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Abstract

This work investigates how the closed channel of a Feshbach resonance is characterised
by experimental observables. Surprisingly, it is found that the two-body observables as-
sociated with the Feshbach resonance can be insensitive to the properties of the closed
channel. In particular, it is impossible in this situation to determine the energy of the
bound state causing the resonance from the usual experimental data. This is the case
for all magnetic Feshbach resonances in ultracold atoms, due to their deep two-body in-
teraction potentials. This insensitivity highlights a major difference with Feshbach reso-
nances that involve shallow interaction potentials, such as hadron resonances. It appears
however that short-range two-body correlations and three-body observables are affected
by a parameter of the closed channel called the “closed-channel scattering length”. A
photoassociation experiment is proposed to measure this parameter in ultracold atom
systems.
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1 Introduction

Feshbach resonances [1,2] are found in many quantum systems, occurring whenever a contin-
uum of states couples to a bound state. They are particularly important in the field of ultracold
atoms, where the “magnetic Feshbach resonances” [3,4] have provided the possibility to con-
trol interatomic interactions through the application of a magnetic field [5, 6]. The concept
of Feshbach resonance is also used in hadron physics to account for exotic bound states or
resonances close to hadron thresholds [7–9], and its relevance to condensed matter systems
has recently been pointed out [10,11].

Many of the previous theoretical studies of Feshbach resonances have been concerned with
building up models that reproduce experimental data [12–18]. In the present work, an oppo-
site approach is taken by considering which parts of the model are constrained by the observ-
ables. For this purpose, the two-channel model describing Feshbach resonances is introduced
in Sec. 2, followed in Sec. 3 by a generic example showing an explicit dependence of observ-
ables on the properties of the bound state responsible for the resonance. Then, the regime
where this dependence disappears is presented in Sec. 4, followed by a discussion of some re-
markable aspects of this regime. Finally, the possibility to probe the closed-channel properties
from short-range physics is examined in Sec. 6.
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Figure 1: Energy spectrum and scattering phase shift of the non-relativistic Gaussian
model of Feshbach resonance as a function of the energy difference Ẽb between the
shifted bare energy Eb +∆0 and the threshold energy Eo, for a fixed reduced width
γ. The results for three different values of the closed-channel parameter σ (in units
of ħh2/2µγ) are shown in the left (σ = 5), middle (σ = 2.5), and right (σ = 1)
panels. In each panel, the shading above the continuum threshold shows the quantity
sin2η obtained from Eqs. (2) and (5), and the solid black curve below the continuum
threshold shows the dressed bound state energy given by Eq. (6). The resonance
(sin2η = 1) is shown as a white curve. The dashed grey curve shows the dressed
energy in the limit σ → 0, which coincides with the QDT Eq. (8) in the zero-range
limit given by Eq. (11). The dashed red line shows the energy of the bare bound
state in the closed channel causing the resonance. One can see that the value of σ
significantly affects the spectrum and scattering, making it possible to determine σ,
and thus the bare bound state energy, from these observables.

2 Two-channel model

The following analysis is restricted to isolated resonances of a two-particle system, i.e. a sin-
gle two-body bound state |φb〉 coupled to a two-body continuum. More specifically, the bound
state |φb〉, which is called the “bare bound state”, is assumed to occur in a “closed channel” de-
scribed by a Hamiltonian Hcc, such that (Hcc− Eb)|φb〉= 0, and this closed channel is coupled
through coupling terms Hoc and Hco = H†

oc to an “open channel” described by a Hamiltonian
Hoo featuring a scattering continuum above a certain threshold Eo. The two channels cor-
respond to two different internal states of the particles, such as two hyperfine states of two
atoms, or two quark configurations of a hadron. The isolated resonance theory of this two-
channel model shows that the system at energy E is described by the complex energy shift (see
Appendices A and B)

∆+(E)≡ 〈φb|Hco|(E + i0+ −Hoo)
−1|Hoc|φb〉 , (1)

whose real and imaginary parts ∆ and −Γ/2 define respectively the shift and width of the
resonance.

For energies E above the open-channel threshold Eo, the scattering properties are strongly
modified for energies around the energy Eb of the bare bound state. Indeed, in a certain partial
wave set by the angular momentum of φb, the scattering phase shift,

η(E) = ηbg(E)− arctan
Γ (E)/2

E − Eb −∆(E)
, (2)
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can reach unitarity (i.e. sin2η = 1) at a particular energy, corresponding to a resonant state.
Here, ηbg denotes the “background” scattering phase shift away from that resonance. In the
following, the s wave will be considered, although other partial waves can be treated in the
same way. In this case, in the limit of small scattering wave number k ≡

p

2µ(E − Eo)/ħh
(with µ being the reduced mass of the two scattering particles), the scattering properties are
governed by the s-wave scattering length a ≡ − limk→0η/k. From Eq. (2) one finds

a = abg − γ/ (Eb +∆0 − Eo) , (3)

where abg ≡ − limk→0ηbg/k is the background scattering length away from resonance,
γ ≡ limk→0 Γ/2k ≥ 0 will be referred to as the “’reduced width” [19], and ∆0 ≡ limk→0∆(E)
is the zero-energy shift. Equation (3) shows that the scattering length can be arbitrarily large
when the bare bound state energy Eb shifted by ∆0 approaches the threshold Eo. This diver-
gent behaviour of the scattering length is the basis for its control in ultracold-atomic systems
by tuning Eb, thanks to its dependence on an applied magnetic field.

For energies E below the open-channel threshold Eo, the coupled system may feature a
“dressed bound state” (called “Feshbach molecule” [3, 20] in the context of ultracold-atom
physics) whose energy Ed is shifted from the bare energy Eb according to the formula:

Ed = Eb +∆(Ed) . (4)

Whether the effect of the bare bound state appears as a resonant state above threshold, or
a dressed bound state below threshold, or both, depends on the value of the shifted energy
Eb+∆0 with respect to the threshold Eo. It is readily seen from Eq. (1) that both the resonant
and dressed bound state will in general depend on the characteristics of the bare bound state
|φb〉 and the coupling Hco = H†

oc. These characteristics thus introduce “closed-channel param-
eters” [21] into the problem. Let us now investigate how these parameters affect observables.

3 Generic example

A simple example is shown in Fig. 1 corresponding to a well-known non-relativistic model [22–
24] where there is no interaction between particles in the open channel, and the coupling
factor 〈k|Hoc|φb〉 is taken to be of the isotropic Gaussian type W0 exp(−k2σ2/2), where W0
and σ constitute here the closed-channel parameters. In this case, the shift and width above
threshold can be calculated analytically:

∆(k) =∆0 +
Γ (k)

2
Im[erf(ikσ)] ,

Γ (k)
2
= γke−k2σ2

, (5)

as well as the dressed energy Ed below threshold:

Ed = Eb +∆0 + γκeκ
2σ2
(1− erf(κσ)) , (6)

where erf is the error function and κ =
p

2µ(Eo − Ed)/ħh is the binding wave number. In this
model, the reduced width is given by γ = 2µ

4πħh2 W 2
0 , and the zero-energy shift by ∆0 = −

γp
πσ

.
Assume that the scattering phase shift can be measured for different scattering energies (as
in high-energy experiments) or the dressed bound state energy can be measured for different
values of Eb − Eo (as in ultracold-atom experiments). Then, fitting the data by Eqs. (5) or
Eq. (6) should in general unambiguously determine the parameters γ, σ and Eb − Eo.
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Figure 1 illustrates how different values of the closed-channel parameter σ at fixed γ lead
to different scattering phase shifts η(E) and different dressed bound-state energies Ed. For
this particular model, only three different measurements are required to determine the three
parameters of the model, enabling a characterisation of the bare bound state.

This Gaussian model can be regarded as the regularised version of a contact model corre-
sponding to the leading order of the low-energy effective field theory describing the resonance,
as is often done in the context of nuclear [25] or hadron resonances [26]. After renormalisa-
tion, the parameterσ can be set to arbitrarily small values to recover the contact limit, yielding
results that are independent ofσ. Thisσ-independent universal theory is valid in a low-energy
region (i.e. close to the threshold), which can be seen in Fig. 1 where the dressed bound state
energy curves for different values of σ all coincide with a universal curve shown in dashed
grey — we come back to this point in Sec. 4.3. Away from this region, the effective field theory
requires higher orders, which, like the simple Gaussian model with finite σ, introduce param-
eters characterising the closed channel. Again, the general conclusion holds in this case: with
enough experimental data, these closed-channel parameters can in principle be determined.

4 Quantum defect theory regime

4.1 Insensitivity to the closed channel

It will now be shown that there is a regime where the details of the closed channel are unde-
termined by experimental observations of the scattering shift or binding energy. This situation
arises for systems in which the inter-channel coupling occurs around a distance rw where
the open-channel wave functions are energy independent. This happens when the poten-
tial Vo(r) in the open channel has the form Eo + Vtail(r) beyond a certain distance r0, where
Vtail(r) −−−→r→∞

0 is a potential tail that is independent of the value of the open-channel scat-

tering length ao, which is set by the form of Vo(r) at shorter distances r ≲ r0. If the tail is
deep enough, for a given energy E, there is a range of distances r0 ≲ r ≪ rtail(E) where the
kinetic energy is negligible with respect to the potential, namely |E− Eo| ≪ |Vtail(rtail)|. In that
region, the open-channel wave functions are energy independent, i.e. all proportional to the
threshold solution at E = Eo. If the coupling occurs in that region, it is well known that one
can employ the quantum defect theory (QDT) [13, 15–17, 27–34] to accurately describe the
system for all the energies above and below the threshold Eo that are smaller than |Vtail(rw)|.
Although the usual treatment of QDT makes use of the short-distance K and Y matrices, here
all quantities shall be expressed in terms of observables such as ao and γ. Doing so, one obtains
a “renormalised” formulation of QDT.

Above the threshold, one finds that the scattering phase shift Eq. (2) is given by the fol-
lowing expressions for the shift and width (see Appendix D.1):

∆(k) =∆0 + Bo(k)
Γ (k)

2
,

Γ (k)
2
= γ

k [A(k)]−2

1+ [Bo(k)]
2 , (7)

with Bo(k) ≡ [tan η̄(k)]−1 − kao [A(k)]
−2, where η̄(k) and A(k) are two dimensionless func-

tions universally determined by the tail of Vo (see Appendix C.1). Physically, η̄ is the difference
η(∞)−η(0), where η(a) denotes the scattering phase shift for a potential with tail Vtail and scat-
tering length a, and A(k) is the amplitude of its radial wave function u(k)∞ at infinite scattering
length in the energy-independent region where u(k)∞(r) = A(k)× u(0)∞(r), with the zero-energy
solution u(0)∞ normalised so that u(0)∞(r) −−−→r→∞

1.
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Below the threshold, one finds an even simpler result for the dressed bound state energy:

Ed = Eb +∆0 +
γ

λ(κ)− ao
, (8)

where the function λ(κ) is determined purely from the tail of Vo (see Appendix C.3). In fact,
the energy −ħh

2κ2

2µ as a function of λ(κ) simply corresponds to the bound-state spectrum for a
potential with tail Vtail as a function of its scattering length. It is quite remarkable that the mere
knowledge of the bare bound state spectrum for Vo as a function of its scattering length entirely
determines the dressed bound state spectrum through Eq. (8) once γ, ao, and Ẽb ≡ Eb+∆0−Eo
are known.

Equations (7) and (8) constitute the first main result of this paper. They allow to determine
the two-body observables for all energies above and below the threshold from only the three
quantities γ, ao, and Ẽb. Note that these quantities can be extracted from the zero-energy scat-
tering length Eq. (3), within the approximation abg ≈ ao. It is therefore possible to determine
a two-body observable (e.g. the dressed bound state energy) from the knowledge of another
observable (e.g. the scattering length), without ever knowing the bare bound state causing
the resonance, nor its coupling to the open channel.

The crucial point leading to this result is that the zero-energy shift∆0 is taken apart and the
width is expressed in terms of the reduced width γ. These are the only quantities that depend
explicitly upon the three closed-channel parameters W0, ac, a′c through the expressions (see
Appendix D.1),

γ=
2µ

4πħh2 W 2
0 (1− ao/ac)

2 , ∆0 = γ
ao − ac − a′c
(ao − ac)

2 . (9)

Here, W0 characterises the strength of the coupling between the open channel and the bare
bound state, while ac and a′c are two lengths characterising the closed channel. Like scattering
lengths, both ac and a′c can be either positive or negative. The length ac was introduced in
Ref. [21], which focused on a specific regime in which a′c = 0 and ac sets the phase of oscil-
lations of the bare bound state wave function in the coupling region. For this reason, ac was
dubbed the “closed-channel scattering length”, by analogy with the open-channel scattering
length ao setting the phase of oscillations in the open channel. Note however that in general
a′c ̸= 0 and ac cannot always be interpreted as a scattering length for the closed channel.

In this renormalised formulation where ∆0 and γ are taken apart, one can now see the
distinctive property of the QDT: since the closed-channel parameters W0, ac, a′c only affect the
values of γ and ∆0, they cannot be individually determined from the observables of Eq. (7)
or (8). The resonance is thus largely independent of the details of the closed channel. This is
in sharp contrast with Eqs. (5-6), which depend explicitly on the closed-channel parameter σ
even after taking apart the zero-energy width ∆0 and the reduced width γ.

4.2 Application to magnetic Feshbach resonances

The QDT typically applies to ultracold atoms undergoing a magnetic Feshbach reso-
nance [3, 27, 33–35]. The QDT regime is reached due to the deep van der Waals tail
Vtail(r) = −C6/r6 = − ħh

2

2µ (2rvdW)
4 /r6 of the interatomic interactions, where rvdW is the van

der Waals length. In these systems, the bare bound energy Eb in Eqs. (2,3,8) is related to the
magnetic field intensity B by the Zeeman shift through the relation Eb+∆0−Eo = δµ×(B−B0),
where δµ is the magnetic moment difference between the open and closed channels, and B0 is
the magnetic field intensity at which the resonance is observed at the threshold. The reduced
width is related to the observed magnetic width ∆B by γ= abgδµ×∆B. Thus, once the phys-
ical parameters rvdW, δµ, ∆B, B0, and abg ≈ ao are known, all two-body observables can be
determined from Eqs. (7) and (8).
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Figure 2: Energy spectrum and scattering phase shift of the 40K ab Feshbach res-
onance near B0 = 202 G. The solid curve below the continuum threshold shows
the dressed bound state energy obtained from the QDT formula Eq. (8), and the
shading above the continuum threshold shows the quantity sin2η obtained from
Eq. (2) with the QDT formulas Eq. (7). The resonance (sin2η = 1) is shown
as a white curve. The functions λ(κ), η̄(k), and A(k) are obtained for a van
der Waals tail Vtail(r) = −

ħh2

2µ (2rvdW)
4 /r6, and the following parameters are used:

Ẽb = Eb +∆0 − Eo = δµ× (B − B0) with δµ/h = 2.35 MHz/G, γ/h = 50 MHz×rvdW,
abg = 2.635 rvdW, and EvdW/h=

ħh
4πµr2

vdW
= 21MHz. The horizontal dotted line shows

the bound state energy of the open channel. Note that the coupling of this bound state
to the closed channel creates an avoided crossing that splits the dressed bound state
energy curve into two branches: one on the left side which reaches the open-channel
threshold at B0, and one on the right side which asymptotes to the open-channel
bound state energy. The dashed grey curve shows the dressed bound state energy
obtained from the QDT Eq. (8) in the zero-range limit, corresponding to Eq. (11).
This plot reproduces Fig. 13 of Ref. [3], except that the bare bound state energy Eb
is shifted. The dashed slanted lines show the bare bound state energy Eb for three
different models, whose closed-channel parameters are (arbitrarily) set to a′c = 0 and
ac = 4rvdW, rvdW, 2rvdW, respectively from left to right, and W0 is set to maintain the
same value of γ. All models reproduce exactly the same dressed energy and scatter-
ing phase shift. This shows that the position of the bare bound state is arbitrary and
not constrained by the observables.

An example is shown in Fig. 2 for a resonance between 40K atoms. It is described by three
models with different values of W0, ac, a′c, but conforming to the same renormalised QDT given
by Eqs. (7) and (8). Thus there is no way of determining the values of the closed-channel
parameters from the observables shown in that figure. Of course, if one could alter ao inde-
pendently of the other model parameters, then the values of W0 and ac could be inferred from
the change in γ by virtue of Eq. (9) [21]. However this does not appear to be possible exper-
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imentally, and in any case the value of a′c would remain undetermined. One must conclude
that although the two-channel QDT provides an excellent description of isolated resonances,
its closed-channel parameters W0, ac, a′c are not fully constrained by observables, and thus the
shift ∆0 and the bare energy Eb are ambiguous quantities.

Here, the conservative point of view is taken that only scattering phase shifts and bound
state energies are fundamentally observable at the two-body level. Other short-distance quan-
tities can be observed by involving a third body (such as a photon or another atom), as dis-
cussed in Sec. 6.

4.3 Application to low-energy resonances (zero-range limit)

The QDT also applies to any resonance whose energy is very close to the threshold. Indeed, for
energies sufficiently close to the threshold, the wave functions are energy-independent within
the range of interactions, because the potentials and couplings appear very deep compared
with the considered energies. The QDT formalism can therefore be applied, and the energy-
independent region can be approximated by a vanishingly small region compared to the typical
extent of wave functions. In this limit, one obtains the analytic expressions (see Appendix
C.4.3)

A(k) = 1 , η̄(k) = π/2 , (10)

λ(κ) = 1/κ . (11)

This leads to a universal behaviour of near-threshold resonances that is independent of the
closed channel’s details.

This zero-range QDT regime is nothing but the oft-used “two-channel zero-range model”
[36–39]. It is easy to check from Eq. (7) and (2) that the effective range in this regime always
has a negative value — (see Appendix D.2),

reff = −2R⋆

�

1−
abg

a

�2

, (12)

where the length R⋆ = ħh2/(2µγ) characterises the width of the resonance [37]. This negative
effective range corresponds to a limit commonly called “narrow” or “closed-channel domi-
nated” Feshbach resonance [3] in the context of cold atoms, and is obtained when R⋆ is much
larger than the range of interactions. Thus, if the resonance has in fact a positive effective
range, the two-channel zero-range universal regime only applies at small energies where the ef-
fective range correction is negligible. For those small energies, it reduces to the single-channel
zero-range universal regime that is parametrised by the scattering length only. This zero-range
universality is well known both in ultracold-atom physics [40] and hadron physics [7,9].

For instance, the zero-range universal limit can be seen in the case of the magnetic Fesh-
bach resonance of Fig. 2: close to the threshold, the dressed bound state energy (solid black
curve) approaches the universal limit (dashed grey curve) obtained from the QDT Eq. (8) with
Eq. (11). The zero-range universal limit can also be seen in the Gaussian model of Fig. 1: as
already mentioned in Sec. 3, close to the threshold, the curves for different values of σ all
coincide with the zero-range QDT (dashed grey curve) obtained with Eqs. (11). In this low-
energy limit, the closed-channel parameter σ, and thus ∆0 and Eb, become irrelevant, just as
in Sec. 4.2.

However, away from the zero-range universal regime, there is a clear discrepancy between
magnetic Feshbach resonances and other kinds of Feshbach resonances.
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On the one hand, magnetic Feshbach resonances remain described by the van der Waals
QDT away from the threshold, since their interactions feature a deep van der Waals tail. This
results in a dressed bound state (the single solid black curve of Fig. 2) that remains the same
whatever the closed-channel parameters.

On the other hand, resonances with shallow interactions are not described by a QDT away
from the threshold. Thus they become sensitive to the closed channel details, as illustrated by
the several curves of Fig. 1 obtained for different closed-channel parameters. This is the case,
for instance, for hadron resonances, since hadronic interactions feature a shallow tail [41].
Hence, the closed-channel parameters of hadron resonances that are not very close to the
threshold could in principle be identified with enough data.

There have already been indications [26,42–44] that some hadron resonances significantly
deviate from the zero-range universal regime. For example, some resonances feature a positive
effective range, which by construction cannot be reproduced by Eq. (12), or lead to an open-
channel fraction X (also called “compositeness” [45]) that exceeds unity when evaluated in
the zero-range limit with ao = 0. Table II in Ref. [44] lists several hadron resonances with
their corresponding binding energy, scattering length, and effective range, obtained either
from experimental data or ab initio calculations. These three quantities cannot in general be
reproduced by the zero-range QDT with ao = 0, because there are only two parameters in that
theory, γ and Ẽb.

One can of course include a non-zero scattering length ao in the open channel. For in-
stance, in the case of the X(3872) state [46], suspected to result from a resonance between
a pair of D0 and D̄∗0 mesons and a compact c̄c bare bound state [47], fitting the quantities
Ed− Eo = −18 keV, a = 28.5 fm, and reff = −5.34 fm listed in Ref. [44], leads to ao = 25.3 fm.
Since this model is in a QDT regime, the fit does not provide any information about the bare
bound state.

Eventually though, as more data is accumulated, it should prove impossible to reproduce
all data with only the three parameters of the zero-range QDT, and models beyond it will be-
come necessary. For example, one may fit the above data with the nonrelativistic Gaussian
model of Eqs. (5-6). In this case, the extra parameter is given by the closed-channel param-
eter σ, and one finds σ = 23.2 fm. Since this model is not in a QDT regime, it allows to
determine the mass of the bare bound state with respect to the D0-D̄∗0 threshold, namely
Eb−Eo = −10.1 keV. Of course, the significance of this value is tied to one’s trust in the model.
The simplistic Gaussian model is unlikely to provide an adequate description of the X(3872)
state, not to mention the complications related to the proximity of other thresholds and decay
channels [47]. It nevertheless illustrates how a model beyond the zero-range QDT regime can
extract some information about the compact core from experimental data.

5 Discussion

5.1 Closed-channel fraction

Let us now mention a remarkable point. While the properties of the bare bound state appear
to be unobservable in the QDT regime, its proportion Z = 1 − X in the dressed bound state
(called the “closed-channel fraction” [19, 20, 48–52] in the context of ultracold-atom physics
and “elementariness” [7,26,42,43,45,53] in hadron physics) is observable and has indeed been
measured in ultracold-atomic systems [48,52]. It can be easily calculated from the Hellmann-
Feynman theorem [51], yielding Z = dEd/dEb.
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Quite naturally, the closed-channel fraction in general depends on the closed-channel de-
tails. For instance, for the Gaussian model, taking the derivative of Eq. (6) with respect to Ed
results in a closed-channel fraction Z that explicitly depends on the parameter σ and thus∆0.

In contrast, in the QDT regime, taking the derivative of Eq. (8) with respect to Ed gives an
expression that is independent of the closed-channel parameters, and in particular of the shift
∆0. It may be surprising that the fraction of the bare bound state in the dressed wave function
remains unaltered, even though the bare bound state energy itself can be arbitrarily shifted
away by∆0. For instance, one would intuitively think that the fraction goes to unity only when
the dressed energy approaches the bare energy. However, the formula Z = dEd/dEb shows
that this is the case even when the two energy curves are parallel to each other. Physically,
it means that even away from the resonance where the dressed bound state is almost purely
in the bare state, its energy may be significantly shifted from the bare state energy through
the coupling to the open channel. This reconciles the two facts that the closed-channel bare
bound state is not directly observable but its fraction in the dressed bound state is.

Incidentally, one can also understand from these considerations that the intuitive picture
according to which the dressed bound state results from an avoided crossing between the
bare bound states in the open and closed channels does not always hold. For instance, in
Fig. 2, the dressed bound state (solid black curve) appears to result from the avoided crossing
between the open-channel bound state (dotted line) and the bound state in the closed channel
(orange dashed line) corresponding to ac = rvdW. However, for the other values of ac leading
to different bare bound state energies in the closed channel (dashed red or green curve), the
avoided crossing picture is much less apparent, even though the observables remain the same.
The reason is that an avoided crossing results from the coupling of only two discrete bound
states, whereas here the continuum of states in the open channel can play a significant role
and strongly alter the avoided crossing picture.

5.2 Dependence on the closed channel

Even though quantities such as Eb and ∆0 are found to be ambiguous and non-observable in
the QDT regime, they do have definite values for a given model, and these values depend on
the closed-channel parameters. In particular, the following expression for the zero-energy shift
∆0 [3,17,20,54–57],

γ

ā

ao
ā − 1

1+ ( ao
ā − 1)2

, (13)

has been shown to be incorrect in Ref. [21], resulting from an invalid approximation in the QDT
formalism. It can readily be seen that this expression depends only on ao and the characteristic
range ā of the open-channel potential Vo(r), but has no dependence on the closed channel, in
disagreement with the correct expression in Eq. (9). Nevertheless, since ∆0 is unobservable,
it is always possible for fixed values of γ and ao to devise a model with a choice of W0, ac, a′c
satisfying Eq. (13), as done in Refs. [54,57]. This arbitrary choice does not affect the two-body
observables. Thus, while the value of∆0 in Eq. (13) has no special significance, its use in these
works has no consequence on two-body observables.

However, the works of Refs. [54, 57] are concerned with three-body systems. This raises
the important question whether the value of ∆0, and more generally the closed-channel pa-
rameters, could affect three-body observables. Indeed, three-body observables are not only
affected by two-body binding energies and scattering phase shifts, but also off-the-energy-
shell two-body quantities, such as the short-distance two-body wave function. The next and
final section investigates how short-distance observables are affected by the closed-channel
parameters.
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Figure 3: Ratio of the amplitudesA< andA> defined in Eq. (14) as a function of mag-
netic field, for the 6Li ab resonance near B0 = 834 G. The dots correspond to a real-
istic calculation with five hyperfine channels, where the two amplitudes are obtained
from the triplet component of the zero-energy open-channel wave function. The solid
curve represents Eq. (15) with the values ac = 2.391 nm and ao = −112.8 nm, cor-
responding respectively to the singlet and triplet scattering lengths. The scattering
length a is given by Eq. (3) with abg = −84.89−24.19(B/B0−1)+22.77(B/B0−1)2

nm, γ/h = 62770 MHz nm, and Ẽb = Eb + ∆0 − Eo = δµ × (B − B0) with
δµ/h= 2.8MHz/G.

6 Short-distance physics

The QDT gives a simple account of the short-distance two-body physics. The wave function
can be expressed by its open-channel radial component uo(r) and closed-channel radial com-
ponent uc(r). In the energy independent region r0 ≲ r ≪ rtail(E), one finds that uo(r) exhibits
oscillations with a different phase and amplitude beneath and beyond the coupling distance
rw (see Appendix D.3):

uo(r) =

¨

A< × u(0)ao
(r) , r ≪ rw ,

A> × u(0)aeff
(r) , r ≫ rw ,

(14)

where u(0)a (r) −−−→r→∞
r − a is the zero-energy solution of the open-channel potential with scat-

tering length a, and aeff is the energy-dependent scattering length abg + γ/(E − Eb − ∆0).
This shows that the open-channel wave function has an unperturbed form with amplitude A<
beneath the coupling region, and a perturbed form with amplitude A> beyond the coupling
region.

At low energy, the ratio of the amplitudes A</A> is given by:

A<
A>
=

a− ac

ao − ac
. (15)

This formula constitutes the second main result of this paper. It gives a physical interpretation
of ac as the scattering length at which the short-distance amplitude A< vanishes.

This dependence of the short-range amplitudes on the closed-channel scattering length ac
is illustrated in Fig. 3 for the case of the 834 G magnetic Feshbach resonance between 6Li atoms.
This case is fortunate, since a two-channel model has been clearly identified for this resonance
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as originating from the coupling of a spin triplet open channel with a spin singlet bare bound
state. This suggests a photoassociation experiment to measure ac: by photoassociating 6Li
atoms to an excited triplet bound state with an extent smaller than rw, one could measure
A< from the photoassociation signal, and determine ac from the magnetic field at which A<
vanishes. For other multi-channel resonances, however, it remains a challenge to identify the
effective two-channel model in general.

7 Conclusion

In summary, this work clarifies the role of closed-channel parameters in Feshbach resonances.
On the one hand, it is found that they affect two-body observables (scattering phase shifts
and binding energies) in the general case, but not in the case of resonances involving deep
interaction potentials, such as magnetic Feshbach resonances between ultracold atoms. Thus,
the closed-channel parameters of magnetic Feshbach resonances cannot be determined from
these observables. This is in sharp contrast with resonances involving shallow interaction
potentials, such as hadron resonances, for which this situation occurs only close to the open-
channel threshold.

On the other hand, one of the closed-channel parameters, called the “closed-channel scat-
tering length”, is found to affect short-distance two-body physics. In ultracold-atomic systems,
this parameter could be determined by photoassociation, and should also affect three-body ob-
servables, such as three-body recombination loss rates. The closed-channel scattering length
could thus play a role in the determination of the three-body parameter characterising the
Efimov spectrum of three-body states near a magnetic Feshbach resonance [58], which has
been measured in various experiments, and for which a full theoretical understanding is still
in progress [57,59–62].
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A Two-channel model

The Hamiltonian for a two-channel model of a two-particle system reads,

H =

�

Hoo Hoc
Hco Hcc

�

, (A.1)

where the open-channel Hamiltonian Hoo and the closed-channel Hamiltonian Hcc are given
by

Hoo = T + Vo , (A.2)

Hcc = T + Vc , (A.3)
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where T is the relative kinetic operator, which for non-relativistic systems is given by

〈p|T |q〉 = ħh
2p2

2µ δ
3(p − q) where µ is the reduced mass of the particles. The open-channel

interaction potential Vo asymptotes to a certain energy threshold Eo with a potential tail Vtail,
i.e. Vo(r) −−−→r→∞

Eo + Vtail(r). The closed-channel potential Vc asymptotes to a certain energy
Ec > Eo.

The wave function φ of the system has two components, φo and φc, respectively for the
open and closed channels. At energy E, they satisfy the coupled Schrödinger equations,

(T + Vo − E) |φo〉+Hoc|φc〉= 0 , (A.4)

(T + Vc − E) |φc〉+Hco|φo〉= 0 . (A.5)

For energy E < Ec (such that the second channel is indeed closed), these equations lead
to:

|φo〉= |φ̄E,k̂
o 〉+ G+o Hoc|φc〉 , (A.6)

|φc〉= GcHco|φo〉 , (A.7)

where G+o = (E + i0+ − T − Vo)−1 and Gc = (E − T − Vc)−1 are the resolvents of the open and

closed channels, and |φ̄E,k̂
o 〉 is the scattering eigenstate of the open-channel Hamiltonian at

energy E and scattering direction k̂, normalised as 〈φ̄E,k̂
o |φ̄

E′,k̂′
o 〉= δ(E − E′)δ(k̂− k̂′).

B Two-channel isolated resonance theory

B.1 Definition of the resonance shift and width

The closed-channel potential Vc is assumed to support a bound state |φb〉 with energy Eb:

Hcc|φb〉= Eb|φb〉 . (B.1)

It is normalised as 〈φb|φb〉 = 1. In the isolated resonance approximation, only this bound
state gives a significant contribution to the resonance, so that one may write:

Gc =
|φb〉〈φb|
E − Eb

+ Gnr
c , (B.2)

where the non-resonant part Gnr
c only gives a small contribution from the other states of the

closed channel. This leads to:

|φo〉= |φbg〉+
G+o |W 〉〈W |φbg〉

E − Eb −∆+
, (B.3)

|φc〉= |φb〉
〈W |φbg〉

E − Eb −∆+
+ Gnr

c Hco|φo〉 , (B.4)

with the short-hand notations

|W 〉 ≡ Hoc|φb〉 , (B.5)

|φbg〉 ≡ |φ̄E,k̂
o 〉+ G+o HocGnr

c Hco|φo〉 , (B.6)

and

∆+ ≡ 〈W |G+o |W 〉 ≡∆− i
Γ

2
, (B.7)

which defines the energy-dependent shift ∆(E) and width Γ (E).
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B.2 Partial wave expansion

Combining Eqs. (A.6-A.7) gives a closed equation on φo:

|φo〉= |φ̄E,k̂
o 〉+ G+o HocGcHco|φo〉 .

Making the partial wave expansion along the direction k̂ of the incoming wave,

〈r |φo〉 ≡
∑

ℓ

φo,ℓ(r)

r
Yℓ0(r̂) , (B.8)

〈r |φ̄E,k̂
o 〉 ≡
∑

ℓ

φ̄o,ℓ(r)

r
Yℓ0(r̂) , (B.9)

〈r |HocGcHco|r ′〉 ≡
∑

ℓ

Hℓ(r, r ′)
r r ′

Yℓ0(r̂)Y
∗
ℓ0(r̂
′) , (B.10)

one finds for each partial wave ℓ the following complex radial wave equation:

φo,ℓ(r)=φ̄o,ℓ(r)+

∫ ∞

0

dr ′g+o,ℓ(r, r ′)

∫ ∞

0

dr ′′Hℓ(r
′, r ′′)φo,ℓ(r

′′) , (B.11)

where the retarded partial-wave Green’s function g+o,ℓ is given by

g+o,ℓ(r, r ′) = −
2µ

ħh2k
ūo(r<) v̄+o (r>) , (B.12)

with k =
p

2µ(E − Eo)/ħh, r> = max(r, r ′) and r< = min(r, r ′). The two functions ūo and
v̄+o ≡ v̄o + i ūo are two independent solutions of the partial-wave radial equation:

�

−
d2

dr2
+
ℓ(ℓ+ 1)

r2
+

2µ

ħh2 [Vo(r)− Eo]− k2

�

u(r) = 0 , (B.13)

satisfying

ūo(r) −−−→r→∞
sin(kr − ℓπ/2+ηo) , (B.14)

v̄o(r) −−−→r→∞
cos(kr − ℓπ/2+ηo) , (B.15)

where ηo is the ℓ-wave scattering phase shift of the open channel. The solution ūo(r) is regular
(vanishing when r → 0), whereas the solutions v̄+o (r) and v̄o(r) are irregular (non-vanishing
for r → 0).

In the following, the notations (A|B)≡
∫

drA(r)B(r) and (A|B|C)≡
∫

dr

∫

dr ′A(r)B(r, r ′)C(r ′)

will used.
From the definitions of φ̄E,k̂

o and ūo, one finds

φ̄o,ℓ(r) = N̄ℓ × ūo(r) , (B.16)

with the complex coefficient N̄ℓ ≡
r

2µ(2ℓ+1)
πħh2k

iℓeiηo . The complex equation Eq. (B.11) can then
be made real by splitting the real and imaginary parts of the Green’s function Eq. (B.12), and
setting

φo,ℓ(r)≡Nℓ × uo(r) , (B.17)
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with the complex coefficient Nℓ ≡ N̄ℓ
�

1+ i 2µ
ħh2k
(ūo|Hℓ|uo)
�−1

. This yields the following equa-
tion for the real radial wave function uo:

uo(r) = ūo(r)+

∫ ∞

0

dr ′go,ℓ(r, r ′)

∫ ∞

0

dr ′′Hℓ(r
′, r ′′)uo(r

′′) , (B.18)

with the non-retarded partial-wave Green’s function,

go,ℓ(r, r ′)≡ −
2µ

ħh2k
ūo(r<) v̄o(r>) . (B.19)

B.3 Isolated resonance

B.3.1 Scattering phase shift

Using the isolated resonance decomposition Eq. (B.2) in Eq. (B.18), and assuming that
|W 〉= Hoc|φb〉 is of the form

〈r |W 〉=
w(r)

r
Yℓ0(r̂) , (B.20)

acting on a specific partial wave ℓ, one obtains for that partial wave:

Hℓ(r, r ′) =
w(r)w(r ′)

E − Eb
+Hnr

ℓ (r, r ′) , (B.21)

where Hnr
ℓ

correspond to the non-resonant part HocGnr
c Hco. This gives

uo(r) = ubg(r) + (w|uo)

∫∞
0 dr ′go,ℓ(r, r ′)w(r ′)

E − Eb
, (B.22)

with the background function

ubg(r)≡ ūo(r) +

∫ ∞

0

dr ′go,ℓ(r, r ′)wnr(r
′) , (B.23)

where

wnr(r) =

∫ ∞

0

dr ′Hnr
ℓ (r, r ′)uo(r

′) , (B.24)

corresponds to the coupling to other states than the bare bound state causing the resonance.
Applying (w| to the left of Eq. (B.22) to find (w|uo), and inserting the result back into

Eq. (B.22) gives

uo(r) = ubg(r) + (w|ubg)

∫∞
0 dr ′go,ℓ(r, r ′)w(r ′)

E − Eb −∆
, (B.25)

with the shift ∆= (w|go,ℓ|w). At large distances, the radial wave function becomes

uo(r) = ūo(r)−
�

ξnr +
(Γ + Γnr)/2
E − Eb −∆

�

v̄o(r) , (B.26)

with the width Γ/2= 2µ
ħh2k
|(w|ūo)|

2 and the non-resonant corrections

Γnr/2≡
2µ

ħh2k
(w|go,ℓ|wnr)(ūo|w) , (B.27)

ξnr ≡
2µ

ħh2k
(ūo|wnr) . (B.28)
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Using the asymptotic behaviours of ūo and v̄o given in Eqs. (B.14-B.15), one obtains from
Eq. (B.26),

uo(r) −−−→r→∞
∝ sin (kr − ℓπ/2+η) , (B.29)

with the scattering phase shift,

η= ηo − arctan
�

ξnr +
(Γ + Γnr)/2
E − Eb −∆

�

. (B.30)

Treating the non-resonant corrections as a first-order perturbation, one finally arrives at

η= ηbg − arctan
Γ̃/2

E − Eb −∆
, (B.31)

with the background phase shift:

ηbg ≡ ηo − ξnr

�

1+
�

Γ/2
E − Eb −∆

�2�−1

, (B.32)

and the corrected width:

Γ̃ ≡ Γ + Γnr . (B.33)

In the fully isolated resonance approximation, one neglects the non-resonant corrections, yield-
ing ηbg ≈ ηo and Γ̃ ≈ Γ in Eq. (B.31).

B.3.2 Low-energy limit in the s wave

In the case of s wave (ℓ = 0), the quantities Γ , Γnr, and ξnr for small k are proportional to k
(being proportional to ūo) and thus one obtains the s-wave scattering length:

a = − lim
k→0

η/k = abg −
γ̃

Eb +∆0 − Eo
, (B.34)

where abg = − limk→0ηbg/k = ao+anr with anr = limk→0 ξnr/k, and γ̃= limk→0 Γ̃/2k = γ+γnr,
with γnr ≡ limk→0 Γnr/2k.

One can more generally assume that:

Γk/2= γk
�

1+ βk2
�

+O(k3) , (B.35)

Γ̃k/2= γ̃k
�

1+ β̃k2
�

+O(k3) , (B.36)

∆k =∆0 +αk2 +O(k3) , (B.37)

k
tanηbg

= −
1

abg
+

1
2

rbgk2 +O(k3) , (B.38)

so that one finds from Eq. (B.31) the following low-energy expansion:

k
tanη

= −
1
a
+

1
2

reffk
2 +O(k3) , (B.39)

with a given by Eq. (B.34) and the effective range reff given by:

reff = 2

�

α

γ̃
− R⋆ +

aabg + β̃

a− abg

�

�

1−
abg

a

�2

+ rbg

a2
bg

a2
, (B.40)
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Figure 4: Energy independence of s-wave radial wave functions for two potentials:
a deep van der Waals potential V (r) = −EvdW

� rvdW
r

�6
with many bound states (left

panel) and a shallow Yukawa potential V (r) = −10EY
exp(−r/rY)

r/rY
with only two bound

states (right panel). Here, rvdW and rY are the van der Waals and Yukawa ranges, and
EvdW ≡

ħh2

2µr2
vdW

and EY ≡
ħh2

2µr2
Y

are their associated energies. Each panel shows V (r)

(black curve) and −V (r) (black dashed curve), along with the radial wave functions
at selected energies (the curves are shifted according to their respective energies).
The zero-energy radial wave function is shown in solid red, and superimposed as
a red dotted curve onto the curves corresponding to radial wave functions at other
energies. The region of energy independence r0 ≲ r ≪ rtail (or equivalently r ≳ r0
and E≪ |V (r)|) is shown as a pink shaded area. In that region, the zero-energy wave
function matches the wave functions at other energies, and is shown in solid red. The
energy independent region is much smaller in the case of a shallow potential, for
which the quantum defect theory is barely applicable, except at very small energies
≪ EY and large distances≫ rY corresponding to the zero-range limit. For instance,
the last bound state is well described by the zero-range limit for r ≫ rY, because it
can be determined from a boundary condition at r ≈ rY that is similar to that of the
zero-energy state. That is not the case for the lowest bound state, which differs too
much from the zero-energy state.

where the following length [37] is introduced:

R⋆ ≡
ħh2

2µγ̃
. (B.41)

Close to the resonance (a→∞), the effective range reduces to:

reff = 2
�

α

γ̃
+ abg − R⋆

�

. (B.42)

C Quantum defect theory

The key point of the quantum defect theory is that when an interaction potential is suffi-
ciently deep in a certain region r0 ≲ r ≪ rtail, the wave functions in that region are nearly
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energy-independent for a range of energies that remain much smaller than the potential energy
V (rtail). In that region (and only in that region), the wave function at any of these energies is
accurately described by a superposition of two independent solutions of the potential at zero
energy. For a specific choice of two reference solutions, there is a particular linear combination
reproducing the wave function in the region. The coefficients of this linear combination can
be parametrised by a global normalisation factor, and a parameter called the quantum defect.

In the following, the reference functions are chosen as the two s-wave radial solutions of
the potential at zero-energy, with respectively zero and infinite scattering length:

f0(r) −−−→r→∞
r , (C.1)

f∞(r) −−−→r→∞
1 . (C.2)

The zero-energy solution with scattering length a is thus f0(r) − a f∞(r) −−−→r→∞
r − a. With

this choice, the quantum defect is simply the s-wave scattering length a.
For example, for a van der Waals interaction V (r)→−C6/r6, one has:

f0(r) = rvdW
p

xΓ (3/4)J−1/4(2x−2) , (C.3)

f∞(r) =
p

xΓ (5/4)J1/4(2x−2) , (C.4)

where x = r/rvdW and rvdW is the van der Waals length rvdW ≡
1
2

�

2µC6/ħh2
�1/4

. The range of

energy-independence at energy |E|= ħh2k2/2µ is given by r0 ≲ r ≪ rtail with rtail = r2/3
vdWk−1/3.

It is illustrated in the left panel of Fig. 4 as a pink shaded area.
Interestingly, the quantum defect approach also applies to contact interactions. In this

case, the region of energy-independence is restricted to the neighbourhood of r = 0 (i.e.
r0 = rtail = 0) but extends to any energy. The two reference solutions are simply f0(r) = r and
f∞(r) = 1. This is of course an idealisation, which can be regarded as the limit of a short-
range interaction potential with vanishing range and infinite depth. Physically, it describes
the wave functions of a short-range interaction potential for energies much smaller than the
potential depth and distances larger than the potential range. The energy independent region
in this case corresponds to energies smaller than the potential depth and distances smaller
than the potential range. This is illustrated in the right panel of Fig. 4 for a shallow Yukawa
potential. In the contact interaction limit, this region reduces to a boundary condition on the
logarithmic derivative at r = 0.

C.1 Positive energy

Let us now consider a potential V (r) −−−→
r→∞

0 of s-wave scattering length a and its regu-

lar and irregular radial solutions ūa and v̄a in the ℓth partial wave at finite positive energy
E = ħh2k2/2µ > 0. The regular function ūa is defined such that ūa(0) = 0, which gives at large
distance ūa(r) → sin(kr + ηa − ℓπ/2) where ηa is the scattering phase shift. The irregular
solution v̄a is chosen such that its phase at large distances is shifted by π/2 with respect to ūa.

ūa(r) −−−→r→∞
sin(kr +ηa − ℓπ/2) , (C.5)

v̄a(r) −−−→r→∞
cos(kr +ηa − ℓπ/2) . (C.6)

According to the quantum defect assumption, in the energy independent region
r0 ≲ r ≪ rtail the two functions ūa and v̄a are linear combinations of the two zero-energy
reference solutions f0 and f∞. The regular solution ūa is simply proportional to the zero-
energy solution f0 − a f∞ with scattering length a:

ūa(r) −−−−−−→
r0≲r≪rtail

Da(k) ( f0(r)− a f∞(r)) . (C.7)
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Similarly, the irregular solution v̄a has the form:

v̄a(r) −−−−−−→
r0≲r≪rtail

Pa(k) ( f0(r)− ba(k) f∞(r)) . (C.8)

The Wronskian W [ūa, v̄a] = ūa(v̄a)′ − (ūa)′ v̄a has the conserved value −k calculated from
Eqs. (C.5-C.6), so from the expressions of Eqs. (C.7-C.8), one finds:

[ba(k)− a]Da(k)Pa(k) = −k , (C.9)

which shows that only two of the functions Da, ba, Pa are independent for a given a.
One can determine ηa, Da, ba, and Pa for any scattering length a, by just knowing four

functions of k: η0,η∞, D0, A.

tanηa =
(D0)

−1 sinη0 − a (A)−1 sinη∞
(D0)

−1 cosη0 − a (A)−1 cosη∞
, (C.10)

Da =
�

(D0)
−2 +
�a

A

�2
− 2a

cos η̄
D0A

�−1/2

, (C.11)

ba =
(A/D0)− a cos η̄
cos η̄− a (D0/A)

, (C.12)

Pa = −
cos η̄− a (D0/A)

sin η̄
Da , (C.13)

with the notations
η̄≡ η∞ −η0 , (C.14)

and

η0 ≡ lim
a→0

ηa , D0 ≡ lim
a→0

Da , (C.15)

η∞ ≡ lim
a→−∞

ηa , A≡ lim
a→−∞

−aDa . (C.16)

Again the four functions η0,η∞, D0, A are not independent, because the Wronskian
W [ū0, ū∞] can be expressed at short distance as

W [D0 f0, Af∞] = D0AW [ f0, f∞]
︸ ︷︷ ︸

−1

= −D0A , (C.17)

and at large distance as:

W [sin(kr − ℓπ/2+η0), sin(kr − ℓπ/2+η∞)] = −k sin (η∞ −η0) , (C.18)

leading to the relation,

D0(k)A(k) = k sin η̄(k) . (C.19)

Using this relation, one can express Da, ba, Pa in terms of only two functions A and η̄:

Da =
k
A

�

1+ (Ba)
2�−1/2

, (C.20)

ba =
(A)2

k

�

1
Ba
+

1
tan η̄

�

, (C.21)

Pa = −BaDa , (C.22)

where

Ba ≡
1

tan η̄
−

ka

(A)2
. (C.23)
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C.2 Alternative choice

One may consider an alternative choice v̄+a (r)≡ v̄a(r) + iūa(r) for the irregular function, that
has the complex asymptote:

v̄+a (r) −−−→r→∞
ei(kr+ηa−ℓπ/2) . (C.24)

It can be expanded on f0 and f∞

v̄+a (r) −−−−−−→r0≲r≪rtail

P+a
�

f0(r)− b+a f∞(r)
�

, (C.25)

where the complex quantities P+a and b+a are readily obtained from Eqs. (C.7-C.8):

P+a = Pa + iDa , (C.26)

b+a =
Pa ba + iDaa

Pa + iDa
. (C.27)

The interest of this alternative choice is that the quantity b+a is independent of a. Indeed,
using Eqs. (C.11-C.13), one finds:

b+ = (A/D0) e
iη̄ , (C.28)

where the label a is now dropped, due to the independence on a.
Again, from the Wronskian W [ūa, v̄a] = −k, one finds

�

b+ − a
�

DaP+a = −k . (C.29)

From Eqs. (C.26-C.29) one also finds the useful relations:

1
b+ − a

=
1

ba − a
−

i (Da)
2

k
= −

Da(Pa + iDa)
k

. (C.30)

C.3 Negative energy

For negative energies E = −ħh
2κ2

2µ obtained when k is continued to imaginary values iκ, the
quantity b+ becomes real. For convenience, b+(iκ) is denoted as λ(κ). One can see from
Eq. (C.24) that for imaginary k = iκ, the irregular function v̄+a is exponentially decreasing
at large distance. Equation (C.25) shows that if λ(κ) happens to be equal to a, then v̄+a is
proportional to the regular solution ūa, as seen from Eq. (C.5). In this case, being both regular
at the origin and at infinity, the solution corresponds to a bound state. This shows that λ(κ)
is simply the s-wave scattering length a of the potential at which there is a bound state in the
ℓth partial wave with energy −ħh

2κ2

2µ .

C.4 Calculation of the universal functions

C.4.1 General case

The functions η0,η∞, D0, A may in some cases be calculated analytically for a given tail of the
potential V , for example in the case of a contact interaction (see below). If only the analytical
forms of f0 and f∞ are known at small distance, one may numerically integrate the radial
Schrödinger equation with positive energy E from the known f0 and f∞ at small distance,
outwards to large distances. This gives the long-range oscillations (D0)

−1 sin(kr +η0 − ℓπ/2)
and (A)−1 sin(kr +η∞ − ℓπ/2), from which D0, η0, A, and η∞ can be extracted.
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Figure 5: Universal functions in the s wave for potentials with van der Waals tail
Vtail(r) = −C6/r

6. Left panel: functions η0(k),η∞(k), D0(k), and A(k) for positive
energies ħh

2k2

2µ . Right panel: function 1/λ(κ) for negative energies −ħh
2κ2

2µ . The quan-
tity λ(κ) is simply the scattering length for which the potential admits a bound state
with binding energy ħh

2κ2

2µ . All quantities are plotted in units of the van der Waals

length rvdW =
1
2

�

2µC6/ħh2
�1/4

. The dotted curves correspond to the small-k formu-
las Eqs. (C.31-C.34) and Eq. (C.37) and the dashed curves correspond the large-k
formulas Eqs. (C.38-C.41).

To calculate λ(κ), one can start at large distance from the exponentially decaying form
exp(−κr) and integrate inwards with negative energy E = −ħh2κ2/2µ to find the short-distance
oscillations f0 − λ(κ) f∞ and extract λ(κ). Alternatively, one can calculate the bound state
spectrum of the potential V in the ℓth wave for different values of the scattering length a set
by altering the short-range part of V . In all cases, the universal functions η0,η∞, D0, A, and
λ(κ) can be easily obtained with these numerical procedures.

C.4.2 Case of van der Waals interactions

For potentials with a van der Waals tail −C6/r6, the characteristic length scale is the

van der Waals length rvdW = 1
2

�

2µC6/ħh2
�1/4

or equivalently the mean scattering length
ā = 4π

Γ (1/4)2 rvdW. One can in principle obtain analytical expressions of the universal functions
from the analytical solution of the Schrödinger equation for van der Waals potentials [35], al-
though they are rather involved. Alternatively, one can employ the numerical method sketched
above. Figure 5 shows the result for the s wave.
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The functions for the s wave admit the following analytical expressions for small k≪ ā−1:

η0(k) = −
8
3

ārvdWk3 +O(k4) , (C.31)

η∞(k) =
π

2
−

4
3

r2
vdW

ā
k+O(k3) , (C.32)

D0(k) = k−
4
3

r2
vdWk3 +O(k4) , (C.33)

A(k) = 1+
4
3

�

1−
2
3

r2
vdW

ā2

�

k2r2
vdW +O(k3) . (C.34)

From this and using Eq. (C.10), one can perform the effective range expansion:

k cotηa = −
1
a
+

1
2

reffk
2 +O
�

k3
�

, (C.35)

yielding the effective range

reff = r(∞)eff

�

�

ā
a

�2

+
�

ā
a
− 1
�2
�

, (C.36)

with r(∞)eff = 8
3

r2
vdW
ā .

For negative energies, one finds for small κ≪ ā−1:

λ(κ) =
1
κ
+

1
2

r(∞)eff +O(κ) . (C.37)

One can also derive the following expressions in the high-energy limit k≫ ā−1 using the
WKB approximation:

η0(k) = −ξ× (krvdW)
2/3 + 5π/8 , (C.38)

η∞(k) = −ξ× (krvdW)
2/3 + 7π/8 , (C.39)

D0(k) =

√

√ k
2ā

, (C.40)

A(k) =
p

kā , (C.41)

with ξ= −2−1/3π−1/2Γ
�

−1
3

�

Γ
�5

6

�

≈ 2.0533.

C.4.3 Case of contact interactions

The case of contact interactions can be obtained by taking the limit rvdW → 0 of Eqs. (C.31-
C.34) and (C.37), yielding:

η0(k) = 0 , (C.42)

η∞(k) =
π

2
, (C.43)

D0(k) = k , (C.44)

A(k) = 1 , (C.45)

λ(κ) = 1/κ . (C.46)
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C.5 Connection with other QDT notations

In the works of Refs. [15, 31, 32], the quantum defect theory is formulated with a set of four
functions Z f f , Zg g , Z f g , and Zg f along with a short-distance K0

0 that is related to the scattering
length a, such that the scattering phase shift reads:

tanηa =
K0

0 Zg g − Z f g

Z f f − K0
0 Zg f

, with K0
0 =
�

1−
a
ā

�−1
. (C.47)

Therefore, the functions η0, η∞, D0, and A are related to these functions by the relations:

η0 = arctan
Zg g − Z f g

Z f f − Zg f
, (C.48)

η∞ = −arctan
Z f g

Z f f
, (C.49)

(D0)
−1 = ā
r

�

Zg g − Z f g

�2
+
�

Z f f − Zg f

�2
, (C.50)

(A)−1 =
Ç

Z2
f f + Z2

f g , (C.51)

and conversely,

Zg g = ā−1 (D0)
−1 sinη0 − (A)

−1 sinη∞ , (C.52)

Z f g = − (A)
−1 sinη∞ , (C.53)

Zg f = (A)
−1 cosη∞ − ā−1 (D0)

−1 cosη0 , (C.54)

Z f f = (A)
−1 cosη∞ . (C.55)

Note that the four functions η0, η∞, D0, and A shown in Fig. 5 all have a simple monotonic
variation with k, whereas the four functions Z f f , Zg g , Z f g , and Zg f have oscillatory variations.

In Refs [21,33,55], the short-distance energy-independent radial functions were connected
to the long-range energy-normalised radial functions through a phase shift ϕ and two ampli-
tudes A−1/2

k and Gk, also denoted as C(E) and tanλ(E). With the current notations, ϕ is the
quantum defect related to a through:

tanϕ = K0
0 =
�

1−
a
ā

�−1
, (C.56)

and Ck and Gk are related to Da, Pa, and ba by the relations:

Da(k) = (Ck)
−1

√

√ k/ā
1+ (1− a/ā)2

, (C.57)

Pa(k) = −
√

√ k/ā
1+ (1− r0)2

�

Gk + 1−
a
ā

�

Ck , (C.58)

ba(k) = ā
a
ā (Gk − 1) + 2

Gk + 1− a
ā

. (C.59)

D Renormalised quantum defect theory of the isolated resonance

D.1 Width and shift

Combining the results of the two preceding sections, one can now formulate the quantum de-
fect theory of the isolated resonance. According to Eqs. (B.7), (B.20) and (B.12), the complex
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shift ∆+ is given by

∆+ = −
2µ

ħh2k

∫ ∞

0

dr

∫ ∞

0

dr ′w(r)ūo(r<)v̄
+
o (r>)w(r

′) . (D.1)

Now, assuming that the coupling w(r) is localised in the region r0 ≲ r ≪ rtail where Eqs. (C.7-
C.25) can be used, and using Eq. (C.29) one finds

∆+ =
2µ

ħh2

(X − aoY )
�

X − b+Y
�

− (b+ − ao)Z

b+ − ao
, (D.2)

with

X ≡
∫ ∞

0

dr w(r) f0(r) , (D.3)

Y ≡
∫ ∞

0

dr w(r) f∞(r) , (D.4)

Z ≡
∫ ∞

0

dr

∫ ∞

r
dr ′w(r)w(r ′)
�

f0(r) f∞(r
′)− f∞(r) f0(r

′)
�

. (D.5)

Thus, introducing the lengths

ac ≡ X/Y , (D.6)

a′c ≡ Z/Y 2 , (D.7)

one obtains

∆+ =
γ

b+(k)− ao
+∆0 , (D.8)

with

∆0 ≡
2µ

ħh2 Y 2
�

ao − ac − a′c
�

, (D.9)

γ≡
2µ

ħh2 Y 2 |ac − ao|
2 =

2µ

4πħh2 W 2
0

�

1−
ao

ac

�

, (D.10)

where the quantity W0 ≡
p

4π(w| f0) characterises the strength of the coupling between the
open and closed channels. Note that ∆0 = limk→0∆ in the case of the s wave (ℓ = 0), for
which b+(k) −−→

k→0
∞.

The simplicity of Eq. (D.8) is striking, as the dependence on the closed-channel parameters
W0, ac, and a′c is entirely encapsulated in∆0 and γ, while the dependence on the open-channel
parameters only appears through the scattering length ao in the denominator of Eq. (D.8). For
energies E below the open-channel threshold Eo, the shift ∆+ and the length b+(ik) = λ(κ)
are real, leading to the simple result:

∆=
γ

λ(κ)− ao
+∆0 . (D.11)

For energies E above the open-channel threshold Eo, the real and imaginary parts of
∆+ =∆− iΓ/2 can be obtained from Eq. (D.8) using Eq. (C.30):

∆=
γ

bo − ao
+∆0 = −γ

DoPo

k
+∆0 , (D.12)

Γ

2
= γ
(Do)

2

k
. (D.13)
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Using the expressions Eqs. (C.20-C.22) one finds

∆=∆0 +
Γ

2
Bo , (D.14)

Γ

2
= γ

k

(A)2
�

1+ (Bo)
2� . (D.15)

D.2 Low energy

In the low-energy limit, the general effective-range expansion of a resonance is given by
Eq. (B.40).

In the case of a resonance with van der Waals interaction, it can be found from Eqs. (C.31-
C.34) that

α= γ
�

1
2

r(∞)eff − ao

�

, (D.16)

β = r(∞)eff (ao − ā)− a2
o . (D.17)

In the isolated resonance limit where non-resonant contributions are negligible (i.e. γ̃ = γ,
β̃ = β , and ao = abg), this leads to the effective range,

reff =
�

r(∞)eff − 2R⋆
�

�

1−
abg

a

�2

+ rbg

a2
bg

a2
+ 2r(∞)eff

abg

a

�

1−
ā

abg

�

�

1−
abg

a

�

, (D.18)

where r(∞)eff = 8
3

r2
vdW
ā and rbg is the open-channel effective range given in terms of abg by

Eq. (C.36). It follows that close to the resonance (a→∞), the effective range reduces to:

reff = r(∞)eff − 2R⋆ . (D.19)

One can see from this formula that there are two opposite limits: when R⋆ ≪ r(∞)eff ∼ rvdW
(open-channel dominated resonance, a.k.a “broad” resonance [3]) the effective range
reff ≈ r(∞)eff is positive and approaches the effective range of the single-channel van der Waals

potential at unitarity (see Eq. (C.36)), whereas when R⋆≫ r(∞)eff ∼ rvdW (closed-channel dom-
inated resonance, a.k.a “narrow” resonance [3]), the effective-range is reff ≈ −2R⋆ is negative
and approaches the effective range of the zero-range two-channel model at unitarity [37].

Indeed, in the case of a resonance with contact interactions, it can be found from
Eqs. (C.42-C.45), or simply by taking the limit rvdW→ 0 in Eq. (D.18), that

reff = −2R⋆

�

1−
abg

a

�2

, (D.20)

which shows that the contact (zero-range) two-channel model has a negative effective range
and thus always describes a closed-channel dominated Feshbach resonance.

D.3 Short-distance amplitudes

The QDT gives a simple account of the wave function inside the tail region. The radial
wave function in the open-channel component is given by the isolated resonance theory equa-
tion (B.25). Assuming that the coupling w(r) is localised around a distance rw, one can use
Eqs. (B.19) and (B.30) to obtain the radial wave function for r ≫ rw:

uo(r) =r≫rw
ūo(r) + tan (η−ηo) v̄o(r) . (D.21)
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This shows that for distances beyond the coupling region, the wave function is proportional to
the solution of the open-channel potential with a short-distance boundary condition yielding
the modified scattering phase shift η instead of the original phase shift ηo.

One can also use Eqs. (B.25) and (B.19) to obtain the radial wave function for r ≪ rw:

uo(r) =r≪rw

�

1−
�

ζnr +
Γ̃/2

E − Eb −∆
(v̄o|w)
(ūo|w)

��

× ūo(r) , (D.22)

with
ζnr ≡

2µ

ħh2k
(v̄o|wnr) . (D.23)

This shows that for distances beneath the coupling region the wave function is proportional
to the unperturbed solution ūo of the open-channel potential Vo.

Now, assuming that the coupling region r ∼ rw lies in the range r0 ≲ r ≪ rtail where the
wave functions ūo and v̄o are energy independent, one can use the QDT formalism, namely
Eqs. (C.7-C.8), to further specify the form of the radial wave function uo. For r ≫ rw, one
finds that uo is proportional to the zero-energy solution with an energy-dependent scattering
length aeff:

uo(r) =
rw≪r≪rtail

A>(k)× ( f0(r)− aeff(k) f∞(r)) , (D.24)

with the amplitude A> and scattering length aeff given by:

A>(k)≡ Do + tan (η−ηo) Po , (D.25)

aeff(k)≡ ao −
tan (η−ηo)

k
D2

o

1+ tan (η−ηo)
Po
Do

. (D.26)

For r ≪ rw, the wave function is proportional to the zero-energy solution with the unper-
turbed scattering length ao:

uo(r) =
r0≲r≪rw

A<(k)× ( f0(r)− ao f∞(r)) , (D.27)

with the amplitude A< given by:

A<(k)≡ Do−Po

�

ξnr
bo − anr

c

ao − anr
c
+

Γ̃/2
E − Eb −∆

bo − ac

ao − ac

�

, (D.28)

where the non-resonant closed-channel scattering length anr
c is defined by:

anr
c ≡

( f0|wnr)
( f∞|wnr)

.

In the s wave, for small k, one finds:

A>(k) −−→
k→0

k , (D.29)

A<(k) −−→
k→0

A>(k)
a− ac − anr

ac−anr
c

ao−anr
c

ao − ac
, (D.30)

aeff(k) −−→
k→0

a . (D.31)
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In the fully isolated resonance limit where the non-resonant parts are negligible, the ex-
pressions of Eqs. (D.25, D.26, D.28) simplify to:

A>(k) = Do(k)
ao − bo(k)

aeff(k)− bo(k)
, (D.32)

A<(k) =A>(k)
aeff(k)− ac

ao − ac
, (D.33)

aeff(k) = ao +
γ

E − Eb −∆0
. (D.34)

In particular, at low energy such that aeff(k)≈ a, one finds the simple formula for the ratio:

A<
A>
=

a− ac

ao − ac
, (D.35)

showing that the short-distance amplitude vanishes when a = ac. Note that the general for-
mula Eq. (D.29) for a partially isolated resonance reduces to Eq. (D.35) in the special case
where anr

c = ac. This happens when the wave functions of the resonant and non-resonant
bare states in the closed channel are also energy-independent in the coupling region, and thus
characterised by the same scattering length.

D.4 Application to lithium-6

The lithium-6 ab diatomic resonance (where ab designates the two lowest hyperfine states of
lithium-6) near the magnetic field intensity B = 834 G is described by five hyperfine channels
characterised by a total spin projection mF = 0. The interaction between the atoms depends on
the total electronic spin S of the two valence electrons, which can be either in a singlet (S = 0)
or triplet (S = 1) state. This multi-channel system with radial components ui(r) (i = 1, . . . , 5)
can thus be solved numerically using the singlet and triplet interaction potentials and the
atomic hyperfine Hamiltonian.

The bare bound state causing this resonance has been identified as the ν= 38 s-wave level
of the singlet interaction potential, with radial wave function ub(r). Therefore, to construct
the effective two-channel components, one can project the components ui onto the bare bound
state to obtain the closed-channel component uc, and project out the bare bound state and
retain only the ab entrance component (i = 1) to obtain the open-channel component uo.
Explicitly,

uc(r) =

√

√

√

√

5
∑

i, j=1

�

�αi, j(ub|u j)
�

�

2
ub(r) , (D.36)

uo(r) = u1(r)−
5
∑

j=1

α1 j(ub|u j)ub(r) , (D.37)

where αi j are the matrix elements of the projector 1− Ŝ2 onto the singlet state.
The zero-energy components are shown in Fig. 6 for two different values of the magnetic

field intensity. The open-channel wave function uo (orange curve) is well fitted at large dis-
tance by the wave function of Eq. (D.24) (dashed curve), and at short distance by the wave
function of Eq. (D.27) (dotted curve). The two fits deviate from uo in a region of distances
around rw = 2.6 nm, which shows that the inter-channel coupling is localised in that region.
The QDT is therefore an accurate description for energies smaller than 240 hMHz∼ 10 mK
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Figure 6: Effective two-channel radial wave functions uc (“closed”, blue curve) and uo
(“open”, orange curve) of the lithium-6 diatomic ab resonance near B = 834 G. Top:
wave functions at B = 500G, corresponding to a scattering length a = −4.362 nm.
Bottom: wave functions at B = 539.04 G, corresponding to a scattering length
a = ac = 2.507 nm. The open-channel wave function uo is fitted at large distance by
the wave function of Eq. (D.24) (dashed curve) and at short by the wave function of
Eq. (D.27) (dotted curve).

above and below the threshold. The fits enable to extract the amplitudes A> and A<, as well
as the open-channel scattering length ao and the physical scattering length a.

Both scattering lengths ao and a are plotted as a function of magnetic field intensity as
blue and orange curves in Fig. 7. One can see that the open-channel scattering length ao is
close to the triplet scattering length at = −112.8 nm, confirming the spin triplet character of
the open channel, while the physical scattering length a is well reproduced by the formula of
Eq. (B.34). This yields the background scattering length abg, which has a small dependence
on the magnetic field as shown by the green curve in Fig. 7. This dependence is captured by
the following Taylor expansion around B0:

abg = a(0)bg + a(1)bg (B/B0 − 1) + a(2)bg (B/B0 − 1)2 , (D.38)

with a(0)bg = −84.89 nm, a(1)bg = −24.19 nm, and a(2)bg = 22.77 nm.
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Figure 7: Open-channel scattering length ao (orange curve), physical scattering
length a (blue curve), and background scattering length abg of the lithium-6 di-
atomic ab resonance near B = 834 G, obtained by fitting the numerical wave func-
tions, as a function of magnetic field intensity. The open-channel scattering length
ao is close to the triplet scattering length at = −112.8nm (dotted line), while the
physical scattering length is well reproduced by Eq. (B.34) (dahsed curve) with
γ̃/h= 62770 MHz nm, and Ẽb = Eb+∆0−Eo = δµ×(B−B0)with δµ/h= 2.8 MHz/G
and B0 = 834.08 G. This yields the background scattering length abg, which is well
reproduced by Eq. (D.38).

The ratio |A</A>| is plotted in Fig. 8 as a function of magnetic field intensity. It
is well reproduced by the formula Eq. (D.35) with a closed-channel scattering length
ac = 2.507 nm ≈ as and an open-channel scattering length ao = −109.6 nm ≈ at. It should be
noted that the non-resonant contribution is not negligible for this resonance: the background
scattering length abg is found to be around -85 nm, significantly differing from ao. Thus, in
principle one may not use Eq. (D.35) which is obtained in the fully isolated resonance limit,
but Eq. (D.30), which includes the non-resonant correction. However, it turns out that ao is
very large compared to ac and anr

c (both are presumably of the same order, or even possibly
equal) so that Eq. (D.35) is a good approximation of Eq. (D.30) in this case.

One can see that the short-distance amplitude vanishes at the magnetic field intensity
B = 539.04G corresponding as expected to a = ac. This suppression of the open-channel
amplitude at short distance can be visualised in the bottom panel of Fig. 6. A close look
around this magnetic field (see the bottom panel of Fig. 8) reveals that a very narrow resonance
accidentally occurs close to that point. Although the presence of this extra resonance, which
is due to a bound state with total nuclear spin I = 2 [3], complicates a bit the variation of
|A</A>|, it is still reproduced by Eq. (D.35) with the same value of ac when the precise
variation of a (inluding the narrow resonance) is taken into account. This is because both
the broad and narrow resonances originate from the same bound state ν = 38 of the singlet
potential, thus having the same values of ac. The fact that the obtained value of ac = 2.507 nm
is very close to the singlet scattering length as = 2.391 nm confirms that the singlet character
of the closed-channel bound state.

Since the open channel corresponds essentially to the triplet component, an experiment
probing the triplet component, for instance by photoassociation, could reveal how the ampli-
tude of the open-channel wave function vanishes near a = ac. This is illustrated in Fig. 8,
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Figure 8: Top: Short-distance amplitude of the lithium-6 diatomic open channel as
a function of magnetic field intensity. The grey curve shows the ratio of the am-
plitudes A< and A> of Eqs. (D.24-D.27). It is well reproduced by Eq. (D.35) with
ac = 2.510 nm (dashed curve). The blue and orange curves show the triplet ampli-
tude At(r) of Eq. (D.39) at the probing distance r1 = 1.9 nm (blue) and r2 = 0.8 nm
(orange). Bottom: closeup of the top figure in the region where the short-distance
amplitude vanishes.

where the triplet amplitude,

At(r)≡

√

√

√

√

5
∑

i, j=1

�

�(1−αi, j)u j(r)
�

�

2
, (D.39)

at two different probing distances r is plotted as a function of the magnetic field intensity.
For both probing distances, the triplet amplitude reproduces very well the short-distance am-
plitude A< up to a scaling factor. However, very close to the points where A< vanishes, the
triplet amplitude does not completely vanish, an indication that the triplet component does not
perfectly account for the open channel, but also includes non-vanishing admixtures. Never-
theless, the measurement of A< over a wide enough range of magnetic field intensities would
enable to determine ac.

30

https://scipost.org
https://scipost.org/SciPostPhys.18.1.036


SciPost Phys. 18, 036 (2025)

References

[1] H. Feshbach, Unified theory of nuclear reactions, Ann. Phys. 5, 357 (1958),
doi:10.1016/0003-4916(58)90007-1.

[2] U. Fano, Effects of configuration interaction on intensities and phase shifts, Phys. Rev. 124,
1866 (1961), doi:10.1103/PhysRev.124.1866.

[3] C. Chin, R. Grimm, P. Julienne and E. Tiesinga, Feshbach resonances in ultracold gases,
Rev. Mod. Phys. 82, 1225 (2010), doi:10.1103/RevModPhys.82.1225.

[4] S. Kokkelmans, Feshbach resonances in ultracold gases, in Quantum gas experiments: Ex-
ploring many-body states, Imperial College Press, London, UK, ISBN 9781783264766
(2014), doi:10.1142/9781783264766_0004.

[5] E. Tiesinga, B. J. Verhaar and H. T. C. Stoof, Threshold and resonance phe-
nomena in ultracold ground-state collisions, Phys. Rev. A 47, 4114 (1993),
doi:10.1103/PhysRevA.47.4114.

[6] S. Inouye, M. R. Andrews, J. Stenger, H.-J. Miesner, D. M. Stamper-Kurn and W. Ketterle,
Observation of Feshbach resonances in a Bose-Einstein condensate, Nature 392, 151 (1998),
doi:10.1038/32354.

[7] T. Hyodo, Structure and compositeness of hadron resonances, Int. J. Mod. Phys. A 28,
1330045 (2013), doi:10.1142/S0217751X13300457.

[8] X.-K. Dong, F.-K. Guo and B.-S. Zou, Explaining the many threshold struc-
tures in the heavy-quark hadron spectrum, Phys. Rev. Lett. 126, 152001 (2021),
doi:10.1103/PhysRevLett.126.152001.

[9] E. Braaten and M. Kusunoki, Factorization in the production and decay of the X(3872),
Phys. Rev. D 72, 014012 (2005), doi:10.1103/PhysRevD.72.014012.

[10] C. Kuhlenkamp, M. Knap, M. Wagner, R. Schmidt and A. Imamoğlu, Tunable Feshbach
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