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Abstract

We propose a general framework to characterize gapped infra-red (IR) phases of theo-
ries with non-invertible (or categorical) symmetries. In this paper we focus on (1+1)d
gapped phases with fusion category symmetries. The approach that we propose uses
the Symmetry Topological Field Theory (SymTFT) as a key input: associated to a field
theory in d spacetime dimensions, the SymTFT lives in one dimension higher and admits
a gapped boundary, which realizes the categorical symmetries. It also admits a second,
physical, boundary, which is generically not gapped. Upon interval compactification
of the SymTFT by colliding the gapped and physical boundaries, we regain the origi-
nal theory. In this paper, we realize gapped symmetric phases by choosing the physical
boundary to be a gapped boundary condition as well. This set-up provides computa-
tional power to determine the number of vacua, the symmetry breaking pattern, and the
action of the symmetry on the vacua. The SymTFT also manifestly encodes the order
parameters for these gapped phases, thus providing a generalized, categorical Landau
paradigm for (1+1)d gapped phases. We find that for non-invertible symmetries the
order parameters involve multiplets containing both untwisted and twisted sector local
operators, and hence can be interpreted as mixtures of conventional and string order pa-
rameters [1]. We also observe that spontaneous breaking of non-invertible symmetries
can lead to vacua that are physically distinguishable: unlike the standard symmetries
described by groups, non-invertible symmetries can have different actions on different
vacua of an irreducible gapped phase. This leads to the presence of relative Euler terms
between physically distinct vacua. Along with the physical description of symmetric
gapped phases, we also provide a mathematical one as pivotal 2-functors whose source
2-category is the delooping of the fusion category characterizing the symmetry and the
target 2-category is the Euler completion of 2-vector spaces.
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1 Introduction

Categorical symmetries have been a very active topic of research in both condensed matter
and high-energy physics. Much recent progress [2–74] – or for recent overviews of this topic
see [75–80] – has been on uncovering their structure, laying the foundations to study them
in d = D + 1 spacetime dimensions with D > 1. The goal of this series of papers is to initiate
a systematic analysis of the physical implications of such categorical symmetries. For a d
dimensional theory, the categorical symmetry S will be a fusion1 (d − 1)-category, which in
first approximation corresponds to a set of topological defects of dimensions 0, · · · , d − 1.

1Throughout this paper, we only work with finite symmetries, which is encoded in the fact that we only consider
‘fusion’ higher-categories. Moreover, we will only work with symmetry structures realizable in relativistic bosonic
oriented theories.
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Despite the many exciting developments – leading to some applications in particle physics
– some truly path-breaking implications of categorical symmetries remain to be uncovered.

The goal of this series of papers is to explore such physical consequences and deliver on
concrete physical implications that hinge on the existence of non-invertible symmetries. In
[81] we proposed a program to classify the gapped phases with categorical symmetry S. In
this paper we apply this program to (1+1)d theories with fusion category symmetries. In [82]
we will extend this to higher dimensions.

In (1+1)d, many aspects of gapped phases with fusion category symmetries have been
discussed over the last few years. An axiomatic definition of 2d topological quantum field
theories (TQFTs) with fusion category symmetries was provided in [83], and extended to in-
clude unoriented (i.e. time-reversal symmetric) TQFTs in [84]. Reference [85] discusses many
interesting physical applications of categorical symmetries in 2d and some examples of TQFTs
that can arise in the IR of systems with categorical symmetries. Their discussion includes the
structure of vacua in the IR, but as will be discussed later in the paper, one can improve upon
this description to provide full information of the TQFT, involving Euler terms and the action
of the fusion category symmetry on the TQFT, along with the determination of order param-
eters for the associated gapped phase. Similar comments apply also to [86], which discusses
many aspects and examples of gapped phases with categorical symmetries, involving a de-
scription of their boundaries. This reference also initiates a discussion of gapped phases with
Tambara-Yamagami (TY) symmetries, which is a direction built upon in this paper by providing
an explicit and detailed description of such phases. Another paper with interesting physical
applications of categorical symmetries in 2d is [87], which also discusses many examples of 2d
TQFTs with categorical symmetries. Defining data for correlation functions in 2d TQFTs with
categorical symmetries were discussed in [88], which also discussed in detail a few examples
of such TQFTs. There is overlap in our discussion of Ising SSB phase in section 6.3.1 with the
discussion of regular TFT with Ising symmetry appearing in this reference. Lattice models for
gapped phases with (non-anomalous) categorical symmetries are discussed in [89]. A para-
graph in the introduction of [90] describes implicitly the structure of arbitrary unitary bosonic
2d TQFTs with categorical symmetries. This should be compared with the description appear-
ing in section 3.1 of this paper, and the bulk of this paper can be viewed as explicitly fleshing
out this structure with help from the tool of SymTFTs. Several examples of gapped phases
with invertible but not necessarily abelian group symmetries have been studied in [91]. For
other relevant works, focusing on classifying phases in 2d, the order parameters, or possible
phase transitions, see [92–102].

The key innovations we propose going beyond the above works are:

• We use the SymTFT2 to classify S-symmetric gapped phases. We make a case that
SymTFTs provide a systematic, comprehensive and computationally useful approach for
performing the classification. We describe that the determination of an S-symmetric
(1+1)d gapped phase involves two steps:

1. First of all, one needs to determine a non-symmetric 2d TQFT T up to an overall
Euler term, which in turn involves determining a set of vacua and relative Euler
terms between the vacua.

2. Furthermore, one has to specify how the S symmetry acts on the 2d TQFT T, which
involves specifying which topological line defects of the 2d TQFT T are implement-
ing the symmetry S.

2More details on the SymTFT are provided later in the introduction.
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Mathematically, an S-symmetric (1+1)d gapped phase is a 2-functor between two 2-
categories (see the discussion around (32)). We describe how the SymTFT can be used
to readily obtain all of this information regarding an arbitrary S-symmetric gapped phase
for any unitary fusion category S. We apply these methods to explicitly classify (and de-
termine the detailed structure of) gapped phases for all group symmetries with ’t Hooft
anomalies, for the non-invertible (i.e. not described by a group) Rep(S3) symmetry, and
for the non-invertible (and non-group-theoretical) Tambara-Yamagami TY(ZN ) symme-
tries which includes as a special case N = 2 the Ising symmetry involving the Kramers-
Wannier duality.

• We identify the (generalized) charges [58] of order parameters for arbitrary S-symmetric
gapped phases. In general, we find that such order parameters are mixtures of conven-
tional order parameters (untwisted sector local operators) and string order parameters
(twisted sector local operators, i.e. operators attached to topological lines), which are
forced to coexist in a single irreducible multiplet due to the action of categorical symme-
try on these local operators. This provides a completely systematic and computationally
accessible generalized version of the Landau paradigm for gapped phases, in which
the various gapped phases are distinguished by the generalized charges of the local oper-
ators that condense in that gapped phase. Extending this generalized Landau paradigm
to include gapless phases and phase transitions is an important direction for future work.
See [91,103] for previous works along these lines.

• We uncover an interesting physical phenomenon tied closely to spontaneous breaking
of non-invertible symmetries:

Spontaneous breaking of non-invertible symmetries can lead to physically distin-
guishable vacua, with different vacua having action of the symmetry on them.

This is in stark contrast to spontaneous breaking of invertible symmetries, i.e. conven-
tional symmetries described by symmetry groups possibly with ’t Hooft anomalies, where
all the vacua participating in an irreducible gapped phase are acted upon in the same
fashion by the symmetry.3

Let us note that the general idea of using SymTFTs to classify gapped phases has appeared in
previous literature [103–105] (see also related works [106,107]). This work should be viewed
as describing how to concretely carry out this idea for interesting non-invertible symmetries,
and also describing the associated order parameters, along with an analysis of physical impli-
cations of spontaneous breaking of non-invertible symmetries, e.g. physical distinguishability
of vacua.

The Symmetry TFT. Let us now briefly review the Symmetry TFT, which is the main tool
used in this paper. When studying categorical symmetries, it is particularly useful to invoke
the symmetry topological field theory, or SymTFT [108] (and for earlier works [109–111].

3Note that group symmetries with ’t Hooft anomaly can give rise to vacua that can be physically distinguished,
even if the symmetry acts on them in the same fashion. Such vacua are distinguished by the presence of different
SPT phases for the unbroken group.

5

https://scipost.org
https://scipost.org/SciPostPhys.18.1.032


SciPost Phys. 18, 032 (2025)

B
phys
T

B
sym
S Z(S) = T B

phys
topB

sym
S Z(S) = TQFTS

Figure 1: The basic SymTFT sandwich: (1) LHS: The d-dimensional theory T on the
RHS is constructed as the interval compactification of d+1-dimensional SymTFT Z(S)
on the LHS, with two boundary conditions. The gapped, i.e. topological, boundary
B

sym
S is on the left and the physical, possibly non-topological, boundary B

phys
T is on

the right. (2) RHS: In this paper, we will focus on sandwich constructions for S-
symmetric TQFTs (denoted TQFTS) in which case the physical boundary B

phys
T is

also topological, Bphys
top (though not necessarily the same as the symmetry boundary

on the left).

Its utility is three-fold: it allows separating a field theory4 from its symmetry and thus allows
us to infer more general aspects of the symmetries themselves that do not depend on a specific
QFT, it encodes all the generalized charges [58,116] (i.e. local and extended operators that
are charged under the categorical symmetry) and, finally, it provides a unified framework to
study symmetries that are related by (generalized) gauging.

So far the SymTFT has been used to study symmetry-related questions of physical (not
necessarily topological) QFTs, see the left hand side of figure 1. The SymTFT is a (d + 1)-
dimensional TQFT Z(S) for a d-dimensional theory T with a categorical symmetry S, which
is topological and has two boundaries: a topological boundary B

sym
S , which encodes the sym-

metries, and a not necessarily topological boundary B
phys
T , which depends on the QFT T. The

topological defects of the SymTFT mathematically form the Drinfeld center Z(S) of the fusion
higher-category S.

Here we will specialize to gapped phases, which means that in the SymTFT description we
are also imposing topological boundary conditions on Bphys, see the right hand side of figure
1. In this paper we flesh this proposal out in (1+1)d.

1.1 Proposal for classification of symmetric gapped phases

The goal of this work is to use the SymTFT formalism to classify gapped phases of theories with
symmetry, starting with group-like symmetries (where we recover the known classifications)
and later generalizing to categorical symmetries.

4Symmetry TFTs and sandwich constructions are continuum descriptions, and hence in their simplest form
are only valid for QFTs. However, it is expected that there are lattice descriptions of SymTFTs and sandwich
constructions, which would be applicable to quantum matter systems. In such a description, the result of the
interval compactification would be lattice models such as (1+1)d anyonic chains of [112, 113] and their (2+1)d
generalizations [54], and the role of SymTFTs would be played by the Levin-Wen string-net models [114] and
their higher-dimensional generalizations. Such lattice versions of sandwich constructions will be presented in an
upcoming work [115] which will be applied to obtain lattice models of S-symmetric gapped phases discussed
here. In any case, the framework of SymTFT will only be applied in this paper to study gapped phases captured
by (Euclidean) topological quantum field theories, which admit a continuum description.
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The procedure of classifying S-symmetric (1+1)d gapped phases5 by utilizing the SymTFT
perspective requires the following steps:

1. SymTFT and its Topological Defects: Given a symmetry described by a unitary6 fusion
category S, we identify the associated 3d SymTFT Z(S) and the topological bulk lines
living in Z(S). These lines form a non-degenerate braided fusion category Z(S) known
as the Drinfeld center of S.

2. Lagrangian Algebras: We then classify all the irreducible topological boundary condi-
tions of Z(S), which are captured (modulo Euler terms) by the so-called Lagrangian
algebras in Z(S) [119–121]. These characterize the topological lines in Z(S) which
have Dirichlet boundary conditions.

3. Symmetry Boundary Condition: Since we are interested in classifying S-symmetric
gapped phases, we fix the symmetry boundary to be

B
sym
S =AS , (1)

where AS is a Lagrangian algebra that realizes the symmetry S on the boundary. The
Lagrangian specifies the set of topological lines in Z(S), which end on the boundary
B

sym
S .

4. Physical Boundary Conditions: We then choose the physical boundary to also be a topo-
logical boundary condition specified by a Lagrangian algebra Aphys

Bphys =Aphys , (2)

whereby the interval compactification of the SymTFT results in a 2d TQFT. Again, this
specifies the lines in Z(S) that can end on the physical boundary Bphys. By varying Aphys,
while keeping AS fixed, we move between different irreducible S-symmetric phases.

5. Generalized Charges as Order Parameters: For an arbitrary S-symmetric QFT T, the
charges of local operators under S are captured by topological line defects of the SymTFT
Z(S) that can end on the corresponding physical boundary B

phys
T [58]. Applying it to our

topological context, the topological line defects that can end on a topological physical
boundary Bphys =Aphys are precisely the lines that participate in the Lagrangian algebra
Aphys. In other words, the elements of Aphys describe charged local operators appear-
ing in a (1+1)d S-symmetric gapped phase, and hence describe the charges under S
of order parameters for the gapped phase. This provides a categorical or generalized
Landau paradigm describing gapped phases for an arbitrary categorical symmetry S.

There is a conceptually important difference between invertible and non-invertible or-
der parameters: for non-invertible symmetries, twisted and untwisted sector operators
can appear in the same multiplet. Thus order parameters can be both local operators
(untwisted) or twisted sector or string-like order parameters!

6. Vacua: We employ this powerful SymTFT machinery to compute information about the
resulting (1+1)d gapped phase. The number of vacua, for example, is easily deter-
mined by the number of the lines that can completely end on both boundaries, i.e. lines

5Throughout the paper, we refer to TQFTs in d spacetime dimensions as being “d-dimensional” to emphasize the
Euclidean nature of the spacetime involved. On the other hand, we refer to gapped phases in d = D+1 spacetime
dimensions as being (D+ 1)-dimensional to emphasize the separate role played by the time direction.

6Note that this in particular means that we are provided a canonical spherical structure on the fusion7 category
S, cf. proposition 9.5.1 of [118].
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appearing in both Lagrangian algebras AS and Aphys. We will depict this in terms of the
following pared-down SymTFT picture:

Q1

Qn

AS

··
·

Aphys

(3)

7. Action of the Symmetry S: The action of the symmetry S on the (1+1)d gapped phase

under discussion is specified by line operators D(a)1 of the associated 2d TQFT for each

object a ∈ S, i.e. which represent the fusion category S on the phases. The lines D(a)1
are determined as combinations of line operators of the 2d TQFT that act on the IR local
operators realizing the order parameters according to their charges under S.

8. Spontaneous Breaking of Non-Invertible Symmetries and Euler Terms: A notable phe-
nomenon arises for (1+1)d gapped phases with non-invertible categorical symmetries,
that does not occur for the usual group/invertible symmetries. The different vacua of a
gapped phase with a non-invertible symmetry may be physically distinguishable as they
may carry different Euler terms.8 Such terms are encoded in the properties of interfaces
(which are line defects in 2d) between different vacua, more precisely in the linking ac-
tion of such interfaces on the vacua. An interface between two vacua with different Euler
terms arises for a line operator D(a)1 implementing a non-invertible symmetry a ∈ S on
the gapped phase. This means that the non-invertible symmetry is spontaneously bro-
ken as it relates different vacua. In other words, we learn that spontaneous breaking
of non-invertible symmetries can lead to physically distinguishable vacua, with the
symmetry acting differently on different vacua, and yet the whole set of vacua forms an
irreducible representation of the symmetry.

This framework is applicable to any (unitary) fusion category symmetry S. We will first
revisit the group-symmetries described by a finite group G possibly with a ’t Hooft anomaly
ω, i.e. S = VecωG , and derive the expected structure of gapped phases in terms of spontaneous
symmetry broken (SSB) phases and symmetry protected topological (SPT) phases from the
SymTFT perspective.9 The details are spelled out in section 3.

After this warm-up exercise, we then turn to the non-invertible group-theoretical symme-
tries,10 i.e. fusion categories that are obtained by gauging a non-anomalous subgroup H ≤ G.
We focus on theRep(S3) fusion category obtained by gauging the non-anomalous G = S3 group
symmetry. We determine all the Rep(S3)-symmetric gapped phases, along with a description
of the order parameters for each of the gapped phases. We compute in detail the number of
vacua and the action of the non-invertible Rep(S3) symmetry on these vacua. There are a
total of four irreducible gapped phases. In two of the gapped phases, the Rep(S3) symmetry
is spontaneously broken but does not lead to physically distinguishable vacua, while in a third
gapped phase, that we refer to as the Rep(S3) SSB phase, the action of the spontaneously bro-
ken Rep(S3) symmetry clearly treats the different vacua on a different footing, thus leading to

8It can happen in some instances that vacua coming from spontaneous breaking of an invertible symmetry are
physically distinguishable, e.g. if G and H have a mixed anomaly the vacua from the SSB of G can carry different
SPT for H. However, the relative Euler terms in these cases are trivial.

9Strictly speaking SPT phases are already outside of the original Landau paradigm. These will be included as
part of the generalized Landaau paradigm discussed in this paper, for which the order parameters are of string-type.

10Also sometimes called “non-intrinsically non-invertible” symmetries.
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Table 1: Summary table of symmetries S considered in this paper, and their gapped
IR phases, with some of the basic properties. The column order parameters indi-
cates whether there is a standard untwisted sector local operator order parameter,
or a twisted sector one (also known as string-type), i.e. an operator attached to a
topological line. Mixed order parameter is a multiplet (under the action of symmetry
S) containing both untwisted and twisted sector local operators. Sometimes there
are multiple order parameters having different properties: untwisted, string-type or
mixed. SSB and SPT refer to spontaneous symmetry breaking and symmetry pro-
tected topological order, respectively.

S Phases # Vacua Order Parameters Section

VecG G SSB |G| untwisted 4

G SPT 1 string-type 4

(H,β) |G : H| untwisted and string-type 4

Rep(S3) Trivial 1 string-type 5, 5.3.1

Z2 SSB 2 string-type and mixed 5, 5.3.2

Rep(S3)/Z2 SSB 3 string-type and mixed 5, 5.3.3

Rep(S3) SSB 3 string-type and mixed 5, 5.3.4

Ising Ising SSB 3 untwisted and mixed 6

TY(ZN ) (Z1,ZN ) SSB N + 1 untwisted and mixed 7, 7.3.1

(Zp,Zq) SSB p+ q untwisted, string-type and mixed 7, 7.3.2

physically distinguishable vacua. Correspondingly, there are non-trivial relative Euler terms
between the vacua in the Rep(S3) SSB phase.

In the last two sections, we turn to intrinsically non-invertible, i.e. non-group-theoretical,
symmetries: the Ising category, and its generalization to the Tambara-Yamagami categories
TY(ZN ) (when N is not a perfect square). We again classify all possible gapped phases and
describe the order parameters. We compute the number of vacua and the action of TY(ZN ) on
these vacua, along with the relative Euler terms forced by spontaneous breaking of TY(ZN )
symmetries.

A summary of our results is shown in table 1, including the characterization of phases,
number of vacua, and the type of order parameters.

2 (1+1)d gapped phases without symmetry

In this section, we review the classification of gapped phases in (1+1)d without imposing any
symmetry constraints. This means that we identify two IR theories if they can be deformed into
each other by arbitrary UV operators.11 Later we will discuss gapped phases with symmetries,
where we will identify two IR theories only if they can be deformed into each other by UV
operators respecting that symmetry.

11It should be noted that we include IR phenomena in the infinite volume limit. If two IR theories can deformed
into each other at finite volume, but cannot be deformed into each other at infinite volume, then the two IR theories
lie in distinct phases.
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2.1 Classification of gapped phases and TQFTs

The IR theories of interest are unitary 2d TQFTs, which were classified in [122]. According to
this classification, a unitary 2d TQFT is described by a tuple of the form

(n|λ1,λ2, · · · ,λn) , n ∈ Z , n> 0 , λi ∈ R . (4)

Such a 2d TQFT is not irreducible and decomposes into a collection of n irreducible 2d TQFTs

(n|λ1,λ2, · · · ,λn)∼= (1|λ1)⊕ (1|λ2)⊕ · · · ⊕ (1|λn) , (5)

where the TQFT (1|λi) has partition function

Z = e−λiχ , (6)

where χ is the Euler characteristic of the 2d spacetime manifold under consideration. For this
reason, we refer to the λi in (4) as Euler terms.

The Euler terms can be smoothly deformed and fixed to be zero, from which we learn that
(1+1)d gapped phases without symmetry are classified just by a positive integer n. We can
recognize such a (1+1)d gapped phase as a collection of n copies of the trivial gapped phase.
Thus, there are no irreducible non-trivial gapped phases in (1+1)d. This just recovers the
well-known fact that there is no topological order in (1+1)d.

Once we include symmetries into the game, it is sometimes not possible to tune all of the
Euler terms to zero. For invertible symmetries, i.e. when the symmetry is described by a finite
(0-form) symmetry group G, the Euler terms can all still be tuned to zero. However, as we will
see, for non-invertible symmetries, the Euler terms cannot always be tuned to zero. It is for
this reason that we do not pass to gapped phases in what follows, but study general 2d TQFTs.

Before moving on, let us note that the irreducible 2d TQFTs (1|λ) are all invertible under
the stacking operation and form the group R

(1|λ)⊠ (1|λ′)∼= (1|λ+λ′) , (7)

where ⊠ denotes stacking.

2.2 Properties of topological defects

We would like to capture the information (4) for a general 2d TQFT in terms of properties of
topological defects of the TQFT.

2.2.1 Set of vacua

The positive integer n in (4) captures the number of vacua of the TQFT. This can also be recog-
nized as the dimension of the vector space VS1 that the TQFT assigns to a circle S1. Physically,
VS1 describes ground states of the IR theory on S1. Using the state-operator correspondence,
we can also regard VS1 as the vector space formed by topological local operators of the TQFT.

There is however a crucial difference between vacua12 and arbitrary ground states on S1.
The distinction can be characterized in terms of a product operation on VS1 , which converts
it into an algebra. When VS1 is viewed as the space of local operators, the product operation
corresponds to fusion/OPE of local operators

O1 O2

=
O1O2 . (8)

12Physically, vacua describe possible infinite volume limits of the (1 + 1)-dimensional system obeying cluster
decomposition for correlation functions of local operators.
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When VS1 is viewed as the space of states, the product operation corresponds to evaluating the
TQFT on a pair of pants.

For a unitary 2d TQFT, the algebra structure on VS1 is such that there is a unique basis,

{v1, v2, · · · , vn} ∈ VS1 , (9)

in which the product takes the form

vi v j = δi j vi , (10)

where δi j is the Kronecker delta (see [123] for an explanation). The states vi are referred to
as the vacua of the TQFT. In other words, the vacua describe a basis of idempotents in VS1 . It
should be particularly noted that vacua form a set of n elements, while ground states on S1

form an n-dimensional vector space.

2.2.2 Line operators

Let us now describe the topological line operators in a 2d TQFT associated to the data (4). Any
such line defect can be expressed as a sum of irreducible unit line operators 1i j transitioning
between vacua i and j, with the vacuum i lying on its left and the vacuum j lying on its right

i

1i j

j
(11)

For j = i, 1ii describes the identity line operator in the vacuum i. The full identity line operator
1 of the TQFT, after accounting for all the n vacua, is

1=
n
⊕

i=1

1ii . (12)

The fusion of these topological line operators is quite straightforward

1i j ⊗ 1kl = δ jk1il , (13)

which can be diagrammatically represented as

1i j 1 jk

i j k = i

1ik

k
(14)

2.3 Euler terms from linking action of line operators

The Euler terms λi are encoded in the linking action of line operators 1i j on the vacua of the
TQFT. The action takes the form

1i j : vi → e−(λ j−λi)v j , (15)

which can be represented diagrammatically as

1i j

= j .i j e−(λ j−λi)

(16)
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Note that these linking actions only capture the relative Euler terms between the vacua, but
not the overall Euler term.

It is easy to deduce (16) as follows. An arbitrary linking action takes the form

1i j : vi → λi j v j , λi j ∈ R, λi j > 0 . (17)

The numbers λi j have to respect the fusion of 1i j lines, and thus satisfy

λi jλ jk = λik . (18)

Moreover, we have
λii = 1 , (19)

since 1ii is the identity line in the vacuum i. This implies that

λ ji = λ
−1
i j . (20)

Now consider the partition function of the vacuum vi on a sphere S2. Using (6), it can be
expressed as

i = e−2λi . (21)

Let us create a line 1 ji at the south pole of S2, which gives

i

= e−2λiλ−1
ji .

j

1 ji (22)

Sweeping the 1 ji line across the sphere and contracting it at the north pole gives rise to an
expression for the S2 partition function of the vacua j in terms of λi j

j = e−2λiλ−1
ji λi j . (23)

Equating the RHS with e−2λ j we obtain

λi j = e−(λ j−λi) , (24)

as desired.

3 (1+1)d gapped phases with symmetry: General structure

Now we introduce a finite symmetry S. Since we are in 2d, we take S to be described by a
unitary fusion category.13 The simple objects of this category describe different symmetries,
which may be invertible or non-invertible. Each simple object is associated with a topological
line operator in the theory.

We want to study gapped phases in (1+1)d carrying S symmetry. Such phases are ob-
tained by identifying IR gapped theories up to UV deformations preserving S. This is a finer
equivalence relation than the one considered in the previous section, where we did not impose
any symmetry: two S-symmetric phases may become the same phase if one forgets about S
and allows deformations that break the S symmetry.

13In this paper, we often drop the adjective ‘unitary’ for brevity.
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3.1 2d TQFTs with symmetry

3.1.1 Physical description: Choice of line operators implementing symmetries

Let us understand the structure of an S-symmetric (1+1)d gapped phase in more detail. Such
phases are obtained as deformation classes of S-symmetric 2d TQFTs. The most fundamental
data of an S-symmetric 2d TQFT is an underlying 2d TQFT (without symmetry) specified by
data of the form (4). The S symmetry is realized on this 2d TQFT by choosing line and local
operators that reproduce all of the properties related to S. That is, given a simple object a of
S, we have a line operator14

D(a)1
∼=
⊕

i, j

n(a)i j 1i j , n(a)i j ∈ Z, n(a)i j ≥ 0 , (25)

of the 2d TQFT. These line operators have to satisfy fusion rules of S, i.e.

D(a)1 ⊗ D(b)1
∼=
⊕

c
N ab

c D(c)1 . (26)

The morphisms of the symmetry S are represented by topological local operators living at the
junctions of the above topological line operators. That is, given a morphism

µ : a⊗ b→ c , (27)

where a, b and c are simple objects of S, we have a topological local operator D(µ)0 lying at

the junction of D(a)1 , D(b)1 and D(c)1

D(a)1 D(b)1

D(c)1

D(µ)0 (28)

The choices of these topological local operators have to be made such that the F-moves of S
are respected. That is, the topological operators of the 2d TQFT satisfy:

D(a)1 D(b)1 D(c)1

D(µ)0

D(d)1

D(ν)0

D(e)1

=

D(a)1 D(b)1 D(c)1

D(σ)0

D( f )1

D(ρ)0

D(e)1

∑

f ,ρ,σ F e
a,b,c[d,µ,ν; f ,ρ,σ] (29)

mimicking the F-moves of the fusion category S.

14We will denote topological defects of dimension k by Dk.
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Furthermore, the quantum dimensions of the objects of the category also have to be obeyed
by the corresponding topological line operators

= dim(a) .

D(a)1

(30)

This requirement combined with the requirement (26) often enforces non-trivial linking ac-
tions for the unit lines 1i j participating in (25), implying the existence of non-trivial relative
Euler terms.

3.1.2 Mathematical description: Classification of certain 2-functors

All of the above information is neatly captured mathematically as follows. Let BS be the 2-
category obtained by delooping15 the fusion category S. Also, denote the 2-category formed
by 2d TQFTs as16

2-Vec⊙ . (31)

S-symmetric 2d TQFTs are then classified by pivotal 2-functors

ϕ(2) : BS → 2-Vec⊙ . (32)

Expanding the above description a little bit makes the connection to the above physical dis-
cussion clear. Such a 2-functor ϕ(2) assigns the sole object of BS to an object, namely a 2d
TQFT T, of 2-Vec⊙. The 2-functor then descends to a pivotal monoidal functor

ϕ(1) : S → End(T) , (33)

where End(T) is the endomorphism category of T, which is the multi-fusion category formed
by topological line operators of the 2d TQFT T. In particular, we have

D(a)1 = ϕ(1)(a) , (34)

for any simple object a ∈ S, and
D(µ)0 = ϕ(1)(µ) , (35)

for any morphism µ of the form (27). The fact that the lines D(a)1 obey the fusion rules and

the local operators D(µ)0 obey the F-symbols of S is encoded in the fact that ϕ(1) is a monoidal
functor. Note that we also require ϕ(1) to be compatible with the pivotal structure, and in
particular to preserve the quantum dimensions of objects of S, as in (30).

3.2 From symmetric TQFTs to symmetric gapped phases

It is easy to pass from S-symmetric 2d TQFTs to S-symmetric (1+1)d gapped phases. Any
irreducible S-symmetric 2d TQFT TS lies in a one-parameter family of irreducible S-symmetric
2d TQFTs

TS ∈
�

TλS |λ ∈ R
	

, (36)

15A delooping of a fusion n-category C is an (n+ 1)-category with a single object whose endomorphisms form
the n-category C.

16This 2-category is closely related to the 2-category 2-Vec of 2-vector spaces, whose objects are finite semi-
simple abelian categories. The operation ⊙ is the Euler completion. See section 2.5 of [124] for more details.
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such that the 2d TQFT Tλ underlying TλS is specified by the data

(n|λ+λ1,λ+λ2, · · · ,λ+λn) , (37)

if the data associated to the underlying 2d TQFT T for TS is

(n|λ1,λ2, · · · ,λn) . (38)

Said differently, we can express the 2d TQFT Tλ as the stacking of T with the invertible 2d
TQFT (1|λ)

Tλ ∼= (1|λ)⊠T . (39)

In fact, this (1|λ) factor does not interact with the symmetry. That is, we can express TλS as a
stacking of TS with (1|λ)

TλS
∼= (1|λ)⊠TS . (40)

In other words, the overall Euler term is totally decoupled from S and can be tuned to
zero. That is, the S-symmetric irreducible 2d TQFTs TλS for different λ describe the same
S-symmetric irreducible (1+1)d gapped phase. Thus, only relative Euler terms between dif-
ferent vacua enter into the description of an irreducible S-symmetric (1+1)d gapped phase.

Note that the relative Euler terms are precisely captured by the linking action of vac-
uum changing line operators 1i j of the underlying 2d TQFT. So all the information of an
S-symmetric (1+1)d gapped phase can be captured in the properties of topological defects
of an S-symmetric 2d TQFT.

3.3 SPT phases

Interesting classes of S-symmetric (1+1)d gapped phases are symmetry protected topological
(SPT) phases. The underlying (non-symmetric) gapped phase for an SPT phase is a trivial
phase carrying a single vacuum, specified by n= 1.

The mathematical description (33) is quite useful for their characterization. The input that
the underlying phase is trivial means that we can choose the underlying 2d TQFT to also be
trivial (by removing the overall Euler term). That is, the image of the 2-functor ϕ(2) at the
level of objects is

T= Vec ∈ 2-Vec⊙ . (41)

We have
End(T) = End(Vec) = Vec , (42)

and hence the S-SPT phases are classified by monoidal functors

ϕ(1) : S → Vec . (43)

Such functors for which the target category is Vec are called fiber functors. Thus, S-SPT
phases are classified by fiber functors for the fusion category S (see also [86]).

Non-anomalous G symmetry. We can now consider various examples. First of all, for an
invertible symmetry described by a finite group G without ’t Hooft anomaly, the corresponding
fusion category is

S = VecG , (44)

and the fiber functors,
VecG → Vec , (45)

are known to be classified by group cohomology (see example 4.2 in [58] for a proof)

H2(G, U(1)) , (46)

which is well-known classification of (1+1)d G-SPT phases.
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Anomalous G symmetry. If we now introduce a ’t Hooft anomaly

0 ̸=ω ∈ H3(G, U(1)) , (47)

the corresponding fusion category is
S = VecωG , (48)

with ω being a non-trivial associator. There are now no fiber functors of the form

VecωG → Vec , (49)

as Vec has a trivial associator and it is not possible to represent a non-trivial associator on it.
This reproduces the well-known result that a ’t Hooft anomaly can be diagnosed as the absence
of a trivial/SPT phase.

Rep(G) symmetry. Consider the symmetry

S = Rep(G) , (50)

where Rep(G) is the fusion category formed by finite-dimensional representations of a finite
group G. This is a non-invertible symmetry if G is non-abelian. In this case, there is always at
least one fiber functor

ϕ
(1)
triv : Rep(G)→ Vec , (51)

which maps a G-representation R as follows

R 7→ V , (52)

where V is the underlying vector space of the representation R. We will refer to the resulting
Rep(G)-symmetric phase as the trivial Rep(G)-symmetric phase.

It should be noted that there may be other SPT phases for a Rep(G) symmetry, even when
it is non-invertible. Also, note that when Rep(G) is non-invertible, there isn’t a canonical way
to define a stacking operation on Rep(G) symmetric gapped phases. So the trivial phase given
by ϕ(1)triv should not be regarded as a phase that is identity for the stacking operation.

TY(ZN) symmetry. It is also possible to have non-invertible symmetries that do not admit
any SPT phases. Such symmetries are associated to fusion categories S not admitting any fiber
functors. A class of examples of such symmetries is

S = TY(ZN ) , (53)

where TY(ZN ) is the Tambara-Yamagami fusion category based on the group ZN . We choose
the bicharacter χ and the sign τ as in (329). This includes the Ising fusion category as we
have

TY(Z2) = Ising . (54)

The non-existence of the fiber functor will be made clear from the SymTFT approach that we
will discuss below.

3.4 Order parameters

In this subsection, we describe a Landau-type characterization of S-symmetric gapped phases.
Different phases are characterized by different order parameters, which are UV local operators
carrying non-trivial charges under theS-symmetry that acquire a non-zero vacuum expectation
value (vev).
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3.4.1 Generalized charges

We begin by describing how a symmetry S acts on local operators. In general, local operators
form irreducible multiplets under the action of S. It should be noted that generally, a multi-
plet contains twisted sector local operators, i.e. local operators living at the ends of non-trivial
topological line operators generating the symmetry S. Although for invertible symmetries, an
irreducible multiplet only carries untwisted sector local operators or twisted sector local op-
erators, for non-invertible symmetries a single irreducible multiplet may carry both untwisted
and twisted sector local operators.

The full action of S on an irreducible multiplet M is captured in a generalized charge
or an S-charge Q carried by M. Let us describe the information of Q in more detail. The
multiplet M involves vector spaces V (a)M of local operators living in a-twisted sectors17 for
each simple object a ∈ S

a O(a)µ ∈ V (a)M (55)

with O(a)µ for different µ being a basis of V (a)M . The action of S is described as

a
O(a)µ

b

= a
O(c)σ

b

b

c
d
ν

ρ

∑

c,σ,d,ν,ρ Qa,µ
c,σ(b)[d,ν,ρ] (56)

where the coefficients Qa,µ
c,σ(b)[d,ν,ρ] capture the information of the S-charge Q. The gen-

eralized charges Q are constrained by demanding that composing two symmetries and acting
by the composition, is the same as first acting by the two symmetries individually and then
composing them. Schematically, this is the requirement that the rectangle identity is satisfied,
applying the action of S to different lines in the fusion diagram figure 2.

Linking Action. Often times we will need to understand the linking action of S lines on the
local operators O(a)µ

d
O(a)µ

b
a

c
ν

ρd
O(a)µ

b
aη

= (57)

where we have chosen a basis for the quadrivalent junction such that it is a product of two
trivalent junctions. This is often also referred to as the lasso action and gives rise to a concept
called the tube algebra. See [26,85,125] for discussions of this in the physics literature.

17If some multiplet M does not include b-twisted sector local operators for some simple object b ∈ S, then we
have V (b)M = 0.
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a
O(a)µ

b

a

b

d

c

d

νc

d

ν

a

b

b

c

d

ν

a

b

b

c

d

ν c

Q

Q

Q

F

Figure 2: Rectangle identity: the square needs to commute for for all values of
{a, b, c,µ,ν}. The arrows in the rectangle diagram denote the coefficients arising
in each move. As is clear from the diagram, three of the moves involve Q-symbols,
while one of them involves F -symbols. We have omitted the sum over internal topo-
logical lines, which can be reinstated straightforwardly using the definitions of Q
and F .

We can now use (56) to express the right hand side of (57) as

d
O(a)µ

b
a

c
ν

ρ =
d O(e)σ

b

ac
ν

ρ ξ f
χ

b∗

e∑

e,σ, f ,χ,ξ Qa,µ
e,σ(b)[ f ,χ,ξ]

=
∑

σ Qa,µ
d,σ(b)[c,ν,ρ] d

O(d)σ
(58)

Mathematical structure. Mathematically, generalized charges for a symmetry described by
a fusion category S are characterized by the Drinfeld center Z(S) of S. The Drinfeld center
Z(S) is a non-degenerate braided fusion category obtained from the data of the fusion category
S. An object of Z(S) is a pair

(Z ,β) , (59)
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where Z is an object of S, which we can express as a combination of simple objects a of S

Z ∼=
⊕

a
naa , na ∈ Z, na ≥ 0 , (60)

and β is a collection of morphisms in S, known as half-braidings.
A simple object (Z ,β) of Z(S) is a generalized charge for an irreducible multiplet M

of local operators, such that a number na appearing in the decomposition (60) of Z is the
dimension of the vector space of a-twisted sector local operators involved in M, i.e.

na = dim
�

V (a)M

�

. (61)

The coefficients Qa,µ
c,σ(b)[d,ν,ρ] are captured in the information of half-braidings β . See sec-

tion 4.3 of [58] for more details.

3.4.2 Landau characterization of symmetric gapped phases

Now consider an S-symmetric UV theory TUV that is gapped and focus on the flow to an
irreducible S-symmetric gapped phase TIR in the IR containing n vacua. A scalar local operator
OUV in an irreducible S-multiplet MUV of local operators of TUV may acquire a non-zero
vacuum expectation value (vev), or in other words condense, in at least one of the n vacua.
If this happens, any other local operator in the same multiplet MUV also acquires a non-zero
vev18 in at least one of the n vacua. In such a situation, we say that the multiplet MUV is an
order parameter for the gapped phase TIR.

Such a multiplet MUV flows to a multiplet MIR of topological local operators in the TQFT
TIR carrying the same generalized charge Q under the S symmetry. In fact, an S-symmetric
(1+1)d gapped phase can be characterized by the spectrum of generalized charges realized
within it. Given an irreducible generalized charge QA, an S-symmetric gapped phase TIR
realizes nA ≥ 0 number of multiplets carrying the charge QA, and we can characterize TIR in
terms of the set of these non-negative integers {nA} for various values of A.

This provides a Landau-type classification of gapped phases with non-invertible symme-
tries. One can promote these ideas to a generalized Landau paradigm, with order parameters
carrying generalized charges characterizing S-symmetric gapped phases, and tunings of these
order parameters characterizing second-order phase transitions between these gapped phases.
The IR theories describing such phase transitions are S-symmetric 2d conformal field theories
(CFTs).

Structure of an IR multiplet realizing a generalized charge. Let M be an irreducible
multiplet of local operators in an irreducible S-symmetric (1+1)d gapped phase TIR carrying
a generalized charge Q under S. The various local operators O(a)µ ∈ V (a)M (55) participating

in M are realized by topological local operators in TIR. For fixed a, the operators O(a)µ for

different µ are linearly independent topological local operators in the space Hom
�

1, D(a)1

�

of

topological local operators living at the end of topological line operator D(a)1 implementing the
a symmetry in TIR. This can be expressed as

Hom
�

1, D(a)1

�

∼=
⊕

i

Cn(a)ii , (62)

18We only consider symmetries S that commute with spacetime symmetries. As such, the spacetime quantum
numbers of all the local operators in an S-multiplet are the same. Consequently, since OUV is a scalar, all other
local operators in MUV are also scalars, and hence can acquire vevs.
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using the coefficients n(a)i j appearing in the description (25) of D(a)1 . These operators have

to satisfy the equation (56) for the action of line operators D(b)1 . It should thus be clear that
only very specific generalized charges can arise in a particular irreducible S-symmetric gapped
phase.

For the subspace V (id)M of untwisted sector local operators, we can express the participating
operators O(id)µ in terms of the vacua vi

O(id)µ =
∑

i

αi
µvi , αi

µ ∈ C . (63)

If αi
µ ̸= 0, then we can say that the operator O(id)µ acquires a non-zero vev in the vacuum vi .

3.4.3 Spontaneous breaking of non-invertible symmetries

Similar to the case of invertible group-like symmetries, we have a notion of spontaneous break-
ing for general non-invertible symmetries. There are two equivalent ways to characterize spon-
taneous breaking of a symmetry a ∈ S in a vacuum vi of an irreducible S-symmetric (1+1)d
gapped phase TIR:

• The line operator D(a)1 (25) implementing the symmetry a has the property that the
coefficient

n(a)i j ≥ 1 , (64)

for some j ̸= i. That is, the symmetry a is spontaneously broken in vacuum vi if its
(linking) action on vi produces another vacuum v j .

• There exists an untwisted local operator O charged non-trivially under a that acquires
a non-zero vev in the vacuum vi (see above).

An interesting physical phenomena may occur when non-invertible symmetries are sponta-
neously broken. As is well-known, all the vacua of an irreducible gapped phase for an invertible
symmetry (possibly with a ’t Hooft anomaly) are acted upon equally by the broken symme-
tries, and it is impossible to physically differentiate between any two vacua involved in the
gapped phase solely by looking at their symmetry transformation properties. This no longer
holds true for irreducible gapped phases with non-invertible symmetries. In such a gapped
phase, the action of the non-invertible symmetry may act differently on different vacua, thus
physically distinguishing them. A necessary requirement for such physically distinguishable
vacua to arise is spontaneous breaking of some non-invertible symmetry. However, it should be
noted that this is not sufficient: one may obtain vacua with the same actions of symmetry even
if a non-invertible symmetry is spontaneously broken. This will be explicitly shown later in
examples. The physical distinction between vacua can be equivalently characterized in terms
of the presence of relative Euler terms between them, which are enforced by the spontaneous
breaking of some non-invertible symmetry.

3.5 S-symmetric phases from symmetry TFTs

In this section, we have so far discussed various objects of interest in the study of S-symmetric
(1+1)d gapped phases, but we are yet to provide a computational handle on these objects. In
this subsection, we describe how the Symmetry TFT (SymTFT) can be used to carry out these
computations. Symmetry TFTs can also be used to obtain a full classification of all the possible
S-symmetric gapped phases and generalized charges.
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Review: The SymTFT setup. We begin by reviewing the setup of SymTFTs in full generality.
Consider a theory T in d spacetime dimensions carrying S symmetry, where S is some fusion
(d−1)-category. Then, we can express T as an interval compactification, as shown in figure 1.

The main components of these constructions are as follows:

• Z(S) is a TQFT (without symmetry) in (d + 1) spacetime dimensions.

• B
sym
S is a topological boundary condition of Z(S) such that topological defects living on

B
sym
S (and unattached to topological defects of the bulk theory Z(S)) form the fusion
(d − 1)-category S.

• B
phys
T is a boundary condition of Z(S) capturing the information of the theory T. This

boundary is (non-)topological if the theory T is (non-)topological.

This setup is also known as the sandwich construction.
As noted above, if T is a TQFT, then B

phys
T is a topological boundary condition of Z(S). As

such, irreducible S-symmetric TQFTs are classified by irreducible topological boundary
conditions of Z(S). It is this correspondence that we wish to exploit further to understand
S-symmetric gapped phases in (1+1)d.

We restrict our attention to spacetime dimension d = 1+ 1 from this point on, as that is
the case of interest in this paper. However, the extension to higher dimensions fits equally
well into this framework and will be discussed in a follow-up paper [82]. For d = 1+ 1, the
SymTFTs are 3d TQFTs which are obtained by applying the Turaev-Viro-Barrett-Westbury
construction with input fusion category S. The key information relevant to our analysis is
that of topological line operators of Z(S). These line operators form precisely the Drinfeld
center Z(S) of S which, as discussed in previous subsection, captures generalized charges of
multiplets formed under the action of S by local operators in an S-symmetric 2d theory.

Topological boundary conditions of SymTFT and Lagrangian algebras. The irreducible
topological boundary conditions of the SymTFT Z(S) are captured (modulo Euler terms) by
Lagrangian algebras in the Drinfeld Center Z(S) [119, 121]. A Lagrangian algebra A can be
expressed as

A=
⊕

A
nAQA , nA ∈ Z≥0 , (65)

where QA are simple objects of Z(S), and the algebra has to satisfy the dimension constraint

dim(A) :=
∑

A∈A
nAdim(QA) = dim2(S) , (66)

where the dimension of a line is its quantum dimension, and the dimension of a category is its
total quantum dimension, which can be expressed as

dim(S) =
√

√

∑

a

dim2(a) , (67)

where the sum is over all simple objects a of S. Along with the above condition on quan-
tum dimensions, A has to satisfy further constraints in order to be a Lagrangian algebra. In
particular

nAnB ≤
∑

C

N C
ABnC , (68)

where N C
AB is the coefficient specifying the fusion A⊗ B → C in S. Let us note here another

useful condition, which is that all QA participating with non-zero coefficients in the Lagrangian
algebra A must be bosons, i.e. their spins must be trivial. For more details see [126].
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B
phys
T

B
sym
S Z(S)

QA M

a

E (a)µ
=

T

O(a)µ

D(a)1

Figure 3: The sandwich construction of a multipletM of local operators carrying gen-
eralized charge QA in an S-symmetric 2d theory T involves interval compactification
of the corresponding bulk topological line QA ending along the physical boundary
B

phys
T along a local operator M. Along the symmetry boundary B

sym
S , the bulk line

QA can be attached to a boundary line a along local operators E (a)µ . After the interval

compactification, these local operators E (a)µ become a-twisted sector local operators

O(a)µ in the multiplet M, living at the end of topological line D(a)1 implementing a
symmetry in T.

The sandwich construction of an irreducible S-symmetric (1+1)d gapped phase involves
two Lagrangian algebras. The first one denoted AS describes the symmetry boundary B

sym
S ,

while the second denote Aphys describes the physical boundary Bphys. Often, for convenience
of notation, we do not differentiate between a Lagrangian algebra and the topological bound-
ary associated to it, in particular making the following identifications

B
sym
S =AS , Bphys =Aphys . (69)

While discussing different S-symmetric gapped phases, we keep AS fixed and vary Aphys, and
thus every S-symmetric gapped phase is associated to a Lagrangian algebra Aphys.

19

Order parameters from SymTFT. The information of a Lagrangian algebra A encodes
within it the generalized charges of the order parameters associated to the S-symmetric gapped
phase described by A.

In order to describe these, recall first that the generalized charges for S are captured by
line defects of Z(S) [58]. This is the reason we chose above the same notation QA for both
irreducible generalized charges of S and simple line defects of Z(S). The relationship between
the two becomes clear by compactifying the line operator QA along the interval as in figure 3.

A multiplet M transforming in the generalized charge QA is realized as a single local oper-
ator on the physical boundary B

phys
T that is attached to the corresponding bulk topological line

QA. There are various possible partial ends E (a)µ of QA along a boundary topological line a ∈ S,

which after interval compactification descend to the operators O(a)µ living in the multiplet M
that are in a-twisted sector for the symmetry S, or in other words are realized at the end
of topological line operator D(a)1 implementing the symmetry a in the S-symmetric theory T.

19However, it should be noted that this correspondence is not canonical. We can have two different topological
boundary conditions AS and A′S of Z(S) whose topological defects form the same fusion category S. Choosing
A′S as the symmetry boundary provides a different one-to-one correspondence between Lagrangian algebras and
S-symmetric gapped phases. An example is provided by boundaries of the SymTFT for S3 symmetry, as discussed
around (193).

22

https://scipost.org
https://scipost.org/SciPostPhys.18.1.032


SciPost Phys. 18, 032 (2025)

The action of S on O(a)µ is obtained from the action of S on the partial ends E (a)µ , which is a

property entirely of the symmetry boundary B
sym
S .

The bulk topological line operators that can completely end on a topological boundary are
precisely the ones entering the Lagrangian algebra corresponding to the boundary. Moreover,
the number of linearly independent ends of a bulk line is given by its coefficient in the La-
grangian algebra. Applying it to the physical boundary, let us say the decomposition of Aphys
is

Aphys =
⊕

A
nphys

A QA . (70)

Then, the generalized charges carried by local operators in the S-symmetric gapped phase
T(Aphys) corresponding to Aphys are QA with nphys

A ̸= 0. These are then the generalized charges
of the order parameters for the S-symmetric gapped phase T(Aphys). Moreover, each order
parameter has nphys

A possible IR images (i.e. IR multiplets with the same generalized charge
QA) that it can flow to.

Number of vacua from the SymTFT. We can determine all of the data associated to an
irreducible S-symmetric (1+1)d gapped phase from its SymTFT construction. To begin with,
the number of vacua involved in the gapped phase T(Aphys) is easily determined as follows.

Let VS1 be the space of (untwisted) topological local operators of the T(Aphys). A basis for
this space is obtained by compactifying bulk line operators QA such that they completely end
on both boundaries B

sym
S and B

phys
T , without involving any non-trivial boundary topological

line operators. This basis is in general different from the basis provided by the vacua. However,
we can determine the number of vacua by counting the number of local operators produced
in this way. If the decomposition of the Lagrangian algebra AS is

Asym =
⊕

A
nsym

A QA , (71)

then the number of vacua n is equal to

n=
∑

A

nsym
A nphys

A . (72)

Every simple bulk line QA gives rise to a subspace VA ⊆ VS1 whose dimension is nsym
A nphys

A . We
will depict these configurations by a simplified SymTFT picture as follows

Q1

Qn

Asym

··
·

Aphys

(73)

Relative Euler terms from SymTFT. To determine the relative Euler terms, we need to un-
derstand the linking action of symmetry line operators on the vacua, which descends from the
action of topological lines living on B

sym
S on the ends of bulk lines QA along B

sym
S .

To do this, we determine the vacua as elements of VS1 , which requires us to identify the
algebra structure on VS1 . Since we are using the SymTFT picture, the natural basis to use is
provided by local operators in vector spaces VA descending from simple bulk lines. In the text,
we will combine various consistency conditions to bootstrap the product,

Oi O j =
∑

k

αk
i jOk , (74)

on such local operators:
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• The product on local operators needs to be consistent with the product on bulk lines.

• The product needs to be consistent with the action of topological line operators living
on both boundaries Bsym

S and Bphys.

• The product needs to be associative.

• Finally, we can rescale the local operators to put the product in a nice desired form.

Once the vacua are determined, the linking action of S on them is readily obtained, from
which we can read the decomposition (25) of symmetry line operators in terms of irreducible
unit line operators 1i j . In particular, implementing the quantum dimension of the symmetry
line operators forces some of the unit line operators 1i j to have non-trivial linking actions on
vacua, which precisely capture the relative Euler terms.

4 Revisiting (1+1)d gapped phases with group symmetries

In this section and in the next sections, we implement the procedure discussed in the previous
section to understand and classify (1+1)d gapped phases with symmetry. In this section, we
revisit the classic case of invertible symmetries described by a finite (0-form) group G, possibly
with a ’t Hooft anomaly

ω ∈ H3(G, U(1)) . (75)

We hope that putting this very well-explored case into the general framework will familiarize
the reader with the SymTFT approach, and thus make the subsequent generalizations to non-
invertible symmetric phases more transparent.

Before diving into the details, let us connect to the categorical notation for such symme-
tries. The fusion category associated to such an invertible symmetry and ’t Hooft anomaly (75)
is

S = VecωG , (76)

which is the category formed by G-graded (complex, finite-dimensional) vector spaces, with
their associator provided by ω. The simple objects of S are labeled by group elements

g , g ∈ G , (77)

with fusion given by group multiplication

g1 ⊗ g2
∼= g1 g2 , (78)

and F -symbols given by ω as

g1 g2 g3

g1 g2

g1 g2 g3

=

g1 g2 g3

g2 g3

g1 g2 g3

ω(g1, g2, g3) (79)

It should be noted that the quantum dimensions of all simple objects are trivial

dim(g) = 1 , ∀ g ∈ G . (80)
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4.1 Classification: SSB and SPT

Expected classification. The expected classification of such phases is that they are mixtures
of spontaneous symmetry breaking (SSB) and symmetry protected topological (SPT) phases.
This will indeed be reproduced by the SymTFT analysis below, and hence the invertible sym-
metries serve as a cross-check for our general proposal.

In more detail, such irreducible (1+1)d gapped phases are classified by two pieces of data:

1. A subgroup H ≤ G, on which the anomaly trivializes

ω|H = 0 ∈ H3(H, U(1)) . (81)

Physically, H is the subgroup left spontaneously unbroken in one of the vacua v. The
total number n of vacua is the number of H cosets in G.

2. An element
β ∈ H2(H, U(1)) , (82)

which describes the SPT phase carried by H in the vacuum v.

The vacua can be parameterized by H-cosets. An element g ∈ G sends the vacuum v to the
coset containing element g, and thus g is spontaneously broken in v if g ̸∈ H. The sponta-
neously unbroken symmetry in a vacuum corresponding to coset gH is the subgroup

gH g−1 ⊆ G , (83)

which is isomorphic to H but is in general a different subgroup of G. The SPT phase for gH g−1

in this vacuum is obtained from β by applying the isomorphism map.
The line operator implementing g symmetry in the IR is expressed as

D(g)1 =
⊕

i

1i g(i) , (84)

where the sum is over all vacua i and g(i) is the vacuum obtained by acting g on the i-th
vacuum.

The above expression for D(g)1 implies that there are no relative Euler terms in the IR theory.
If the linking action for any unit line is non-trivial

1i j : vi → λi j v j , λi j ̸= 1 , (85)

then we cannot satisfy the condition (80), which now translates to the requirement that the
linking action of D(g)1 leaves invariant the sum of all vacua

D(g)1 : 1=
∑

i

vi →
∑

i

vi = 1 , (86)

where 1 denotes the identity local operator in the IR.

Classification via SymTFT. We can easily reproduce the above classification via the SymTFT
approach. The Turaev-Viro construction based onVecωG leads to the 3d Dijkgraaf-Witten (DW)
gauge theory with gauge group G and DW twist ω. This is thus the SymTFT Z

�

VecωG
�

. Note
that this 3d theory can be obtained by beginning with the trivial 3d theory, and gauging the G
symmetry that acts trivially on the theory, with discrete torsion ω.

The symmetry boundary B
sym
VecωG

carrying the ω-anomalous G-symmetry is the Dirichlet

boundary condition for the G gauge fields in the 3d bulk. Indeed, on a Dirichlet boundary, the
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G gauge symmetry of the 3d bulk becomes a G global symmetry, and the twist ω appears as ’t
Hooft anomaly for this G global symmetry. Thus, the Dirichlet boundary condition carries the
VecωG symmetry and hence can be used as the symmetry boundary B

sym
VecωG

.

A general fact of every 3d SymTFT Z(S) is that any arbitrary topological boundary condi-
tion of Z(S) can be obtained by gauging the S symmetry of Bsym

S (this goes via the correspon-
dence between module categories over S and Lagrangian algebras in Z(S), see [120, 127]).
Let us apply this fact to the case (76). We can only gauge a subgroup H of the G symmetry on
which the ’t Hooft anomaly trivializes (81), and the H gauging involves a choice of discrete
torsion, which is an element β as in (82).

Thus, the topological boundary conditions of the SymTFT Z
�

VecωG
�

are also classified by
the same data entering the expected classification of (1+1)d gapped phases with G symmetry
carrying ’t Hooft anomaly ω. According to our general approach, topological boundary con-
ditions of a 3d SymTFT Z(S) classify all (1+1)d gapped phases with S symmetry. Thus, the
SymTFT classification matches the expected classification. It is also possible to reproduce the
detailed structure of vacua and the action of G-symmetry on them using the SymTFT approach.
We do it on a case-by-case basis in the examples discussed later in this section.

G SSB phase. Let us discuss two special types of phases in more detail. The first one corre-
sponds to

H = 1 , β = 0 , (87)

in which all symmetries g ∈ G are spontaneously broken in all vacua. There are a total of |G|
number of vacua which can be parameterized by group elements. The g line is identified as

D(g)1 =
⊕

g ′
1g ′,g g ′ , (88)

where 1g ′,g g ′ is the unit line operator between vacua vg and vg g ′ .
In terms of the SymTFT, this phase is constructed by choosing the physical boundary to be

the same as the symmetry boundary

B
phys
T
= B

sym
VecωG

. (89)

G SPT phases. The opposite extreme corresponds to choosing

H = G , (90)

which is only possible if the anomaly vanishes

ω= 0 . (91)

We can now choose any
β ∈ H2(G, U(1)) , (92)

and the resulting gapped phase is known as the SPT phase protected by G symmetry. Such a
phase has a single vacuum and all the g lines are trivial

D(g)1
∼= 1 . (93)

The information of β is encoded in the choice of junction local operators between D(g)1 lines
(see example 4.2 in [58] for a proof).

In terms of the SymTFT, we choose the physical boundary to be a Neumann boundary
condition for G gauge fields in the 3d bulk. The various choices are parameterized by β ,
which is the discrete torsion along the boundary.
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4.2 Order parameters and generalized charges

A class of order parameters is well-known. These are untwisted sector local operators trans-
forming in irreducible representations of G. Different phases can be parameterized by the
presence or absence of such order parameters. For example, the G SSB phase contains all the
order parameters, i.e. for every irreducible representation R of G, there exists a topological
local operator20 in the IR theory transforming in R.

On the other hand, all of these order parameters are absent in G SPT phases. Yet, the dif-
ferent G SPT phases can be distinguished in terms of unconventional order parameters, known
as string order parameters. These are twisted sector local operators, whose charges distinguish
the different SPT phases. More details will be discussed in the examples later in this section.
General gapped phases exhibiting partial SSB exhibit both untwisted and twisted sector order
parameters. For relevant previous works discussing the use of string order parameters see
e.g. [128–135].

Line defects of the SymTFT. In terms of the SymTFT, the various possible charges carried
by untwisted and twisted local operators are encoded in the topological line defects of the
DW theory Z
�

VecωG
�

. These can be understood by computing the Drinfeld center Z
�

VecωG
�

(see [58] for a recent detailed discussion). The simple lines are

Q[g],R , (94)

labeled by a conjugacy class [g] of G and an irreducible representation R of a twisted group
algebra C[Hg ,ωg], where Hg ⊆ G is the centralizer of an element g ∈ [g] and

ωg ∈ H2(G, U(1)) , (95)

is obtained from ω by taking the slant product with respect to g. A representative of ωg can
be obtained in terms of a representative of ω as

ωg(h1, h2) =
ω(g, h1, h2)ω(h1, h2, g)

ω(h1, g, h2)
, h1, h2 ∈ Hg . (96)

The twisted group algebra C[Hg ,ωg] can then be defined in terms of a basis of vectors

Vh , h ∈ Hg , (97)

with product
Vh1

Vh2
=ωg(h1, h2)Vh1h2

. (98)

For the trivial conjugacy class [g] = [id], the slant product vanishes ωid = 0, and R are
irreducible representations of G. Physically, these lines Q[id],R are the Wilson lines for the
3d G gauge theory. On the other hand, a line Q[g],1 for a non-trivial conjugacy class [g] but
a trivial representation is a vortex line around which we have a holonomy for the G gauge
fields.21 The remaining lines Q[g],R are mixed vortex-Wilson lines obtained by dressing the
vortex lines with Wilson lines.

20In fact, there is a dim(R) number of such operators.
21Sometimes such lines are also referred to magnetic lines, but we do not use this terminology as it has the danger

of confusion with ’t Hooft defects describing worldvolumes of probe magnetic monopoles. The ’t Hooft defects are
codimension-3 in spacetime while the vortex defects being considered here are codimension-2 in spacetime. As
we are in spacetime dimension 3, line defects are codimension-2, and indeed the line defects under study precisely
induce vortex configurations for gauge fields.
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Associated multiplets. Let us describe the multiplets of local operators carrying generalized
charges Q[g],R. The usual charges correspond to the Wilson lines Q[id],R, describing untwisted
sector local operators transforming in representation R

O ∈ R

g

=
g ·O ∈ R

g

(99)

On the other hand, the vortex lines Q[g],1 describe local operators living in twisted sectors for
elements g ∈ [g], i.e. attached to g-lines. There is a single local operator (up to multiplication
by a complex number) Og in each twisted sector, and the action of G is just to permute these
operators

g
Og

g ′

= g
Og ′−1 g g ′

g ′

g ′−1 g g ′

g ′

(100)

In particular, note that the centralizer Hg of g ∈ [g] leaves Og invariant. Finally, a mixed
vortex-Wilson line Q[g],R also describes the generalized charge of a multiplet of local operators
living in twisted sectors for elements g ∈ [g], but now there is a non-trivial action of Hg on local
operators living in the g-twisted sector. Such operators form the irreducible representation R
of the twisted group algebra C[Hg ,ωg]

g

O ∈ R

h ∈ Hg

= g

h ·O ∈ R

h

h

g
(101)

The fact that R is a representation of the twisted group algebra is necessary to satisfy the
consistency condition arising by requiring the action of a product of two group elements to be
the same as the product of the individual actions of the two group elements

g
O

h1 h2

= g
h1 · (h2 ·O)

h1 h2

=

g
O

h1h2

= g
(h1h2) ·O

h1h2

= ωg(h1, h2) g
(h1h2) ·O

h1 h2

(102)

where we have used the fact that composition of h1 and h2 lines on a g line has an extra factor
of ωg arising due to the presence of the associator ω.
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Order parameters for G SSB phase. We can use the SymTFT to obtain which of the above
generalized charges are carried by order parameters for various phases. First of all, consider
the G SSB phase for which the physical boundary condition is the same as the symmetry
boundary condition (89). This boundary is the Dirichlet boundary condition for the G gauge
fields, and hence all Wilson lines of the 3d gauge theory can end along it. This can also be
seen from the Lagrangian algebra, which is [58]

ADir =
⊕

R
dim(R)Q[id],R . (103)

Thus the order parameters for the G SSB phase carry precisely the usual untwisted charges
Q[id],R, recovering the classic result.

Order parameters for G SPT phases. As another example, consider the case ω = 0, which
allows for the presence of G SPT phases. In particular, we have a trivial SPT phase for which
the group cohomology class β appearing in (92) is trivial, β = 0. The corresponding boundary
condition for the SymTFT is pure Neumann without any discrete torsion. This means the vortex
line defects in the 3d bulk become vortex point defects on the 2d boundary, i.e. the vortex lines
can end. The corresponding Lagrangian algebra is

ANeu =
⊕

[g]

Q[g],1 , (104)

where the sum is over all conjugacy classes in G. Thus the order parameters are twisted
sector operators of the type discussed around (100). Non-trivial SPT phases similarly only
involve twisted sector operators as order parameters, but now they carry non-trivial charges
under centralizer subgroups. String order parameters for G SPT phases have been previously
discussed in [132–135].

4.3 Example: Z2 symmetry

Let us now discuss the possible gapped phases for some examples of (G,ω) by using their
SymTFT construction. Consider the simplest non-trivial finite group

G = Z2 = {id, P} , ω= 0 . (105)

This is a textbook example for which it is well-known that there are only two possible (1+1)d
gapped phases: the Z2 SSB phase and the trivial Z2 phase.

The simple topological line operators of the associated SymTFT, which is the 3d Z2 DW
gauge theory without a twist, also referred to as the toric code, are

Q[id],+ ≡ 1 , Q[id],− ≡ e , Q[P],+ ≡m , Q[P],− ≡ f , (106)

where + and − denote respectively the trivial and non-trivial irreducible representations of
Z2, and we have also labeled the lines by their usual names e, m and f . The fusion rules of
the lines are described by the group law of Z2 ×Z2.

The quantum dimensions of all the above lines are 1, while only 1, e, and m are bosons.
Thus, the only possible Lagrangian algebras are

ADir = 1⊕ e , ANeu = 1⊕m , (107)

from which we at least recover that there are two irreducible Z2 symmetric gapped phases.
More information about these phases require a more detailed analysis considered below.
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4.3.1 Z2 SSB phase

Let us pick
Bphys =ADir . (108)

This 2d TQFT contains two untwisted local operators because the bulk lines 1 and e can end
on both boundaries, and both have a single possible end on each boundary (as the coefficient
of these lines in the Lagrangian algebras is 1). We denote this diagrammatically as a schematic
depiction of the SymTFT, where we have suppressed a spacetime dimension:

e

1

ADir ADir

(109)

The 1 line constructs the identity local operator 1 in the 2d TQFT, while the e line constructs
a non-identity local operator that we denote as O.

The presence of two untwisted local operators implies that the resulting phase has two
vacua. These should be idempotents in the algebra of untwisted local operators. In order to
determine them, we need to determine the product structure on {1,O}. Since 1 is the identity
operator, we only need to determine O2. This product is highly constrained by the fusion of
bulk lines

e ⊗ e ∼= 1 , (110)

which implies that the square of O must be proportional to the identity operator

O2 = α , α ∈ C, α ̸= 0 . (111)

We can now rescale O to set the product to be

O2 = 1 . (112)

The two vacua v0, v1 are now straightforwardly determined to be

v0 =
1+O

2
, v1 =

1−O
2

, (113)

which indeed satisfy
v0v0 = v0 ,

v1v1 = v1 ,

v0v1 = 0 .

(114)

As already argued before, there are no relative Euler terms for phases with invertible symme-
tries.

Above we have completely determined the structure of 2d TQFT (up to an overall Euler
term) without symmetry. Now we would like to determine how the Z2 symmetry acts on this
2d TQFT. In particular, we would like to determine the line operator D(P)1 in the 2d TQFT

implementing the Z2 symmetry. For this purpose, we can utilize the linking action of D(P)1 on
the untwisted sector local operators

O

D(P)1

=
O

D(P)1

=
O

− −
(115)
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where in the first step we have used the action (99). We denote this linking action succinctly
as

D(P)1 : O→−O . (116)

The linking action on the identity operator is simply the quantum dimension of P

D(P)1 : 1→ 1 . (117)

Combining these two linking actions, we obtain the linking actions on the vacua to be

D(P)1 : v0→ v1 , v1→ v0 , (118)

i.e. the Z2 symmetry of the 2d TQFT exchanges the two vacua. This means that Z2 is sponta-
neously broken. We can use this linking action to determine D(P)1 to be

D(P)1
∼= 101 ⊕ 110 . (119)

It is straightforward to see that the crucial Z2 relation is satisfied

D(P)1 ⊗ D(P)1
∼= 100 ⊕ 111 = 1 . (120)

The IR image of any order parameter for this phase is the untwisted sector local operator
O. It carries a non-trivial charge under Z2 and can be expressed in terms of the two vacua as

O = v0 − v1 . (121)

Note that the two vacua v0 and v1 are physically indistinguishable. That is, we can relabel
v0 as v1 and vice-versa, and the phase will look exactly the same, with the Z2 symmetry acting
as the exchange

v0←→ v1 . (122)

The indistinguishability of the vacua is tied to the fact that there is no relative Euler term
between the two.

4.3.2 Trivial phase

Let us now pick
Bphys =ANeu . (123)

We now have only a single bulk line that can end on both boundaries

1

ADir ANeu

(124)

and hence the only untwisted local operator in the resulting 2d TQFT is the identity local
operator 1. Thus, the 2d TQFT has a single vacuum.

The linking action of D(P)1 is trivial

D(P)1 : 1→ 1 , (125)

which identifies D(P)1 with the identity line

D(P)1
∼= 1 , (126)
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which clearly satisfies the Z2 multiplication law

D(P)1 ⊗ D(P)1
∼= 1 . (127)

As the underlying 2d TQFT and the action of Z2 are both trivial, we can identify it with the
trivial Z2 phase in which Z2 symmetry is not broken spontaneously.

There are no non-trivial untwisted sector order parameters. However, there are twisted
sector local operators acting as order parameters for this phase. Such order parameters are
also known as string order parameters. In the specific case at hand, the string order parameters
carry generalized charge Q[P],+ ≡ m. In terms of the SymTFT, they arise from the bulk line
m, which ends along Bphys but not along Bsym, leaving instead a residual P line along Bsym,
as shown in the following figure:

B
phys
TB

sym
VecZ2

Z(VecZ2
)

m

P

=

T

OP

D(P)1

(128)

The resulting local operator OP lives at the end of line operator D(P)1 implementing the Z2
symmetry and is uncharged under the Z2 action, which means that it carries the generalized
charge Q[P],+.

In the IR, an order parameter OP flows to a non-zero topological local operator. Cor-
respondingly m can end along the IR physical boundary ANeu. On the other hand, as we
discussed above, D(P)1 flows to the identity line. Combining the two together, we can describe
the IR image OP

IR of OP as an operator living at the end of an identity line, or in other words
a genuine local operator. Since the genuine local operators in the IR form a one-dimensional
vector space, by rescaling OP , we can identify OP

IR with the identity local operator,

OP
IR = 1 , (129)

regarded as living at the end of the D(P)1 line.

4.4 Example: Z2 symmetry with anomaly

As we have
H3(Z2, U(1)) = Z2 , (130)

we can have a non-trivial ’t Hooft anomaly,

ω ̸= 0 , (131)

for a Z2 symmetry in 2d. Let us now study gapped phases in the presence of an anomaly and
contrast it with the non-anomalous case discussed above. We will find only a single irreducible
gapped phase, in which Z2 is spontaneously broken. We will work with a representative for ω
whose only non-trivial element is

ω(P, P, P) = −1 . (132)
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Note that the slant product ωg of ω must be trivial for both g = id, P as

H2(Z2, U(1)) = 0 . (133)

The simple topological line operators of the associated SymTFT, which is the 3d Z2 DW gauge
theory with a non-trivial twist, also referred to as the double semion model, are thus

Q[id],+ ≡ 1 , Q[id],− ≡ s s̄ , Q[P],+ ≡ s , Q[P],− ≡ s̄ , (134)

where + and − denote respectively the trivial and non-trivial irreducible representations of
Z2, and we have also labeled the lines by their usual names s for semion, s̄ for antisemion
and s s̄ for the boson constructed as a semion-antisemion pair. The fusion rules of the lines
are described by the group law of Z2 ×Z2.

4.4.1 Z2 SSB phase

Since we have only one non-trivial boson, there is only a single Lagrangian algebra

ADir = 1⊕ s s̄ , (135)

which is the symmetry boundary condition. Thus we have a single irreducible gapped phase
corresponding to choosing

Bphys = B
sym
VecωZ2

=ADir . (136)

The resulting 2d TQFT contains two untwisted local operators because the bulk lines 1 and s s̄
can end on both boundaries, and both have a single possible end on each boundary

s s̄

1

ADir ADir

(137)

The s s̄ line constructs a non-identity local operator that we denote as O. This operator trans-
forms in a non-trivial irreducible representation of Z2 and is the IR image of any order param-
eter for this phase.

The presence of two untwisted local operators implies that the resulting phase has two
vacua v0, v1. Their determination is the same as for the Z2 SSB phase for ω= 0

v0 =
1+O

2
, v1 =

1−O
2

, (138)

and the Z2 line operator is
D(P)1

∼= 101 ⊕ 110 . (139)

The ’t Hooft anomaly ω has to be realized by an F-move of the following form

D(P)1 D(P)1 D(P)1

= −

D(P)1 D(P)1D(P)1

(140)
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where we have drawn the identity line operator as a dotted line. This constrains the choice
of junction local operator shown in red above (up to multiplication by a non-zero complex
number) to be

D(P)1 D(P)1

=

101 110

100

−

110 101

111

(141)

Indeed, using this choice of junction operator, we can now easily compute and verify the
relation capturing the ’t Hooft anomaly

D(P)1 D(P)1 D(P)1

=

101 110

100

101

−

110 101

111

110

=

101 110

100

110

−

110 101

111

101

= −

D(P)1 D(P)1D(P)1

(142)

Again the two vacua are physically indistinguishable, just like the Z2 SSB phase forω= 0.
This is again tied to the fact that there is no relative Euler term between the two vacua.

4.4.2 Absence of Z2 SPT phases

Above, using the SymTFT we did not find any trivial or non-trivial SPT phases, i.e. phases
with a single vacuum. This can be seen without using SymTFT as follows. The Z2 symmetry
in such a hypothetical phase must be realized as

D(P)1
∼= 1 , (143)

but then it is impossible to satisfy the relationship (140) as it becomes a relation

= − (144)
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on the junction local operator, which implies that the junction operator vanishes, leading to a
contradiction.

4.5 Example: Z2 ×Z2 symmetry

We now consider
G = Z2 ×Z2 = {id, S, C , V} , (145)

where S, C and V are three order two elements. Let us consider the non-anomalous case
ω = 0. This is a particularly interesting case because it is the simplest setup exhibiting a
non-trivial SPT phase. The second group cohomology is

H2(Z2 ×Z2, U(1)) = Z2 , (146)

and the SPT phase corresponds to the non-trivial element of this group.
There are 16 simple topological lines of the SymTFT Z(VecZ2×Z2

), that we label as

Qg,s,s′ , g ∈ Z2 ×Z2 , s, s′ ∈ {+,−} , (147)

where the group element g describes the choice of a conjugacy class and s, s′ are signs speci-
fying irreducible representations of the centralizer, which is the full group Z2×Z2. The fusion
rules of the lines are described by the group law of Z4

2

Qg1,s1,s′1
⊗Qg2,s2,s′2

∼= Qg1 g2,s1s2,s′1s′2
. (148)

All these lines have quantum dimension 1, and the bosons are

Qid,s,s′ , Qg,+,+ , QS,+,− , QC ,−,+ , QV,−,− . (149)

The possible Lagrangian algebras are

ADir =
⊕

s,s′
Qid,s,s′ ,

ANeu =
⊕

g
Qg,+,+ ,

ANeu(S) = Qid,+,+ ⊕QS,+,+ ⊕Qid,+,− ⊕QS,+,− ,

ANeu(C) = Qid,+,+ ⊕QC ,+,+ ⊕Qid,−,+ ⊕QC ,−,+ ,

ANeu(V ) = Qid,+,+ ⊕QV,+,+ ⊕Qid,−,− ⊕QV,−,− ,

ANeu, Tor = Qid,+,+ ⊕QS,+,− ⊕QC ,−,+ ⊕QV,−,− ,

(150)

where ADir and ANeu are Dirichlet and Neumann boundary conditions on Z2×Z2 gauge fields
in the 3d bulk; ANeu(i) for i ∈ {S, C , V} are boundaries where only gauge fields for the Z2 sub-
group generated by i are Neumann; and finally ANeu, Tor is the Neumann boundary condition
on whole of Z2 × Z2 in the presence of discrete torsion given by the non-trivial element of
(146). Let us discuss the corresponding Z2 ×Z2 symmetric gapped phases.

4.5.1 Z2 ×Z2 SSB phase

Let us consider
Bphys =ADir . (151)
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We obtain four untwisted local operators in the 2d theory from the ending lines Qid,s,s′:

Qid,−,−

Qid,+,−

Qid,−,+

Qid,+,+

ADir ADir

(152)

Hence the resulting gapped phase has four vacua. We label these four operators as

Os,s′ , O+,+ ≡ 1 . (153)

The operator Os,s′ descends from the bulk line Qid,s,s′ .
Using the fusion rules of the bulk lines, associativity of the product, and rescaling of the

operators, the product structure on the above local operators is

Os1,s′1
Os2,s′2

=Os1s2,s′1s′2
. (154)

Finding the orthogonal idempotents, the vacua are determined to be

v0 =

∑

s,s′Os,s′

4
,

v1 =

∑

s,s′ sOs,s′

4
,

v2 =

∑

s,s′ s
′Os,s′

4
,

v3 =

∑

s,s′ ss
′Os,s′

4
.

(155)

Now let us determine the line operators implementing the Z2 × Z2 symmetry. The linking
action of S on the local operators is

D(S)1 : Os,s′ → sOs,s′ , (156)

implying the following linking action on vacua

D(S)1 : v0↔ v1 , v2↔ v3 , (157)

which determines D(S)1 to be

D(S)1
∼= 101 ⊕ 110 ⊕ 123 ⊕ 132 . (158)

Similarly, the linking action of C on the local operators is

D(C)1 : Os,s′ → s′Os,s′ , (159)

implying the following linking action on vacua

D(C)1 : v0↔ v2 , v1↔ v3 , (160)
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which determines D(C)1 to be

D(C)1
∼= 102 ⊕ 120 ⊕ 113 ⊕ 131 . (161)

The line D(V )1 is similarly determined to be

D(V )1
∼= 103 ⊕ 130 ⊕ 112 ⊕ 121 . (162)

These lines indeed satisfy the Z2 × Z2 group multiplication law. We thus see that all of the
elements of G = Z2 ×Z2 are spontaneously broken in all vacua. The (IR images of the) order
parameters are the local operators Os,s′ discussed above.

The four vacua are clearly physically indistinguishable.

4.5.2 Z2 SSB phases

Let us now consider
Bphys =ANeu(i) , (163)

for any i ∈ {S, C , V}. These describe phases in which the Z2 subgroup generated by i is not
broken spontaneously. The analysis is similar for all three cases. For concreteness, we discuss
only one of the three cases below

Bphys =ANeu(S) . (164)

There are two untwisted local operators arising as

Qid,+,−

Qid,+,+

ADir ANeu(S)

(165)

and hence there are two gapped vacua. Let us denote the non-trivial operator descending from
Qid,+,− as O. The product on the operators can be fixed to be

O2 = 1 , (166)

from which we compute the vacua to be

v0 =
1+O

2
, v1 =

1−O
2

. (167)

The Z2 ×Z2 symmetry lines have the following linking action on O

D(S)1 : O→O ,

D(C)1 : O→−O ,

D(V )1 : O→−O ,

(168)

which means the linking action on the vacua is

D(S)1 : v0→ v0 , v1→ v1 ,

D(C)1 : v0→ v1 , v1→ v0 ,

D(V )1 : v0→ v1 , v1→ v0 ,

(169)
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using which we can recognize the symmetry lines as

D(S)1
∼= 100 ⊕ 111 = 1 ,

D(C)1
∼= 101 ⊕ 110 ,

D(V )1
∼= 101 ⊕ 110 .

(170)

Thus, S is spontaneously unbroken in both vacua, while C and V are spontaneously broken in
both vacua.

The generalized charges of the order parameters correspond to elements of the Lagrangian
algebra ANeu(S). These are of three types, and the presence of all three is connected to the
appearance of this phase in the IR:

• An order parameter of the first type is an untwisted sector local operator charged non-
trivially under C , V , whose IR image can be identified with the operator O discussed
above.

• An order parameter of the second type is a string order parameter. It is a local operator
in the twisted sector for S but charged trivially under Z2×Z2. Its IR image is the identity
local operator, regarded as the end-point of line operator D(S)1

∼= 1.

• An order parameter of the third type is also a string order parameter. It is a local operator
in the twisted sector for S but charged non-trivially under C , V . Its IR image is the
operator O, regarded as the end-point of line operator D(S)1

∼= 1.

Note that the two vacua are physically indistinguishable: in both of them we have one Z2 that
is unbroken.

4.5.3 Trivial phase

Let us consider
Bphys =ANeu . (171)

There is only a single untwisted local operator in the 2d TQFT, as no non-identity bulk line
can completely end on both boundaries. Thus we have a theory with a single vacuum. All the
symmetry lines are trivial

D(i)1
∼= 1 , i ∈ {S, C , V} , (172)

and hence there is no spontaneously broken symmetry. The junction operators between the
symmetry lines are all equal to identity operators

=

D(i)1 D( j)1

D(k)1

1 , (173)

where i, j, k obey the Z2 × Z2 group law. This is the trivial Z2 × Z2 phase in which all sym-
metry lines and their junctions are realized trivially with the underlying phase obtained after
forgetting symmetry also being trivial.

The order parameters are twisted sector local operators which are uncharged underZ2×Z2.
Their IR image is the identity local operator, regarded as the endpoint of corresponding line
operators D(i)1

∼= 1.
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4.5.4 Z2 ×Z2 SPT phase

The choice
Bphys =ANeu, Tor , (174)

yields quite similar results to the trivial Z2 phase discussed above. There is again only a single
untwisted local operator in the 2d TQFT, as no non-identity bulk line can completely end on
both boundaries. Thus we again have a theory with a single vacuum. All the symmetry lines
are again trivial

D(i)1
∼= 1 , i ∈ {S, C , V} , (175)

and hence there is no spontaneously broken symmetry.
However, the junction operators between the symmetry lines are not all equal to identity

operators. The non-trivial junctions are

=

D(S)1 D(C)1

D(V )1

1 ,− =

D(S)1 D(V )1

D(C)1

1 ,−

=

D(V )1 D(C)1

D(S)1

1 ,− =

D(V )1 D(V )1

1 .−

(176)

Again, the dotted line indicates the identity line D(id)1 = 1. This is crucial for realizing the order
parameters in the IR TQFT. From the Lagrangian algebra, we see that the order parameters
are twisted sector operators that are non-trivially charged under Z2 ×Z2 in a specific way. In
more detail, we have

• An S-twisted sector local operator charged under C , V .

• A C-twisted sector local operator charged under S, V .

• A V -twisted sector local operator charged under S, C .

The IR images of all these local operators can be identified with the identity local operator,
regarded as the endpoint of line operators D(i)1

∼= 1. For a discussion of the Z2×Z2 SPT phase
and string order parameters from a lattice model perspective see [129,130].

Let us describe how the non-trivial charges are realized as a consequence of the presence of
non-trivial junction operators between symmetry lines. Without loss of generality, we consider
the case of S-twisted sector operator (referred to as OS below), as the other cases are similar.
To begin with, the definition of OS is

D(S)1
OS

=
1

(177)
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We need to show that we have the relation

D(S)1
OS

D(C)1

= D(S)1
OS

D(C)1

−
(178)

meaning that OS is charged under C . In order to see this, let us evaluate the two sides sepa-
rately. The left-hand side is simply

D(S)1
OS

D(C)1

=
1 (179)

by using the above definition of OS and the fact that D(C)1 is the identity line. On the other
hand, the right-hand side is

D(S)1
OS

D(C)1

= D(S)1
OS

D(C)1

D(C)1

D(V )1 D(S)1 =
−1 1 1

= −
1

(180)

where we have resolved the quadrivalent junction into two trivalent junctions, one of which
is non-trivial by the above-discussed assignments. We have thus shown explicitly the relation
(178). One could have also resolved the quadrivalent junction in the opposite order, but that
leads to the same result

D(S)1
OS

D(C)1

= D(S)1
OS

D(C)1

D(C)1

D(V )1 D(S)1 =
1 −1 1

= −
1

(181)

In a similar way, the reader can see that the following relationship holds

D(S)1
OS

D(V )1

= D(S)1
OS

D(V )1

−
(182)
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4.6 Example: S3 symmetry

We now consider the symmetry group S3, namely the non-abelian group formed by permuta-
tions of three objects. We will consider the non-anomalous case ω = 0. The gapped phases
in this group-symmetry example has been studied using different methods in [91]. This sym-
metry group is rather interesting because it is the simplest case in which we obtain a non-
invertible symmetry after gauging an invertible symmetry: gauging all of S3 leads to non-
invertible Rep(S3) symmetry. We will study the Rep(S3)-symmetric gapped phases in the next
section, which will be related by gauging to the S3-symmetric phases studied below.

We label the elements of S3 as

S3 =
�

id, a, a2, b, ab, a2 b
	

, (183)

where a is an order 3 element implementing a cyclic permutation, and b is an order 2 element
implementing a transposition, i.e.

a3 = b2 = id . (184)

The non-abelian nature of the group is encoded in the following relation

ab = ba2 . (185)

The conjugacy classes are

[id] = {id} , [a] = {a, a2} , [b] = {b, ab, a2 b} , (186)

with corresponding centralizers

Hid = S3 , Ha = Z3 = {id, a, a2} , Hb = Z2 = {id, b} . (187)

Consequently, the simple topological lines of the SymTFT Z(VecS3
) are labeled by the conju-

gacy class and representation of the centralizer,

Q[id],1 , Q[id],P , Q[id],E ,

Q[a],1 , Q[a],ω , Q[a],ω2 ,

Q[b],+ , Q[b],− .

(188)

Here we denote by 1 the trivial representation of S3 or Z3; by P the sign representation of S3,
which is a one-dimensional representation on which a acts trivially and b acts by a sign; by E
the standard representation of S3, which is a two-dimensional irreducible representation of S3
that admits a basis {V1, V2} such that the action of S3 is

a : V1→ωV1 , V2→ω2V2 ,

b : V1↔ V2 ,
(189)

where ω= e2πi/3.
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The fusion rules of the lines are

Q[id],P ⊗Q[id],P ∼= Q[id],1 ,

Q[id],P ⊗Q[id],E ∼= Q[id],E ,

Q[id],E ⊗Q[id],E ∼= Q[id],1 ⊕Q[id],P ⊕Q[id],E ,

Q[id],P ⊗Q[a],ωi
∼= Q[a],ωi , i ∈ {0,1, 2} ,

Q[id],P ⊗Q[b],s ∼= Q[b],−s , s ∈ {+,−} ,
Q[id],E ⊗Q[a],ωi

∼= Q[a],ωi+1 ⊕Q[a],ωi+2 ,

Q[a],ωi ⊗Q[a],ωi
∼= Q[a],ωi ⊕Q[id],1 ⊕Q[id],P ,

Q[a],ωi ⊗Q[a],ωi+1
∼= Q[a],ωi+2 ⊕Q[id],E ,

Q[a],ωi ⊗Q[b],s ∼= Q[b],+ ⊕Q[b],− ,

Q[b],s ⊗Q[b],s ∼=
2
⊕

i=0

Q[a],ωi ⊕Q[id],1 ⊕Q[id],E ,

Q[b],s ⊗Q[b],−s
∼=

2
⊕

i=0

Q[a],ωi ⊕Q[id],P ⊕Q[id],E .

(190)

The quantum dimensions of the lines are

dim(Q[id],P) = 1 , dim(Q[id],E) = 2 , dim(Q[a],ωi ) = 2 , dim(Q[b],s) = 3 , (191)

and the bosons are
Q[id],P , Q[id],E , Q[a],1 , Q[b],+ . (192)

The Lagrangian algebras are

ADir = Q[id],1 ⊕Q[id],P ⊕ 2Q[id],E ,

ANeu = Q[id],1 ⊕Q[a],1 ⊕Q[b],+ ,

ANeu(Z2) = Q[id],1 ⊕Q[id],E ⊕Q[b],+ ,

ANeu(Z3) = Q[id],1 ⊕Q[id],P ⊕ 2Q[a],1 .

(193)

Here ANeu corresponds to Neumann boundary condition on the full S3 gauge fields, and
ANeu(Z2), ANeu(Z3) correspond respectively to Neumann boundary conditions on Z2 ⊆ S3 and
Z3 ⊆ S3 gauge fields.

For the S3 group symmetry we choose the symmetry boundary to be

Bsym =ADir . (194)

Note that we could have equivalently chosen the symmetry boundary to be ANeu(Z3).

4.6.1 S3 SSB phase

Let us begin by considering the physical boundary to be the same as the symmetry boundary:

Bphys =ADir . (195)

Since the coefficient of Q[id],E in the Lagrangian algebra ADir is 2, there are two linearly inde-
pendent ends for the bulk line Q[id],E on the corresponding boundary. Thus, we have two ends
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of Q[id],E on both boundaries. We denote this situation as

Q[id],E

Q[id],P

Q[id],1

ADir ADir

(196)

Thus, there are four possible compactifications of the Q[id],E line and a single compactification
for the other two lines. Overall, there are a total of 6 untwisted sector local operators, and
hence the resulting gapped phase has 6 vacua.

Let us label the four operators descending from Q[id],E as

Oi, j , i, j ∈ {1,2} , (197)

and the operator descending from Q[id],P as OP . There are S3 symmetries on both the left and
right boundaries, with the action

aL : Oi, j →ωiOi, j , OP →OP ,

aR : Oi, j →ω jOi, j , OP →OP ,

bL : Oi, j →O[1+i]2, j , OP →−OP ,

bR : Oi, j →Oi,[1+ j]2 , OP →−OP ,

(198)

where by [· · · ]2 we mean modulo 2. The product of these operators has to obey both the S3
actions. This lets us easily deduce the product to be as follows.

From the fusion
Q[id],P ⊗Q[id],P ∼= Q[id],1 , (199)

we can fix the square of OP to be O2
P = α, which we can rescale to be

O2
P = 1 . (200)

From the fusion
Q[id],P ⊗Q[id],E ∼= Q[id],E , (201)

we can fix the product OPO1,1 = βO1,1 where other Oi, j do not appear on the RHS because
both the LHS and the RHS need to have the same transformation properties under the left and
right Z3 ⊆ S3 symmetries. Using associativity with (200), we find β = ±1, which can be fixed
by rescaling OP by a sign so that we have

OPO1,1 =O1,1 . (202)

Acting by Z2 ⊆ S3 symmetries on both boundaries on the above equation, we deduce

OPOi, j = (−1)[i+ j]2Oi, j . (203)

Similarly, combining the fusion

Q[id],E ⊗Q[id],E ∼= Q[id],1 ⊕Q[id],P ⊕Q[id],E , (204)

with the left and right Z3 symmetries, we deduce that

Oi,iO[1+i]2,i = 0 ,

Oi,iOi,[1+i]2 = 0 ,
(205)
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because the result should contain local operators on which left Z3 symmetry acts non-trivially
while the right Z3 symmetry acts trivially, but we do not have such operators. We also deduce
that

O1,1O1,1 =O2,2 , (206)

where the coefficient on the RHS has been fixed to 1 by rescaling O1,1. Applying left and right
Z2 symmetries on the above equation we deduce

Oi, jOi, j =O[1+i]2,[1+ j]2 . (207)

Finally, in a similar fashion as above, we find O1,1O2,2 = γ+δOP . Imposing associativity with
(202) implies γ = δ and imposing associativity with (206) implies that 2γ = 1, thus leading
to

O1,1O2,2 =
1+OP

2
. (208)

Applying the left Z2 symmetry on the above equation we deduce

O2,1O1,2 =
1−OP

2
. (209)

The vacua vk need to satisfy the relation

vk · vl = δkl vl , (210)

i.e. they are orthogonal idempotents. We can make a general ansatz for

v0 = x1 + xPOP +
∑

i, j

x i, jOi, j , x1, xP , x i, j ∈ C , (211)

and then successively solve for v1, v2 etc. We can solve for v2
0 = v0 first, and then require

orthogonality with v1. Not all solutions for v0 will allow for the same number of solutions
for v1. Successively picking vacua vk with the largest solution space for vk+1 (orthogonal and
idempotent) results in 6 solutions:

v0 =
1+OP + 2O1,1 + 2O2,2

6
,

v1 =
1+OP + 2ωO1,1 + 2ω2O2,2

6
,

v2 =
1+OP + 2ω2O1,1 + 2ωO2,2

6
,

v3 =
1−OP + 2O1,2 + 2O2,1

6
,

v4 =
1−OP + 2ωO1,2 + 2ω2O2,1

6
,

v5 =
1−OP + 2ω2O1,2 + 2ωO2,1

6
.

(212)

To track the action of G = S3 symmetry on these vacua, recall that the symmetry boundary is
on the left, so the left S3 symmetry is the S3 symmetry we are choosing to be the symmetry of
the 2d TQFT. From the action of left S3 symmetry on the operators, we can deduce the lines
implementing the S3 symmetry in the 2d TQFT as

D(a)1
∼= 101 ⊕ 112 ⊕ 120 ⊕ 134 ⊕ 145 ⊕ 153 ,

D(b)1
∼= 103 ⊕ 115 ⊕ 124 ⊕ 130 ⊕ 151 ⊕ 142 .

(213)
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As a check, one can verify these satisfy the S3 fusion rules. For example

D(a)1 ⊗ D(b)1
∼= D(b)1 ⊗ D(a

2)
1
∼= 105 ⊕ 114 ⊕ 123 ⊕ 132 ⊕ 141 ⊕ 150 . (214)

Thus the S3 symmetry is broken spontaneously in all the 6 vacua. All these vacua are physically
indistinguishable.

The (IR images of the) order parameters are precisely the untwisted local operators dis-
cussed above: OP transforming in the sign representation P of S3, O1,1,O2,1 transforming in
the standard representation E of S3, and O1,2,O2,2 also transforming in the standard represen-
tation E of S3. Note that there are two possible IR images for an order parameter transforming
in E representation of S3. This is correlated with the fact that the topological line defect de-
scribing the generalized charge Q[id,E] enters in the Lagrangian algebra Aphys = ADir with
coefficient 2.

4.6.2 Z3 SSB phase

Let us now consider
Bphys =ANeu(Z2) . (215)

The various compactifications of bulk lines are

Q[id],E

Q[id],1

ADir ANeu(Z2)

(216)

Note that there are two possible compactifications of Q[id],E because it has two possible ends
along ADir and one possible end along ANeu(Z2). In total, we obtain three untwisted sector
local operators, and hence 3 vacua, in the resulting 2d TQFT.

We denote the local operators obtained from Q[id],E compactifications as

Oi , i ∈ {1, 2} , (217)

which form the E representation under the S3 symmetry of the 2d TQFT. Combining the fusion
(204) with the action of S3 symmetry, along with associativity and suitable rescalings, we
obtain the product rules

O1O1 =O2 ,

O2O2 =O1 ,

O1O2 = 1 .

(218)

From this, we determine the 3 vacua to be

v j =
1+ω jO1 +ω2 jO2

3
, (219)

for j ∈ {0, 1,2}. We can move between the vacua by applying Z3 action, hence the Z3 sub-
symmetry is spontaneously broken in all 3 vacua, thus this is the Z3 SSB phase. However, note
that the Z2 subgroup generated by b permutes v1, v2, and leaves v0 invariant. Consequently,
this Z2 subgroup is spontaneously broken in v1, v2, but spontaneously unbroken in v0. The
vacua v1 and v2 preserve other Z2 subgroups of S3 whose generators are ab and a2 b. We can
identify the S3 generators as the lines

D(a)1
∼= 101 ⊕ 112 ⊕ 120 ,

D(b)1
∼= 100 ⊕ 112 ⊕ 121 .

(220)
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From the Lagrangian algebra ANeu(Z2), we see that there are both untwisted and twisted
sector order parameters. The IR images of the untwisted sector order parameters are the
operators O1,O2 discussed above. A twisted sector (or string) order parameter is a multiplet
of local operators carrying generalized charge Q[b],+. As we discussed earlier, such a multiplet

includes three local operators Oai b living respectively at the ends of topological lines D(a
i b)

1 for

i ∈ {0,1, 2}. Let us consider the local operator Ob which lives at the end of D(b)1 . Note that

D(b)1 comprises of irreducible lines 100, 112 and 121. Out of these irreducible lines, only 100
can end, and has precisely one end given by the local operator v0, as 100 is just the identity
line in the 0-th vacuum. Thus, we must have

Ob = v0 , (221)

where a possible scalar coefficient on the right-hand side has been removed by rescaling Ob.
By exactly similar arguments, we must have

Oai b = vi . (222)

It is easy to see that the action of S3 is respected. The Z3 subgroup should permute the oper-
ators Oai b, and indeed it permutes the vacua vi . The Z2 subgroup generated by b should act
trivially on Ob, while exchanging Oab and Oa2 b, which is indeed how it acts on vacua vi .

Note that the three vacua are physically indistinguishable: in each vacuum a Z2 subgroup
of S3 is left spontaneously unbroken, and all three Z2 subgroups in S3 are equivalent (i.e.
related by automorphisms of S3).

4.6.3 Z2 SSB phase

Now consider the physical boundary to be

Bphys =ANeu(Z3) . (223)

The resulting gapped phase has 2 vacua, due to the presence of 2 untwisted sector local oper-
ators arising as the following compactifications of bulk lines

Q[id],P

Q[id],1

ADir ANeu(Z3)

(224)

Let us denote the non-trivial local operator descending from Q[id],P as OP . Using the same
arguments we used to derive (200), we again find

O2
P = 1 , (225)

and so the two vacua are

v0 =
1+OP

2
, v1 =

1−OP

2
. (226)

The Z3 sub-symmetry acts trivially on OP , while the Z2 acts by a sign

OP →−OP . (227)

Thus we can identify the symmetry lines as

D(a)1
∼= 100 ⊕ 111 = 1 ,

D(b)1
∼= 101 ⊕ 110 .

(228)
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Thus all three Z2 subgroups of S3 are spontaneously broken in both vacua, while the Z3 sub-
group is unbroken in both vacua. In other words, both vacua are physically indistinguishable.

For this phase, we have untwisted and twisted sector order parameters. An untwisted
sector order parameter carries generalized charge Q[id],P and its IR image is the operator OP
discussed above. A twisted sector order parameter carries generalized charge Q[a],1 and its IR

image is a multiplet of two local operators Oa,Oa2 living respectively at the ends of D(a)1 , D(a
2)

1 .
As both these lines are identity lines, we can simply choose

Oa =Oa2 = 1 , (229)

where the identity operator 1 is now regarded as a twisted sector operator for the trivially
acting Z3 symmetry.

4.6.4 Trivial phase

Finally, consider the physical boundary to be

Bphys =ANeu . (230)

The only possible line configuration that can end on both boundaries is

Q[id],1
ADir ANeu

(231)

which constructs the identity local operator. The resulting phase has a single vacuum. All
symmetry lines can be identified with the identity line

D(a)1
∼= D(b)1

∼= 1 . (232)

All of S3 symmetry is spontaneously unbroken.
The order parameters are twisted sector local operators that are uncharged under central-

izers. Thus, we have a completely trivial phase in the IR. We can identify the IR image of the
order parameters with the identity local operator regarded as the end of the symmetry lines.

5 (1+1)d Rep(S3)-symmetric gapped phases

From this section onward, we will apply our general analysis to study (1+1)d gapped phases
with non-invertible symmetries. Such symmetries could be divided into two types:

• Group-Theoretical or Non-Intrinsic: These are non-invertible symmetries that are ob-
tained from invertible symmetries by gauging them. Mathematically, the associated fu-
sion category S is Morita equivalent to VecωG for some choice of (G,ω). Examples are
fusion categories Rep(G) of representations of a finite non-abelian group G, which arise
after gauging a non-anomalous G symmetry. The objects of Rep(G) are topological Wil-
son line defects for the gauged G symmetry.

• Non-Group-Theoretical or Intrinsic: These are non-invertible symmetries that cannot
be obtained by gauging invertible symmetries. The associated fusion category S is not
Morita equivalent toVecωG for any choice of (G,ω). Examples are the Tambara-Yamagami
fusion categories TY(Zn) that we will discuss in detail in the following sections.
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The gapped phases for group-theoretical symmetries can all be obtained by gauging gapped
phases with (possibly anomalous) group symmetries. The SymTFT for such a non-invertible
symmetry S is the same as for the corresponding group symmetry

Z(S)∼= Z(VecωG ) . (233)

However, the corresponding symmetry boundaries of the SymTFT are different. Thus, even
though the set of generalized charges for the non-invertible symmetry S are the same as for
the corresponding group symmetry

Z(S)∼= Z(VecωG ) , (234)

the precise structure of the multiplets of local operators carrying these generalized charges is
in general different.

In this section, we discuss in detail the gapped phases for the simplest group-theoretical
non-invertible symmetry

S = Rep(S3) , (235)

arising from the simplest non-abelian group S3. In the next sections, we discuss in detail the
gapped phases for non-group-theoretical or intrinsic non-invertible symmetries of the form
S = TY(Zn). The Lagrangian algebras to be considered in this section are the same of course
as in (193).

5.1 Symmetry Rep(S3)

5.1.1 Line operators

Let us begin by discussing the structure of the Rep(S3) symmetry. It involves two non-trivial
simple objects

P E

and
(236)

corresponding respectively to the sign and the standard 2d irreducible representations of S3.
P generates an invertible Z2 subsymmetry

P P

=

1

(237)

while E generates a non-invertible symmetry

E E

=

1

+ +

P E

(238)

while the composition of the two symmetries is

P E

=

E P

=

E

(239)

These fusion rules follow from the tensor product decomposition rules for the corresponding
representations.
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5.1.2 Junctions of line operators

Given the above fusion rules, we have the following junctions between the line operators (up
to rotations)

P ,

E

E

E ,

E

E

E ,

E

E ,

E

P

E ,

E

E ,

P

E

P ,

P

P .

P

(240)

Some of the fusion rules for these junctions that we will use are collected in appendix A. We
also define quadrivalent junctions by composing these trivalent junctions as

PP

E

E

:= P
P

E

E

=
P ,

P

E

E

PP

P

P

:= P
P

P

P

=
P .

P

P

P

(241)

5.2 Generalized charges

Now let us describe the generalized charges that can be carried by order parameters for gapped
phases with Rep(S3) symmetry. Note that these are only a subset of all generalized charges
for Rep(S3) symmetry, corresponding to the subset of simple bulk lines of the SymTFT,

Z(Rep(S3)) = Z(VecS3
) , (242)

that can appear in Lagrangian algebras in the Drinfeld center

Z(Rep(S3)) = Z(VecS3
) . (243)

These bulk lines and the Lagrangian algebras have been discussed in section 4.6.
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5.2.1 Q[id],P multiplet

This multiplet consists of a single local operator OP in the twisted sector for P ∈ Rep(S3)

P

OP (244)

The action of Rep(S3) is

P

OP

P

= P

OP

P

P

OP

E

= P

OP

E

−

(245)

Derivations of this and similar actions below are provided in appendix A.

5.2.2 Q[a],1 multiplet

This multiplet consists of two local operators Oa
±, where Oa

+ is in the untwisted sector and Oa
−

is in the twisted sector for P ∈ Rep(S3)

P
Oa
−

.
Oa
+

, (246)

The action of P is

P
Oa
−

P

= P
Oa
−

,

P

Oa
+

P

=

P

Oa
+

,
(247)

and the action of E is (here ω= e2πi/3)

P

Oa
−

,

E

Oa
+

E

=

E

Oa
+

− 1
2 +

�

ω+ 1
2

�

P
Oa
−

.

E

Oa
−

E

=

E

Oa
+

+ 1
2−

�

ω+ 1
2

�

P P

(248)
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From the above actions, we can determine the linking actions of P and E on Oa
+ to be

Oa
+

P

=
Oa
+

P

=
Oa
+

(249)

and

Oa
+

E

= − 1
2

�

ω+ 1
2

�

Oa
+

E E

+ P

Oa
−

= − × ×1
2

�

ω+ 1
2

�

Oa
+

2 0+

= −
Oa
+

(250)

where the second term on the right-hand side vanishes because there are no topological local
operators in Rep(S3) converting the line P into the identity line.

5.2.3 Q[id],E multiplet

This multiplet consists of two local operators OE
±, where OE

+ is in the twisted sector for E and
OE
− converts E into P

P .
OE
−

E
OE
+

E , (251)

The action of P is

E
OE
+

P

= E
OE
+

P

−

E
OE
−

P

= E
OE
−

P

P .−P

(252)

The action of E is

E
OE
+

E

=

E

OE
+

E

−

E

OE
+

E

E
P

E

+

E

OE
+

E

E
E

E

(253)
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and

E
OE
−

E

=

E

E OE
+

E

P −

E

E

OE
+

E

P

−

E

OE
−

E

E
E

E
P .

P

(254)

5.2.4 Q[b],+ multiplet

This multiplet consists of three local operators Ob,Ob
±, where Ob is in the untwisted sector,

Ob
+ is in the twisted sector for E, and Ob

− converts E into P

P .
Ob
−

E
Ob
+

,E

Ob
, (255)

The action of P is

E
Ob
+

P

= E
Ob
+

,

P

Ob

P

=

P
Ob

,−

E
Ob
−

P

= E
Ob
−

P

P P .

(256)

The action of E on Ob is

Ob

E

= E

Ob
+

,

E (257)
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on Ob
+ is

E
Ob
+

E

=

E

Ob
+

E

+

E

Ob
+

E

E
P

E

+

E

Ob
,

E

E (258)

and on Ob
− is

E
Ob
−

E

=

E

Ob
−

E

P
+

E

Ob
−

E

E
P

E
P

+

E

Ob

E

E

P .

P

(259)
From the above, we can determine the linking actions of P and E on Ob to be

Ob

P

=

Ob

P

=

Ob

− −

Ob

E

=

E

E

Ob
+

= 0 .

(260)

5.3 Gapped phases

Let us now systematically study all the irreducible (1+1)d gapped phases with Rep(S3) sym-
metry. In this subsection, we will use the SymTFT construction of these phases in order to un-
derstand their structure. An alternative approach is developed in appendix C, where Rep(S3)-
symmetric phases are obtained from S3-symmetric phases by gauging the S3 symmetry.

As noted above, the SymTFT (242) was already discussed in section 4.6. The symmetry
boundary for Rep(S3) is

B
sym
Rep(S3)

=ANeu , (261)

53

https://scipost.org
https://scipost.org/SciPostPhys.18.1.032


SciPost Phys. 18, 032 (2025)

in the list (193). Choosing various physical boundaries gives rise to the various Rep(S3)-
symmetric phases, again as in (193). Note that we could have equivalently chosen the Rep(S3)
symmetry boundary to be ANeu(Z2).

5.3.1 Trivial phase

First, consider choosing
Bphys =ADir . (262)

In this instance, we obtain a single untwisted local operator coming from the bulk line Q[id],1,
which is the only line allowed to completely end on both boundaries.

Q[id],1
ANeu ADir

(263)

Thus, the resulting phase has a single vacuum.
The linking actions of P and E on the identity local operator are

P = 1 ,

E = 2 .

(264)

using which we can identify these lines as

D(P)1
∼= 1 ,

D(E)1
∼= 1⊕ 1 ,

(265)

where 1 is the identity line operator. We refer to this phase as the trivial phase as it corresponds
to the trivial functor ϕ(1)triv discussed around (51)

There are two types of order parameters that coexist for this phase. Both of these are of
string-type. These are multiplets carrying generalized charges Q[id],P and Q[id],E . In such a
multiplet, the IR image of the UV operators OP and OE

± can all be identified with the identity

local operators regarded to be lying at the end of lines D(P)1 and D(E)1 .

5.3.2 Z2 SSB phase

Let us now consider
Bphys =ANeu(Z2) . (266)

The compactifications of bulk lines are

Q[id],1

Q[b],+

ANeu ANeu(Z2)

(267)
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We thus have 2 untwisted sector local operators, and hence the resulting phase has 2 vacua.
Following the terminology introduced above, we refer to the untwisted sector local operator
descending from the bulk line Q[b],+ as Ob.

In order to precisely identify the two vacua, we need to determine the algebra formed by
the untwisted local operators. In the current case, this amounts to determining ObOb as a
linear combination of Ob and the identity local operator 1

ObOb = α+ βOb , (α,β) ∈ C2 − {(0,0)} . (268)

Recall that Ob is charged non-trivially under the Z2 subsymmetry of Rep(S3) generated by P.
Consequently, we can set β = 0, leaving us with

ObOb = α , α ∈ C− {0} . (269)

Now rescaling Ob, we can set the above relation to

ObOb = 1 . (270)

Using this, we can express the two vacua as

v0 =
1+Ob

2
,

v1 =
1−Ob

2
.

(271)

The linking action of D(P)1 is
v0→ v1 ,

v1→ v0 ,
(272)

and hence we can identify D(P)1 as

D(P)1
∼= 101 ⊕ 110 . (273)

Note that there is no relative Euler term between the two vacua as the linking actions of 101
and 110 are

101 : v0→ v1 ,

110 : v1→ v0 ,
(274)

without any extra factors. Since this Z2 subsymmetry is spontaneously broken in both vacua,
we refer to this phase as the “Z2 SSB phase”.

Using the linking action of D(E)1 on Ob described in (260), we determine the linking action

of D(E)1 on both vacua to be

vi → 1= v0 + v1 , i ∈ {0,1} , (275)

and hence we can identify D(E)1 as

D(E)1
∼= 100 ⊕ 101 ⊕ 110 ⊕ 111

∼= D(1)1 ⊕ D(P)1 . (276)

Note that this implies that the non-invertible symmetry E is spontaneously broken in both
vacua: beginning with the presence of v0 and acting by E we obtain v0 + v1, thus inferring
the presence of another vacuum v1. However, the action of E does not distinguish between
the two vacua. Thus, the two vacua are physically indistinguishable even though we have
spontaneous breaking of a non-invertible symmetry. This is tied to the fact that there are no
relative Euler terms between the two vacua.

From the Lagrangian algebra ANeu(Z2), we see that there are two types of order parameters
associated to this phase:
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• The first type of order parameters have generalized charge Q[id],E . Such an order pa-
rameter can be considered to be a purely string type order parameter, as it consists of a
multiplet of two local operators, both of which are in non-trivial twisted sectors of the
Rep(S3) symmetry. The IR image of such an order parameter is a multiplet of two local
operators in the IR TQFT: one of them, OE

+, is the identity local operator, regarded as

the endpoint of line D(E)1
OE
+ = 1 , (277)

while the other, OE
−, is the identity local operator 1P on D(P)1 , regarded as an operator

converting the line D(E)1 to the line D(P)1

OE
− = 1P . (278)

• The second type of order parameters have generalized charge Q[b],+. Such an order
parameter is a mixture of conventional and string type order parameters. It consists of a
multiplet of three local operators, one of which is in the untwisted sector, while the other
two are in non-trivial twisted sectors of the Rep(S3) symmetry. The IR image of such an
order parameter is a multiplet of three local operators in the IR TQFT: one of them is
the untwisted sector operator Ob discussed above, another one, Ob

+, is the operator Ob

regarded as the endpoint of line D(E)1

Ob
+ =Ob , (279)

while the third one, Ob
−, is the operator Ob⊗1P living on D(P)1 , regarded as an operator

converting the line D(E)1 to the line D(P)1

Ob
− =Ob ⊗ 1P . (280)

5.3.3 Rep(S3)/Z2 SSB phase

Let us now choose
Bphys =ANeu(Z3) . (281)

From the coefficients of various bulk lines in the Lagrangian algebras ANeu(Z3) and ANeu, we
see that Q[a],1 has two ends along ANeu(Z3), but a single end along ANeu. We have thus two
interval compactifications of the line Q[a],1

Q[a],1

Q[id],1

ANeu ANeu(Z3)

(282)

In total, we have 3 untwisted sector local operators, and hence the resulting phase has 3 vacua.
We refer to the untwisted sector local operators descending from the bulk line Q[a],1 as Oa

+,1
and Oa

+,2.
Let us now determine the algebra formed by these untwisted local operators. For this

purpose, it turns out to be very useful to track the action of the Z3 subgroup of the S3 symmetry
localized on the physical boundary Bphys. This Z3 acts as

Oa
+,1→ωOa

+,1 ,

Oa
+,2→ω

2 Oa
+,2 ,

(283)
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forcing the algebra to take the form

Oa
+,1O

a
+,1 = αO

a
+,2 ,

Oa
+,2O

a
+,2 = βO

a
+,1 ,

Oa
+,1O

a
+,2 = γ ,

(284)

for some α,β ,γ ∈ C×. Rescaling Oa
+,1 and Oa

+,2, we can set the above algebra into the form

Oa
+,1O

a
+,1 =Oa

+,2 ,

Oa
+,2O

a
+,2 =Oa

+,1 ,

Oa
+,1O

a
+,2 = γ .

(285)

The associative nature of the algebra further sets γ= 1, leading to the final form of the algebra

Oa
+,1O

a
+,1 =Oa

+,2 ,

Oa
+,2O

a
+,2 =Oa

+,1 ,

Oa
+,1O

a
+,2 = 1 .

(286)

This determines the three vacua to be

vi =
1+ωi Oa

+,1 +ω
2i Oa

+,2

3
, i ∈ {0,1, 2} , (287)

where ω is a third root of unity.
Given that the linking action of D(P)1 on Oa

+,1 and Oa
+,2 is trivial (see equation (249)), we

learn that the symmetry P leaves each vacuum invariant, and hence we can simply identify
the line D(P)1 with the identity line 1

D(P)1
∼= 100 ⊕ 111 ⊕ 122

∼= 1 . (288)

Since the Z2 subsymmetry of Rep(S3) is spontaneously unbroken in all vacua, but we still have
multiple vacua, we refer to this phase as the Rep(S3)/Z2 SSB phase.

On the other hand, the linking action of D(E)1 (see (250)) is

1→ 2 ,

Oa
+,1→−O

a
+,1 ,

Oa
+,2→−O

a
+,2 ,

(289)

which implies its linking action on the vacua is

v0→ v1 + v2 ,

v1→ v2 + v0 ,

v2→ v0 + v1 .

(290)

We can thus identify the line D(E)1 as

D(E)1
∼= 101 + 102 + 112 + 110 + 120 + 121 , (291)

such that there are no relative Euler terms between the three vacua, i.e. the linking action of
1i j is

vi → v j , (292)
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without any extra factors. This suggests that we again are in a situation where we have spon-
taneous breaking of a non-invertible symmetry (in this case the symmetry E), but all vacua are
still physically indistinguishable. Indeed, E acts by sending a vacuum to a sum of the other
two vacua, and thus the action of E does not distinguish between the three vacua.

From the Lagrangian algebra ANeu(Z3), we see that there are two types of order parame-
ters for this phase: one type having generalized charge Q[id],P which is purely a string type
order parameter, and the other type having generalized charge Q[a],1 which is a mixture of
conventional and string type order parameters. In the IR, we have a single multiplet with
generalized charge Q[id],P , but two distinct multiplets with generalized charge Q[a],1. Thus,
an order parameter with charge Q[id],P has a unique IR image, but an order parameter with
charge Q[a],1 realizes one of the two possible IR images, which may be distinct for different
UV order parameters having the same charge Q[a],1. The IR multiplets with these charges are
discussed below:

• The IR multiplet with charge Q[id],P comprises of a single local operator

OP = 1 , (293)

where the identity local operator 1 is regarded as an operator living at the endpoint of
a line operator D(P)1

∼= 1.

• One of the IR multiplets with charge Q[a],1 comprises of two local operators (Oa
+,1,Oa

−,1),
where the operator Oa

+,1 was discussed above and

Oa
−,1 =Oa

+,1 , (294)

where Oa
+,1 appearing on the RHS is regarded as an operator living at the endpoint of a

line operator D(P)1
∼= 1.

• The other IR multiplet with charge Q[a],1 comprises of two local operators (Oa
+,2,Oa

−,2),
where the operator Oa

+,2 was discussed above and

Oa
−,2 = −O

a
+,2 , (295)

where −Oa
+,2 appearing on the RHS is regarded as an operator living at the endpoint of

a line operator D(P)1
∼= 1.

The equations (248) are satisfied by both (Oa
+,1,Oa

−,1) and (Oa
+,2,Oa

−,2). This can be seen by
using the trivalent junctions

P

E

E

=

101

−

121

+

112

−

102

+

120

−

110

(296)

and

P

E

E

=

110

−

112

+

121

−

120

+

102

−

101

(297)
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Combining the above two, the top quadrivalent junction in (241) is

P P

E

E

=

110

−−

112

−

121

−

120

−

102

−

101

(298)

The reader can now easily verify that the equations (248) are satisfied.

5.3.4 Rep(S3) SSB phase

Let us now consider
Bphys =ANeu . (299)

The resulting phase has 3 untwisted local operators, and hence 3 vacua

Q[a],1

Q[id],1

Q[b],+

ANeu ANeu

(300)

We refer to the untwisted local operators arising from Q[a],1 and Q[b],+ respectively as Oa
+ and

Ob.
Let us now determine the algebra formed by these untwisted local operators. Since the

fusion
Q[b],+ ⊗Q[a],1 , (301)

of the bulk line operators does not contain the identity bulk line operator or the Q[a],1 bulk
line operator, we must have

Oa
+O

b =Ob , (302)

where we have rescaled Oa
+ to ensure that there is no non-trivial coefficient on the RHS of the

above equation.
Similarly, since the fusion

Q[a],1 ⊗Q[a],1 , (303)

does not contain Q[b],+, we must have

Oa
+O

a
+ = α+ (1−α)O

a
+ , α ∈ C , (304)

where the relative weight between the two coefficients on the RHS has been set by imposing
associativity with (302).

We can fix α by studying the action of E on (304). Acting by E on the LHS of (304), we
obtain

P

Oa
−

E
Oa
+Oa

+ Oa
+

E

=

E
Oa
+

− 1
2 +

�

ω+ 1
2

�

Oa
+

P

Oa
−

E
Oa
+ Oa

−

=

E
Oa
+

E
Oa
−

P1
4

3
4− −

�

ω+ 1
2

�

Oa
+

(305)
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where Oa
− is the local operator in the P-twisted sector lying in the same irreducible multiplet

as Oa
+. We are going to focus on the middle term involving the product of Oa

− and Oa
+, which

must be proportional to Oa
−. The other two terms involving products Oa

+O
a
+ and Oa

−O
a
− do not

give rise to Oa
−. Now, acting by E on the RHS of (304), we obtain

P

Oa
− .

EE E

Oa
+

− 1
2(1−α) +

�

ω+ 1
2

�

α (1−α)
(306)

Matching the Oa
− contributions of (305) and (306), we obtain

Oa
−O

a
+ = −(1−α)O

a
− . (307)

Imposing associativity with (304) fixes

α= 2 , or α=
1
2

. (308)

For the final product relation, note that the fusion

Q[b],+ ⊗Q[b],+ , (309)

does not contain Q[b],+, and so we can express

ObOb = β + γOa
+ , (β ,γ) ∈ C2 − {(0,0)} . (310)

Imposing associativity with (302), we obtain β = αγ, and further rescaling Ob we obtain

ObOb = α+Oa
+ . (311)

We now need to analyze the two cases (308). It turns out that the case α = 2 is not
consistent, as will be explained later. For now, we focus on the case

α=
1
2

, (312)

which is consistent. In this case, the operator algebra is

Oa
+O

b =Ob ,

Oa
+O

a
+ =

1
2
(1+Oa

+) ,

ObOb =
1
2
+Oa

+ .

(313)

We can compute the vacua to be

v0 =
2
3

�

1−Oa
+

�

,

v1 =
1
6

�

1+ 2Oa
+ +
p

6Ob
�

,

v2 =
1
6

�

1+ 2Oa
+ −
p

6Ob
�

.

(314)

The linking action of D(P)1 is
Oa
+→Oa

+ ,

Ob→−Ob ,
(315)
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and hence it acts on the vacua as
v0→ v0 ,

v1→ v2 ,

v2→ v1 .

(316)

Thus the Rep(S3) phase under discussion decomposes as a sum of a Z2 SSB phase (formed
by vacua v1 and v2) and a Z2 non-SSB phase (formed by vacuum v0) when we restrict our
attention only to the Z2 subsymmetry of the full Rep(S3) symmetry. We can identify the line
D(P)1 generating this Z2 subsymmetry as

D(P)1
∼= 100 ⊕ 112 ⊕ 121 . (317)

Note that there is no relative Euler term between vacua v1 and v2 as the linking action of 112
is

v1→ v2 , (318)

without any extra factors. However, there could be relative Euler terms between vacua v0 and
v1 or v2. We will soon see that there are indeed such non-trivial relative Euler terms present
in this phase. Thus, the vacuum v0 can be physically distinguished from the vacua v1 and v2,
while the vacua v1 and v2 are physically indistinguishable. This is also apparent already from
the action of the unique Z2 subsymmetry of Rep(S3) on these vacua: it treats v0 differently
from v1, v2.

The linking action of D(E)1 is
1→ 2 ,

Oa
+→−O

a
+ ,

Ob→ 0 ,

(319)

implying the action on the vacua

v0→
2
3

�

2+Oa
+

�

= v0 + 2(v1 + v2) ,

v1→
1
3

�

1−Oa
+

�

=
1
2

v0 ,

v2→
1
3

�

1−Oa
+

�

=
1
2

v0 .

(320)

The presence of fractions on the RHS above is an indication of the presence of relative Euler
terms. We can identify

D(E)1
∼= 100 ⊕ 101 ⊕ 102 ⊕ 110 ⊕ 120 , (321)

with non-trivial relative Euler counterterms encoded in the linking actions

101 : v0→ 2v1 ,

102 : v0→ 2v2 ,

110 : v1→
1
2

v0 ,

120 : v2→
1
2

v0 .

(322)

We refer to this phase as the Rep(S3) SSB phase. In particular, the E symmetry is sponta-
neously broken in all three vacua. Finally, we have encountered an example where sponta-
neous breaking of non-invertible symmetry leads to physically distinguishable vacua!
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Let us now tie the remaining loose end by considering the case α = 2 and showing that it
is inconsistent. In this case, the algebra of untwisted local operators is

Oa
+O

b =Ob ,

Oa
+O

a
+ = 2−Oa

+ ,

ObOb = 2+Oa
+ ,

(323)

from which we can compute the vacua to be

v0 =
1
3

�

1−Oa
+

�

,

v1 =
1
6

�

2+Oa
+ +
p

3Ob
�

,

v2 =
1
6

�

2+Oa
+ −
p

3Ob
�

.

(324)

The linking action of the line E on the vacua is

v0→ v1 + v2 ,

v1→ v0 +
1
2
(v1 + v2) ,

v2→ v0 +
1
2
(v1 + v2) .

(325)

Since the action on v1 produces a fractional value of v1, it is not possible to represent the line
E by any line operator in the phase, even if we allow for the presence of non-trivial relative
Euler counterterms. Thus the resulting phase does not admit a consistent action of Rep(S3)
symmetry, leading to a contradiction.

The order parameters for this phase carry generalized charges Q[a],1 and Q[b],+. An order
parameter carrying charge Q[a],1 is a mixture of standard and string type order parameters,
while an order parameter carrying charge Q[b],+ is purely of string type. There are unique
possible IR images for both kinds of order parameters. The IR image for charge Q[a],1 comprises
of an untwisted sector local operator Oa

+ discussed above and a P-twisted sector local operator

Oa
− =

3v0

2(2ω+ 1)
, (326)

regarded as an operator living at the end of D(P)1 . The reader can check that (Oa
+,Oa

−) transform
under Rep(S3) as a multiplet with generalized charge Q[a],1, by using the junctions

P

E

E

= − 100

100

100

+ 100

110

110

+ 100

120

120

+ 121

102

101

+ 112 ,

101

102

P

E

E

= − 100

100

100

+ 121

120

110

− 112

110

120

+ 100

101

101

+ 100

102

102

(327)

Similarly, with more effort, an interested reader can find the IR multiplet carrying charge
Q[b],+. One of the three local operators comprising this multiplet is the operator Ob discussed
above.
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6 (1+1)d Ising-symmetric gapped phases

From this section onward, we turn our attention to (1+1)d gapped phases for non-group-
theoretical non-invertible symmetries. We study a class of such symmetries described by
Tambara-Yamagami (TY) fusion categories [136] (see [83] for a physics review). A general
TY category is

TY(A,χ,τ) , (328)

where A is an abelian group, χ is a symmetric non-degenerate bicharacter on A and τ is a sign.
In this work, we will only consider TY categories

TY(ZN ) := TY(ZN ,χid,+) , (329)

where A= ZN , the sign τ is chosen to be trivial, and the bicharacter χ = χid is specified by

χid =
�

e2πi/N , e2πi/N
�

= e2πi/N . (330)

We begin in this section by considering the simplest case

S = TY(Z2)≡ Ising , (331)

that we also refer to as the Ising symmetry as it arises in the Ising CFT in 2d. The gapped
phases in the Ising case have appeared before in [88] albeit using different methods, whereas
the general TY(ZN ) case to our knowledge has not been discussed before.

6.1 Symmetry

Ising symmetry involves two non-trivial topological line operators

P S

and
(332)

with fusion rules

P⊗P= 1 , P⊗ S= S= S⊗P , S⊗ S= 1⊕P . (333)

Thus P is a Z2 subsymmetry, and S generates a non-invertible symmetry,

6.2 Generalized charges

The full set of generalized charges for Ising symmetry was discussed in section 4.4.5 of [58],
including the structures of the irreducible multiplets carrying these charges and the action of
the Ising symmetry on these multiplets. The SymTFT is the 3d TQFT carrying modular fusion
category,

Z(Ising) = Ising⊠ Ising , (334)

of topological line defects. We label the simple lines as

Qid,± , QP,± , QS,±1/16 , QS,±7/16 , Qid+P , (335)
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with Qid,+ being the identity line. The fusion rules of these lines are

Qid,− ⊗Qid,−
∼= Qid,+ ,

Qid,− ⊗QP,±
∼= QP,∓ ,

Qid,− ⊗QS,m/16
∼= QS,−m/16 , m ∈ {±1,±7} ,

QP,s ⊗QP,s′
∼= Qid,ss′ , s, s′ ∈ {+,−} ,

QP,s ⊗QS,m/16
∼= QS,sm/16 , s ∈ {+,−} , m∈ {1,−7} ,

QP,s ⊗QS,m/16
∼= QS,−sm/16 , s ∈ {+,−} , m∈ {−1,7} ,

QS,m/16 ⊗QS,n/16
∼= Qid+P , m ∈ {1,−7} , n∈ {−1,7} ,

QS,m/16 ⊗QS,n/16
∼= Qid,(−1)(n−m)/8 ⊕QP,(−1)(n−m)/8 , m, n ∈ {1,−7} ,

QS,m/16 ⊗QS,n/16
∼= Qid,(−1)(n−m)/8 ⊕QP,−(−1)(n−m)/8 , m, n ∈ {−1,7} ,

Qid,± ⊗Qid+P
∼= Qid+P ,

QP,± ⊗Qid+P
∼= Qid+P ,

QS,m/16 ⊗Qid+P
∼= QS,−1/16 ⊕QS,7/16 , m ∈ {1,−7} ,

QS,m/16 ⊗Qid+P
∼= QS,1/16 ⊕QS,−7/16 , m ∈ {−1,7} ,

Qid+P ⊗Qid+P
∼= Qid,+ ⊕Qid,− ⊕QP,+ ⊕QP,− . (336)

In this subsection, we review the structure of a subset of the generalized charges that can be
carried by order parameters for gapped phases. These correspond to simple bulk lines labeled

Qid,− and Qid+P . (337)

6.2.1 Qid,− multiplet

This multiplet consists of a single untwisted sector local operator O− on which the action of
Ising is

O−
P

=
O− ,

P

O−
S

=
O− .

S

−

(338)

6.2.2 Qid+P multiplet

This multiplet consists of two local operators O and OP, where O is in the untwisted sector
and OP is in the twisted sector for P ∈ Ising

P

OP .
and

O (339)
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The action of P is

O
P

=
O

P

−

OP

P

P = P

OP

P

(340)

and the action of S is

O
S

=

OP

P

S

OP

S

P = P
O

S

(341)

6.3 Gapped phases

The SymTFT Z(Ising) admits only a single irreducible topological boundary condition (up to
isomorphisms). Arguments for this would be provided in the next section where we discuss
irreducible topological boundary conditions for general Z(TY(ZN )).

The Lagrangian algebra corresponding to this unique topological boundary condition takes
the form

ADir = Qid,+ ⊕Qid,− ⊕Qid+P . (342)

Note that this boundary must serve as the symmetry boundary for Ising symmetry

B
sym
Ising
=ADir . (343)

6.3.1 Ising SSB phase

Since we have only one possible irreducible topological boundary of the SymTFT Z(Ising),
there is a single irreducible (1+1)d gapped phase with Ising symmetry, corresponding to choos-
ing the physical boundary to be

Bphys =ADir . (344)

We have the following compactifications of bulk lines

Qid+P

Qid,+

Qid,−

ADir ADir

(345)

That is, the resulting 2d TQFT has 3 untwisted sector local operators, and hence three vacua.
We label the untwisted local operator descending from Qid,− as O−, and the untwisted local
operator descending from Qid+P as O.
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Let us now determine the algebra formed by these untwisted local operators. Using the
bulk fusion rule,

Qid,− ⊗Qid,−
∼= Qid,+ , (346)

we can fix
O−O− = 1 , (347)

where we have used a rescaling of O− to fix the coefficient on the right-hand side. Using the
bulk fusion rule

Qid,− ⊗Qid+P
∼= Qid+P , (348)

we can fix
O−O = αO . (349)

Associativity with (347) imposes α2 = 1, and we can further fix α = 1 by rescaling O− by a
sign, leading to

O−O =O . (350)

Finally, bulk fusion
Qid+P ⊗Qid+P (351)

contains both the identity bulk line and Qid,−, but not Qid+P, implying a product rule of the
form

OO = β + γO− . (352)

Imposing associativity with (347) fixes β = γ, and we can further fix β = 1 by rescaling O,
leading to the final form for the algebra of the untwisted local operators

O−O− = 1 ,

O−O =O ,

OO = 1+O− .

(353)

Using this algebra, one can determine the three vacua to be

v0 =
1
2
(1−O−) ,

v1 =
1
4
(1+O− +

p
2O) ,

v2 =
1
4
(1+O− −

p
2O) .

(354)

The linking action of D(P)1 is
O−→O− ,

O→−O ,
(355)

and hence acts on the vacua as
v0→ v0 ,

v1→ v2 ,

v2→ v1 ,

(356)

leading to the identification
D(P)1

∼= 100 ⊕ 112 ⊕ 121 . (357)

Note that analogously to the Rep(S3) SSB phase discussed in the previous section, the Ising
phase also decomposes as a sum of a Z2 SSB phase (formed by vacua v1 and v2) and a Z2
trivial phase (formed by vacuum v0), when we restrict our attention to the Z2 subsymmetry of
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the full Ising symmetry. Similarly to the Rep(S3) case, we refer to the phase under discussion
as Ising SSB phase. Even though the discussions for the Rep(S3) SSB and the Ising SSB phases
are the same so far, we will see shortly that the relative Euler terms are different for the two
phases.

The linking action of D(S)1 is
1→

p
2 ,

O−→−
p

2O− ,

O→ 0 ,

(358)

implying the action on the vacua

v0→
1
p

2
(1+O−) =

p
2(v1 + v2) ,

v1, v2→
1

2
p

2
(1−O−) = 1

p
2

v0 .
(359)

We can thus identify
D(S)1

∼= 101 ⊕ 102 ⊕ 110 ⊕ 120 , (360)

with non-trivial relative Euler counterterms encoded in the linking actions

101 : v0→
p

2v1 ,

102 : v0→
p

2v2 ,

110 : v1→
1
p

2
v0 ,

120 : v2→
1
p

2
v0 .

(361)

Note that these relative Euler terms are different from that for the Rep(S3) SSB phase.
Just like for Rep(S3) SSB phase, in the Ising SSB phase we have physically distinguishable

vacua: the vacuum v0 has different physical properties compared to the vacua v1, v2. This can
again be seen from the fact that the unique Z2 subsymmetry of Ising acts differently on v0 and
v1, v2, and also reflects in the presence of relative Euler terms between these vacua.

The order parameters for the Ising SSB phase have generalized charges Qid,− and Qid+P.
An order parameter of charge Qid,− is of conventional type, but instead of carrying charge
under an invertible symmetry, it carries a charge under the non-invertible symmetry S as in
(338). On the other hand, an order parameter of charge Qid+P is a mixture of conventional and
string types, see (339). The IR multiplet carrying charge Qid,− comprises only of the untwisted
sector operator O− discussed above. On the other hand, the IR multiplet carrying charge Qid+P
comprises of the untwisted sector operator O discussed above and a P-twisted sector operator,

OP =
p

2v0 , (362)

viewed as living at the end of D(P)1 . The reader can see that this satisfies the action (341)
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by using the junctions

P

S

S

= 100

110

110

− 100

120

120

+ 121

102

101

− 112 ,

101

102

P

S

S

= 121

120

110

+ 112

110

120

+ 100

101

101

− 100

102

102

(363)

7 (1+1)d TY(ZN)-symmetric gapped phases

In this section, we extend the results of the previous section to understand gapped phases for
(1+1)d systems with Tambara-Yamagami TY(ZN ) symmetries (329).

7.1 TY(ZN) symmetry and its generalized charges

The TY(ZN ) symmetry involves a ZN subsymmetry involving non-identity invertible lines

Ai , i ∈ {1, · · · , N − 1} , (364)

and a non-invertible symmetry line S. The fusion rules are

AN ∼= 1 , A⊗ S∼= S⊗A∼= S , S⊗ S=
N
⊕

i=1

Ai . (365)

The SymTFT Z(TY(ZN )) can be obtained by gauging Z2 electric-magnetic duality symme-
try of 3d ZN DW gauge theory [23]. The topological lines of this theory are identified with the
Drinfeld center Z(TY(ZN )), which was computed in [137]. Let us describe the topological
line defects of Z(TY(ZN )), which are also the generalized charges for TY(ZN ) symmetry.

We can obtain these by explicitly performing the Z2 gauging on the topological lines of the
Dijkgraaf Witten theory, which form the Drinfeld center Z(VecZN

) described in section 4.2.
The lines of DW theory can be denoted as

Le,m , e, m ∈ ZN = {0,1, · · · , N − 1} , (366)

where m denotes the ZN vortex sector and e describes the ZN representation carried by it. The
Z2 symmetry to be gauged exchanges the two labels

e←→ m . (367)

After gauging, the lines of the Drinfeld center Z(TY(ZN )) are

• Qe,+: These are the invariant lines Le,e;

• Q0,−: These is the generator of the dual Z2 1-form symmetry, or in other words the
Wilson line for the newly introduced Z2 gauge group;
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• Qe,−: These are obtained by stacking Le,e with Qid,−;

• Qe,m ≡ Le,m + Lm,e: These invariant combinations with e ̸= m, which are quantum
dimension 2 lines. Note that Qe,m = Qm,e, so we can impose e > m to avoid overcounting;

• QΣe ,± : Before gauging, there are topological lines in the twisted sector for Z2 0-form
symmetry. Sometimes these are also referred to as lines in the flux sector. After gauging,
these become genuine lines and are denoted QΣe ,+. In addition we can stack these with
the dual line Q0,− which yields the lines QΣe ,−.

The fusion of these lines are, see e.g. [23]

Qe1,ε ⊗Qe2,ε′ = Qe1+e2,εε′ ,

Qe1,ε ⊗Qe2,m2
= Qe1+e2,e1+m2

,
(368)

and

Qe1,m1
⊗Qe2,m2

(369)

=



















Qe1+e2,+ ⊕Qe1+e2,− ⊕Qm1+e2,+ ⊕Qm1+e2,− , e1 + e2= m1 +m2 , m1 + e2= e1 +m2 ,

Qe1+e2,+ ⊕Qe1+e2,− ⊕Qm1+e2,e1+m2
, e1 + e2= m1 +m2 , m1 + e2 ̸= e1 +m2 ,

Qe1+e2,m1+m2
⊕Qm1+e2,+ ⊕Qm1+e2,− , e1 + e2 ̸= m1 +m2 , m1 + e2= e1 +m2 ,

Qe1+e2,m1+m2
⊕Qm1+e2,e1+m2

, e1 + e2 ̸= m1 +m2 , m1 + e2 ̸= e1 +m2 .

In what follows, we discuss the subset of the generalized charges that can be carried by
order parameters for gapped phases, which in this case are simple bulk lines Q0,−, Qe,m, and
Qe,± for e, m ∈ ZN , e > m.

7.1.1 Q0,− multiplet

This multiplet consists of a single untwisted sector local operator O− on which the action of
TY(ZN ) is

O−

Ak

=
O−

Ak

O−
S

=
O−

S

−

(370)

where k = 1,2, . . . , N − 1.

7.1.2 Qe,± multiplets

Each Qe,± multiplet for e = 1, 2, . . . , N − 1 (and choosing + or −) consists of a single local
operator O±e in the twisted sector for Ae ∈ TY(ZN )

Ae

O±e
(371)

69

https://scipost.org
https://scipost.org/SciPostPhys.18.1.032


SciPost Phys. 18, 032 (2025)

The action of TY(ZN ) on these multiplets is

Ae

O±e

Ak

= e−2πiek/N Ae

O±e

Ak

Ae

O±e

S

= Ae

O±e

S

±e
2πie2

2N

(372)

where k = 1,2, . . . , N − 1.

7.1.3 Qe,0 multiplets

The Qe,0 multiplet with e = 1, 2, . . . , N − 1 consists of an untwisted local operator Oe and a
local operator OA

e in the twisted sector for Ae ∈ TY(ZN )

Ae

OA
e

and
Oe

(373)

The action of Ak for k = 1, 2, . . . , N − 1 is

Oe

Ak

=
Oe

Ak

e−2πiek/N

OA
e

Ak

Ae = Ae

OA
e

Ak

(374)

and the action of S is

Oe

S

=
OA

e

Ae

S

OA
e

S

Ae = Ae

Oe

S

(375)

7.1.4 Qe,m multiplets

The Qe,m multiplet with e, m = 1,2, . . . , N − 1 and e > m consists of two local operators Oe,m
and Om,e in the twisted sectors for Ae and Am respectively,

Ae

Oe,m

and Am

Om,e
(376)
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The action of Ak for k = 1,2, . . . , N − 1 is

Ae

Oe,m

Ak

= e−2πimk/N Ae

Oe,m

Ak

Om,e

Ak

Am = Am

Om,e

Ak

e−2πiek/N

(377)

and the action of S is

Ae

Oe,m

S

= Ae
Am

Om,e
S

Om,e

S

Am =
Am Oe,m

S

Ae
(378)

7.2 Lagrangian algebras and order parameters

Topological boundary conditions of the SymTFT Z(TY(ZN )) correspond to Lagrangian alge-
bras in the Drinfeld center Z(TY(ZN )). These can be used as physical boundary conditions
in the sandwich construction to construct TY(ZN ) symmetric gapped phases. Moreover, the
bulk lines participating in these Lagrangian algebras describe the generalized charges of order
parameters for these gapped phases.

For determining the Lagrangian algebras we need to determine first of all the bosonic lines,
i.e. those that have spin +1, and then make an ansatz

A=
⊕

a bosonic

naQa , (379)

for non-negative integers na, solving the dimension condition (66) and the inequality in (68).
The spins are

θ (Qe,±) = e−
2πie2

N , θ (Qe,m) = e−
2πiem

N . (380)

The spin of the lines Σe,ε can be determined as well and unless N = q2 is never equal to 1. In
particular, the Σ lines only contribute to Lagrangian algebras for N = q2.22 In what follows,
we will discuss general Lagrangian algebras that do not involve Σe,ε lines. Thus, we discuss
most general Lagrangian algebras for the case N ̸= q2, but miss Lagrangian algebras involving
Σe,ε lines when N = q2.

Lagrangians for the DW theory. Before discussing the TY Lagrangians, it will be useful to
recapitulate the gapped boundary conditions for the DW theory for ZN , and fix some notation.

22We thank A. Antinucci and C. Copetti for discussions on this.
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There are two canonical N -independent boundary conditions for the ZN DW theory:
Dirichlet (Dir), where the lines Le,0 end, and Neumann (Neu), where the lines L0,m end. We
will denote these by

ADir =
N−1
∑

e=0

Le,0 ,

ANeu =
N−1
∑

m=0

L0,m .

(381)

For N not prime, and p|N , there are additional mixed boundary conditions Neu(Zp). We
denote these by

ANeu(Zp) =
∑

(e,m)

Le,m , (382)

where the sum is over

Le,m , e ∈ {0, p, 2p, · · · , (q− 1)p} , m ∈ {0, q, 2q, · · · , (p− 1)q} , (383)

i.e. the lines in ZN/Zp
∼= Zq as well as their dual lines in bZp end.

ADir,Neu for all TY(ZN). For any N the following is a Lagrangian algebra

A(N)Dir,Neu = Q0,+ +Q0,− +
N−1
∑

e=1

Qe,0 . (384)

The subscript Dir,Neu indicates that the resulting boundary is a combination of the Dirichlet
and Neumann boundaries of the DW theory. The combination is forced as these two boundaries
are exchanged by the gauged Z2 0-form symmetry. To see the inclusion of both Dirichlet and
Neumann from the Lagrangian algebra, note that the fact that Qe,0 can end on the boundary
means that both Le,0 and L0,e must end. The Dir boundary of DW has the property that Le,0
end on it, and the Neu boundary of DW has the property that L0,e end on it.

It is easy to see that the Lagrangian algebra ADir,Neu satisfies all the necessary conditions.
First note that the spin of the lines Q0,± and Qe,0 is always +1. To see that the condition (66)
holds, note that

dim(A(N)) = dim(Q0,+) + dim(Q0,−) +
N−1
∑

e=1

dim(Qe,0)

= 1+ 1+ 2(N − 1)

= 2N .

(385)

On the other hand, we have

dim2(TY(ZN )) =
N
∑

i=1

dim2(Ai) + dim2(S)

= N + N

= 2N .

(386)

The inequalities (68) imply
nid,±ne,0 ≤ ne,0 , (387)

and

e+ k ̸= N : ne,0nk,0 ≤ ne+k,0 , e+ k = N : ne,0nk,0 ≤ nid,+ + nid,− . (388)

One can indeed check that the above solution satisfies all these conditions.

72

https://scipost.org
https://scipost.org/SciPostPhys.18.1.032


SciPost Phys. 18, 032 (2025)

Lagrangian algebras for N ≤ 8. We provide some examples for low N , where we deter-
mined the complete set of Lagrangian algebras by solving the boson, dimension, and inequality
conditions. We only mention the Lagrangian algebras other than ADir,Neu in (384)

TY(Z4) : ANeu(Z2,Z2) = Q0,+ +Q0,− +Q2,+ +Q2,− + 2Q2,0 , (389)

ANeu(Z2) = Q0,+ +Q2,− +Q2,0 +QΣ1,+
+QΣ3,−

,

TY(Z6) : ANeu(Z2,Z3) = Q0,+ +Q0,− +Q2,0 +Q3,0 +Q4,0 +Q3,2 +Q4,3 ,

TY(Z8) : ANeu(Z2,Z4) = Q0,+ +Q0,− +Q4,+ +Q4,− +Q2,0 + 2Q4,0 +Q6,0 +Q4,2 +Q6,4 .

In the above, we are using the conventions of [23], using which one can check that for N = 4
the topological lines QΣ1,+

and QΣ3,−
are bosons and can participate in a Lagrangian algebra.

For other values of N ∈ [2, 8], the only Lagrangian algebra is ADir,Neu. The labeling of the
Lagrangian algebras is chosen to reflect the boundary conditions of the DW theory that com-
bine to form the boundary condition of the SymTFT Z(TY(ZN )). The boundary condition of
Z(TY(ZN )) corresponding to ANeu(Zp ,Zq) includes a combination (direct sum) of Zp and Zq
Neumann boundary conditions of the ZN DW theory. For p = q, this means we have two
copies of the Zm Neumann boundary condition. The boundary condition of Z(TY(Zq2)) corre-
sponding to ANeu(Zq) includes only the Zq Neumann boundary condition of the Zq2 DW theory.

For example, consider the Lagrangian algebra ANeu(Z2,Z2) of Z(TY(Z4)) described above.
The Z2 Neumann boundary condition of Z4 DW theory has the property that L2,0, L0,2 and
L2,2 can end on it. This means that Q2,+ can end on it, and Q2,0 has two ends along it. The
number of ends is reflected in the coefficients of these bulk lines in ANeu(Z2). Finally, Q0,− can
end as well because the gauged Z2 exchanges the two Z2 Neumann boundary conditions, and
the difference of the identity operators along the two boundaries has to be attached to Q0,−.
This implies Q2,− must end as well.

Lagrangian algebras for general N. In fact, we can describe the structure of all Lagrangian
algebras for arbitrary N – this is a complete set for N not a perfect square. As we pointed out
before, in the case of a perfect square there will be additional algebras involving the QΣ. For
this purpose, let us note that the Z2 electric-magnetic duality symmetry of the ZN Dijkgraaf-
Witten theory acts as

Le,m←→ Lm,e , (390)

which exchanges topological boundary conditions of the DW theory as

ANeu(Zp)←→ANeu(Zq) , (391)

such that
pq = N . (392)

The irreducible boundary conditions for the SymTFT Z(TY(ZN )) are then, using the notation
in (382),

ANeu(Zp ,Zq) ≡ANeu(Zp) ⊕ANeu(Zq) , p ≤ q . (393)

Thus Qe,m appears in ANeu(Zp ,Zq) if and only if either Le,m or Lm,e appears in ANeu(Zp). If this
is the case, and only one of Le,m or Lm,e appears in ANeu(Zp), then the coefficient of Qe,m
in ANeu(Zp ,Zq) is one. If on the other hand, both Le,m and Lm,e appear in ANeu(Zp), then the
coefficient of Qe,m in ANeu(Zp ,Zq) is two. Similarly, if Le,e appears in ANeu(Zp), then both Qe,±
appear in ANeu(Zp ,Zq).
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Matching with classification of module categories. Before closing this section, let us note
that from the analysis of [138], one can deduce that the indecomposable module categories
for TY(ZN ) are also parameterized by factorizations of N

pq = N , (394)

when N is not a perfect square, thus having the same classification as for the Lagrangian al-
gebras in the Drinfeld center Z(TY(ZN )) discussed above. This has to be the case as both
indecomposable module categories and Lagrangian algebras parameterize different topologi-
cal boundary conditions of the SymTFT Z(TY(ZN )). The correspondence takes the following
form. Pick a Lagrangian algebra A and let Btop

A be the topological boundary of Z(TY(ZN )) ob-
tained by condensing A. Then, the corresponding indecomposable module category MA de-
scribes topological line defects living at the interface between the symmetry boundary Bsym

TY(ZN )

and the topological boundary B
top
A . See [58] for more details.

7.3 Gapped phases

The symmetry boundary is fixed to be

B
sym
TY(ZN )

=ADir,Neu . (395)

Using the decomposition as boundaries for ZN DW theory

ADir,Neu ≡ADir ⊕ANeu , (396)

we can recognize the line A ∈ TY(ZN ) along the boundary ADir,Neu as

A≡M⊕E , (397)

where M is the line generating ZN symmetry localized along ADir and E is the line generating
ZN symmetry localized along ANeu.23 On the other hand, the line S arises from the end of Z2
electric magnetic duality defect, which interchanges ADir and ANeu.

7.3.1 TY(ZN) SSB = (Z1,ZN) SSB phase

Now let us choose the physical boundary to be the same as symmetry boundary

Bphys = B
sym
TY(ZN )

=ADir,Neu , (398)

and analyze the resulting TY(ZN )-symmetric gapped phase.

Derivation directly from the SymTFT Z(TY(ZN)). From the SymTFT perspective, we find
the following lines can end

Q0,±

Qe,0

ADir,Neu ADir,Neu

(399)

23The line M comes from projecting bulk line L0,1 onto the boundary ADir, and the line E comes from projecting
bulk line L1,0 onto the boundary ANeu.

74

https://scipost.org
https://scipost.org/SciPostPhys.18.1.032


SciPost Phys. 18, 032 (2025)

and therefore this phase has N + 1 vacua which we denote v0, v1, · · · , vN . Let us denote the
untwisted sector local operator arising from Q0,− as O− and the untwisted sector local oper-
ators arising from Qe,0 as Oe. From the fusion of bulk lines, we can straightforwardly derive
the product rules for these operators to be

O2
− = 1 ,

O−Oe =Oe , e ∈ {1,2, · · · , N − 1} ,

Oe1
Oe2
=
p

2Oe1+e2 mod N , if e1 + e2 ̸= N ,

OeON−e = 1+O− .

(400)

From this, we determine the vacua to be

v0 =
1
2
(1−O−) ,

vi =
1

2N

�

1+O− +
p

2
N−1
∑

e=1

ωie
NOe

�

, i ∈ {1,2, · · · , N} ,
(401)

where ωN is a primitive N -th root of unity.
The linking action of D(A)1 can be deduced from the DW theory, and is given on untwisted

local operators as
O−→O− ,

Oe→ωe
NOe , e ∈ {1,2, · · · , N − 1} ,

(402)

which implies its linking action on vacua is

v0→ v0 ,

vi → vi+1 , i ∈ {1,2, · · · , N − 1} ,
vN → v1 .

(403)

Thus, from the perspective of ZN subsymmetry of TY(ZN ) generated by A, the vacuum v0
gives rise to a trivial phase, while the other vacua {v1, v2, · · · , vN} give rise to a ZN SSB phase.
In other words, in terms of the ZN subsymmetry, the TY(ZN )-symmetric phase under study
decomposes as

Trivial Phase ⊕ ZN SSB Phase. (404)

The line operator D(A)1 generating the A-symmetry is

D(A)1 = 100 ⊕
N−1
⊕

i=1

1i i+1 ⊕ 1N1 . (405)

The S-symmetry exchanges the two sub-phases in (404). To see this, note that the linking
action of D(S)1 on untwisted local operators is

1→
p

N ,

O−→−
p

NO− ,

Oe→ 0 , e ∈ {1,2, · · · , N − 1} ,

(406)

which implies its linking action on vacua is

v0→
p

N
N
∑

i=1

vi ,

vi →
1
p

N
v0 , i ∈ {1, 2, · · · , N} .

(407)
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Thus, the line operator D(S)1 generating the S-symmetry is

D(S)1 =
N
⊕

i=1

10i ⊕
N
⊕

i=1

1i0 , (408)

along with non-trivial relative Euler terms encoded in the following linking actions

10i : v0→
p

N vi ,

1i0 : vi →
1
p

N
v0 ,

(409)

for 1≤ i ≤ N . It is easy to check that the lines D(A)1 and D(S)1 satisfy the fusions (365).
We denote this phase as the TY(ZN) SSB phase, or equivalently as (Z1,ZN) SSB phase,

using the structure of the two sub-phases with respect to the ZN subsymmetry. Note that the
vacuum v0 can be physically distinguished from the other vacua, while vacua {v1, v2, · · · , vN}
are physically indistinguishable.

Derivation from the ZN DW theory. From the point of view of the ZN DW theory, we are
considering a collection of four interval compactifications

(ADir,ADir) , (ADir,ANeu) , (ANeu,ADir) , (ANeu,ANeu) . (410)

The first and fourth ones are related by the action of Z2 electric-magnetic duality symmetry,
and so are gauge equivalent. Similarly, the second and the third ones are gauge equivalent. We
can thus focus our attention only on the first two compactifications, and express the Z(TY(ZN ))
compactification as

(ADir,Neu,ADir,Neu)≡ (ADir,ANeu)⊕ (ADir,ADir) . (411)

The ZN subsymmetry of TY(ZN ) living on the left ADir,Neu boundary is identified with the ZN
symmetry living on the left ADir boundary on the RHS of the above equation. Thus, from the
RHS we read that the resulting TY(ZN )-symmetric gapped phase decomposes as (404) phase
in terms of the ZN subsymmetry. This matches what we discussed above.

The S line changes the left boundary condition for the DW theory as

ADir→ANeu , (412)

thus acting on the sub-phases as

(ADir,ANeu)→ (ANeu,ANeu) ,

(ADir,ADir)→ (ANeu,ADir) .
(413)

Combining it with the Z2 gauge transformation discussed above, we can describe the action
of S as a permutation of two sub-phases

(ADir,ANeu)←→ (ADir,ADir) . (414)

This also matches what we discussed above.
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Order parameters. The order parameters of the TY(Z1,ZN ) phase have generalized charges
Q0,− and Qe,0. The order parameter of charge Q0,− is a conventional untwisted local operator,
but uncharged under the invertible ZN subsymmetry and charged under the non-invertible
symmetry S as in (370). The other order parameters, of charge Qe,0, are instead a mixture
of conventional order parameters and string type, see 7.1.3. The IR multiplet carrying charge
Q0,− has only the untwisted sector operator O−. On the other hand, the IR multiplet carrying
charge Qe,0 comprises of an untwisted local operator Oe and an Ae-twisted sector operator

OA
e =
p

2v0 , (415)

viewed as living at the end of D(A
e)

1 . This can be seen using the junction

A

S

S

=ωN−1
100

110

110

+ωN−2
100

120

120

+ . . . +
112

101

102

+ ω
123

102

103

+ . . . (416)

7.3.2 (Zp ,Zq) SSB phases

Let us now choose a general physical boundary

Bphys =ANeu(Zp),Neu(Zq) , (417)

and study the resulting TY(ZN )-symmetric gapped phase.

Derivation directly from the SymTFT Z(TY(ZN)). This gives rise to a total of (p + q) un-
twisted sector local operators. Let us label the operators arising from ending Qep,0 along
ANeu(Zp) ⊂ANeu(Zp),Neu(Zq) as

O(2)e , e ∈ {1,2, · · · , q− 1} , (418)

and the operators arising from ending Qmq,0 along ANeu(Zq) ⊂ANeu(Zp),Neu(Zq) as

O(1)m , m ∈ {1,2, · · · , p− 1} . (419)

The product of these operators can be deduced to be

O2
− = 1 ,

O−O(2)e =O(2)e ,

O−O(1)m = −O(1)m ,

O(2)e1
O(2)e2

=
p

2O(2)e1+e2 mod q , if e1 + e2 ̸= q ,

O(1)m1
O(1)m2

=
p

2O(1)m1+m2 mod p , if m1 +m2 ̸= p ,

O(2)e O(2)q−e = 1+O− ,

O(1)m O(1)p−m = 1−O− ,

O(1)m O(2)e = 0 .

(420)
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From this, we can compute the vacua to be

vi−1 =
1

2p

�

1−O− +
p

2
p−1
∑

m=1

ωim
p O(1)m

�

, i ∈ {1, · · · , p} ,

vp+i−1 =
1
2q

�

1+O− +
p

2
q−1
∑

e=1

ωie
q O

(2)
e

�

, i ∈ {1, · · · , q} ,

(421)

where ωp and ωq are primitive p-th and q-th roots of unity respectively.

The linking action of D(A)1 on untwisted local operators is

O−→O− ,

O(2)e →ω
e
qOe ,

O(1)m →ω
m
p Om ,

(422)

which implies its linking action on vacua is

vi → vi+1 , i ∈ {0,1, · · · , p− 2} ,
vp−1→ v0 ,

vp−1+i → vp+i , i ∈ {1, · · · , q− 1} ,
vp+q−1→ vp .

(423)

Thus, from the perspective of ZN subsymmetry of TY(ZN ) generated by A, the vacua
{v0, v1, · · · , vp−1} give rise to a Zp SSB phase, while the other vacua {vp, vp+1, · · · , vp+q−1} give
rise to aZq SSB phase. In other words, in terms of theZN subsymmetry, theTY(ZN )-symmetric
phase under study decomposes as

Zp SSB Phase ⊕ Zq SSB Phase. (424)

The line operator D(A)1 generating the A-symmetry is

D(A)1 =
p−2
⊕

i=0

1i i+1 ⊕ 1p−10

q−1
⊕

i=1

1p−1+i p+i ⊕ 1p+q−1 p . (425)

The S-symmetry exchanges the two sub-phases in (424). To see this, note that the linking
action of D(S)1 on untwisted local operators is

1→ppq ,

O−→−
p

pqO− ,

O(2)e → 0 ,

O(1)m → 0 ,

(426)

which implies its linking action on vacua is

vi →
√

√q
p

q
∑

j=1

vp−1+ j , i ∈ {0, 1, · · · , p− 1} ,

vp−1+i →
√

√ p
q

p−1
∑

j=0

v j , i ∈ {1, · · · , q} .

(427)
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Thus, the line operator D(S)1 generating the S-symmetry is

D(S)1 =
(p−1,q)
⊕

(i, j)=(0,1)

1i p− j+1 ⊕
(q,p−1)
⊕

(i, j)=(1,0)

1p−1+i j , (428)

along with non-trivial relative Euler terms encoded in the following linking actions

1ip−1+ j : vi →
√

√q
p

vp−1+ j , i ∈ {0,1, · · · , p− 1}, j ∈ {1, · · · , q} ,

1p−1+i j : vp−1+i →
√

√ p
q

v j , i ∈ {1, · · · , q}, j ∈ {0, 1, · · · , p− 1} .
(429)

It is easy to check that the lines D(A)1 and D(S)1 satisfy the fusions (365).
We denote this phase as (Zp ,Zq) SSB phase using the structure of the two sub-phases

(424) with respect to the ZN subsymmetry. Note that the vacua {v0, v1, · · · , vp−1} are physically
indistinguishable and the vacua {vp, vp+1, · · · , vp+q−1} are physically indistinguishable, but any
two vacua vi and v j for 0≤ i ≤ p− 1 and p ≤ j ≤ p+ q− 1 are physically distinguishable.

Derivation from the ZN DW theory. From the point of view of the ZN DW theory, we are
considering a collection of four interval compactifications

(ADir,ANeu(Zp)) , (ADir,ANeu(Zq)) , (ANeu,ANeu(Zp)) , (ANeu,ANeu(Zq)) . (430)

The first and fourth ones are related by the action of Z2 electric-magnetic duality symmetry,
and so are gauge equivalent. Similarly, the second and the third ones are gauge equivalent. We
can thus focus our attention only on the first two compactifications, and express the Z(TY(ZN ))
compactification as

(ADir,Neu,ANeu(Zp),Neu(Zq))≡ (ADir,ANeu(Zp))⊕ (ADir,ANeu(Zq)) . (431)

The ZN subsymmetry of TY(ZN ) living on the left ADir,Neu boundary is identified with the ZN
symmetry living on the left ADir boundary on the RHS of the above equation. Thus, from the
RHS we read that the resulting TY(ZN )-symmetric gapped phase decomposes as (424) phase
in terms of the ZN subsymmetry. This matches what we discussed above.

The S line changes the left boundary condition for the DW theory as

ADir→ANeu , (432)

thus acting on the sub-phases as

(ADir,ANeu(Zp))→ (ANeu,ANeu(Zp)) ,

(ADir,ANeu(Zq))→ (ANeu,ANeu(Zq)) .
(433)

Combining it with the Z2 gauge transformation discussed above, we can describe the action
of S as a permutation of two sub-phases

(ADir,ANeu(Zp))←→ (ADir,ANeu(Zq)) . (434)

This also matches what we discussed above.
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Order parameters. The order parameters of these phases are captured in the respective
Lagrangian algebras. There are various possibilities:

• If Qi, j appears in ANeu(Zp ,Zq) and Li, j appears in the algebra ANeu(Zp) of the DW theory,
then we have a multiplet in the IR theory carrying generalized charge Qi, j , which involves
a local operator

O(e)i, j =
p

2

� q
∑

k=1

ωik
q vp−1+k

�

, (435)

viewed as living at the end of D(A
j)

1 and a local operator

O(e,t)
i, j =

p
2

� p
∑

k=1

ω jk
p vk−1

�

, (436)

viewed as living at the end of D(A
i)

1 .

• If Qi, j appears in ANeu(Zp ,Zq) and Li, j appears in the algebra ANeu(Zq) of the DW theory,
then we have a multiplet in the IR theory carrying generalized charge Qi, j , which involves
a local operator

O(m,t)
i, j =

p
2

� q
∑

k=1

ω jk
q vp−1+k

�

, (437)

viewed as living at the end of D(A
i)

1 and a local operator

O(m)i, j =
p

2

� p
∑

k=1

ωik
p vk−1

�

, (438)

viewed as living at the end of D(A
j)

1 .
Note that if Li, j appears in both ANeu(Zp) and ANeu(Zq), then we have two possible IR
multiplets with generalized charge Qi, j described above.

• If Qi,+ appears in ANeu(Zp ,Zq), then we have a multiplet in the IR theory carrying gener-
alized charge Qi,+, which involves a local operator

Oi,+ =
p

2

� q
∑

k=1

ωik
q vp−1+k +

p
∑

k=1

ωik
p vk−1

�

, (439)

viewed as living at the end of D(A
i)

1 .

• If Qi,− appears in ANeu(Zp ,Zq), then we have a multiplet in the IR theory carrying gener-
alized charge Qi,−, which involves a local operator

Oi,− =
p

2

� q
∑

k=1

ωik
q vp−1+k −

p
∑

k=1

ωik
p vk−1

�

, (440)

viewed as living at the end of D(A
i)

1 .

7.3.3 Example: TY(Z4)

We now discuss in detail the case N = 4, illustrating the additional structure that appears
when N is a perfect square. The Lagrangian algebras in addition to the ADir,Neu are listed in
(389). To see that the algebra ADuality is consistent, note first that the spin of the lines is 1.24

24We use the formula in appendix D of [23], although caution in identifying these lines with QΣe,ε
needs to be

taken.
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(Z2,Z2) SSB phase. As an example consider (Z2,Z2) SSB phase for TY(Z4). The vacua are

v0 =
1
4

�

1−O−
p

2O(1)
�

,

v1 =
1
4

�

1−O+
p

2O(1)
�

,

v2 =
1
4

�

1+O−
p

2O(2)
�

,

v3 =
1
4

�

1+O+
p

2O(2)
�

.

(441)

We have two multiplets in the IR carrying generalized charge Q2,0. One multiplet consists of

an untwisted sector local operator O(e)2,0 =O(2) and an operator

O(e,t)
2,0 =

p
2(v0 + v1) , (442)

viewed as an operator living at the end of D(A
2)

1 . The other multiplet consists of an untwisted

sector local operator O(m)2,0 =O(1) and an operator

O(m,t)
2,0 =

p
2(v2 + v3) , (443)

viewed as an operator living at the end of D(A
2)

1 . We also have a multiplet in the IR carrying
generalized charge Q2,+ realized by the operator

O2,+ =
p

2(v0 − v1 + v2 − v3) , (444)

viewed as living at the end of D(A
2)

1 , and a multiplet in the IR carrying generalized charge Q2,−
realized by the operator

O2,− =
p

2(v0 − v1 − v2 + v3) , (445)

viewed as living at the end of D(A
2)

1 . Finally, we have a multiplet in the IR carrying generalized
charge Q−0 realized by the untwisted sector operator O0,− =O−.

Z2 SSB phase. For N = 4, which is a perfect square, we have a further Lagrangian algebra
involving the twist defects QΣ1,+

and QΣ3,−

ADuality(Z2) = Q0,+ +Q2,− +Q2,0 +QΣ1,+
+QΣ3,−

. (446)

We now determine the gapped phase obtained by selecting this as physical boundary

Bphys =ADuality(Z2) . (447)

From the SymTFT perspective, we find that the only lines that can end on both boundaries are
Q+0 and Q2,0. Let us denote the non-trivial untwisted sector local operator arising from Q2,0 as
O2. Since O2

2 = 1, we can straightforwardly determine the two resulting vacua to be

v0 =
1+O2

2
, v1 =

1−O2

2
. (448)

The linking action of D(A)1 on O2 is
O2→−O2 , (449)
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from which we can derive its linking action on the vacua

v0←→ v1 . (450)

Notice that D(A
2)

1 instead acts as the identity on the vacua. Therefore, from the perspective of

the Z4 subsymmetry of TY(Z4), we identify this as a Z2 SSB phase. The line operator D(A)1
can be expressed as

D(A)1 = 101 ⊕ 110 . (451)

The linking action of D(S)1 on the untwisted operators is

1→ 2 ,

O2→ 0 ,
(452)

from which we can derive its linking action on the vacua

v0→ 1= v0 + v1 ,

v1→ 1= v0 + v1 .
(453)

Therefore we can express D(S)1 as

D(S)1 = 100 ⊕ 101 ⊕ 110 ⊕ 111 . (454)

Notice that despite the fact that we call this a Z2 SSB phase, also S is spontaneously broken in
this phase, since by acting with it on one vacuum we can reach the other one. Nevertheless, v0
and v1 remain indistinguishable, and correspondingly we do not have non-trivial Euler terms.
Therefore this is an instance where spontaneous breaking of non-invertible symmetry does not
lead to physically distinguishablee vacua, in sharp contrast with what happens in the (Z1,Z4)
SSB phase and the (Z2,Z2) SSB phase.

This phase has three types of order parameters. The first one has generalized charge Q2,0
and is a mixture of untwisted and string-like order parameters. The IR image of such an order
parameter contains the untwisted operator O2 discussed above, and OA

2 , which is O2 regarded

as the endpoint of D(A
2)

1 ≃ D(id)1 . The second type of order parameters has generalized charge
Q2,− and it is purely of string-type. The IR image of such an order parameter is the identity

local operator O−2 regarded as the endpoint of D(A
2)

1 ≃ D(id)1 . Finally, the third kind of order
parameters is also purely of string-type and has generalized charges QΣ1,+

and QΣ3,−
, containing

local operators at the end of D(S)1 .
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A Details for the Rep(S3) and Ising generalized charges

In this appendix, we use various consistency conditions to derive the symmetry action of a
symmetry S ∈ {Rep(S3), Ising} on the generalized charges transforming in multiplets of S.
These derivations have been omitted in the main body of the text because they are quite bulky,
but we include them here to showcase how the charges can be fixed using an intrinsic 2d
perspective. The section is divided into two parts: the first dealing with the Rep(S3) charges
from Section 5 and the second with the Ising charges from Section 6.

A.1 Rep(S3) charges

Q[id],P multiplet. Here we derive the Rep(S3) action on the multiplet with generalized
charge Q[id],P . This multiplet consists of a single local operator OP in the twisted sector for
P ∈ Rep(S3)

P

OP (A.1)

The action of Rep(S3) turns out to be

P

OP

P

= P

OP

P

P

OP

E

= P

OP

E

−

(A.2)

Let us derive this below.
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By looking at possible quadrivalent junctions in this case as in (241), we conclude that
only possible actions of the symmetry generators P and E of Rep(S3) on OP can be of the form

P

OP

P

= P

OP
,

P

P

OP

E

= P

OP
,

E

β

α

(A.3)

where α,β ∈ C−{0}. As P is the generator of (a non-anomalous) Z2 subsymmetry of Rep(S3),
one must find that α2 = 1. To further pin down the value of α, one can look at the action of P
followed by E, which produces the following consistency condition

P

OP

P E

=

=

α P

OP

P E

= αβ P

OP
,

P E

=
P

OP

E

= β P

OP

E

αβ P

OP
.

E

(A.4)
One then finds αβ = β , while α2 = 1, hence α= 1 is the solution (since β ̸= 0).
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Now in order to prove the second part of the claim, it is useful to derive the following
identity (where we denote a P line as a dashed line and an identity line 1 as a dotted line for
easy readability)

=P

E E

E

E

E
P +

E

E

E
P

P

P

+

E

E

E
P

=

E

E

E
P

P

+

E

E

E
P

P

P

+

E

E

E
P

P

=

E

E

P +

E

E

P −

E

E

P

= P + P −

E

P

(A.5)

To derive the above identity, we used insertions of the completeness relation

a b

=
∑

c

a b

a b

c (A.6)

and F-moves at various places. In particular, the non-trivial − sign in the last diagram on the
RHS follows from (FE

EPE)EE = −1. The F-symbols for Rep(S3) are discussed e.g. in [139].
An alternative method relies on noticing that we can also obtain Rep(S3) by gauging S3. We
discuss this approach in appendix C.
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To pin down β as well, we consider acting with E twice and use the identity we have just
derived

P
O

E E

=
=

β P
O

E E

= β2 P
O

E E

=

P
O

1

+

P

+

E

=

P
O
+ P

O
P

+ β P
O

E

β2 P
O
+ P

O
P

− P
O

E

(A.7)
Hence we find β2 = 1 and β = −β2 which is consistent with β = −1 and the claim is proved.

Q[a],1 multiplet. The action of the Rep(S3) lines on the local operators Oa
± can be derived us-

ing consistency with the fusion properties of symmetry lines and their junctions, as well as the
F-symbols. We will now show explicitly how to determine the coefficients −1/2 and (ω2+1/2)
in the case of the E action on the a-multiplet, as it is quite instructive and paradigmatic of the
other cases. As it is known, the typical action of a non-invertible symmetry line, such as E, in-
volves a map between twisted and untwisted local operators in the same multiplet. Therefore,
the most generic E action we can have is

Oa
+

E

= α

E

Oa
+

+ β
P

Oa
−

,

E

P

Oa
−

E

= Pγ

Oa
+

+ δ P

E

Oa
−

(A.8)

for some coefficients α,β ,γ,δ ∈ C that we need to determine. In order to do this, we consider
the action of two E lines on the untwisted operator Oa

+. We can first consider acting with the
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two E lines sequentially, which produces the following result:

=

E E

= α

E

+ β

E

P

E

= α

E

α

E

+ β

E

P + β γ

E E

P + δ

E E

P P

= α2

1

+

P

+

E

+αβ
P
+ P −

E
P

+ βγ

1

+

P

−

E

+βδ
P
+ P +

E
P

.

(A.9)

In the above, we used the following identities satisfied by the Rep(S3) symmetry lines

E E

P =

1

+

P

−

E

,

E E

P = P + P −

E

P
,

E E

P = P + P +

E

P

(A.10)

These identities can be derived using the F-symbols of the Rep(S3) fusion category, in a similar
fashion to (A.5), or with the methods employed in appendix C.

Alternatively, we could first fuse the two E lines and then act on Oa
+. This gives the follow-

ing:

1

+

P

+

E

= +

P

+ α

E

+ β

E

P (A.11)

The two procedures should give the same result, which gives us the identities

α2 + βγ= 1 , α2 − βγ= α , αβ + βδ = 0 , −αβ + βδ = β . (A.12)

From this, we derive

α= −δ = −
1
2

, βγ=
3
4

. (A.13)

To pin down β and γ individually, note that we can rescale

Oa
+→ rOa

+ ,

Oa
−→ sOa

− ,
(A.14)

which does not change the above conditions we found, but can be used to fix β and γ to
any allowed value satisfying the condition βγ = 3/4. We can furthermore impose rotation
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invariance on the above actions, using the fact that the bulk line Q[a],1 has spin 1, which
implies

E

P = −β

E

−α P

E

(A.15)

Combining the above with the standard action (A.8), we find

E

= α2

E

+ αβ P

E

−β2

E

− αβ P

E

(A.16)

from which we finally find

α2 − β2 = 1 =⇒ β2 = −
3
4
=⇒ β = ±
�

ω+
1
2

�

. (A.17)

We can further remove the sign from β by rescaling Oa
±.

Q[b],+ multiplet. Here we consider the Rep(S3) action on the multiplet Q[b],+. In particular,
as a consistency check, we show that the actions we employed in the main text (256), (257)
and (258) are consistent with the composition of symmetries. In particular, we focus on Ob

and Ob
+ and we show explicitly how to determine the following fusion coefficients

Ob

P

= α

P

Ob , Ob

E

= β

E

E
Ob
+ ,

E

Ob

E

= γ E

E
Ob
+ + δ

E

E

P
Ob
+ + ε

E

E
Ob .

(A.18)

Again, as a consistency condition to fix the coefficients we use the fact that we can either bring
the symmetry lines past the local operator and fuse them, or first fuse them and then bring
them past the local operator. We then first use the fusion P⊗ E = E. Fusing the lines on the
LHS of Ob gives

=

P E

= α

P E

= αβ

P E

E = −αβ

E

E

(A.19)

where we used the following identity between the Rep(S3) symmetry lines

P E

E = −

E

E

(A.20)

Fusing the lines on the RHS simply gives the E action. Equating the two we get

−αβ = β =⇒ α= −1 . (A.21)
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Note this is also consistent with the fusion P ⊗ P = 1, which fixes α2 = 1. We remark that
this consistency condition also discards the possibility of having E mapping Ob to both the
untwisted Ob and the twisted Ob

+ local operators (see the top right of (A.18)). Indeed, suppose
that the E action contained also an untwisted piece with generic coefficient γ. Then using
(A.19), we would obtain

−αβ = β , αγ= γ . (A.22)

Since α ̸= 0, this is consistent only if either β or γ are 0. In a similar fashion, the conditions
derived from E⊗ E fusion, which we employ next, do not allow for the possibility of having
an ‘E-channel’ in the action of E on Ob

+ (see the bottom of (A.18)).
Now we use the fusion E⊗E= 1⊕P⊕E. This gives

E E

= β

E E

= β γ

E

E

E

E

+ δ
E

E

P
+ ε

E E

E

(A.23)

Fusing first the E lines produces instead

1

+

P

+

E

= −

P

+ β

E

E (A.24)

The first two terms on the RHS above are matched by the contribution of last term in (A.23),
which fixes

βε= 1 . (A.25)

The last term on the RHS above is instead matched by the sum of the first two terms in (A.23),
which fixes

γ= δ , βγ= β =⇒ γ= 1 . (A.26)

We are left with only an overall coefficient β to fix, which we can set to β = 1 by rescaling the
local operator Ob.

A.2 Ising charges

We are first going to determine some useful relations involving the Ising symmetry lines that
we are going to need to determine the charges. The first one is

S S

P =

1

−

P

(A.27)

To determine this relation, we again use insertions of the completeness relation (A.6) and
F-moves. Namely, using(A.6) twice (A.27) becomes

S

S

S
P +

S

S

SP

P

P

=

S

−

S

P (A.28)
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where the − sign in front of the second diagram comes from the non-trivial F-symbol
FP
SPS = −1. This implies (A.27).

We will also need the relation

S S

P = −

S

P

(A.29)

which again can be easily derive inserting (A.6) in the above diagram and using an F-move,
with FP

SPS = −1.

Qid,−-multiplet: This multiplet consists of a single local operator O. Determining the Ising
action is straightforward. The only possibility is

O−
P

=
O−

,α

P

O−
S

=
O−

S

β

(A.30)

for two coefficients α,β ∈ C that we need to determine. The fusion rule P⊗P= 1 fixes α2 = 1,
and P⊗ S = S then selects α = 1. Then the fusion S⊗ S = 1⊕P gives β2 = 1. The solution
β = 1 is the trivial charge, while β = −1 gives the non-trivial charge being discussed here.

Qid+P-multiplet This multiplet consists of an untwisted local operator O+ and a local oper-
ator O− in the twisted sector of the P line. We now determine the Ising lines action on O+,
with O− that can be worked out analogously. The most general action we can have is

O
P

= α ,

P

O
S

= β

S

P
OP + γ

E

O .
(A.31)

As usual, the P fusion with itself fixes α2 = 1. Now we consider the P ⊗ S = S fusion. We
obtain

O
=

P S

= α
O

P S

= αβ
P

OP

P S

+ αγ

S

O . (A.32)

By comparing with (A.31), we obtain

αβ = −β , αγ= γ , (A.33)

where the first − sign comes from using (A.29). This then tells us that we cannot have both a
twisted and untwisted action of S on O+. Since we know that the non-invertible S line should
map to a twisted sector, we choose β ̸= 0 and γ = 0, and then the previous equation fixes
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α = −1. Finally, we consider the S ⊗ S fusion. For this, we also need the S action on the
twisted sector, which we expect to be of the form

P

OP

E

= P
δ

E

O (A.34)

By acting with two S sequentially we then obtain

S S

O
= β

S

OP

S

P = βδ

S S

P

O (A.35)

Comparing with (A.31), this gives us
βδ = 1 . (A.36)

Notice that this is consistent with the 1⊕P action thanks to the identity (A.27). We are then
left with an overall coefficient β which we can set to 1 by rescaling O+, and this concludes the
derivation of the desired action.

B Lagrangian algebras for Z(VecS3
) and boundary conditions

As it is well known, the irreducible topological boundary conditions of the SymTFT are cap-
tured by Lagrangian algebras in the corresponding Drinfeld center. Here we aim to sketch how
the choice of a specific Lagrangian algebra A in Z(S) determines the resulting symmetry cate-
gory SA on the boundary, focusing on the non-abelian case Z(VecS3

), for which the procedure
is more subtle than for the well-known abelian case. We will mainly follow [120]. For a more
general discussion of anyon condensation see e.g. [140].

Physically, a Lagrangian algebraA represents a maximal choice of anyons of the bulk theory
that can be simultaneously condensed. This describes which line operators of the SymTFT can
terminate on the 2d topological boundary Bsym. The remaining line operators that are not in A
are said to be confined. Upon interval compactification, these will give rise to the topological
line operators of the symmetry SA of the 2d QFT. Since we are dealing with a group-like case,
we expect the Lagrangian algebras to be in 1-1 correspondence with possible discrete gaugings
performed in the 2d boundary theory, which are given by a choice of subgroup H ⊆ S3.25 For
Z(VecS3

) the possible Lagrangians are listed in (193).
To determine the boundary symmetry category SA in Bsym specified by choosing the bulk

Lagrangian algebra A, we make the following important observation: since the anyons in A
are terminable, in the boundary symmetry category SA these are identified with the trivial line
defects. Therefore we have the following identity

HomSA
(Qx ,Q y) = HomZ(VecS3

)(Qx ,Q y ⊗A) , (B.1)

where Qx ,Q y denote two generic simple objects of Z(VecS3
). In practice, this will imply the

following:

• some of the simple objects of Z(VecS3
) will be identified in SA;

• some of the simple objects of Z(VecS3
) are not going to be simple anymore in SA, which

means the they will undergo a splitting procedure.

25Notice that there is no possible discrete torsion c ∈ H2(H, U(1)) in this case.
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The fusion of simple objects in SA can be derived from the corresponding fusions in Z(VecS3
)

using consistency conditions.
Notice that we always have

HomSA
(Q[id],1,Q[id],1) = C , (B.2)

as A always contains Q[id],1 with nid = 1. This guarantees the trivial line remains a simple
object also in the boundary theory.

Lagrangian algebra ADir. Let us first illustrate how the above procedure works in the case
of the Dirichlet Lagrangian algebra

ADir = Q[id],1 ⊕Q[id],P ⊕ 2Q[id],E . (B.3)

We claim that the corresponding 2d boundary theory has the symmetry category

SADir
= VecS3

. (B.4)

Therefore we expect to find from the 8 anyons of Z(VecS3
) (188) the 6 simple objects (183)

of VecS3
.

Let us now use (B.1) do determine the simple objects in SADir
. For example, we have

HomSADir
(Q[id],1,Q[id],P) = HomZ(VecS3

)(Q[id],1,Q[id],P ⊗ADir)

= HomZ(VecS3
)(Q[id],1,Q[id],P ⊕Q[id],1 ⊕ 2Q[id],E) = C ,

(B.5)

where we used that
HomZ(VecS3

)(Q[id],1,Q[id],1) = C , (B.6)

while there are no morphisms for Q[id],1 to other simple objects. This tells us that on the
boundary we have an identification

Q[id],P ∼ Q[id],1 . (B.7)

We denote the corresponding trivial simple object in SADir
by 1. Similarly, we have

HomSADir
(Q[id],1,Q[id],E) = C2 , (B.8)

which implies Q[id],E is identified with two copies of the trivial line, namely 1⊕1. Now we can
compute

HomSADir
(Q[b],+,Q[b],+) = HomZ(VecS3

)(Q[b],+,Q[b],+ ⊗ADir)

= HomZ(VecS3
)(Q[b],+, 3Q[b],+ ⊕ 3Q[b],−) = C3 ,

(B.9)

and similarly

HomSADir
(Q[b],+,Q[b],−) = C3 , HomSADir

(Q[b],−,Q[b],−) = C3 . (B.10)

This tells us that in SADir

Q[b],+ ∼ Q[b],− , (B.11)

and also that Q[b],+ is not a simple line anymore as its endomorphism vector space is C3. We
then argue that in SADir

, Q[b],+ should split into 3 simple objects

b1 , b2 , b3 . (B.12)
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Completely analogously, we compute

HomSADir
(Q[a],1,Q[a],1) = HomSADir

(Q[a],1,Q[a],ω) = HomSADir
(Q[a],1,Q[a],ω2)

HomSADir
(Q[a],ω,Q[a],ω) = HomSADir

(Q[a],ω,Q[a],ω2) = HomSADir
(Q[a],ω2 ,Q[a],ω2) = C2 .

(B.13)
This tells us that in SADir

we have the identifications

Q[a],1 ∼ Q[a],ω ∼ Q[a],ω2 . (B.14)

Moreover, we find that Q[a],1 is not a simple object in SADir
, which means that it should split

into two simple objects
a1 , a2 . (B.15)

In summary, in the boundary theory symmetry category corresponding to the Lagrangian al-
gebra Le we get 6 simple objects

CLe
bdry = {1, b1, b2, b3, a1, a2} . (B.16)

The fusions of these simple objects can be derived from the fusion of the corresponding
anyons in Z(VecS3

). For example, let us consider the simple objects a1, a2. The fusion

Q[a],1 ⊗Q[a],1 = Q[id],1 ⊕Q[id],P ⊕Q[a],1 , (B.17)

in Z(VecS3
) becomes in SADir

(a1 ⊕ a2)⊗ (a1 ⊕ a2) = 1⊕ 1⊕ a1 ⊕ a2 . (B.18)

Using associativity, the only consistent set of fusion rules we can derive from the above are

a1 ⊗ a2 = a2 ⊗ a1 = 1 ,

a2 ⊗ a2 = a1 ,

a1 ⊗ a1 = a2 .

(B.19)

Then we see that we can identify the three simple objects {1, a1, a2} as forming the VecZ3

subcategory of VecS3
. Now let us consider the other simple objects b1, b2, b3. For example,

the fusions
Q[a],1 ⊗Q[b],+ = Q[b],+ ⊕Q[b],− ,

Q[b],+ ⊗Q[b],+ = Q[id],1 ⊕Q[id],E ⊕Q[a],1 ⊕Q[a],ω ⊕Q[a],ω2 ,
(B.20)

in Z(VecS3
) become in SADir

(a1 ⊕ a2)⊗ (b1 ⊕ b2 ⊕ b3) = 2b1 ⊕ 2b2 ⊕ 2b3 , (B.21)

and
(b1 ⊕ b2 ⊕ b3)⊗ (b1 ⊕ b2 ⊕ b3) = 3 1⊕ 3 a1 ⊕ 3 a2 , (B.22)

respectively.26 It can be checked explicitly that the only consistent set of associative fusions
that can be derived from the above gives simple objects reproducing Vec(S3), with the identi-
fications

1↔ 1 , a1↔ a , a2↔ a2 , b1↔ b , b2↔ ab , b3↔ a2 b . (B.23)
26Notice all the other fusions in Z(VecS3

) become trivial due to the identifications we made.
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Lagrangian algebra ANeu(Z2). We now want to determine the boundary theory correspond-
ing to the choice of Lagrangian algebra

ANeu(Z2) = Q[id],1 ⊕Q[id],E ⊕Q[b],+ . (B.24)

We will argue that this boundary condition corresponds to the gauging of the Z2 ⊂ S3 subgroup
in Vec(S3).

Computing the Hom-spaces as in (B.1), we have the following non-trivial identifications

Q[id],E ∼ Q[id],1 ⊕Q[id],P , Q[b],+ ∼ Q[id],1 ⊕Q[a],1 ,

Q[b],− ∼ Q[id],P ⊕Q[a],1 , Q[a],1 ∼ Q[a],ω ∼ Q[a] ,ω2 .
(B.25)

The first identification comes from the fact that HomSANeu(Z2)
(Q[id],E ,Q[id],E) = C2, meaning

that Q[id],E is not simple anymore, and the fact that we have morphisms from Q[id],E to Q[id],1
and Q[id],P tells us that this is the correct splitting. The discussion is similar for Q[b],+ and
Q[b],−. In summary, we are left with only three simple objects in the boundary category, which
we denote

1 , P , a . (B.26)

Notice that contrary to the previous case, here we have no splitting of simple objects, which
means that the fusions in SANeu(Z2)

can be derived directly from the fusions in Z(VecS3
). In

particular, we have the non-trivial fusions

1⊗ P = P ,

P ⊗ P = 1 ,

P ⊗ a = a ,

a⊗ a = 1⊕ P ⊕ a .

(B.27)

We can naturally identify the boundary theory corresponding to ANeu(Z2) as the theory
obtained by performing a gauging of the Z2 subgroup of the S3 global symmetry in VecS3

.
Indeed, consider gauging the symmetry generated by b in Vec(S3). Since b acts by conjugation
as

b⊗ a⊗ b = a2 , (B.28)

the only gauge invariant object that survives after gauging is

a = (a⊕ a2)VecS3
. (B.29)

We also have a topological line P generating the dual Z2 symmetry. The fusions of these
objects can be computed easily by knowledge of the fusions in the pre-gauged category and
match exactly what we found in (B.27) with our Lagrangian algebra argument.

Incidentally, notice that this symmetry category is also equivalent to Rep(S3). This can
be understood in the following way. Start with a 2d theory T with S3 symmetry and con-
sider gauging the Z2 ⊂ S3 symmetry. The theory T/Z2 can be obtained also by first gauging
the Z3 symmetry to go to T/Z3 and then gauging the full symmetry of that theory, which is
bZ3⋊Z2 ≃ S3, so clearly the symmetry category of T/Z2 must be Rep(S3). In this identification,
the two-dimensional irrep of S3, E, corresponds to the ‘composite’ object a⊕a2, while the sign
irrep P corresponds to the dual Z2 symmetry line.

Lagrangian algebra ANeu(Z3). We now consider the Lagrangian algebra

ANeu(Z3) = Q[id],1 ⊕Q[id],P ⊕ 2Q[a],1 . (B.30)

We argue that this boundary condition corresponds to the gauging of the Z3 subgroup in VecS3
.

The symmetry category SANeu(Z3)
is again as VecS3

since Z3 is an abelian normal subgroup.
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Lagrangian algebra ANeu. We finally consider the Lagrangian algebra

ANeu = Q[id],1 ⊕Q[a],1 ⊕Q[b],+ , (B.31)

and argue that this boundary condition corresponds to the gauging of the full S3 symmetry in
VecS3

, so that we expect
SANeu

= Rep(S3) . (B.32)

Computing the Hom-spaces between simple objects as in (B.1), we obtain the following non-
trivial identifications

Q[a],ω ∼ Q[a],ω2 ∼ Q[id],E , Q[a],1 ∼ Q[id],1 ⊕Q[id],P ,

Q[b],+ ∼ Q[id],1 ⊕Q[id],E , Q[b],− ∼ Q[id],P ⊕Q[id],E .
(B.33)

In summary, we are left with 3 simple objects in the boundary symmetry category SANeu
, which

we denote
1 , P , E . (B.34)

The fusions of these simple objects can be straightforwardly derived from the respective fusions
in the bulk theory. In particular, we have the non-trivial fusions

P ⊗ P = 1 ,

P ⊗ E = E ,

E ⊗ E = 1⊕ P ⊕ E .

(B.35)

Hence we have recovered that the boundary symmetry category is indeed Rep(S3).

C Rep(S3) via gauging S3

As we have discussed in the main text, Rep(S3) symmetry can be obtained by gauging S3
symmetry. As a consequence, the structure of generalized charges and gapped phases for
Rep(S3) symmetry can be obtained from the structure of generalized charges and gapped
phases for S3 symmetry. We will discuss this gauging procedure in detail in this appendix.
This analysis serves as a cross-check for the results for Rep(S3) that we derived using the
SymTFT approach in the main text.

C.1 Rep(S3) symmetry from S3 symmetry

Let us begin with the S3 symmetry as in (183). We can perform gauging of this symmetry in
two steps: first gauge the Z3 normal subgroup and then gauge the residual non-normal Z2
symmetry.

Since the first step involves gauging a normal subgroup, it is quite straightforward to im-
plement. The dual symmetry after Z3 gauging is a copy of Z3 that we label as

bZ3 = {1, ba, ba2} , (C.1)

which can be identified with the irreducible representations of the original Z3 subgroup gen-
erated by a. The residual Z2 symmetry is generated by b. Since conjugation by b exchanges
a and a2, it exchanges the action of Z3 on the representations in (C.1). Thus conjugation
by b also exchanges ba and ba2; and we learn that the dual symmetry bZ3 and the residual Z2
symmetry combine to form an S3 symmetry that we label as

bS3 =
�

id, ba, ba2, b, bab, ba2 b
	

. (C.2)
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Now we gauge the residual Z2 symmetry generated by b in bS3. The resulting symmetry is
Rep(S3), with P ∈ Rep(S3) generating the dual Z2 symmetry arising from the Z2 gauging. The
non-invertible symmetry line E ∈ Rep(S3) arises as a combination of ba and ba2 lines as follows

E

≡

ba

+

ba2

(C.3)

To see this, note that b exchanges ba and ba2, so these lines are not gauge invariant anymore, but
the sum of these lines remains gauge invariant and becomes a simple line. The difference of
the identity local operators on lines ba and ba2 does not completely disappear from the spectrum.
Instead, since it is charged non-trivially under b, it has to be attached to the Z2 Wilson line P.
Thus, it provides an end of the P line along the E line

E

≡

E

P

ba

−

ba2

(C.4)

Let us define the end of P from the left in such a way that it is related to the end of P from the
right by a 180◦-rotation

E

≡

E

P

ba2

−

ba

(C.5)

The ends of E on E can be described as follows:

E

E

E ≡

ba

ba2

ba +

ba2

ba

ba2

E

E

E ≡

ba

ba2

ba2 +

ba2

ba

ba

(C.6)
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which are again related by a rotation. We define E corners as27

E

E ≡

ba

1p
2 + 1p

2

ba2

(C.7)

Other corners are obtained by rotating this configuration. Finally, we have junctions

E

E

P

≡

ba2

1p
2 − 1p

2

ba

P

E

E

≡ 1p
2

ba2

− 1p
2

ba
(C.8)

and their rotated versions. These junctions are good projectors onto various fusion channels.
The reader can verify that they satisfy the identities

EE = 1 , EE =

P

P P

, EE =

E

E E

,

E E

=

E E

E E

E E

E E

P+ +

E E

E E

E

(C.9)

27Note that we do not need to define corners for ba and ba2 lines for the analysis here. In case it is helpful, the
reader may freely interchange smooth curved ba and ba2 lines, with ba and ba2 lines having a corner. However, note
that one cannot freely interchange an E with a corner, with a smooth curved E line, because of the presence of the
extra 1/

p
2 factor present in the definition of the corner presented below. Such interchanges introduce factors ofp

2 and 1/
p

2.
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C.2 Rep(S3) charges from S3 charges

Let us now use the gauging perspective to derive the action of Rep(S3) on various multiplets
discussed in section 5.2.

C.2.1 Q[id],P multiplet

In terms of the original S3 symmetry, this multiplet consists of an untwisted local operator OP

having a non-trivial charge under b and trivial charge under a. Thus this operator does not
talk at all to the Z3 subgroup of S3 symmetry. After gauging Z3, under the bS3 symmetry it has
exactly the same properties as above.

Now gauge the residual Z2 symmetry generated by b. Since OP is charged under b, it goes
into the twisted sector for the dual Z2 symmetry generated by P

P

OP (C.10)

Since before gauging it was not in the twisted sector for b, it is uncharged under P

P

OP

P

= P

OP

P

(C.11)

Since it was uncharged under ba and ba2, it is uncharged under E. This fact descends to a
relation of the form

P

OP

E

= P

OP

E

−
(C.12)

where the sign on the RHS arises because we choose to define the quadrivalent junction be-
tween E and P in terms of left-handed and right-handed trivalent junctions as in (241), and
according to (C.4) and (C.5) we have a relative sign between the two trivalent junctions.

C.2.2 Q[a],1 multiplet

In terms of the original S3 symmetry, this multiplet consists of an a-twisted local operator Oa
1

and an a2-twisted local operator Oa
2

a
Oa

1

a2

Oa
2

(C.13)

such that they are both uncharged under Z3 subgroup, but transform under b as

a
Oa

1

b

= a
Oa

2

b

b

a2
(C.14)
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After gauging Z3, the fact that they are uncharged under Z3 means that they are not in the
twisted sector for under bZ3, and hence become untwisted sector operators. Moreover, since
they are in twisted sector for Z3, they carry non-trivial charges under bZ3

Oa
1

ba

=
Oa

1

,

ba

ω

Oa
2

ba

=
Oa

2

ba

ω2

(C.15)

The two operators are still interchanged by the action of b ∈ bS3.
Now let us gauge b to pass to Rep(S3) symmetry. The operator

Oa
+ :=Oa

1 +Oa
2 , (C.16)

is gauge invariant and hence survives as an untwisted local operator. On the other hand, the
operator

Oa
− :=Oa

1 −Oa
2 , (C.17)

carries non-trivial gauge charge, and hence descends to the twisted sector for P. In total, the
Rep(S3) multiplet of generalized charge Q[a],1 comprises of two operators

P
Oa
−Oa

+

, (C.18)

Since neither of these two operators was in the twisted sector for b, they are uncharged under
P

P
Oa
−

P

= P
Oa
−

P

Oa
+

P

=

P

Oa
+

,
(C.19)

Let us now consider the action of E on these operators. First, consider the action on Oa
+.

We have

Oa
+

E

≡
Oa

1 +Oa
2

ba

+
Oa

1 +Oa
2

ba2

=
ωOa

1 +ω
2Oa

2

ba

+
ω2Oa

1 +ωO
a
2

ba2

(C.20)
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which we can express in terms of

Oa
+

E

≡
Oa

1 +Oa
2

ba

+
Oa

1 +Oa
2

ba2

Oa
−

E

E

P ≡
Oa

1 −Oa
2

ba

−
Oa

1 −Oa
2

ba2

(C.21)

as

P

Oa
−

E

Oa
+

E

=

E

Oa
+

− 1
2 +

�

ω+ 1
2

�

(C.22)

Similarly, we have

Oa
−

E

≡
Oa

1 −Oa
2

ba

+
Oa

1 −Oa
2

ba2

=
ωOa

1 −ω
2Oa

2

ba

+
ω2Oa

1 −ωO
a
2

ba2

P

(C.23)

which can be expressed in terms of

Oa
+

E

E

≡
Oa

1 +Oa
2

ba2

−
Oa

1 +Oa
2

ba

Oa
−

E

E

P
P ≡

Oa
1 −Oa

2

ba

−−
Oa

1 −Oa
2

ba2

P

(C.24)
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as

P
Oa
−

E

Oa
−

E

=

E

Oa
+

+ 1
2−

�

ω+ 1
2

�

P P
(C.25)

C.2.3 Q[id],E multiplet

In terms of the original S3 symmetry, this multiplet consists of two untwisted sector local
operators OE

1 and OE
2 which are charged under Z3 subgroup as

OE
1

a

=
OE

1

,

a

ω

OE
2

a

=
OE

2

a

ω2

(C.26)

and b exchanges OE
1 and OE

2 . After gauging Z3, these operators descend into twisted sector
for bZ3

ba
OE

1

, ba2

OE
2

(C.27)

These operators are uncharged under bZ3 but are still exchanged by b.
Now let us gauge the residual Z2 symmetry. The combination

OE
+ =OE

1 +OE
2 , (C.28)

is gauge invariant, hence it descends to a local operator of the form

E
OE
+

(C.29)

On the other hand, the combination

OE
− =OE

1 −OE
2 , (C.30)

has non-trivial gauge charge, hence it descends to a local operator of the form

E
OE
−

P
(C.31)

Since these were not in twisted sector for b, they are uncharged under P

E
OE
+

P

= E
OE
+

P

−

E
OE
−

P

= E
OE
−

P

P−P

(C.32)
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Again we remind the reader that the sign on the RHS arises due to the sign difference between
(C.4) and (C.5), and not because these operators are charged under P.

Let us now determine the action of E on these operators. We have

OE
+

E

E ≡
OE

1

ba

ba +

= +

OE
2

ba

ba2
+

OE
1

ba2

ba +
OE

2

ba2

ba2

OE
1

ba

ba

OE
2

ba2

ba2

+
OE

2

ba

ba

ba2

ba2

ba2
+

OE
1

ba2

ba2

ba

ba

ba

(C.33)

The last two terms can be recognized as being

OE
+

E

E

E

E

E (C.34)

while the first two can be recognized as the difference

OE
+

E

E

E

E

OE
+

E

E

E

E

P− (C.35)

In total, we derive the action of E on OE
+ shown in (253). Similarly, one can derive (254).

C.2.4 Q[b],+ multiplet

In terms of the original S3 symmetry, this multiplet comprises of three local operators OS3
b ,

OS3
ab and OS3

a2 b lying in twisted sectors for b, ab and a2 b respectively. The action of an element
x ∈ S3 is

x : OS3
y →OS3

x y x−1 , y ∈ {b, ab, a2 b} . (C.36)

After gauging the Z3 subgroup, the multiplet has exactly the same properties. It comprises of
three local operators

ObS3
by , by ∈ {b, bab, ba2 b} , (C.37)
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which are in the twisted sector for by . The action of an element bx ∈ bS3 is

bx : ObS3
by →ObS3
bx bybx−1 . (C.38)

Let us now gauge the residual Z2 symmetry, which exchanges ObS3
bab and ObS3
ba2 b, while leaving

ObS3
b invariant. The operator ObS3

b descends to an untwisted sector local operator Ob which is
charged under P, as shown in (256). The combination

Ob
+ :=ObS3
bab +ObS3
ba2 b , (C.39)

is gauge invariant, hence descends to an operator in the twisted sector for E. This operator is
charged under P because of the presence of the factor of b in the twisted sectors ab and a2 b

of ObS3
bab and ObS3
ba2 b. This is reflected in the fact that there is no sign on the RHS of the second

equation in (256). The sign coming from the fact that the operator is charged is canceled by
the relative sign coming from (C.4) and (C.5). Finally, the combination

Ob
− :=ObS3
bab −ObS3
ba2 b , (C.40)

has non-trivial gauge charge, hence descends to an operator sitting between lines E and P.
For a similar reason as for Ob

+, the operator Ob
− is also non-trivially charged under P, which

is reflected in the positive sign on the RHS of the third equation in (256). The action of E can
be derived in a similar way as for the Q[id],E multiplet discussed above.

C.3 Rep(S3) phases from S3 phases

In this subsection, we discuss how various important properties of Rep(S3)-symmetric gapped
phases can be obtained by gauging the S3 symmetry of S3-symmetric gapped phases. From
the SymTFT point of view, this gauging is localized on the symmetry boundary, while leaving
the bulk SymTFT and the physical boundary invariant. The gauging modifies the symmetry
boundary as

Bsym =ADir −→ANeu . (C.41)

S3 SSB phase to trivial Rep(S3) phase. Let us first choose

Bphys =ADir . (C.42)

In terms of the original S3 symmetry, it gives rise to the S3 SSB phase discussed in section
4.6.1, which has 6 vacua permuted by the S3 symmetry. Under the Z3 subgroup, the vacua
form two orbits of 3 vacua each. These two groups are interchanged by b.

After gauging Z3, the vacua related by Z3 action get identified, and the resulting theory
has 2 vacua that are interchanged by b. In other words, we obtain the Z2 SSB phase for bS3
symmetry.

Now let us gauge the residual Z2 symmetry. The result is that the remaining 2 vacua also
get identified, and we obtain a phase for Rep(S3)which has a single vacuum. This is the trivial
Rep(S3) phase discussed in section 5.3.1. Note that indeed the physical boundaries in both
sections 4.6.1 and 5.3.1 are the same as C.42.

Z3 ⊂ S3 SSB phase to Z2 ⊂ Rep(S3) SSB phase. Now let us choose

Bphys =ANeu(Z2) . (C.43)
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In terms of the original S3 symmetry, it gives rise to the Z3 SSB phase discussed in section
4.6.2, which has 3 vacua permuted by the Z3 ⊂ S3 symmetry, while b permutes 2 vacua v1, v2

leaving 1 vacuum v0 invariant. Note that the D(b)1 line can end along v0, giving rise to a local
operator Ob in b-twisted sector (221).

After gauging Z3, all the 3 vacua get identified. Thus we obtain the trivial phase for bS3
symmetry. The operator Ob is still in the b-twisted sector and can now be identified with the
identity local operator regarded as the end of line D(b)1 .

Let us now gauge the residual Z2 symmetry. The b-twisted sector operator Ob descends to
a new untwisted sector local operator, implying that we have a total of 2 vacua in the resulting
phase. Moreover, Ob has to be charged under P implying that we have Z2 SSB phase for
Rep(S3) symmetry discussed in section 5.3.2. Note that indeed the physical boundaries in
both sections 4.6.2 and 5.3.2 are the same as C.43.

Z2 ⊂ S3 SSB phase to Rep(S3)/Z2 SSB phase. Now let us choose

Bphys =ANeu(Z3) . (C.44)

In terms of the original S3 symmetry, it gives rise to the Z2 SSB phase discussed in section
4.6.3, which has 2 vacua v0, v1 permuted by b, while Z3 ⊂ S3 leaves both vacua invariant.
Note that the D(a)1 line can end along v0 and v1, giving rise to two linearly independent lo-
cal operators Oa

1 ,Oa
2 in a-twisted sector. Similarly, we have two linearly independent local

operators Oa2

1 ,Oa2

2 in a2-twisted sector.
After gauging Z3 symmetry, the above 4 twisted sector operators become new untwisted

sector operators, and hence we obtain a total of 6 vacua. The new local operators are charged
under dual bZ3 symmetry as they are in the twisted sector before gauging. Moreover, b also
acts on these operators as

Oa
1 ↔Oa2

2 , Oa
2 ↔Oa2

1 , (C.45)

as it interchanges v0 and v1, and simultaneously interchanges the two twisted sectors. In total,
one can now easily see that the resulting phase is bS3 SSB phase.

Let us now gauge the residual Z2 symmetry, whose action on vacua of bS3 SSB phase has 3
orbits. Hence the resulting phase has 3 vacua, such that P is spontaneously unbroken in all 3
vacua. This can be identified with the Rep(S3)/Z2 SSB phase discussed in section 5.3.3. Note
that indeed the physical boundaries in both sections 4.6.3 and 5.3.3 are the same as C.44.

Trivial S3 phase to Rep(S3) SSB phase. Finally, let us choose

Bphys =ANeu . (C.46)

In terms of the original S3 symmetry, it gives rise to the trivial phase discussed in section 4.6.4,
which has a single vacuum left invariant by all of S3 symmetry. We have an operator in twisted

sector for both a and a2, obtained by ending D(a)1 and D(a
2)

1 along the identity operator.
After gauging Z3, these twisted sector operators descend into the untwisted sector. Thus

the resulting phase has 3 vacua, and it can be recognized as the Z3 SSB phase for bS3 symmetry.
The b symmetry exchanges two vacua v1, v2, while leaving invariant a vacuum v0. Due to this
reason, we have a b-twisted sector operator Ob as D(b)1 can end along v0.

Now let us gauge the residual Z2. The two vacua v1 and v2 get combined into a single
vacuum

v12 ≡ v1 + v2 . (C.47)

The vacuum v0 survives as an untwisted sector operator, and we obtain a new untwisted sector
operator Ob. Since we have

(Ob)2 = v0 , (C.48)
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the two vacua other than v12 are

v+ =
v0 +Ob

2
, v− =

v0 −Ob

2
. (C.49)

In total, we obtain 3 vacua v12 and v±, out of which v12 is left invariant by P but v+ and v− are
interchanged because Ob carries a non-trivial charge under P. We thus obtain the Rep(S3) SSB
phase discussed in section 5.3.4. Note that indeed the physical boundaries in both sections
4.6.4 and 5.3.4 are the same as C.46.

One can also observe the presence of relative Euler terms using the gauging procedure. Let
us label the unit line operators transitioning between vacua v0, v1 and v2 of the bS3-symmetric
phase as

1i, j , i, j ∈ {0,1, 2} , (C.50)

and the unit line operators transitioning between vacua v12, v+ and v− of the Rep(S3)-
symmetric phase as

1i, j , i, j ∈ {12,+,−} . (C.51)

Then the Z2 residual gauging implies that these operators are related as

112,12 ≡ 11,1 ⊕ 12,2 ,

1+,12 ⊕ 1−,12 ≡ 10,1 ⊕ 10,2 ,

1+,+ ⊕ 1−,− ≡ 10,0 .

(C.52)

Then the linking action of 1+,12 on v+ is

1+,12 · v+ = (1+,12 ⊕ 1−,12) · v+ ≡ (10,1 ⊕ 10,2) ·
�

v0 +Ob

2

�

= (10,1 ⊕ 10,2) ·
v0

2
=

v1 + v2

2
≡

1
2

v12 . (C.53)

That is, we have a relative Euler term of 1/2 in passing from v+ to v12. Similarly, we have a
relative Euler term of 1/2 in passing from v− to v12. This reproduces the Euler terms found in
section 5.3.4.
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