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Abstract

Random features models play a distinguished role in the theory of deep learning, de-
scribing the behavior of neural networks close to their infinite-width limit. In this work,
we present a thorough analysis of the generalization performance of random features
models for generic supervised learning problems with Gaussian data. Our approach,
built with tools from the statistical mechanics of disordered systems, maps the random
features model to an equivalent polynomial model, and allows us to plot average gen-
eralization curves as functions of the two main control parameters of the problem: the
number of random features N and the size P of the training set, both assumed to scale
as powers in the input dimension D. Our results extend the case of proportional scaling
between N, P and D. They are in accordance with rigorous bounds known for certain
particular learning tasks and are in quantitative agreement with numerical experiments
performed over many order of magnitudes of N and P. We find good agreement also far
from the asymptotic limits where D→∞ and at least one between P/DK , N/DL remains
finite.
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1 Introduction

The connection between deep feed-forward neural networks (DNNs) in the large-width limit
and kernel methods has been well understood in the last years. It has been shown, in a
Bayesian learning perspective, that if the number of units in each hidden layer is taken to
infinity at fixed input dimension and training set size, a DNN becomes a “neural network
Gaussian process” whose kernels can be defined iteratively layer by layer [1–4]. This result has
been recently generalized beyond the infinite-width limit [5–10]. In a dynamical perspective
moreover, it has been shown that wide DNNs trained with gradient-based methods exhibit the
lazy-training kernel regime [11], evaluated by first order Taylor-expanding the network with
respect to the weights around initialization [12–14].
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Figure 1: Left: generalization error of the RFM on a classification task, as a function
of the size of the training set P, for D = 30, N = 104, weights regularization ζ= 10−8,
quadratic teacher (balanced: τ1 = τ2 = 1/

p
2, τℓ>2 = 0) and ELU activation func-

tions (defined in Eq. (8) below); the continuous line is the equivalent polynomial
theory devised in Sec. 4, truncated at L = 3; dashed lines are the asymptotic the-
ories (see Sec 6 for details) for N →∞ and P/D finite (red), N →∞ and P/

�D
2

�

finite (yellow), N →∞ and P/
�D

3

�

finite (blue), P/
�D

3

�

and N/P finite (green); black
points are results from numerical experiments averaged over 50 instances (see Ap-
pendix I). The model learns the linear features (first step at P ∼ O(D)), then learns
the quadratic features (second step at P ∼ O(D2)), then follows the interpolation
peak at P ∼ N . Right: numerical and theoretical teacher-student overlaps – defined
in Eq. (37) and (45) – of the linear and quadratic features (the overlap of the cubic
features is identically 0 by definition); the parameters of the model are the same as
for the left panel.

Once a DNN is proven equivalent to a kernel machine, the mechanism by which it real-
izes the input-output mapping of the corresponding supervised-learning task is understood:
the input data, which generally speaking are points in RD, are mapped with an implicit fea-
ture map ψ : RD → RN to an N -dimensional space where the classification, or regression,
rule is linear and can be learnt by the read-out layer. The mapping to the feature space is
implicit, in the sense that the learning problem can be solved by a support vector machine
(SVM), so that learning and generalization depend on the features only through the kernel
H̄(x,x′) =
∑N

i=1ψi(x)ψi(x′)/N (see, for reference, [15]). Learning curves (generalization
error as a function of the size P of the training set) of kernel machines can be obtained ana-
lytically from a statistical mechanics [16–19] or a mathematical [20–22] perspective. A very
interesting trait of these curves is their staircase shape for P ∼ DK : by setting the scaling of
the size of the training set to a certain power K of the input dimension, features of order K can
be learnt by the machine, so that the test error decreases increasing K with subsequent steps.

The discovery of the lazy training regime of wide neural networks motivated in the recent
past the study of the random features model (RFM) [23,24], a shallow (one-hidden-layer, 1HL)
neural network where the feature map is explicitly parametrized by a fixed random linear
embedding of the input points from RD to RN , followed by a non-linear activation function. In
this sense, the model mimics the behavior of a neural network in the large-width limit, where
the feature map depends only on initialization and learning is linear.

In the present work we study theoretically the generalization performance of the RFM in
the large-D limit for empirical risk minimization, with P ∼ DK , N ∼ DL . We find, under a quite
general teacher/student setting with a random polynomial teacher and Gaussian i.i.d. input
data, that
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Figure 2: Generalization error of a RFM on a classification task, as a function of the
number of hidden units N , for P = 104 and the rest of the parameters as in Fig. 1;
continuous lines are the theories truncated at L′ = 1, 2,3 (respectively: blue, yellow,
red); numerical points (in black) are nicely interpolating between these curves in the
regimes where N ∼ O(D), O(D2), O(D3), validating Eq. (25), where the truncation
L′ of the equivalent polynomial theory is fixed at L ∼ log(N)/ log(D).

• as long as P ≪ N , the model behaves as an infinite-rank (N → ∞) kernel machine:
for P ∼ DK , features of order K can be learnt, such that the generalization error as a
function of P has a staircase descent (or overfitting peaks if the teacher is less complex)
with steps corresponding to different values of K;

• for P ≫ N and N ∼ DL , the model is equivalent to a degree-L polynomial student: if the
complexity of the teacher is lower than the degree L, the generalization error is equal
to zero, or otherwise, to the minimum error for a degree-L polynomial fitting a more
complex teacher;

• for P ∼ N , an interpolation peak of the generalization error, which depends on the
strength of the regularization of the student’s weights, occurs.

This behavior is depicted in Fig. 1. Comparison with numerical experiments shows that our
theory, based on the mapping of the RFM to an equivalent noisy polynomial model, predicts
well the quantitative behavior of the true generalization performance at finite size, over many
orders of magnitude.

Our theory, formulated from the point of view of the statistical mechanics of disordered
systems, expresses the generalization performance of the RFM in terms of few order param-
eters with a clear physical interpretation, as overlaps between combinations of the student’s
weights and the parameters defining the teacher. In this way, we are offering a complementary
take on what is known about RFMs in the computer science community, as we discuss in the
following.

1.1 Related works

In this section we give an overview on the previous works that have been of inspiration to our
paper, presenting relevant results and differences with our approach.

Random feature models were introduced in [23–26], initially as randomized low-rank ap-
proximations of kernels arising in classification or regression problems. Recently, their interest
was renewed by the discovery that DNNs behaves as RFMs close to the infinite-width limit, both
in a Bayesian learning [1–4] and in a gradient-based learning [11–14] setting. This mapping,
which provides one of the few limits where DNNs can be studied with analytical methods, has
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motivated in the last few years a huge effort to formalize their behavior in terms of expressive
power and generalization performance.

In particular, the impressive series of works [14,27–33] (see [34] for a review) formulates
rigorous bounds on the generalization performance of RFMs in different asymptotic regimes.
For a non-exhaustive recap of the results (with our notation):

• In [27], the large-D limits where DL+δ ≤ N ≤ DL+1−δ (for small δ) after sending P →∞
(underparametrized regime) and DK+δ ≤ P ≤ DK+1−δ after sending N → ∞ (over-
parametrized regime) are considered. In the first case the model is found equivalent to
degree-L polynomial regression; in the second one, it reduces to (infinite-rank) kernel
regression, which for that number of samples can fit at most a degree-K polynomial in
the inputs, in a way also investigated in literature [16–22].

• In [29], the limit where both N and P scale linearly with D with their ratio fixed is
considered; the generalization error as a function of the ratio between the number of
hidden units and the size of the training set first decreases for N/P small, then exhibits
a peak at the interpolation threshold N/P = 1 and then relaxes again for N ≫ P to
the value predicted from the kernel theory with P ∼ D, coherently with the previous
point. This phenomenology is widely observed in numerical experiments and known in
literature as double descent [35] of the generalization error.

• In [31], the authors push forward the analysis of [27] (that is, P and N scaling poly-
nomially with D) to the regimes where N ≤ P1−δ and N ≥ P1+δ. The authors show
indeed that the limiting behavior is given by the smallest of N and P, and they find the
interpolation threshold at N ∼ P also in this polynomial scaling.

• In [33], universality results on training and test error are proven in the P ∼ N regime
for a larger class of models, as long as with finite dimensional outputs, and generic
losses. Indeed, they prove that training and test errors depend on the random features
distribution only through its covariance structure.

These papers find bounds to the generalization performance of a RFM with rigorous analytical
methods under quite general assumptions on data distribution and activation functions.

A statistical mechanics point of view, complementary to the formal approach discussed
so far, has been formulated in the series of papers [36–42]. Originally aiming at modelling
the role of data structure in machine learning, as in other contemporary approaches [43–50],
the authors obtained in [37] a closed-form expression for the generalization error of RFMs
for regression and classification in the asymptotic regime where N ∼ P ∼ D. Their approach,
based on the replica theory from statistical mechanics [51], can be applied to supervised learn-
ing tasks with generic convex loss functions. Not only their results are supported under mild
hypothesis by analytical proofs [29,33,38,52,53], but they can predict remarkably well the nu-
merical experiments. Our work extends these results to more general scaling regimes, where
P ∼ DK , N ∼ DL .

One of the main steps in our derivation is the expansion of activation function of the hidden
layer on a polynomial basis, which corresponds to the diagonalization of the kernel (20) on
its eigenbasis (Mercer’s decomposition). This expansion is then truncated to a certain degree
L, corresponding to the integer exponent in the scaling law N ∼ DL: similar approximations
appeared recently in [54, 55]. Moreover, while the literature on the double descent behav-
ior of the generalization error is vast and impossible to outline here (see for example [35]),
we mention [56], where the presence of more than one peak in the generalization curve is
remarked: the authors call “linear peak” the one occurring at P ∼ D for N ≫ P, where the
model behaves as a kernel learning the linear features, while for P ∼ N there is a “non-linear
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Table 1: Notations used in this paper.

Symbol Definition
D input space dimension

N ∼ DL feature space dimension
P ∼ DK size of the training set

B degree of the teacher
n number of replicas
ηℓ N/

�D
ℓ

�

α,β , · · · indices in input space
i, j, · · · indices in feature space
µ,ν, · · · indices spanning the training set
a, b, · · · indices in replica space
α multi-index {α1, · · · ,αℓ}, α1 < · · ·< αℓ
θ teacher parameters, θ = {θ (ℓ)α }

B
ℓ=1

F N × D random features matrix
Fα, Fi (Fiα)Ni=1, (Fiα)Dα=1
F⊗ℓα (Fiα1

· · · Fiαℓ)
N
i=1

C F F⊤/D
C⊙ℓ ((Ci j)ℓ)Ni, j=1 ≃

∑

α F⊗ℓα (F
⊗ℓ
α )
⊤/
�D
ℓ

�

Q,Q(ℓ), ... (Qab)na,b=1, (Q(ℓ)ab)
n
a,b=1, ...

peak” due to the non-linearity of the activation function acting as noise and overfitted when
P and N are of the same order; in the present work we show that, as long as N ≫ P, there is
a peak (or a descent) for each of the regimes P ∼ DK .

Appeared in parallel with our work, the paper [57] pushes forward the line of research
of [29] from a mathematical perspective, deriving sharp asymptotics for the generalization
of random features ridge regression in the polynomial regime. The even more recent [58]
bounds the test error of random features ridge regression with a dimension-free (that is, for
arbitrary input dimension D) non-asymptotic (depending explicitly on N and P, converging to
the test error when at least one of them is large) deterministic equivalent, depending only on
the feature map eigenvalues through a set of self-consistent equations. The mapping of our
approach to [57,58] is left for future work.

2 The model

We would like to study the generalization performance of the Random Features model in a
teacher/student [59, 60] supervised learning set-up, where the teacher performs an input-
output mapping with various degree of complexity. We summarize in Table 1 the main nota-
tions used in this paper.

The input data x are vectors in RD with i.i.d. Gaussian elements, while the labels are
assigned by a polynomial teacher of degree B defined as:

y ∼ p(y |ν(x)) ,

ν(x) =
B
∑

ℓ=1

τℓ
Ç

�D
ℓ

�

∑

α1<···<αℓ

θ (ℓ)α1···αℓ
xα1
· · · xαℓ ,

(1)

where θ (1)α , θ (2)
αβ

, · · · are i.i.d. N (0,1) parameters collectively denoted as θ , describing the
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non-linear decision boundary (diagonal terms, irrelevant for large D, are for simplicity not
included in the sum). Notice that the function ν(x) coincide with the Hamiltonian of the
“mixed p-spin model” of the statistical physics of the spin-glasses (see, for example, [61]).
The mixture parameters τℓ, weighting the monomials of different degree, are chosen to respect
∑B
ℓ=1τ

2
ℓ
= 1. Within this general setting, we will concentrate on the specific simple examples

of a deterministic teacher for binary classification or a noisy teacher for polynomial regression
with variance of the noise ∆, for which Eq. (1) reduces respectively to

y ∼ δ [y − sgnν(x)] , y ∼N [y |ν(x) ,∆] . (2)

It has been shown in [16] that a polynomial student, defined in the same way as in Eq. (1),
would learn the weights of the teacher in a hierarchical fashion: O(DK) examples are needed
in order to learn the parameters θ (ℓ) for ℓ ≤ K . However, here the student’s task is to learn
the weights of the last layer of a 2-layers NN, f (x;w), whose first layer realizes a random
embedding of the data in a N -dimensional feature space:

f (x;w) = φ[λ(x;w)] , (3)

λ(x;w) =
1
p

N

N
∑

i=1

wi σ

�

1
p

D

D
∑

α=1

Fiαxα

�

, (4)

where F is a N ×D quenched random matrix with i.i.d. standard normal entries, σ is the non-
linear activation function of the hidden layer, w ∈ RN the student’s weight vector and φ the
activation function of the last (“readout”) layer. It is customary to introduce the pre-activations

hi =
1
p

D

D
∑

α=1

Fiαxα , (5)

which at fixed instance of the random features F , given that we chose xα i.i.d normal variables,
follow a multivariate Gaussian distribution with covariance

Ci j = Exµ[hih j] =
1
D

D
∑

α=1

FiαF jα . (6)

In our setting with independent random features, C is a Wishart matrix.
While our theory is general in the choice of σ (as long as it can be expanded on the basis

of Hermite polynomials – see Sec. 4), we will test our results for popular choices, such as

σ(h) = ReLU(h) =max(h, 0) , (7)

σ(h) = ELU(h) =

¨

exp(h)− 1 , if h< 0 ,

h , if h≥ 0 ,
(8)

(respectively, Rectified and Exponential Linear Unit).
The training set is made of P input-output pairs, T = {(xµ, yµ)}Pµ=1. The student learns by

solving the following optimization problem,

w⋆ = argmin
w





P
∑

µ=1

L[yµ,λ(xµ;w)] +
ζ

2
∥w∥2



 , (9)

where L is an opportune convex loss function and ζ controls the regularization of the weights.
Notice how the solution of this optimization problem is an implicit function of the training set
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T , the parameters of the teacher θ and the random features F , that is w⋆ = w⋆(T ,θ , F); we
will omit this dependence to lighten notations.

The choice of the loss function L and the readout activation function φ in Eq. (3) defines
the specific learning task to perform. The approach we present in the following can be followed
for any choice of L, as long as the optimization problem (9) is convex (to justify the Replica
Symmetric ansatz, see below); this is true in particular if L(y,λ) is convex as a function of
λ, as the student’s weights w enter linearly in the definition of λ(x;w). However, to simplify
formulas, we will report in the main text only the case of a pure quadratic loss, reading, both
in the case of regression and classification:

L(y,λ) =
1
2
(y −λ)2 . (10)

The use of a regression loss for a classification task (λ instead of φ(λ) even when φ = sgn)
is not unusual in practical cases (e.g. the linear_model.RidgeClassifier class in the
Scikit-learn library for Python [62]) and dates back to the early days of NNs [60,63].

The main aim of this work is the evaluation of the generalization performance of the model,
both for the classification and the regression problems, using a statistical mechanics approach.
From this perspective, the model defines a disordered system with N degrees of freedom w,
and quenched disorder given by the realization of the input points xµ, the teacher’s parameters
θ and the random features F . Our computation will follow the standard path, starting from
the partition function at inverse temperature β

Z =
∫

dw exp



−β
P
∑

µ=1

L[yµ,λ(xµ;w)]−
βζ

2
∥w∥2



 . (11)

3 Generalization error

In order to quantify how well the student can learn the teacher, we look at the generalization
error, defined as the probability of misclassifying a new sample (in the case of classification)
or as the mean squared error of a new point (in the case of regression). Given a test point
(x, y)∼ p0(x)p(y|ν(x)), both cases can be expressed with the following formula,

εg(T ,θ , F) =

∫

dx p0(x)

∫

dy p(y|ν(x))
1
4κ
[y −φ(λ(x;w⋆))]2 , (12)

where κ = 1 for binary classification and κ = 0 for regression. Notice the presence of the
function φ in the definition of the generalization error, at variance with the loss function (10).

With (12) we can evaluate the quality of the student NN (3) for a given realization of the
teacher, of the random weights F , and of the dataset T . In order to get a general view of
the effectiveness of (3), we calculate the average generalization error over all the sources of
randomness. Doing so, we get a function of N , P, and D only,

εg =

∫

dνdλ p(ν,λ)

∫

dy p(y|ν)
1
4κ
[y −φ(λ)]2 ,

p(ν,λ) = E
∫

dx p0(x)δ(ν− ν(x))δ(λ−λ(x;w⋆)) ,
(13)

where we took E= ET ,θ ,F .
We have written the average generalization error as in Eq. (13) to show that we only

need to know the joint distribution of (ν,λ) to evaluate it. Since x is a test point, and is
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thus uncorrelated with w⋆, we will take the distribution p(ν,λ) as Gaussian: to compute the
generalization error we only need the first and second moments,

0= E[ν] , t⋆ = E[λ] ,

ρ = E[ν2] , m⋆ = E[νλ] , q⋆ = E[λ2]− t⋆2 .
(14)

Notice that by definition of the model (i.e. the normalization of the mixing parameters τℓ)
ρ is identically equal to 1. In section 5 we will show how to obtain these quantities from a
replica approach. Stating formally hypotheses on w⋆, F and the functions ν(x), λ(x;w) in
order to justify this ansatz is beyond the scope of this paper: we will check a posteriori its
validity with numerical experiments. Central limit theorems for sums of non linear functions
of Gaussian fields (the pre-activations (5) at given feature matrix F), of the kind we just used
to motivate this ansatz, have been proven in the past under rather technical conditions on the
realization of the feature-feature covariance matrix C and of the vector w⋆ [33,38,53,64,65].
The interested reader can find a sketch of proof in [36], Appendix A.2, where the moments of
the variables λ are evaluated and the leading order diagrams identified as the Gaussian ones.

For the case of binary classification with y = sgn(ν) and φ = sgn,

εg =
1
4
E
�

[y − sgn(λ)]2
�

=

∫ 0

−∞
Dν

�

1−H

�

t⋆ +m⋆ν
p

q⋆ −m⋆2

��

+

∫ ∞

0

DνH

�

t⋆ +m⋆ν
p

q⋆ −m⋆2

�

,
(15)

where we use the Gardner notation [66] Dν= e−ν
2/2
p

2π
dν and H(x) =

∫∞
x Dt. Notice that when

t⋆ = 0 (that is, when the student is zero-mean) the formula simplifies to

εg =
1
π

arccos

�

m⋆
p

q⋆

�

. (16)

For the case of noisy polynomial regression, (φ = id and ∆= E[(y − ν)2]) [67,68],

εg = E[(y −λ)2] = ρ +∆− 2m⋆ + q⋆ + t⋆2 . (17)

These formulas remind the generalization error of a generalized linear model with the same
architecture as the teacher [60]: in that case, m⋆/

p

q⋆ corresponds to the angle between
the teacher and the student weight vectors. For the RFM, it is not clear a priori if we can
interpret m⋆/
p

q⋆ as a scalar product of the teacher’s weight vector and some effective weights
of the student. If this can be done, the RFM could be mapped to an equivalent polynomial
model. In Sec. 4 we will show how to explicitly construct it from w and F , thus achieving
this mapping. To do so, we need to spend a few words on the connection between RFMs and
kernel machines, in order to explain the truncation of the activation function σ on the basis
of Hermite polynomials, which we will use later on.

4 Kernel learning and polynomial models

The RFM defined in (3) is a generalized linear model in the learnable parameters w, so it can
be formulated as a kernel model, as we remind in this section. First of all, for the particular
choice of quadratic loss, we can write down the explicit solution to (9),

w⋆i =
1
p

N

∑

j

�

ζ1N +
P
N
K̄
�−1

i j

∑

µ

yµσ(hµj ) , (18)
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where the pre-activations h are given by (5) and the operator

K̄i j =
1
P

∑

µ

σ(hµi )σ(h
µ
j ) , (19)

defines the kernel in feature space. The properties of the kernel are crucial for the generaliza-
tion performances.

While our analysis will be more general, in this section we consider the limit P →∞, for
the purpose of arguing.1 In this case the empirical kernel reduces to

Ki j = Exµ[σ(h
µ
i )σ(h

µ
j )] . (20)

From this formula, it is possible to obtain an explicit formula of the kernel K as a function
of the covariance matrix of the pre-activations (6). To this aim, as the pre-activations are Gaus-
sian, it is convenient to expand the activation function on the basis of Hermite polynomials
(see also [27]):

σ(hi) =
∞
∑

ℓ=0

µℓ
ℓ!

Heℓ(hi) , (21)

where Heℓ is the ℓ-th Hermite polynomial and the coefficient µℓ are:

µℓ =

∫

Dx Heℓ(x)σ(x) . (22)

Along these lines, the kernel (20) can be expressed for large D [69, 70] (see App. A for
details) as

Ki j =
∞
∑

ℓ=0

µ2
ℓ

ℓ!
(Ci j)

ℓ , (23)

where Ci j , given by (6), is a rank-D Wishart matrix with elements Cii = 1 + O(D−1/2) and
Ci j = O(D−1/2) for i ̸= j. The matrix with entries (Ci j)ℓ, which we denote by C⊙ℓ, defines an
interesting random matrix ensemble, obtained taking Hadamard (element by element) powers
of the covariance C . A similar ensemble was recently studied in [71].

Suppose now the relation between N and D is fixed: N ∼ DL+δ with 0 ≤ δ < 1. The
N × N matrix C⊙ℓ has generically rank equal to min{Dℓ/ℓ!, N} (neglecting possible smaller
contributions to the rank coming from outliers, see Sec. 6 where we discuss more in detail
the properties of these matrices) and off-diagonal elements O(D−ℓ/2). For ℓ > L the matrix
is full ranked, the small off-diagonal terms give a vanishing contribution to eigenvalues and
eigenvectors. In other words, when Dℓ is scaling faster than N to infinity, we can take the large
D limit before the large N one in the combination

(Ci j)
ℓ = δi j[1+ ℓO(D

−1/2)] + (1−δi j)O(D
−ℓ/2) ≃

D large, Dℓ≫N
δi j , (24)

in the same way as the Wishart matrix Ci j = δi j[1+ O(D−1/2)] + (1− δi j)O(D−1/2) concen-
trates around δi j for D ≫ N (the Marchenko-Pastur distribution, providing the asymptotic
distribution of the spectrum of C , concentrates around 1 for N/D→ 0). We can thus truncate
the expansion substituting C⊙ℓ>L by the identity matrix:

Ki j ≃
L
∑

ℓ=0

µ2
ℓ

ℓ!
(Ci j)

ℓ +µ2
⊥,Lδi j , (25)

1We do so in this section to introduce the kernel K as a limit of the empirical kernel K̄; in the replica approach
in Sec. 5 the expectation over the data will be taken explicitly and the kernel will appear naturally without taking
the P →∞ limit from the start.
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where

µ2
⊥,L =

∞
∑

ℓ=L+1

µ2
ℓ

ℓ!
= Ex[σ(x)

2]−
L
∑

ℓ=0

µ2
ℓ

ℓ!
, (26)

for x ∼N (0,1).
This truncation is proven for L = 1 (that is, in the proportional regime N ∼ D) in [72], and

extended to the case L > 1 under generic assumptions on the kernelK in [31,55]. A convincing
check of this property for moderately large values of N is given by Fig. 2, which shows the
theoretical curves of the generalization error obtained through a truncated effective theory
(that we describe below) at different values of L′, compared with the numerical experiments,
as a function of N ; quantitative agreement is obtained for L′ = L ∼ log N/ log D, with the
numerical points interpolating nicely the theoretical curves in the various regimes.

The analysis above suggests that in the N ∼ DL regime we can represent the RFM as an
effective noisy polynomial student

λeff(x
µ;w) = µ0m(0) +

L
∑

ℓ=1

µℓp
Dℓ

∑

α1,··· ,αℓ

s(ℓ)α1···αℓ
: xµα1
· · · xµαℓ :+ zµ , (27)

where

• m(0) =
∑

i wi/
p

N is the empirical mean of the vector w, rescaled by
p

N ;

• the student parameters s(ℓ)α1···αℓ
are the scalar product of w with the “vectors” F⊗ℓα1...αℓ

/
p

N

with components Fiα1
· · · Fiαℓ/

p
N (see Table 1),

s(ℓ)α1···αℓ
=

1
p

N

∑

i

wi Fiα1
· · · Fiαℓ ; (28)

• we have written the expansion of the Hermite polynomials in terms of the so-called Wick
products of the x ’s, routinely used in theoretical physics and defined from the following
generating function (see for example [73]):

: x1 · · · xk := ∂λ1
· · ·∂λk

G(λ;x)
�

�

λ=0 ,

G(λ;x) =
exp
�

λ⊤x
�

E [exp (λ⊤x)]
= exp
�

λ⊤x− ∥λ∥2/2
�

.
(29)

These quantities have the property E[: x1 · · · xk :] = 0. The mapping

Heℓ(hi)≃
∑

α1,··· ,αℓ

Fiα1
· · · Fiαℓp
Dℓ

: xα1
· · · xαℓ : , (30)

which is true for D large and which we used to write λeff in terms of Wick products
starting from (21), is proven in App. B;

• the last term zµ is a Gaussian noise term with zero mean and variance
E(zµ2(w)) = µ2

⊥,L

∑N
i=1 w2

i /N which can be represented as

zµ =
µ⊥,Lp

N

N
∑

i=1

wi vµi , (31)

in terms of i.i.d. N (0, 1) variables vµi .
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Although ultimately the parameters s(ℓ) and z are functions on the network weights, to en-
lighten the notation we will not explicitly write the dependence on w.

In (27) we give an effective description of the RFM, mapping it to a polynomial model
with correlated weights in presence of a noise term coming from the ℓ > L terms in the expan-
sion (21). The mapping is motivated by the fact that λeff(xµ;w) defined in this way, admits
as second moment w⊤Kw/N at given F and w, with the kernel truncated according to (25);
we show this explicitly for the replicated version of λ in Appendix C, together with the covari-
ance structure with the polynomial ν(x) defining the teacher. This is an extension to generic
scaling regimes N ∼ DL of the Gaussian equivalence principle from [38] and related works, to
which it reduces when L = 1. In the following, we will base our analysis on this representation
of λ. This description makes more transparent the meaning of the observables introduced in
Sec. 3 and the mechanism by which the RFM learns the teacher’s features, as we explain in
the following.

5 Replica calculation

Let us now turn to the analysis of the general case through the replica method. To obtain the
generalization error we write the joint probability distribution of ν and λ in Eq. (13) as the
zero temperature limit of the equilibrium distribution of a statistical mechanics system, as

p(ν,λ) = lim
β→∞
E
∫

dw
1
Z e−β
∑

µL[y
µ,λ(xµ;w)]− βζ2 ∥w∥

2
∫

dx p0(x)δ(ν− ν(x))δ(λ−λ(x;w)) . (32)

Through a standard application of the replica trick we rewrite the distribution as

p(ν,λ) = lim
n→0

lim
β→∞
E
∫ n
∏

a=1

dwae−β
∑

µ,a L[y
µ,λ(xµ;wa)]− βζ2

∑

a∥w
a∥2

×
∫

dx p0(x)δ(ν− ν(x))δ(λ−λ(x;w1)) , (33)

which can be obtained from the calculation of the n-times replicated partition function

Zn = E[Zn] =

∫ n
∏

a=1

dwa e−
βζ
2

∑

a∥w
a∥2EF,θ

�

Eν,{λa}

∫

dy p(y|ν)e−β
∑

a L(y,λa)

�P

. (34)

In this integral, we treat the distribution of ν and λa conditioned by F , θ and wa as Gaussian,
with moments given by

ta = E(λa|F,θ ) , Ma = E(νλa|F,θ ) , Qab = E(λaλb|F,θ )− ta tb . (35)

from which we can extract the generalization error according to (15), (17). Using the repre-
sentation (27) we can decompose these order parameters as (see Appendix C for details)

ta = µ0M (0)a , Ma =
min{L,B}
∑

ℓ=1

µℓτℓp
ℓ!

M (ℓ)a , Qab = µ
2
⊥,LQ(0)ab +

L
∑

ℓ=1

µ2
ℓ

ℓ!
Q(ℓ)ab , (36)

with the definitions:

M (0)a =
1
p

N

N
∑

i=1

wa
i , M (ℓ)a =

θ (ℓ) · s(ℓ)a
�D
ℓ

� , Q(0)ab =
1
N

N
∑

i=1

wa
i wb

i , Q(ℓ)ab =
1
N

N
∑

i, j=1

wa
i Cℓi jw

b
j ,

(37)
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where we are using the notation

θ (ℓ) · s(ℓ)a =
∑

α

θ (ℓ)α s(ℓ)a,α (38)

(remember that the sum over α is restricted to ordered tuples).
Enforcing these definition with delta functions in Fourier representation, and anticipating

saddle point integration for the various M and Q, and their Fourier conjugated parameters
that we denote as M̂ and Q̂ with the due indices, we rewrite the partition function as

Zn = ePSP [Q,M]e
N
2

∑

a,b Q̂(0)ab Q(0)ab+
1
2

∑

ℓ,a,b (Dℓ)Q̂
(ℓ)
abQ(ℓ)ab+
∑

ℓ,a (Dℓ)M̂ (ℓ)a M (ℓ)a

×EF,θ

∫

dw e
− 1

2 w⊤
h

(βζ1n+Q̂(0))⊗1N+
∑

ℓ Q̂(ℓ)⊗ C⊙ℓ
ηℓ

i

w−
∑

ℓ,i,a,α M̂ (ℓ)a wa
i F⊗ℓi,αθ

(ℓ)
α /
Ç

ηℓ(Dℓ) ,
(39)

where now w ∈ Rn×N , the sums over ℓ span {1, · · · , L}, ηℓ = N/
�D
ℓ

�

and

SP[Q, M] = logEν,{λa}

∫

dy p(y|ν)e−β
∑

a L(y,λa) . (40)

In writing Eq. (39), we took M̂ (0)a → 0, as the Fourier conjugate of the mean ta is suppressed
in the large-N limit [66] (a property that could be checked a posteriori from the saddle point
equation for M̂ (0)a );2 moreover, the conventional scalings with N and

�D
ℓ

�

in this equation are
chosen in such a way that the hat variables corresponding to the asymptotic regimes explained
in Sec. 6 have a non-trivial high-dimensional limit.

Averaging over θ we obtain:3

Zn = ePSP [Q,M]e
N
2

∑

a,b Q̂(0)ab Q(0)ab+
1
2

∑

ℓ,a,b (Dℓ)Q̂
(ℓ)
abQ(ℓ)ab+
∑

ℓ,a (Dℓ)M̂ (ℓ)a M (ℓ)a

×EF

∫

dw e
− 1

2 w⊤
h

(βζ1n+Q̂(0))⊗1N+
∑

ℓ(Q̂
(ℓ)−M̂ (ℓ)M̂ (ℓ)⊤)⊗ C⊙ℓ

ηℓ

i

w
,

(41)

and integrating over w,

Zn = ePSP [Q,M]e
N
2

∑

ℓ,a,b Q̂(0)ab Q(0)ab+
1
2

∑

ℓ,a,b (Dℓ)Q̂
(ℓ)
abQ(ℓ)ab+
∑

ℓ,a (Dℓ)M̂ (ℓ)a M (ℓ)a −
1
2 Tr log[A(0)⊗1N+

∑

ℓ B(ℓ)⊗C⊙ℓ] , (42)

where traces are taken over replica and feature indices and we introduced for compactness
the n× n matrices

A(0) = βζ1n + Q̂(0) , B(ℓ) = (Q̂(ℓ) − M̂ (ℓ)M̂ (ℓ)⊤)/ηℓ . (43)

We notice at this point that, given N ∼ DL+δ, for ℓ ≤ L the matrices C⊙ℓ have rank
rℓ = O(Dℓ) ≪ N and have eigenvalues of order N/

�D
ℓ

�

. Simple perturbation theory shows
that adding these matrices with coefficients of order 1 only slightly modify the eigenvalues.
This is due to the fact that the row spaces (that is, the complements to their null spaces) cor-
responding to the different ℓ are almost orthogonal (we postpone a throughout discussion

2The terms depending on M̂ (0) are given by

SM̂ (0) =
M (0)⊤M̂ (0)

p
N

+
1
2

M̂ (0)⊤ 1
N

∑

i, j

�

(βζ1n + Q̂(0))⊗ 1N +
∑

ℓ

(Q̂(ℓ) − M̂ (ℓ)M̂ (ℓ)⊤)⊗
C⊙ℓ

ηℓ

�−1

i j

M̂ (0) ,

so that the saddle point equation for M̂ (0) gives M̂ (0) = O(1/
p

N).
3For the sake of simplicity, to write Eq. (41) we collected a common C⊙ℓ between the terms Q̂(ℓ) and M̂ (ℓ)M̂ (ℓ)⊤,

even though the average over the teacher gives instead a term
∑

α F⊗ℓα (F
⊗ℓ
α )
⊤/
�D
ℓ

�

, with ordered indices α’s, in front
of M̂ (ℓ)M̂ (ℓ)⊤. See discussion around Eq. (49).
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Figure 3: Left: generalization error of the RFM on a classification task, as a function
of the size of the training set P, for D = 30, N = 104, weights regularization ζ= 10−8,
linear teacher (τ1 = 1, τℓ>1 = 0) and ELU activation functions; the continuous line is
the mean-field theory truncated at L = 3; dashed lines are the asymptotic theories for
P/D finite and L > 1 (red), P/

�D
2

�

finite and L > 2 (yellow), P/
�D

3

�

finite and L > 3
(blue), P/
�D

3

�

finite and L = 3 (green); black points are results from numerical ex-
periments averaged over 50 instances (see Appendix I). The model learns the linear
features (first step at P ∼ O(D)), then overfits the quadratic features before learning
they are zero (peak at P ∼ O(D2)), then follows the interpolation peak P ∼ N . Notice
how the accordance between the mean-field theory and the experiment is only qual-
itative around the last peak. Right: Generalization error on classification for a linear
teacher, as a function of the number of random features N , for different amounts of
data P (D = 30, ζ = 10−4, see Appendix I). The optimal amount of hidden units,
for which εg is minimal, shifts from overparametrization to underparametrization,
as it is visible in the curves for P = 40 and P = 200, 400. At fixed value of N , not al-
ways more data means better generalization: after the interpolation peak, the order
between the red (P = 400) and yellow (P = 200) curves is reversed (point of view
complementary to the plot in the left panel, where, at fixed N , the error can increase
with P). The curves as functions of N are obtained by gluing together the theories
truncated at the corresponding L.

on this point to Sec. 6, where we collect and motivate the assumptions we are using on the
matrices C⊙ℓ). In such a situation we approximate the trace-log term appearing in (42) as

Tr log

�

A(0) ⊗ 1N +
L
∑

ℓ=1

B(ℓ) ⊗ C⊙ℓ
�

≃ N(1− L)Tr log(A(0)) +
L
∑

ℓ=1

Tr log
�

A(0) ⊗ 1N + B(ℓ) ⊗ C⊙ℓ
�

(44)

(notice that Tr in Tr log(A(0)) is over replica indices only). We report a detailed derivation of
Eq. (44) under the hypothesis of orthogonality of the C⊙ℓ row spaces in Appendix E. Notice
that we could have gotten to the same result decomposing the vectors w on the row spaces
of the C⊙ℓ supposed orthogonal. This decomposition clearly shows the hierarchical nature of
learning.

5.1 Replica symmetric theory

In order to complete the evaluation of the partition function, we need to specify the form of
the replica parameters. In this paper we use the replica symmetry (RS) ansatz

Q(ℓ)ab =
χ(ℓ)

β
δab + q(ℓ) , M (ℓ)a = m(ℓ) , ta = t . (45)
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Notice that the diagonal elements of the matrix Q(ℓ) are Q(ℓ)aa =
χ(ℓ)

β + q(ℓ). We anticipate

the scaling with β of the variables χ: the quantities Q(ℓ)aa − q(ℓ) measures the variance of the
variables λ, tending to zero for β →∞. This implies the following form for the conjugate
order parameters in the RS:

Q̂(ℓ)ab = βχ̂
(ℓ)δab − β2q̂(ℓ) , M̂ (ℓ)a = −βm̂(ℓ) . (46)

Exploiting the explicit parametrization of the RS matrices, we can perform the traces over
replica indices in Eq. (44), to get (see Appendix F)

Tr log
�

A⊗ 1N + B ⊗ C⊙ℓ
�

= nN log(βχ̂(ℓ)) + n Tr log(γℓ1+ C⊙ℓ)− nβηℓ
q̂(0)

χ̂(ℓ)
Tr(γℓ1+ C⊙ℓ)−1

− nβ
q̂(ℓ) + (m̂(ℓ))2

χ̂(ℓ)
Tr[C⊙ℓ(γℓ1+ C⊙ℓ)−1] , (47)

where we introduced the parameter

γℓ = ηℓ
(ζ+ χ̂(0))
χ̂(ℓ)

, (48)

and the remaining traces are over feature indices only.
We need now to evaluate the traces in feature indices. In order to proceed, we make at this

point a crucial approximation, and treat C⊙ℓ as a matrix with a Merchenko-Pastur spectrum
with parameter ηℓ = N/

�D
ℓ

�

. This amounts essentially in approximating C⊙ℓ, by

C⊙ℓi j =
ℓ!
Dℓ

∑

α1<...<αl

F i
α1

F j
α1

...F i
αℓ

F j
αℓ

, (49)

i.e. in neglecting the terms with equal indices α in the sum that defines C⊙ℓ. While this
approximation can be fully justified in the regimes where N , D→∞ with N/DL finite, as we
will see, it turns out to be an excellent approximation even for moderately large values of the
parameters (see Sec. 6 and Appendix D for an extended discussion on this point).

Using the properties of the resolvent of large random matrices (see Appendix D), we can
write that, for large N ,

1
N

Tr(γℓ1+ C⊙ℓ)−1 ≈ gℓ(−γℓ) , (50)

where gℓ is the Stieltjes transformation of the Marchenko-Pastur distribution with ratio
ηℓ = N/
�D
ℓ

�

:

gℓ(z) =
1− z −ηℓ −
p

(1− z −ηℓ)2 − 4zηℓ
2zηℓ

. (51)

Re-arranging terms we get, for large β ,

Zn ∼ ePSP+NSM , (52)

where

1
βn

SM = −
min{L,B}
∑

ℓ=1

m(ℓ)m̂(ℓ)

ηℓ
+

1
2

L
∑

ℓ=0

q(ℓ)χ̂(ℓ) −χ(ℓ)q̂(ℓ)

ηℓ
+
(1− L)

2
q̂(0)

ζ+ χ̂(0)

+
1
2

L
∑

ℓ=1

ηℓ
q̂(0)

χ̂(ℓ)
gℓ(−γℓ) +

1
2

L
∑

ℓ=1

q̂(ℓ) + (m̂(ℓ))2

χ̂(ℓ)
[1− γℓg(−γℓ)] ,

(53)
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and for the quadratic loss (10),

1
βn

SP =
2m⋆ 〈yν〉 − q⋆ − 〈(t⋆ − y)2〉

2(1+χ⋆)
, (54)

where 〈·〉=
∫

dyDν p(y|ν)(·) is the average over the teacher distribution (1) and

m⋆ =
min{L,B}
∑

ℓ=1

τℓµℓp
ℓ!

m(ℓ) , t⋆ = µ0m(0) ,

χ⋆ = µ2
⊥χ
(0) +

L
∑

ℓ=1

µ2
ℓ

ℓ!
χ(ℓ) , q⋆ = µ2

⊥q(0) +
L
∑

ℓ=1

µ2
ℓ

ℓ!
q(ℓ) .

(55)

A detailed derivation of the terms SM and SP , with the form of SP valid for generic loss func-
tions, is reported in Appendix G.

Eq. (55) gives the RS version of Eq. (36): these quantities are precisely the ones appearing
in Eq. (14), giving the low-order statistics of the distribution used to evaluate the generaliza-
tion error. Once their value is known from the saddle point equations implicit in the derivation
of the partition function, they can be used to obtain the generalization curves reported in this
paper.

5.2 Saddle-point equations for quadratic loss

The free energy in Eq. (52) has to be evaluated at the saddle point with respect to all the RS
order parameters and their Fourier conjugates. We report here the resulting equations, in the
special case of quadratic loss function (10). Remark however that only the equations where
P appears explicitly depend on the form of the loss, and have to be modified for other choices
(see Appendix G.2). The equations can be solved in steps. First, a set of 2L + 2 nonlinear
equations is used to determine the variables χ(0), . . . ,χ(L) and χ̂(0), . . . , χ̂(L):

χ̂(0) =
P
N

µ2
⊥

1+χ⋆
, χ(0) =

1−
∑L
ℓ=1[1− γℓgℓ(−γℓ)]
χ̂(0) + ζ

,

χ̂(ℓ) =
P
�D
ℓ

�

µ2
ℓ

ℓ!
1

1+χ⋆
, χ(ℓ) =

N
�D
ℓ

�

1− γℓgℓ(−γℓ)
χ̂(ℓ)

.

(56)

From the solution of Eq. (56), we can fully determine m(ℓ), m̂(ℓ) according to

m(0) =
〈y〉
µ0

, m(ℓ) = χ(ℓ)m̂(ℓ) , m̂(ℓ) =
P
�D
ℓ

�

µℓτℓp
ℓ!

〈yν〉
1+χ⋆

. (57)

With all the previous values we can determine the rest of the variables through the following
set of linear equations:

q(0) =
q̂(0)

(ζ+ χ̂(0))2

�

1−
L
∑

ℓ=1

�

1− γ2
ℓ g ′ℓ(−γℓ)
�

�

+
L
∑

ℓ=1

m̂(ℓ)2 + q̂(ℓ)

(ζ+ χ̂(0))χ̂(ℓ)
�

γℓgℓ(−γℓ)− γ2
ℓ g ′ℓ(−γℓ)
�

,

q(ℓ) =
N
�D
ℓ

�

q̂(0)

(ζ+ χ̂(0))χ̂(ℓ)
�

γℓgℓ(−γℓ)− γ2
ℓ g ′ℓ(−γℓ)
�

+
N
�D
ℓ

�

m̂(ℓ)2 + q̂(ℓ)

χ̂(ℓ)2

�

1+ γ2
ℓ g ′ℓ(−γℓ)− 2γℓgℓ(−γℓ)

�

, (58)
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q̂(0) =
P
N
µ2
⊥
〈(µ0m(0) − y)2〉 − 2〈yν〉m⋆ + q⋆

(1+χ⋆)2
,

q̂(ℓ) =
P
�D
ℓ

�

µ2
ℓ

ℓ!
〈(µ0m(0) − y)2〉 − 2〈yν〉m⋆ + q⋆

(1+χ⋆)2
.

Notice that, because of the conventional scalings we chose for the hat variables starting from
Eq. (39) and for the definition of γℓ, these equations give O(1) results for the order parameters
m, χ, q.

By numerically integrating Eq. (56), (57), (58), we obtain the theoretical curves for the
generalization error in Eq. (16) and for the order parameters we report in this paper. We com-
pare the result with numerical simulations: despite its asymptotic nature and the hypothesis
of row space orthogonality, our theory works reasonably well even if D is not large. The results
are shown in Fig. 1, 2 (D = 30 in this case), where the generalization error is quantitatively
predicted by the theory both when varying P and N .

6 Strongly separated regimes

Our analysis relies on a number of assumptions:

1. the Gaussian ansatz on the distribution of (ν, {λa}a) at given F , θ and wa in the repli-
cated partition function (39);

2. the truncation of the kernel K at order L, based on a concentration property of the
matrices C⊙ℓ;

3. the fact that the row spaces of the matrices C⊙ℓ and C⊙k are orthogonal for ℓ ̸= k, in
order to factorize their contribution to the partition function;

4. the possibility of taking C⊙ℓ as matrices with a spectrum asymptotically described by the
Marchenko-Pastur distribution with aspect ratio N/(Dℓ/ℓ!);

5. the Replica Symmetric ansatz for the overlap matrices describing the teacher-student
distribution;

6. the possibility of taking the saddle point on the replica parameters for large N , consid-
ering only the leading order in N , P before fixing their relative scaling with D.

Some of these assumptions have been already discussed in the previous sections. In the fol-
lowing, we revise and motivate the assumptions on the matrices C⊙ℓ, namely 2-4, that can
be justified if P, N , D → ∞ (see Appendix D.2 for more details). Depending on the rela-
tion between the three parameters one is led to consider the following different asymptotic
regimes:

(i) N , P, D→∞, P/N → 0, P/DK finite; (this includes the case N ∼ DL with L > K);

(ii) N , P, D→∞, N/DL finite, P/N finite;

(iii) N , P, D→∞, P/N →∞, N/DL finite; (this includes the case P ∼ DK with K > L).

In order to understand these regimes, we need to evaluate terms of the kind

kℓ = Tr log(a1+ bC⊙ℓ) , C⊙ℓi j =

�

1
D

∑

α

FiαF jα

�ℓ

, (59)
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in three situations (a) Dℓ ≫ N ; (b) Dℓ ≪ N ; (c) Dℓ ∼ N . Notice that in all cases, while
the diagonal elements are C⊙ℓii = 1 + ℓO(

p

1/D), the off-diagonal elements C⊙ℓi ̸= j are of the

order D−ℓ/2. In case (a), Dℓ ≫ N , apart for a negligible number of possible eigenvalue of
order N/Dℓ/2, all the other eigenvalues are λ = 1+O(

p

N/Dℓ), and to the leading order we
simply have kℓ = N log(a+ b). If we are in the opposite situation, (b), Dℓ≪ N , we have only
O(Dℓ) non-zero eigenvalues, roughly equal to ℓ!N/Dℓ+O(

p

N/Dℓ), and to the leading order
kℓ = N log(a). The interesting case is (c) N = O(Dℓ): we have here Dℓ eigenvalues of order 1
that contribute to kℓ. The leading contribution can be understood writing

C⊙ℓi j =
ℓ!
Dℓ

∑

α

F⊗ℓi,αF⊗ℓj,α + terms with less different α’s, (60)

where the sum includes the terms where the α′s in the multi-index α are ordered, coherently
with our definition in Table 1. This leading term is a matrix of rank min{N , Dℓ/ℓ!}: the Dℓ/ℓ!
vectors F⊗ℓα are approximately orthogonal in RN , as

F⊗ℓα · F
⊗ℓ
β =

N
∑

i=1

Fiα1
Fiβ1
· · · FiαℓFiβℓ = Nδα1β1

· · ·δαℓβℓ +O(N1/2) , (61)

when α and β are ordered, by law of large numbers, so that the sum of outer products
∑

α F⊗ℓα (F
⊗ℓ
α )
⊤ has rank Dℓ/ℓ! as long as N > Dℓ/ℓ!; if N < Dℓ/ℓ!, this N × N matrix is full

rank. Other terms with smaller number of indices in the sum lead to matrices of lower rank r
(with r/N → 0). Moreover, due to the randomness of the F , the row spaces of these term are
effectively orthogonal to the leading one. To understand this, take for example the case ℓ= 2
and N = O(D2): the leading order term of the matrix C⊙2 has eigenvectors approximately
equal to the vectors (Fiβ1

Fiβ2
)i for β1 < β2, as

∑

j

�

2
D2

∑

α1<α2

Fiα1
Fiα2

F jα1
F jα2

�

F jβ1
F jβ2
=

2N
D2

Fiβ1
Fiβ2
+O(N1/2/D2) . (62)

When we apply to this vector the next-to-leading order term of the matrix C⊙2 we find

∑

j

�

1
D2

∑

α

F2
iαF2

jα

�

F jβ1
F jβ2
= O(N1/2/D2) , (63)

because the indices β1 and β2 are different and one among them remains unpaired. In this
way we can say that the vectors (Fiβ1

Fiβ2
)i are in the null space of the terms we are discarding

in (60). With similar arguments, one can show that the leading terms of C⊙ℓ and C⊙k have
approximately orthogonal row spaces when k ̸= ℓ and the scaling of N with D is fixed. We
conclude that we can compute kℓ as if C⊙ℓ were a Wishart matrix with aspect ratio ηℓ = N/

�D
ℓ

�

.
The explicit formula is given in eq. (D.12), and both limits ηℓ → 0 and ηℓ → ∞ agree
with the previous analysis of cases (a) and (b) respectively. We show in Appendix D.2 that
approximating C⊙ℓ as a Wishart matrix gives good results also for moderately large values of
N and D.

In all our three cases, most of the order parameters go to trivial limits, while only the ones
corresponding to the selected scaling regime converge to non-trivial values. We report the
corresponding equations in Appendix H. In this way, we are able to plot the dashed lines in
Fig. 1 and 3.
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Figure 4: Generalization error vs P (D = 30, N = 104) on classification for a purely
cubic teacher (τ3 = 1); in blue, polynomial theory and numerical experiments for
ReLU activation function (7): in this case, µ3 = 0 and the model cannot learn
the cubic features, so the error remains 1/2; in yellow and red (respectively, for
ζ = 10−4, 10−8), the case of ELU (8), for which µ3 ̸= 0 and the model can learn the
cubic features.

7 Effective theory for finite-size random features networks

In the last sections we devised a theory able to capture the relevant phenomenology of general-
ization in RFMs at finite values of input dimension, hidden layer width and size of the training
set. Indeed, even though the asymptotic approximation leading to the system of saddle-point
equations (56), (57), (58) is justified only for N large and N/DL finite, the curves obtained by
fixing the values of N , P and D at finite values are in accordance with numerical simulations
over several orders of magnitudes of the control parameters. This occurs thanks to the fact
that we kept into account quantities that scale differently with D, as N/

�D
ℓ

�

or P/
�D
ℓ

�

, that are
formally zero or infinity in the asymptotic regimes presented in Sec. 6.

By developing a theory from Eq. (27), we show that the RFM is in essence equivalent to a
polynomial model: the student tries to tune its weights through the combinations s(ℓ) defined
in (28) to fit the corresponding coefficients θ (ℓ) of the teacher. This interpretation is also
confirmed in the numerical experiments: see Fig. 1 (right) for the behavior of the teacher-
student overlaps m(ℓ) in the case of a quadratic teacher.

However, a crucial difference from a purely polynomial setting arises: the degree of the
equivalent polynomial model is controlled by the scaling L of the random features, and higher
order terms in the expansion of the kernel K on the Hermite basis act as noise, given by
Eq. (31). This eventually produces the interpolation peak in the generalization error at N ∼ P,
which would not be present for a vanilla polynomial student (see Fig. 1 and 3): in this regime,
the model is using the effective noise to overfit the teacher. In terms of the order parameters,
overlaps of different orders are coupled by an additional set of parameters χ(0), q(0), related
to the noise term in the equivalent polynomial model.

In summary, the learning of features of a certain order is possible as long as the num-
ber of parameters N is enough: the scaling L ∼ log N/ log D controls the learning process
through the truncation of the kernel (25). At the same time, P also plays an important role:
if K ∼ log P/ log D is smaller than L, the model only learns as a K-degree polynomial; on the
other hand, if K > L, the model learns as a L-degree polynomial.

By choosing a polynomial teacher of arbitrary degree B, we are able to explore to some
extent the interplay between the complexity of the data and the one of the neural network.
In the case where the teacher is less complex than the network, we can see that overfitting
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can occur and that overparametrization is not always optimal. This can be seen in Fig. 3.
In the case of a linear teacher, if the amount of data P is O(D), an overparametrized network
generalizes better. However, as soon as P hits the quadratic regime, but is still far from enabling
the network to realize that there is no quadratic feature, then overparametrization leads to
overfitting and therefore the optimal N is less than P.

Interestingly, in order for the model to learn features of order ℓ, the activation function σ
must have a non-zero Hermite coefficient µℓ in Eq. (21). This can be seen from our theory
by the fact that in the total teacher-student overlap m⋆ in Eq. (55) the single entry m(ℓ) is
weighted by the corresponding coefficient. This theoretical prediction was tested by using a
cubic teacher and two different students, one with ReLU activation function and the other one
with ELU: the ReLU one, which has no third order term in the Hermite basis (µ3 = 0) could
not learn the teacher, while the ELU one, that does have a nonzero component (µ3 ̸= 0), was
able to (see Fig. 4).

8 Conclusions and perspectives

The approach we have explored so far provides a way to analytically evaluate the general-
ization performance of a RFM in the limit of large input dimension D, in the scaling regimes
N ∼ DL , P ∼ DK .

We considered a teacher-student setting, where a shallow random features student is re-
quired to fit a polynomial teacher. The student network learns as an equivalent polynomial
model with effective noise. We showed this property by expanding the kernel in feature space
on a convenient basis (21).

The resulting theory is effective, in the sense that it is formulated in terms of a few collective
order parameters (the teacher-student overlaps m(ℓ), the student-student overlaps q(ℓ), χ(ℓ))
with a clear physical interpretation and whose values are fixed via a variational principle,
as explained in Sec. 5. To perform the calculation we neglect the correlations between the
student’s coefficients, assuming orthogonality between the row spaces of the components C⊙ℓ

of the kernel.
We find quantitative agreement with numerical simulations, except close to the interpo-

lation peak at N ∼ P in some cases (see Fig. 3, left, where this effect is more apparent).
Nevertheless, even then the effective theory gives a good qualitative picture, predicting the
location and the shape of the peak. See also Fig. 1, right, depicting how the teacher-student
overlaps of already learned features become noisy in the interpolation regime. A precise finite-
size analysis of this effect, to address the gap between theory and numerics in this regime, is
left for future work.

One possible direction to continue this work is to consider how close is the learning of a
fully-trained network to this model. The role of the variables s(ℓ) could play a similar role even
if the values for Fiα are also learned, at least close to the lazy regime. However, what is the
fate of row space orthogonality of the kernel components, which is ultimately responsible for
the staircase behavior of the generalization error, for networks that are trained end-to-end in
a feature learning regime?

Moreover, it would be interesting to extend our analysis to deeper models [10,74] in differ-
ent scaling regimes of the dimensions. Even if the RFM, whatever the activation function of the
last layer, is essentially bounded by a polynomial model, the precise shape of the kernel in cases
where a deeper architecture is involved could help understanding to some extent the feature
learning regimes of realistic models, in view of the discussion above. Our approach can also
be extended beyond the case of unstructured input data, following for example [36,43–50,75]
and, in particular, [76–78]: in those cases, we expect the intrinsic dimension of the data to
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play a role similar to the parameter D used here, possibly determining the order of features
that a RFM can learn at given N and P.

Finally, we mention how the replica approach we adopted here can be applied to non-
convex optimization problems, at the cost of choosing a more complicated ansatz for the
overlap matrices, accounting for replica symmetry breaking. Even in those cases, the replica
symmetric treatment we provided can be applied as a qualitative approximation, often quan-
titatively correct in the teacher-student setting (that is, whenever a low-energy configuration
of w is planted by a teacher in the energy landscape defined by the loss (9), effectively con-
vexifying even an a priori non-convex problem, i.e. setting the problem in a replica symmetric
region of a generically non-convex phase diagram – see, for example, [79, 80], studying the
perceptron with hinge loss in the random labels vs. teacher-student settings).
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A Kernel on the Hermite basis

In this section we report the steps needed to obtain the expression of the feature-feature kernel
in Sec. 4. The kernel to evaluate is defined as

Kii = Ehi
[σ(hi)

2] =

∫

du
p

2πCii
e−

u2
2Cii σ(u)2 ,

Ki j = Ehi ,h j
[σ(hi)σ(h j)] =

∫

du dv

2π
p

det C̄
e−

1
2 (u,v)C̄−1(u,v)⊤σ(u)σ(v) , i ̸= j ,

(A.1)

where

C̄ =

�

Cii Ci j
Ci j C j j

�

. (A.2)

Using the fact that Cii ≃ C j j ≃ 1, this kernel can be written as a series of separable kernels
exploiting Mehler’s formula [69,70], that we report here for convenience:

1

2π
p

1− c2
e−

1
2 (u,v)
�

1 c
c 1

�−1
(u,v)⊤ =

e−
u2
2

p
2π

e−
v2
2

p
2π

∞
∑

ℓ=0

cℓ

ℓ!
Heℓ(u)Heℓ(v) , (A.3)

from which we find Eq. (23) using the fact that, by orthogonality of the Hermite polynomials,

Kii =
∞
∑

ℓ=0

µ2
ℓ

ℓ!
. (A.4)

Mehler’s formula, which dates back to 1866, can be viewed as an example of Mercer’s decom-
position [15].
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B Hermite polynomials and Wick products

For completeness, we show in this section that, asymptotically for D large,

Heℓ(hi)≃
∑

α1,··· ,αℓ

Fiα1
· · · Fiαℓp
Dℓ

: xα1
· · · xαℓ : , (B.1)

for ℓ≥ 1. The equivalence follows from the generating function of the Hermite polynomials,

Heℓ(hi) =
dℓ

dtℓ
exp
�

thi − t2/2
��

�

t=0 , (B.2)

with hi =
∑

α Fiαxα/
p

D. Defining

λα = t
Fiαp

D
, (B.3)

we have, for D large,

∑

α

λ2
α ≈ t2 ,
∑

α

Fiαλαp
D
≈ t ,
∑

α

Fiαp
D

∂

∂ λα
≈

d
dt

, (B.4)

where we used repeatedly
∑

α(Fiα)2/D ≃ 1. The thesis follows from comparison with
Eq. (29). Notice that, in the simpler case of a single standard Gaussian variable x , the identity
Heℓ(x) = : xℓ : is exact and trivially follows from the definition of the Wick power.

C Evaluation of the moments of ν,λa

We assume that the variables (ν, {λa}) are normally distributed with mean and covariance

Ex[(ν, {λa})] = (0, {ta}) , covx[(ν, {λa})] =
�

ρ M⊤

M Q

�

, (C.1)

where

ta = Ex[λ
a] =

N
∑

i=1

wa
ip
N
Ehi
[σ(hi)] ,

ρ = Ex[ν
2]−Ex[ν]

2 =
B
∑

ℓ=1

τ2
ℓ

∥θ (ℓ)∥2
�D
ℓ

� ,

Ma = Ex[νλ
a] =

N ,B
∑

i,ℓ

wa
i τℓ
Ç

N
�D
ℓ

�

∑

α1<···<αℓ

θ (ℓ)α1···αℓ
Ex[xα1

· · · xαℓσ(hi)] ,

Qab = Ex[λ
aλb]− ta t b =

N
∑

i, j=1

wa
i wb

j

N
Ehi ,h j

[σ(hi)σ(h j)]− ta t b .

(C.2)

To proceed, we make the following steps, starting from the expansion of the activation
function on the Hermite basis, Eq. (21). For ta we simply observe that Ehi

[σ(hi)] = µ0. For
ρ we use the fact that x is distributed as a standard normal random vector. To deal with Qab
we introduce the truncation of (25). Finally, for Ma we write explicitly

∑

α1<···<αk

θ (k)α1···αk
Ex[xα1

· · · xαk
σ(hi)] =
∑

α1<···<αk

θ (k)α1···αk

∞
∑

ℓ=0

µℓ
ℓ!
Ex[xα1

· · · xαk
Heℓ(hi)] , (C.3)
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and we perform Wick’s contractions in order to evaluate the expected value, exploiting the
mapping to Wick’s product explained in Appednix B. As the indices α of the teacher are strictly
ordered, they must be paired only with the ones in the Wick product, leaving only the term
ℓ= k in the sum over ℓ. The number of possible contractions is k!, so the result is

ta =
µ0p

N

N
∑

i=1

wa
i ,

Ma =
N
∑

i

wa
ip
N

B
∑

ℓ=1

τℓ
�D
ℓ

�p
ℓ!

∑

α

θ (ℓ)α F⊗ℓi,α ,

Qab =
1
N

N
∑

i, j=1

wa
i wb

j

�

δi jµ
2
⊥,L +

L
∑

ℓ=1

µ2
ℓ

ℓ!
(Ci j)

ℓ

�

,

(C.4)

from which Eq. (36) follows.

D Results on random matrix theory

D.1 Marchenko-Pastur distribution and Stieltjes transformation

In this section, we remind some textbook results in Random Matrix Theory we used in the
main text, for the reader’s convenience. First of all, random matrices of the form

C = F F⊤/D , (D.1)

where F is a N ×D random matrix with i.i.d. entries Fiα such that E[Fiα] = 0, E[(Fiα)2] = σ2,
define the Wishart (or Wishart-Laguerre) ensemble. For large N and D, parameter η ≡ N/D
finite, their spectral density follows the Marchenko-Pastur (MP) distribution,

ρMP(λ) =

¨

(1− 1/η)δ(λ) +ρbulk(λ/σ2)/σ2 , if η > 1 ,

ρbulk(λ/σ2)/σ2 , if η≤ 1 ,
(D.2)

with

ρbulk(λ) =

p

(λ+ −λ)(λ−λ−)
2πηλ

, λ± = (1±
p
η)2 , (D.3)

with support in λ− ≤ λ≤ λ+.
The MP distribution can be obtained with standard methods [81,82]. The determinant of

the resolvent can be evaluated as follows:

E
�

det

�

γ1N +
F F⊤

D

��− 1
2

= E
∫

dx

(2π)
N
2

e−
1
2 x⊤(γ1N+

F F⊤
D )x . (D.4)

By Gaussian linearization,

E
∫

dy

(2π)
D
2

dx

(2π)
N
2

e−
∥y∥2

2 −
γ
2 ∥x∥

2+ix⊤ Fp
D

y . (D.5)

The average over F gives
∫

dy

(2π)
D
2

dx

(2π)
N
2

e−
∥y∥2

2 −
γ
2 ∥x∥

2− 1
2D ∥x∥

2∥y∥2 . (D.6)
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Integrating over y,
∫

dx

(2π)
N
2

e−
γ
2 ∥x∥

2− D
2 log(1+∥x∥2/D) . (D.7)

Inserting r = ∥x∥2/N with a Dirac delta, we can integrate over x:
∫

dr dr̂
4π

e
iN r̂ r

2 −
N
2 log(i r̂)− N

2 γr− N
2η log(1+ηr) . (D.8)

The integral over the Fourier variable r̂ can be solved via asymptotic integration, the saddle-
point being in r̂ = −ir−1:

∫

dr e
N
2

�

1+log(r)−γr− 1
η log(1+ηr)
�

. (D.9)

The saddle point equation in r gives

1
r
− γ−

1
1+ηr

= 0 , (D.10)

with solutions

r± =
η− γ− 1±
Æ

(η− γ− 1)2 + 4ηγ
2ηγ

. (D.11)

The correct branch can be proven to be r = r+. From this analysis, the relation

1
N
ETr log(γ1+ C) = −(1− γr)− log(r) +

1
η

log(1+ηr) (D.12)

follows. Deriving with respect to γ,

1
N
ETr(γ1+ C)−1 = r(γ) . (D.13)

By definition of Stieltjes transformaiton, r(γ) = g(−γ), which gives Eq. (51).

D.2 Spectral density of C⊙ℓ

In this Appendix we discuss the spectral density of the matrices C⊙ℓ, to clarify the kind of
approximation we used in the main text. We are interested to the large N computation of the
following traces:

aℓ =
1
N

Tr(γℓ1+ C⊙ℓ)−1 , bℓ =
1
N

Tr C⊙ℓ(γℓ1+ C⊙ℓ)−1 , (D.14)

under the hypothesis that ηL = N/
�D

L

�

remain finite. We anticipate that γℓ given by (48) either
remain finite (if P/N remains finite) or tends to infinity (if P/N →∞) in that limit. As we
have already discussed, for ℓ > L, the matrix C⊙ℓ is fully ranked, with diagonal elements close
to one and off-diagonal elements of order D−ℓ/2: all eigenvalues will be equal to one up to
a negligible correction. For that reason we could neglect off-diagonal terms for ℓ > L and
aℓ ≈ bℓ ≈ (1+γℓ)−1. For ℓ < L conversely, the matrix has rank Dℓ at most, and it is easy to see

that its max eigenvalue cannot be larger that N maxi

�

1
D

∑

α F2
i,α

�ℓ
= N(1+O(
p

log(N)/D)).4

We get therefore

1
N

�

(N − Dℓ)/γℓ + Dℓ/(γℓ + N)
�

≤ aℓ ≤
1
γℓ

, 0≤ bℓ ≤
Dℓ

N
N

γℓ + N
. (D.15)

4λmax =maxv|v2=1
1

Dℓ

∑

α1 ,...,αℓ

�∑

i vi Fi,α1
...Fi,αℓ

�2
≤ N
∑

i v2
i

�

1
D

∑

α F2
i,α

�ℓ

.
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Figure 5: Top row – empirical (30 instances, D = 20, N = D3) vs. analytical (MP)
distributions of the non-zero eigenvalues of the matrices defined in Sec. D.2: C (1,1)

(left), C (2,1)/D, C (2,2) (center), C (3,1)/D2, 3C (3,2)/D, C (3,3) (right). Bottom row –
comparison of the analytical curves with the empirical distribution (notice the log
scale on the axes) of C⊙2 (left), C⊙3 (center) and C⊙1+C⊙2+C⊙3 (right); analytical
curves in the bottom row are rescaled in such a way that the sum of the densities in
each panel is normalized.

It remains to be discussed the only non trivial case: ℓ = L In that case, we can decompose
the matrix C⊙L as a matrix with rank min{N ,

�D
L

�

} and spectrum asymptotically distributed
accordin to the Marchenko-Pastur law with parameter ηL , plus a contribution with rank at
most DL−1 which for reasoning similar to the previous case, do not contribute to aL and bL in
the thermodynamic limit.

We would like now to show, that even for moderate values of N and D, neglecting all the
subleading contributions provides an excellent approximation to the spectrum. To fix ideas,
let us consider L = 3 (N ∼ D3), so that we consider the matrices

C⊙1 = C (1,1) , C⊙2 =
1
D

C (2,1) + C (2,2) , C⊙3 =
1
D2

C (3,1) +
3
D

C (3,2) + C (3,3) , (D.16)

where (we use the label (ℓ, k), where ℓ is the corresponding exponent in C⊙ℓ, and k the number
of different summation indices)

C (1,1)
i j =

1
D

∑

α

FiαF jα = Ci j ,

C (2,1)
i j =

1
D

∑

α

F2
iαF2

jα ,

C (2,2)
i j =

2
D2

∑

α<β

FiαFiβ F jαF jβ ,

C (3,1)
i j =

1
D

∑

α

F3
iαF3

jα ,

C (3,2)
i j =

1
D2

∑

α̸=β

F2
iαFiβ F2

jαF jβ ,

C (3,3)
i j =

6
D3

∑

α<β<γ

FiαFiβ FiγF jαF jβ F jγ .

(D.17)
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We can say the following on the matrices C (ℓ,k) when N , D are both (generically) large:

• C (1,1) = C has a Marchenko-Pastur (MP) spectrum with parameter η1 = N/D and

σ2 = 1, with D bulk eigenvalues λ= N/D+O(
q

N
D ) (and N − D zero eigenvalues).

• C (2,1) can be written as

C (2,1)
i j ≃ 1+

1
D

∑

α

(∆iα∆ jα) , (D.18)

where ∆iα = F2
iα − E[F

2
iα] = F2

iα − 1. Notice that E[∆2
iα] = 2. From this, it follows

that C (2,1) has an MP spectrum with parameter η1 and σ2 = 2, with D bulk eigenvalues
O(σ2η1), plus an additional outlier eigenvalue of order N (due to the finite mean);
however, in C⊙2 this matrix is scaled by an additional factor of 1/D, so it contributes to
the sum with D eigenvalues O(2N/D2) and an outlier O(N/D).

• C (2,2) has an MP spectrum with parameter η2 = 2N/D2 and σ2 = 1, with D2/2 bulk
eigenvalues O(η2).

• C (3,1) has an MP spectrum with parameter η1 and σ2 = 15, with D bulk eigenvalues
O(η1); however, in C⊙3 this matrix is scaled by an additional factor of 1/D2, so it con-
tributes to the sum with D eigenvalues O(N/D3).

• C (3,2) can be written as

C (3,2) ≃
1
D2

∑

α̸=β

∆iαFiβ∆ jαF jβ +
1
D

∑

α

FiαF jα . (D.19)

The first addendum (notice that the double sum is not symmetric) has an MP spectrum
with parameter N/D2 and σ2 = 2, with D2 eigenvalues O(2N/D2), while the second
addendum is C; however, in C⊙3 they are both scaled by a factor 3/D, so they contribute
to the sum with D2 eigenvalues O(6N/D3) and with D eigenvalues O(3N/D2).

• C (3,3) has an MP spectrum with parameter η3 = 6N/D3 and σ2 = 1, with D3/6 bulk
eigenvalues O(α3).

This heuristics is compared with numerical results in Fig. 5, which shows a remarkable ac-
cordance. In the main text, we took the approximation C⊙ℓ ≃ C (ℓ,ℓ), and considered the row
spaces of C⊙ℓ for different ℓ as orthogonal: in Fig. 5, bottom right, we show how the spectrum
of a sum of the full matrices C⊙ℓ is reasonably approximated by the sum of the (analytical)
spectra of the corresponding C (ℓ,ℓ) matrices, validating our approach.

E Determinant of sum of matrices with orthogonal row spaces

In this section we derive Eq. (44). Let us take the N × N matrix given by

K = a1+
L
∑

ℓ=1

bℓCℓ , (E.1)

where the matrices Cℓ are such that rank(Cℓ) = rℓ,
∑

ℓ rℓ ≤ N and their row spaces Rℓ (that
is, the orthogonal complements to their null spaces) are mutually orthogonal (Rℓ ⊥ Rk for
k ̸= ℓ). Then,

det K = aN−
∑

ℓ rℓ
∏

ℓ

det(ℓ)∥ (a1+ bℓCℓ) , (E.2)
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where det(ℓ)∥ (·) is the determinant restricted to the row space of Cℓ:

det(ℓ)∥ (a1+ bℓCℓ) =
rℓ
∏

α=1

(a+ bℓλα) , (E.3)

with λα the non-zero eigenvalues of Cℓ. Eq. (E.2) can be proven by noticing that, if {eα
ℓ
}rℓα=1

is a basis of Rℓ and {eα⊥}
N−
∑

ℓ rℓ
α=1 a basis of (

⋃

ℓRℓ)⊥, the set (
⋃

ℓ{e
α
ℓ
})
⋃

{eα⊥} is a basis of RN

in which the matrix K is in block-diagonal form. Moreover, from Eq. (E.3)

det(ℓ)∥ (a1+ bℓCℓ) = det(a1+ bℓCℓ)a
−(N−rℓ) , (E.4)

so we can conclude that
det K = aN(1−L)

∏

ℓ

det(a1+ bℓCℓ) . (E.5)

F Traces over RS matrices

In this section we derive Eq. (47). We need to evaluate

Tr log
�

A⊗ 1N + B ⊗ C⊙ℓ
�

, (F.1)

where A, B are RS n× n matrices. We can write

A⊗ 1N + B ⊗ C⊙ℓ = (B ⊗ 1N )
�

B−1A⊕ C⊙ℓ
�

, (F.2)

where the Kronecker sum is defined as

B−1A⊕ C⊙ℓ = B−1A⊗ 1N + 1n ⊗ C⊙ℓ . (F.3)

The eigenvalues of a Kronecker sum are the sums of the eigenvalues of the addenda. Calling
σa the eigenvalues of B−1A and λi the eigenvalues of C⊙ℓ, this means that

log det(B−1A⊕ C⊙ℓ) =
∑

a,i

log(σa +λi) . (F.4)

Given that B−1A is RS, it has 2 different eigenvalues, σ with multiplicity n−1 and σ+nσ̃ with
multiplicity 1, so that for small n

logdet(B−1A⊕ C⊙ℓ) = n
∑

i

log(σ+λi) + n
∑

i

σ̃

σ+λi
. (F.5)

In total we get

Tr log
�

A⊗ 1N + B ⊗ C⊙ℓ
�

= nN log b+ nN
b̃
b
+ n
∑

i

log(σ+λi) + n
∑

i

σ̃

σ+λi
. (F.6)

Using the RS algebra, we know that σ = a/b, σ̃ = (bã− ab̃)/b2, so that

Tr log
�

A⊗ 1N + B ⊗ C⊙ℓ
�

= n Tr log(a1+ bC⊙ℓ) + nã Tr(a1+ bC⊙ℓ)−1 + nb̃ Tr[C⊙ℓ(a1+ bC⊙ℓ)−1] .
(F.7)

It only remains to find a, ã, b, b̃:

a = β(ζ+ χ̂(0)) , ã = −β2q̂(0) , b = βχ̂(ℓ)/ηℓ , b̃ = −β2[q̂(ℓ) + (m̂(ℓ))2]/ηℓ . (F.8)

We define γℓ = a/b = ηℓ(ζ+ χ̂(0))/χ̂(ℓ) to get Eq. (47).
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G Replica-symmetric free energy

In this section we report the main steps to obtain the terms SM and SP in Eq. (53) and (54),
that is the measure and pattern contributions to the free energy.

G.1 Measure contribution

By plugging the RS ansatz (45), (46) and Eq. (47) in Eq. (42), we readily obtain

SM = −nβ
L
∑

ℓ=1

m(ℓ)m̂(ℓ)

ηℓ
+

n
2

L
∑

ℓ=0

1
ηℓ
[χ(ℓ)χ̂(ℓ) + β(q(ℓ)χ̂(ℓ) −χ(ℓ)q̂(ℓ))]

−
n
2

log(β(ζ+ χ̂(0))) +
βn(1− L)

2
q̂(0)

ζ+ χ̂(0)
−

n
2N

L
∑

ℓ=1

Tr log(1+ C⊙ℓ/γℓ)

+
βn
2N

L
∑

ℓ=1

ηℓ
q̂(0)

χ̂(ℓ)
Tr(γℓ1+ C⊙ℓ)−1 +

βn
2N

L
∑

ℓ=1

q̂(ℓ) + (m̂(ℓ))2

χ̂(ℓ)
Tr[C⊙ℓ(γℓ1+ C⊙ℓ)−1] .

(G.1)

We obtain Eq. (53) by keeping the leading order terms for β large and using Eq. (50).

G.2 Pattern contribution

SP is a function only of the order parameters:

SP = log

�∫

dν
n
∏

a=1

dλa p(ν, {λa})
∫

dy p(y|ν)e−β
∑

a L(y,λa)

�

,

p(ν, {λa}) =N
�

(ν, {λa})
�

�

� (0, {ta}),
�

1 M⊤

M Q

��

.

(G.2)

With the RS ansatz and for small n,

SP = log

�∫

dy dν
n
∏

a=1

dλa p(y|ν) e−
ν2
2 +β

m⋆ν
χ⋆

∑

a λ
a− β

2χ⋆
∑

a λ
2
a−β
∑

a L(y,λa+t⋆)−β2 m⋆2−q⋆

2χ⋆2

∑

a,b λ
aλb
�

−
n
2

log(2π)−
1
2

logdet

�

1 M⊤

M Q

�

. (G.3)

To factorize the integral over replicas we use the Hubbard-Stratonovich transformation

e
−β2 m⋆2−q⋆

2χ⋆2

∑

a,b λ
aλb

= Eξ eβ
p

q⋆−m⋆2

χ⋆

∑

a λ
aξ , (G.4)

obtaining, to leading order in n,

SP = −
n
2

log
χ⋆

β
−

nβ
2

q⋆

χ⋆
+ nEξ

∫

dyDν p(y|ν) log

∫

dλ eβ
�p

q⋆−m⋆2ξ+m⋆ν
�

λ
χ⋆ −

βλ2

2χ⋆ −βL(y,λ+t⋆) .

(G.5)
For our choice of loss (10) and for β large, we obtain Eq. (54).

For a generic choice of loss L, the integral in λ in Eq. (G.5) can still be evaluated asymp-
totically for large β . The saddle point in λ is given by

λ⋆ = argmin
λ

�

λ2

2χ⋆
+L(y,λ+ t⋆)−

p

q⋆ −m⋆2ξ+m⋆ν
χ⋆

λ

�

, (G.6)

28

https://scipost.org
https://scipost.org/SciPostPhys.18.1.039


SciPost Phys. 18, 039 (2025)

that is by the solution of the stationary equation

λ+χ⋆
∂

∂ λ
L(y,λ+ t⋆) =
Æ

q⋆ −m⋆2ξ+m⋆ν . (G.7)

For any choice of L, this equation gives the value of λ⋆ as a function of y , ν, ξ and the order
parameters. By substituting this value in (G.5) we obtain a generalized form of SP valid for any
loss. By differentiating with respect to the order parameters, we obtain saddle point equations
valid for any loss, generalizing the ones for the hat variables reported in Sec. 5.2.

H Asymptotic limits of the saddle-point equations

The system of saddle-point equations can be studied in different asymptotic limits, as we an-
ticipated in Sec. 6:

(i) N , P, D→∞, P/N → 0, P/DK finite;

(ii) N , P, D→∞, N/DL finite, P/N finite;

(iii) N , P, D→∞, P/N →∞, N/DL finite.

H.1 Case (i)

In the limit where N scales faster to infinity than P, Eq. (56) reduces to

χ̂(0)→ 0 , χ(0)→
1
ζ

,

χ̂(ℓ)→











∞ , for ℓ < K ,
P
(DK)

µ2
K

K!(1+χ⋆) , for ℓ= K ,

0 , for ℓ > K ,

χ(ℓ)→











0 , for ℓ < K ,
1

χ̂(K)+ζ , for ℓ= K ,
1
ζ , for ℓ > K ,

(H.1)

where we used the asymptotic results for the Stieltjes transformation of the Marchenko-Pastur
distribution,

1− γℓg(−γℓ;ηℓ)∼











1
ηℓ

, for ℓ < K ,
1

ηK+γK
, for ℓ= K ,

1
γℓ

, for ℓ > K .

(H.2)

Notice that now, consistently,

χ⋆ =
µ2
⊥,K

ζ
+
µ2

K

K!
χ(K) , (H.3)

because µ2
⊥,L recombines with the terms coming from K < ℓ≤ L to give µ2

⊥,K . Eq. (57) reduces
to

m(0) =
〈y〉
µ0

,

m̂(ℓ)→











∞ , for ℓ < K ,
P
(DK)

µKτKp
K!
〈yν〉
1+χ⋆ , for ℓ= K ,

0 , for ℓ > K ,

m(ℓ)→











p
ℓ!τℓµℓ 〈yν〉 , for ℓ < K ,
p

K!τK
µK
〈yν〉 (1− ζχ(K)) , for ℓ= K ,

0 , for ℓ > K ,

(H.4)

29

https://scipost.org
https://scipost.org/SciPostPhys.18.1.039


SciPost Phys. 18, 039 (2025)

while Eq. (58) becomes

q̂(0)→ 0 ,

q̂(ℓ)→











∞ , for ℓ < K ,
P
(DK)

µ2
K

K!
〈(µ0m(0)−y)2〉−2〈yν〉m⋆+q⋆

(1+χ⋆)2
, for ℓ= K ,

0 , for ℓ > K ,

q(0)→ 0

q(ℓ)→



















ℓ!
τ2
ℓ

µ2
ℓ

〈yν〉2 , for ℓ < K ,

(m̂(K)2+q̂(K))
(χ̂(K)+ζ)2 , for ℓ= K ,

0 , for ℓ > K ,

(H.5)

where now

q⋆ = 〈yν〉2
K−1
∑

ℓ=1

τ2
ℓ +

µ2
K

K!
q(K) , m⋆ = 〈yν〉

K−1
∑

ℓ=1

τ2
ℓ +

µKτKp
K!

m(K) . (H.6)

H.2 Case (ii)

In the limit where both P and N scale in the the same way, N ∼ P ∼ O(DL), we have, for
0< ℓ < L,

χ̂(ℓ)→∞ , m̂(ℓ)→∞ , q̂(ℓ)→∞ ,

χ(ℓ)→ 0 , m(ℓ)→
p

ℓ!
τℓ
µℓ
〈yν〉 , q(ℓ)→ ℓ!

τ2
ℓ

µ2
ℓ

〈yν〉2 .
(H.7)

For the other parameters we need to solve the equations for χ

χ̂(0) =
P
N

µ2
⊥,L

1+χ⋆
, χ(0) =

γL gL(−γL)
χ̂(0) + ζ

,

χ̂(L) =
P
�D

L

�

L!

µ2
L

1+χ⋆
, χ(L) =

N
�D

L

�

1− γL gL(−γL)
χ̂(L)

,

(H.8)

for m,

m(0) = 〈y〉/µ0 , m(L) = χ(L)m̂(L) , m̂(L) =
P
�D

L

�

µLτLp
L!

〈yν〉
1+χ⋆

, (H.9)

and for q

q̂(0) =
P
N
µ2
⊥,L
〈(µ0m(0) − y)2〉 − 2〈yν〉m⋆ + q⋆

(1+χ⋆)2
,

q̂(L) =
P
�D

L

�

µ2
L

L!
〈(µ0m(0) − y)2〉 − 2〈yν〉m⋆ + q⋆

(1+χ⋆)2
,

q(0) =
q̂(0)

(ζ+ χ̂(0))2
γ2

L g ′L(−γL) +
m̂(L)2 + q̂(L)

(ζ+ χ̂(0))χ̂(L)
�

γL gL(−γL)− γ2
L g ′L(−γL)
�

,

q(L) =
N
�D

L

�

q̂(0)

(ζ+ χ̂(0))χ̂(L)
�

γL gL(−γL)− γ2
L g ′L(−γL)
�

+
N
�D

L

�

m̂(L)2 + q̂(L)

χ̂(L)2

�

1+ γ2
L g ′L(−γL)− 2γL gL(−γL)

�

.

(H.10)
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The values χ⋆, m⋆ and q⋆ are consistent with their definition. At variance with case (i), χ(0) and
q(0) have non-trivial values, responsible for the interpolation peak appearing in this regime.
Notice that their value is controlled explicitly by the regularizer ζ: the lower it is, the sharper
is the peak. Moreover, the spectral function relative to the active component, gL , also gives a
non-trivial contribution.

H.3 Case (iii)

In the limit where P is scaling faster than N to infinity, we have that for all 0 < ℓ < L the
order parameters behave as in Eq. (H.7), meaning that the degree-L student learns perfectly
all the terms of the teacher of degree less then L, as the amount of training data P is effectively
infinite. In this case

γL =
L!µ2
⊥,L

µ2
L

, (H.11)

and we have χ(L), χ̂(L)→ 0; q̂(0), q̂(L)→∞ and

m(L) = ηL 〈yν〉
p

L!
τL

µL
(1− γL gL(−γL)) ,

q(0) = ηL 〈yν〉
2 τ2

L

µ2
⊥,L

�

γL gL(−γL)− γ2
L g ′L(−γL)
�

,

q(L) = ηL 〈yν〉
2 L!

τ2
L

µ2
L

�

1+ γ2
L g ′L(−γL)− 2γL gL(−γL)

�

.

(H.12)

I Numerical experiments

All numerical experiments were done in Python using JAX [83], to generate the synthetic
random data, and scikit-learn [62], to optimize the parameters. The optimizer has a simple
analytic form given by (18). Nevertheless, it is potentially inefficient to implement the formula
naively, as it would require the inversion of a very large matrix. Since we used very large values
of N and P, we performed the ridge regression with the function sklearn.linear_model.Ridge.
In this way we could explore regimes of N , P up to order D3.

Almost all numerical experiments were performed with D = 30. In most of the simulations
we sampled 50 times for each combination of N , P, D. For the right panel of Figure 3 we used a
larger number of samples since in that case both D = 30 and P = 40∼ 400 were small, hence
the generalization error had higher variability. For N < 3000 we used 500,200, 300 samples
respectively for P = 40, 200,400. For N > 3000 we used 100, 100,50 samples respectively for
P = 40,200, 400.

A GitHub repository collecting the code needed to reproduce the figures of this paper (both
numerical experiments and theoretical curves from the integration of the saddle-point equa-
tions) can be found at [84].
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