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Abstract

One way to perform field theory computations for the bond percolation problem is
through the Kasteleyn and Fortuin mapping to the n + 1 states Potts model in the limit
of n→ 0. In this paper, we show that it is possible to recover the ε-expansion for critical
exponents in finite dimension directly using the M-layer expansion, without the need
to perform any analytical continuation. Moreover, we also show explicitly that the criti-
cal exponents for site and bond percolation are the same. This computation provides a
reference for applications of the M-layer method to systems where the underlying field
theory is unknown or disputed.
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1 Introduction

The percolation problem provides one of the simplest examples of a second-order phase tran-
sition, in both the versions of site or bond percolation. Despite the simplicity of the model, it is
at the basis of different problems in many different fields, from condensed matter to telecom-
munication engineering, from graph theory to epidemic spreading [1,2]. In the standard site
(bond) percolation problem, each site (bond) is present independently of the neighbors with
probability p. Above a certain threshold pc , a giant cluster of nearest-neighbor sites is present
in the thermodynamic limit while below this threshold neighboring sites are grouped into many
small clusters of non-extensive size. The value pc corresponds to the transition point and one
can associate standard critical exponents that describe how critical observables behave near
pc . Despite the deep similarities with respect to critical behavior, the main difference between
percolation and other phase transition models is the absence of an associated Hamiltonian and
a corresponding partition function.

The renormalization group (RG) is the main tool to study second order phase transitions.
It can be applied in two ways: the first one is by performing explicitly an RG transformation
on a given two- or three-dimensional lattice while the second relies on field theory. The first
method typically requires uncontrolled approximations (needed to close the RG equations and
find a fixed point) while the second is more powerful as it allows one to systematically obtain
the critical exponents in dimension D in powers of ε = DU − D where DU is the upper critical
dimension. The first method can be applied to percolation as it is [3, 4] but one could think
that the lack of a Hamiltonian would make the application of the second impossible. However,
in a seminal paper, Kasteleyn and Fortuin showed that the bond percolation problem is exactly
related to the n → 0 limit of an n-component (n + 1 states) Potts model [5]. It was then
recognized [6] that this mapping allows the application of field-theoretical techniques and
today the exponents are known up to the 5th order in an ε-expansion around the upper critical
dimension [7–11].

In this paper, we reproduce the same expansion up to one-loop order by means of the
M -layer construction. This construction has been introduced in Ref. [12], and then applied
to a variety of models [13–18]. The useful property of the M -layer construction is that one
can also study the critical behavior, in finite dimensions, of problems which are not defined
by a Hamiltonian, such as the percolation. One has to introduce M − 1 independent lattices,
in addition to the original one; the M layers will then be coupled together through a random
rewiring of the bonds. The M →∞ limit gives the Bethe lattice solution [19] of the model,
while if M = 1 one obtains the original model. An expansion in 1/M can be properly set
up, that is in practice an expansion in the number of the topological loops considered. The
M -layer construction can be applied to any model that can be defined on a locally tree-like
graph, including percolation. This is interesting, because, with this approach, there is no need
to invoke the n→ 0 analytic continuation discovered by Kasteleyn and Fortuin. Furthermore,
with this method, we can also analytically verify that the critical exponents of site percolation
are equal to those of bond percolation.
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The additional value of this paper is methodological: we show for the first time that from
the 1/M expansion on the M -layer lattice one can obtain the ε-expansion, through the suitable
introduction of a dimensionless beta function in analogy with what is usually done in standard
field theory [20, 21]. This is a fundamental step that will help in applying in the future the
same techniques to more complicated systems, for which a finite-dimensional solution is still
not known, such as the Edward-Anderson spin-glass model [17] or Anderson localization [18].

The paper is organized as follows: In Section 2 we present the model and the main results,
in particular we sketch the derivation of the ε-expansion for the critical exponents from the
1/M expansion of two- and three-point correlation functions. In Section 3 we introduce the
problem on the Bethe lattice with a novel derivation of the cluster distribution function. In
Section 4 we recall the general properties of the 1/M expansion and the operative rules to
compute it. In Section 5 we present the computation of the observables in the M -layer frame-
work for both site and bond percolation. In Section 6 we apply one of the standard methods
to compute critical exponents in ε-expansion. Finally, in Section 7, we give our conclusions.

2 Models and main results

In this Section we list the results of the application of the M -layer construction to both the bond
and site percolation problems on a hyper-cubic lattice in D dimensions. We briefly describe
the steps needed to reach the final results which will be summarized next.

In the standard site (respectively bond) percolation problem, each site (respectively bond)
is present, or “active”, independently of the neighbors with probability p. In the site percolation
problem one then defines a cluster as a subset of nearest-neighbor active sites, while in bond
percolation a cluster is defined as a subset of sites connected by nearest-neighbor active bonds.
At pc a giant cluster appears, that contains a finite fraction of all the sites N . Our analysis will
mainly apply to the non-percolating phase p < pc and from now on we refer to this case.
The critical behavior in the non-percolating phase is characterized by considering the average
number n(s, p) of clusters of size s in a system of size N . This distribution is cut off at a typical
size s∗ that diverges at the critical point. We also consider the q-point function Cq(x1, . . . , xq)
that gives the probability that the sites at x1, . . . , xq belong to the same cluster. According to
scaling arguments [1, 22], we expect that the two-point function obeys the following scaling
form for large |x1 − x2| and for p close to pc:

C2(x1, x2) =
1

|x1 − x2|D−2+η
fC2

� |x1 − x2|
ξ

�

, (1)

where fC2
is a proper scaling function, η is the anomalous dimension and ξ is the correlation

length that diverges at the critical point as:

ξ∼
1

|p− pc|ν
. (2)

The typical size s∗ scales with the correlation length as

s∗ ∼ ξDf , (3)

where Df stands for the fractal dimension of the clusters. The distribution of the cluster sizes
also obeys a scaling law [1,22]:

n(s, p) = s−τ fn

�

|p− pc|sσ
�

, (4)
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where fn(x) is another scaling function. We also consider the space integrals of the Cq(x1,. . ., xq),
called susceptibilities,

χq ≡
∑

x2,...,xq

Cq(x1, . . . , xq) , (5)

that are independent of x1 in a homogeneous system (they only depend on the differences
between the points). They are related to the moments of the n(s, p) through:

χq =
∞
∑

s=0

sq n(s, p) . (6)

The scalings of the typical size s∗ and the correlation length ξ give

σ =
1
νDf

, (7)

while, given the relation

τ= 1+
D
Df

, (8)

comparing Eqs. (5) and (6) and using the scaling of n(s, p) one can easily find that the sus-
ceptibilities diverge as

χq ∼ ξ−D+Df q , (9)

from which it follows that the following quantity goes to a constant at the critical point:

λ∝ ξ−Dχ
2
3

χ3
2

. (10)

On the M -layer lattice χ2 and χ3 are given by the Bethe lattice solution in the limit M →∞
and we computed the first 1/M correction, for both site and bond percolation. Once the two-
point observable is computed, with the M -layer construction, the upper critical dimension, DU ,
can be deduced from the Ginzburg criterion and for the percolation problem it turns out to be
DU = 6. At this point of the computation a standard procedure to compute critical exponents
is applied [20]. In particular we write λ as:

λ= u−
7
4

u2

(4π)
D
2

Γ

�

3−
D
2

�

+O(u3) , (11)

where the constant u is defined as u ≡ g mD−6, where m ≡ ξ−1 and g is a O(1/M) constant
that depends on the microscopic details of the model including whether we consider bond or
site percolation. Note that the dimensionless constant u diverges at the critical point for D < 6
because m vanishes, while λ remains finite at the critical point according to Eq. (9). Notice
that, in order to understand this last statement from Eq. (11), one should consider the relation
between λ and u to all orders in u, but in this perturbative framework we only compute the
first correction, to O(u2). We expect that:

λ≈ λc + c1 ξ
ω = λc + c1 m−ω , for ξ→∞ , m→ 0 , (12)

where c1 is a model-dependent constant, while ω is a universal exponent that controls the
corrections to scaling [20]. Now, following a standard field-theoretical procedure (see Ref.
[20], Chap. 8), we define the function b(λ), using the above relationships:

b(λ)≡ m2 ∂

∂m2
λ≈ −

ω

2
c1 m−ω ≈ −

ω

2
(λ−λc) , (13)
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meaning that at the critical point

b(λc) = 0 , ω= −2 b′(λc) . (14)

From (11), we obtain an expression of b(λ) to second order in λ from which the following
scenario emerges: for D ≥ DU = 6 only the solution λ= 0 exists, meaning that λ tends to zero
at the critical point with ω= 6− D, while for ε≡ 6− D > 0 a new solution λc ̸= 0 appears:

λc =
2 (4π)3

7
ε+O(ε2) , (15)

and λ tends to λc at the critical point, with ω= −ε+O(ε2). Here the universality is realized:
the non-trivial fixed point λc doesn’t depend anymore on the specific value of g and thus it
doesn’t depend on the microscopic details of the system (including if we are dealing with bond
or site percolation). Moreover we confirm that, due to universality, the values of the critical
exponents do not depend on the value of M .

Following similar standard computations (see Ref. [20], Chap. 8), from the value of λc
and the scaling laws, we obtained the ε-expansion for the critical exponents:

ν=
1
2
+

5
84
ε+O(ε2) , (16)

η= −
1

21
ε+O(ε2) . (17)

Comparing Eq. (9) with the scaling law χ2 ∼ ξ2−η we obtain

Df =
D+ 2−η

2
, (18)

all the other critical exponents can be obtained from η and ν through the scaling laws given
above.

We stress that the result is independent of the actual values of any non-universal constant,
ensuring that the critical exponents are the same for bond and site percolation, as explained
more extensively in Sec. 5. As it should, the results coincide with those obtained from the
ε-expansion for the (n+ 1)-state Potts models in the limit n→ 0, which coincides with bond
percolation according to the Fortuin-Kasteleyn mapping. In appendix D we have also computed
the expansion of χ4 in powers of 1/M checking that it diverges at the critical point with an
exponent equal to that predicted by Eq. (9).

3 Percolation on the Bethe lattice

In this Section we show how to derive equations for the critical behavior of g(s, p), defined
as the probability that a randomly chosen site belongs to a cluster of size s, including s = 0
meaning that the site is not active. We discuss the case of site percolation on a Bethe lattice
and how to derive the exact critical exponents in this case. Given the definition of n(s, p), in
Sec. 2, we have

g(0, p) = (1− p) , g(s, p) = s n(s, p) , for s > 0 . (19)

Here and in the following we call “Bethe lattice” a random regular graph with fixed connectivity
c. Notice that g(s, p) as it should is normalized to 1 because the probability that a randomly
chosen site belongs to a cluster is

∑

s s n(s, p) = p. We also define the associated “cavity”
probability, gcav(s, p), as the probability that a randomly chosen site, for which one of its c
edges is removed, belongs to a cluster of size s. This definition is useful since on a Bethe
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Figure 1: Graphic representation of Eqs. (20) and (21). Left: on a Bethe lattice
with connectivity c one of the edges of site i is removed, represented with a dashed
line. The c − 1 remaining neighboring sites are connected by site i only, thus the
probabilities gcav(s1, p), . . . , gcav(sc−1, p) are factorized. The total resulting size is
s = 1+s1+ · · ·+sc−1. Right: in this case none of the edges of site i is removed. Again
the cavity probabilities are factorized, but in this case the product includes gcav(sc , p)
too.

lattice two sites are connected by a unique sequence of adjacent edges, so that, removing one
edge, the two sites will be completely independent and the resulting probability to belong to
a cluster factorizes [23]. Thus, given that each site is active with probability p, we can write
a self-consistent equation for gcav(s, p) on the Bethe lattice with fixed connectivity c:

gcav(s, p) = (1− p)δs,0 + p
∞
∑

s1=0

· · ·
∞
∑

sc−1=0

gcav(s1, p) . . . gcav(sc−1, p)δs,1+s1+···+sc−1
, (20)

where the first term comes from the case in which the given site is not present, and the resulting
size of the cluster is s = 0, while the second is the probability that the site is present, p, times
the product of the factorized probabilities that the c−1 neighboring sites (one edge is removed,
see Fig. 1) belong to clusters of sizes s1, s2, . . . , sc−1. In this second case the resulting size must
be the sum of the sizes plus one, the given site. The probability g(s, p) can then be expressed
in terms of the cavity probability as:

g(s, p) = (1− p)δs,0 + p
∞
∑

s1=0

· · ·
∞
∑

sc=0

gcav(s1, p) . . . gcav(sc , p)δs,1+s1+···+sc
, (21)

the only difference being that the product is over c terms gcav , since all the c edges of the
given site are present. Next we define the generating function g̃(t, p) ≡

∑∞
s=0 g(s, p)e−ts and

its cavity counterpart, g̃cav(t, p). Eq. (20) becomes:

g̃cav(t, p) = (1− p) + p
�

g̃cav(t, p)
�c−1

e−t . (22)

Deriving the above equation with respect to t and setting t = 0 we obtain

g̃ ′cav(0, p) =
p

p (c − 1)− 1
. (23)

The moments of g(s, p) are related to the derivatives of g̃(t, p) in t = 0, in particular, recalling
the definition (6) we have:

χ2(p) = − g̃ ′(0, p) =
p(p+ 1)

1− p(c − 1)
, (24)
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that diverges, as expected, at the critical point pc = 1/(c − 1). It is possible to obtain the
previous divergent behavior considering the two-point correlation C2(x1, x2) defined in the
previous Section. As we will see in Sec. 5, the correlation between two sites at distance L on
the Bethe lattice is C2

�

|x1 − x2|= L
�

= p pL . The associated susceptibility, χ2, turns out to be

χ2 =
∑

x2

C2

�

|x1 − x2|
�

= p+ p
∞
∑

L=1

c (c − 1)L−1 pL =
p(p+ 1)

1− p(c − 1)
, (25)

where the sum over x2 is over all the sites of the Bethe lattice and c (c − 1)L−1 is the number
of neighboring sites at distance L ≥ 1. We notice that in the Bethe lattice the two-point
correlation is always exponentially decaying, also at the critical point p = pc . The reason for
the divergence is the number of neighboring sites which is exponential in the distance L. This
means that the correlation length ξBL , implicitly defined by

C2(L)∝ pL ≡ e−
L
ξBL , (26)

is always finite and equal to
�

− log(p)
�−1

. With this definition of ξBL the anomalous dimen-
sion, η, associated to the power law behavior of C2(L), and the exponent ν associated to the
power law behavior of the correlation length, are not defined on the Bethe lattice.1 One of
the interesting features of the M -layer construction is that it allows to compute η and ν also
in the limit M →∞, as we will discuss later.

Scaling of n(s , p) In order to compute the scaling of n(s, p), we are interested in the func-
tions g(s, p) for p close to the critical point and s large, that corresponds to small values of t
in g̃(t, p). We now define

δ g̃(t, p)≡ g̃(t, p)− 1=
∞
∑

s=0

g(s, p)(e−s t − 1) , (27)

and its cavity counterpart δ g̃cav(t, p)≡ g̃cav(t, p)−1. Differentiating Eq. (22) with respect to
t we obtain, for small values of t and p close to pc:

δ g̃ ′cav(t, p)
�

1− p/pc − (c − 2)δ g̃cav(t, p)
�

= −pc , (28)

from which we have
δ g̃cav(t, p) = a

�

1− (1+ t/t∗)1/2
�

, (29)

where

δp ≡ p− pc , a ≡ −δp
c − 1
c − 2

, t∗ ≡ δp2 (c − 1)3

2 c − 4
. (30)

For small values of t and δp we also obtain

δ g̃(t, p) =
c

c − 1
δ g̃cav(t, p) . (31)

Replacing the sum with an integral (which is justified by the fact that small values of t corre-
spond to large values of s) we obtain, computing the inverse Laplace transform of Eq. (29)
and using Eq. (31)

g(s, p)∼
1

s3/2
e−s t∗ → n(s, p)∼

1
s5/2

e−s t∗ , (32)

1Notice that one can consider an alternative definition of ξ as ξ2 ≡
∑

x2
|x1−x2 |2C2(x1 ,x2)
∑

x2
C2(x1 ,x2)

[1,2]. With this definition

ξ is divergent on the Bethe lattice. This discrepancy is a pathology associated to the topology of the Bethe lattice
in which the volume grows exponentially with the distance while it grows as a power law in finite dimension. In
finite dimension this discrepancy is not present and indeed we will choose the second definition.
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that obeys Eq. (4) with exponents

σ =
1
2

, and τ=
5
2

, (33)

that we identify with the mean-field values. In the next Sections we will consider percolation
on the M -layer random lattice in finite dimension D. In the limit M →∞ the function n(s, p) of
the M -layer becomes identical to that of the Bethe lattice and therefore τ= 5/2 and σ = 1/2.
In addition, we will show that for M →∞ the two-point function obeys the scaling form (1)
with exponents

ν=
1
2

, η= 0 , (34)

in all dimensions D ≥ 2, see the comment after Eq. (64). Note that these relationships are
consistent with (7) and (8) only for D = DU = 6. Indeed τ= D/Df + 1 is a hyperscaling rela-
tionship that is not generically valid [22] at variance with the more general σ−1 = νDf , which
implies Df = 4 for the M → ∞ model in any dimension. Computing the 1/M corrections
around the M →∞ limit, we will show that for M finite the critical exponents are the same
of the M →∞ limit for D ≥ DU = 6 while they are different for D < DU = 6. On the other
hand for D < 6 both relationships (7) and (8) hold. We note that the M →∞ model plays
essentially the role of the Gaussian model in ferromagnetism, see [20], Chaps. 4 and 5.

4 The M-layer expansion

Conceptually the M -layer method is rather straightforward: 1) one introduces a D-dimensional
random lattice depending on a parameter M , the limit M →∞ of the model is solvable as
it coincides with the Bethe lattice solution; 2) then one computes the finite-M corrections in
powers of 1/M around the Bethe lattice solution. The goal is to study the critical behaviour
near a second order phase transition for a model on a given lattice and, as we anticipated in
Section 2, from the 1/M expansion one can obtain the ε-expansion. The M -layer expansion
has been introduced in Ref. [12] where diagrammatic rules were derived to compute 1/M cor-
rections, in this Section we recall these rules, referring to the original paper for their derivation
and all the details. Note that percolation itself is particularly useful to understand the origin
of these rules and it is treated as an example in Section D of Ref. [12].

One can build the so-called M -layer construction considering M different layers of the
original model, and then rewiring the bonds between each nearest-neighboring node among
the layers in such a way that each node on each layer still has the same number of neighbors,
that now can be placed at different layers [24]. In the following we will focus on D-dimensional
hyper-cubic lattices (for which the connectivity is 2D), even if the M -layer construction can be
applied to any type of lattice. We call “topological loop” a sequence of adjacent edges on the
lattice that starts and ends in the same site. While finite dimensional lattices are characterized
by the presence of many short topological loops, in the end of the procedure, the number of
topological loops in the M -layer lattice will typically be reduced and in the M →∞ limit there
will be no loops of finite length: the M →∞ solution of the model will correspond to the Bethe
solution [19], computed on a random regular tree-like graph with the same fixed connectivity
as the original model. At this point we can expand around this Bethe solution, introducing the
small parameter 1/M . The original model corresponds to M = 1, thus in principle one should
need all orders in 1/M to obtain the correct solution for the original model. However, we are
interested in the critical behaviour of the model, which should be independent of the actual
value of M due to universality. This expectation will indeed be confirmed in the context of
percolation by the present computation. Furthermore, this implies that at each order in the
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1/M expansion we only need to consider the contributions that diverge the most approaching
the critical point. One can show that the 1/M expansion for a generic q-point observable
corresponds to an expansion in the number of topological loops considered when computing
that observable. In the limit of large M , in a given realization of these random rewirings the
q sites considered for the observable will be connected with highest probability (proportional
to 1/M) by a sequence of adjacent edges (a “path”) without topological loops, with lower
probability by a path containing one topological loop and so on. In order to average over the
rewirings the sum over all the possible realizations is needed, but we can retain the larger
(in powers of 1/M) contributions. We will call the path connecting the q sites on a given
realization a “topological diagram”, that can contain an arbitrary number of topological loops,
zero in the limit M → ∞. In particular, if one wants to compute the 1/M expansion for a
generic observable O, the following steps are required:

• Step 1: Identify the possible topological diagrams

Depending on the order at which one wants to perform the expansion, one should iden-
tify the possible topological diagrams over which one needs to compute the chosen ob-
servable. If one is interested in the leading order, one should only look at diagrams
without loops, that correspond to the Bethe locally tree-like topology. If one wants to
compute the next-to-leading order, one has to identify all the possible topological dia-
grams that correspond to a Bethe lattice in which it has been manually injected a single
topological loop, while any additional topological loop inserted will bring a new factor
1/M in the expansion.

• Step 2: Weights, number of projections and symmetry factors

For any diagram G identified in Step 1, one needs to associate to it:

– a weight W (G), that will be a power of 1/M and will indicate the probability that
a topological diagram of that kind is obtained in the rewiring procedure;

– a symmetry factor S(G), completely equivalent to that introduced in field theory
for Feynman diagrams [21], that takes into account the number of ways in which
vertices and lines can be switched leaving the topological structure of the diagram
unaltered, see appendix C of Ref. [12] for a more detailed explanation of the equiv-
alence between S(G) and Feynman diagrams symmetry factors;

– the number of realizations of the chosen topological diagram on the original lattice,
N (G): just as an example, if the chosen diagram is a line of length L between two
points x1 and x2, the number of such diagrams in the M -layered lattice having
a different projection on the original lattice corresponds to the number of non-
backtracking paths (NBP) of length L between the two points and its analytical
expression is known in the literature [12, 25]. One can define NL(x1, x2, µ̂, ν̂) as
the number of NBP of length L where the directions µ̂ and ν̂ of the lines entering
respectively in the external points x1 and x2 is fixed to one among the 2D possible
ones. In the large L limit, the actual value of the number of NBP will be independent
on those directions, and we will simply define this number as NL(x1, x2). The total
number of the simple line diagrams of length L between two points x1 and x2
will thus be N (G) = (2D)2NL(x1, x2), where the factor (2D)2 counts the possible
entering directions of the line in the two external points. If one has a more complex
diagram, to identify N (G) it is sufficient to multiply a factor NL(x i , x j) for each

internal line of length L, a factor 2D for each external vertex and a factor (2D)!
(2D−k)!

for any internal vertex of degree k, to count the different possible directions of the
lines entering the vertex.
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• Step 3: Computation of the line-connected observable on the chosen diagram

For any diagram G identified in Step 1, one then needs to compute the value O(G) of the
chosen observable computed on a Bethe lattice in which the topological structure of that
diagram has been manually injected. This observable will depend on the topology of the
diagram and on the length of the lines. In order to compute, for a given observable, the
expansion in the number of loops, or equivalently in powers of 1/M , one should iso-
late different contributions coming from a given topological diagram. Generically, the
contribution of a diagram without loops is contained in the one coming from the same
diagram with some additional lines composing a loop. For this purpose we want to sub-
tract the first contribution from the one coming from the loop diagram, this amounts to
compute the so-called “line-connected observable”, Olc(G). For the diagrams considered
in this paper the following operative definition is sufficient: in order to compute Olc(G)
one has to compute the observable on the given diagram G and then subtract all the con-
tributions from the observable computed on diagrams where a line composing the loop
(if any) is removed. For a more detailed treatment the reader is referred to Ref. [12].

• Step 4: Sum of the contributions

At the end, we need to sum the contributions to the chosen observable coming from the
different chosen diagrams. Because the values of the chosen observable only depend on
the projection of the considered diagrams, for each diagram G, we multiply the value
of the line-connected observable Olc(G) by N (G), S(G), W (G), and we sum over the
positions of internal vertices and over the lengths of the internal lines.

5 M-layer for percolation in D dimensions

In this Section we apply the procedure described in the previous Section to the percolation
problem. We consider both the problems of site and bond percolation on a hypercubic lattice
in D dimensions, which we denote alZD, considering al the lattice spacing. Following the
notation of Sec. 2 we define p (where 0 < p ≤ 1) as the probability that a site or an edge is
present, for the case of site or bond percolation respectively. Since the M -layer approach is a
way to construct an expansion for observables around the Bethe solution, we define the “bare
mass”

µ≡ − ln
�

p
pc

�

, for p ∼ pc , (35)

where pc = 1/(2D−1) is the critical value for both site and bond percolation on a Bethe lattice
with branching ratio 2D− 1, above which the so-called “giant cluster” is present.

Following the prescriptions of the M -layer construction [12,24] we report here the results
of the application to both percolation problems in the non-percolating phase, p < pc . We
are interested in two observables: the two and three-point correlation functions C2(x1, x2)
and C3(x1, x2, x3), where · denotes the average over the rewirings of the M -layer procedure.
According to the M -layer rules these correlation functions will be written as sums, over dif-
ferent diagrams, of Cn, lc

�

G; {L}
�

, the n-point line-connected correlation, averaged over the
realizations of the percolation problem and computed on the diagram G, embedded on a tree
graph, where {L} indicates the lengths of the different lines of the diagram. For both site
and bond percolation, the two-point (three-point) correlation is defined as the probability
that two (three) sites, at positions x1 and x2 (x1, x2 and x3) are occupied and belong to the
same cluster. In the end, at one loop level, we must subtract pieces already considered in
loop-free diagrams, to compute the “line-connected” observable [12,24]. We analyse the two
observables separately, following for each of them the steps listed in the previous Section.
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Figure 2: Diagrams that contribute to the two-point correlation functions up to one
loop.

Observable: C2(x1, x2)

• Step 1: Identify the possible topological diagrams

The simplest diagram connecting two points is the bare line, which we will call G1.
Including the possibility of a loop to be present we consider the diagram composed of
four lines with two vertices of degree three, where the two internal lines compose a loop.
We will call this diagram G2.

Other possibilities are the tadpole-type diagrams, connecting two points with a loop gen-
erated by one four-degree vertex or connecting two points by two three-degree vertices,
respectively the diagrams G′ and G′′ in Fig. 2. Nevertheless, these last two diagrams
give no contributions to the line-connected two-point observable for percolation, as we
will see in Step 3 below. We won’t consider them in the following steps.

• Step 2: Weights, number of projections and symmetry factors

– Diagram G1:

* W (G1) =
1
M ;

* N (G1; L; x1, x2) = (2D)2NL(x1, x2);

* S(G1) = 1.

– Diagram G2:

* W (G2) =
1

M2 ;

* N (G2; L⃗; x1, x2) = (2D)2
�

(2D)!
(2D−3)!

�2 ∑

x0,x ′0

NL1
(x1, x0)NL2

(x ′0, x2)
∏

i=A,B
NLi
(x0, x ′0);

* S(G2) = 2,

where L⃗ = (L1, LA, LB, L2).

• Step 3: Computation of C2, lc(G1; L) and C2, lc(G2; L⃗)

Given the definition of the line-connected two-point correlation for both percolation
problems, we firstly compute the contributions of diagrams G1 and G2 for the problem
of site percolation:

C2, lc(G1; L) = p pL , (36)

C2, lc(G2; L⃗) = −pL1+L2+LA+LB . (37)

The first result is immediate since, in the non-percolating phase, all the L + 1 sites,
connected by a line of length L, must be active, in order to connect the two sites at the
extremities. The second result appears because, for the sites at the extremities to be

11

https://scipost.org
https://scipost.org/SciPostPhys.18.1.030


SciPost Phys. 18, 030 (2025)

connected, one or both lines of the loop must consist on active sites, in addition to the
external lines, which also need to be composed of active sites. The associated probability
for this to happen is pL1+1(pLA−1 + pLB−1 − pLA+LB−2)pL2+1. The aforementioned result
is obtained subtracting the straight line contributions, already taken into account with
G1: pL1+1pLA−1pL2+1 and pL1+1pLB−1pL2+1. This last operation is the application of the
“line-connected” definition [12].

Performing the same computation for diagrams G′ and G′′ we obtain zero, as anticipated.
The reason is that the two tadpoles, that enter the site x0, do not change the probability
that sites x1 and x2 belong to the same cluster with respect to the case where the loop is
not present. Indeed, independently of the lines of the tadpole, site x0 must be active in
order to connect the two sites, then, subtracting the contributions needed to define the
line-connected observable, that are the simple lines without tadpoles, the net contribu-
tion is zero. These diagrams are instead relevant in the percolating phase that we aim
to study in a subsequent work.

A similar computation can be performed for the bond percolation. In this case, consid-
ering the contribution of G1, in order for the two sites to be in the same cluster, all the
edges connecting the two must be active:

Cbond
2, lc (G1; L) = pL , (38)

similarly, the line-connected contribution for G2, is

Cbond
2, lc (G2; L⃗) = −pL1+L2+LA+LB . (39)

The same argument, used for the site percolation problem, can be applied to the topo-
logical diagrams G′ and G′′ in the bond percolation case, for which they give zero con-
tribution too.

• Step 4: Sum of the contributions

The expression for C2(x1, x2), that is for the site percolation, is

C2(x1, x2) =
1
M

∑

L

N (G1; L; x1, x2)C2, lc(G1; L)

+
1

2M2

∑

L⃗

N (G2; L⃗; x1, x2)C2, lc(G2; L⃗) +O
�

1
M3

�

, (40)

while, for the bond percolation problem, we have

Cbond
2 (x1, x2) =

1
M

∑

L

N (G1; L; x1, x2)Cbond
2, lc (G1; L)

+
1

2M2

∑

L⃗

N (G2; L⃗; x1, x2)Cbond
2, lc (G2; L⃗) +O

�

1
M3

�

. (41)

We can notice that the only difference is for the observable computed on a given diagram,
here G1 and G2, which is the only model dependent part of the M -layer computations.
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Figure 3: Diagrams that contribute to the three-point correlation functions up to one
loop.

Observable: C3(x1, x2, x3)

• Step 1: Identify the possible topological diagrams

The simplest diagram connecting three points is the bare three-degree vertex, which we
will call G3. Including the possibility for a loop to be present, we consider the diagram,
composed of six lines, with three vertices of degree three, we will call this diagram G4.
At one-loop level there are three more diagrams connecting three points with a single
loop, which are the same as G3, but where one of the external legs is dressed with G2. We
call such a diagram G5, including all the permutations. All these diagrams are reported
in Fig. 3.

• Step 2: Weights, number of projections and symmetry factors

– Diagram G3:

* W (G3) =
1

M2 ;

* N (G3; L⃗′; x1, x2, x3) = (2D)3 (2D)!
(2D−3)!

∑

x0

∏3
i=i NLi

(x i , x0);

* S(G3) = 1.

– Diagram G4:

* W (G4) =
1

M3 ;

* N (G4; L⃗′′; x1, x2, x3) = (2D)3
�

(2D)!
(2D−3)!

�3

×
∑

x0,x ′0,x ′′0

NL1
(x1, x0)NL2

(x2, x ′0)NL3
(x3, x ′′0 )NLA

(x0, x ′0)NLB
(x0, x ′′0 )NLC

(x ′0, x ′′0 );

* S(G4) = 1.

– Diagram G5:

* W (G5) =
1

M3 ;

* N (G5; L⃗′′′; x1, x2, x3) = (2D)3
�

(2D)!
(2D−3)!

�3

×
∑

x0,x ′0,x ′′0

NL1
(x1, x0)NL2A

(x0, x ′0)NL2B
(x2, x ′′0 )NL3

(x3, x0)
∏

i=A,B
NLi
(x ′0, x ′′0 );

* S(G5) = 2 ,

where L⃗′ = (L1, L2, L3), L⃗′′ = (L⃗′, LA, LB, LC) and L⃗′′′ = (L1, L2A
, LA, LB, L2B

, L3).
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• Step 3: Computation of C3, lc(G3; L⃗′), C3, lc(G4; L⃗′′) and C3, lc(G5; L⃗′′′)

As for the two-point function we compute the contributions, starting from the site per-
colation problem:

C3, lc(G3; L⃗′) = p pL1+L2+L3 , (42)

C3, lc(G4; L⃗′′) = −2pL1+L2+L3+LA+LB+LC , (43)

C3, lc(G5; L⃗′′′) = −pL1+L2A+L2B+LA+LB+L3 . (44)

The result for G3 is easily derived, considering that all the sites of the topology must be
active for the extremities to be connected. The result for G5 is obtained by multiplying
the contribution for the bare vertex by the loop correction of the two-point function,
diagram G2, with the corresponding lengths. The contribution of G4 is a generalization
of the computation for G2; to connect the three extremities two of the three (or all the
three) lines of the loop must consist on all active sites. Moreover, in this case we have
to subtract three contributions, corresponding to cutting LA, LB, and LC respectively,
already included in the bare contribution G3.

Analogously to the two-point function, we use the same arguments to compute the con-
tributions for the bond percolation three-point function:

C bond
3, lc (G3; L⃗′) = pL1+L2+L3 , (45)

C bond
3, lc (G4; L⃗′′) = −2pL1+L2+L3+LA+LB+LC , (46)

C bond
3, lc (G5; L⃗′′′) = −pL1+L2A+L2B+LA+LB+L3 . (47)

• Step 4: Sum of the contributions

The expression for C3(x1, x2, x3), that is for the site percolation, is

C3(x1, x2, x3) =
1

M2

∑

L⃗′

N (G3; L⃗′; x1, x2, x3)C3, lc(G3; L⃗′)

+
1

M3

∑

L⃗′′

N (G4; L⃗′′; x1, x2, x3)C3, lc(G4; L⃗′′)

+
1

2M3

∑

L⃗′′′

N (G5; L⃗′′′; x1, x2, x3)C3, lc(G5; L⃗′′′) +O
�

1
M4

�

. (48)

As noticed for the two-point function, the expression of C bond
3 (x1, x2, x3), that is for

the bond percolation, is the same as C3(x1, x2, x3) with the corresponding observables:
C bond

3, lc (G3; L⃗′), C bond
3, lc (G4; L⃗′′) and C bond

3, lc (G5; L⃗′′′). We do not write it for brevity.

In appendix C we discuss why we didn’t include other possible but irrelevant diagrams to
study the critical behavior of the percolation problem and in appendix D we present the
explicit computation of the leading order critical behaviour of the four-point correlation
function.

Computation of the moments of n(s , p) In order to compute χ2 and χ3 we Fourier trans-
form C2(x1, x2) and C3(x1, x2, x3), given in Eqs. (40) and (48), using the following conven-
tion:

bh(k) = aD
l

∑

x∈alZD

h(x)eikx , h(x) =

∫

�

− πal
, πal

�

dDk
(2π)D

bh(k)e−ikx , (49)
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that implies
�

2π
al

�D

δD(k) =
∑

x∈alZD

eikx . (50)

We also use the fact that NL(x1, x2) is a function of the difference between the starting and
arrival point only, so that, in Fourier space, we have

ÒNL(k1, k2) = (2π)
DδD(k1 + k2)ÒNL(k1) , (51)

where, for small k [12,15],

ÒNL(k)≈ 2D(2D− 1)L−1aD
l e−k2 a2

l L/(2D−2) . (52)

In view of the fact that in the critical region the sums will be dominated by large L contribu-
tions, we may write the sums over the lengths as integrals:

∞
∑

L=1

→
∫ ∞

1/Λ2

d L , (53)

where we introduced the UV cutoff Λ= 1 to make contact with field theory. Note that while in
field-theory the UV cutoff is inserted manually, in the M -layer construction it arises naturally
due to the lattice spacing (see more details in appendix B). The resulting expressions, for the
site percolation case, of the two and three-point functions are respectively

bC2(k, k′) =
bCbB2aD

l

bAµ

1
bk2 + 1

(2π)DδD(k+ k′)

×

�

1−
bAµ

D
2 −3

2(bk2 + 1)

∫

dD
bq

(2π)D

∫

dbLAdbLBe−(1+(
bk−bq)2)bLAe−(1+bq

2)bLB

�

+O
�

1
M3

�

, (54)

and

bC3(k1, k2, k3) =
bCbB3a2D

l

bAµ3

(2π)DδD(k1 + k2 + k3)

(bk2
1 + 1)(bk2

2 + 1)(bk2
3 + 1)

(55)

×
�

1− 2bAµ
D
2 −3

∫

dD
bq

(2π)D

∫

dbLAdbLBdbLC e−(1+(
bk2+bk3+bq)2)bLAe−(1+(

bk2+bq)2)bLB e−(1+bq
2)bLC

−
1
2

bAµ
D
2 −3

(bk2 +bk3)2 + 1

∫

dD
bq

(2π)D

∫

dbLAdbLB e−(1+(
bk2+bq)2)bLAe−(1+bq

2)bLB + perm.

�

+O
�

1
M4

�

,

where µ is the one defined in Eq. (35). We also defined the following non-universal constants:

bA≡
1
M

�

(2D)!
(2D− 3)!

�2

p−1 (2D− 2)
D
2

�

2D
2D− 1

�3

, (56)

bB ≡
1
M

2D
�

(2D)!
(2D− 3)!

� �

2D
2D− 1

�2

, (57)

bC ≡ (2D− 2)
D
2 , (58)

and we rescaled the momenta and lengths according to:

bk ≡ k
al

p

µ(2D− 2)
, and bLi ≡ Liµ . (59)
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Note that in Eqs. (54), (55) we have omitted the the extremes of integration (µ/Λ2,∞) of
the integrals over bL. In appendix A we show how to generalize this kind of computation for
a Ve-point function, with Ve ≥ 2, moreover we explain the reasoning behind the identification
of the constants bA, bB and bC . The same steps can be done for the bond percolation problem,
the only difference being the definition of the non-universal constant bA:

bAbond ≡
1
M

�

(2D)!
(2D− 3)!

�2

(2D− 2)
D
2

�

2D
2D− 1

�3

, (60)

in which no factor p−1 appears, at variance with Eq. (56). In the following we will perform
explicit computations for the site problem only, the reader can reproduce them for the bond
percolation simply using Eq. (60) instead of Eq. (56).

In appendix B we show that the above expression, for bC2(k, k′) and bC3(k1, k2, k3), are
precisely the same that appear from the Feynman diagrams of the corresponding scalar cubic
field-theory obtained from the Fortuin-Kasteleyn mapping to the n+1-state Potts model in the
limit n→ 0, corresponding to percolation [6–9].

From the above expressions we compute the functions χq introduced in Section 2. Notice
that we did not rescale the momenta inside the momentum conservation delta functions, thus,
to compute χq, according to Eq. (5), we have simply to divide by a(q−1)D

l , remove (2π)D times
the conservation delta function and set the external momenta to zero. This leads to

χ2(µ) =
bCbB2

bAµ

�

1−
bAµ

D
2 −3

2(4π)
D
2

∫

dbLAdbLB

(bLA+ bLB)
D
2

e−bLA−bLB

�

+O
�

1
M3

�

, (61)

χ3(µ) =
bCbB3

bAµ3

�

1−
2bAµ

D
2 −3

(4π)
D
2

∫

dbLAdbLBdbLC

(bLA+ bLB + bLC)
D
2

e−bLA−bLB−bLC

−
3
2
bAµ

D
2 −3

∫

dbLAdbLB

(bLA+ bLB)
D
2

e−bLA−bLB

�

+O
�

1
M4

�

. (62)

Ginzburg criterion for DU Once the two-point function is computed, in this paper using the
M -layer construction, it is possible to deduce the upper critical dimension of the problem, DU ,
applying the Ginzburg criterion in the non-critical phase [26]. We first introduce the function
bG(k), corresponding to the propagator in the field-theoretical language, as

bC2(k, k′)≡ (2π)DδD(k+ k′)bG(k) . (63)

Using this defintion, together with Eq. (54), we have

bG(k)∝
1
M

1
ρk2 +µ

 

1−
1
M

c
ρk2 +µ

∫

dDq
(2π)D

∞
∑

LA, LB=1

e−(ρ(k−q)2+µ)LAe−(ρq2+µ)LB

!

+O
�

1
M3

�

,

(64)
where we rescaled momenta and lengths according to Eq. (59), with ρ ≡ a2

l /(2D − 2) and
c ≡ M bA/2 defined in order to make the 1/M factors explicit. Notice that we also made use
of the relation in Eq. (53) to write sums instead of integrals. Here we understand that for
M →∞ the correction can be neglected and the two-point function assumes the mean-field
expression, i.e. the Gaussian propagator, which leads to the mean-field values for the anoma-
lous dimension, η= 0, and the exponent associated to the correlation length, ν= 1/2. More-
over, in high dimensions we expect for the two-point function the following Gaussian form
near the critical point and for k2→ 0,

�

M bG(k)
�−1∝A (µ−µc) +Bρ k2 +O

�

k4
�

, (65)
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from which we have the correction, at order 1/M , to the control parameter

µc = −
c
M

1

(4πρ)
D
2

∞
∑

LA, LB=1

1

(LA+ LB)
D
2

, (66)

and the two prefactors

A= 1−
c
M

1

(4πρ)
D
2

∞
∑

LA, LB=1

1

(LA+ LB)
D
2 −1

, (67)

B = 1−
c
M

1

(4πρ)
D
2

∞
∑

LA, LB=1

LA LB

(LA+ LB)
D
2 +1

. (68)

We notice that these three corrections, µc , A and B, diverge respectively for D ≤ 4, D ≤ 6
and D ≤ 6, revealing that the upper critical dimension for the site percolation problem, where
the mean-field behavior breaks down, is DU = 6. Again we notice that the analysis doesn’t
change considering bond percolation, since the only difference is in the definition of the factor
c, not relevant for these divergences. In order to go below the upper critical dimension we can
rewrite the propagator, including the cutoff in the integrals as prescribed by Eq. (53):

�

M bG2(k)
�−1∝ µ(bk2 + 1)

�

1+
c
M
µ

D
2 −3

(bk2 + 1)

1
(4π)D/2

∫ ∞

µ/Λ2

dbLA dbLB
1

(LA+ LB)
D
2

e−
bLA−bLB−bk2 LA LB

LA+LB

�

+O
�

1
M3

�

. (69)

We understand that the correction is not negligible for D < 6 in the limit µ → 0, due to the
presence of the term µ

D
2 −3. Moreover the integrals over LA and LB diverge in the ultraviolet

(UV) regime, that is for µ/Λ2 → 0 if D ≥ 4 and in particular for D ≃ 6 from below. In
order for the integrals to be finite in the limit µ/Λ2 → 0 we should perform the standard
mass renormalization, changing variable from µ to m2 ≡ ξ−2, to be explicitly done in the next
Section.

6 Computation of critical exponents

In this Section we start from the results of the M -layer construction for the two and three-point
observables and we perform standard procedures in order to compute the ε-expansion for the
critical exponents. From the definition of bG(k), Eq. (63) we can define the correlation length
ξ:

ξ2 ≡ bG(0)
∂ bG−1(k)
∂ k2

�

�

�

�

k2=0

, (70)

where, with a little abuse of notation, we identify with k the modulus of the corresponding
vector. Since

∂

∂ k2
=
∂bk2

∂ k2

∂

∂bk2
=

a2
l

µbC
2
D

∂

∂bk2
, (71)

we have:

bG(0) =
bCbB2aD

l

bAµ

�

1−
bAµ

D
2 −3

2(4π)
D
2

∫

dbLAdbLB

(bLA+ bLB)
D
2

e−bLA−bLB

�

, (72)
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and for small bA (that is for large M):

bG−1(k)≃
bAµ

bCbB2aD
l

�

bk2 + 1+
bAµ

D
2 −3

2(4π)
D
2

∫

dbLadbLb

(bLa + bLb)
D
2

e
−

bLabLb
bLa+bLb

bk2−bLa−bLb

�

, (73)

where in the r.h.s. we have replaced k with k̂ according to the definition given in (59). We
then obtain:

∂ bG−1(k)

∂bk2

�

�

�

�

bk2=0

=
bAµ

bCbB2aD
l

�

1+
bAµ

D
2 −3

2(4π)
D
2

∫

dbLadbLb

(bLa + bLb)
D
2

e−bLa−bLb
∂

∂bk2

�

e
−

bLabLb
bLa+bLb

bk2
��

�

�

�

bk2=0

�

, (74)

where
∫

dbLadbLb

(bLa + bLb)
D
2

e−bLa−bLb
∂

∂bk2

�

e
−

bLabLb
bLa+bLb

bk2
��

�

�

�

bk2=0

= −
∫

dbLadbLb

(bLa + bLb)
D
2 +1

bLAbLBe−bLa−bLb . (75)

We want to notice that in Eqs. (72), (73) and (74) we neglected higher orders, with respect to
the one-loop corrections, in powers of 1/M . From now on we will neglect these terms if not
explicitly specified. Defining

Iα(µ)≡
∫ ∞

µ/Λ2

dbLadbLb
e−bLa−bLb

(bLa + bLb)
D
2

, (76)

and

Iβ(µ)≡
∫ ∞

µ/Λ2

dbLadbLb

bLabLb

(bLa + bLb)
D
2 +1

e−bLa−bLb , (77)

we have

ξ2(µ) =
1

m2(µ)
=

a2
l

bC
2
Dµ

�

1−
1
2

bAµ
D
2 −3

(4π)
D
2

�

Iα(µ) + Iβ(µ)
�

�

. (78)

In the integrals in Eqs. (76), (77), we have written explicitly the extremes of integration that
we have omitted previously. Notice that the integral Iα(µ) is UV divergent in D = 6 for µ→ 0
(i.e., p→ pc). Now we can simply invert the relation, to express µ as a function of m2:

µ
�

m2
�

= a2
l
bC−

2
D m2

 

1−
1
2

bAmD−6
bC

6
D−1aD−6

l

(4π)
D
2

�

Iα
�

µ(m2)
�

+ Iβ
�

µ(m2)
�

�

!

. (79)

Notice that the previous equations for χ2 and χ3 are written as functions of µ, which is not
the “physical mass”, thus they can be divergent, for µ→ 0, near the upper critical dimension,
DU = 6. To avoid the divergences we need the expression of µ as a function of m2, to correctly
write λ, as defined in Eq. (83). To this aim we compute ξ2(µ) (and so m2(µ)) from its
definition.

At this point we have all the ingredients to write χ2 and χ3 as functions of the physical
parameter m2. Plugging Eq. (79) into Eqs. (61) and (62) we obtain:

χ2

�

m2
�

=
bCbB2

bC
2
D

bAa2
l

m−2

 

1+
1
2

bAmD−6
bC

6
D−1aD−6

l

(4π)
D
2

�

Iα
�

µ(m2)
�

+ Iβ
�

µ(m2)
�

�

!

×

 

1−
1
2

bAmD−6
bC

6
D−1aD−6

l

(4π)
D
2

Iα
�

µ(m2)
�

!

=
bCbB2

bC
2
D

bAa2
l

m−2

 

1+
1
2

bAmD−6
bC

6
D−1aD−6

l

(4π)
D
2

Iβ
�

µ(m2)
�

!

, (80)
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χ3

�

m2
�

=
bCbB3

bC
6
D

bAa6
l

m−6

 

1+
3
2

bAmD−6
bC

6
D−1aD−6

l

(4π)
D
2

�

Iα
�

µ(m2)
�

+ Iβ
�

µ(m2)
�

�

!

×

 

1− 2
bAmD−6

bC
6
D−1aD−6

l

(4π)
D
2

Iγ
�

µ(m2)
�

−
3
2

bAmD−6
bC

6
D−1aD−6

l

(4π)
D
2

Iα
�

µ(m2)
�

!

=
bCbB3

bC
6
D

bAa6
l

m−6

 

1+
bAmD−6

bC
6
D−1aD−6

l

(4π)
D
2

�

3
2

Iβ
�

µ(m2)
�

− 2Iγ
�

µ(m2)
�

�

!

, (81)

where

Iγ(µ)≡
∫ ∞

µ/Λ2

dbLAdbLBdbLC
e−bLA−bLB−bLC

(bLA+ bLB + bLC)
D
2

. (82)

Notice that χ2(µ) and χ3(µ) have UV divergences near 6 dimensions due the presence of Iα(µ),
which disappears when they are written as functions of m, i.e. χ2

�

m2
�

and χ3

�

m2
�

are free
of UV divergences near 6 dimensions.

Critical exponents in fixed dimension In this Section we perform the fixed-dimension com-
putation of the critical exponents [20]. Led by the scaling laws discussed in Sec. 2, we compute
the following dimensionless ratio:

λ≡
�

al

ξ

�D χ2
3 (m

2)

χ3
2 (m2)

. (83)

On the other hand m2 is connected to the bare distance from the critical point by

m2 ∼ |µ−µc|2ν , and ξ∼ |µ−µc|−ν , (84)

where ν is the critical exponent for the divergence of the correlation length. In the end,
defining

u≡ bAbC
6
D−1aD−6

l mD−6 ≡ g mD−6 , (85)

we can compute the ratio λ

λ= u

�

1− 2
u

(4π)
D
2

�

−
3
4

Iβ
�

µ(m2)
�

+ 2Iγ
�

µ(m2)
�

�

�

. (86)

Note that λ depends on the microscopic parameters of the model only through the single
parameter u = O(1/M). Now we can compute the integrals Iβ and Iγ in the limit m2 → 0,
which are convergent near D = 6:

lim
m2→0

Iβ
�

µ(m2)
�

=
1
6
Γ

�

3−
D
2

�

, (87)

lim
m2→0

Iγ
�

µ(m2)
�

=
1
2
Γ

�

3−
D
2

�

. (88)

Thus in the limit m2→ 0

λ= u−
7
4

u2

(4π)
D
2

Γ

�

3−
D
2

�

, (89)

from which

u≃ λ+
7
4
λ2

(4π)
D
2

Γ

�

3−
D
2

�

. (90)
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Now, following the standard procedure (see Ref. [20], Chap. 8), we define the function b(λ)
as:

b(λ)≡ m2 ∂

∂m2

�

�

�

�

g fixed

λ=
1
2
(D−6)u

∂

∂ u

�

�

�

�

m2 fixed

λ=
1
2
(D−6)

�

u−
7
2

u2

(4π)
D
2

Γ

�

3−
D
2

�

�

. (91)

From Eq. (90) we obtain:

b(λ) =
1
2
(D− 6)

�

λ−
7
4
λ2

(4π)
D
2

Γ

�

3−
D
2

�

�

. (92)

We constructed λ to be a dimensionless quantity that does not diverge at the critical point. For
this reason, we can identify the critical value of λ as the point at which the function b(λ) is
zero, as we discussed in Sec. 2. While a trivial zero is always present at λ = 0, for D < 6 we
see that there also exists a non-trivial zero:

λc =
4
7
(4π)

D
2

Γ
�

3− D
2

� . (93)

As already remarked in Sec. 2, the value of λc is universal, in the sense that it is no more
dependent on the specific value of g, and thus on the specific problem we are considering,
bond or site percolation. From this point the computation is really the same for the two cases,
realizing universality between these two versions of the percolation problem.

Remembering that m2 ∼ (µ−µc)2ν, following standard computations [20], we define:

z(λ)≡
∂ µ

∂m2
∼ m2D1 , (94)

where D1 =
1

2ν − 1. We can thus compute it as:

D1(λ)≡ m2 ∂

∂m2

�

�

�

�

g fixed

ln
�

z(λ)
�

. (95)

In the same way, for the computation of η we need to define:

D2(λ)≡
∂ lnχ2

∂ ln m2

�

�

�

�

g fixed

, χ2 ∼ m2 η−2
2 , D2(λc) = −1+

η

2
. (96)

We start from the computation of z:

z(λ) = a2
l
bC−

2
D

�

1−
1
2

u

(4π)
D
2

D− 4
2

Iβ
�

µ(m2)
�

−
1
2

g

(4π)
D
2

∂

∂m2

�

mD−4 Iα
�

µ(m2)
�

�

�

, (97)

where

∂

∂m2

�

mD−4 Iα
�

µ(m2)
�

�

= −mD−6

∫ ∞

µ(m2)/Λ2

dbLadbLb
e−bLa−bLb

(bLa + bLb)
D
2 −1
≡ −mD−6 I ′α

�

µ(m2)
�

. (98)

We can compute I ′α:

lim
m2→0

I ′α
�

µ(m2)
�

= Γ
�

3−
D
2

�

, (99)

obtaining

z(λ)∝ 1−
u
2

1

(4π)
D
2

Γ

�

3−
D
2

�

D− 16
12

, (100)
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and, from the definition of D1(λ), we arrive at the critical exponent ν in D dimensions:

νD =
42

84+ (6− D)(D− 16)
. (101)

The next exponent, η, requires the computation of D2(λ)

D2(λ)≡
∂ lnχ2

∂ ln m2

�

�

�

�

g fixed

=
m2

χ2

∂ χ2

∂m2

�

�

�

�

g fixed

= −1+
λ

2
1

(4π)
D
2

Iβ
�

µ(m2)
�

�

D
2
− 3

�

, (102)

which can be obtained using

∂ χ2

∂m2

�

�

�

�

g fixed

∝−m−4 +
1
2

u

(4π)
D
2

m−4 Iβ
�

µ(m2)
� D− 8

2

= −m−4

�

1−
1
2

u

(4π
D
2 )

Iβ
�

µ(m2)
� D− 8

2

�

, (103)

χ2∝ m−2

�

1+
1
2

u

(4π
D
2 )

Iβ
�

µ(m2)
�

�

, (104)

from which we have

ηD =
D− 6

21
. (105)

ε-expansion Given the results of Eqs. (101) and (105) in fixed dimension we can perform
the computation in D = 6− ε:

ν=
1
2
+

5
84
ε+O(ε2) , (106)

η= −
1

21
ε+O(ε2) . (107)

These results are, to first order in ε, equal to the expansion of the standard field theory asso-
ciated with the percolation problem [3,6,8–11].

7 Conclusion

In this article we have shown how to recover, at one-loop level of approximation, the results
of the ε-expansion for the critical exponents of the percolation problem on a D-dimensional
regular lattice, by means of a new method, the M -layer construction. To do so, we computed
the observables of interest for the case of site percolation in the non-percolating phase –the
two- and three-point correlation functions, i.e. the probability that two or three sites belong
to the same cluster– in properly chosen graphs at the leading orders. We then computed
the ε-expansion for the critical exponents, recovering, at first order, the same values already
obtained for bond percolation using the n→ 0 continuation of the field theory applied to the
Potts model with n+1 states. Moreover, we have shown that within the M -layer construction
the bond percolation problem differs from site percolation only for non-universal constants,
which directly implies the universality between site and bond percolation in any dimension D.
The analysis presented here clearly illustrates that the M -layer construction effectively allows
one to extract quantitative information on the critical behavior even for problems which are
not defined by a Hamiltonian, such as percolation.
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We explained for the first time how this method can be applied to a known problem in
order to obtain the ε-expansion of the critical exponents. Recent studies have used the M -
layer construction to derive non-trivial insights into models whose critical behavior is not yet
completely understood [14–18], or to show that for well-known problems the one-loop results
align with those from standard field theory [13, 24]. In this paper, we push this approach a
step forward by showing how, applying the standard theoretical recipes of the renormalization
group, one can extract the series for the critical exponents. We believe that this investigation
could be highly beneficial in guiding the computation of critical exponents for problems where
the standard RG approach is inapplicable [18].

Regarding the specific problem of percolation, it would be interesting to extend the calcu-
lations made in this work to the percolating phase p > pc . In this sense, the preliminary cal-
culation of the Ginzburg criterion at the bare order (i.e. without loops) has already been done
using the M -layer construction, obtaining the known upper critical dimension, DU = 6 [27].
To proceed further and obtain the values of the critical exponents in the percolating phase,
it is necessary to calculate the same observables as Ref. [27] with the corrections due to the
one-loop structures. We leave this analysis to future work.

A Identification of the constants in the M-layer expansion

In this Section we generalize the computation of the main text for the two and three-point
function, with the goal of identifying the least number of constants that describe the loop
expansion in the M -layer framework. In particular we will perform the computations for both
site and bond percolation problems, highlighting the differences between the two. Starting
with the site percolation, we write all the contributions, in Fourier space, of a generic Ve-point
correlation, computed on a generic topology, G, with I lines, Ve external points, Vi internal
vertices, Nloop number of loops:

bCVe
({k j})

�

�

�

�

G
=

(2D)Ve

S(G)M Nloop+Ve−1

�

(2D)!
(2D− 3)!

�Vi
� I
∏

i=1

∫

d Li

�

(2π)D δD

 

Ve
∑

j=1

k j

!

× a−DVi
l

 

∫ Nloop
∏

l=1

dDql

(2π)D

!

� I
∏

i=1

ÒNLi

�

{ql}, {k j}
�

�

pI−2Vi f (CVe , lc) p
∑I

i=1 Li , (A.1)

with the same convention for the Fourier transform used in the main text, Eq. (49). Notice
that ÒNL are functions of linear combinations gi

�

{ql}, {k j}
�

of internal ({ql} for l = 1, . . . , Nloop)
and external momenta ({k j} for j = 1, . . . , Ve), that ensure momentum conservation at each
vertex. The factor pI−2Vi and the function f (CVe , lc) come from Eqs. (36), (37), (42), (43)
and (44). The first is the eventual extra factor p, which is present only for C2,lc(G1; L) and
C3,lc(G3; L⃗′), as can be checked by substituting the corresponding values for I and Vi (notice
that the specific expression, pI−2Vi , is valid only for three-degree vertices, for Vi d-degree
vertices it is pI−(d−1)Vi and can be generalized if vertices of different degree are present). The
same goes for the factor (2D − 3)!, whose generalization for a d-degree vertex is (2D − d)!.
The function f (CVe , lc) assumes the following values:

f
�

C2,lc(G1; L)
�

= 1 , (A.2)

f
�

C2,lc(G2; L⃗)
�

= −1 , (A.3)

f
�

C3,lc(G3; L⃗′)
�

= 1 , (A.4)

f
�

C3,lc(G4; L⃗′′)
�

= −2 , (A.5)

f
�

C3,lc(G5; L⃗′′′)
�

= −1 . (A.6)
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Notice that the diagrams we computed in this work are of the form of Eq. (A.1). We believe
that higher order diagrams (with three-degree vertices only) for a generic Ve-point function
obey it as well, but this hypothesis is not necessary for the results described in this paper.
In principle we should repeat all the steps done from Eq. (A.1) to Eq. (A.6) for the bond
percolation problem. Generalizing the arguments given in Sec. 5, we notice that the only
difference with respect to the site percolation problem is the factor pI−Vi in Eq. (A.1), which
is not present for bond percolation.

Let us continue with site percolation. Using the asymptotic expression of the NBP in Fourier
space, Eq. (52), together with the rescaling of momenta and lengths, in Eq. (59), we arrive at

bCVe
({k j})

�

�

�

�

G
=

(2D)Ve

S(G)M Nloop−1+Ve

�

(2D)!
(2D− 3)!

�Vi

µ−I

� I
∏

i=1

∫

dbLi

�

× (2π)D δD

 

Ve
∑

j=1

k j

!

a−DVi
l

 

∫ Nloop
∏

l=1

dD
bql

(2π)D

!

pI−2Vi f (CVe , lc)

×
�

µ(2D− 2)
a2

l

�
D
2 (Nloop−1) �

µ(2D− 2)
a2

l

�
D
2 � 2D

2D− 1

�I I
∏

i=1

e−gi({bql},{bk j})2bLi−bLi aI D
l , (A.7)

where bk is a function of k according to (59). Note that, as done in the main text, we did not
rescale the external momenta inside the delta function.

Given the known relations for Vi , Ve, I and Nloop in a generic diagram with internal vertices
of degree three:

Vi = Ve + 2(Nloop − 1) , and I = 2Ve + 3(Nloop − 1) , (A.8)

in Eq. (A.7) we can identify the following topology-dependent term:

1
S(G)

� I
∏

i=1

∫

dbLi

�

 

∫ Nloop
∏

l=1

dD
bql

(2π)D

!

f (CVe , lc)
I
∏

i=1

e−gi({bql},{bk j})2bLi−bLi , (A.9)

and the following three factors:

• a constant to the power (Nloop − 1):

1
M

�

(2D)!
(2D− 3)!

�2

p−1 (2D− 2)
D
2

�

2D
2D− 1

�3

µ
D
2 −3 ≡ bAµ

D
2 −3 , (A.10)

• a constant to the power Ve:

1
M

2D
�

(2D)!
(2D− 3)!

� �

2D
2D− 1

�2

aD
l µ
−2 ≡ bB aD

l µ
−2 , (A.11)

• an overall factor:

(2π)D δD

 

Ve
∑

j=1

k j

!

�

µ(2D− 2)
a2

l

�
D
2

≡ (2π)D δD

 

Ve
∑

j=1

k j

!

µD/2
bC a−D

l , (A.12)

as defined in Eqs. (56), (57) and (58). Again we notice that the same expressions are obtained
in the bond percolation case, the only different one is the definition of bA, given in this case
by (60).

With the expression given in Eq. (A.7) it is possible to easily identify the relevant constants
to perform the expansion in inverse powers of M . Let us remark that these are all non-universal
quantities, being the critical exponents independent from them.
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B Connection with field theoretical expressions

In this Section we show how to write the expressions for bC2, lc(k, k′) and bC3, lc(k1, k2, k3), Eqs.
(54) and (55), in terms of scalar propagators, as in the corresponding field theory. To do so,
starting from the mentioned equations, we first perform the integrals over the lengths with
lower and upper limits of integration respectively µ/Λ2 and∞. Notice that we are interested
in the critical behavior, that is for µ→ 0, thus we can set the lower limit to 0, which amounts
to neglecting higher orders in µ. The results are

bC2(k, k′) =
bCbB2aD

l

bAµ

1
bk2 + 1

(2π)DδD(k+ k′)

×

�

1−
bAµ

D
2 −3

2(bk2 + 1)

∫

dD
bq

(2π)D
1

1+ (bk− bq)2
1

1+ bq2

�

+O
�

1
M3

�

, (B.1)

bC3(k1, k2, k3) =
bCbB3a2D

l

bAµ3

(2π)DδD(k1 + k2 + k3)

(bk2
1 + 1)(bk2

2 + 1)(bk2
3 + 1)

(B.2)

×
�

1− 2bAµ
D
2 −3

∫

dD
bq

(2π)D
1

1+ (bk2 +bk3 + bq)2
1

1+ (bk2 + bq)2
1

1+ bq2

−
1
2

bAµ
D
2 −3

(bk2 +bk3)2 + 1

∫

dD
bq

(2π)D
1

1+ (bk2 + bq)2
1

1+ bq2
+ perm.

�

+O
�

1
M4

�

.

Next we rescale the momenta and we define the bare mass and coupling, respectively mb and
gb, according to:

ek ≡ µ
1
2 a

2D
D+2
l

bA
1

D+2 bB−
2

D+2 bk , (B.3)

m2
b ≡ µ a

− 4D
D+2

l
bA

2
D+2 bB−

4
D+2 , (B.4)

gb ≡ a
D D−6

D+2
l

bA
4

D+2 bB
D−6
D+2 bC−2+ 3

D+
D
4 , (B.5)

and we obtain

bC2(ek,ek′) = (2π)DδD(k+ k′)

�

1
ek2 +m2

b

−
1
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b

1
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2
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(ek− eq)2 +m2
b

1
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�

+O
�

1
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, (B.6)

bC3(k1, k2, k3) =
1

(ek2
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b)(
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2 +m2
b)(
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3 +m2
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×
�
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b
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1
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b

1

(ek2 + eq)2 +m2
b

1
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−
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2
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b
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(2π)D
1

(ek2 + eq)2 +m2
b

1

eq2 +m2
b

+ perm.

�

+O
�

1
M4

�

, (B.7)

which are the results of the corresponding field theory associated with the percolation problem
[7,9].
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Figure 4: Less divergent diagrams that contribute to the two-point function. Notice
that the two couple of vertices in x0 and x ′0 belong to two different layers while on
the projection they are superimposed. The two lines of length L0 coil themselves in
the M -layer lattice, in such a way that the projection on the original lattice looks like
a loop.

As a last remark we notice that it is not always possible to write the results of the M -layer
construction in terms of scalar propagators. For the percolation problem, the observables
computed on a given topology, such as Eqs. (36) or (37), are powers of the probability p to
some combination of the lengths of the lines, thus the integrals over the lengths give the scalar
propagator factors. For a generic problem the expressions of the observables can be more
complicated functions of the lengths (see Refs. [14,17] as an example) and the corresponding
integrals do not give the simple structure of a scalar propagator. On the other hand, for simple
problems, whose field theoretical analysis is clear, the propagator structure is recovered by
means of the M -layer construction [24].

It is also interesting to note that the integrals occurring in field theories are actually com-
puted through the application of formulas like the following:

1
k2 +m2

=

∫ ∞

0

e−l(k2+m2)dl , (B.8)

see e.g. the appendix to Chap. 5 in [20]. This amounts to go from Eqs. (B.1) and (B.2)
back to Eqs. (54) and (55). Thus the M -layer approach directly gives expressions in the above
treatable form. Furthermore, the integration variable l, that seems artificial in field theory, has
instead the natural meaning of the length of the internal lines of the diagrams in the M -layer
approach.

C Other diagrams

In this appendix we take into account other possible diagrams of order O(1/M2) that may
contribute to the two-point correlation. As discussed in Ref. [24], the computation of the line
without loop should be corrected to O(1/M2) by diagram G′1 in Fig. 4, with the corresponding
weight: W (G′1) = 1/M(1 − 1/M). While the contribution of G′1 at order O(1/M) is already
included in Eq. (40), its contribution at order O(1/M2) is not included there because G′1
diverges with a lower power of µwith respect to G2, which also contributes at order O(1/M2).

The contribution of G′1 at order O(1/M2) is

−
(2D)2

M2

(2D)!
(2D− 4)!

∑

L1,L0,L2

∑

x0

NL1
(x1, x0)NL0

(x0, x0)NL2
(x0, x2)C2, lc(G′1; L1, L0, L2) , (C.1)

where
C2, lc(G′1; L1, L0, L2) = C2, lc(G1; L1 + L0 + L2) = p pL1+L0+L2 . (C.2)
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In Fourier space, using Eqs. (51) and (52), it becomes:

− (2π)DδD(k1 + k2)
(2D)2

M2

(2D)!
(2D− 4)!

�

2D
2D− 1

�3

a2D
l p

1
a2

l
2D−2 k2

1 +µ

1
a2

l
2D−2 k2

2 +µ

×
∫

dDk0

(2π)D

∫ ∞

µ/Λ2

dbL0e
−
�

a2
l

µ(2D−2) k
2
0+1

�

bL0
, (C.3)

which can be rewritten by scaling all the momenta, bk ≡ k alp
µ(2D−2)

, apart from the ones in the

delta function, as:

−(2π)DδD(k1 + k2)
(2D)2

M2

(2D)!
(2D− 4)!

�

2D
2D− 1

�3

µ
D
2 −3

aD
l p(2D− 2)

D
2

(bk2
1 + 1)(bk2

2 + 1)

∫

dD
bk0

(2π)D
1

bk2
0 + 1
∝
µ

D
2 −3

M2
,

(C.4)
where, as usual, we neglected higher orders in µ setting the lower limit of the length integra-
tion to 0. The other contribution to order O(1/M2) is from diagram G2, repeating the same
steps we have

− (2π)DδD(k1 + k2)
(2D)2

2M2

�

(2D)!
(2D− 3)!

�2� 2D
2D− 1

�4

µ
D
2 −4

aD
l (2D− 2)

D
2

(bk2
1 + 1)(bk2

2 + 1)

×
∫

dD
bk

(2π)D
1

bk2 + 1

1

(bk1 −bk)2 + 1
∝
µ

D
2 −4

M2
, (C.5)

from which it is clear that near the critical point, µ∼ 0, the contribution of G′1 can be neglected
with respect to the one of G2. Analogously, diagram G′3, is negligible with respect to G4 and
G5. Thus the computations for the three-point correlation function of the main text give the
correct critical behavior.

It is also possible to generalize this argument, at least in the case of the percolation prob-
lem. Since for each line of the diagram a factor proportional to µ−1(bk2 + 1)−1 appears, we
understand that, at a given order in O(1/M) the most divergent diagrams, in the limit µ→ 0
are the ones with the largest number of lines. This argument is not valid generally for any
problem or model. Indeed, the computation of the observables on a given diagram is the only
model-dependent part of the M -layer procedure and in general the result can be a non-trivial
function of the lengths, as we noticed at the end of appendix B.

D Four-point correlation function

We present, in this appendix, the computation for the most divergent contributions to the four-
point correlation function in the site percolation problem, the same result can be obtained for
the bond percolation with the arguments given in Sec. 5. All the possible topologies, with only
three and four-degree vertices, are shown in Fig. 5. Along the lines of the reasoning given
for neglecting G′1 with respect to G2 we identify the most divergent diagrams to each O(1/M)
order for the four-point correlation function simply considering the diagrams with the largest
number of lines. It turns out that the relevant diagrams, for the four-point function, are the
ones shown in Fig. 6: G7 to order O(1/M3), G9, G12 and G13 to order O(1/M4). Notice that,
in principle, we should have considered also diagrams with vertices of degree larger than four,
but they all have, at one loop order, fewer lines than the ones we included in Fig. 6, thus
they are less divergent near the critical point µ ∼ 0. Now we can write the contributions of
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Figure 5: Diagrams contributing to the four-point correlation function up to one loop.

the identified diagrams:

C4(x1, x2, x3, x4) =
1

M3

∑

L⃗

∑

x0,x ′0

N (G7; L⃗; x1, x2, x3, x4, x0, x ′0)C4, lc(G7; L⃗)

+
1

M4

∑

L⃗′

∑

{x ′i},i=1,...,4

N (G9; L⃗′; x1, x2, x3, x4, x ′1, x ′2, x ′3, x ′4)C4, lc(G9; L⃗′)

+
1

M4

∑

L⃗′

∑

x ′1,x0,x ′0,x ′′0

N (G10; L⃗′; x1, x2, x3, x4, x ′1, x0, x ′0, x ′′0 )C4, lc(G10; L⃗′)

+
1

2M4

∑

L⃗′

∑

{x ′i},i=1,...,4

N (G12; L⃗′; x1, x2, x3, x4, x ′1, x ′2, x ′3, x ′4)C4, lc(G12; L⃗′)

+
1

2M4

∑

L⃗′′

∑

x ′1,x0,x ′0,x ′′0

N (G13; L⃗′′; x1, x2, x3, x4, x ′1, x0, x ′0, x ′′0 )C4, lc(G13; L⃗′′) +O
�

1
M5

�

, (D.1)
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Figure 6: Most divergent diagrams contributing to the four-point correlation func-
tions up to one loop near the critical point.

where the lengths are defined as L⃗ = (L0, L1, L2, L3, L4), L⃗′ = (L1, L2, L3, L4, LA, LB, LC , LD),
L⃗′′ = (L1, L3, L4, L2A

, L2B
, LA, LB, LC , LD), and the NBPs:

N (G7; L⃗; x1, x2, x3, x4, x0, x ′0) (D.2)

= (2D)4
�

(2D)!
(2D− 3)!

�2
∏

i=1,3

NLi
(x i , x0)

∏

i=2,4

NLi
(x i , x0)NL0

(x0, x ′0) ,

N (G9; L⃗′; x1, x2, x3, x4, x ′1, x ′2, x ′3, x ′4) (D.3)

= (2D)4
�

(2D)!
(2D− 3)!

�4 4
∏

i=1

NLi
(x i , x ′i)NLA

(x ′1, x ′2)NLB
(x ′2, x ′4)NLC

(x ′3, x ′4)NLD
(x ′3, x ′1) ,

N (G10; L⃗′; x1, x2, x3, x4, x ′1, x0, x ′0, x ′′0 ) (D.4)

= (2D)4
�

(2D)!
(2D− 3)!

�4 4
∏

i=1

NLi
(x i , x ′i)NLA

(x ′1, x0)NLB
(x0, x ′0)NLC

(x ′0, x ′′0 )NLD
(x0, x ′′0 ) ,

N (G12; L⃗′; x1, x2, x3, x4, x ′1, x ′2, x ′3, x ′4) = (2D)4
�

(2D)!
(2D− 3)!

�4

NL1
(x1, x ′1) (D.5)

×NL2
(x2, x ′4)NL3

(x3, x ′1)NL4
(x4, x ′4)NLA

(x ′1, x ′2)NLB
(x ′2, x ′3)NLC

(x ′2, x ′3)NLD
(x ′4, x ′3) ,

N (G13; L⃗′′; x1, x2, x3, x4, x ′1, x0, x ′0, x ′′0 ) = (2D)4
�

(2D)!
(2D− 3)!

�4

NL1
(x1, x ′1) (D.6)

×NL3
(x3, x ′1)NL4

(x4, x0)NL0
(x ′1, x0)NL2B

(x2, x ′′0 )NL2A
(x0, x ′0)NLA

(x ′0, x ′′0 )NLB
(x ′0, x ′′0 ) ,
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and finally the observables

C4, lc(G7; L⃗) = p pL1+L2+L3+L4+L0 , (D.7)

C4, lc(G9; L⃗′) = −3pL1+L2+L3+L4+LA+LB+LC+LD , (D.8)

C4, lc(G10; L⃗′) = −2pL1+L2+L3+L4+LA+LB+LC+LD , (D.9)

C4, lc(G12; L⃗′) = −pL1+L2+L3+L4+LA+LB+LC+LD , (D.10)

C4, lc(G13; L⃗′′) = −pL1+L3+L4+L0+L2A+L2B+LA+LB . (D.11)

Since the identified diagrams, G7, G9, G10, G12 and G13, contain only three-degree vertices, we
can use the generic equation derived in App. A for this kind of vertices, Eq. (A.7), where

f
�

C4,lc(G7; L⃗′, L4, L0)
�

= 1 , (D.12)

f
�

C4,lc(G9; L⃗)
�

= −3 , (D.13)

f
�

C4,lc(G10; L⃗)
�

= −2 , (D.14)

f
�

C4,lc(G12; L⃗′′)
�

= −1= f
�

C4,lc(G13; L⃗′′′)
�

, (D.15)

and S(G7) = S(G9) = S(G10) = 1, S(G12) = 2= S(G13):

bC4, lc({ki}i=1,...,4) = (2π)
DδD

� 4
∑

i=1

ki

�

bB4 a3D
l
bC

bAµ5

4
∏

i=1

1
bk2

i + 1

�∫

dbL0 e−bL0−(bk1+bk3)2bL0

− 3 bAµ
D
2 −3

∏

i=A,B,C ,D

∫

dbLi e−bLi

∫

dD
bq

(2π)D
e−bq

2
bLA−(bq+bk2)2bLB−(bq+bk2+bk3)2bLC−(bk1−bq)2bLD

− 2 bAµ
D
2 −3

∏

i=A,B,C ,D

∫

dbLi e−bLi e−(
bk1+bk3)2bLA

∫

dD
bq

(2π)D
e−bq

2
bLB−(bq+bk2)2bLC−(bq+bk2+bk4)2bLD

− 2 bAµ
D
2 −3

∏

i=A,B,C ,D

∫

dbLi e−bLi e−(
bk2+bk4)2bLA

∫

dD
bq

(2π)D
e−bq

2
bLB−(bq−bk1)2bLC−(bq−bk1−bk3)2bLD

−
bAµ

D
2 −3

2

∏

i=A,B,C ,D

∫

dbLi e−bLi e−(
bk1+bk3)2(bLA+bLD)

∫

dD
bq

(2π)D
e−bq

2
bLB−(bq−bk1−bk3)2bLC

−
bAµ

D
2 −3

2

4
∑

j=1

∏

i=0,A,B, jA, jB

∫

dbLi e−bLi e−(
bk1+bk3)2bL0−bk2

2

�

bL jA+L jB

�

∫

dD
bq

(2π)D
e−bq

2
bLA−(bq+bk j)2bLB

�

+O
�

1
M5

�

. (D.16)

As for the two and three-point correlation functions, we define χ4(µ) as the four-point correla-
tion function at zero external momenta, divided by a3D

l and without the factor (2π)DδD
�

∑4
i=1ki

�

:

χ4(µ) =
bB4
bC

bAµ5

�

1−
5
2

bAµ
D
2 −3

(4π)
D
2

Iα(µ)− 4
bAµ

D
2 −3

(4π)
D
2

Iγ(µ)− 3
bAµ

D
2 −3

(4π)
D
2

Iδ(µ)

�

, (D.17)

where Iα and Iγ are defined in Eqs. (76) and (82) respectively, while

Iδ(µ)≡
∫ ∞

µ

Λ2

dbLAdbLBdbLC dbLD
e−bLA−bLB−bLC−bLD

�

bLA+ bLB + bLC + bLD

�
D
2

, (D.18)

and consequently

lim
µ→0

Iδ(µ) =
6− D

12
Γ

�

3−
D
2

�

. (D.19)
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Using the relation between µ and m2, Eq. (79), we can write χ4 as a function of m2

χ4

�

µ(m2)
�

=
bB4
bC

10
D +1

bAa10
l

m−10

�

1+
5
2

u

(4π)
D
2

Iβ
�

µ(m2)
�

− 4
u

(4π)
D
2

Iγ
�

µ(m2)
�

− 3
u

(4π)
D
2

Iδ
�

µ(m2)
�

�

, (D.20)

where u is the bare coupling constant, defined in Eq. (85). Now we can look at the scaling,
near the critical point m2→ 0, of the four-point function

D4(λ)≡
∂ lnχ4

�

µ(m2 ≃ 0)
�

∂ ln m2

�

�

�

�

g fixed

, χ4

�

µ(m2 ≃ 0)
�

∼ m2 D4(λc) . (D.21)

Using the expression of χ4(m2) we have

D4(λc) =
1

42

�

D(3D− 55) + 12
�

. (D.22)

We can now compare with the scaling of the four-point function

χq

�

µ(m2 ≃ 0)
�

∼ m2Dq(λc) , Dq(λc) =
q
4
η−

q
2
+

D
2

�

1−
q
2

�

, (D.23)

with q = 4, which gives the expected result of Eq. (105)

ηD =
D− 6

21
. (D.24)
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