Eq. (46) seem decomposable into sums of terms each involving only creation and
annihilation operators of a single environment mode, as we require for the environment ob-
servable extraction described in this article. Note, however, that fermionic operators obey
the canonical anticommutator relations, whereas the decomposition into independent modes
so far implicitly assumed that operators for different modes commute. As described in more
detail in Ref. [53], PT-MPOs obeying the proper fermionic anticommutator relations can be
obtained by a slight modification of ACE based on a Jordan-Wigner transformation. Here, we
briefly summarize the main aspects while using a formulation that facilitates the extraction of
the current I1(t) in a setup with up to two environments.

First, the Jordan-Wigner transformations requires an ordering of fermionic modes. Here,
we assume the order

(1,1), (1,2), . . . , (1, NE1
), (S), (2, NE2

), . . . , (2, 2), (2,1) , (49)

where (S) denotes the system mode and (i, k) denotes the k-th mode of the i-th environment.
The anticommutation relations remain fulfilled when the fermionic operators are replaced by
spin-1/2 climbing operators

ci,k = P[(1,1),(i,k−1)]σ−i,k , (50a)

c†
i,k = P[(1,1),(i,k−1)]σ+i,k , (50b)

where

P[(i1,k1),(i2,k2)] =
(i2,k2)
∏

(i,k)=(i1,k1)

(−σz
i,k) , (51)

is the product of parity operators from mode (i1, k1) to (i2, k2) in the order given by Eq. (49),
which takes the value +1 (-1) if the modes in the range have an even (odd) number of occu-
pations. Applying this transformation to the Hamiltonian in Eq. (46), one can show that

H(k)Ei
=
�

P[(1,1),(i,k−1)]
1

�σ+S σ
−
S H̃(k)Ei

�

P[(1,1),(i,k−1)]
1

�σ+S σ
−
S , (52)
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where

H̃(k)Ei
= ħhωi,kσ

+
i,kσ

−
i,k +ħhgi,k

�

σ+i,kσ
−
S +σ

+
Sσ
−
i,k

�

, (53)

is the spin analogue of the fermionic Hamiltonian H(k)Ei
.

Now, while the fermionic mode Hamiltonians individually contain non-local terms via the
parity operators, it can be shown that these non-local terms cancel when the propagators of
all modes are combined, leaving only local parity terms [53]. Specifically, representing the
PT-MPO matrices for environment i using lossy compression matrices as well as the symmetric
Trotter decomposition of the full environment propagator in Eq. (19), one finds

Q[i] = T eL
(NEi )

Ei
∆t
2 . . . eL

(2)
Ei
∆t
2 eL

(1)
Ei
∆t eL

(2)
Ei
∆t
2 . . . eL

(NEi )

Ei
∆t
2 T −1

= T B[i,NEi
] . . .B[i,2]B[i,1]B[i,1]B[i,2] . . .B[i,NEi

]T −1 , (54)

where
B[i,k] := eL̃

(k)
Ei
∆t
2
�

�

−σz
i,k

�σ+S σ
−
S ⊗
�

−σz
i,k

�σ+S σ
−
S
�

, (55)

are the local environment mode propagators corresponding to the spin Hamiltonians H̃(k)Ei
in

Eq. (53) modified by local parity operators
�

−σz
i,k

�σ+S σ
−
S . To summarize, PT-MPOs correctly

accounting for fermionic anticommutation can be obtained simply by replacing the individual
mode propagators B in Eq. (22) by corresponding B[i,k] in Eq. (55).

To extract the particle current via the inner bonds of the fermionic PT-MPO, we apply the
Jordan-Wigner transform to Eq. (48), which yields

Ii := 2
∑

k

g1,kIm
n

〈σ+i,kP
[k+1,NEi

]
1 σ−S 〉
o

. (56)

Again the non-local parity terms make adaptations necessary. This is achieved by replacing
the iteration in Eq. (43) by

od(k)l
=
∑

d(k−1)
l

∑

β
(k)
l ,ξ,η

δ
β
(k)
l ,(ξ,η)

�

od(k−1)
l
〈η| −σz|ξ〉+ qd(k−1)

l
〈η|σ+|ξ〉
�←→

T −1
(d(k−1)

l ,β (k)l ),d
(k)
l

. (57)

With this observable closure, we are now in the position to extract the fermionic particle cur-
rent Ii(t) as a mixed system-environment observable from the inner bonds of the fermionic
PT-MPO.

Finally, we point out that the numerically exact simulation in the presence of two gen-
erally non-Markovian environments is possible by propagating the time evolution with two
PT-MPOs, which are calculated independently of each other. This was utilized already for
bosonic environments, e.g., in Refs. [17, 37]. Here, the ordering used for the Jordan-Wigner
transformation in Eq. (49) ensures that no additional non-local parity operators coupling the
two environments emerge. The fact that this treatment remains numerically exact can be seen
straightforwardly in the notation developed here: Using transformation matrices T [i] and PT-
MPO matrices Q[i] = T [i]eLEi

∆t�T [i]
�−1

for bath i, we find that

Q[1]Q[2] = T [1]T [2]eLE1
∆t eLE2

∆t�T [2]
�−1�T [1]
�−1

= T e(LE1
+LE2

)∆tT −1 +O(∆t2) , (58)

describes the joint influence of both environments up to a controlled Trotter error. Note that
the order of the Trotter error can be reduced when alternating the order of multiplication
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Figure 3: Occupations (a) and currents (b) in charge transport between a single site
and one or two metallic leads at chemical potentials µ1/2 = ±∞, as depicted in the
inset of (b). Dashed and dotted black lines depict results in the Markov limit for the
single lead case and the two lead case, respectively.

(with respect to the system indices) for subsequent time steps, i.e. setting Q = Q[1]Q[2] for
odd and Q = Q[2]Q[1] for even times steps, because this amounts to a symmetric Trotter
decomposition of a propagation over two time steps. For a consistent accuracy, observables at
odd times steps are disregarded.

In Fig. 3(a) and (b) we show the system site occupations and the particle current from the
system to the first lead, respectively, for simulations involving either only the first lead or both
leads. The PT-MPOs are calculated using parameters ωBW = 64κ, N = 128, ∆t = 0.025/κ,
and ε= 10−7.

In the case of a single lead with large chemical potential, carriers flow from lead to the
system site (negative I1) until the latter is fully populated. The dynamics is largely in agree-
ment with the analytical behavior nS(t) = 1− e−κt in the Markov limit, which is expected to
hold as the bath correlation time ∼ 1/ωBW is short compared to the relaxation time 1/κ. Due
to the conservation of particle number and the coupling to only a single lead, the current can
be obtained from the system evolution via I1(t) = −

∂
∂ nS(t), which is I1(t) = −κe−κt in the

Markov limit.
For a site coupled to two leads, changes of site occupations are due to currents to either

lead, which generally obfuscates the relation between currents through one of the leads and
system observables. This is where extracting the current via the mixed system-environment ob-
servable defined in Eq. (48) is useful. In the present scenario where initially one lead is fully oc-
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cupied and one lead is completely empty, the dynamics can be compared to its Markovian limit,
where it is governed by the rate equation ∂

∂ t nS = −I1(t)− I2(t), where I1(t) = κ(nS(t)− 1)
and I2(t) = κnS(t) are the Markovian currents to environment 1 and 2, respectively. This
equation of motion is solved by system occupations nS(t) =

1
2(1− e−2κt), from which we get

the current I1(t) = −
κ
2 (1+e−2κt). As can be seen in Fig. 3, for the case of two leads, simulated

site occupations as well as currents also match the Markovian prediction well after a short
initial phase on the timescale ∼ 1/ωBW .

Summarizing, we have demonstrated that inner bonds of PT-MPOs can be used to extract
mixed system-environment operators, which facilitate, e.g., the analysis of currents. In prin-
ciple, the combination of multiple PT-MPOs also makes it possible to address more complex
questions, such as the impact of strong phonon coupling on charge and excitation transport.
As this topic requires a more detailed analysis, we leave it for future work.

4.3 Convergence of different observables: Application in photon emission

Because the transformation matrices T are lossy, i.e. rank-reducing, there is no a priori guar-
antee that a given environment observable can be extracted faithfully by the corresponding
pseudoinverse T −1. Moreover, the accuracies may be different for different environment ob-
servables. This fact can be utilized to probe the information content of inner bonds of PT-MPOs
by numerically testing the convergence of different environment observables as a function of
the parameters controlling MPO compression. The insights gained by this process then helps to
identify alternative ways to extract environment observables with a higher degree of accuracy.

We explore this on the example of radiative decay from a two-level quantum emitter. The
light-matter interaction is given by

HE =
∑

k

ħhωka†
kak +
∑

k

ħhgk

�

a†
k|g〉〈e|+ ak|e〉〈g|

�

, (59)

where a†
k and ak are photon creation and annihilation operators and |g〉 as well as |e〉 are

ground and excited states of the emitter, respectively. Photon mode energies ħhωk are cho-
sen to uniformly discretize an interval [−ħhωBW/2,ħhωBW/2] with frequency bandwidth ωBW
using NE modes. The couplings are obtained by gk =

p

J(ωk)ωBW/NE with a flat spectral
density J(ω) = κ/(2π) [see Fig. 4(a)]. For a large enough bandwidth ωBW ≫ κ, the pho-
ton environment is Markovian [23] and describes radiative decay of the emitter excitation
ne = 〈
�

|e〉〈e|
�

〉 with rate κ. Thus, for an initially excited emitter ne(0) = 1 the excitation de-
cays as nMarkov

e ≈ e−κt . As the Hamiltonian conserves the total number of excitations, it follows
that the number of photons emitted into the environment nph =

∑

k〈a
†
kak〉 is nMarkov

ph = 1−e−κt .
We use this test case to assess the convergence of the two-level system excitations ne as

well as the environment observable nph. The numerically calculated dynamics is depicted in
Fig. 4(b) and (c) for different MPO compression thresholds ε, fixed bandwidth ωBW = 200κ,
number of modes NE = 400, and time discretization ∆t = 0.05/κ.

The system observable ne converges quickly and becomes virtually indistinguishable from
the Markovian result for thresholds ε = 10−5 and smaller. In contrast, the extraction of the
photon number nph as an environment observable is found to be more unstable and converges
much more slowly. This is because the compression of the PT-MPO in ACE is only designed to
accurately reproduce the reduced system density matrix and, hence, system observables. If the
compression is optimal in this sense, the accuracy of the extracted environment observables
should be determined by how important they are for influencing system observables in future
time steps.
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Figure 4: Photon emission from an initially excited two-level system (see sketch).
This is described microscopically by a multi-mode Jaynes-Cummings model with flat
spectral density over a bandwidth ωBW as depicted in (a). Two-level system occu-
pation ne (b) and emitted photon number nph, where the photon number is either
extracted directly (c) or by integrating its equation of motion, whose driving term is
obtained by extracting system-environment correlations (d) as in Eq. (62).

To test this hypothesis, we consider the Heisenberg equations of motion for emitter occu-
pations

∂

∂ t
ne =

i
ħh
〈
�

HS +HE , |e〉〈e|
�

〉

=
i
ħh
〈
�

HS , |e〉〈e|
�

〉+ 2
∑

k

gkIm
¦

〈
�

|e〉〈g|ak

�

〉
©

. (60)

Note that the system evolution is directly driven by system-environment correlations
〈
�

|e〉〈g|ak

�

〉 but not by the photon number nph itself. The latter affects the system only in-
directly by influencing the evolution of the system-environment correlations. Because a finite
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time is needed for the influence of nph on the correlations to result in a measurable effect on
the system, nph is reproduced most accurately in Fig. 4(c) at earlier points in time. In contrast,
nph at later time steps can no longer affect the state of the system within the remaining prop-
agated time in the simulation, so the extracted value of nph at the last few time steps remains
unreliable even for small thresholds ε= 10−6.

This explanation also provides a hint on how to construct a more accurate scheme to extract
the total emitted photon number: Considering the equation of motion

∂

∂ t
nph =

i
ħh
〈
�

HE ,
∑

k

a†
kak

�

〉= −2
∑

k

gkIm
¦

〈
�

|e〉〈g|ak

�

〉
©

, (61)

we find that the photon number is driven by the same system-environment correlations as the
emitter occupation. As these correlations influence the system directly, they are likely better
reproduced when extracted from the inner bonds of the PT-MPO than nph itself. This suggests
obtaining the photon number by integrating Eq. (61)

nint
ph(t) =

t
∫

0

dτ
� ∂

∂ τ
nph(τ)
�

=

t
∫

0

dτ
∑

k

gk〈
�

|e〉〈g|ak

�

〉τ , (62)

where 〈
�

|e〉〈g|ak

�

〉τ are the system-environment correlations at time τ, which are extracted
via the corresponing observable closures.

The result of this approach is depicted in Fig. 4(d). Indeed, the convergence with re-
spect to the compression threshold ε is much faster compared to the direct extraction of nph
in Fig. 4(c). This corroborates the argument that the inner bonds of PT-MPOs convey more
information about first-order system-environment correlations that directly affect the system
dynamics compared to environment observables with a more indirect influence on the system.
The hierarchy of Heisenberg equations of motion starting from system observables provide a
useful basis for a qualitative estimation of the expected accuracy of environment observable
extraction via inner bonds of PT-MPOs.

The nearly Markovian environment with a flat spectral density provided an ideal test case
for different observable extraction schemes due to the availability of analytical solutions. Nu-
merically exact open quantum systems approaches are most useful in cases of non-Markovian
environments, where no analytical solutions exist. If these systems are also externally driven,
inferring environment observables from conservation laws is often no longer possible. We
now show how the approach laid out above can be applied to investigate photon emission in
a model of a two-level emitter coupled to a structured, non-Markovian photonic environment
with spectral density given by a Lorentzian [see Fig. 5(a)]

J(ω) =
κ2

π

γ

ω2 + γ2
, (63)

where κ determines the overall interaction strength and γ denotes the width of the Lorentzian.
The corresponding PT-MPO is calculated restricting the spectral density to a frequency interval
ωBW = 200κ, which is discretized by NE = 2000 photon mode with a Hilbert space containing
up to 2 photons per mode. Furthermore, we use parameters γ = 1

4κ, ∆t = 0.05/κ, and
ε= 10−7.

In Fig. 5(b), we show the free (HS = 0) emission dynamics of an initially prepared emitter
excitation. The strongly peaked structure in the environment results in underdamped oscilla-
tions of emitter population ne. The emitted photon number nint

ph extracted by integrating the
system-emitter correlations as in Eq. (62) mirrors the behavior of the emitter population, since
the light-matter coupling conserves the total number of excitations.
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Figure 5: Radiative decay from a two-level quantum emitter into a structured photon
environment such as a lossy single-mode microcavity (see sketch), which is modeled
with a Lorentzian spectral density J(ω) (a). (b) Free radiative decay of initially
prepared emitter populations ne. The photon number nint

ph is extracted by integrating
system-environment correlations as in Eq. (62). (d) Emitter populations and (e)
emitted photon number for the same system driven by two Gaussian pulses depicted
in (c). Colors correspond to different pulse widths τ1 = τ2 = τ.

Next, we drive the two-level system, initially in its ground state, with a sequence of two
resonant Gaussian pulses

HS =
ħh
2
Ω(t)
�

|e〉〈g|+ |g〉〈e|
�

, (64)

with

Ω(t) =
A1

2πσ1
e−

1
2 (t−t1)2/σ2

1 +
A2

2πσ2
e−

1
2 (t−t2)2/σ2

2 , (65)

where A1 = A2 = π are the pulse areas, t1 = 5/κ and t2 = 13/κ are the centers of the pulses,
and σi = τi/

p
8 ln2 are the standard deviations with FWHM pulse durations τi . The time-

dependent Rabi frequency Ω(t) is depicted in Fig. 5(c) for different values of the pulse widths
τ1 = τ2 = τ.
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The corresponding two-level excitations ne and photon numbers nint
ph are shown in Fig. 5(d)

and (e), respectively. For short pulses with κτ= 0.1, the two-level excitation ne after the first
pulse closely resembles the dynamics of the initial value calculation in Fig. 5(b). The second
pulse hits the two-level system when it is nearly in its ground state, promoting it again to the
excited state, for which the excitation is again transferred to the photonic environment with
a dynamics similar to an initial value calculation. Thus, each pulse introduces one excitation
that is eventually converted to a photon, so the photon number nint

ph approaches a value of 2.

For longer pulses, we first observe an increase in the final photon number nint
ph . This is

explained by the fact that excitations are emitted as photons already within the pulse duration
τ, which facilitates the extraction of more than one excitation per laser pulse. For even longer
pulses, when the pulse width becomes comparable to the period of excitation oscillations be-
tween system and environment, excitation oscillations generated at different points in time
within the pulse duration destructively interfer. As a result, the capabilities of the composite
emitter and environment system to absorb excitations from the external pulse are reduced,
leading to values of nint

ph well below 2.

4.4 Inner bonds of PT-MPOs from different algorithms: Example in quantum
thermodynamics

The construction of environment observable closures relies on the key property of the ACE algo-
rithm that the relation between inner bonds and the Liouville space of individual environment
modes is clearly identifiable before MPO compression. Other algorithms for constructing PT-
MPOs [25,29,32] are based on expressions for the Feynman-Vernon influence functional [19],
where the environment degrees of freedom have been integrated out using path integral tech-
niques. This obfuscates the relation between the inner bonds of the PT-MPOs and the space
of environment excitations. As the starting point of these algorithms is the bath correlation
function, they make no reference to any particular discretization of the environment mode
continuum. This raises the question whether our interpretation of inner PT-MPO bonds is
specific to ACE or applies more universally to any PT-MPO technique.

One argument in favour of the latter is the fact that the physical influence of the environ-
ment, and thus the Feynman-Vernon influence functional, should be identical for all methods
that are numerically exact. Moreover, MPO compression using SVDs provides at least locally
optimal compression [21]. If the PT-MPO algorithms under consideration were to yield glob-
ally optimal compression, one would expect the resulting PT-MPOs to be identical, up to the
intrinsic gauge freedom of MPOs. On the other hand, comparisons have already revealed that
different algorithms may lead to PT-MPOs with different inner bond dimensions, e.g., due to
accumulation of numerical error or truncation of MPOs in non-normalized form [29].

Here, we address this question in a numerical experiment. We calculate PT-MPOs for an
open quantum system first using ACE and then using the algorithm by Jørgensen and Pollock
(JP) [25], which is based on the Feynman-Veron influence functional. We calculate environ-
ment observable closures for the ACE PT-MPO and, after fixing the gauges, apply these closures
to the inner bonds of PT-MPOs obtained from the JP algorithm. If the information conveyed
in the inner bonds of PT-MPOs is universal, i.e. independent of the details of the algorithm,
we expect to find at least qualitative agreement between environment observables extracted
from both PT-MPOs.

To remove ambiguities due to the gauge freedom, we proceed as follows: After calculating
PT-MPOs using the two algorithms, we perform additional sweeps to ensure that the PT-MPOs
are stationary. A final forward sweep implicitly orders the basis of the inner bonds such that
the rows of the PT-MPO matrices with respect to the inner indices are associated to singular
values in decreasing order. Whenever for a give time step the inner dimensions of the PT-
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MPOs calculated using both approaches differ, the observable closures from ACE calculations
are truncated or zero-padded to match the bond dimensions of the JP PT-MPO. A remaining
ambiguity arises from common phase factors within each row of the PT-MPO matrices, which
may be passed on to the corresponding columns of the PT-MPO matrix of the next time step.
We fix this by extracting the phase of the largest element within each row of an ACE PT-MPO
matrix and modify the corresponding phase of the JP PT-MPO.

We apply this approach to a test case in quantum thermodynamics [56–60]. In this re-
search area, one investigates how concepts of macroscopic thermodynamics can be generalized
to quantum mechanical systems. While work and heat play a central role in classical thermo-
dynamics, their definition is more complex in quantum settings [61, 62]. Irrespective of such
subtleties we are here interested in calculating the total energy absorbed by a quantum system
subject to external driving. If this system is a non-Markovian open quantum system, a further
challenge is to resolve how the total absorbed energy is distributed over different terms in the
Hamiltonian, namely the mean system energy, the mean energy absorbed into purely environ-
mental degrees of freedom, and the mean system-environment interaction energy. The latter is
a consequence of non-vanishing system-environment correlations and highlights the need for
methods in quantum thermodynamics that can account for strong system-environment cou-
pling [56–60]. Here, the energy distribution over the different terms can be readily obtained
from PT-MPOs via their inner bonds.

Concretely, we consider a two-level quantum emitter in contact with a phonon bath de-
scribed by the spin-boson model.

H = HS +H0
E +HI +HPS , (66a)

H0
E =
∑

k

ħhωk b†
k bk , (66b)

HI =
∑

k

ħhgk(b
†
k + bk)|e〉〈e| , (66c)

HPS =
∑

k

ħh
g2

k

ωk
|e〉〈e| , (66d)

where HS is Hamiltonian acting only on the two-level system, H0
E is the energy of the free

phonon path, HI describes the system-environment interaction, and HPS is added to renor-
malize the excited state energy such that the polaron shift is cancelled.

We are interested in the energetics, i.e., how the energy is distributed over time between the
different terms in the total Hamiltonian. 〈HS(t)〉 as well as 〈HPS(t)〉 can be directly obtained
from the reduced system density matrix. Because system observables are directly driven by the
interaction term HI , the observable closure for the environment observable Ô1 =

∑

k ħhgk b†
k

converges quickly (
∑

k ħhgk bk = Ô†
1 does not have to be calculated separately). Thus, we

extract the mean interaction energy 〈HI(t)〉 via the corresponding closure. Finally, the free
phonon energy enters the equation of motion for the system observables only indirectly by
affecting system-bath correlations. As discussed in the previous example, this implies that
faster convergence is expected when the increase of the free phonon energy with respect to its
initial value 〈∆H0

E(t)〉= 〈H
0
E(t)〉− 〈H

0
E(0)〉 is not extracted directly but instead by integrating

the equation of motion

〈∆H0
E(t)〉= −

i
ħh

t
∫

0

d t ′
∑

k

〈[H, H0
E]〉t ′ =

t
∫

0

d t ′
∑

k

2ħhωk gkIm
�

〈
�

b†
k|e〉〈e|
�

〉t ′
	

. (67)

The right-hand side is obtained by constructing the environment observable closure for
Ô2 =
∑

k 2ħhωk gk b†
k.
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First, we consider continuous resonant driving with HS =
ħh
2Ω(|e〉〈g| + |g〉〈e|) with Rabi

frequency Ω = 1 ps−1 turned on at time t = 0 for a two-level system initially in its
ground state ρ̄ = |g〉〈g|. For the phonon environment, we assume a spectral density

J(ω) =
∑

k g2
kδ(ω −ωk) of the form J(ω) = ω3

�

cee−ω
2/ω2

e − che−ω
2/ω2

h

�2
with ce = 0.1271

ps−1, ch = −0.0635 ps−1, ωe = 2.555 ps−1, and ωh = 2.938 ps−1, which is commonly
used [14, 17, 18] to describe longitudinal acoustic phonons interacting with a semiconduc-
tor quantum dot in a GaAs matrix [63]. We discretize J(ω) using N = 50 modes equidistantly
over the frequency range [0, 7 ps−1], and assume an initial bath temperature of T = 4 K. PT-
MPOs are calculated using the ACE algorithm [23] for time steps∆t = 0.1 ps and compression
threshold ε= 10−8.

The time evolution of the corresponding mean values of the energy terms in Eq. (66) are
shown in Fig. 6(a). The mean system energy 〈HS〉, which is due to the laser driving term, starts
at zero and slowly becomes negative as the energy is redistributed to other terms. The polaron
shift contribution 〈HPS〉 is proportional to the excited state populations and thus shows slightly
damped Rabi oscillations. The mean interaction energy is negative, which indicates binding
between the excitation and the phonon cloud, i.e., polaron formation, and roughly mirrors the
Rabi oscillations. The free phonon energy also oscillates, but also has an overall increasing
trend, which indicates heating of the phonon bath. The change of the total energy with respect
to its initial value 〈∆H(t)〉 = 〈H(t)〉 − 〈H0

E(0)〉 remains constant because, after switching on
the laser, the total Hamiltonian is constant in time and thus energy conserving. Only in the
last few time steps are deviations found, which are again due to lack of convergence because
of the small inner bonds at the ends of PT-MPOs. The conservation of the total energy serves
as a crucial test for the physicality of the results and, thus, for the suitability of our approach
to extract all relevant energetic contributions.

With this established, we now move to a more realistic but complex process, the phonon-
assisted excitation of a quantum dot using a blue-detuned laser pulse. Such an excitation
scheme enables bright and pure single-photon emission with frequency separation between
excitation laser and emitted photons [14]. To this end, in Fig. 6(b) we present simulations
using the total Hamiltonian Eq. (66) with system part

HS =
ħh
2

�

Ω(t)|e〉〈g|+Ω∗(t)|g〉〈e|
�

, (68)

and pulse envelope Ω(t) = A
2πσ e−

(t−t0)
2

2σ2 e−iδt ,
and parameters A= 3π, t0 = 7 ps, σ = (5 ps)/

p
8 ln 2, and δ = 1.5 meV/ħh. Furthermore, we

use the same PT-MPOs as for Fig. 6(a).
Due to the external time-dependent driving, the total energy 〈H〉 is no longer conserved.

From Fig. 6(b), it can be seen that most of the absorbed energy goes into the free phonon
energy, i.e. in heating up the phonon bath. This is consistent with phonon-assisted excitation,
where phonons are emitted during the photon absorption process in an effectively incoherent
process, while there is only a slight build-up of system-environment correlations as measured
by the interaction energy.

Finally, the dashed lines in Fig. 6(a) and (b) represent results, where, as discussed above,
environment observable closures from ACE calculations are transferred to PT-MPOs obtained
by the JP algorithm. The quantities obtained from the reduced system density matrix agree
perfectly. The critical test, the mean interaction and free phonon energies, which involve ex-
traction of information via inner bonds using observable closures also agree remarkably well,
even if small quantitative devations remain. This corroborates the thesis that the information
conveyed via the inner bonds of PT-MPO, and hence the interpretation of the inner bonds them-
selves, is indeed universal and not only limited to PT-MPOs obtained from the ACE algorithm.
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Figure 6: Time evolution of the means of the energy terms in Eq. (66) for a quantum
dot coupled to phonons under (a) resonant continuous wave driving and (b) exci-
tation by a blue-detuned Gaussian laser pulse (|ħhΩ(t)| shaded in pink). The symbol
∆ indicates that the initial value of the free phonon energy 〈H0

E(0)〉 has been sub-
tracted. Solid lines are obtained from ACE simulations using the observable closured
described in the main text for ε = 10−8 and ∆t = 0.1 ps. Dashed lines represent
results of simulations, where the PT-MPOs are calculated using the algorithm by Jør-
gensen and Pollock (using Feynman-Vernon path integral expressions) in Ref. [25]
and then transferring the observable closures obtained from the ACE simulations as
sketched in (c).
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5 Discussion

We have shown that the inner bonds of PT-MPOs are not merely a mathematical necessity
required for describing the time-non-local memory in non-Markovian environments; they do
in fact posses a concrete physical meaning: They directly represent the subspace of the full
environment Liouville space containing the most relevant environment excitations, where the
relevance is implicitly determined by MPO compression. Compression via truncated singular
value decomposition minimizes the compression error without bias in favor of any particular
set of system states. Hence, relevant environment degrees of freedom are determined without
making any assumption about the concrete interventions on the system like (time-dependent)
Hamiltonian evolution, Lindbladian losses, and projective measurement. It should be noted,
however, that a more efficient representation of environmental influences may be available if
interventions on the system are restricted. For example, transfer tensors [64] and small matrix
decomposition of path integrals [65] provide extremely efficient numerically exact approaches
when interventions are time-translation-invariant.

Conceptionally, the connection between the inner bonds of PT-MPOs and the environment
Liouville space is expressed in terms of lossy linear transformation matrices T and their pseu-
doinverses T −1, both of which can be obtained by tracking all changes to the inner bonds at
every step of the ACE algorithm [23]. With the help of these matrices, one can learn infor-
mation about the state of the environment in PT-MPO simulations. However, it turns out to
be more practical to extract environment observables Ô via a set of environment observable
closures o, which transform like T −1 along the ACE algorithm, and which, when applied to PT-
MPO inner bonds, represent the effect of TrE{Ôρ(t)}. The viability and utility of this approach
is tested on a series of scenarios involving the extraction of environment spins, currents, radia-
tively emitted photons, and energies absorbed by time-dependently driving an open quantum
system strongly coupled to an environment.

However, because the compression is lossy, the extraction of an environment observable via
inner bonds of PT-MPOs can be inaccurate if the subspace identified by MPO compression—
designed to faithfully reproduce any system observable—does not carry the information re-
quired to reconstruct the environment observable. In such cases, alternative methods may be
useful: Observables of certain environments are accessible via multi-time correlation function
of the system [66]. More generally, environment observables can be obtained from methods
that evolve the composite system and environment state, either by making physics-based ap-
proximations like in the reaction coordinate approach [67] or by numerically exact many-body
representations as in chain mapping techniques [68–70].

On the other hand, the fact that different environment observables are extracted to differ-
ent levels of accuracy enables us to probe what information is conveyed in the inner bonds
of PT-MPOs. In particular, we find that observables which appear earlier in the hierarchy of
Heisenberg equations of motions starting from expectation values of system observables con-
verge faster with respect to the MPO compression parameter. This is in line with the fact that
standard MPO compression selects environment degrees of freedom that most strongly affect
the system evolution.

More broadly, our insights have significant consequences for fundamental and conceptual
questions: First is the pedagogical aspect: Viewing PT-MPOs as the set of environment prop-
agators eLE∆t projected onto the (locally) most relevant environment degrees of freedom via
Eq. (1) is very intuitive. Yet this insight is sufficient for productively using existing PT-MPO-
based open quantum systems codes [23,71], and practitioners need not understand Feynman-
Vernon path integrals [19], the generalized Choi-Jamiołkowski isomorphism [39,40], or details
about matrix product states in many-body quantum physics [21].
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Second, Eq. (1) can facilitate a formal analysis and proofs. For example, it was straightfor-
ward to show in Eq. (58) that the composition of two PT-MPOs indeed provides a numerically
exact way to simulate a quantum system coupled to two environments. A promising route
for further progress is to analyze the transformations T and T −1 and the subspaces to which
they map. This could lead to novel algorithms and it could clarify connections to other open
quantum systems methods.

Finally, it is worth stressing that Eq. (1) constitutes a conceptional shift with respect to
earlier derivations of PT-MPO methods [25]. The latter start from a time-non-local picture,
where environment influences connecting system states at different points in time are repre-
sented efficiently. In contrast, in the picture developed here, the transformation matrix T −1

maps time-locally to the total system plus environment density matrix at a given point in
time. Interestingly, we have also shown that environment observable closures calculated via
ACE [23], which starts from the time-local picture, can be transferred to PT-MPOs obtained
from the (time-non-local) bath correlation function [25], and the extracted environment ob-
servables are very similar. This suggests that the final PT-MPOs contain the same information,
i.e. optimally compressed PT-MPOs are universal. So, the two pictures of time-non-local mem-
ory versus time-local environment excitations are intimately related, much like the Markov
and the Born approximation tend to be used together for modelling weakly coupled open
quantum systems [1]. While there is extensive literature on how to analyze and quantify non-
Markovianity [47,72–74], here, the focus on the compressed space of environment excitations
suggests it is also worthwhile to consider measures of “non-Bornity”. The universality of PT-
MPOs further suggests that, for fixed time steps ∆t, total number of time steps n, and MPO
compression threshold ε, the PT-MPO bond dimension χ is a promising candidate for such a
measure of “non-Bornity”.
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