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Abstract

We study the spectral properties and eigenvector statistics of the Laplacian on highly-
connected networks with random coupling strengths and a gamma distribution of
rescaled degrees. The spectral density, the distribution of the local density of states,
the singularity spectrum and the multifractal exponents of this model exhibit a rich be-
haviour as a function of the first two moments of the coupling strengths and the variance
of the rescaled degrees. In the case of random coupling strengths, the spectral density di-
verges within the bulk of the spectrum when degree fluctuations are strong enough. The
emergence of this singular behaviour marks a transition from non-ergodic delocalized
states to localized eigenvectors that exhibit pronounced multifractal scaling. For con-
stant coupling strengths, the bulk of the spectrum is characterized by a regular spectral
density. In this case, the corresponding eigenvectors display localization properties rem-
iniscent of the critical point of the Anderson localization transition on random graphs.
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1 Introduction

One crucial aspect of complex systems is the heterogeneous structure of the interactions among
their constituents [1]. This heterogeneity manifests itself in two primary forms. First, the local
neighbourhood around each unit may exhibit a random topology of connections, resulting in
a variable number of neighbours per node. Second, the magnitudes of interactions among the
units may themselves be random variables. The interplay between heterogeneous topology
and random coupling strengths gives rise to a variety of interesting dynamical phenomena [2].

The spectral properties of matrices associated with networks are key to understanding
how the heterogeneous structures of complex systems shape dynamical processes occurring on
them. The adjacency and the Laplacian matrix are the most prominent examples of matrices
constructed from networks [3]. The adjacency matrix encodes the pairwise interactions among
the units of the underlying network. Its spectral properties determine, among other things, the
stability of large complex systems subject to small external perturbations [4–6]. The Laplacian
is constructed as the difference between the adjacency matrix and a diagonal matrix [3], whose
elements are chosen such that all row and column sums are zero [7,8]. This row/column con-
straint naturally arises in various contexts due to conservation laws, such as conservation of
linear momentum or probability [9]. The statistical properties of the eigenvalues and eigen-
vectors of the Laplacian determine the solution of several problems on networks, including
the long-time behaviour of diffusion and of search algorithms [10], the nature of vibrational
modes in disordered systems [9,11], the spectrum of relaxation rates in trap models of glassy
dynamics [12–15], the distribution of resonances in random impedance networks [16, 17],
the dynamics of consensus algorithms [18,19], and the stability of the synchronized phase in
oscillator networks [20,21].

Since the seminal work of Rodgers and Bray [22], the problem of determining the spectral
properties of the Laplacian on heterogeneous networks has attracted enormous interest [11,
16, 17, 22–29]. In the case of fully-connected networks, where each node is coupled to all
others, the pairwise coupling strengths are typically random, but the absence of fluctuations in
the local topology renders the network structure homogeneous, simplifying the problem. The
spectral density or equivalently the eigenvalue distribution of the Laplacian follows in this case
from the solution of a single equation for the average resolvent, which can be derived using
both the replica method [22] and the supersymmetry approach [16,17]. A rigorous proof for
the spectral density of the Laplacian on fully-connected networks has been established in [28].
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The picture is radically different in the case of sparse networks, where each node is con-
nected on average to a finite number c of neighbours. Alongside the stochastic nature of the
coupling strengths, models defined on sparse networks may have a heterogeneous topology
because the number of neighbours of each node, commonly referred to as its degree, is gen-
erally a random variable. The prototypical network model for studying the role of fluctuating
degrees in a controllable manner is the configuration model [30, 31], in which the degree
distribution is specified from the outset. The general formalism for the spectral density of
the Laplacian on sparse networks has been developed in a series of papers [11, 22, 24–27],
culminating in a pair of self-consistent equations for the full distribution of the diagonal el-
ements of the resolvent matrix [25–27], which have been rigorously demonstrated in [32].
The numerical solutions of these so-called resolvent distributional equations form the basis for
understanding how network heterogeneity impacts the spectral and localization properties of
the Laplacian, providing insights not only into the spectral density [25, 26] but also into the
statistical properties of the eigenvectors [27]. However, despite their pivotal role, the resol-
vent equations admit analytic solutions only in the homogeneous regime, where the relative
variance of the degree distribution is zero and the resolvent elements are independent of the
node.

In a series of recent works [33–35], it has been demonstrated that the resolvent equations
for the adjacency matrix of heterogeneous networks do allow for the derivation of analytic
solutions in the high-connectivity limit c→∞, as long as the relative variance of the degree
distribution remains finite. In this intermediate connectivity regime, lying between sparse and
fully-connected networks, the resolvent distributional equations simplify into a single self-
consistent equation for the average resolvent, which explicitly incorporates the effect of de-
gree fluctuations. When considering a negative binomial distribution of degrees, the average
resolvent solely depends on two control parameters: the variance of coupling strengths and
the relative variance of the degree distribution [33–35]. This setting enables a thorough in-
vestigation of how network heterogeneity impacts the spectral properties and the eigenvector
statistics of the adjacency matrix, since one can independently control fluctuations in both
network topology and coupling strengths.

While the findings in [33–35] apply to the high-connectivity limit, they unveil a surpris-
ingly rich phenomenology driven by network heterogeneities. Specifically, strong degree fluc-
tuations lead to a divergence within the bulk of the spectral density. This singular behaviour
is caused by the power-law decay observed in the distribution of the imaginary part of the
resolvent [34], a consequence of the strong spatial fluctuations of the eigenvectors and their
localised behaviour [35]. The results for adjacency matrices in [33–35] hint at the potential
existence of nontrivial solutions to the resolvent equations of other random matrices in the
high-connectivity regime. This could pave the way to a systematic exploration of the role of
network heterogeneities in the spectral properties of other important matrices. The Laplacian
is a prime candidate for probing such solutions, given its significance in governing dynamical
processes on networks.

In this work, we obtain the solution of the resolvent equations for the Laplacian on hetero-
geneous networks in the high-connectivity regime. Unlike the Laplacian on fully-connected
networks, the statistics of the resolvent elements are non-universal, as they explicitly depend
on the distribution of the degrees rescaled by their mean c. Building on previous works [33–35]
and considering a gamma distribution of rescaled degrees, the analytical results are expressed
solely in terms of the first two moments of the coupling strengths as well as the variance 1/γ
of rescaled degrees. This framework enables a continuous interpolation between the two ex-
tremes of pure heterogeneous topology and pure heterogeneous coupling strengths (γ→∞).
We present a number of analytical findings and a thorough analysis of the spectral density, the
distribution of the local density of states (LDoS), the singularity spectrum and the multifractal
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exponents, forming a comprehensive picture of the spectral properties and the eigenvector
statistics of the Laplacian on heterogeneous networks.

We separate our results into two different cases depending on the nature of the coupling
strengths. For homogeneous couplings, the bulk of the eigenvalue distribution is described by
a regular function, which becomes singular only at the lower spectral edge. The LDoS dis-
tribution for states within the bulk is characterised by a singular behaviour and a power-law
decay with exponent 3/2. These are typical properties of the localized phase [36–38]. In fact,
by computing the singularity spectrum and the multifractal exponents, we confirm that all
eigenvectors are localized for any finite value of γ. Interestingly, these spectral observables
are identical to those found at the critical point of the Anderson localization transition on ran-
dom graphs [38–40]. In the more complex scenario of heterogeneous coupling strengths, the
spectral density diverges in the bulk of the spectrum (at eigenvalue zero) as long as γ ≤ 1/2.
The LDoS distribution at this zero eigenvalue is a regular function that decays as a power-law
with exponent γ+ 3/2. The appearance of the singularity in the spectral density is accompa-
nied by a delocalization-localization transition as a function of the variance 1/γ of rescaled
degrees. By computing the singularity spectrum and the multifractal exponents of the corre-
sponding eigenvectors, we provide compelling evidence that, for γ > 1/2, the eigenvectors are
extended and non-ergodic, while for γ < 1/2 they become localised, with multifractal expo-
nents that depend on the strength of degree fluctuations. Remarkably, the localization in both
cases is an instance of the statistical localization mechanism introduced in Ref. [35], whereby
the localization is correlated to a single-node statistical property (e.g. the degrees), instead
of being related to the spatial structure of the underlying network. Equally remarkably, for
the corresponding adjacency matrices there is no change in spectral behaviour at γ = 1/2 as
we summarize in appendix D. Thus, unlike in the case of homogeneous networks where node
degree fluctuations are neglible and Laplacian and adjacency matrix only differ trivially, by
a multiple of the identity matrix, for heterogeneous networks the spectral physics of the two
types of matrix is quite distinct.

The rest of the paper is organized as follows. In the next section, we introduce the Laplacian
matrix on networks and the spectral observables that are the focus of our interest in this work.
Section 3 presents our main analytical expressions for the spectral observables in the high-
connectivity regime. These expressions are derived by taking the limit c→∞ in the resolvent
distributional equations of sparse networks with arbitrary distributions of degrees and coupling
strengths. The analytical results of section 3 enable a systematic study of the combined role
of topological disorder and random coupling strengths in the spectral observables. In section
4, we present analytical and numerical results for a gamma distribution of rescaled degrees.
The final section summarizes our work and discusses a number of interesting avenues for
future research. Supplementary material can be found in four appendices. In appendix A,
we explain in detail how to take the limit c → ∞ of the resolvent equations; in appendix
B, we derive the distribution of squared eigenvector components for homogeneous coupling
strengths; appendix C provides details of the numerical calculation of the singularity spectrum
and the multifractal exponents, and appendix D provides a summary of previous results for
the adjacency matrix of random graphs.

2 The Laplacian matrix of networks and its spectral observables

We consider a simple and undirected random graph with N nodes [41]. The graph structure is
determined by the set of binary random variables {ci j} (i, j = 1, . . . , N), where ci j = c ji = 1 if
there is an undirected edge (i, j) connecting nodes i and j (i ̸= j), and ci j = 0 otherwise. We
set cii = 0 and further associate a symmetric coupling strength Ji j = J ji ∈ R to each edge (i, j).
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The degree ki =
∑N

j=1 ci j is a random variable that specifies the number of nodes adjacent to
i. The degree distribution pk and the average degree c are defined, respectively, as

pk = lim
N→∞

1
N

N
∑

i=1

δk,ki
, c =

∞
∑

k=0

kpk . (1)

The degree distribution, which is one of the primary quantities characterizing the network
structure, gives the probability that a randomly chosen node has degree k.

An instance of the random network is completely specified by the random variables {ci j}
and {Ji j}. We assign the entries {ci j} of the adjacency matrix from the configuration model
[30, 31], in which a single graph instance is uniformly sampled from the set of all possible
graphs with a prescribed degree sequence k1, . . . , kN , generated from pk. The configuration
model provides the ideal platform for investigating how local network heterogeneities impact
the spectral properties, since the entire degree distribution acts as a control parameter of the
model.

We take the coupling strengths {Ji j} as i.i.d. real variables drawn from some distribution pJ
whose mean and variance are given, respectively, by J0/c and J2

1/c.1 In addition, we assume
that higher-order moments of pJ are proportional to 1/cβ with β > 1. This scaling ensures
that the spectral observables converge to a finite limit as c→∞.

We are interested in the spectral properties of the Laplacian matrix L associated with the
undirected network defined by {ci j} and {Ji j}. The entries of the N × N Laplacian read

Li j = δi j

N
∑

k=1

cikJik − ci jJi j . (2)

The non-diagonal terms in Eq. (2) are the elements of the adjacency matrix weighted
by the coupling strengths Ji j , while the form of Lii ensures that the constraints
∑N

j=1 Li j =
∑N

j=1 L ji = 0 are fulfilled. The matrix L has a complete set {ψ⃗µ}µ=1,...,N of or-
thonormal eigenvectors that satisfy

Lψ⃗µ = λµψ⃗µ , (3)

where {λµ}µ=1,...,N represents the set of (real) eigenvalues of L. The condition
∑

j=1 Li j = 0
implies that L has a single eigenvalue λ1 = 0 with a corresponding uniform eigenvector
ψ⃗T

1 =
1p
N
(1, . . . , 1). We assume here that the network consists of a single connected com-

ponent, which is always the case in the limit of large degrees c →∞ considered later. Note
that while the standard Laplacian – constructed without the weights Ji j – is positive semi-
definite [3], here L can have negative eigenvalues because the couplings Ji j are real-valued.
The spectral properties of the weighted Laplacian, with a mixture of positive and negative
couplings, find applications in the study of consensus dynamics [18, 19], impedance net-
works [16,17], and instantaneous normal modes in liquids [11].

The simplest quantity that characterizes the spectrum of L is the empirical spectral density

ρ(λ) = lim
N→∞

1
N

N
∑

µ=1

δ(λ−λµ) , (4)

also known as the density of states (DoS) in the context of condensed matter physics. An
analogue of ρ(λ) that is resolved across the nodes of the network and gives information on
the statistics of the eigenvector components is the local density of states (LDoS) [42]

ρi(λ) =
N
∑

µ=1

|ψµ,i|2δ(λ−λµ) , (5)

1The variance of pJ has a subleading contribution of O(1/c2) in the limit c→∞.
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whereψµ,i is the component of ψ⃗µ at node i. The LDoS gives the overall contribution at node
i from the eigenvector intensities |ψµ,i|2 for eigenvalues around λ. Since in general ρi(λ)
fluctuates from site to site, it is useful to introduce the empirical distribution of ρi(λ),

Pλ(y) = lim
N→∞

1
N

N
∑

i=1

δ (y −ρi(λ)) , (6)

which characterizes the spatial fluctuations of the eigenvector components corresponding to
eigenvalues around λ. Clearly, the empirical spectral density in Eq. (4) is the first moment of
Pλ(y), namely

ρ(λ) =

∫ ∞

0

d y y Pλ(y) . (7)

This relation will be important later to clarify the singular behavior of the spectral density.
A more comprehensive way of characterizing the spatial distribution of the eigenvector

components consists in determining the set of multifractal exponents and the corresponding
singularity spectrum. For a given eigenvalue λ, let |ψi|2 be the squared amplitude of the cor-
responding eigenvector at node i. The quantities |ψ1|2, . . . , |ψN |2 define a normalized distri-
bution across the nodes of the network. This distribution can be characterized by its moments
(also called generalized inverse participation ratios [38,43])

Iq(N) =
N
∑

i=1

|ψi|2q . (8)

For large N , the statistical properties of |ψi|2 are encoded in the set of multifractal exponents
τ(q), which one introduces via the scaling relation [38,43–45]

Iq(N)∼ N−τ(q) . (9)

If the eigenvector is fully delocalized, then τ(q) = q−1, whereas if the eigenvector is localized
on a single node, then τ(q) = 0. The function τ(q) is convex up, nondecreasing, and it
satisfies the conditions τ(0) = −1 and τ(1) = 0. An alternative way of capturing the spatial
fluctuations of |ψi|2 is by defining a scaling exponent at each node i through the scaling form
|ψi|2 ∼ N−αi (αi ≥ 0). For large N , the empirical distribution of α1, . . . ,αN , formally defined
as

Ω(α) =
1
N

N
∑

i=1

δ(α−αi) , (10)

then has the scaling form [43,45]

Ω(α)∼ N f (α)−1 , (11)

where the function f (α) is the so-called singularity spectrum (or spectrum of fractal dimen-
sions). The singularity spectrum is a convex up function of α ≥ 0 with a maximum value of
unity. Equations (8-11) imply that the multifractal exponents and the singularity spectrum are
related via a Legendre transform. To show this, one rewrites the q-th moment Iq(N) for large
N as

Iq(N) =
N
∑

i=1

N−αiq = N

∫

Ω(α)N−αqdα
N≫1∼

∫

N f (α)−αqdα . (12)

By solving the integral using a saddle-point approximation and then comparing the result with
Eq. (9), one finds the Legendre transform

−τ(q) =max
α
[ f (α)− qα] . (13)
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The singularity spectrum is also directly connected to the distribution of |ψi|2 [39,46]. In
order to show this relation, let us introduce the rescaled variable x i = N |ψi|2 and its empirical
distribution Pψ(x). Since |ψi|2 ∼ N−αi for large N , we can perform the change of variables
x ∼ N1−α and rewrite the distribution Pψ(x) in terms of Ω(α). By combining the resulting
expression with the scaling assumption of Eq. (11), it follows that

Pψ(x) =
A

x ln N
N f (α)−1 , (14)

where A is an N -independent constant of order unity. The above expression holds for large N .
In the limit N →∞, Eq. (14) can be simplified to

f (α) = lim
N→∞

ln(xN Pψ(x))

ln N
. (15)

Thus, the singularity spectrum can be computed from the spatial distribution of the (scaled)
squared amplitudes x i = N |ψi|2 in the limit N →∞.

The statistical properties of both the eigenvalues and the eigenvectors of L are encoded in
the N × N resolvent matrix [23,27,47,48]

G(z) = (Iz − L)−1 , (16)

where z = λ − iε (ε > 0) lies in the complex lower half-plane and I denotes the identity
matrix. The diagonal elements {Gii(z)}i=1,...,N of G(z) determine the regularized forms of the
local density of states [42]

ρi(z) =
1
π

Im Gii(z) , (17)

and of the spectral density

ρε(λ) =
1
π

lim
N→∞

1
N

N
∑

i=1

Im Gii(z) . (18)

The original quantities, ρi(λ) and ρ(λ), are obtained by taking the limit ε → 0+ in Eqs.
(17) and (18), respectively. In addition, correlation functions between the resolvent elements
determine the generalized inverse participation ratios [23,47]. Thus, it is convenient to intro-
duce the joint empirical distribution Pz(g)≡ Pz(Re g, Im g) of the real and imaginary parts of
Gii(z),

Pz(g) = lim
N→∞

1
N

N
∑

i=1

δ(g − Gii(z)) , (19)

since this object gives access to the spectral and localization properties of L. The support of
Pz(g) lies in the complex upper half-plane H+. We are interested in the empirical distribution
Pz(y) of the imaginary part yi = ImGii(z) of the resolvent, obtained by marginalizing Pz(g)
with respect to Re g. The first moment of Pz(y) yields the spectral density, while the full distri-
bution Pz(y) is essentially the distribution of the LDoS, which provides valuable information
about the statistics of the |ψi|2.

3 The high-connectivity limit of the spectral observables

We begin this section by explaining the central idea of the cavity method and how this approach
leads to a pair of distributional equations for Pz(g) in the case of sparse networks, where the
average degree c remains finite as N → ∞. In the second part of this section, we discuss
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how to take the limit c →∞ in the distributional equations and thus calculate Pz(g) in the
high-connectivity limit. The details of the calculation are presented in appendix A.

The cavity approach to random matrices relies on the local tree-like structure of the un-
derlying sparse network constructed from the adjacency matrix [48, 49]. Let us consider a
single graph instance drawn from the configuration model with a large number N of nodes
and finite c. The local tree-like property means that the probability of finding short loops at a
finite distance from a randomly chosen node vanishes as N →∞ [32]. As a consequence, the
resolvent elements in the neighbourhood of an arbitrary node i are correlated essentially only
through i, thanks to the tree-like structure around the node in question. This key property
allows us to write the diagonal elements of the resolvent G(z), for a single graph instance, as
follows [27]

Gii(z) =
1

z −
∑

j∈∂i
Ji j

�

1− Ji jG
(i)
j j (z)

�−1 , (20)

with ∂i denoting the set of nodes adjacent to i. The complex variable G(i)j j (z) is the jth-diagonal
element of the resolvent matrix on the so-called cavity graph, which is a graph where node
i ∈ ∂ j and all its edges have been removed. The cavity variables {G(i)j j } are determined by the
fixed-point equations

G(i)j j (z) =
1

z −
∑

ℓ∈∂ j\i J jℓ

�

1− J jℓG
( j)
ℓℓ
(z)
�−1 (i ∈ ∂ j) , (21)

with ∂ j\i denoting the set of nodes adjacent to j excluding i. Equations (20) and (21) become
asymptotically exact as N grows to infinity [32]. In this regime, it is more convenient to work
with the empirical distributions of Gii(z) and G(i)j j (z). Since both sides of Eq. (20) are equal in
distribution, Pz(g) is determined by

Pz(g)=
∞
∑

k=0

pk

∫

H+

� k
∏

ℓ=1

d gℓQz(gℓ)
�

∫

R

� k
∏

ℓ=1

dJℓpJ (Jℓ)
�

δ

�

g −
1

z −
∑k
ℓ=1 Jℓ (1− Jℓgℓ)

−1

�

, (22)

with H+ denoting the complex upper half-plane. The joint empirical distribution Qz(g) of the
real and imaginary parts of G(i)j j (z) solves the self-consistent equation

Qz(g)=
∞
∑

k=1

k
c

pk

∫

H+

�k−1
∏

ℓ=1

d gℓQz(gℓ)
�

∫

R

�k−1
∏

ℓ=1

dJℓpJ (Jℓ)
�

δ

�

g −
1

z −
∑k−1
ℓ=1 Jℓ (1− Jℓgℓ)

−1

�

. (23)

Equations (22) and (23) can also be derived using the replica method [25, 26] of disordered
systems. Although these equations play a pivotal role in determining the spectral observables
of sparse random graphs with arbitrary pk, they in general admit exact closed form solutions
only in the absence of disorder, i.e. when all degrees and coupling strengths are identical
(pk = δk,c , pJ (Jℓ) = δ(Jℓ − J)).

In appendix A, we explain how progress beyond this rather limited scenario can be made:
we calculate there the spectral observables of interest in the high-connectivity limit and for
an arbitrary degree distribution pk by taking the limit c → ∞ in Eqs. (22) and (23). The
empirical spectral density ρε(λ) and the distribution Pz(g) of the resolvent entries are given,
respectively, by

ρε(λ) =
1

q

2πJ2
1

Re





∫ ∞

0

dκκ−1/2ν(κ)w

 

κJ0 +κJ2
1 〈G〉 − z

q

2κJ2
1

!



 , (24)
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and

Pz(g) =

�

Im(z − g−1)
�−1/2

p

2π Im〈G〉J2
1 |g|4

ν

�

Im(z − g−1)
J2

1 Im〈G〉

�

× exp

�

−
Im〈G〉

2 Im(z − g−1)

�

Re(z − g−1)−
Im(z − g−1)

J2
1 Im〈G〉

(J0 + J2
1 Re〈G〉)

�2
�

,

(25)

where 〈G〉 is the high-connectivity limit of the average resolvent on the cavity graph. The
quantity 〈G〉 fulfills the self-consistent equation

〈G〉=
iπ

q

2πJ2
1

∫ ∞

0

dκκ1/2ν(κ)w

 

κJ0 + κJ2
1 〈G〉 − z

q

2κJ2
1

!

. (26)

The function ν(κ) appearing in Eqs. (24-26) is the c→∞ limit of the empirical distribution
of rescaled degrees,

ν(κ) = lim
c→∞

∞
∑

k=0

pk δ

�

κ−
k
c

�

, (27)

while w(ξ) is the Faddeeva function, defined as

w(ξ) = erfc(−iξ)e−ξ
2
. (28)

The properties of the Faddeeva and the complementary error function erfc can be found in [50].
Equations (24-26) comprise our main analytical results for the resolvent statistics of the

Laplacian matrix on networks. We conclude from these equations that the high-connectivity
limit of the distribution of the resolvent of L is not universal, but explicitly depends on the
choice of the distribution ν(κ) of rescaled degrees. In contrast, Eqs. (24-26) exhibit a universal
behaviour with respect to fluctuations in the coupling strengths, since these equations only
depend on the first two moments of the distribution pJ , but not on its specific functional form.
This universality results from the assumption that only the first two moments of Ji j are of
O(1/c), while higher-order moments behave as O(1/cβ) (β > 1). Once we specify ν(κ) by
means of the degree distribution pk, the solutions of the self-consistent equation for 〈G〉 fully
determine the spectral density ρε(λ) and the distribution of the resolvent Pz(g) in the limit
c →∞. Moreover, by integrating Eq. (25) over Re g, we can compute the distribution of the
LDoS, which characterizes the spatial fluctuations of the eigenvector components.

4 Results for heterogeneous degrees

In this section we present numerical results for the spectral and localization properties of the
Laplacian matrix on heterogeneous networks. In order to solve Eqs. (24-26), we must specify
the distribution ν(κ) of rescaled degrees κi = ki/c. Here we assume that κi follows a gamma
distribution

νγ(κ) =
γγκγ−1e−γκ

Γ (γ)
, (29)

with γ > 0. The distribution νγ(κ) has average one and variance 1/γ, providing the ideal
setting for a systematic exploration of the role of degree heterogeneities by varying a single
parameter. In the limit γ → ∞, the variance goes to zero, the distribution of rescaled de-
grees converges to ν∞(κ) = δ(κ− 1), and the network topology becomes homogeneous. In
the opposite limit γ → 0, the variance of νγ(κ) diverges and the network becomes strongly
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heterogeneous. Therefore, γ directly controls the strength of degree fluctuations, allowing us
to continuously interpolate between the homogeneous and strongly heterogeneous limits. As
shown in previous work [34,51], Eq. (29) is obtained from Eq. (27) when the original degree
distribution pk follows a negative binomial distribution with mean c and variance c + c2/γ.

Before we present our main findings, let us introduce a useful form of the Laplacian matrix
that is valid in the limit c → ∞ and makes it easier to obtain numerical diagonalization
results. When 1 ≪ c ≪ N , the diagonal elements in Eq. (2) are statistically independent
from each other, as a consequence of the local tree-like structure of the network. In addition,
each diagonal element Lii is a sum of a large number of independent random variables that
converges to a Gaussian variate with mean J0κi and standard deviation J1

p
κi , with κi sampled

from ν(κ). The off-diagonal elements Li j (i ̸= j) make up the weighted adjacency matrix of
the network. The asymptotic forms of this adjacency matrix for J0 = 0 and J1 = 0, in the limit
c →∞, have been put forward in references [34] and [51], respectively. By combining all
these particular cases, we obtain the following asymptotic expression for the Laplacian

Li j = δi j

�

J0κi + J1
p

κi gi

�

− (1−δi j)
�

J0

N
κiκ j +

J1p
N

p

κiκ j gi j

�

, (30)

where gi and gi j = g ji are i.i.d. random variables drawn from a normal distribution of zero

mean and unit variance. Equation (30) does not exactly fulfill the constraint
∑N

j=1 Li j = 0 but
does so on average, because the central limit theorem has been applied to the diagonal part
of L. However, this is not a problem, as we are not particularly interested in the single eigen-
value λ1 = 0 and its uniform eigenvector. Given this, the above equation provides a practical
way to generate the Laplacian of a highly-connected network with an arbitrary degree distri-
bution [52–54]. When compared to conventional algorithms for sampling graphs from the
configuration model with prescribed degrees [31], the use of Eq. (30) is more straightforward
and computationally more efficient. One can use similar arguments to show that the normal-
ized Laplacian [29], whose off-diagonal elements are rescaled by the degrees, is independent
of {κi} in the limit c→∞.

In figure 1 we compare numerical diagonalization results for the Laplacian matrix gener-
ated from Eq. (30) with those obtained by sampling random graphs from the configuration
model. We assume that the rescaled degrees κ1, . . . ,κN follow the gamma distribution of
Eq. (29), while the degrees k1, . . . , kN in the configuration model are sampled from a negative
binomial distribution [34] with mean c =

p
N and variance c + c2/γ. Figure 1 shows that the

spectral density obtained from the configuration model converges to the results derived from
Eq. (30) as N increases. Hence, Eq. (30) correctly reproduces the asymptotic form of L in the
regime where both N and c are infinitely large, but the ratio c/N goes to zero. We point out
that this high-connectivity limit is fundamentally different to the so-called dense limit, where
the ratio c/N remains finite as N →∞. All numerical diagonalization results presented below
are obtained using Eq. (30).

4.1 Homogeneous coupling strengths (J1 = 0)

We begin by setting J1 = 0 and studying the spectral and localization properties of the Lapla-
cian when there are no fluctuations in the coupling strengths. This particular regime might
seem trivial at first glance. However, as we will show below, the spectral properties and the
eigenvector statistics display a rich behaviour. In addition, considering the case of homoge-
neous coupling strengths is relevant because, for certain commonly used distributions pJ , such
as a bimodal distribution supported in {A/c, B/c} (where A and B are constants), the variance
of pJ is of O(1/c2) and the statistics of the Laplacian resolvent are described by the solutions
of Eqs. (24-26) with J1 = 0. In what follows, we assume that J0 = 1, since the effects of J0 ̸= 1
reduce to a trivial shifting of the eigenvalues.
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Figure 1: Numerical diagonalization results for the spectral density of the Laplacian
matrix on networks. The solid black lines are obtained from Eq. (30) for N = 2000,
with rescaled degrees κ1, . . . ,κN sampled from a gamma distribution with variance
1/γ (see Eq. (29)). The different symbols are obtained from random Laplacians gen-
erated according to the configuration model, where the degrees k1, . . . , kN are drawm
from a negative binomial distribution with mean c =

p
N and variance c+ c2/γ. The

scaled mean and variance of pJ are, respectively, J0 = 0 and J1 = 1.

4.1.1 Spectral density and local density of states

By taking the limit J1→ 0 in Eqs. (24-26), we obtain expressions for the spectral density

ρε(λ) =
1
π

Im

∫ ∞

0

d x
ν(x)
z − x

, (31)

and for the joint distribution of the diagonal elements of the resolvent

Pz(g) =
1
|g|4

ν
�

Re(z − g−1)
�

θ
�

Re(z − g−1)
�

δ(Im(z − g−1)) . (32)

In the limit ε→ 0+, the Sokhotski-Plemelj identity allows one to rewrite Eq. (31) as follows

ρ(λ) = ν(λ) . (33)

Therefore, the functional form of the spectral density is determined by the rescaled degree
distribution ν(κ). Defining y ≡ Im g as before and integrating Eq. (32) over Re g, we find an
analytical result for the distribution of the LDoS,

Pz(y) =
1
2

√

√ ε

y3(1− εy)

�

ν

�

λ−
√

√ ε

y

p

1− εy
�

θ

�

λ−
√

√ ε

y

p

1− εy
�

+ ν
�

λ+
√

√ ε

y

p

1− εy
�

�

1(0,1/ε)(y) ,

(34)

where θ (y) is the Heaviside step function and 1A(y) denotes the indicator function, i.e.,
1A(y) = 1 if y ∈ A while 1A(y) = 0 otherwise. Note that Pz(y) is supported on the finite
interval (0,1/ε).

An alternative way of obtaining Eq. (33) is by noting that the Laplacian matrix for J1 = 0
(see Eq. (30)) has the form of a diagonal matrix with entries κ̃i = κi(1+κi/N), plus a rank one
perturbation. From this fact, and assuming that κ̃1, . . . , κ̃N are arranged in ascending order,
it follows [12, 55] that each of the N − 1 intervals (κ̃i , κ̃i+1) contains exactly one eigenvalue
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Figure 2: Spectral density of the Laplacian on highly connected random graphs char-
acterized by a gamma distribution of rescaled degrees (see Eq. (29)) with variance
1/γ. The scaled mean and variance of pJ are, respectively, one and zero. The solid
black lines correspond to Eq. (29). The red circles represent diagonalization results
obtained from an ensemble with 100 random Laplacians of dimension N = 2000
generated from Eq. (30).

λµ of L (the remaining eigenvalue lies below κ̃1). This property, known as interleaving or
interlacing of eigenvalues [56], implies that for N →∞ the spectral density of the Laplacian
is given by Eq. (33).

Equations (33) and (34) determine the spectral properties of the Laplacian on networks
with J1 = 0 and an arbitrary distribution ν(κ). Let us derive explicit results for ρ(λ) when
the rescaled degrees follow a gamma distribution (See Eq. (29)). Figure 2 compares Eq.
(29) with numerical diagonalization results derived from an ensemble of Laplacian random
matrices with N ≫ 1 and different values of γ. The agreement with the theoretical prediction
is excellent. The spectral density follows a power-law, ρ(λ) ∼ λγ−1, up to λ = O(1/γ);
beyond this it decays exponentially fast. In particular, for strong degree fluctuations one has
a divergence in the spectral density at the lower spectral edge λ= 0, similar to the behaviour
of ρ(λ) in the case of the adjacency matrix [33,34]. Indeed, by taking the limit κ→ 0 in Eq.
(29), one can see that ρ(λ) diverges as a power-law when 0< γ < 1. For γ= 1 and γ > 1, on
the other hand, we obtain ρ(0) = 1 and ρ(0) = 0, respectively.

We next turn our attention to the distribution Pz(y) of the LDoS, which encodes the spatial
fluctuations of the eigenvector components. Figure 3 depicts the function Pz(y) calculated
from Eq. (34) for the gamma distribution νγ(κ) of rescaled degrees, both for λ = 0 and for
λ > 0. In both cases the distribution Pz(y) has a pronounced maximum at very small values
of y , while for large y it decays as a power-law until the upper cutoff 1/ε is reached. The
LDoS ρi(z) is thus extremely small in a large number of nodes and very large in a tiny portion
of the network, which reflects the enormous fluctuations in the eigenvector components and
their localized nature [57]. The singular character of the limit limε→0+ Pz(y) is another typical
property of the localized phase [57,58]. As a particular feature of the regime λ > 0, we note
that Pz(y) diverges at y∗ = ε/(ε2+λ2) as y → y+∗ , for γ < 1, which results from the functional
form of the gamma distribution νγ.

Let us extract the right (large y) tail of Pz(y), since its functional form is particularly
relevant for computing the multifractal exponents of the eigenvectors. For λ = 0, Eq. (34)
reduces to

Pz(y) =
1
2

√

√ ε

y3(1− εy)
ν

�√

√ ε

y

p

1− εy

�

1(0,1/ε)(y) , (35)

which shows that the right tail of Pz(y) is determined by the functional form of ν(κ). When
the rescaled degrees follow νγ(κ) (see Eq. (29)), Eq. (35) yields the asymptotic expression

Pz(y)∝ εγ/2 y−γ/2−1 (ε≪ y ≪ 1/ε) , (36)
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Figure 3: The distribution Pz(y) of the LDoS at z = λ− iε for the Laplacian matrix
on highly connected random graphs, where the rescaled degrees follow a gamma
distribution with variance 1/γ (see Eq. (29)). The scaled mean and variance of pJ
are, respectively, one and zero. The dashed lines are the power-law functions of
Eqs. (36) and (38). The dash-dotted lines are obtained from Eq. (34) with ε= 10−3.
The purple solid line is obtained from exact diagonalization of a 213 × 213 Laplacian
generated according to the configuration model for c = 400, γ= 2 and ε= 10−3.

valid as ε → 0+. From Eq. (7), the ε-dependent prefactor in Eq. (36) implies that, in the
regime γ < 1, ρε(λ) ∼ εγ−1 at λ = 0, which is consistent with the behaviour observed in Eq.
(29) for small κ.

Turning next to λ > 0, with again ε ≪ y ≪ 1/ε, the ε-dependent contribution in the
argument of ν in Eq. (34) is vanishingly small, leading to the approximate form

Pz(y)≃
√

√ ε

y3
ν(λ)1(0,1/ε)(y) , (37)

which shows that the exponent governing the decay of Pz(y) is independent of ν(κ), that is

Pz(y)∝ ε1/2 y−3/2 (ε≪ y ≪ 1/ε) . (38)

The integral given by Eq. (7) is now always dominated by the large-y power law tail, giving
together with the ε-dependent prefactor a result of O(1). This agrees with the fact that ρ(λ) is
always finite for λ ̸= 0. The power-law tail of Pz(y) results from strong spatial fluctuations of
the eigenvector components throughout the network. Figure 3 illustrates the power-law decay
of Pz(y) for the gamma distribution of rescaled degrees, confirming Eqs. (36) and (38).

4.1.2 Singularity spectrum and multifractal exponents

In this subsection, we determine the singularity spectrum and the multifractal exponents of
the eigenvectors within the bulk of the spectral density, i.e., for an arbitrary λ > 0. Since
the distribution of the LDoS characterizes the fluctuations of the squared eigenvector ampli-
tudes around a given λ, it is sensible to assume that the right tail of the distribution Pψ(x) of
x i = N |ψi|2 behaves according to the LDoS distribution. Thus, based on Eq. (38), we assume
that Pψ(x) decays as

Pψ(x)∼ b(N)x−3/2 (x > xmin(N)) , (39)

for x above some characteristic value xmin(N). The scaling of xmin(N) and of the prefactor
b(N) with respect to N follows from the normalization conditions

∫ N

xmin

Pψ(x)d x ≃ 1 , (40)
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Figure 4: Singularity spectrum f (α) and multifractal exponents τ(q) of the eigen-
vectors corresponding to λ= 1 of the Laplacian matrix on highly-connected random
graphs with homogeneous coupling strengths (J0 = 1 and J1 = 0). The param-
eter γ controls the variance of the distribution of rescaled degrees (see Eq. (29)).
Left panel: solid lines with markers correspond to numerical diagonalization results.
Dashed line: analytical prediction of Eq. (42). Dash-dotted lines: analytical predic-
tions from Eq. (44). Right panel: solid lines represent numerical diagonalization
results, while the dashed line corresponds to Eq. (45).

and
∫ N

xmin

x Pψ(x)d x ≃ 1 . (41)

By substituting Eq. (39) into the above constraints, we find b(N)∼ N−1/2 and xmin(N)∼ N−1.
Inserting then the resulting expression Pψ(x) ∼ N−1/2 x−3/2 into Eq. (15), we obtain the
singularity spectrum

f (α) =
1
2
α , for α ∈ [0,2) , (42)

where the lower and upper ends of the range of α are determined by the conditions f (α) = 0
and f (α) = 1, respectively [43].

Moving to small values of x , we find that the distribution Pψ(x) behaves as

Pψ(x)∼ Nγ/2 xγ/2−1 . (43)

In appendix B, we demonstrate the validity of Eqs. (39) and (43) by a direct computation of
the eigenvectors of L as defined in Eq. (30). By substituting Eq. (43) into Eq. (15), we derive
the singularity spectrum in the range of α corresponding to small x ,

f (α) =
γ

2
(2−α) + 1 , for α ∈ (2,2+ 2/γ] , (44)

Summarizing Eqs. (42) and (44), the function f (α) has a triangular shape. This is shown
in figure 4, where we present our analytic predictions for f (α) together with numerical diago-
nalization results of Eq. (30), for λ > 0 and two different values of γ (see numerical details in
Appendix C). The diagonalization results agree very well with Eqs. (42) and (44), especially
for low values of γ, where the argument for the right piece of f (α) becomes quite accurate
already for moderate N . Equation (42) implies that the eigenvectors for λ > 0 are local-
ized [39], regardless of the value of γ. This behaviour is consistent with the Anderson-like tail
of Eq. (38) [36] as well as with the singular behaviour of the LDoS distribution in the limit
ε→ 0+, as discussed in the previous subsection.
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We now turn our attention to the set of multifractal exponents τ(q). For q > 0, only the
left piece of the triangular function f (α), given by Eq. (42), is relevant for the calculation of
the Legendre transform (see Eq. (13)). The resulting expression for τ(q) reads

τ(q) =

¨

2q− 1 , for q ≤ 1
2 ,

0 , for q > 1
2 .

(45)

Consistently with the behaviour of the singularity spectrum, Eq. (45) reveals that the eigenvec-
tors for λ > 0 are localized with strong multifractal behaviour [38], which can be clearly seen
in the numerical diagonalization results shown in figure 4. We stress that τ(q) is independent
of γ and λ, as long as we choose λ far from the spectral edge λ = 0, as specified above. Note
also that this set of multifractal exponents corresponds exactly to the behavior of localized
wavefunctions at the critical point of the Anderson transition on random graphs [38,40].

4.2 Heterogeneous coupling strengths (J1 > 0)

In this section we discuss the spectral properties and the eigenvector statistics of the Laplacian
matrix on highly-connected networks that combine the effect of heterogeneous degrees and
random coupling strengths.

4.2.1 Spectral density and local density of states

First, let us recover a previous rigorous result for the spectral density valid in the homogeneous
network topology limit γ→∞ [28]. Substituting ν∞(κ) = δ(κ− 1) into Eqs. (24) and (26),
we obtain the regularized spectral density

ρε(λ) =
1
π

Im〈G〉 , (46)

where 〈G〉 fulfills

〈G〉=
iπ

q

2πJ2
1

w

 

J0 + J2
1 〈G〉 − z
q

2J2
1

!

, (47)

with w(. . .) denoting the Faddeeva function (see Eq. (28)). For J0 = 0 and J1 = 1, ρε(λ) is
a symmetric distribution around λ = 0, given by the free additive convolution of the Wigner
semicircle law with the normal distribution, as rigorously demonstrated in [28]. One can
show that Eq. (47) is equivalent to the spectral distribution in [29], which was first derived
in [16]. Even if Eqs. (46) and (47) have been derived here using the non-rigorous cavity
method, they are exact for highly connected random graphs in the limit N →∞, allowing us
to put forward a sensible conjecture that generalizes the theorem in [28] for J0 ̸= 0. Indeed,
since the Faddeeva function is the Cauchy-Stieltjes transform of a Gaussian distribution, the
above equations, combined with the decomposition of the Laplacian, Eq. (30), strongly suggest
that ρ(λ) is given by the free additive convolution of the Wigner semicircle law supported in
[−2J1, 2J1] with a Gaussian distribution of mean J0 and variance J2

1 . Therefore, a nonzero J0
shifts the mode of ρ(λ). Figure 5 confirms Eqs. (46) and (47) by comparing the outcome of
solving these equations with numerical diagonalization results for the spectral density.

Furthermore, our approach enables us to calculate the distribution of the LDoS and study
the statistics of the eigenvector components. By inserting ν∞(κ) = δ(κ − 1) into Eq. (25),
performing the limit ε→ 0+ and integrating over Re g, we obtain the analytical result

Pλ(y) =
exp

�−x2
+(y)

2J2
1

�

+ exp
�−x2

−(y)
2J2

1

�

r

2πJ2
1 y3

�

ye − y
�

1(0,ye)(y) , (48)
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Figure 5: Spectral density ρε(λ) and the distribution Pz(y) of the LDoS for the
Laplacian matrix on highly-connected random graphs in the homogeneous regime
(ν∞(κ) = δ(κ−1)). The scaled first and second moments of the coupling strengths
are, respectively, J0 = 1 and J1 = 1. In panel (a) we compare the theoretical results
(solid line), obtained from the solutions of Eqs. (46) and (47) for ε= 0, with numer-
ical data (red circles) obtained from the diagonalization of 100 random Laplacians
generated from Eq. (30) with N = 2000. In panel (b) we present the distribution of
the LDoS, Eq. (48), for different λ.

where the upper end ye of the support of Pλ(y) is given by

ye =
1

J2
1πρ(λ)

. (49)

The functions x±(y) in Eq. (48) are defined as

x±(y) = λ− J0 − J1Re〈G〉 ±
1
ye

√

√ ye

y
− 1 . (50)

The fact that, in the limit ε → 0+, the marginal Pz(y) =
∫∞
−∞ dRe gPz(Re g, y) converges

to a regular, ε-independent function Pλ(y) supported on a finite interval, is a characteristic
property of the extended phase [57,58]. Figure 5 exhibits the LDoS distribution obtained from
Eq. (48) for different λ. As λ increases, Pλ(y) becomes gradually more concentrated around
its typical value, which shifts towards smaller values of y at the same time.

Finally, we consider the situation where J1 > 0 and the rescaled degrees are distributed
according to Eq. (29). In this case, the regularized spectral density follows from

ρε(λ) =
γγ

Γ (γ)
q

2πJ2
1

Re





∫ ∞

0

dκκγ−3/2e−γκw

 

κJ0 +κJ2
1 〈G〉 − z

q

2κJ2
1

!



 , (51)

where 〈G〉 solves

〈G〉=
γγiπ

Γ (γ)
q

2πJ2
1

∫ ∞

0

dκκγ−1/2e−γκw

 

κJ0 +κJ2
1 〈G〉 − z

q

2κJ2
1

!

. (52)

We calculate the integrals over κ in the above equations using numerical methods. From a
computational point of view, obtaining a numerical solution of these integrals is more efficient
than performing numerical diagonalizations of high-dimensional matrices or solving Eqs. (22)
and (23) using the population dynamics algorithm [26].
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Figure 6: Spectral density of the Laplacian on highly-connected random graphs
characterized by a gamma distribution of rescaled degrees with variance 1/γ (see
Eq. (29)). The scaled mean and variance of pJ are, respectively, J0 and J1 = 1. The
upper panels show results for J0 = 0, while in the lower row J0 = 1. The solid black
lines are obtained from the solutions of Eqs. (51) and (52) with ε = 10−3. The red
circles represent diagonalization results obtained from an ensemble with 100 Lapla-
cian random matrices of dimension N = 2000 generated from Eq. (30).

Figure 6 shows the spectral densityρε(λ) obtained from the solutions of Eqs. (51) and (52),
together with numerical diagonalization results of random Laplacians generated from Eq. (30).
The excellent agreement between the theoretical curves and the numerical diagonalization
data confirms the exactness of Eqs. (51) and (52). The upper and lower rows show results for
J0 = 0 and J0 = 1, respectively. Comparing these, one notices that the mode of the distribution
is independent of J0, but a nonzero value of J0 breaks the symmetry of ρε(λ) around λ = 0,
yielding an excess of positive (negative) eigenvalues when J0 > 0 (J0 < 0). For J0 ̸= 0, the
spectral density becomes gradually more symmetric around λ = 0 as γ→ 0, since the shift in
the eigenvalues caused by a finite mean J0 becomes less relevant than the spread of eigenvalues
induced by strong degree fluctuations. Similarly to the behaviour of the spectral density of the
adjacency matrix [34], ρε(λ) diverges at λ = 0 for γ ≤ 1/2. We point out that for J1 ̸= 0
the Laplacian matrix has both positive and negative eigenvalues, irrespective of whether the
network is homogeneous or heterogeneous.

As our final set of results for the spectral properties, we analyse the LDoS distribution
Pz(y) for J1 > 0 and ν(κ) given by the gamma distribution. We compute Pz(y) by numerically
integrating Eq. (25) over the real part Reg. Figure 7 illustrates the effect of degree fluctuations
on the distribution Pz(y) for λ= 0 and λ ̸= 0. In either case, Pz(y) has an unbounded support
for any finite γ, which is an important difference with respect to the LDoS distribution of the
adjacency matrix, since in the latter case the support is unbounded only at λ = 0 [34]. As γ
increases, Pz(y) slowly converges to the distribution of the LDoS for homogeneous networks
(see figure 5). For λ > 0, the function Pz(y) diverges at y = 0 when γ < 1, owing to the
functional form of the distribution νγ(κ) of rescaled degrees.
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Figure 7: The distribution Pz(y) of the LDoS at z = λ− iε for the Laplacian matrix
on highly connected random graphs, where the rescaled degrees follow a gamma
distribution with variance 1/γ (see Eq. (29)). The scaled mean and variance of pJ
are, respectively, J0 = 0 and J1 = 1. The solid lines for different γ are obtained
by marginalizing Eq. (25) with ε = 0, while the dashed lines in the main panels
represent the homogeneous limit of Pz(y) (see Eq. (48)). The insets exhibit the tails
of Pz(y) for large y .

The insets in figure 7 illustrate the large-y behaviour of Pz(y) for both λ = 0 and λ ̸= 0.
The distribution Pz(y) exhibits an exponential tail for λ > 0, implying that the first moment
of Pz(y) and, consequently, the spectral density, is finite. For λ = 0, the LDoS distribution
decays for large y as

Pz(y)∝
1

yγ+3/2
, (53)

with an exponent γ + 3/2 controlled by the strength of degree heterogeneities. Due to the
power-law tail of Eq. (53), the first moment of Pz(y) diverges when γ ≤ 1/2, which explains
the singular behaviour of the spectral density at λ= 0 (see figure 6). In what follows, we will
use Eq. (53) to make an ansatz for Pψ(x) and extract the singularity spectrum f (α).

4.2.2 Singularity spectrum and multifractal exponents

In this subsection, we focus on the eigenvector statistics around λ = 0, at which the LDoS
distribution decays as a power law (see Eq. (53)) and the spectral density diverges for γ≤ 1/2.
In contrast to the case of homogeneous coupling strengths, where the eigenvalues are non-
negative and ρ(λ) can diverge only at the spectral edge λ = 0, here the divergence occurs
within the bulk of the spectrum. This is a similar scenario as the one analyzed in references
[34,35] for the weighted adjacency matrix of the same class of networks (see also appendix D).
We follow reference [35] and assume that Pz(y) provides a good estimate for the distribution
Pψ(x) of the eigenvector squared amplitudes x i = N |ψi|2 corresponding to λ = 0. Thus, we
take as our ansatz for Pψ(x), above some scale xmin(N) and up to the upper bound N , the
form from Eq. (53),

Pψ(x) = b(N)x−(γ+3/2) (x > xmin(N)) , (54)

where b(N) is an N -dependent prefactor. In Fig. 8, we show that the exponent in Eq. (54) is
consistent with the numerical results for Pψ(x) obtained from numerical diagonalizations of
random Laplacians with finite N . In addition, the data in figure 8 suggest that Pψ(x) behaves
as

Pψ(x)∼ x−1/2 , (55)

for small x . This scaling holds independently of γ.
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Figure 8: Distribution Pψ(ln x) of the logarithm of squared eigenvector amplitudes
x i = N |ψi|2 for the Laplacian matrix on highly-connected hetereogenous random
graphs (J0 = 0 and J1 = 1), for different values of the parameter γ that controls
the rescaled degree distribution (see Eq. (29)). The figure depicts Pψ(ln x) for the
eigenvector corresponding to the closest eigenvalue to λ = 0 (the vertical axis is
in logarithmic scale). These results are obtained by diagonalizing random Lapla-
cian matrices generated from Eq. (30) with N = 214. Dashed lines: scaling accord-
ing to P(ln x) ∼ e−(γ+1/2) ln x (see Eq. (54)). Dash-dotted line: scaling according to
P(ln x)∼ e(ln x)/2 (see Eq. (55)).

Let us now compute the singularity spectrum and the multifractal exponents, using
Eqs. (15) and (13). The normalization conditions of Eqs. (40) and (41) determine how the
prefactor b(N) and the lower end xmin(N) of the power-law range of Eq. (54) scale with N .

For γ < 1/2, one finds b(N) ∼ Nγ−1/2 and xmin(N) ∼ N
γ−1/2
γ+1/2 ; for γ > 1/2, both b(N) and

xmin(N) are independent of N . By inserting Eq. (54) into Eq. (15), together with the scaling
of b(N), we can estimate the singularity spectrum for N →∞. For γ < 1/2, we obtain

f (α) = (γ+ 1/2)α , for 0≤ α≤
1

γ+ 1/2
, (56)

while the Legendre transform of the above expression gives the corresponding multifractal
exponents (see Eq. (13))

τ(q) =

( q
γ+ 1/2

− 1 , for q < γ+ 1/2 ,

0 , for q > γ+ 1/2 .
(57)

In the regime γ > 1/2, an analogous calculation yields the singularity spectrum

f (α) = α
�

γ+
1
2

�

+
�

1
2
− γ

�

, for
γ− 1/2
γ+ 1/2

≤ α≤ 1 , (58)

with the corresponding multifractal exponents

τ(q) =







q− 1 , for q ≤ γ+ 1/2 ,

q
γ− 1/2
γ+ 1/2

, for q > γ+ 1/2 .
(59)
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Figure 9: Singularity spectrum f (α) and multifractal exponents τ(q) of the eigen-
vectors corresponding to λ= 0 of the Laplacian matrix on highly-connected random
graphs with heterogeneous coupling strengths (J0 = 0 and J1 = 1). The parameter
γ controls the variance of the rescaled degree distribution (see Eq. (29)). Left panel:
solid lines with markers correspond to numerical diagonalization data, dashed lines
indicate the slope of f (α) = (γ+1/2)α (see Eqs. (56) and (58)), and the dash-dotted
line shows the slope of f (α) ≈ const− α/2. Right panel: solid lines are numerical
diagonalization results, while the dashed lines correspond to Eqs. (57) and (59).

The intervals of α in Eqs. (56) and (58) are determined from the conditions f (α) = 0 and
f (α) = 1 as above [43]. Regarding the behaviour of f (α) for large α, some comments are in
order. By virtue of Eq. (15) the behaviour of Pψ(x) for small x , given by Eq. (55), implies that
the singularity spectrum behaves as f (α) ≈ const−α/2 for α larger than some characteristic
value. This additional piece of the singularity spectrum does not have any effect on the function
τ(q) for q > 0, but it might be relevant for classifying the eigenvectors into universality classes.
Taken together, these results suggest that f (α) again has a triangular shape, analogous to what
we found in section 4.2.2 for the homogeneous case.

Equations (56) and (57) imply that the eigenvectors for γ < 1/2 are localized with strong
multifractal behaviour [40]. Indeed, the eigenvectors for single instances and finite connectiv-
ity turn out to be localized on a finite number of nodes that are not spatially correlated. In this
regard, the eigenvectors exhibit similar features as those of the weighted adjacency matrices
analyzed in reference [35]. Equations (58) and (59), in contrast, imply that the eigenvectors
for γ > 1/2 are extended and non-ergodic [46], similarly to the delocalized but weakly mul-
tifractal phase of sparse Erdös-Rényi random graphs [62]. Notice that the weakly multifractal
phase described in reference [62] appears for λ ̸= 0, while in the present case the extended
non-ergodic phase occurs only at λ = 0, where the LDoS distribution exhibits a power-law
tail (see Eq. (53)). Therefore, we do not expect to observe a weakly multifractal phase for
λ ̸= 0 due to the exponential decay of Pz(y) (see Fig. 7 for λ = 2). In the limit γ→∞, the
eigenvectors become fully ergodic since f (α) shrinks to a single point with value f (1) = 1,
while τ(q) = q−1 for all q. To summarize, then, γ= 1/2 defines the critical point that charac-
terizes a localization-delocalization transition induced by fluctuations in the network degrees.
Equations (56-59) can be directly contrasted with the corresponding results for the adjacency
matrix [35,62], as summarized in appendix D.

We end this section by comparing our theoretical predictions with numerical data. Figure 9
presents numerical diagonalization results for the singularity spectrum and the mutlifractal
exponents for different values of γ (we refer to Appendix C for numerical details regarding
the computation of these functions). Equations (56) and (58) predict that f (α) has a slope
γ+ 1/2 for small α, while Eq. (55) yields a slope of −1/2 for large α. These theoretical find-
ings are consistent with the numerical diagonalization results for f (α) presented in figure 9.
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As mentioned above, we expect that f (α) approaches a triangular shape as N →∞. However,
as can be seen in figure 9, the numerical results show significant deviations from a triangle-like
function for low γ (strong degree fluctuations). We interpret this as an indication of strong
finite-size effects. Such effects are also visible in the multifractal exponents, where we ob-
serve, for low γ, a mismatch between the theoretical prediction (Eqs. (57) and (59)) and the
numerical diagonalization results. On the other hand, the theoretical results for τ(q) in the
regime γ≥ 1/2 (see Eq. (59)) exhibit a very good agreement with the numerical data.

5 Summary and conclusions

In this study we have performed a thorough analysis of the spectral and localization proper-
ties of the Laplacian matrix on highly-connected networks with an arbitrary degree distribution
and random coupling strengths. We have shown that, as the average degree c grows to infin-
ity, the distribution of the diagonal resolvent entries converges to a relatively simple closed
form expression, which depends on the full distribution of rescaled degrees and the first two
moments of the coupling strengths. This implies that the high-connectivity limit of the spec-
tral properties of the Laplacian on networks is universal with respect to the statistics of the
coupling strengths. However, this universality breaks down in the presence of strong degree
fluctuations, akin to what is observed for adjacency matrices [33]. The analytical expression
for the resolvent distribution serves as the basis for systematically studying how the hetero-
geneous structure of random graphs impacts the spectral density, the distribution of the local
density of states (LDoS), the singularity spectrum and the multifractal exponents, leading to a
comprehensive picture of the spectral and localization properties of the Laplacian on hetero-
geneous networks. We have focused on highly-connected networks with a gamma distribution
of rescaled degrees, as in this case the strength of degree fluctuations is solely controlled by
the variance 1/γ of the rescaled degree distribution. The network becomes homogeneous for
γ→∞, while the strong heterogeneous limit is reached as γ→ 0.

When the variance of the coupling strengths is nonzero (heterogeneous couplings), the
spectral density diverges within the bulk of the spectrum, provided γ ≤ 1/2. This singularity
is a consequence of the large fluctuations of the LDoS, whose distribution exhibits a power-law
decay governed by a γ-dependent exponent. These results for the Laplacian spectral proper-
ties are qualitatively similar to those for the adjacency matrix [34]. By using the power-law
tail of the LDoS distribution as an input, we have computed the singularity spectrum and the
multifractal exponents, which characterize the spatial fluctuations of the squared eigenvector
amplitudes. Our findings show that the emergence of the singularity in the eigenvalue distri-
bution is accompanied by a delocalization-localization transition of the corresponding eigen-
vectors. For γ > 1/2, the spatial fluctuations of the eigenvectors with eigenvalues around zero
are characteristic of non-ergodic extended states, while for γ < 1/2 these eigenvectors become
localized, exhibiting strong multifractal behaviour. The existence of a non-ergodic extended
phase has been demonstrated in various random-matrix models for the diffusion of a single
quantum particle on random structures, including the Rosenzweig-Porter ensemble [46, 59],
the Cayley tree [60] and the sparse Erdös-Rényi ensemble [61, 62]. In contrast to these set-
tings, the localization transition in the present model is driven by strong degree fluctuations.

When the variance of the coupling strengths is zero (homogeneous couplings), the Lapla-
cian of highly-connected networks has only non-negative eigenvalues, and the functional form
of the spectral density is given by the rescaled degree distribution. In this case, the spectral
density only diverges at the lower spectral edge. By focusing on the eigenvector statistics
within the bulk of the spectrum, we have shown that the LDoS distribution displays a sin-
gular behaviour as the regularizer ε tends to zero. Furthermore, this function decays as a
power-law with exponent 3/2, which is also the value characterizing the power-law tail of
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the LDoS in the whole localized phase of the Anderson model on a Bethe lattice (including
the critical point) [36, 58]. These findings imply that all eigenvectors within the bulk of the
Laplacian spectrum are localized, regardless of the variance 1/γ of the rescaled degrees. The
behaviour of both the multifractal exponents and the singularity spectrum is also consistent
with the localized nature of the wavefunctions at the critical point of the Anderson model on
random graphs [39,40,63]. This is interesting because the localization length of models with
spatial structure diverges precisely at the critical point, which is consistent with the absence of
any notion of distance in the current network model. Thus, the localized states in the present
model are not related to the spatial structure of the graph, since the Laplacian effectively be-
comes a fully-connected matrix in the limit c →∞ (see Eq. (30)). Instead, the eigenvectors
for large but finite-sized networks localize onto nodes with degrees of O(1), which is typical
of the statistical localization mechanism introduced in [35].

We point out that our results for homogeneous coupling strengths match exactly those for
the master operator of the mean-field Bouchaud trap model [12, 64], provided one identifies
the temperature in that model with the parameter γ here. Indeed, both random-matrix models
are defined (at least effectively, in the case studied here) in terms of a fully-connected network
and all eigenvectors are localized, regardless of the value of the control parameter. The main
difference between these two models lies in the source of disorder. While in the current model
the disorder stems from the network degrees, in the Bouchaud trap model the local energies
are quenched random variables. This unexpected connection between the two models suggest
that statistical localization is a widespread phenomenon, which can be triggered by distinct
physical mechanisms.

Based on the central limit theorem and previous rigorous results [28, 65], we have put
forward an asymptotic form of the Laplacian matrix, Eq. (30), valid in the limit c→∞. This
equation provides an efficient way to diagonalise finite-size instances of the Laplacian without
having to sample graphs from the configuration model. Besides this practical advantage, we
point out that the off-diagonal elements of Eq. (30) define the adjacency matrix of an effective
fully-connected interaction matrix that incorporates the effect of degree fluctuations in the
high-connectivity limit. This fully-connected network model has recently attracted significant
interest as it leads to exactly solvable models in various contexts [51, 66–68]. It would be
interesting to study the tight-binding Anderson model with on-site random potentials (diago-
nal disorder) and hopping energies given by the off-diagonal entries of Eq. (30). This model
would enable one to characterize the transition between statistical localization (absence of
diagonal disorder) [35] and Anderson-like localized states (strong diagonal disorder).

Finally, we have derived numerical diagonalization results of finite Laplacians that, in gen-
eral, exhibit a very good agreement with our theoretical findings. The only exception is the
regime of strong degree fluctuations (small γ) and heterogeneous coupling strengths. In this
case, even though the data are consistent overall with the analytical equations for the singular-
ity spectrum and the multifractal exponents, the numerical results in figure 9 show significant
deviations from the theory, which require further analysis. One could complement our results
and achieve a more complete characterization of the delocalization-localization transition in
the present model by computing other spectral observables, such as the level-spacing distribu-
tion, the level compressibility and the overlap correlation function [42].
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A The high-connectivity limit of the resolvent equations

In previous works [33, 34], we have introduced a method for deriving analytical expressions
for the spectral observables of the adjacency matrix of random graphs with arbitrary degree
distributions in the high connectivity limit. In this section, we extend this approach to the
Laplacian matrix.

We start by defining the joint distribution Wz(s) of the real and imaginary parts of

S(z)≡
k
∑

ℓ=1

Jℓ
1− Jℓgℓ(z)

, (A.1)

which consists of a sum of independent and identically distributed random variables. The
degree k is sampled from the discrete distribution pk, the coupling strengths {Jℓ} follow the
distribution pJ , while the cavity resolvents {gℓ(z)} are drawn fromQz(g). The random variable
S(z) is analogous to the self-energy that appears in the solution of tight-binding models for
the diffusion of an electron [57]. The distribution Wz(s) of S(z) is determined from

Wz(s) =
∞
∑

k=0

pk

∫

H+

� k
∏

ℓ=1

d gℓQz(gℓ)
�

∫

R

� k
∏

ℓ=1

dJℓpJ (Jℓ)
�

δ

�

s−
k
∑

ℓ=1

Jℓ
1− Jℓgℓ

�

, (A.2)

where H+ stands for the complex upper half-plane. The argument of the Dirac-δ in Eq. (22)
means that

G(z)
d
=

1
z − S(z)

, (A.3)

which leads to the following relation between Pz(g) and Wz(s)

Pz(g) =

∫

H+
dsWz(s)δ

�

g −
1

z − s

�

, (A.4)

with ds = dRe s dIm s. Equation (A.4) implies that all moments of Pz(g) are determined by
Wz(s). For instance, the regularized spectral density ρε(λ), written in terms of the distribution
Wz(s), reads

ρε(λ) =
1
π

Im

�∫

H+
ds

Wz(s)
z − s

�

. (A.5)

In a similar way, one can introduce the distribution Vz(s) of the self-energy on the cavity graph,

Vz(s) =
∞
∑

k=1

k
c

pk

∫

H+

� k−1
∏

ℓ=1

d gℓQz(gℓ)
�

∫

R

� k−1
∏

ℓ=1

dJℓpJ (Jℓ)
�

δ

�

s−
k−1
∑

ℓ=1

Jℓ
1− Jℓgℓ

�

, (A.6)

which allows us to rewrite Qz(g) as follows (see Eq. (23))

Qz(g) =

∫

H+
dsVz(s)δ

�

g −
1

z − s

�

. (A.7)

Our goal is to determine the form of the distributions Wz(s) and Vz(s) in the limit c→∞.
Since Wz(s) and Vz(s) are distributions of sums of independent and identically distributed
random variables, it is natural to work with the corresponding characteristic functions. Let
ϕW(p, t) and ϕV(p, t) be the characteristic functions of Wz(s) and Vz(s), respectively, defined
as the Fourier transforms

ϕW(p, t) =

∫

H+
dsWz(s)exp (−ipRe s− i tIm s) , (A.8)

ϕV(p, t) =

∫

H+
dsVz(s)exp (−ipRe s− i tIm s) . (A.9)
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The substitution of Eqs. (A.2) and (A.6) into Eqs. (A.8) and (A.9) produces

ϕW(p, t) =
∞
∑

k=0

pk exp[kSc(p, t)] , (A.10)

and

ϕV(p, t) =
∞
∑

k=1

k
c

pk exp[(k− 1)Sc(p, t)] , (A.11)

with

Sc(p, t) = ln

�∫

H+
d gQz(g)

∫ ∞

−∞
dJ pJ (J)exp

�

−ip(J − J2Re g)− i t(J2Im g)
(1− JRe g)2 + (J Im g)2

��

. (A.12)

The next step is to expand Eq. (A.12) for c≫ 1.
In order to proceed further, we remind the reader that the mean and variance of pJ are,

respectively, given by J0/c and J2
1/c, while higher moments are proportional to 1/cβ (β > 1).

Therefore, the leading term in Eq. (A.12) for c≫ 1 is given by

Sc(p, t) = −
ip
c

J0 −
ip
c

Re〈G〉J2
1 −

i t
c

Im〈G〉J2
1 −

p2

2c
J2

1 +O(1/c2) , (A.13)

where we have assumed that the average resolvent on the cavity graph,

〈G〉=
∫

H+
ds

Vz(g)
z − s

, (A.14)

converges to a well-defined limit as c → ∞. Substituting Eq. (A.13) into Eqs. (A.10) and
(A.11), and using the definition of the distribution of rescaled degrees (Eq. (27)) we obtain

ϕW(p, t) =

∫ ∞

0

dκν(κ)exp
�

κ
�

−ipJ0 − ipJ2
1 Re〈G〉 − i tJ2

1 Im〈G〉 − p2J2
1/2

��

, (A.15)

and

ϕV(p, t) =

∫ ∞

0

dκκν(κ)exp
�

κ
�

−ipJ0 − ipJ2
1 Re〈G〉 − i tJ2

1 Im〈G〉 − p2J2
1/2

��

. (A.16)

The inverse Fourier transforms of Eqs. (A.15) and (A.16) yield, respectively,

Wz(s) =
1

q

2πJ2
1

∫ ∞

0

dκκ−1/2ν(κ)exp

�

−
1

2J2
1κ

�

Re s− κ
�

J0 + J2
1 Re〈G〉

��2
�

×δ
�

Im s−κJ2
1 Im〈G〉

�

,

(A.17)

and

Vz(s) =
1

q

2πJ2
1

∫ ∞

0

dκκ1/2ν(κ)exp

�

−
1

2J2
1κ

�

Re s− κ
�

J0 + J2
1 Re〈G〉

��2
�

×δ
�

Im s− κJ2
1 Im〈G〉

�

.

(A.18)

The above two equations form the central result of this appendix, as they provide exact equa-
tions for the spectral observables. By substituting Eq. (A.17) into Eq. (A.5) and integrating
over s ∈H+, we recover Eq. (24) for the spectral density. Similarly, the self-consistent Eq. (26)
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for the average resolvent 〈G〉 on the cavity graph is obtained by substituting Eq. (A.18) into
(A.14) and then solving the integral over s ∈H+.

Finally, let us derive Eq. (25) for the distribution Pz(g) of the diagonal elements of the
resolvent. Integrating over κ in Eq. (A.17), we get

Wz(s)=
1

p
2πJ3

1 Im〈G〉
ν

�

Im s
J2

1 Im〈G〉

�

exp

�

−
Im〈G〉
2Im s

�

Re s−
Im s

J2
1 Im〈G〉

�

J0 + J2
1 Re〈G〉

�

�2�

, (A.19)

where we defined ν(κ) ≡ k−1/2ν(κ). The resolvent G(z) is related to the self-energy S(z)
through Eq. (A.3). Since we know the analytical form (A.19) of the joint distribution Wz(s)
of S(z), Eq. (25) for the distribution Pz(g) of G(z) is derived by making the two-dimensional
change of variables dictated by Eq. (A.3).

B The distribution of the eigenvector squared amplitudes for ho-
mogeneous coupling strengths

In this appendix, we show how to derive Eqs. (39) and (43), which characterize the distribution
Pψ(x) of the eigenvector squared amplitudes for large and small x . From the asymptotic form
of the Laplacian for J1 = 0 (see Eq. (30)), the eigenvalue equation (3) can be written as

κiψµ,i −
1
N
κi

N
∑

j=1(̸=i)

κ jψµ, j = λµψµ,i , (B.1)

where we have considered J0 = 1, as was done in Section 4.1. By converting the above sum
into an unconstrained sum, the eigenvalue equation becomes

ψµ,i

�

κ̃i −λµ
�

= κiAµ , (B.2)

where we have defined

Aµ =
1
N

N
∑

j=1

κ jψµ, j , (B.3)

and
κ̃i = κi(1+ κi/N) . (B.4)

Thus, we can write ψµ,i as

ψµ,i =
Aµκi

κ̃i −λµ
. (B.5)

Multiplying the above equation by κi and then averaging over i must give back Aµ, leading to
the eigenvalue condition

1=
1
N

∑

i

κ2
i

κ̃i −λµ
, (B.6)

from which the interleaving property referred to in the main text follows.
Once an eigenvalue λ is found, the eigenvector components obey (see Eq. (B.5))

ψi =
Aκi

κi −λ
, (B.7)

where we have approximated κ̃i ≃ κi for large N . For the sake of simplicity, we have also
dropped the eigenvalue index µ. Our purpose here is to understand how the distribution
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Pψ(x) of x i = N |ψi|2 scales for large and small values of x i . Focussing on eigenvalues away
from the spectral edge, i.e. when λ = O(1), one has to distinguish between three regimes
according to whether κi is (i) much smaller, (ii) comparable to or (iii) much larger than λ.
To be specific, let us assume that the sequence κ1, . . . ,κN is arranged in ascending order, and
let j be such that λ lies between κ j and κ j+1. Thus, the regimes (i) and (iii) correspond to
|i − j|= O(N), which yield

ψi ≈
�

−Aκi/λ , for κi ≪ λ ,
A , for κi ≫ λ .

(B.8)

In the regime (ii), where |i − j| ≪ N , we can approximate

κi −λ≈ κi − κ j ≈
i − j

Nν(κ j)
. (B.9)

Equations (B.8) and (B.9) are valid as long as |i − j| ≫ 1, when there is a large number of
other κk lying between κi and κ j . In particular, the second relation in Eq. (B.9) comes from
the fact that the interval [κi ,κ j] typically contains N(κ j −κi)ν(κ j) rescaled degrees out of all
the N values of κk. Thus, in regime (ii) we have

ψi ≈
ANν(κ j)

i − j
. (B.10)

The constant A can be determined from the normalization condition
∑N

i=1ψ
2
i = 1. From

Eq. (B.10), one gets a contribution to this sum of

∑

i:|i− j|≪N

A2N2ν2(κ j)

|i − j|2
∼ A2N2 . (B.11)

On the other hand, regimes (i) and (iii) from Eq. (B.8) give ψi = O(A) and hence a contri-
bution of O(NA2) to the normalization

∑N
i=1ψ

2
i . This is negligible in comparison to the one

coming from regime (ii). We therefore conclude that A∼ N−1, which allows us to obtain x i in
the three different regimes:

x i = N |ψi|2 ∼







N−1κ2
i , for κi ≪ λ ,

N |i − j|−2 , for 1≪ |i − j| ≪ N ,
N−1 , for κi ≫ λ ,

(B.12)

where we have omitted all factors of order unity. The largest x i come from the second regime,
in which 1≪ |i− j| ≪ N . In this case, the probability that x is larger than some characteristic
value x̄ is obtained by counting what fraction of the index values obey |i− j|< (N/ x̄)1/2. This
fraction scales as N−1(N/x)1/2, which yields the behaviour of the probability density Pψ(x)
for large x as

Pψ(x)∼ −
d

d x
N−1(N/x)1/2 ∼ N−1/2 x−3/2 . (B.13)

The smallest x i , on the other hand, come from the regime (i), where κi ∼
p

N x i . In this
regime we obtain

Pψ(x)∼ ν
�p

N x
�
Æ

N/x . (B.14)

Assuming now that N x ≪ 1, we can simplify this using the behaviour of the gamma distribu-
tion for small argument (see Eq. (29)), which leads to

Pψ(x)∼ Nγ/2 xγ/2−1 . (B.15)
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C Numerical methods for the eigenvector statistics

C.1 Singularity spectrum

For a given eigenvector ψ⃗ of size N around the eigenvalue λ, we compute the set of exponents
{αi}Ni=1 via the expression

αi = −
ln(|ψi|2)

ln(N)
. (C.1)

We collect these exponents for a band of 50 eigenvectors around λ obtained from an ensemble
with 10 random instances of the Laplacian matrix generated according to Eq. (30) and N = 215.
The histogram of the exponents estimates the distribution Ω(α) (Eq. (10)). Thus, by using
Eq. (11), we estimate the singularity spectrum as

f (α)≈
lnΩ(α)

ln N
+ 1 . (C.2)

Since Eq. (11) is an asymptotic scaling relation for large N , the resulting estimates are affected
by finite-size corrections.

C.2 Multifractal exponents

We determine τ(q) by estimating for each q the typical value of the q-th moment of |ψi|2

across a band of 50 eigenvectors around λ. In practice, we consider a grid of values of q
with a step size ∆q = 0.02, network sizes N ∈ {214, 215}, and we generate 221/N instances of
the Laplacian matrix for each N according to Eq. (30). For a given eigenvector, we compute
Iq(N) using Eq. (8), and then calculate I typ

q (N) = e〈ln Iq(N)〉 with the average taken over the
ensemble of eigenvectors and instances. Finally, by virtue of the scaling (9), we extract τ(q)
by estimating I typ

q for two different values of N , generically denoted as N1 and N2. The formula

τ(q) = −

�

ln I typ
q (N2)− ln I typ

q (N1)
�

ln N2 − ln N1
, (C.3)

yields an estimate for τ(q). In our case, we consider N2 = 2N1 = 215, so that Eq. (C.3) reduces
to

τ(q) = −
ln I typ

q (N2)− ln I typ
q (N1)

ln2
. (C.4)

D Summary of previous results for the adjacency matrix

In this appendix, we present a summary of previous results for the singularity spectrum f (α)
and the multifractal exponents τ(q) characterizing the eigenvectors of the adjacency matrix
of random graphs. The results in this appendix can be directly compared with those presented
in sections 4.1.2 and 4.2.2 for the Laplacian matrix.

In reference [35], the authors consider the adjacency matrix of random graphs in the high-
connectivity limit, where the rescaled degrees follow a gamma distribution with variance 1/γ
(see Eq. (29)). For γ < 1, the average spectral density of this random-matrix model exhibits
a power-law singularity at λ = 0, which is the regime of parameters considered in [35]. For
γ < 1, the left piece of the singularity spectrum at λ= 0 is given by

f (α) = γα , if α≤ 1/γ . (D.1)
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Although the right piece of f (α) is not computed in [35], preliminary results suggest that it
behaves as f (α) = 1+ 1

2γ −α/2. The corresponding results for the multifractal exponents read

τ(q) =

¨

q/γ− 1 , if q ≤ γ ,

0 , if q > γ .
(D.2)

Therefore, in the regime γ < 1, the eigenvectors at λ = 0 are localized with a strong multi-
fractal behavior. For γ > 1, the average spectral density is a regular function. Although f (α)
and τ(q) have not been computed for γ > 1, it is expected that γ = 1 marks a localization-
delocalization transition, leading to a non–ergodic extended phase for γ > 1.

It is instructive to compare the above results for adjacency matrices of heterogeneous net-
works with mean degree c→∞ to those from reference [62], where the authors consider the
adjacency matrix of Erdös-Rényi random graphs with finite mean degree c > 1 and Gaussian
distributed coupling strengths. This random-matrix model has a mobility edge at λ∗, i.e., for
λ > λ∗ the eigenvectors are localized and the multifractal exponents should be given by Eq.
(45). In the regime 0< λ < λ∗, the singularity spectrum reads

f (α) =

¨

α(1− β) + β , if 1≤ α≤ 2 ,

1− β(1−α) , if 0≤ α≤ 1 ,
(D.3)

with β the exponent characterizing the power-law decay of the LDoS distribution at a given
value of c and λ. The corresponding multifractal exponents are given by

τ(q) =

¨

q− 1 , if q ≤ β ,

β − 1 , if q > β .
(D.4)

Therefore, for c > 1 and 0< λ < λ∗, the eigenvectors are extended and non-ergodic (or weakly
multifractal). The average spectral density also exhibits a power-law singularity at λ = 0 for
finite c > 1, resulting from an Extensive number of degenerate eigenstates localized on the
leaves of the graph. However, the multifractal spectrum of these eigenvectors has not yet
been studied, and it would be interesting to understand whether the mechanism of statistical
localization is at work also in this case.
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