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Abstract

In recent work, we demonstrated that a spectral variety for the Berry connection of a 2d
N = (2, 2) GLSM with Kähler vacuum moduli space X and Abelian flavour symmetry is
the support of a sheaf induced by a certain action on the equivariant quantum cohomol-
ogy of X . This action could be quantised to first-order matrix difference equations obeyed
by brane amplitudes, and by taking the conformal limit, vortex partition functions. In
this article, we elucidate how some of these results may be recovered from a 3d perspec-
tive, by placing the 2d theory at a boundary and gauging the flavour symmetry via a bulk
A-twisted 3d N = 4 gauge theory (a sandwich construction). We interpret the above ac-
tion as that of the bulk Coulomb branch algebra on boundary twisted chiral operators.
This relates our work to recent constructions of actions of Coulomb branch algebras on
quantum equivariant cohomology, providing a novel correspondence between these ac-
tions and spectral data of generalised periodic monopoles. The effective IR description
of the 2d theory in terms of a twisted superpotential allows for explicit computations of
these actions, which we demonstrate for Abelian GLSMs.
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1 Introduction

The study of relations between observables in supersymmetric quantum field theories (QFTs)
enjoying an effective description governed by some geometric space X , and cohomology theo-
ries of X , has a long and rich history. Recently, in the context of QFTs endowed with a flavour
symmetry T = U(1)n, the geometry of Berry connections over deformation parameters for
T has been demonstrated to be a useful tool to push this relation further in several distinct
directions [1–4]. In this article, we elaborate upon elements of [3, 4] and uncover relations
with other remarkable topics.

The starting observation of [3] was that Berry connections for 2d GLSMs T2d quantised on
a circle and with such a flavour symmetry T are generalised periodic monopoles of Cherkis-
Kapustin type [5, 6]. It was then observed that if T2d flows to a non-linear sigma model with
Kähler target X , the spectral variety of this monopole is the support of a sheaf defined by
an action of a certain algebra on QH•T (X ). The algebra could be identified with the algebra
of functions on a 3d N = 4 Abelian Coulomb branch C[MC]. Moreover, building on work
relating periodic monopoles to certain difference modules [7], the variety could be quantised
by certain first-order matrix difference equations for brane amplitudes or, in the conformal
limit, vortex or hemisphere partition functions.

The main goal of this short article is to show that the identification of the above algebra with
C[MC] can be taken seriously, and fruitfully so. The basic idea, inspired by previous works in
physics and mathematics [8,9], is to represent the twisted 2d GLSM (which for simplicity we
take to be Abelian and with compact target) in terms of a so-called sandwich construction.1

1In the generalised symmetry literature, these sandwich constructions have recently gained popularity, see [10]
for a seminal paper.
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More specifically, we consider (A-twisted) 2d GLSMs and represent them in terms of an (A-
twisted) 3d N = 4 pure gauge theory with gauge group T on a geometry I ×R2 where I is an
interval at whose ends two distinct 2d N = (2,2) boundary conditions are prescribed:

• “Right boundary”: the 3d vector multiplet is given Neumann boundary conditions, en-
riched by the presence of a 2d theory T2d/T obtained from T2d by gauging T .

• “Left boundary”: the 3d vector multiplet is given a Dirichlet boundary condition, fixing
the complex scalar ϕ (in a particular choice of complex structure) to a fixed value, and
the gauge symmetry T is broken back to a global symmetry T .

Since the length of the interval I is exact, one can squash it to recover the original GLSM. The
setup can further be subjected to an Omega background.

The 3d description is illuminating in that the bulk Coulomb branch operators can be made
to act on either boundary, with actions that encode the ones encountered in the description
of the Berry connection spectral data. In fact, by requiring a consistent action on the left and
right boundary, we demonstrate that

• In the absence of the Omega deformation, the bulk Coulomb branch operators can be
brought to the boundary to act on the twisted 2d chiral ring, which can be identified
with QH•T (X ). The boundary twisted chiral ring therefore forms a module over the bulk
Coulomb branch algebra, with support on the image of the boundary condition, which
coincides with the spectral variety of the Berry connection.

• In the presence of the Omega deformation, the above statement is quantised, and
the space of boundary twisted chiral operators determines a module for the quantised
Coulomb branch algebra Ĉε[MC]. Consistency of the action on the left and right bound-
aries leads to difference equations equivalent to those derived in [3,4].

Our motivation to study this alternative interpretation of spectral varieties and difference
equations is at least twofold. On the one hand, we demonstrate very concretely why actions of
Coulomb branch operators on the equivariant quantum cohomology of the target of some 2d
(2,2) GLSM are related to spectral data of generalised periodic monopoles. Thus, the physical
setup provides an explicit relationship between two so far distinct important topics in mathe-
matics.2 On the other hand, the novel perspective opens the way to different computational
techniques, mainly due to the fact that in the infrared the theory is controlled by an effective
twisted superpotential fWeff. This can in turn be used to build spectral varieties for generalised
periodic monopoles that arise as Berry connections, as well as their quantisations.

This new vantage point is amenable to obvious generalisations. Having discussed how
to couple the 2d GLSMs to a bulk pure gauge theory, it is only natural to ask what happens
when the theory is coupled to more general 3d gauge theories. Such questions are related
to actions of Coulomb branch operators on QH•T (X × L) where X is the compact target of the
GLSM and L is some affine space, which are currently being discussed in the mathematical
literature [9, 12–14]. In this article, we demonstrate how one can consistently consider such
richer setups and we work out some examples based on physical intuition and techniques.
However, we conclude that for the sake of the difference equations considered here, these
more general setups do not add further essential ingredients.

2Notice that spectral data for generalised periodic monopoles is in particular part of the holomorphic Floer
theory programme of Kontsevich and Soibelman [11]. See [3] for some remarks on other connections of this to
generalised cohomology theories.
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Further directions. An obvious direction for further investigation is to consider what hap-
pens when one replaces either the bulk or boundary theory by one with a non-Abelian and
gauge group. Generalising T2d to a non-Abelian GLSM should be relatively straightforward,
and the nature of the generalisation is mostly technical.3 However, the interpretation of this
set-up generalised to a non-Abelian bulk gauge group from the point of view of a Berry con-
nection is not clear, and we hope to return to this interesting question in future work.4 Finally,
as noted already in [3], we expect that the difference equations studied in this work to arise as
a 2d limit of the qKZ equations obeyed by vertex functions i.e. holomorphic blocks i.e. hemi-
sphere partition functions in 3d. Those equations should also admit an interpretation as an
action of bulk 4d operators on those of a 3d theory living on its boundary.

Summary. This article is structured as follows. In Section 2 we review the setup of this
work, as well as the relation between spectral data of Berry connections and difference equa-
tions for vortex or hemisphere partition functions. In Section 3 we explain how the spectral
variety of the Berry connections can be identified with the image of the right boundary con-
dition described above inside the 3d Coulomb branch. In Section 4 we introduce an Omega
background and explain in detail how the (enriched) boundary conditions now define mod-
ules for the quantised bulk Coulomb branch algebra, and how the difference equations can be
extracted from these modules. In Section 5 we explain how these results can be extended to
more general 3d N = 4 gauge theories with matter coupled to boundary 2d N = (2,2) GLSM.
Throughout the article, we discuss in detail the example of SQED[N], or the CPN−1 sigma
model, whose associated Berry connection is a smooth SU(N) periodic monopole [3].

2 Berry connections & difference equations

Let T2d be a 2d GLSM with gauge group G and an Abelian flavour symmetry T ∼= U(1)n. For
convenience, we often take the GLSM to be Abelian, but much of the ensuing discussion applies
to non-Abelian GLSMs as well. We suppose there is an IR phase in which the GLSM flows to
a nonlinear sigma model (NLSM) to some Kähler variety X , which unless otherwise stated we
will take to be compact. We can introduce a twisted complex mass m ∈ tC

∼= R2n for T , with
components that we will denote by mi , and assume that at a generic value of m the theory
has isolated, massive vacua. In a different phase, the vacua are determined by the low energy
effective twisted superpotential fWeff(σ, m), which is a function of the (Abelianised) complex
scalar σ in the Cartan of G, and m. This object turns out to be key in our constructions, since
the twisted chiral ring is renormalisation invariant and thus may be determined explicitly in
terms of fWeff(σ, m).

2.1 Spectral variety & quantum cohomology

Consider now the 2d GLSM T2d on a cylinder S1×R. Besides the complex mass m ∈ R2n, one
can introduce an (S1)n-valued holonomy, resulting in the space of deformation parameters

M ∼= (S1 ×R2)n . (1)

We will henceforth introduce coordinates (t i , wi) on each copy of S1×R2, where wi = −2imi .

3In particular, the boundary twisted chiral ring (and quantum K-theory of X ) is modified to symmetric polyno-
mials in the (boundary) gauge fugacities modulo the Bethe/vacuum equations.

4During the completion of this work, we have been made aware of upcoming work on these sandwich construc-
tions with a non-Abelian bulk gauge group based on extensions of quasi-maps moduli spaces [15]. It would be
very interesting to investigate whether these new approaches can shed light on such questions.
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The space of supersymmetric ground states in QA cohomology forms a bundle

E→ M (2)

of rank N . This is endowed with a Hermitian metric h, unitary connection Ai and anti-
Hermitian operator φi . The t t∗ equations obeyed by the Berry connection are [16]

�

D̄i , C j

�

= 0=
�

Di , C̄ j

�

,
�

Di , Dj

�

= 0=
�

D̄i , D̄j

�

,
�

Di , C j

�

=
�

Dj , Ci

�

,
�

D̄i , C̄ j

�

=
�

D̄j , C̄i

�

,
�

Di , D̄j

�

= −
�

Ci , C̄ j

�

,

(3)

where
Di = ∂wi

− Awi
, D̄i = ∂̄w̄i

− Āw̄i
,

Ci = Dt i
− iφi , C̄i = −Dt i

− iφi ,
(4)

and φi is an anti-Hermitian adjoint Higgs field. In the n= 1 case, these equations become

F = ⋆Dφ , (5)

and so the Berry connection is a generalised periodic monopole on M .
By working in the cohomology of the supercharge QA we have picked a so-called mini-

complex structure on each copy (S1 × R2) of M . This implies in particular that (S1 × R2) is
endowed with a complex structure on R2 ∼= C. For later convenience, we denote the space M
endowed with this structure by M0.

2.1.1 Spectral variety

The bundle E|t i=t∗i
restricted at a fixed value of all of the t i , say t i = t∗i , has n commuting

Dolbeault operators ∂w̄i
that endow it with a holomorphic structure. Due to (7), one can

consider parallel transport of its holomorphic sections with respect to ∂t i
to obtain holomorphic

sections at different values of the t i .
The equations (3) imply in particular that the operators

∂t i
:= Dt i

− iφi , ∂wi
:= Dwi

, (6)

satisfy
�

∂t i
,∂w̄ j

�

= 0 . (7)

This endows the bundle with a so-called mini-holomorphic structure [7]. Thus, we can parallel
transport holomorphic sections at t i = 0 around any of the n cycles S1. This defines n commut-
ing C[w]-linear automorphisms of E|t i=0, which we denote by Fi(wi).5 It is therefore possible
to define what was called in [3] the Cherkis-Kapustin spectral variety. This is a Lagrangian
subvariety of (C∗ ×C)n, which is characterised by the vanishing of n rational functions

Li(pi , wi) = det(pi1− Fi(wi)) . (8)

One of the results of [3] is that the spectral variety L can be computed by starting from
the vacuum (Bethe) equations of the theory (now written for convenience in terms of mi)

e
∂fWeff(σ,m)
∂σa = 1 , a = 1 . . . r , (9)

5As we will comment further in Section 3, in the presence of a non-compact target one ought to consider sections
that are meromorphic, and the automorphisms Fi(wi) may be rational.
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and supplementing them with the equations

e
∂fWeff(σ,m)
∂mi = pi , i = 1 . . . n , (10)

where pi are the ‘momenta’ conjugate to mi . More precisely, it was argued that upon elimi-
nation of σa from this system of equations one can recover (8). Although reviewing the full
argument goes beyond the scope of this article, this is essentially because the holonomies
around the full circle can be computed in the large radius limit of the cylinder. In this limit,
the ground states are in correspondence with the vacua of the theory. The eigenvalues of Fi(w)
can then be computed by evaluating an appropriate operator at the vacua. By inspecting the
Lagrangian, it is possible to check that the relevant operator is given by (10).

2.1.2 Quantum cohomology

Under our assumptions the equations (9) correspond to the ring relations of the equivariant
quantum cohomology ring QH•T (X ), i.e. the twisted chiral ring of T2d (the ring of operators in
QA-cohomology) [17]. As argued in [3] and reviewed in [4], an interpretation of the spectral
variety can be given as follows. First, notice that there is an action of the ring of functions
(wi , pi), i ∈ {1, . . . , n} on (T ∗C∗)n on QH•T (X ), where pi acts by means of the identification

pi = Fi(w) . (11)

This action determines a sheaf over (T ∗C∗)n, and by definition, the spectral variety corresponds
to the support of this sheaf. It will be the goal of Section 3 of this article to offer another
interpretation of (T ∗C∗)n in terms of the Coulomb branch of a pure Abelian 3d N = 4 theory,
and to identify the above action with the one studied in the work [9]. Before doing so, we will
briefly review a set of difference equations for hemisphere or vortex partition functions that
can be obtained by deforming the supercharge QA to a P1 family of supercharges Qλ.

2.1.3 Example: SQED[2]

We reproduce for the reader’s convenience an example from [3,4], namely SQED[2]. This is a
U(1) GLSM with two chiral multiplets Φ1, Φ2 of charges (+1,+1) and (+1,−1) under G × T .
In the IR this becomes a CP1 σ-model. The effective twisted superpotential is given by

fWeff = −2πiτ(ε)σ+ (σ+m)
�

log
�σ+m
ε

�

− 1
�

+ (σ−m)
�

log
�σ−m
ε

�

− 1
�

. (12)

Here τ(ε) is the renormalised complex FI parameter

τ(ε) = τ0 +
2

2πi
log(Λ0/ε) , (13)

where Λ0 is a fixed UV energy scale, ε the RG scale and τ0 the bare complexified FI parameter.
The vacuum equations describe the quantum equivariant cohomology QH•T (CP

1):

1= e
∂fWeff
∂ σ = q−1(σ+m)(σ−m) , (14)

where we have defined the RG invariant combination q = ε2 e2πiτ0 . Computing the conjugate
momentum

p = e
∂fWeff
∂m ⇒ σ =

m(p+ 1)
p− 1

, (15)

and substituting into (14) we obtain

L(m, p) = p2 − 2(1+ 2m2q−1)p+ 1= 0 . (16)
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2.2 Difference equations for branes

The results in the previous section were based on an interpretation of the space of supersym-
metric ground states in QA cohomology as a mini-holomorphic vector bundle E→ M0. In [3]
a P1-family

Qλ :=
1

p
1+λ2

(QA+λQ̄A) , λ ∈ P1 , (17)

of supercharges was more generally considered. One can describe the bundle of supersym-
metric ground states as the vector space of states in Qλ cohomology, which corresponds to
endowing E→ Mλ with another mini-holomorphic structure.

More concretely, consider the parametrisation

(t0,i ,β0,i) =
1

1+ |λ|2
�

(1− |λ|2)t i + 2Im(λw̄i), wi +λ
2w̄i + 2iλt i)

�

. (18)

In analogy with (6) one can define operators

∂t0,i
:= Dt0,i

− iφi , ∂β̄0,i
:= Dβ̄0,i

, (19)

which commute because of the Bogomolny equations
�

∂t0,i
,∂β̄0,i

�

= 0 . (20)

In a way similar to the above, one can derive 2iλ-difference C(β0,i)-modules (Fi , V ) where

• V corresponds to the sections of the bundle restricted to t0 = 0 that are holomorphic
with respect to ∂β̄0,i , whereas

• Fi is defined by parallel transport with respect to ∂t0,i , composed with a pullback by a
shift Φi : β0,i 7→ β0,i + 2iλ in order to obtain a genuine automorphism of the bundle
(notice there is no shift for λ= 0, as expected for consistency with the previous case).

Details of the construction of these modules and relations to the work of Mochizuki [7] on the
classification of periodic monopoles can once again be found in [3,4]. Here we simply remark
that the module is a 2iλ-difference module since now for |s〉 ∈ V , f ∈ C(β0,i)

Fi(β0)( f |s〉) = Φ∗i ( f )Fi(β0) |s〉 . (21)

Moreover, by considering states on the cylinder generated by a D-branes preserving Qλ, Q†
λ

we claimed in [3,4] that one can construct states such that

Fi |D〉= |D〉 . (22)

Picking a basis |aλ〉 for the holomorphic bundle E|t0,i=0, from (22) one can derive

Φ∗i 〈a
λ|D〉= G(i)ab(β0) 〈bλ|D〉 , (23)

where for convenience we suppressed the dependence of G(i)ab on λ. Here G(i)ab(β0) is a holo-
morphic function in β0,i .
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2.3 Difference equations for hemisphere partition functions

Instead of considering in any detail the difference equations (23), in this article, we restrict
ourselves to difference equations that can be derived from those in the conformal limit. This
corresponds to taking

limc : λ→ 0 , L→ 0 ,
λ

L
= ε fixed, (24)

where these difference equations degenerate into difference equations for hemisphere or vor-
tex partition functions. These enjoy the additional feature that they can be computed exactly
via localisation.

We denote by ZD[Oa, m] the hemisphere partition function on HS2 [18–20], with an in-
sertion of a twisted chiral ring operator Oa at the tip. The radius of HS2 is identified with 1

ε .
The boundary condition D becomes a B-brane. In the case where all the 2d chiral multiplets
are given Neumann boundary conditions, and the JK residue selects a pole associated to some
vacuum α of the 2d theory, this coincides with the vortex partition function Zα[Oa, m] of T2d
computed in an Omega background on R2

ε, with a massive vacuum α at infinity. In either case,
the difference equations (23) reduce in this limit to [3]:

p̂i ZD[Oa, m] = ZD[Oa, m+ εei] = eG(i)ab(m,ε)ZD[Ob, m] , (25)

where eG(i), i ∈ {1, . . . , n} is a matrix of rational functions in m,6 the conformal limit of the
matrices G, and ei is a fundamental weight or unit vector in tC. To the best of our knowledge,
this is a new result on difference relations satisfied by these partition functions. It was further
argued that

lim
ε→0

eG(i)(m,ε) = F (i)(m) . (26)

In particular, the difference equations may be regarded as a quantisation of the spectral variety
Li(m, p) = 0. Rather nicely, due to the exactly calculable nature of hemisphere and vortex par-
tition functions, this gives a recipe, arising from 2d GLSMs, to construct solutions to difference
equations arising as quantised spectral varieties of generalised periodic monopoles.

Note that the equations (25) are independent of the brane D or vacuum α. This suggests
that they are solely a property of the chiral ring, and that a construction similar to the one
in Section 5 of [21], which utilises a 3d-2d bulk-boundary system (sandwich construction) to
represent a 2d GLSM, may recover them. We will show this in the subsequent sections of this
article. In turn, this will allow us to make further contact with the pioneering work on actions
of Coulomb branch algebras on the quantum cohomology [9].

2.3.1 Example: SQED[2]

Returning to the example in Section 2.1.3, we consider the following thimble branes (this is
not actually important, but illustrates that the same difference equations hold for different
branes):

D1 : Φ1,Φ2 Neumann, D2 : Φ1 Dirichlet, Φ2 Neumann. (27)

The twisted chiral ring of supersymmetric QED is generated by Oa ∈ {1,σ} and is subject to
the relation (14).

The hemisphere partition functions are

ZD1
[Oa] =

∮

C1

dσ
2πiε

e−
2πiστ
ε Γ

hσ+m
ε

i

Γ
hσ−m
ε

i

Oa ,

ZD2
[Oa] =

∮

C2

dσ
2πiε

e−
2πiστ
ε
(−2πi)e

πi(σ+m)
ε

Γ
�

1− σ+m
ε

� Γ
hσ−m
ε

i

Oa ,

(28)

6It also depends on the Kähler parameter τ, which we treat as a constant.
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where C1 encloses the poles of Γ [σ+m
ε ] at σ = −εk − m and C2 encloses the poles at

σ = −εk+m, where k ∈ N0. Here, τ= τ(ε) is the renormalised FI parameter (13). Note ZD1

coincides with the vortex partition function computed on the Omega background on R2
ε [22].

Performing the contour integration we obtain

ZD1
[1] = e

2πimτ
ε Γ

�

−
2m
ε

�

0F1

�

1+
2m
ε

; e2πiτ
�

,

ZD1
[σ] = −mZD1

[1] + ε e2πiτe
2πimτ
ε Γ

�

−1−
2m
ε

�

0F1

�

2+
2m
ε

; e2πiτ
�

,
(29)

and
ZD2
[Oa] =

�

1− e
4πim
ε

�

�

ZD1
[Oa]

� �

�

m 7→−m . (30)

Using the standard hypergeometric identity

0F1(b, z) = 0F1(b+ 1, z) +
z

b(b+ 1)0F1(b+ 2, z) , (31)

it is not hard to check that

p̂

�

ZDα[1]
ZDα[σ]

�

= eG(m,ε)

�

ZDα[1]
ZDα[σ]

�

, (32)

for both α= 1,2, where:

eG(m,ε) =

�

1+m(2m+ ε)q−1 (2m+ ε)q−1

(2m+ ε)(1+m(m+ ε)q−1) 1+ (m+ ε)(2m+ ε)q−1

�

. (33)

It is easy to see that these equations are compatible with the classical limit (8), see [3,4].

3 Coulomb branch actions & spectral varieties

In this section, we explain how to derive the results summarised above by representing the
2d GLSM T2d in terms of a 3d sandwich construction. The basic idea [9, 21] is to gauge the
flavour symmetry T of the 2d GLSM and to couple it to a topologically twisted pure 3d gauge
theory supporting another boundary condition where the gauge symmetry is broken back. We
picture the sandwich construction in Figure 1.

Our starting point is a topologically A-twisted pure Abelian 3d N = 4 gauge theory T3d
with gauge group T ∼= U(1)n. For our purposes, the topological A-twist corresponds to con-
sidering operators in the cohomology of the mirror Rozansky-Witten supercharge [23], which

O2d

Dm : ϕ|= m N ⋄ T2d

O3d

T3d

Figure 1: The sandwich construction realising the A-twisted T2d theory as a pure 3d
N = 4 Abelian gauge theory with enriched boundary condition.
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we denote QC . The Coulomb branch of pure Abelian gauge theory, whose ring of functions
is in the cohomology of QC , is not quantum-corrected (see e.g. [24]). The ring of functions
comprises half-BPS monopole operators v±,i for i = 1, . . . , n, where v±,i are defined to impose
that the first Chern class of the gauge bundle on a 2-sphere surrounding them is ±1. Their
semi-classical expression is

v±,i = e1/g2(σi+iγi) , (34)

where γi are the dual photons and g2 is the coupling, and so the monopole operators satisfy

v+,i v−,i = 1 . (35)

In addition, there are n complex valued scalars in the vector multiplets, which we denote as is
customary by ϕi or collectively ϕ ∈ Cn. The Coulomb branch can therefore be identified with

MC = T ∗(C∗)n = (C×C∗)n , (36)

precisely the space in which the spectral varieties (8) are holomorphic Lagrangian subvari-
eties.7

In order to engineer the GLSM via a sandwich construction, we can consider this pure
gauge theory on a geometry I × R2, where I is a finite interval with coordinate t ∈ [0, L],
and impose certain boundary conditions. Since the length of the interval is immaterial in the
topological twist, we will be able to shrink its size to zero, leading to a 2d theory. The (2, 2)
boundary conditions relevant to reproduce the 2d GLSM are:

• At the left boundary t = 0 , we prescribe Dirichlet boundary conditions Dm for T3d,
which in particular fixes the complex scalar in the vector multiplet ϕ

ϕ|t=0 = m . (37)

The remainder of the fields are fixed by supersymmetry, see [8] for further details. In
particular, the components of the gauge field A|| parallel to the boundary are set to zero,
and the real scalar in the 3d vector multiplet is prescribed a Neumann-like boundary
condition we do not reproduce here. The (bulk) gauge symmetry T is explicitly broken
at this boundary, to a flavour symmetry.

• At the right boundary t = L, we give Neumann boundary conditions N for the 3d vector
multiplet of T3d. In the absence of any boundary matter, this leaves ϕ unconstrained at
the boundary, but fixes the monopole operators8

v±|t=L = 1 . (38)

We will instead place a 2d theory T2d/T at this boundary that is obtained from the GLSM
T2d by gauging the flavour symmetry T via the 3d vector multiplet. We will refer to this
enriched Neumann boundary condition as N ⋄ T2d.

Flowing to the IR, we thus have a (2,2) Neumann boundary condition for the gauge
multiplet coupled (in the IR description) to a boundary 2d twisted chiral multiplet val-
ued in the adjoint of the 2d gauge group, with bottom component σ, via an effective
twisted 2d superpotential fWeff(σ,ϕ). This is the same superpotential as before but with
m replaced with ϕ.

7The symplectic structure on the Coulomb branch can be determined by means of a secondary product [25].
8We will not consider the optional coupling of the bulk gauge fields to a boundary 2d FI parameter in this work.
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It is straightforward to see that by shrinking the interval to zero, one obtains the 2d GLSM
T2d. This follows from the fact that the 3d vector multiplet is assigned N at t = L, and Dm
at t = 0, and so when collapsing the interval the symmetry T is un-gauged and ϕ fixed to the
value m.

In the following, we will stick for simplicity to Abelian 2d GLSMs T2d , with chiral multiplets
Φs, s = 1, . . . , N , and Abelian gauge group G2d = U(1)N . We let Qa

s and qi
s be the gauge (we

mean the 2d gauge group G2d here) and flavour T charges of these chirals, so that the effective
mass of Φs is

Ms(σ,ϕ) =
∑

a

Qa
sσa +

∑

i

qi
sϕi . (39)

3.1 Coulomb branch image

We can now describe how one can recover the spectral curve (8) in a natural way from this
sandwich representation of the model. Recall that MC = (T ∗C∗)n, the bulk Coulomb branch,
is precisely the space in which the spectral variety is defined as a holomorphic Lagrangian
subvariety. Note also that as the enriched boundary condition N ⋄ T2d preserves N = (2, 2)
supersymmetry, on general grounds, in the infrared it must also cut out a holomorphic La-
grangian subvariety of MC , sometimes called the image of the boundary condition. We will
now show that these two holomorphic Lagrangian subvarieties are the same.

The image of the enriched boundary condition can be computed using the arguments of [8].
Viewing the bulk 3d theory as a 2d (2,2) theory with an infinite number of fields parameterised
by the perpendicular coordinate to the boundary, there is a bulk (twisted) superpotential

W3d =

∫

d t ϕ · ∂t(σ3d + iγ) . (40)

In the absence of any boundary matter, the Neumann boundary conditions N impose (the
symbol | here simply means restriction to the right boundary):

σ3d + iγ| ∈ 2πi g2Zn , (41)

or equivalently
v±,i = 1 . (42)

We now consider the effect of coupling the bulk theory to T2d/T , our original 2d GLSM with
the flavour symmetry gauged by the bulk 3d gauge symmetry. As usual, the presence of the
chiral multiplets of T2d/T induces a 1-loop shift of the effective twisted superpotential [26,27]:

fWeff[σ,ϕ|] = −2πiτ ·σ+
∑

s

Ms(σ,ϕ|)(log Ms(σ,ϕ|)− 1) , (43)

where τa is the renormalised 2d FI parameter for the ath U(1) factor of G2d. This is identical
to the effective twisted superpotential for the original 2d theory T2d , but with m replaced by
the dynamical boundary value of ϕ.

The effect of this boundary twisted superpotential is to introduce a delta function contri-
bution to the bulk twisted F-terms (40) which vanish only if the boundary conditions are now
deformed to:

v∓,i|= e±
∂fWeff
∂ ϕi , e

∂fWeff
∂ σa = 1 , (44)

that is
v∓,i|=

∏

s

(Ms)
±qi

s , for i = 1, . . . , n ,

e−2πiτa

∏

s

(Ms)
Qa

s = 1 , for a = 1, . . . , N .
(45)
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The boundary condition for ϕ is deformed in a way to be consistent with the second equation
above.9

We see that, as expected, these are precisely the spectral variety equations discussed in
Section 2 and reproduced in particular in (10), where v∓ plays the role of the momenta p±1,
and ϕ that of m. Intuitively, as we will elaborate upon shortly, this is a consequence of the
fact that the monopole action at the boundary of the sandwich construction is responsible for
shifting the holonomy; the identification (11) therefore tells us that Fi(w) can be obtained by
acting with monopole operators at the boundary.

3.1.1 Boundary module

The algebra of boundary twisted chiral operators (those in the cohomology of QC |=QA) now
form a module for the bulk Coulomb branch algebra. The algebra of boundary local operators
are the polynomials in σ,ϕ up to the relations imposed by the boundary vacuum relations

R2d = C[σa,ϕi]/{I} , (46)

where I denotes the ring relations imposed by the 2d vacuum equations e
∂fWeff
∂ σa = 1. These are

precisely the twisted chiral ring relations for the original 2d GLSM, with equivariant parameter
m replaced by the dynamical bulk complex scalar ϕ|. Thus they reproduce the quantum equiv-
ariant cohomology QH•T (X ) of the Higgs branch X of the GLSM. This is a quantum deformation
of the (singular) cohomology ring via the contribution of higher degree pseudo-holomorphic
curves to correlation functions [28].

The bulk-boundary map of operators (44) show that the boundary local operators R2d
naturally form a module over the bulk operatorsC[MC], with support precisely on the spectral
variety (8), which is as previously mentioned a holomorphic Lagrangian subvariety. There is
a subtlety that is worth mentioning. The bulk monopole operators v±,i act at the boundary by

multiplication of an element of R2d by e±∂fWeff/∂ ϕi . Näively, this may seem to take us out of the
ring C[σa,ϕi], since this expression can contain denominators (depending on the effective
twisted superpotential). However, physically we expect that since the bulk-boundary map of
operators is well-defined, i.e. bringing a bulk twisted chiral operator to the boundary results in
a boundary twisted chiral operator, and so that this module action is well-defined. Concretely,
it means that we expect that after acting with v±,i , we may re-represent the result as an element
of C[σa,ϕi] by using the ring relations I.10 Below we show how this works in an example.

3.1.2 Example: SQED[2]

For the SQED[2] example considered in Sections 2.1.3 and 2.3.1, it is sufficient to note that

v−| · 1= e
∂fWeff
∂ ϕ =

σ+ϕ|
σ−ϕ|

. (47)

9Notice that these equations are in exponential form, which takes into account the Lagrangian multiplier one
must add to the action in order to impose the Dirac quantisation conditions for both 3d and 2d gauge fields, once
the field strengths are taken to be components of 2d twisted chiral multiplets and unconstrained [17].

10More precisely, this is true when X is compact. When X is non-compact, the result may contain denominators
in ϕi . This is due to the fact that the sandwich system, as an effective 2d theory, is no longer gapped at certain
values of ϕ (m once we sandwich). From the perspective of the Berry connection described in Section 2, it is
because e.g. the action of v−,i implements the parallel transport Fi . For non-compact X , the Berry connection is
singular at the mass parameters w (or m) where the theory is no longer gapped. The parallel transport at these
values will thus be singular, and therefore the expansion of the action of v−,i on a basis of the twisted chiral ring
will have coefficients rational in ϕ. We hope to return to the bulk-boundary description of the case where X is
non-compact in future work.
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Naïvely, the action has brought us outside of the ring of boundary local operators (since there
is a denominator on the RHS of (47)). However, using the chiral ring relations (the same as
those presented in (14), but with m replaced by ϕ) we get

v−| · 1=
σ+ϕ|
σ−ϕ|

∼ e−2πiτ′(σ+ϕ|)2 = e−2πiτ′(σ2 + 2σϕ|+ϕ|2)

∼ (1+ 2e−2πiτ′ϕ|2)1+ 2ϕ|e−2πiτ′σ .
(48)

Note that this is consistent with the ε→ 0 limit of (33). The action of other bulk operators on
other elements of the boundary module can be computed similarly.

4 Omega deformation & difference equations

Above we explained how to obtain the Cherkis-Kapustin spectral variety associated to a Berry
connection of a 2d GLSM, which was defined in Section 2.1 using the t t∗ geometry meth-
ods uncovered in [3, 4], by considering instead a 3d sandwich representation of the model.
The advantage of this viewpoint is that it makes the connection to the action of 3d N = 4
Coulomb branch chiral ring on the quantum equivariant cohomology of the target of the 2d
GLSM particularly manifest. The aim of this section is to explain how the difference equa-
tions for vortex partition functions reviewed in Section 2.3 can be recovered from a closely
related setup. Whether this can be done for the more general difference equations presented
in Section 2.2 is an interesting question that we leave to future work.

4.1 Setup

To derive the difference equations, we introduce in the previous setup an Omega background.
This is a deformation of the Lagrangian and in particular of the supercharge QC (whose coho-
mology ring we recall corresponds to the 3d N = 4 Coulomb branch operators), such that

Q2
C = εLV , (49)

where V generates rotations about the origin in R2. At the boundary QC | = QA restricts to
the 2d A-model supercharge, and thus this bulk Omega deformation reduces to the 2d Omega
deformation at the boundary. We will denote the space-time I × R2 with the above Omega
deformation inserted along R2 by I ×R2

ε, or R+ ×Rε when we consider the same setup on a
half-space.

The Omega deformation effectively reduces the system to a quantum mechanics along the
fixed axis of rotation, and the bulk Coulomb branch operators must be inserted along this axis.
The algebra of bulk operators is therefore deformed to a non-commutative operator algebra
Ĉε[MC] which reduces to C[MC] as ε→ 0. For the pure Abelian gauge theory we consider
here, this is specified by the relations

[ϕ̂i , v̂±, j] = ±εδi j v̂±,i , v̂+,i v̂−,i = 1 . (50)

Clearly, in the presence of the Omega deformation, the previous notion of boundary twisted
chiral ring (which was found to be isomorphic to the quantum equivariant cohomology ring
of the target of the GLSM) ceases to exist. However, the bulk quantised Coulomb branch
algebra still acts on the space of 2d twisted chiral operators on the boundary supporting the
gauged 2d GLSM T2d/T . Thus, this boundary still defines a certain module for the quantised
algebra. This module can be studied along the lines of the modules described in [8]. More
mathematically, they should be related to constructions proposed in Section 7 of [9]. In this
article, we analyse these modules with the purpose of recovering the difference equations for
vortex partition functions of Section 2.3.
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4.1.1 Right boundary module

For simplicity, we restrict the following discussion to n= 1. For general n, one simply needs to
introduce appropriate (and obvious) indices. Let us first consider the system on R+×Rε, with
the enriched Neumann boundary condition N ⋄ T2d . To be a little more precise, notice that
for the effective quantum mechanics resulting from the Omega deformation to make sense,
we also need to impose a boundary condition at infinity of R2

ε. We can choose this to be
a fixed vacuum α.11 Then the boundary condition N ⋄ T2d we will generate a state in the
supersymmetric quantum mechanics, which we can denote by

|N ⋄ T2d ,α〉 . (51)

Specifically, there should be as in [21] a canonical map of modules

l : M →Hα , (52)

where Hα is the Hilbert space of the theory on R2
ε where the fields are required to lie in the

vacuum α at spatial infinity, and M is the module of boundary local (twisted chiral) operators
supported by the enriched boundary condition N ⋄T2d . The map is simply given by the inser-
tion of the respective local operator O2d at the boundary. It is canonical because the identity
insertion simply corresponds to the state generated by the boundary condition:

l(1) = |N ⋄ T2d,α〉 . (53)

We will more generally denote the image of l(O2d) in Hα by

l(O2d) := |N ⋄ T2d,α,O2d〉 , (54)

so that in particular
|N ⋄ T2d,α,1〉= |N ⋄ T2d,α〉 . (55)

Consider now a C[ϕ] basis for the module of boundary local operators; which is simply
a basis for the twisted chiral ring of the original 2d theory T2d (since we obtain this from the
local operators supported at the boundary by setting ϕ to be a constant). This will consist of
polynomials (or symmetric polynomials in the non-Abelian case) in the complex scalars σ. We
denote such a basis by {Oa} as before.

We can consider the action of bulk Coulomb branch operators on such a basis, by bringing
them to act on the boundary and re-expanding. In particular, we claim that in M :

v̂− ·Oa =
∑

b

eG(ϕ,ε)abOb , (56)

where Ob are other twisted chiral ring operators of the original T2d , i.e. a polynomial in
σ. eG(ϕ,ε) encodes the coefficients of this re-expansion. We demonstrate how this works
concretely for Abelian GLSMs momentarily. Importantly, the map l commutes by construction
with the action of Ĉε[MC], and so we get

v̂− |N ⋄ T2d,α,Oa〉= v̂−l(Oa) = l(v̂− ·Oa) =
∑

b

eG(ϕ,ε)ab |N ⋄ T2d,α,Ob〉 . (57)

This equation, as well as a similar equation for v̂+, defines the image of M (strictly the basis Oa,
but the extension to the entirety of M is trivial) under l as a module for the quantised Coulomb
branch algebra. We will demonstrate how to compute the matrix eG(ϕ,ε)ab in Section 4.2,
but first we will show how to derive from the above difference equations for vortex partition
functions, which will be identified with those studied in Section 2.3.

11Alternatively, we could take the setup to be I×HS2 and place a finite boundary condition at ∂ HS2. To make the
analogy with [8] we work with the former setup for now, but the constructions also all hold for R2 compactified
to HS2 with a boundary condition at finite distance, and replacing ‘vortex partition function’ with ‘hemisphere
partition function’ throughout this article. More comments will be provided in Section 4.4
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Dm : ϕ|= m N ⋄ T2d

Ô3d

ε

Oa

α

T3d

Figure 2: The sandwich construction for difference modules.

4.1.2 Left boundary module & vortex partition function

A vortex partition function for the 2d GLSM T2d can be defined in terms of the overlap,

Zα[Oa, m] := 〈Dm|N ⋄ T2d,Oa,α〉 , (58)

between states in the effective supersymmetric quantum mechanics on a compact interval I .
Here |N ⋄ T2d,Oa,α〉 are the states considered in (54), whereas 〈Dm| are states generated by
a Dirichlet boundary conditions where

|ϕ = m . (59)

This is because, as we mentioned before, the length of the interval is QC -exact, so we can
shrink it to zero. In the absence of bulk operators in the interval, since the 3d vector multiplet
is assigned N at t = 0, and Dm at t = L, there are no resulting 2d degrees of freedom after
collapsing the interval, and ϕ is fixed to the value m. If we have also inserted a 2d twisted
chiral ring operator Oa at the origin at the boundary, after collapsing we obtain precisely the
2d theory T2d with equivariant parameter (complex mass) m, with this insertion. The 3d path
integral on I ×Rε therefore computes the vortex partition function of T2d for vacuum α.

In order to derive the difference equation (25), let us then consider the insertion of ele-
ments of the quantised Coulomb branch algebra in the bulk. The setup we want is as illustrated
in Figure 2.
The path integral then computes

〈Dm| Ô3d |N ⋄ T2d,Oa,α〉 . (60)

We claim that the difference equations can be derived by bringing the bulk monopole operator
to act on either the top or the right boundary before collapsing the interval.

It is not difficult to see that if we act on the state generated by the left boundary, then the
action simply shifts the boundary value of |ϕ to m+ ε

〈Dm| Ô3d = 〈Dm+ε| . (61)

This follows from the fact that the action of the operators v̂± and ϕ of the supersymmetric
quantum mechanics along the interval is the same on both sides. Thus, if we denote the
operator shifting m by +ε by p̂ we obtain, for Ô3d = v̂−:

〈Dm| v̂− |N ⋄ T2d,α,Oa〉= p̂Zα[Oa, m] . (62)
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On the other hand, it follows from (56) that

〈Dm| v̂− |N ⋄ T2d,α,Oa〉= 〈Dm|N ⋄ T2d,α,
∑

b

eG(ϕ,ε)abOb〉

=
∑

b

eG(m,ε)ab 〈Dm|N ⋄ T2d,α,Ob〉

=
∑

b

eG(m,ε)ab Zα[Ob, m] .

(63)

Combining equations (62) and (63) we obtain exactly the first-order difference equations of
the desired form

p̂Zα[Oa, m] =
∑

b

eG(m,ε)ab Zα[Ob, m] . (64)

We will shortly show that these equations precisely coincide with (25).12 Of course, insertions
of C[ϕ̂] will result in a constant multiplication by an element of C[m] after sandwiching.
Further, insertions of v̂+ will result in a first-order difference equation for p̂−1, which by con-
sistency with the bulk Coulomb branch algebra relations must be

p̂−1Zα[Oa, m] =
∑

b

eG(m− ε,ε)−1
abZα[Ob, m] . (65)

4.2 Enriched module of boundary local operators

We have seen that to determine the equations that are obeyed by the vortex partition functions,
one can just determine the action of the monopole operators on the module (56). We now
explain how this action can be computed explicitly via localisation methods.

4.2.1 Higgs branch reminder

For inspiration, let us recall what happens when the bulk theory is instead a 3d free matter
theory (the Higgs branch case), see Section 5.2 of [8]. For a free hypermultiplet, we simply
have [X̂ , Ŷ ] = ε, in the usual Omega background. Suppose we place Neumann conditions on
X and Dirichlet on Y . Then the boundary module consists of polynomials C[X ], and the bulk
algebra acts as:

X̂ : ×X , Ŷ = ε∂X . (66)

If one couples this bulk to a boundary 2d chiral φ, via a superpotential W (X ,φ), we have that:

• The boundary module is enlarged to C[X ,φ].

• The bulk algebra action is conjugated by e
W
ε , so

X̂ : X× , Ŷ = ε∂X + ∂X W . (67)
12It is worth commenting at this point on the relationship between the above construction and [21], where a

similar setup was used to derive differential (Picard-Fuchs) equations for the vortex partition functions. There,
Neumann boundary conditions for a bulk 3d gauge theory with gauge group G with hypermultiplets were instead
imposed on both ends of an interval on I × R2. The boundary conditions for hypermultiplets are specified by
Lagrangian splittings L, L′, (in N = 2 language specifying Dirichlet to one N = 2 chiral multiplet in each hyper-
multiplet, and Neumann to the other). Collapsing the interval gives the vortex partition function for a 2d GLSM
with gauge group G and matter L ∩ L′. Inserting bulk monopole operators in the interval along the axis of the
Omega deformation and considering their action on the space of boundary local operators leads to differential
equations for vortex partition functions. The setup we consider here is slightly different; the degrees of freedom
of the 2d theory of interest are not split between two boundaries and a bulk theory, but lie at a single boundary.
The flavour symmetry is gauged by a theory in the bulk, with equivariant parameters fixed by a second, Dirichlet
boundary.
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• Boundary operators in Im(ε∂φ + ∂φW ) are set to 0.

The origin of the latter two points is that for a 2d LG model in the Omega background, the
expectation value of a chiral operator at the boundary is given by the integral

〈O(φ)〉=
∫

γ

e
W
ε O(φ)Ω , (68)

where Ω is the holomorphic top form on the target space and γ is a middle-dimensional
Lagrangian that encodes the boundary conditions at infinity. Therefore, operators in
Im(ε∂φ + ∂φW ) become exact derivatives and set to 0, and further the action of bulk op-
erators should be conjugated by the (exponential) of the superpotential to act properly inside
correlators.

4.2.2 Coulomb branch module

We now propose a similar recipe for the Coulomb branch setup discussed in this article. For a
standard (not enriched) Neumann boundary condition, the boundary module consists simply
of the polynomials C[ϕ] in the complex scalar, and we have that:

v̂± · f (ϕ) = f (ϕ ± ε) , ϕ̂ f (ϕ) = ϕ f (ϕ) . (69)

This is complicated by the presence of additional matter and interactions on the boundary.
Suppose we now couple to the boundary theory T2d (by gauging its flavour symmetry). As

we explained above, for a 2d theory in Omega background, the expectation values of twisted
chiral operators are computed as the vortex (or hemisphere) partition functions. For the
GLSMs considered here, and with r denoting the rank of the gauge group, these can schemat-
ically be computed as follows

Z[O(σ), m] =

∮

α

d rσ

(2πiε)r
I[σ, m,τ,ε]O[σ] . (70)

Here I[σ, m,τ,ε] is the integrand of the vortex partition function (obtained via Coulomb
branch localisation), and r is the rank of the gauge group.

Similarly to the Higgs branch case, we can then propose the following recipe:

• Enlarge the module of boundary local operators to C[σ,ϕ].

• Conjugate the action of bulk operators by I, i.e.

v̂−,i = I−1 p̂iI , v̂+,i = I−1 p̂−1
i I , ϕ̂ = ×ϕ . (71)

Notice that the conjugation preserves the bulk Coulomb branch algebra relations.

• Quotient by the ideal of polynomials for which the expectation values in (70) vanish.
That is, quotient by the polynomials:

Im(I−1 P̂aI − 1) , (72)

where P̂a : σa 7→ σa + ε. This is because:


�

I−1 P̂aI − 1
�

f [σ]
�

=

∮

α

dσ
2πiε

�

P̂a − 1
�

I f , (73)

which is a total derivative as P̂a − 1= ε∂σ +
ε2

2 ∂
2
σ + . . .

We explore what this means for Abelian GLSMs below.
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4.3 Abelian GLSMs

In the case of an Abelian GLSM, the integrand in the vortex partition function is given by:

I[σ, m,τ,ε] = e−
2πiτ·σ
ε

∑

s

Γ

�

Ms(σ, m)
ε

�

. (74)

The previous recipe can be specialised to:

1. The module is first enlarged to C[σ,ϕ].

2. The monopole operators are modified to act on this space as:

v̂−,i =

∏

s|qi
s>0

�

Ms
ε

�

qi
s

∏

s|qi
s<0

�

Ms
ε

�

qi
s

p̂i ,

v̂+,i =

∏

s|qi
s<0

�

Ms
ε

�

−qi
s

∏

s|qi
s>0

�

Ms
ε

�

−qi
s

p̂−1
i .

(75)

Here the quantum product is given by

[a]k =

¨
∏k−1

i=0 (a+ i) , if k > 0 ,
∏|k|

i=1(a− i) , if k < 0 ,
(76)

and the shift operator remains p̂i = eε∂mi .

3. We quotient by the polynomials in the image of:

e−2πiτa

∏

s|Qa
s>0

�

Ms
ε

�

Qa
s

∏

s|Qa
s<0

�

Ms
ε

�

Qa
s

P̂a − 1 . (77)

That is, we identify polynomials:



e−2πiτa

∏

s|Qa
s>0

�

Ms
ε

�

Qa
s

∏

s|Qa
s<0

�

Ms
ε

�

Qa
s

P̂a



 f (σ,ϕ)∼ f (σ,ϕ) , (78)

where P̂a : σa 7→ σa + ε is the shift operator on σ.

It is not hard to check that the above is consistent with the Coulomb branch algebra (50).
In practice, we shall see that acting with (75) näively takes us out ofC[σ,ϕ]. However, us-

ing the identifications (78) always enables us to identify the result with an element of C[σ,ϕ].
This is the analogue of the statements made in Section 3.1.1 and indeed, the quotient (78)
recovers the quotient by the vacuum ideal (46) in the ε→ 0 limit.

4.4 Hemisphere partition functions

We note how the arguments above are the same for the hemisphere partition functions, which
arise in the setup on I×HS2 instead of I×R2

ε, where the radius of the hemisphere is identified
as ε−1. The chiral multiplets of T2d can be given Neumann or Dirichlet boundary conditions
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on ∂ HS2 ∼= S1. Doing so for the sth chiral multiplet results in a contribution to the integrand
for the partition function (to be integrated over Coulomb branch scalars):

(N) : IN

�

Ms

ε

�

= Γ
�

Ms(σ, m)
ε

�

, (D) : ID

�

Ms

ε

�

=
−2πieπi Ms(σ,m)

ε

Γ
�

1− Ms(σ,m)
ε

� . (79)

Thus, assigning Neumann boundary conditions results in an integrand identical to (74), and
thus the vortex partition function.

Taking (70) to be an expectation value in the more general hemisphere partition func-
tion, and I to be the integrand for the hemisphere partition function (now allowing Dirichlet
boundary conditions for chirals), results in the same action on the boundary twisted chiral
ring. That is, equations (56)-(78) are unchanged. This is because the result of conjugating
the shift operators by either of (79) is the same. This follows because of the identities:

ID[x + n]
ID[x]

=
IN [x + n]
IN [x]

=

¨

[x]n , if n> 0 ,
1

[x]−n
, if n< 0 .

(80)

4.5 Example: SQED[N]

To test our physical recipe we now discuss the theory T2d SQED[N], defined in a similar way to
SQED[2] but with N chiral multiplets. We introduce masses m1, . . . , mN−1 for the T = U(1)N−1

flavour symmetry on N chiral multiplets, which have effective complex masses:

Mi[σ, m] = σ+mi , i = 1, . . . , N , (81)

where we identify always

mN = −
N−1
∑

j=1

m j . (82)

Gauging the symmetry, we have mi 7→ ϕi , i = 1, . . . , N − 1 complex scalars of a bulk 3d
gauge theory T3d with gauge group T = U(1)N−1. The boundary module consists of elements
of C[σ,ϕ] quotiented by the submodule of elements in the image of:

q
N
∏

j=1

(σ+ϕ j)P̂ − 1 , (83)

where P̂ = eε∂σ and q := ε−N e−2πiτ. The bulk Coulomb branch operators are quantised to:

v̂−,i =
σ+ϕi

σ+ϕN − ε
p̂i , v̂+,i =

σ+ϕN

σ+ϕi − ε
p̂−1

i , (84)

where ϕN = −ϕ1 − . . .−ϕN−1 so that p̂i : ϕN 7→ ϕN − ε.
For a general element f (σ,ϕ) in C[σ,ϕ], we have that:

v̂−,i f (σ,ϕ) =
σ+ϕi

σ+ϕN − ε
f (σ,ϕi + ε)

∼ q
N
∏

j=1

(σ+ϕ j)P̂
σ+ϕi

σ+ϕN − ε
f (σ,ϕi + ε)

= q
N
∏

j=1

(σ+ϕ j)
σ+ϕi + ε
σ+ϕN

f (σ+ ε,ϕi + ε)

= q(σ+ϕi + ε)

 

N−1
∏

j=1

(σ+ϕ j)

!

f (σ+ ε,ϕi + ε) ,

(85)
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where ∼ indicates we have used the identification (83). We also have that

v̂+,i f (σ,ϕ) =
σ+ϕN

σ+ϕi − ε
f (σ,ϕi − ε)

∼ q
N
∏

j=1

(σ+ϕ j)P̂
σ+ϕN

σ+ϕi − ε
f (σ,ϕi − ε)

= q(σ+ϕN + ε)

 

N
∏

i ̸= j

(σ+ϕ j)

!

f (σ+ ε,ϕi − ε) .

(86)

It is also not hard to check that

v̂+,i v̂−,i f (σ,ϕ) = q2

 

N
∏

j=1

(σ+ϕ j)(σ+ϕ j + ε)

!

f (σ+ 2ε,ϕ)

=

 

q
N
∏

j=1

(σ+ϕ j)P̂

!2

f (σ,ϕ)

∼ f (σ,ϕ) ,

(87)

and similarly for v̂−,i v̂+,i . The quantisations are therefore consistent with the Coulomb branch
algebra relations.

Note also that (83) imply that any element of the boundary module is equivalent to an
element of C[σ,ϕ] with powers of σ at most N −1. That is, {1,σ, . . . ,σN−1} remains a C[ϕ]
basis of the module (and once we sandwich with the Dirichlet, these coefficients are fixed to
be constant anyway). Concretely, (83) implies for k ≥ N that:

q
N
∏

j=1

(σ+ϕ j)P̂(σ− ε)k−N ∼ (σ− ε)k−N , (88)

and so

σk ∼

 

N
∏

j=1

(σ+ϕ j)−σN

!

σk−N + q−1(σ− ε)k−N . (89)

The left-hand side is a polynomial of order k − 1. This can be used repeatedly to reduce any
element of the boundary module to a representative with maximum degree N − 1 in σ.

4.5.1 Example: SQED[2]

Let us test the above results in the example of SQED[2] and check consistency with the re-
sults obtained in Section 2.1.3 and 2.3.1. We will further specify the results to SQED[3] in
Appenidx A, and check consistency with the results of [3].

For SQED[2] we have

v̂− =
σ+ϕ
σ−ϕ − ε

p̂ , (90)

and should identify in C[σ,ϕ]

e−2πiτ

ε2
(σ+m)(σ−m) f (σ+ ε)∼ f (σ) . (91)
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Let us consider the action on Oa ∈ {1,σ}

v̂− · 1=
σ+ϕ
σ−ϕ − ε

= 1+
2ϕ + ε
σ−ϕ − ε

∼ 1+ (2ϕ + ε)(σ+ϕ)e−2πiτ

= (1+ (2ϕ + ε)ϕ)e−2πiτ)1+ (2ϕ + ε)e−2πiτσ .

(92)

Notice how these coefficients of Oa match the first row of (33). Similarly:

v̂− ·σ =
(σ+ϕ)σ
σ−ϕ − ε

= σ+ (2ϕ + ε) +
(2ϕ + ε)(ϕ + ε)
σ−ϕ − ε

∼ (2m+ ε)(1+ (m+ ε)me−2πiτ)1+ (1+ e−2πiτ(ϕ + ε)(2ϕ + ε))σ ,

(93)

matching the second row of (33).

5 Bulk gauge theories with matter

Above we have discussed an action of the (quantised) Coulomb branch algebra of a pure
Abelian gauge theory with gauge group T on QH•T (X ), where X is the vacuum manifold of the
GLSM. It is natural to ask whether we can bulk theories more general than pure gauge theory,
for example a 3d Abelian gauge theory with matter in some representation. Mathematically, for
a 3d gauge theory with gauge group T and hypermultiplets transforming in a representation
L ⊕ L∗, where L ∼= CN specifies a polarisation, one would expect to find an action of the
Coulomb branch algebra on QH•T (X × L) (appropriately defined, as L is non-compact), and
the Omega-deformed version of this [9]. For the purposes of this article, we show that this
is a mild modification of the above constructions, and that the sandwich results in the same
difference equations as before.

Let us first take T2d to be trivial, and therefore consider an Abelian T3d with gauge group T
and matter L⊕ L∗ with Neumann boundary conditions at one end of the sandwich. The (2, 2)
boundary conditions dictate that one sets the chiral multiplets in L∗ to zero at the boundary
(Dirichlet), and allows those in L to fluctuate (Neumann). For an Abelian theory one can
think of L as a vector of Ñ signs, where Lα = ± if Xα is Neumann/Dirichlet (and the opposite
for Yα). Different boundary conditions may be obtained by decomposing the hypermultiplet
representation by different Lagrangian splittings.

We denote the Coulomb branch by MC(T, L ⊕ L∗). The bulk Coulomb branch algebra
is [24]:

vAvB = vA+B PA,B(ϕ) , PA,B(ϕ) =
Ñ
∏

α=1

(M̃α)
(Q̃A
α)++(Q̃

B
α)+−(Q̃

A+B
α )+ , (94)

where effective complex masses are M̃α = Q̃i
αϕi . Here Q̃A

α is the charge of Xα under charge
generator A∈ Hom(U(1), T ) and (x)+ =max(x , 0).

The boundary twisted chiral ring is given by polynomials C[ϕ], which can be identified
with QH•T (L). The boundary conditions specify (for a right boundary condition) that

vA|=
Ñ
∏

α=1

(M̃α,L)
(Q̃αA,L)+ , (95)
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which specifies the action of the bulk Coulomb branch algebra on the boundary chiral ring,
i.e. C[MC(T, L ⊕ L∗)] on QH•T (L). Here M̃α,L = LαM̃α.

Now, suppose we couple T3d to a 2d theory T2d by gauging the flavour symmetry T of the
2d theory. There is an induced 1-loop correction to the boundary twisted superpotential (43).
This deforms the boundary conditions (95) to:

vA|=
Ñ
∏

α=1

(M̃α,L)
(Q̃A
α,L)+e−Ai

∂fWeff
∂ ϕi

=
Ñ
∏

α=1

(M̃α,L)
(Q̃A
α,L)+

∏

s

M
−qA

s
s ,

(96)

where qA
s =

∑

i qi
sAi is the charge of the sth chiral multiplet under charge generator A. Note this

deformation is compatible with the Coulomb branch algebra. The boundary vacuum equations
simultaneously impose:

e−2πiτa

∏

s

(Ms)
Qa

s = 1 , (97)

as before. Together these equations cut out a holomorphic Lagrangian submanifold in
MC(T, L ⊕ L∗).

The boundary twisted chiral ring of operators is generated by σa and ϕi , with the standard
chiral ring relations imposed. In this setup, it is natural to identify this ring with (some version
of) QH•T (X × L).13 Thus, the equations (96) exhibit the elements of QH•T (X × L) as a module of
the bulk Coulomb branch algebra, with support on the holomorphic Lagrangian submanifold
of MC(T, L ⊕ L∗) cut out by the simultaneous equations (96) and (97).

5.1 Omega deformation

In the presence of the Omega deformation, similar to the pure gauge theory case, there is no
longer a notion of boundary twisted chiral ring. However, by the same arguments put forward
in Section 3, boundary twisted chiral operators still form a module over the quantised bulk
Coulomb branch algebra. We now explain in more detail how this works, and how to obtain
the difference equations.

Firstly, the bulk Coulomb branch algebra is quantised to Ĉε[MC(T, L ⊕ L∗)]:14

[ϕ̂i , v̂A] = εAi v̂A , v̂Av̂B = P l
A,B(ϕ̂)v̂A+B P r

A,B(ϕ̂) , (98)

where

P l
A,B(ϕ̂) =

∏

α| |Q̃A
α|≤|Q̃

B
α|

Q̃A
αQ̃B
α<0

ε|Q̃
A
α|
�

M̂α +
ε
2

ε

�−Q̃A
α

, P r
A,B(ϕ̂) =

∏

α| |Q̃A
α|>|Q̃

B
α|

Q̃A
αQ̃B
α<0

ε|Q̃
B
α|
�

M̂α +
ε
2

ε

�Q̃B
α

. (99)

The shift by ε2 is due to the RV -charge 1/2 of the bulk chiral multiplets.

13Notice that the ring we presented above for QH•T (X × L) turns out to be isomorphic to QH•T (X ). This is
consistent with the fact that the quantum equivariant cohomology of an affine space L is simply isomorphic to
polynomials in the equivariant parameter. However, the presence of N = (2,2) chiral matter descending from
bulk hypermultiplets, corresponding to the Lagrangian L is made manifest. This approach seems to be different
from the one presented in the mathematical literature [9], which roughly speaking corresponds to writing the RHS
of (95) as a contribution from some boundary twisted superpotential and should be related to the use of symplectic
cohomology [12–14].

14Note the different definition of the quantum product from [8]: [a]there
b = ε|b|

�

a+ ε2
ε

�here

b
.
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In the absence of boundary matter, the boundary module remains C[ϕ], and the action of
bulk monopole operators on this module is a quantisation of (95)

v̂A =

 

∏

α

ε(−Q̃αA,L)+

�

M̂α,L +
ε
2

ε

�(−Q̃A
α,L)+

!

p̂−A , (100)

where p̂A = eAi∂ϕi . It is not hard to check that this quantisation is consistent with the quantised
bulk Coulomb branch algebra (98). This yields a quantisation of the action of C[MC] on
QH•T (L).

Using the bulk 3d theory to gauge the flavour symmetry of our 2d theory of interest T2d, the
prescription to obtain the boundary module follows the same recipe as Section 4.2.2. In par-
ticular, the boundary module is enlarged to C[σa,ϕi], and the action of the Coulomb branch
operators is conjugated by the integrand of the vortex partition function of T2d:

v̂A =

 

∏

α

ε(−Q̃A
α,L)+

�

M̂α,L +
ε
2

ε

�(−Q̃A
α,L)+

!









∏

s|qA
s<0

�

Ms
ε

�

−qA
s

∏

s|qA
s>0

�

Ms
ε

�

−qA
s









p̂−A . (101)

One again identifies:


e−2πiτa

∏

s|Qa
s>0

�

Ms
ε

�

Qa
s

∏

s|Qa
s<0

�

Ms
ε

�

Qa
s

P̂a



 f (σ,ϕ)∼ f (σ,ϕ) , (102)

where P̂a : σa 7→ σa + ε.
Note that this will not give new difference equations from the pure gauge theory case.

This is because the local operators comprising the boundary module is the same, i.e. C[σ,ϕ]
quotiented by the submodule generated by the image of (102), and the fact that for the same
cocharacter A, the action of v̂A differs from its action in the pure gauge theory case by the
multiplication on the LHS by the polynomial in the first bracket of (101). Once we sandwich
with the Dirichlet end of the interval, these will be set to constants (set to polynomials of the
constant equivariant parameter m).
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A Matrix difference equations for SQED[3]

In this Appendix, we briefly discuss how the results obtained in 4.5 apply to SQED[3], the
CP2 sigma model, and check that we obtain results compatible with [3]. In this case the bulk
theory T3d is a pure U(1)2 gauge theory, with a Coulomb branch algebra:

[v̂±,i , ϕ̂ j] = ±εδi j v̂±,i , i, j = 1, 2 . (A.1)
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According to the derivation above, we have e.g.:

v̂−,1 =
σ+ϕ1

σ−ϕ1 −ϕ1 − ε
p̂1 ,

v̂−,2 =
σ+ϕ1

σ−ϕ1 −ϕ1 − ε
p̂2 ,

(A.2)

and identify:
q−1(σ+ϕ1)(σ+ϕ1)(σ−ϕ1 −ϕ1) f (σ+ ε)∼ f (σ) , (A.3)

in particular
1

σ−ϕ1 −ϕ1 − ε
∼ q−1(σ+ϕ1)(σ+ϕ1) , (A.4)

where again q = ε3e2πiτ(ε) is the RG-invariant combination of scale and complex FI parameter.
We have that:

v̂−,1 · 1= 1+
2ϕ1 +ϕ1 + ε
σ−ϕ1 −ϕ1 − ε

∼ 1+ (2ϕ1 +ϕ1 + ε)q
−1(σ+ϕ1)(σ+ϕ1)

=
�

1+ϕ1ϕ1(2ϕ1 +ϕ1 + ε)q
−1
�

1

+ (ϕ1 +ϕ1)(2ϕ1 +ϕ1 + ε)q
−1σ

+ (2ϕ1 +ϕ1 + ε)q
−1σ2 .

(A.5)

We can do this to σ and σ2 to recover the rest of the matrix appearing in the difference
equation (25). The results for v̂−,2 can be recovered easily by symmetry in ϕ1 and ϕ1. Overall,
we obtain full agreement with the results derived from different methods in [3].
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