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Abstract

Symmetries play a pivotal role in our understanding of the properties of quantum many-
body systems. While there are theorems and a well-established toolbox for systems in
thermal equilibrium, much less is known about the role of symmetries and their connec-
tion to dynamics out of equilibrium. This arises due to the direct link between a system’s
thermal state and its Hamiltonian, which is generally not the case for nonequilibrium dy-
namics. Here we present a pathway to identify the effective symmetries and to extract
them from data in nonequilibrium quantum many-body systems. Our approach is based
on exact relations between correlation functions involving different numbers of spatial
points, which can be viewed as nonequilibrium versions of (equal-time) Ward identities
encoding the symmetries of the system. We derive symmetry witnesses, which are par-
ticularly suitable for the analysis of measured or simulated data at different snapshots in
time. To demonstrate the potential of the approach, we apply our method to numerical
and experimental data for a spinor Bose gas. We investigate the important question of a
dynamical restoration of an explicitly broken symmetry of the Hamiltonian by the initial
state. Remarkably, it is found that effective symmetry restoration can occur long before
the system equilibrates. We also use the approach to define and identify spontaneous
symmetry breaking far from equilibrium, which is of great relevance for applications to
nonequilibrium phase transitions. Our work opens new avenues for the classification
and analysis of quantum as well as classical many-body dynamics in a large variety of
systems, ranging from ultracold quantum gases to cosmology.
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1 Introduction and overview

Important progress in our understanding of the complexity of macrophysics in quantum many-
body systems has been achieved with classical computers for ground state or equilibrium prop-
erties. However, ab initio understanding of general dynamical or nonequilibrium behavior is
particularly scarce in situations that are not simple extensions of near-equilibrium properties,
such as the emergence of instabilities or turbulent flows. The search for emergent theories that
effectively describe nonequilibrium macroscopic behavior, their classification and justification
from first principles is one of the most pressing research directions in quantum many-body
physics [1-3].

The notion of effective field theories for macroscopic behavior is a well-established power-
ful tool for equilibrium many-body systems, where the symmetries of the underlying Hamilto-
nian or action together with the knowledge of the order-parameter field allows one to construct
the relevant description consistent with the symmetries [4,5]. However, out of equilibrium it is
especially important to distinguish the symmetries of a state from the symmetries of a Hamil-
tonian. In fact, even the simplest nonequilibrium states with an order-parameter field that is
initially not in its free-energy ground state can explicitly break a symmetry of the Hamiltonian
in general. This raises the important question about the effective or emergent symmetries of
nonequilibrium systems and whether/when explicitly broken symmetries get dynamically re-
stored. To address this question, one needs to be able to quantify the symmetry content of a
nonequilibrium state. This is also a crucial prerequisite for extracting the effective field theory
actions [6, 7] or Hamiltonians [8] from experimental or simulation data of quantum many-
body systems. The question of dynamical symmetry restoration has been recently investigated
based on entanglement asymmetry [9,10] and single-body density matrix [11].

In this work we describe a general pathway for extracting the effective symmetries of
nonequilibrium quantum many-body systems using equal-time correlation functions. The ap-
proach takes into account that the density operator g, describing a nonequilibrium state at any
time t may not be directly related to the Hamiltonian H, unlike in thermal equilibrium, where
Peq ™ exp(—ﬁH ) for the example of a canonical ensemble. Instead, we exploit that the symme-

tries can be classified on the level of observables, i.e., expectation values Tr[/ﬁ L O(xy, ..., xn)]
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of n-point operators O(x,...,x,). We derive exact relations between expectations values of
operators involving different numbers n of spatial points, which encode the symmetry prop-
erties of the system. Our equations can be viewed as nonequilibrium versions of (equal-time)
Ward identities [12]. For the example of a spin-one Bose gas, we show that extracting the n-
point functions from spatially resolved data allows one to efficiently uncover the presence or
absence of a given symmetry. For this, we define symmetry witnesses and apply our approach
to analyze the dynamical effective restoration of explicit symmetry breaking. Remarkably,
we observe that effective symmetry restoration can occur long before the system equilibrates,
which is a crucial ingredient for the construction of effective theories for nonequilibrium evo-
lutions. Importantly, we also demonstrate how the method can be used to define and identify
spontaneous symmetry breaking even far from equilibrium, opening up numerous applications
for nonequilibrium phase transitions.

While the approach can be used for any analytical or classical simulation technique of
quantum many-body systems, we emphasize that it is particularly well suited for large-scale
(analog) quantum simulations based on setups with ultracold quantum gases [13,14]. These
systems can realize a wide range of Hamiltonians with different symmetries, variable inter-
actions and degrees of freedom based on atomic, molecular, and optical physics engineering.
They offer high control in the preparation and read-out of the quantum dynamics, with the
ability to explore new regimes even far from equilibrium [15-17] that are otherwise difficult
to access directly.

The paper is organized as follows. We start in Sec. 2 with a general discussion on sym-
metries in many-body systems, highlighting the differences between equilibrium and nonequi-
librium cases. Taking an ultracold spinor Bose gas in one spatial dimension as an example,
which is described in Sec. 3, we demonstrate our method in Sec. 4 and derive symmetry iden-
tities between equal-time n-point functions and symmetry witnesses. We then prepare such
a system in a state with explicit symmetry breaking and investigate the subsequent evolution
using classical-statistical simulation methods in Sec. 5. In Sec. 6, we consider experimental
data for the spinor Bose gas and apply it to the analysis of spontaneous symmetry breaking
out of equilibrium. We end with a conclusion and outlook in Sec. 7.

2 Symmetries and dynamics

For the following, it will be important to distinguish symmetries of a state or density operator
from symmetries of the Hamiltonian that governs the equatlons of motion [18]. A Hamiltonian
H is symmetric under the group of transformations G if [U, H] = O for every U € G. This group
can be either discrete or continuous, with U forming an (anti-)unitary representation of G on
the Hilbert space of the system [19, 20]. In this work, we focus on the case of continuous
unitary symmetries. In addition, we assume that the considered continuous symmetries have
the structure of a Lie group, whose elements can be written as

U = exp(iaxQx), [Qi,Q;]1=ifij1 Qx> o)

where f;j are the structure constants that characterize the underlying Lie algebra, and the
operators Q; are the generators of the group. For brevity we have restricted ourselves to
elements of G that are simply connected to the unity element. Since U is unitary, the operators
Q| are Hermitian and taken to correspond to physical observables. From Eq. (1) it immediately
follows that [Qy, H] = 0, implying that the generators of G are conserved quantities.

On the other hand, the state at time t described by the density operator g, is symmetric
under G if [U, p,] = 0 for every U € G. From this, one also concludes the following rigorous
property for the unitary time evolution of quantum systems described by the von Neumann
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equation: if the density operator p, explicitly breaks a symmetry of the Hamiltonian H at
some given time t,, then it cannot be restored on a fundamental level at any other time.
Conversely, starting with a symmetric state and following a unitary evolution respecting the
same symmetry, it will never be explicitly broken.

However, these strict statements are not in conflict with the assertion that typical ob-
servables may show emergent phenomena which involve the effective restoration of an ini-
tially broken symmetry or vice versa. In this work, we will consider expectation values
Tr[ﬁt O(xy, ... ,xn)] of n-point operators O(xy,...,x,) as observables. An effective symme-
try still remains a set of transformations which leave observable properties of the system
unchanged, though the set of observables becomes restricted in practice, which in our case
will be related to finite numbers for n. For instance, the notion of effective or relevant sym-
metries for observable properties is at the heart of macroscopic theories for nonequilibrium
evolutions, such as effective kinetic theories or hydrodynamics describing the long-time and
long-distance behavior of an underlying microscopic many-body system in terms of few-point
functions only [2]. In this respect, the discussion also closely resembles the one concerning
thermalization in closed quantum systems with unitary time evolution [1].

So far we have distinguished the symmetries of the state from the those of the Hamiltonian
with the possibility of explicit symmetry breaking. However, for many-body systems it is also
important to distinguish an explicit breaking of a symmetry from the phenomenon of sponta-
neous symmetry breaking. The latter is crucial, e.g., for our understanding of typical phase
transitions where an order-parameter can be defined to vanish on one side of the transition
while taking on a nonzero value otherwise. Though this is of course well established in equi-
librium, the definition and detection of spontaneoulsy broken symmetries out of equilibrium
is much less explored.

Spontaneous symmetry breaking implies that the symmetry of the system’s state is reduced
to a residual symmetry subgroup of G without explicit symmetry violation. Generally, the sys-
tem will be in a superposition of degenerate states such that the symmetry breaking is not
manifest. To efficiently characterize spontaneous symmetry breaking in terms of an order
parameter, one needs to lift the degeneracy and favor one of the infinitely many symmetry-
breaking configurations. This is typlcally achieved by adding a small symmetry-breaking per-
turbation to the Hamiltonian, such as H — H + f J O for a given order-parameter operator O.
To remove the explicit symmetry breaking in the end, such a bias is introduced as a limiting
procedure. Spontaneous symmetry breaking is then identified by a nonvanishing expectation
value

Jim, T [6:0(x)] = v,(x). 2)

Crucially, in the case of spontaneous symmetry breaking one finds a nonzero order parameter,
v.(x) # 0, even in the limit of a vanishing perturbation, J — 0. On the other hand, v,(x)
is zero in the symmetric state. The choice of an order parameter operator is not unique,
although often suggested by the physics of the spontaneous symmetry breaking. Here, we
have restricted ourselves to cases that can be characterized by a local order parameter. For
translationally invariant systems in space and/or time, the function v,(x) naturally reduces to
a respective constant.

For nonequilibrium systems, there are interesting further options to introduce a symmetry-
breaking bias, e.g., through the choice of an explicit symmetry-breaking state at a given initial
time tq with

[U.,]#0,  [V,p]=0, 3)

while the symmetry of the Hamiltonian remains unaffected with [U,H] = 0. In this case,
the initial explicit symmetry breaking is not restricted to small perturbations. In situations
where the explicitly broken symmetry gets effectively restored dynamically during the time
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Figure 1: (a) Quasi one-dimensional BEC in a box-like potential formed by an elon-
gated dipole trap (blue) with repulsive walls (light grey). The overall density (green)
is approximately uniform throughout the cloud. (b) The effective quadratic Zeeman
energy difference q between the my = 0 and my = 1 levels is adjusted using off-
resonant microwave dressing (grey). This enables the tuning of spin-changing colli-
sions into resonance, which can redistribute population among the hyperfine levels.
(c) Schematics of many individual realizations averaged over in green, with a single
realization highlighted in red in a “sombrero” potential associated with spontaneous
symmetry breaking. The vertical t arrow indicates the evolution in time.

evolution, spontaneous symmetry breaking is still signalled by the emergence of a nonzero
order parameter (2). Typically, this requires an evolution of the system to sufficiently late times
such that the initial explicit symmetry breaking is effectively reduced to a small perturbation.
In the following sections, we will employ and discuss how symmetry can be broken through
initial conditions in systems out of equilibrium. Specifically, we will introduce relationships
between different n-point functions to identify symmetries and to distinguish between explicit
and spontaneous symmetry breaking.

3 Spinor Bose gas

Both experimentally and in our numerical simulations, we consider a homogeneous one-
dimensional spin-1 Bose gas described by the Hamiltonian [21]

A= [ ae] i (c 222 402+ Q2. 19 g2, @
= X m oM 2x2 qZ m 2.”. : 2 N

where 1/3 = (1/31,1/30,1/3_1)T is the three-component bosonic field representing the magnetic
sub-levels my = 0,£1 of the F = 1 hyperfine manifold, M denotes the atom mass, and
n = 1[3;1[),“ The spin-changing collisions are described in terms of the spin operators
E = 1/:';( ) W > With f = (fy, fys f,)T being the generators of the so(3) Lie algebra in the
three-dimensional fundamental representation. The bosonic field operators obey the standard
commutation relations [zljm(x),iljjn,(x’)] =8,..60x—x"), [{(x),,,(x)] = 0. Together
with [f;, f;] = ig;ji fi, this readily implies [E.(x), F:(x)] = isijkﬁ"k(x) 6(x —x’). Here and in
the following, Einstein’s summation convention is implied and we use units where i = kg = 1.

Experimentally, we will apply our analysis to measurements from a spinor Bose-Einstein
condensate of 87Rb, which features rotationally invariant ferromagnetic (c; < 0) spin-spin as
well as repulsive (c, > 0) density-density interactions, with |cy/c;| & 200. This condensate is
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confined in a quasi-one-dimensional box trap, as illustrated in Fig. 1(a). The quadratic Zeeman
shift g is induced by an external magnetic field which shifts the energy of the my = %1 levels
relative to the my = 0 component, and is adjusted by using off-resonant microwave dress-
ing, as depicted in Fig. 1(b). We will consider data where the system is initialized with zero
average longitudinal (z-axis) spin such that only the mp = 0 sublevel is populated. The mi-
crowave dressing initiates the spin-exchange dynamics, and excitations build up in the F, —F,
plane, with the spin acquiring a mean length with a random orientation in the F, —F,, plane.
This transversal spin degree of freedom is examined by the spatially resolved detection of the
complex valued field F, (x) = F,(x) +iF, (x). Experimentally, we simultaneously extract the
spatial spin profiles F,(x) and F, (x) via spin rotations from the F, —F,, plane to the F, direc-
tion and subsequent absorption imaging [16,22]. For more details on the experimental setup
and specific parameters, see App. A and Ref. [23].

The Hamiltonian (4) is symmetric under SO(2) x U(1) transformations for q # 0, where
SO(2) denotes the group of rotations about the F, axis on the F = 1 hyperfine manifold. The
spin operator F can play the role of the order parameter for the symmetry breaking of the
SO(2) group. In the case of spontaneous symmetry breaking, according to the definition (2),
there is a nonzero expectation value (F;). This situation is illustrated in Fig. 1(c). Due to the
underlying SO(2) symmetry, we can always align the expectation value along one of the axes,
e.g., (F.) =0, (ﬁy) =,

Establishing long-range coherence across the entire system requires some time. This is
especially true for lower-dimensional systems with continuous symmetries, where fluctuations
preventing the build-up of long-range order are very strong, as highlighted by the Mermin—
Wagner theorem [24]. To ensure an adequate level of coherence across the system during the
time of observation, we reduce our analysis to a finite central region of our data as specified in
App. A. For this subsystem, the condensate builds up a constant phase across the sample and
the order parameter can be assumed to be approximately homogeneous for the considered
evolution times.

4 Symmetry identities between equal-time correlation functions

We are probing the symmetry content of our system via equal-time correlation functions. Since
such correlators can be extracted from measurements at different snapshots in time, they are
particularly convenient for studying cold atom systems and matching theory to experiment.
In spinor Bose gases, a convenient choice of experimentally accessible observables are spin
operators F;. On a theoretical level, the corresponding equal-time correlation functions can
then be conveniently extracted from the generating functional

Zt[J]zTr{ﬁtexp[f de(x)'ﬁ(x)]}, (5)

where g, is the density matrix of the system in the Schrodinger picture at time t, not necessarily
normalized to unity. Symmetrically ordered equal-time spin correlation functions are obtained
by taking derivatives with respect to J;(x) and setting the latter to zero:

Z 10101, 5 X0) 1

ot - = 2 S (B o) By (00) ©6)
t to€S,



https://scipost.org
https://scipost.org/SciPostPhys.18.2.044

e SciPost Phys. 18, 044 (2025)

0t 1ts 2t 3ts 5t 100t4
14 y y 4 4 4 1
2 0- . . . . .
14 i | R— 1 N I g7 | W/" | \w’ o
T T T T T T T T T T T T T T T T T T
-1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1
F:l' F1 F}L‘ F.l Fw FI

Figure 2: Histograms of the spin orientations in the F, —F, plane normalized by the
atom number for q; = 0.6n|c;| and averaged over 10% runs. The dash-dotted line

represents the average spin length (|F |) = /1 —(q/2n|c;]|)% ~ 0.95.

Here, the prefactor 1/Z,[0] takes care of the density matrix normalization, S,, denotes the set

of all permutations of {1,...,n}, (...) = Tr{p, ...}, and we have introduced the notation
6"Z,[J]

5Ji1(xl) . 5Jin(xn) )

Zt(,rl?...in[‘]](xl;'--yxn) = (7)

The correlation functions (6) contain disconnected, lower-order parts. To remove this
redundant information and generate connected correlation functions, one can invoke an equal-
time equivalent of the Schwinger functional,

E [J]=logZz[J]. (8

As an example, a two-point connected symmetric spin correlation function generated by the
functional E, is given by

EZ) [0](x1,x5) = %(ﬁx(xl)ﬁy(xz) + B, () B () = (B D) (B, (), (9)

and correspondingly for higher-order correlation functions.

Since the spin operators F; transform trivially under U(1), we will focus on the SO(2) part
and derive associated symmetry identities between different correlation functions. Following
the discussion in the previous sections, we will assume that the initial state p,  is also SO(2)-
invariant, ensuring that the symmetry is fully respected on the dynamical level. In this case,
the density matrix p, remains formally symmetric at any time ¢t > t(, even in the case of
spontaneous symmetry breaking. As pointed out above, to address the latter scenario, one has
to introduce a symmetry-breaking bias to the system. In this work, the role of such a bias will
be played by the sources J; coupled to the spin operators in the definition (5) of the generating
functional, which will be addressed in more detail in the following.

From (5) we conclude together with p, = U 5, U™, with U € SO(2), that

Z,0J] =Tr{;3texp U dxJ(x)- (U™ ﬁ(x)U)]}, (10)

where we have used the cyclic property of trace and U~ exp (A) U = exp (U —1A U).
The spin operators F; live in the fundamental representation of the rotation group and thus
transform as

o

ﬁlﬁRlJ(E)ﬁ]:ﬁl+1€T ﬁ"+0(€2), T=|-

’ : (1)

OO -
o O O
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where R(e) denotes the rotation matrix by an angle € about the F, axis with its single generator
T.

Together, Eqgs. (5) — (11) imply Z,[J] = Z,[R"J], and likewise E,[J] = E,[R"'J], where
we have used the fact that J - (Rﬁ' ) = (R_lJ ) F. Taking R to be infinitesimal, this yields
E/lJ.—eJ,,J, +eJ ]—E[J:,J,]= 0. Expanding it to linear order in the rotation angle €, we
finally derive the master symmetry identity:

J [ LI =0, (D LI ] = 0. (12)

By taking further J-derivatives one can generate an infinite hierarchy of symmetry identities
encoding the SO(2) symmetry of the system.

Here and in the following, we assume that the mean field does not break spatial homo-
geneity. To emphasize the distinction between the fields F, and F » we then introduce the
notation (F,,F),) — (m,0), (Jy,J,) = (J5,J5), and accordingly (#) = 0 and (&) = v,. To
allow for a spontaneous symmetry breaking scenario, we first explicitly break the symmetry
via a linear source term f dx J &(x), cf. the discussion in Sec. 2:

(6)= lim EN,=0,J,=J]=v,. (13)

The symmetry-breaking case corresponds to v, # 0, whereas v, = 0 in the symmetric phase.

For spin systems, this symmetry-breaking term allows for a simple physical interpretation as a

deformation of the initial density matrix, which is discussed in more detail in App. B.
Differentiating the master symmetry identity (12) once with respect to J, we get

f dx’ [ 5(x" = x") EQJLII) + T () EE) [T, x) = T () EEL [T 1(x', x") | = 0. (14)
Setting the sources to (0,J) and going to Fourier space we obtain

ED[0,J1-T B2 [0,J1(p = 0,~p =0) = (15)
where we have introduced the notation
ETZ i, (Plﬁ ’pn)_ZTE5 (ZPH)EE 13 iy (pl"":pn)- (16)
i=1

Similarly, differentiating the master symmetry identity (12) once with respect to both J, and
J, and then setting the sources to (0,J) yields

JhmEET)m[O J1(g,p,—P—q@Q) =E 5230[0 J1(p,—p)— EEZQH[O,J](—p,p)- 17

Taking the J — 07 limit and using (13) and (15) we then find

i3
tﬂ:no’(q p,—P—q) ~(2) ~(2)

v, lim — B —p.p), (18)
£ 450 Egzgn(q’_q) Efoo(P,—P)—E zn(—p,P)

with E; " =g (n)[J = 0,J, = 0]. Here, we have taken into account that only the quotient of

E?’T)ma (g,p,—p —q) and Eg%n (g,—q) may have a finite ¢ — 0 limit. While Eq. (18) connects
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Figure 3: Evolution of the symmetry witnesses Q™ for a system prepared in a state
which explicitly breaks the SO(2) symmetry of the Hamiltonian with a subsequent
quench from g; = 0.9n|c;| to g; = 0.6n|c; |, where 0 < QM < 1. The value of QU =0
corresponds to the absence of explicit symmetry violation. Here, Q(f?)r - 18 the identity
connecting two- and three-point functions appearing in Eq. (18), while Q(;)wg and
QS?% - connect three- and four-point functions.

two- and three-point functions, additional symmetry identities relating higher-order correla-
tion functions can be obtained by taking further derivatives:

E®

(k,p,q,—k—p—q)
Ve lim t il Ego)'o'o' (p q,—p— q) EE 727-:0- (q;P; —p— q) Egsrzno- (p: —P—4q, Q) >
k—0 (2) k
Ef iy (k)
(19a)
~=(4)
Ei pnnr(k,p,q,—k—p—q)
Ve lim = 531')5710 (P q,—p— q) + Et nno (p’_p q, Q) + Et nro (q,—P q, P) >
k—0 5(2)
Efr ()

(19b)

and so forth.

Symmetry identities, akin to those derived in the present section, then serve as a man-
ifestation of the system’s symmetry properties on the level of correlation functions. Since
n-point correlation functions can be readily extracted from numerically simulated data or ex-
perimental measurements, the symmetry identities can be explicitly checked. This makes them
a powerful tool for analyzing the symmetry content of quantum many-body systems, allowing
to determine whether the symmetry is broken explicitly, spontaneously, or not broken at all.

Based on the above symmetry identities one can introduce symmetry witnesses, which
provide efficient measures of the symmetry content of a given system. In particular, higher-
order correlation functions are often difficult to visualize and the introduction of a norm as a
measure can be very convenient. Defining the left- and right-hand sides of (18) as

£

(3) t nﬁg(q p> _p q)

t’ﬂ:ﬂ:o'(p) =Vt h

N 2 ’
=0 E,ﬁn(q, —q)
@ () =E2 (p,—p)—E2 (—p,p), (20)

we may encode the symmetry content by measuring a distance between the two functions
using the standard L;-norm, ||f| = L”fdpl ...dp,|If (p1,-..,py)|, with L being the system
size setting the smallest unit of momentum 1/L. To avoid biasing the IR momentum region,

9
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Figure 4: Evolution of the symmetry witness Q(Tf% . for three different systems pre-
pared in a symmetry-broken state. The dark blue curve represents the symmetry wit-
ness for a system that is not quenched initially, while the mid- and lightblue curves
correspond to initial quenches, with the lightblue one being a stronger quench. The

middle curve for Q®® shows the same data as in Fig. 3, but only up to 50 t.

where the correlation functions are typically larger, we normalize the difference by dividing it
by double the average value of |[f )| and |f ®|, which yields

(3) (2)

3) )= lim t,nno - Jt,nno 21
o= Jim | T (21)
t,mno t,mmo
; P : B3 3 _ @ _
Here, ¢ is a regularization parameter ensuring that Q;°” = = 0 when f, 7, = f; 7., =0,

i.e., in the absence of both explicit as well as spontaneous symmetry breaking. In practice,
the choice of ¢ is motivated by the value of statistical error, inevitable in any experimental or
numerical setup. Note that the normalization choice implies 0 < Q(ngr)m < 1, with the upper
bound following from the Cauchy—Schwarz inequality.

At each point in time, the quantity Q(ﬁr)[ »» Which we call a symmetry witness, connects
one-, two-, and three-point correlation functions and quantifies the degree of violation of the
symmetry identity (18). Analogously, one can introduce higher-order witnesses Q(r?r): oo and
Q(Tf'r)C - using the identities (19a) and (19b), respectively, characterizing the symmetry content
with respect to the higher-order correlation functions. Geometrically, the connected correla-
tion functions characterize the shape and the inner structure of the histograms like the ones
depicted in Fig. 2. Such histograms consist of “sub-histograms”, one for each spatial point
X;, or momentum mode p;, in the system. The one-point functions correspond to their po-
sitions, the two-point functions are related to their widths and heights, while higher-order
n-point functions reflect cross-correlations between the sub-histograms. Symmetry then puts
constraints on their allowed shapes and cross-correlations, and symmetry witnesses represent
how well these constraints are satisfied. The spatial correlation functions can be extracted
from numerical simulations or experimentally by sampling read-outs of the transverse spin
F|(x) = Fy(x) +iF,(x) [22]. As a result, probing symmetry properties of the system via ex-
act relations between observable correlation functions proves to be an effective approach, as
demonstrated in the following sections.

10
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Figure 5: Data for the symmetry identity (18) with the correlation functions as a
function of momentum at four different times during the dynamical evolution.

5 Nonequilibrium symmetry restoration

In the following, we investigate the dynamics of a spinor Bose gas (4) prepared in an explicitly
symmetry-broken state. Whether the initially explicitly broken symmetry gets effectively re-
stored during the dynamics will be analyzed using the symmetry witnesses introduced above.
We employ the truncated Wigner approximation (TWA), which describes the dynamics for
highly occupied systems at not too late times and weak couplings [25]. The numerical in-
tegration of the system is done via a pseudo-spectral split-step method and gives the time
evolution of the full spinor state v = (v1,4,%_;)’ comprised of the complex scalar Bose
fields describing the three magnetic components of the spin-1 manifold.

We start from an initial state with nonvanishing n-point spin correlations that violate the
SO(2) rotational symmetry in the F, —F,, plane. For this we consider the spinor condensate
in the mean-field ground state of the easy-plane phase,

g6 (€2 1-a/23
¢EP:7 . V2+4q/q , (22)
el1/2\/1—q/2§

which is characterized by a well-defined spin length and orientation. In addition, we imprint a
Gamma distribution function in momentum space in the fundamental fields and add noise in
the Bogoliubov modes of the initial state to achieve a sizeable explicit symmetry breaking. We
then quench the quadratic Zeeman shift from g; = 0.9n|c;| to g = 0.6n|c,|, where we verified
that no significant excitations of topological defects are excited in the system. We propagate
this state according to the classical field equations of motion,

2
i p(x,t)= [—ﬁ% + quz +con(x,t)+c1F(x,t)- f] P(x,t), (23)
with periodic boundary conditions.

The physical parameters of the simulations aim to resemble a cloud of 8’Rb atoms in a
one-dimensional geometry as performed in the experiments [7, 23, 26], the main differences
being an increased homogeneous density n compared to the experiment and a purely one-
dimensional setting with no trapping potential. We simulate a cloud of 3 - 10° particles on
a numerical grid containing N = 4096 points corresponding to a physical length of 220 ym.
The spin healing length is given by &, = 8 lattice units, and spin-changing collisions occur
on a timescale of t; = 696 in numerical time units. We give spatial length in terms of the
spin healing length &, = (2Mn|c;|)~"/? and time in units of the characteristic spin-changing
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collision time t, = 27t/(n|c;|). Furthermore, the field operators are normalized with respects
to the total density v, = v),,/ /71, which results in a normalization of the spin vector as well
F = F/n. In the following, the tilde is omitted and all values are to be understood as normal-
ized values unless explicitly stated otherwise. Upon extracting the spin degrees of freedom F,
and F,,, we compute the relevant two-, three-, and four-point correlation functions appearing
in the identities (18), (19a), and (19b). Further technical details of these computations are
given in App. C.

It is instructive to first examine the probability distribution of local spins in real space by
averaging over many realizations. In Fig. 2, we depict an F, = 0 cut of the probability density
in spin configuration space. From the left graph, one observes that the initial state is char-
acterized by a sizeable spin length with a rather well-defined orientation. As a consequence,
one may separate two types of excitations for the transversal spin F,: a radial “Higgs”-like
mode associated with perturbations of the spin length |F| |, and a transverse “Goldstone”-like
mode associated with perturbations of the angle ¢;, respectively. Since the state is initialized
away from the minimum of the sombrero-shaped effective potential illustrated in Fig. 1, one
observes dynamics in the radial direction, such that the spin length |F, | acquires a range of
values which are also significantly smaller than the initial one. As seen in the histograms,
this occurs predominantly during the first few characteristic spin-changing collision times t,.
During this time, the nonequilibrium “Higgs”-like mode explores the inner part of the effective
potential, whose nonconvex shape is expected to lead to a fast instability growth of the mode
occupancy in a characteristic momentum range. However, after about ~ 5 t,, perturbations in
|F | | are seen to become more and more suppressed. Instead, significantly slower dynamics for
the transverse mode starts dominating, by which the spin distribution settles into a banana-like
shape as it spreads out around the ring set by the minimum of the effective potential.

While the histograms indicate the different dominant excitations and timescales of the
system, one needs further information to quantify the initial explicit symmetry breaking and
its effective restoration. For instance, both the left graph of Fig. 2 at Ot, and the right one
at 100 ¢, indicate configurations with comparable spin length and rather small spread in the
radial direction. However, their transverse extensions along the ring, which represent the
“Goldstone”-like fluctuations, are significantly different. As described in Sec. 4, in the absence
of explicit symmetry breaking there exists a well-defined relation between the spin length and
the fluctuations, which we will use in the following to quantify the symmetry content of the
data.

Fig. 3 shows the corresponding time evolution of the symmetry witnesses Q™ defined
in Eq. (21), where 0 < Q™ < 1, with Q™ = 0 in the absence of explicit symmetry viola-
tion. The index n denotes the maximum number of spatial points involved in the correlation
functions probing the symmetries. We show Q(Tf?t - based on an identity connecting two- and
three-point functions involving the “Goldstone”-like (1) and “Higgs”-like (o) excitations ap-
pearing in Eq. (18), while Q(ﬂ"')r oo and ng'r)[ ~ connect three- and four-point functions based on
Egs. (19a) and (19b), respectively.

As seen in Fig. 3, the systems starts out in a state that explicitly breaks the SO(2) symmetry
of the underlying Hamiltonian very strongly, with the different QU™ rather close to unity. While
the unitary time evolution of the quantum system can never restore the symmetry exactly, one
observes that important observable properties can nevertheless exhibit an effective symmetry
restoration. The different witnesses based on n-point correlation functions probe more and
more details as n increases. Correspondingly, we find that the lowest-order witness shown,
QS?)I »» approaches zero fastest (blue curve). In fact, after an initial rapid decrease until times
of a few t,, the restoration dynamics slows down, and the timescales are in close analogy to
those observed from the histograms in Fig. 2.
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Figure 6: Momentum-conserving surfaces in the symmetry identities (19a) and
(19b), respectively.
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1s 10s 20s

Figure 7: Histograms of the experimentally measured spin in the F, —F,, plane taken
from a quasi-one-dimensional 8’Rb experiment [23], normalized by the atom num-
ber, for different evolution times. The dash-dotted line represents |F, | = 0.85.
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Figure 8: Histogram of the normalized spin at t = 35s. The left and middle figures
show four different experimental realizations, each in different color, before (left)
and after (middle) the rotation by the mean phases for each realization. On the
right, the combination of all realizations with mean phase subtracted is displayed.

The higher-order witnesses Q(;T)w ., (green curve) and especially Q(;T)[M (red curve) ex-

hibit a comparably slower effective restoration of the initially broken symmetry. While Q(;?T oo
involving both o and 7 excitations still shows a characteristic two-stage decay, which is rel-
atively fast at early times and then slowing down at late times, this is much less pronounced
in QS?% > Which involves predominantly the slow “Goldstone”-like modes. Nevertheless, all
witnesses clearly exhibit the approach towards an effective restoration of the explicitly broken
symmetry by the initial state. We emphasize that this is much shorter than the timescale on
which the approach to thermal equilibrium is observed, as the power spectrum {|F, |?) starts
to develop a thermal tail at higher momenta around ~ 1400 t,. This separation of time scales
between the effective restoration of an explicitly broken symmetry and thermalization may,
in principle, be further diminished for sufficiently high-order correlation functions. However,
thermalization time is defined with respect to characteristic thermodynamic observables that
typically do not involve arbitrarily high-order details since the time-translation invariant ther-
mal state can never be reached on a fundamental level in systems with unitary dynamics. In
practice, emergent theories that effectively describe dynamical behavior, such as effective ki-
netic theories, are based on a reduced set of low-order correlation functions. In this context,
our results demonstrate that effective symmetry restoration can occur long before the system
equilibrates. The situation is reminiscent of thermalization in isolated quantum systems, where
local observables of the system, prepared in a nonequilibrium quantum state, eventually be-
have as if sampled from a thermal distribution. Similarly, while low-order symmetry witnesses
show effective restoration, some higher-order witnesses, which encode finer statistical details
of the system, will show symmetry violations at asymptotically late times. This is in accordance
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with the general statement regarding how the symmetry can never be fully restored by means
of a unitary time evolution governed by a symmetric Hamiltonian, cf. Sec. 2.

It remains to investigate to what extent the results depend on the details of the initial
state. Here we consider variations in the initial quench of the quadratic Zeeman shift with
different strengths, or with no quench at all. As depicted in Fig. 4, we find that the stronger
the quench, the longer it takes to restore the SO(2) symmetry, and not quenching at all restores
it the fastest. The witness based on the correlation functions from Eq. (18), as seen in Fig. 3,
corresponds to the middle curve, with an initial quench from g; = 0.9n|c;| to g5 = 0.6n|c,].
Quenching stronger than this, to q; = 0.3n|c,|, takes longer to restore the symmetry (light
blue curve), and not doing a quench takes the shortest (dark blue curve). Irrespective of the
strength of or the presence of the quench, the correlation functions and the restoration process
look qualitatively very similar as shown in Fig. 4.

The symmetry witnesses provide an efficient means to quantify the symmetry content of
the data. However, further details can be investigated by looking directly at the underlying
momentum-resolved correlation functions in the identity (18). In Fig. 5, we plot both the left-
hand side (red curve) and right-hand side (blue curve) of Eq. (18) for four different time steps.
Initially, we observe that the symmetry is strongly broken signalled by the unequal different
n-point correlation functions. Within the span of a few t,, these different correlation functions
quickly approach each other and by ~ 50 t,, they are nearly equal and the conclusions are as
for the symmetry witnesses discussed before. In addition, one observes from the momentum-
resolved correlation functions that, apart from the initial strong fluctuations at low momenta,
an additional peak in the correlation functions develops at a higher momentum scale. The
peak height settles quickly within a few t,, during which the “Higgs”-like mode explores the
inner part of the effective potential leading to a fast growth of fluctuations as discussed above.

The momenta of the correlation functions entering the identity (18) underlying Q®® cor-
respond to the momentum-conserving diagonals of the full momentum matrix. Likewise, the
identities for Q) involve momentum-conserving surfaces. As an example, we show the sur-
faces of our numerical data corresponding to the symmetry identities (19a) in Fig. 6(a) and
(19b) in Fig. 6(b). In both cases, we see strong initial symmetry violation signalled by the
different unequal n-point correlator surfaces. The cross-like shape is the dominant feature
of these surfaces and is already present initially, although much stronger in the four-point
surfaces. The appearance of the surfaces becomes gradually more equal with time in both
Fig. 6(a) and (b), however, we can visually confirm that it is not as quick as for the momentum-
conserving diagonals above. Additionally, restoration is visibly slower for the identity (19b)
since at 50 t, in Fig. 6(b) the dominant cross-like features are still at an increased amplitude in
the four-point surface compared to the three-point one. This is consistent with what we have
observed from the corresponding witnesses in Fig. 3.

6 Nonequilibrium spontaneous symmetry breaking

In the previous section, we discussed the explicit breaking of a symmetry of the Hamiltonian
by the initial state, and its effective restoration long before the system equilibrates. However,
even if explicit symmetry breaking is absent or dynamically restored, the symmetry may still be
spontaneously broken. The notion of spontaneous symmetry breaking, in thermal equilibrium
or dynamically even far from equilibrium, is a central ingredient for our understanding of
phase transitions as explained in Sec. 2. Spontaneous symmetry breaking is signalled by a
nonzero order parameter (2) using a bias that does not break the symmetry explicitly in the
end.

15


https://scipost.org
https://scipost.org/SciPostPhys.18.2.044

e SciPost Phys. 18, 044 (2025)

1.0
o5 06 o QY
z 087 ¢ A QY,,
g %0.4—
E 064 Z024
2 3
© 5 0.0
é 0.4 (I) Time(s) 5|0
7 0
0.2 A
AL 9O
¢ Gae b ¢ A s ¢
0.0 T T T T T
10 20 30 40 50

Time (s)

Figure 9: The symmetry witness based on two- and three-point correlation functions
extracted from experimental data. The inset shows the average spin length (F, ). The

witness Q(Tf% ~» which is not shown in order not to overcrowd the plot, gives compara-

ble results to Q(;‘T)[ -+ The error bars are obtained by bootstrapping and correspond to
80% confidence interval. The spin-changing collision time is t, = 27t/(n|c;|) ~ 0.4s

for the experimental parameters used in this work.

To analyze spontaneous symmetry breaking out of equilibrium in more detail, in the follow-
ing we consider experimental data from measurements of a spinor Bose—Einstein condensate
of 8Rb atoms as described in Sec. 3. The system is initialized in the |F,mz) = |1,0) state,
the so-called polar state. Subsequently, the parameter q, which corresponds to the relevant
energy difference between the my = 0 and myp = %1 levels, is quenched to a value within the
easy-plane phase thereby initiating the dynamics. In contrast to the initial state investigated
in Sec. 5 in the context of explicit symmetry breaking, in the present case there is initially no
well-defined spin length, with fluctuations solely in the F, —F, plane such that the initial state
respects the SO(2) symmetry of the system. The initial conditions restrict the average longitu-
dinal (z-axis) spin to be zero, and excitations build up in the F, —F, plane. This transversal
spin degree of freedom is examined by the spatially resolved detection of the complex-valued
field F, (x) = F,(x) +iF,(x) [23].

Fig. 7 shows histograms of the measured spin orientations in the F, —F,, plane normalized
by the atom number, at different times. While initially the measured values scatter, such that
the average spin length is practically zero, this changes at later times. The average spin length
settles around |F;| = 0.85 represented by the dash-dotted line in the figure. In this case,
the nonzero average spin plays the role of the order parameter signalling the spontaneous
symmetry breaking of the SO(2)-symmetric system. Due to the underlying SO(2) symmetry,
one can always align the expectation value along one of the axes, e.g., (F,) =0, (F V) =g,
which was done for Fig. 7.

The alignment procedure of the spin expectation value for the experimental data is illus-
trated in Fig. 8. In the left graph, data from four experimental realizations is shown at late
time (t = 35s). To understand the underlying dynamics leading to these configurations, it is
helpful to consider them as corresponding to the top view of the pictorial representation of the
sombrero effective potential sketched in Fig. 1(c). While in each realization the spin distribu-
tion is expected to acquire a “blob” shape, as marked by red in the green ring of that figure, and
settle in one of the many symmetry-breaking minima, many such blobs will form a symmetric
ring. Hence, while there is a preferred direction in each experimental realization individually,
once we average over multiple realizations, the transverse spin is symmetrically distributed
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times during the dynamical evolution. The error bands represent 80% confidence
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Figure 11: Data for the symmetry identity connecting two-, three-, and four-point
correlation functions calculated from experimental measurements. The top four sur-
face plots correspond to the right-hand side of the identity (19a), while the bottom
ones correspond to the left-hand side of the equation. One observes the resemblance
of these momentum-conserving surfaces, which involve different n-point correlation
functions.

point would do so.
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—F,, plane. Correspondingly, one observes the different experimental
realizations distributed along the ring as seen in the left graph of Fig. 8. However, by rotating
each individual realization by the global phase as shown in the middle of Fig. 8, there is a
nonzero expectation value (ﬁy) # 0 and (F,) = 0 when averaged over all the realizations.
This is shown in the right graph of Fig. 8, which gives the average over many realizations. We
emphasize that the global-phase rotation angle maintains translational invariance since this
angle does not introduce any spatial bias, whereas, e.g., rotating by the phase of any specific
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While the histograms of Fig. 7 and 8 illustrate the dynamical build-up of a macroscopic
spin length, a quantitative analysis of spontaneous symmetry breaking requires taking its fluc-
tuations into account as well. In particular, the fluctuations can be used to distinguish data
with underlying spontaneous symmetry breaking from situations where a macroscopic spin
length arises due to explicit symmetry breaking, as exemplified on the left of Fig. 2. The fluc-
tuations are encoded in the n-point correlation functions, which fulfill the symmetry identities
for spontaneous symmetry breaking as derived in Sec. 4.

We examine the witnesses ngr)[ - and QS:‘T)E oo according to Eq. (21) in Fig. 9. The minimum
value of these quantities, and any of the higher-order witnesses is zero, which corresponds
to a perfectly symmetric scenario including that of a spontaneously broken symmetric state,
while the upper value is unity corresponding to a maximally and explicitly broken state. One
observes that the value of the symmetry witnesses is clearly much smaller than unity, and
near zero within errors. This indicates the absence of explicit symmetry breaking, which in
principle can be improved with increasing statistics. We also give the average spin length (F y)
as an inset on top of the symmetry witness. The witness is seen to be near zero within errors
independent of the magnitude of (F, ). One observes that the magnitude of (F, ) settles at later
times, representing an order parameter for spontaneous symmetry breaking.

In order to test the momentum resolved symmetry identity (18), we consider the two- and
three-point correlation functions by averaging over many realizations of single-shot measure-
ments of the rotated F | (x). For more details on the data analysis procedure, see App. C. We
plot four different time steps in Fig. 10 and observe that the left- and the right-hand sides of
the identities are close within experimental errors at all times. Similarly, Fig. 11 shows mo-
mentum resolved surface plots for the symmetry identity (19a) connecting two-, three-, and
four-point correlation functions calculated from experimental measurements. We emphasize
once again that a priori there is no reason why these different n-point correlation functions
should obey such equalities, representing a quantitative manifestation of the emergence of
spontaneous symmetry breaking.

7 Discussion and outlook

While symmetries of a Hamiltonian that are explicitly broken by the initial state cannot be
restored on a fundamental level in closed quantum systems, we have shown that their effec-
tive restoration can be quantified in terms of symmetry identities for correlation functions. In
particular, our results demonstrate that properties involving lower n-point correlation func-
tions exhibit dynamical symmetry restoration earlier than those involving higher-order corre-
lations. Moreover, our findings for a spinor Bose gas show that an initial explicit symmetry
breaking gets restored on timescales much before the system thermalizes. These are impor-
tant ingredients for effective descriptions of nonequilibrium evolutions, which are typically
based on lower-order correlation functions, where kinetic theory or Boltzmann equations for
single-particle distribution functions extracted from two-point correlation functions represent
a paradigmatic example [27].

Though the correlation functions appearing in the symmetry identities (18), (19a), and
(19b) involve only few spatial points, in general they also test extremely nonlocal properties,
such as the ones encoded in their low-momentum behavior in Fourier space. This is crucial
for the identification of spontaneous symmetry breaking in the presence of a nonvanishing
expectation value for the zero mode and condensation phenomena, which we have analyzed
for the example of the spinor Bose gas. In particular, our approach is not based on a spatial
separation into subsystems, which can be difficult to define in fundamental descriptions, such
as relativistic theories, and gauge theories implementing local symmetries. Though we have
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not described the approach for local symmetries explicitly in this work, the formulation of
nonequilibrium (equal-time) versions of Ward identities for gauge theories [12,28-30] follows
along the same lines as we described.

Our approach provides a general pathway to extract the symmetry content of nonequilib-
rium quantum as well as classical many-body systems based on a hierarchy of n-point correla-
tion functions. This complements alternative approaches to the question of dynamical symme-
try restoration, such as the entanglement asymmetry between spatial subsystems introduced
as a measure of symmetry breaking in quantum systems [9, 10, 31-37], which has also been
experimentally applied [38-40]. It would be interesting to establish a direct link between our
symmetry witnesses based on correlations and the entanglement measure of symmetry break-
ing for quantum systems. While our work primarily focused on ultracold atoms, the approach
could also give important further insights into applications and experimental data across var-
ious systems, ranging from the detection of new nonequilibrium phases in condensed matter
systems to preheating dynamics in inflationary early-universe cosmology [1-3].
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A Experimental details and analysis

For our analysis, we use data obtained with a 8’Rb spinor BEC of ~ 10° atoms in the F = 1
hyperfine manifold with initial state |F,my) = |1,0). The atom cloud is contained in a quasi
one-dimensional trapping geometry, which consists of a dipole trap formed by a 1030 nm laser
beam with trapping frequencies (w”, w l) =21 x(1.6,160) Hz, and with two end caps formed
by beams at 760 nm, confining the atoms within the central part of the harmonic potential. The
longitudinal harmonic potential is constant to a good approximation over the employed sizes,
leading to a 1D box-like confinement, with size ~ 100 pm in the measurements used. The atom
cloud is subjected to a uniform magnetic field of B = 0.894 G throughout the experiment which
leads to a quadratic Zeeman splitting of gz ~ hx58 Hz. The spin dynamics is controlled via off-
resonant microwave dressing q = qg+qyw With ¢ < 2n|c;|. The initial quench is implemented
by the instantaneous switching on of the microwave power.

The transverse spin field F| = F, +iF,, readout is obtained via spin rotations and microwave
coupling to the initially empty F = 2 hyperfine manifold prior to a Stern—-Gerlach pulse and
spatially resolved absorption imaging. For a more detailed account on the experimental setup
and on how the measurements were obtained, see the supplementary material of Ref. [23].
While the spatial degree of freedom is continuous, it gets discretized in the analysis procedure
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Table 1: Number of experimental realizations.

Evolution time (s) Number of realizations

1 68
10 237
12 236
14 237
17 236
20 239
24 238
29 269
35 296
42 298
50 296

by the finite pixel size of the camera and imaging resolution (~ 1.2 pm per three pixels). Our
analysis focuses on the central ~ 100 pixels of the data since, as discussed in the main text in
Sec. 3, establishing long-range coherence across the entire system requires some time.

B Physical interpretation of the symmetry breaking perturbation

Since the spin operators F; are the generators of the rotational symmetry, they commute with
a symmetric Hamiltonian and consequently with the evolution operator as well. This allows
us to rewrite the generating functional as

Z,[J] = Tl’{u (t,to) efdx.](x).ﬁ‘(x)/z pAto efdx.](x).ﬁ‘(x)/ZuT (¢, to)}

=Tr{U (t, 1) p (DU (t, 1)}, (B.1)
where we have introduced the deformed initial density matrix

FA’io(J) = efde(x)-I:"(x)/Z ﬁto efde(x)-I:"(x)/2. (B.2)

Note that, provided the sources J; are real, the deformed operator ﬁ{o (J) is Hermitian. Fur-
thermore, under the same condition, it is also positive semidefinite. Indeed,

(W1 B, (D) = (4] pe, 1) 20, (B.3)

with |p,) = e &XIEFE/2 |y} and P, is positive semidefinite being a density matrix by as-
sumption. Thus, aside from normalization, §; satisfies all the conditions of a physical density
matrix. This suggests a simple interpretation of the equal-time generating functional Z,[J]
in the absence of explicit symmetry violations: it represents the evolution of the symmetric
density matrix p, that has been deformed by means of linear sources coupled to the spin
operators F; at the initial time t, thus breaking the symmetry.

Let us remark that the above simple physical picture is, to a certain extent, unique for spin
systems. The reason is that the linear-source term that enters the definition of the generat-
ing functional Z,[J] and serves as a symmetry-breaking perturbation commutes, in this case,
with the symmetric evolution operator I as the spin operators F; are also generators of the
symmetry group.
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Nevertheless, provided the linear source J in the definition of Z,[J ] is coupled to operators
that transform nontrivially under the symmetry group in question, the formalism developed
in this work can still be applied to define spontaneous symmetry breaking in nonequilibrium
systems, albeit lacking the appealing interpretation of the symmetry-breaking perturbation as
a deformation of the initial state.

C Calculation of correlation functions

Both experimentally and in TWA simulations, we have N, samples (measurements) of the

spin observable F; in datasets {Fl.(s) |s=1,...,N }, from which we infer n-th order correlation
functions as N
o LN
(Fy - F; )~ E;Fh - FY. (C.1)

The information in all of the n-point correlation functions is equivalently stored in the gen-
erating functional Z[J] as described in the context of Eq. (6). The TWA simulations involve
periodic boundary conditions, and while the experimental setup considered is a finite system
without periodic boundary conditions, we find approximate translational invariance, which
simplifies the calculation of connected correlators in momentum space. We first perform a
discrete Fourier transform (DFT) for the spin observables F; to momentum space

N
F& (p) =DFT,_, [F® (x)] = > e WFO()), (€2)
j=1

where p € [p;,2p;,...,Np;], pp = 2n/L, and L is the system size. Subsequently, we com-
pute connected correlation functions in momentum space using the Julia language package
Cumulants.jl [41].

We have verified that this procedure gives equivalent results to first computing connected
correlators in position space, and then performing the DFT. The former approach, however,
is much more memory-efficient. Indeed, computing higher-order correlation functions re-
quires a considerable amount of computer memory: for instance, a four-point cumulant is an
N x N x N x N array, so the amount of required memory scales quartically with the system
size. At the same time, as evident from Egs. (19a) and (19b), the four-point functions enter-
ing the symmetry identities have one of the momenta set to zero while the three remaining
ones have to add up to zero due to momentum conservation. Therefore, one only needs a
two-dimensional momentum-conserving surface, which can be encoded in an N x N matrix.
By computing correlators directly in momentum space we avoid the need to store the full
N x N x N x N array, and we can directly extract the relevant information by computing the
two-dimensional momentum-conserving surface. For our numerical data, we consider corre-
lation functions up to the inverse healing length, where the TWA description is expected to be
reliable. For the plots, we have binned every 5 data points, while the correlators themselves
were calculated on uncoarsened lattices.

Note that since perfect homogeneity and isotropy cannot be experimentally achieved,
numerical artefacts always enter analyses. More specifically, in Eq. (18), while Egg(—p, p)
and E((fg(p,—p) are manifestly real, the three-point function Eg% »(0,p,—p) has in general a
nonzero imaginary part. However, for the experimental data, the imaginary part is orders of
magnitude below the real part, therefore the magnitude of the correlator is dominated by the
contribution from the real part. We similarly observe this with numerical data, apart from the
very early initial times of a few t,, where the imaginary part is more pronounced. In this case,
and in all other cases, the magnitude of complex quantities is plotted.
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