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Abstract

The possibility of an unconventional form of high temperature superconductivity in flat
band (FB) material does not cease to challenge our understanding of the physics in cor-
related systems. Here, we calculate the normal and anomalous one-particle correlation
functions in various one and two dimensional FB systems and systematically extract the
characteristic lengthscales. When the Fermi energy is located in the FB, it is found that
the coherence length (ξ) is of the order of the lattice spacing and weakly sensitive to
the strength of the electron-electron interaction. Recently, it has been argued that in
FB compounds ξ could be decomposed into a conventional part of BCS type (ξBCS) and
a geometric contribution which characterises the FB eigenstates, the quantum metric
(〈g 〉). However, by calculating the coherence length in two possible ways, our calcula-
tions show that ξ ̸=

p

〈g 〉. This may suggest that the link between QM and coherence
length is more complex, and leaves us with the open question: what is the appropriate
definition of the coherence length in flat-band systems?
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1 Introduction

Over the past ten years we are witnessing a rapidly growing interest for the physics in
dispersion-less bands [1–8]. In flat band (FB) compounds, because the width of these bands is
extremely narrow, the Coulomb energy is left as the unique relevant energy scale. This places
naturally these systems in the class of highly correlated materials and opens the access to exotic
and unexpected physical phenomena and quantum phases. Undeniably, one of the most strik-
ing feature is the possibility of high critical temperature superconductivity (SC) in compounds
where the Fermi velocity vanishes [9–18]. In contrast to conventional superconductivity, this
unconventional form of superconductivity is of inter-band nature.

In other words, the superfluid weight is controlled by the off-diagonal matrix elements
(in terms of band index) of the current operator, and the diagonal contribution (conventional
contribution) vanishes or is negligible. The superconductivity in FBs is characterised by a
geometrical quantity known as the quantum metric (QM). The QM is connected to the real part
of the quantum geometric tensor [19,20] and its square root measures the minimal spread of
the Wannier functions. So far, the unique experimental realisation of such an unusual form of
superconductivity is very likely the one that has been observed in twisted bilayer of graphene
(Moiré) in the vicinity of magic angles [8,21–26].

It is well known that in conventional BCS systems where the superconductivity is of intra-
band nature [27, 28], the coherence length ξc is given by ξBCS =

ħhvF
∆ where vF and ∆ are

respectively the Fermi velocity and superconducting gap or pairing amplitude. We recall that
ξc measures the size of the Cooper pair in real space. Since, in the BCS regime (weak coupling)
the superconductivity gap is exponentially small, ξc is often extremely large, hence Cooper
pairs are highly overlapping with each other. On the other hand, in the strong coupling regime
the Cooper pairs can be assimilated to tightly bound non-overlapping composite bosons which
at low temperature leads to the well known Bose Einstein condensation phenomenon (BEC)
[29,30].

A natural question arises: what about the case of FB superconductors? Recently, it has
been argued that the coherence length in these systems has two contributions, the first is of
conventional type and the other is purely geometric in nature [31, 32]. More precisely, it
is claimed that the coherence length can be expressed as ξc =

q

ξ2
BCS + 〈g〉 where 〈g〉 is the

average of the QM. Hence, if the band is rigorously flat the first term vanishes. Our purpose is to
calculate the normal and anomalous one-particle functions in various one and two dimensional
FB systems and systematically extract the characteristic lengthscales. In addition, we discuss
our findings in connection with the prediction that the coherence length should reduce to
p

〈g〉 when the Fermi energy is located in the FB. To address these issues, we consider four
different systems, three of them are one dimensional and the last one is two dimensional:
the stub lattice, the sawtooth chain, the Creutz ladder and the χ−lattice. These models and
their respective dispersions (in the non interacting case) are depicted in Fig.1. Notice that
the χ-Lattice has been originally introduced in Ref. [33]. However, since no specific name
has been attributed to this peculiar model,“χ−lattice” has been chosen. In this system, the
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Figure 1: Schematic representation of (a) the stub lattice, (b) the sawtooth chain,
(c) the Creutz ladder and (d) the two-dimensionnal χ-lattice. Their respective dis-
persions, in the non interacting case, are depicted in the panels having a grey back-
ground. The hoppings and the on-site Hubbard attractive interaction term are de-
picted in the figure. In the case of the χ-Lattice (two orbitals A and B per site) the
hoppings are long range (see main text).

Table 1: Characteristics of the stub lattice, the sawtooth chain, the Creutz ladder
and the χ-lattice. ‘Tunable QM’ means that the system has a degree of freedom that
allows the variation of the QM while keeping the FB in the spectrum. ‘Uniform paring’
means that the pairing is identical for all the orbitals on which the FB eigenstate has
a non vanishing weight.

stub sawtooth Creutz χ−Lattice

Biparticity ✓ × × ✓

Tunable QM ✓ × × ✓

DBs1 in the spectrum ✓ ✓ × ×

Uniform pairing × × ✓ ✓

Dimensionality 1D 1D 1D 2D

range of the extended hoppings is controlled by a single parameter (χ) as it will become more
explicit in the next paragraph. The choice of these four different systems is motivated by
several intentions. It allows to estimate the impact of (i) the bipartite character of the lattice,
(ii) the tunability of the quantum metric, (iii) the absence of dispersive bands in the spectrum,
(iv) the lattice dimension, (v) and last the presence of uniform pairings. Each of these five
properties, which allow to cover a wide family of systems, has an individual impact on flat-
band superconductivity. For this reason, it appears essential to consider various systems to
enable a general description of their effects on coherence length. The characteristic features
of the different lattices are summarized in Table 1.

2 Theory and methods

Electrons are described by the attractive Hubbard model which reads

Ĥ =
∑

iλ, jη,σ

tληi j ĉ†
iλ,σ ĉ jη,σ −µN̂ − |U |

∑

iλ

n̂iλ,↑n̂iλ,↓ , (1)

1Dispersive bands.
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where ĉ†
iλ,σ creates an electron of spinσ at site riλ, i being the cell index and λ the orbital index

ranging from 1 to nor b. N̂ =
∑

iλ,σ n̂iλ,σ, µ is the chemical potential and |U | is the strength of
the on-site attractive electron-electron interaction. The hoppings are very short ranged in the
stub lattice, the sawtooth chain and the Creutz ladder as depicted in Fig.1. On the other hand,
in the χ-Lattice the situation differs, the hoppings are long-ranged, restricted to (A, B)-pairs,
and given by tAB

i j = −
t

Nc

∑

k eik.reiγk where γk = χ(cos(kx a) + cos
�

ky a
�

), r = r j − ri , and Nc
being the number of unit cells. The parameter χ controls both the range of the hoppings and
the QM which is given by 〈g〉= χ2a2/8 [34].

In this work, we treat the interaction term within the Bogoliubov de Gennes (BdG) ap-
proach which consists in the following decoupling scheme,

n̂iλ,↑n̂iλ,↓
BdG
≃ 〈n̂iλ,↓〉n̂iλ,↑ + 〈n̂iλ,↑〉n̂iλ,↓ +

∆iλ

|U |
ĉ†

iλ,↑ ĉ
†
iλ,↓ +

∆∗iλ
|U |

ĉiλ,↓ ĉiλ,↑ , (2)

where the self-consistent parameters 〈n̂iλ,σ〉 and ∆λ = −|U |〈ĉiλ↓ ĉiλ↑〉 are respectively the or-
bital dependent occupations and pairings. 〈. . .〉 corresponds to the grand canonical average.
Notice, that the total carrier density is defined as n = Ne/Nc , where Ne is the total number of
electrons, hence n varies from 0 to 2 nor b.

Before we discuss our calculations, we propose to provide some arguments that justify that
our approach is meaningful. We first start with the shortcomings. It is well established that the
BdG Hamiltonian being quadratic, it is inappropriate to calculate reliably two particles correla-
tion functions (CFs) such as the pairing-pairing correlation function fP(ri−r j) = 〈Π̂

†
i Π̂ j〉where

the on-site pairing operator (s-wave) Π̂†
i = ĉ†

i↑ ĉ
†
i↓

. In the case of the attractive Hubbard model
in two dimensional systems, one expects the correlation function fP(r) to decay algebraically
with a T -dependent power for T < TBKT , and exponentially when T > TBKT , where TBKT
is the Berezinskii-Kosterlitz-Thouless transition temperature [35–37]. On the other hand, the
one-particle CF of the form f σsp(ri−r j) = 〈ĉ

†
iσ ĉ jσ〉 always decays exponentially in the supercon-

ducting phase. Mean Field theory such as the BdG approach can not describe the change of
behaviour of fP(r) across the BKT transition, since through Wick’s theorem two-particles CFs
reduce to products of one-particle CFs only. However, in FB systems, one expects the single
particle CFs to be well captured within the BdG theory. For instance, it has been shown, that
the local occupations, the pairings and the superfluid weight calculated by the numerically un-
biased DMRG are in excellent agreement with the mean field values in the Creutz ladder and
in the sawtooth chain [12, 38]. It should be emphasised that the agreement found concerns
both the weak and the strong coupling regime. In what follows it will be shown that it is as
well the case for correlations functions.

To study the characteristic lengthscales in the superconductivity phase at T = 0, we define
the normal and anomalous CFs,

Gλη(r) = 〈ĉ
†
iλ,σ ĉ jη,σ〉 , (3)

Kλη(r) = 〈ĉiλ,↑ ĉ jη,↓〉 , (4)

where the index i (respectively j) refers to the unit cell position ri (respectively r j), λ (resp. η)
labels the orbitals, and r = r j − ri . Here, the spin index σ =↑,↓ is irrelevant, the supercon-
ductivity phase being non magnetic. The CF Kλη is particularly of interest since it allows the
extraction of the Cooper pair size. Note that a similar quantity have been used in Ref. [39] to
extract the the Cooper pair size in conventional superconductors. Indeed, in the case of a sin-
gle one dimensional dispersive band problem (conventional SC) it can be shown analytically
that Kλλ(r)≃

1p
|r|

e−|r|/ξBCS for |r| →∞ as addressed in the next paragraph.
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Figure 2: ξ(K)AA as a function of the averaged pairing∆avg in the quarter filled sawtooth

chain. The red thick line is the BCS formula ħhvF
∆avg

where ħhvF = 2at. The first inset (top
right) shows the correspondence between |U | and ∆avg and the other one illustrates
the density of states for |U | = 0, with EF = −2t for the quarter filling. The BCS
regime corresponds to ξ(K)AA ≫ a and BEC to ξ(K)AA ≤ a.

3 Results and discussions

3.1 Coherence length in dispersive bands

Before we discuss in details the case where the Fermi energy coincides with that of the FB, it is
interesting to analyse the situation where it is located inside the dispersive bands. To illustrate
this scenario, we consider the quarter filled sawtooth chain. This density corresponds to the
half-filling of the lower dispersive band.

In Fig.2, ξ(K)AA is plotted as a function of the averaged pairing ∆avg in the quarter filled
sawtooth chain where∆avg =

1
2(∆A+∆B) (A and B sites are inequivalent). This characteristic

lengthscale is obtained from a fit of the form 1p
|r|

e−|r|/ξ
(K)
AA of the long distance behaviour of

the anomalous CF KAA(r). The BCS-like expression (red thick line in the figure) is defined as
ħhvF
∆avg

. Here the Fermi velocity vF =
2a t
ħh sin(kF a) where kF a = π

2 for the quarter filled sawtooth
chain. It is striking to see that the excellent agreement found between the numerical data
and the BCS expression is not restricted to the weak coupling regime (∆avg ≪ t). Indeed,
remarkably the agreement is obtained for values of the average pairing that varies over four
decades (see inset of Fig.2), which corresponds to |U |/t that varies from 1 to 8. However, one
already observes small deviation from the BCS expression when |U |/t ≥ 5. We have checked
that as |U | increases further the deviation becomes even more pronounced. Numerically, it is
found that when |U |/t ≥ 10, ξ(K)AA ∝

1p
∆

which confirms the existence of a cross-over between
BCS and BEC regimes.

3.2 The case of half-filled bipartite lattices

We consider the specific case of half-filled bipartite lattices where the number of orbitals in
one sublattice is larger than that of the other, implying that at least one FB is located at E = 0.
We propose to demonstrate the following remarkable property, valid for any |U|,

Gλλ(r) =
1
2
δ(r) . (5)
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In a recent study [40] it has been shown that the Bogoliubov quasi-particle (QP) eigenstates
present an interesting symmetry in half-filled systems. If A (resp. B) denotes the first (resp.
second) sublattice which containΛA (resp. ΛB) orbitals per unit cell, the QP eigenstates can be
subdivided in two families S+ and S− defined in what follows. First, a generic QP eigenstate
(in momentum space) has the form |Ψ〉= (|Ψ↑〉, |Ψ↓〉)t where the first ΛA (resp. next ΛB) rows
of |Ψσ〉 are the components on sublattice A (resp. B). This eigenstate belongs to the subspace
S+ (resp. S−) if |Ψ↓〉= M̂ |Ψ↑〉 (resp. |Ψ↓〉= −M̂ |Ψ↑〉) where the matrix M̂ = diag(1̂ΛA ,−1̂ΛB).
Additionally, for any finite |U |, it has been shown in Ref. [40] that the subset S− (respectively
S+) consists exactly in ΛB (respectively ΛA) eigenstates of positive or zero energy and ΛA
(respectively ΛB) eigenstates of strictly negative energy.

Now, start with the definition Gλλ(r) =
1
Nc

∑

k eik.r〈Ôλk,↑〉, where Ôλk,↑ = ĉ†
kλ,↑ ĉkλ,↑. At

T = 0, its grand canonical average is given by,

〈Ôλk,↑〉=
∑

m

〈Ψ<mk|Ôλk,↑|Ψ<mk〉 , (6)

where |Ψ<mk〉 are the QP eigenstates of the BdG Hamiltonian of negative energy, m being band
index. Using the closure relation,

∑

m,s=<,> |Ψ
s
mk〉〈Ψ

s
mk| = 1, where the sum runs over QP

eigenstates with positive (s =>) and negative energy (s =<) and the symmetry mentioned
above one can show that,

∑

m

〈Ψ<mk|Ôλk,↑|Ψ<mk〉=
∑

m

〈Ψ>mk|Ôλk,↑|Ψ>mk〉 , (7)

which combined with Eq. 6 leads to 〈Ôλk,↑〉=
1
2 and demonstrates Eq. 5.

It is interesting to remark that our proof can be straightforwardly extended to the case of
disordered systems that preserve the bipartite character of the lattice, such as the presence of
vacancies or bond disorder.

3.3 The stub lattice

The stub lattice is bipartite and offers the possibility to tune the QM without changing the
nature of the compact localized eigenstates. The QM is controlled by the A-C hopping (αt)(see
Fig.1) and given by 〈g〉= 1

2|α|
p

4+α2
[41]. The stub lattice has been studied in great details in

Refs. [18,42]. Here, we restrict our study to the case α= 0.5 and n= 3 which corresponds to
a half-filled FB with 〈g〉 ≃ 0.49.

First, one can already conclude from the previous section that the conventional CFs (Gλλ)
are given by Eq. 5, which is indeed what we find numerically for any |U | and any α. Figure 3(a)
depicts the anomalous CF KCC as a function of |r| for several values of |U | which correspond
to weak, intermediate and strong coupling regime. As it can be clearly seen, in all cases this
CF decays exponentially with a lengthscale ξ(K)CC (Cooper pair size) that reduces rapidly as |U |
increases. The variation of the extracted lengthscale ξ(K)CC is plotted as a function of |U |/t in
Fig.3(b).

In the limit of vanishing |U |/t it is approximately (for this value of α) 2a, then it increases
and reaches a maximum for |U |/t = 1.5 and beyond it decreases continuously. There is no
simple explanation for the origin of this maximum, since for larger values of α it disappears.
The inset represents, its behaviour in the large |U |/t limit. It is found that ξ(K)CC → 0.125 a.

As it can be seen, ξ(K)CC crosses
p

〈g〉 = 0.7 a at |U |/t ≈ 4 and converges to a much smaller
value. The large |U |/t behaviour, is consistent with the fact that in the BEC regime, the Cooper
pair size is expected to be very small. Remark that KBB and KAA vary similarly with the same
lengthscale.

6
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(a)

(b)

Figure 3: (a) KCC as a function of r in the stub lattice for several values of |U |/t (1,
2.5 and 5). (b) ξ(K)CC as a function of |U |. The (dark-green) horizontal line depicts

the square root of the quantum metric 〈g〉. The inset shows ξ(K)CC for |U | ≫ t. Here,
α is set to 0.5 (see Fig.1) and the carrier density is fixed to n= 3 which corresponds
to half-filling.

3.4 The sawtooth chain

In contrast to the stub lattice, the sawtooth chain as illustrated in Fig.1(b), is a non bipartite
lattice and does not allow the tuning of the QM. The FB exists only when the AB-hoppings
(1st and 2nd neighbours) are −

p
2t. The superconductivity in the sawtooth chain has been

addressed in details in Ref. [38] using a numerically exact method: the DMRG. It has been
shown that the BdG approach reproduces accurately the exact results, for both the pairings
and the superfluid weight. In Fig.4(a), both GAA and KAA are plotted as a function of |r|, for
different values of |U |. Here, the electron density is set to n= 3 which corresponds to the half-
filled FB. As it can be seen, the lengthscales associated to the decay of GAA and KAA are almost
identical both in the weak and strong coupling regime. Additionally, the slope appears to vary
weakly. Notice that GBB and KBB behave similarly. Fig.4(b) depicts the variation of ξ(K)AA as a

function of t/|U |. The inset describes the weak coupling regime. In this regime, ξ(K)AA ≈ 0.735 a

and almost insensitive to |U |. As |U| increases further, ξ(K)AA decays monotonously. As seen in

the case of the stub lattice, ξ(K)AA crosses
p

〈g〉 when t/|U | ≈ 0.05 and converges towards 0.2 a.
In the sawtooth chain, it can be shown that the minimal QM is 〈g〉= 1

4
p

3
. We should mention

as well that our values of GAA(r) are consistent with the DMRG calculations of Ref. [38].

3.5 The Creutz ladder

The Creutz ladder depicted in Fig1(c) is particularly interesting since its dispersion consists
only in FBs, located at E = ±2t in the non-interacting case. As a consequence of the uniform
pairings, these bands remain flat when |U | is non-zero. The superconductivity in the Creutz

7
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Figure 4: (a) |GAA| and |KAA| as a function of r in the sawtooth chain for several values
of |U |. For the sake of clarity, |GAA| and |KAA| have been multiplied by 10−2,10−4 and
10−6 for |U |= 0.5, 1 and 5 respectively. The carrier density is n= 3 (half-filled FB).
DMRG data for |U | = 1 from Ref. [38] are shown as well. (b) ξ(K)AA as a function of
t/|U |. The horizontal lines depicts the square root of the minimal quantum metric
〈gmin〉. The inset represents ξ(K)AA as a function of |U | for small values of |U |. The
dashed red line is a linear fit for t

|U | ≤ 0.03.

ladder have been addressed exactly, within the DMRG approach in Refs [12,38]. As in the case
of the sawtooth chain, it has been revealed that pairings and superfluid weight are accurately
captured by the BdG theory. The A and B sites being equivalent, we focus our attention on
|KAA| and |GAA|. In addition, we consider the case of the quarter filled ladder (half-filled lower
FB) which corresponds to n = 1. Both CFs are plotted in Fig.5 as a function of |r| for several
values of |U | ranging from weak to strong coupling regime. As it can be seen these two CFs
behave similarly. It is found that there are only two non-vanishing values corresponding re-
spectively to |r|= 0 and a. For larger distances, |KAA| and |GAA| are zero within the numerical
accuracy. This is illustrated in the inset of Fig.5(b) where for |r|= 2a the CF |GAA| drops by 16
orders of magnitude. It is found as well that |KAA|(|r| = a) decays very rapidly as |U | ≥ 1 and
eventually vanishes when |U | →∞. Thus, the Cooper pair size varies between 1 and 0 where
0 corresponds to |U | =∞. This is consistent with Ref. [43] where the authors have shown
that the single-particle propagator vanishes beyond a finite range.

8
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Figure 5: (a) |KAA| and (b) |GAA|, rescaled by their value at r = 0, as a function of r
in the Creutz ladder for several values of |U |. The charge density is fixed n = 1. For
r ≥ 2 a, both |KAA| and |GAA| are zero within our numerical precision. The inset in
(a) represents |KAA| in log scale. The inset in (b) shows |GAA| as a function of |U | for
r = 0 and r = a. Diamonds are our calculations and circles are the DMRG data of
Ref. [12].

In the Appendix A, we demonstrate analytically in the case of weak coupling that the CFs
are given by,

GAA(r) = KAA(r) =
1
4
δr,0 −

i
8
δr,a +

i
8
δr,−a ,

GAB(r) = KAB(r) =
1
8
(δr,a +δr,−a) .

(8)

We point out the fact that the analytic expression found for GAA(r) is consistent with the exact
results obtained from DMRG calculations [12]. Indeed, it has been found (see Fig.10 in this
manuscript) that for r ≥ 2a, GAA ≤ 10−12.

3.6 The χ-lattice

The χ-Lattice is a two dimensional system in which both electronic bands are dispersion-less
and located at E = ±t. As mentioned earlier this system has been introduced originally in
Ref. [33]. The superconductivity has been addressed within the Quantum Monte Carlo method
in Ref. [34] and within a mean field approach in Ref. [32]. We recall that the dimensionless
parameter χ controls both the range of the hoppings and the value of the QM. Here, we focus
on the quarter filled system which corresponds to a charge density n = 1. As it is the case in
the Creutz ladder, the orbitals A and B are equivalent, pairings are identical on both sites. In
addition, because the long range hoppings connects A to B sites only, this lattice is bipartite as
well.

9
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Figure 6: (a) and (b) |GAA| and |KAA| as a function of r (along the x−direction) in
the χ-Lattice for several values of χ. (c) same as in (a) and (b) for the off-diagonal
correlation functions |GAB| and |KAB|. The carrier density is n = 1 and the Hubbard
parameter |U |= 1.

Let us now discuss our results. First, for any value of both |U | and χ, with high numerical
accuracy we find,

4
n

Gλλ(r) =
|U |
∆

Kλλ(r) = δ(r) , (9)

where λ = A, B. These features are illustrated in Fig.6 (a) and (b). It should be emphasised
that the property given in Eq. 5 concerns only the case of half-filled bipartite lattices. Here,
our system is quarter filled, which means that our findings are specific to the χ-Lattice. As a
consequence, for any |U | the Cooper pair size is zero. In the Appendix B, we have demonstrated
analytically Eq. 9 in the weak coupling regime.

More strikingly, we have found that the off-diagonal correlation functions |GAB| and |KAB|
exhibit an unexpected behaviour as it can be clearly seen in Fig.6(c). First, one finds that
|GAB| and |KAB| are very similar for any value of χ. Furthermore, for a given χ, one can
distinguish two distinct regimes. First, for |r| ≤ χa the CFs oscillates as |r| increases. Secondly,
when |r| ≥ χa it decays monotonously as the distance increases. However, any attempt to fit
the tail by a function of the form r−be−|r|/c is unsuccessful. Hence, one cannot extract any
characteristic lengthscale from these off-diagonal correlation functions. In the Appendix B,
we have calculated analytically the GAB and KAB as a function of r in the limit of small values
|U |. It is shown that GAB(r) = KAB(r) =

1
4Nc

∑

k eik.re−iγk . This means that for this specific
lattice the off-diagonal CFs coincides up to a coefficient with the (A,B) hoppings in real-space.
In addition, in the limit of large |r| along the x-direction, it is shown that,

GAB(r)∝ (−i)nx J0(χ)
1
p

2πnx
enx .ln( eχ

2nx
) , (10)

where r= (nx a, 0) and J0 is the Bessel function of the first kind and order 0. This clarifies why
we could not extract a typical lengthscale from the numerical data plotted in Fig.6(c).
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(a)

(b)

Figure 7: (a) ξ̃ (green filled circles) in the sawtooth chain at n = 1 (half-filled dis-
persive band) as a function of the averaged pairing ∆avg/t. Black lines (continu-
ous and dashed) are fits and the red line corresponds to the BCS analytical formula
ξBCS = ħhvF/∆avg . The inset magnifies the region of the cross-over. (b) ξ̃ as a func-
tion of |U |/t in the Creutz ladder at n = 1 and sawtooth chain at n = 3 (half-filled
flat band). Dashed lines represent

p

〈g〉, 〈g〉 being the corresponding quantum met-
ric. The dotted line corresponds to the low-|U | limit ξ̃= 1/

p
42 in the Creutz ladder

(see text).

3.7 Connection with recent studies

In recent studies [31,32], it is claimed that the coherence length in quasi FBs can be expressed
as, ξ̃ =
q

ξ2
BCS + 〈g〉 where 〈g〉 is the average of the quantum metric (minimal). The BCS

contribution vanishes when the band is rigorously flat. In this paragraph, we discuss the
connection between our findings and these recent studies. As done in Ref. [32] we define

ξ̃2 = −
1

2M(0)
d2M(q)

dq2

�

�

�

q=0
, (11)

where the pair correlation function, M(q) =
∑

i j,λ e−iq(ri−r j)〈ĉiλ↓ ĉiλ↑ ĉ
†
jλ↑ ĉ

†
jλ↓〉. Within the BdG

formalism this leads to

M(q) =
∑

λ

|Kλλ(0)|2 + 1− 2Gλλ(0) +
∑

r,λ

e−iqr|Gλλ(r)|2 , (12)
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and hence
d2M(q)

dq2

�

�

�

q=0
= −
∑

r,λ

|r|2|Gλλ(r)|2 . (13)

Thus, ξ̃ is related to the decay of the normal correlation function Gλλ(r). From Eq. (5), we
conclude straightforwardly that for any bipartite lattice with a different number of orbitals in
each sublattice (stub lattice, Lieb lattice...), ξ̃ = 0. This applies as well to the χ−Lattice (see
Eq (9)). However, in the case of the sawtooth chain and Creutz ladder one cannot conclude,
ξ̃ has to be calculated. Figure 7 (a) displays ξ̃ as a function of the averaged pairing at n = 1
(half-filled dispersive band) in the sawtooth chain. Fig 7 (b) depicts ξ̃ as a function of |U |/t in
the case of half-filled flat band in the sawtooth chain and the Creutz ladder. In (a), ξ̃ appears
to scale as∆−1/2

avg where one would expect∆−1
avg from a standard BCS analysis. In the appendix

C, we provide an analytical justification to this unusual behavior. Furthermore, we emphasize
that for a given averaged pairing∆avg , the values of ξ̃ are found 10 to 100 times smaller than
the BCS coherence length. In the case of half-filled FB (panel (b)), we first remark that for
both lattices, ξ̃ is much smaller than the lattice parameter, which qualitatively agrees with our
previous results. However, in contrast with Ref. [32], these values are clearly smaller than
p

〈g〉 even when |U | → 0. For the Creutz ladder, we note that ξ̃ is finite while it has been
found that ξ(K) = 0. Using Eq. (8), one can show that ξ̃ → a/

p
42 ≃ 0.154 a in the weak

coupling regime.
In conclusion, we numerically find that the expression of coherence length given in Ref.

[32] does not recover the expected BCS expression in the case of conventional superconduc-
tivity. Moreover, when the Fermi energy is located in the flat band, ξ̃ differs from

p

〈g〉 in the
weak coupling regime. It even appears that

p

〈g〉 is an upper bound of ξ̃. Finally, it should
be emphasized that here, and in contrast to Ref. [32], no projection on the flat band has been
done.

4 Conclusion

We have investigated the normal and anomalous correlations functions in various flat band
systems and extracted the associated characteristic lengthscales. It is found in this study that
the size of the Cooper pairs is comparable to the lattice spacing, both in the weak and strong
coupling regime. Independently of how extended the hoppings are, it is revealed as well that
the normal correlation functions reduce to a Dirac function in the case of half-filled bipartite
lattices. In order to clarify a controversial issue regarding the connection between the coher-
ence length and the quantum metric 〈g〉 we have considered two different definitions of the
former. In both cases, it is numerically found that ξ ̸=

p

〈g〉 in the weak and strong coupling
regimes. The link between quantum metric and coherence length appears controversial, and
may require further studies before a clear consensus can be reached. Nevertheless, it is found
that
p

〈g〉 provides the correct order of magnitude in the sawtooth chain and for the stub lat-
tice. Finally, we believe as well that this study could motivate new reflections on the concept
of coherence length in flat band systems.
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A The correlation functions in the Creutz ladder

In this appendix we propose to derive analytically the correlations functions G and K as defined
in the main text in the quarter filled Creutz ladder. We focus our attention on small values of
|U |. We restrict our calculation to T = 0. The BdG Hamiltonian reads

ĤBdG =
∑

k

Ψ̂†
k

�

ĥ↑k ∆1̂2×2

∆∗1̂2×2 −ĥ↓∗-k

�

Ψ̂k , (A.1)

where we have introduced the Nambu spinor Ψ̂†
k = (ĉAk↑, ĉBk↑, ĉA−k↓, ĉB−k↓)t and the block

matrix,

ĥ↑k =

�

−2t sin(ka)− µ̃ −2t cos(ka)
−2t cos(ka) 2t sin(ka)− µ̃

�

, (A.2)

where we have introduced µ̃ = µ+ |U |4 n. Because of time reversal symmetry ĥ↓∗-k = ĥ↑k. Notice
as well that the pairing ∆, uniform because A and B sites are equivalent, can be taken real.
Here, the total carrier density n= 2 nA = 2 nB is set to 1.

First, we consider the case |U | = 0 for which the chemical potential µ = µ0 = −2 t. The
quasi-particle (QP) eigenvalues are E1,4 = ±4 t, and E2,3 = 0 which is doubly degenerate. The
corresponding QP eigenstates are of the form, |Ψi〉= (|ψ

↑
i 〉, |ψ

↓
i 〉)

t , where i = 1, .., 4.
More precisely they are given by, |Ψ0

1〉 = (0, |φ+0 〉)
t , |Ψ0

2〉 = (|φ
−
0 〉, 0)t , |Ψ0

3〉 = (0, |φ−0 〉)
t ,

and |Ψ0
4〉= (|φ

+
0 〉, 0)

t , where,

|φ±0 〉=
1
p

2

1
p

1± sin(ka)

�

− cos(ka)
sin(ka)± 1

�

. (A.3)

When the Hubbard term is switched on, we apply a pertubation theory for degenerate pair
eigenstates (|Ψ0

2〉, |Ψ
0
3〉) that leads to, E± = ±

p

(δµ̃)2 +∆2 where δµ̃ = µ̃ − µ0. The corre-
sponding QP eigenstates are

|Ψ±〉=
1
p

N±

�

∆|Ψ0
2〉+ (δµ̃±
Æ

(δµ̃)2 +∆2)|Ψ0
3〉
�

, (A.4)

where N± = 2
�

δµ̃2 +∆2 ±δµ̃
p

(δµ̃)2 +∆2
�

.
Using the self-consistent equations for the carrier density which for each spin sector is 1/4

and the gap equation one finds in the limit of small |U |,

δµ̃= 0+ o(|U |2) , ∆=
|U |
4
+ o(|U |2) . (A.5)

Thus, the QP eigenstates take the simple form |Ψ±〉=
1p
2
(|Ψ0

2〉± |Ψ
0
3〉), their respective energy

being E± = ∓
1
4 |U |.

Using the expressions of |φ±0 〉 as given in Eq. A.3, one finds,
〈c†

Ak,↑cAk,↑〉 = 〈c
†
Ak,↑c

†
Ak,↓〉 =

1
4(1 + sin(k)). After a trivial Fourier transform, we finally end

up with,

GAA(r) = KAA(r) =
1
4
δr,0 −

i
8
δr,a +

i
8
δr,−a . (A.6)

In addition for the off-diagonal CFs it is found that,

GAB(r) = KAB(r) =
1
8
(δr,a +δr,−a) . (A.7)

These results explain the data plotted in Fig. 5 of the present manuscript. We recall that our
proof is restricted to |U | ≤ t.
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B The correlation functions in the χ-lattice

In this appendix, our purpose is to derive analytically the correlation functions G and K in the
quarter filled χ−Lattice. The BdG calculations are performed for small values of the Hubbard
parameter |U | at T = 0 K . The BdG Hamiltonian has the same form as that given in Eq. A.1
of the Appendix A, with ĥ↑k now given by,

ĥ↑k =

�

−µ− |U |4 n −te−iγk

−teiγk −µ− |U |4 n

�

, (B.1)

where γk = χ(cos(kx a) + cos
�

ky a
�

).
Notice that the χ−Lattice is both bipartite and time reversal symmetric as well which

implies ĥ↓∗-k = ĥ↑k.
To calculate the QP eigenstates, we use the same notation as those of Appendix A. At

|U | = 0, the quasi-particle (QP) eigenstates are located at E1,4 = ±2 t, and E2,3 = 0 which is
doubly degenerate, the chemical potential being µ = µ0 = − t. The one particle eigenstates
read,

|φ±0 〉=
1
p

2

�

∓e−i
γk
2

ei
γk
2

�

. (B.2)

The equations (A.4), (A.5) and (A.6) of Appendix A are valid as well in the case of the χ-
Lattice at quarter filling. Thus one straightforwardly gets, 〈ĉ†

Ak,↑ ĉAk,↑〉=
1
4 , 〈ĉ†

Ak,↑ ĉBk,↑〉=
1
4 e−iγk ,

〈ĉ†
Ak,↑ ĉ

†
A−k,↓〉=

1
4 and 〈ĉ†

Ak,↑ ĉ
†
B−k,↓〉=

1
4 e−iγk . It follows that,

GAA(r) = KAA(r) =
1
4
δr,0 , (B.3)

and the off-diagonal CFs are

GAB(r) = KAB(r) =
1
4

fAB(r) , (B.4)

where, we have introduced fAB(r) =
1
Nc

∑

k eik.re−iγk . Thus, GAB(r) and KAB(r) coincide, up to
a constant, with the (A,B) hoppings. We now propose to calculate the analytic expression of
fAB(r) for both |r|/a ≤ χ and |r|/a≫ χ.

Let us write r= (nx , ny), fAB(r) can be rewritten as the following product,

fAB(r) = Inx
(−iχ) · Iny

(−iχ) , (B.5)

where In(iχ) =
1

2π

∫ +π
−π einθ eiχ cos(θ ) is the modified Bessel function of the first kind and order n.

We can now rely on the properties of the Bessel functions such as In(−iχ) = (−i)nJn(χ) which
leads to

fAB(r) = (−i)nx+ny Jnx
(χ) · Jny

(χ) . (B.6)

In the regime where |r| ≤ χa one can expand the Bessel function [44],

Jn(χ)≃
√

√ 2
πχ

cos
�

χ − n
π

2
−
π

4

�

, (B.7)

and similarly for Jm(χ). This clearly explains the presence of the oscillations observed in Fig. 6
of the manuscript.

In the opposite limit, more precisely for χ ≪
Æ

|nx |+ |ny |, one has

Jn(χ)≃
1

Γ (n+ 1)

�χ

2

�n
. (B.8)
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According to the well known Stirling formula, for n≫ 1 one can write Γ (n+ 1) ≃ 1p
2πn
( n

e )
n.

Thus, along the x−direction for instance, it implies the following result,

fAB(r) = (−i)nx
J0(χ)
p

2πnx
enx ln ( eχ

2nx
) . (B.9)

This equation explains (i) the rapid decay observed in Fig. 6 of our manuscript and (ii) the
impossibility to extract a characteristic lengthscale from the decay at large distance of the
off-diagonal correlation functions.

C ξ̃ in the half-filled standard one dimensional chain

In this appendix, we provide analytical justifications for the unusual ∆-dependence of ξ̃ ob-
served in Fig. 7. The physics of the sawtooth chain at n= 1 being similar to that of a standard
half-filled chain, we consider the latter in this appendix. The normal correlation function G(r)
as defined in Eq. (4) reads

G(r) =
1
Nc

∑

k

1
2

�

1−
ϵk

Ek

�

e−ikr , (C.1)

where Nc is the number of unit cells, ϵk = −2t cos (ka) − µ − |U |/2 is the single particle
dispersion, ∆ the superconducting gap, and Ek =

q

ϵ2
k +∆

2 is the quasi-particle energy. We
recall that µ= −|U |/2 at half-filling.

We first consider the strong coupling regime (|U | ≫ t). Equation (C.1) reduces to

G(r) =
1
2
δr,0 +

t
2∆
(δr,−a +δr,a) , (C.2)

from which one immediately gets
∑

r

|G(r)|2 =
1
4
+O(∆−2) ,

∑

r

r2|G(r)|2 =
1
2

�at
∆

�2
+ o(∆−2) . (C.3)

Finally, using∆/|U | → 1/2 in the strong coupling regime, Eqs. (11), (12), and (13), one finds,

ξ̃=
1
p

2

at
∆

. (C.4)

As can be seen in Fig. 8, the numerical data coincide perfectly with this analytical expression
when ∆/t ≥ 3 (or equivalently |U |/t ≥ 5).

Let us now consider the weak coupling regime (|∆| ≪ t). By expanding in Eq. (C.1)
k = ±π2 + q one can write

G(r) =
1
2

�

δr,0 + I1(r)
�

, (C.5)

where

I1(r) =
2t
π

sin
�πr

2

�

Im

¨

∫
π
2

0

sin(q)
Æ

4t2 sin2(q) +∆2
eiqr dq

«

. (C.6)

This implies that for r = 2pa (p integer) I1(r) = 0. After replacing sin(q)≈ q one gets

I1(r) =
∆

πt
sin
�πr

2

�

∫ ∞

0

u sin
�

∆r
2t u
�

p
u2 + 1

du . (C.7)

Thus, we end up with,

I1(r) =
∆

πt
sin
�πr

2

�

K1

�∆r
2t

�

, (C.8)
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Figure 8: ξ̃ in the half-filled standard chain as a function of the superconducting gap
∆ (open circles). The dashed lines correspond to analytical expressions in the weak
and strong coupling regimes.

where we have used
∫∞

0
u sin(αu)p

u2+1
du= K1(α), K1 being the first order modified Bessel function

of the second kind [45]. Using Eq.(C.5) we can write

|G(r)|2 =
� ∆

2πt

�2
sin
�πr

2

�2
K2

1

�∆r
2t

�

, (C.9)

for r ̸= 0 and |G(0)|2 = 1
4 . In the limit of vanishing ∆, one numerically finds that

∑

r |G(r)|
2 = 1

2 . On the other hand the
∑

r r2|G(r)|2 can be calculated analytically. Indeed,
after a change of variable and after replacing the discrete sum by an integral one gets

∑

r

r2|G(r)|2 =
2
π2

t
∆

∫ ∞

0

u2K2
1 (u)du=

3
16

t
∆

, (C.10)

where we have used the fact that
∫∞

0 u2K2
1 (u)du= 3

32π
2 [45]. Finally, in the coupling regime

one finds

ξ̃=
p

3
4

s

t
∆

a . (C.11)

As can be seen in Fig.8, over three decades, the agreement between the analytical expression
and the full self-consistent numerical calculation is excellent in the weak coupling regime.
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