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Abstract

Starting from holography for IIB string theory on AdS3×N with NS-NS flux, the TsT/T T̄
correspondence is a conjecture that a TsT transformation on the string theory side is
holographically dual to the single-trace version of the T T̄ deformation on the field the-
ory side. More precisely, the long string sector of string theory on the TsT-transformed
background corresponds to the symmetric product theory whose seed theory is the T T̄ -
deformed CFT2. In this paper, we study the asymptotic symmetry of the string theory in
the bulk. We find a state-dependent, non-local field redefinition under which the world-
sheet equations of motion, stress tensor, as well as the symplectic form of string theory
after the TsT transformation are mapped to those before the TsT transformation. The
asymptotic symmetry in the auxiliary AdS basis is generated by two commuting Virasoro
generators, while in the TsT transformed basis is non-linear and non-local. Our result
from string theory analysis is compatible with that of the T T̄ deformed CFT2.
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1 Introduction

The TsT/T T̄ correspondence [1, 2] is a tractable toy model of holographic duality beyond
the AdS/CFT correspondence constructed in string theory. The duality can be constructed by
deforming an example of the AdS3/CFT2 correspondence from both sides. Before the defor-
mation, the bulk theory is IIB string theory on AdS3×N7 supported by NS-NS flux with electric
charge N and magnetic charge k. The background admits a weakly coupled string worldsheet
description via the WZW model, the spectrum of which contains a short string sector with
discrete representation and a long string sector with a continuum [3]. For superstring theory
with k = 1 or bosonic string with k = 3, the short string sector disappears and the continuum
is truncated so that the full spectrum is still discrete. In this case, the holographic dual theory
is given by the symmetric product CFT denoted by MN/SN [4,5].1 For generic values of k, the
spectrum of the long string sector can still be matched with a symmetric product of Liouville
CFT [7], whereas the full holographic theory requires a marginal deformation in order to in-
corporate the short string sector [8–10]. The TsT/T T̄ correspondence [2,11–13] deforms the
aforementioned example of AdS3/CFT2 correspondence by a TsT transformation in the bulk
string theory, and a single-trace T T̄ deformation on the dual CFT2 side.

On the boundary side, the single-trace T T̄ deformation [1] of a symmetric product CFT
MN/SN is also a symmetric product MN

T T̄
/SN , where the seed theory MT T̄ is the usual T T̄

deformation [14–16] of the seed CFT M. So far it is not clear how to define a single-trace
T T̄ deformation in the full spacetime CFT at a generic value of k, although the existence of
such a deformation is expected. On the bulk side, the holographic dual is related to strings on
some linear dilaton background, which can be described by a current-current deformation of
the WZW model [17], and more generally by the TsT-transformed backgrounds [2]. TsT trans-
formations are solution-generating techniques in supergravity, which can be used to generate
new string backgrounds that are not asymptotically AdS or locally AdS. In higher dimensions,
TsT transformations have been shown to be holographically dual to non-commutative, dipole,
or β deformations [18, 19]. The connection between TsT transformations and solvable ir-
relevant deformations of CFT2 was first observed in the example of warped AdS3 spacetime
and single-trace J T̄ deformation [11], generalized to the O(d, d) deformations [12, 13], and
systematically studied in [2,20].

The TsT/T T̄ correspondence provides a tractable model of flat holography in three space-
time dimensions with linear dilaton. The spectrum of the long string sector can be shown to
match that of the single-trace T T̄ deformed CFT, both in the untwisted sector [1, 2] and in
the twisted sector [21]. A family of solutions containing both the black hole solutions and the
smooth solution dual to the NS-NS ground state have been constructed, where the entropy and
the gravitational charges of black holes can be reproduced by the single-trace T T̄ deformed
CFTs [2,20], see also [22–25]. The partition function from string theory calculation [26] and
from field theory calculation [21] are compatible with each other. See also [27] for interesting
discussions of S-duality and UV completion of the theory by studying the partition sum. Due
to the irrelevant nature of the T T̄ deformation, the calculation of the correlation functions has
been challenging, with perturbative results in [28–32], and a non-perturbative flow equation
and Callan-Symanzik equation in [33,34]. More recently, progress on non-perturbative calcu-

1See also [6] for an interpretation of the holographic dual theory as a grand canonical ensemble of free symmet-
ric product CFTs. In this paper, we mainly focus on the string worldsheet theory and the different interpretations
of the holographic dual do not affect subsequent discussions.
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lations of the correlation functions in momentum space has been made both from the string
theory side [35] and from the field theory side [36], the results of which are compatible in
the high momentum limit. With a certain choice of normalization, two-point functions in the
momentum space can be obtained from the CFT ones by a momentum-dependent shift of the
conformal weights. This strongly suggests the possibility of finding underlying Virasoro sym-
metries, albeit non-local, in both the bulk and the boundary in the TsT/T T̄ correspondence.
This has been shown to be indeed the case in the single-trace T T̄ deformed CFT2 [37], a re-
sult which is based on previous work on double trace T T̄ deformations [38]. In the bulk, we
expect to find the asymptotic symmetry to have the same structure, which is the main focus of
this paper.

In this paper, we further explore the TsT/T T̄ correspondence by studying the asymptotic
symmetries of the bulk string theory after the TsT transformation. The notion of asymptotic
symmetry is crucial for a rigorous definition of conserved quantities such as energy in a theory
of gravity. It also plays an important role in the bottom-up approach of holographic duality.
The coincidence between the asymptotic symmetry on AdS3 spacetime [39] and the conformal
group in two dimensions indicates the potential existence of the AdS3/CFT2 correspondence.
The discovery of BMS group [40–43] in asymptotically flat spacetime has also fostered the
recent development of celestial holography, reviews of which can be found in e.g. [44–46].
Assuming the asymptotic Killing vectors found from the analysis of Einstein gravity, gener-
ators of the asymptotic symmetry for AdS3 spacetime can be written as vertex operators on
the worldsheet theory [47–49]. In [50], it is further observed that the boundary conditions
imposed on the spacetime fields can be interpreted as falloff conditions on the worldsheet
equations of motion and constraints. This provides a way of directly finding the asymptotic
symmetries from the worldsheet theory. In this paper, we apply this method to the TsT/T T̄
correspondence. A useful feature of TsT transformation is that a non-local field redefinition
can map both the equations and the stress tensor after the transformation to those before [19].
This map, however, does not preserve the boundary conditions of the worldsheet fields. In sec-
tion 4, we will further introduce a state-dependent nonlocal rescaling to restore the correct
boundary conditions. Under the combined non-local field redefinition (53) with some spe-
cific integration constants (65), the equations of motion, stress tensor, boundary conditions,
as well as the symplectic form of the string theory after the TsT transformation are mapped to
those before the TsT deformation, the latter of which is referred to as the auxiliary AdS string
theory. There will then be two natural sets of variables: those in the TsT transformed theory
and those in the auxiliary AdS string theory. The asymptotic symmetry in the auxiliary AdS
basis is generated by two commuting Virasoro generators, while in the TsT transformed basis
is non-linear and non-local. The result in this paper is consistent with the correlation func-
tions [35,36], symmetries of the T T̄ deformation [38], as well as the perturbative analysis of
asymptotic symmetry in supergravity [51].

The layout of this paper is as follows: in section 2 we review the basic setup of the TsT/T T̄
correspondence, in section 3 we review asymptotic symmetries for string theory on AdS3, in
section 4 we discuss the nonlocal map which relates string theories before and after the TsT
transformation, and in section 5 we discuss asymptotic symmetries for the TsT transformed
string theory.
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2 The TsT/T T̄ correspondence

The long-string sector of string theory on the TsT transformed AdS3 background shares many
similar features with the single-trace T T̄ deformation of the boundary CFT2.2 Here we will
briefly review the key ingredients of the holographic dictionary, mostly following the conven-
tions of [2,35].

The TsT transformations can be defined for any string theory background with two U(1)
isometries [18]. Let us denote the undeformed U(1)×U(1) directions as ( x̃1, x̃ 2̄). TsT means
that we first perform T-duality along the x̃1 circle, then shift x̃ 2̄ to x 2̄ by mixing with x1,
namely x̃ 2̄ = x 2̄ − 2λx1/k, and finally carry out T-duality along x1 again. For nonzero λ this
leads to new supergravity backgrounds with new U(1)×U(1) coordinates (x1, x2), due to the
nontrivial shift sandwiched between the two T-dualities. Crucially, it has been observed that
the TsT transformation can be realized on the worldsheet by a current-current deformation
parametrized by λ:

∂ Sλ
∂ λ
= −

1
πk

∫

j ∧ j̄ , (1)

where j and j̄ are worldsheet current 1-forms associated with the two U(1) symmetries of
translation in the target space, and k is the number of NS5 branes generating the undeformed
AdS3 background. Note that j and j̄ on the right-hand side are U(1) currents of the deformed
theory at parameter λ, and thus (1) should be understood as a differential equation for the
flow of worldsheet action. The deformation is expected to preserve these two U(1) symmetries
along the flow, and to be exactly marginal on the worldsheet. We will now focus on type IIB
string theory on AdS3 with pure NS-NS flux, which features two U(1) null directions, here
denoted as (ũ, ṽ). These are also the coordinates of the dual CFT2. Let us now restrict to
the long string sector in this background, the spectrum of which coincides with a symmetric
orbifold MN/SN , where M is the seed CFT which contains a Liouville part [7]. For the a-th
copy in the symmetric product, the boundary symmetry currents corresponding to the (ũ, ṽ)
shift symmetries are

J a = T a
xid x i = T a

x x d x + T a
x x̄ d x̄ ,

J̄ a = T a
x̄ id x i = T a

x̄ x d x + T a
x̄ x̄ d x̄ .

(2)

It would be natural to assume that the TsT transformed AdS3, generated by the current-current
deformation as in (1), would correspond to some deformation with a similar structure on
the boundary CFT2. Indeed, the worldsheet deformation (1) corresponds to a deformation
summing over each seed theory M of the symmetric orbifold:

∂ Sµ
∂ µ
= −

1
π

N
∑

a=1

∫

J a ∧ J̄ a . (3)

The integrand J a∧ J̄ a is proportional to the stress tensor determinant det T a
i j , so this is precisely

the T T̄ deformation [14–16] on the a-th seed theory. The full deformation is obtained by
summing over the index a = 1, · · · , N , which leads to the single-trace T T̄ deformation on the
dual field theory side.

A crucial evidence for the TsT/T T̄ correspondence is the agreement of the deformed spec-
trum on a cylinder of radius R:

E(µ) = −
wR
2µ

�

1−

√

√

1+
4µ
wR

E(0) +
4µ2

w2R4
J(0)2
�

, J(µ) = J(0) , (4)

2As the string theory in the bulk also contains the short string sector, the dual field theory is not a symmetric
product theory even before the deformation. Nevertheless we expect that the full theory of the deformed CFT,
although not been precisely defined so far, still share some similar features of the single-trace T T̄ deformation.
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where w labels the w-twisted sector of the symmetric orbifold at the boundary, which corre-
sponds to the winding number of a long string in the bulk. The deformed spectrum in the
twisted sector can be independently obtained from the field theory side with the single-trace
T T̄ deformation [21], and from the string theory side with worldsheet analysis [2, 17], if we
identify the parameters:

λ= ℓ−2
s µ , ℓ= R . (5)

The fact that the deformed spectrum is solvable suggests strongly that the deformed theory is
constrained by additional symmetries. Field theoretic and supergravity analysis of symmetries
in T T̄ -deformed CFTs have been previously discussed in e.g. [37,38,51–53]. In this paper we
will attack the problem from the perspective of worldsheet string theory (1).

3 Asymptotic symmetry from the worldsheet theory

In this section, we explain the strategy of studying asymptotic symmetry from the string world-
sheet proposed in [50], and review the relevant results on string theory on AdS3 ×N with
NS-NS flux.

3.1 Asymptotic symmetry from the worldsheet theory

In a usual quantum field theory without gravity, translational symmetry and Lorentzian invari-
ance are continuous global symmetries, which according to Noether’s theorem are generated
by conserved charges. In a theory containing gravity, gravitational charges can be similarly
defined using the Noether procedure after specifying the boundary conditions [54], under
which diffeomorphisms are classified into three types: large, small, and forbidden. Forbidden
diffeomorphisms violate the boundary conditions and hence are not allowed. Small diffeomor-
phisms fall off fast near the boundary and are trivial gauge redundancies. The most interesting
ones are large diffeomorphisms which preserve the boundary conditions but have a non-trivial
effect at the boundary. Due to the boundary conditions, large diffeomorphisms are no longer
gauge redundancies, but instead symmetry transformations that map states to states in the
Hilbert space. The asymptotic symmetry group is formed by these large diffeomorphisms.

For Einstein gravity with negative cosmological constant in three dimensions, Brown and
Henneaux [39] found consistent boundary conditions under which the asymptotic group is
generated by left and right-moving Virasoro generators. To describe IIB string theory on
AdS3 ×N with NS-NS flux, the three-dimensional gravity has to also include a dilaton and
a Kalb-Ramond 2-form field. Under the boundary conditions [50], it is found that Virasoro
generators are accompanied by a large gauge transformation of the 2-form field. Neverthe-
less, the resulting conserved charges and the asymptotic group remain the same as in pure
Einstein gravity.

Now let us consider asymptotic symmetries on the string worldsheet. In the WZW model
which describes the three-dimensional part of IIB string theory on AdS3×N with NS-NS flux,
vertex operators [47, 48, 55] on the worldsheet have been written down as the Virasoro gen-
erators in the target spacetime. It is shown in [50] that the asymptotic Killing vectors can
be directly worked out by requiring that the worldsheet equations of motion and constraints
are satisfied near the asymptotic boundary in the target spacetime. Symmetry generators on
the worldsheet are then interpreted as Noether charges. Asymptotic symmetries on the string
worldsheet for flat spacetime have been discussed in [50,56–58]. In the following, we explain
the main steps of finding the asymptotic symmetries on the worldsheet in [50].
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The asymptotic Killing vectors

Consider the bosonic part of worldsheet action of string theory in the conformal gauge with
target spacetime metric Gµν and Kalb-Ramond field Bµν,

S =
1

4πα′

∫

d2σMµν∂ Xµ∂̄ X ν , Mµν = Gµν + Bµν . (6)

Given a specific background Mµν, a spacetime diffeomorphism,

δξX
µ = ξµ , (7)

is an asymptotic symmetry if the worldsheet equations of motion and stress tensor are pre-
served near the boundary3

δξ

�

∂̄ (Mµλ∂ Xµ) + ∂ (Mλν∂̄ X ν)− ∂λMµν∂ Xµ∂̄ X ν
�

→ 0 ,

δξTws→ 0 , δξ T̄ws→ 0 .
(8)

These conditions will in principle enable us to solve for the asymptotic Killing vectors ξ. The
generators of the asymptotic symmetry can be written down either in the Lagrangian formalism
or in the Hamiltonian formalism.

Charges in the Lagrangian formalism

To derive the Noether charge in the Lagrangian formalism, we note that the variation
of the action under a diffeomorphism ε(z, z̄)ξµ and background gauge transformation
δεΛBµν = ∂µ(εΛν)− ∂ν(εΛµ) is given by

δεξ,εΛS =
1

2π

∫

d2z
�

εV + ∂ ε jz̄ + ∂̄ ε jz
�

,

jz =
1
α′
(ξνMµν −Λµ)∂ Xµ , jz̄ =

1
α′
(ξµMµν +Λν)∂̄ X ν ,

V =
1
α′

�

LξMµν + ∂µΛν − ∂νΛµ
�

∂ Xµ∂̄ X ν ,

(9)

which after using the equations of motion satisfies the divergence law

∂̄ jz + ∂ jz̄ = V . (10)

If we can find Λµ so that the vertex V vanishes on-shell at the boundary, the Noether charge
is then given by

J =
1

2π

�∮

dz jz −
∮

dz̄ jz̄

�

. (11)

In [50], it is shown that spacetime Virasoro generators in the SL(2,R)WZW model and BMS3
generators in string theory on three-dimensional flat space can both be derived using this
procedure. In particular, the large gauge transformation is necessary for the vertex to vanish
asymptotically.

3The falloff should be further specified in explicit examples.

6

https://scipost.org
https://scipost.org/SciPostPhys.18.2.049


SciPost Phys. 18, 049 (2025)

Charges in the Hamiltonian formalism

Now let us consider charges in the Hamiltonian formalism in a phase space parameterized by
qI ∈ {xµ, pµ, µ= 1, · · · d}, with the canonical symplectic structure

ω=
1
2
ωI JδqI ∧δqJ , (12)

where ωI J are independent of qI , xµ are the coordinates of the target spacetime and pµ are
the momenta. Suppose a translation in the phase space along δξq

I ≡ ξI is generated by the
charge Hξ, then for an arbitrary functional P of qI , we have

δξP ≡ ξI δP
δqI

= {P, Hξ}=ωI J δP
δqI

δHξ
δqJ

, (13)

where ωI J is the inverse of ωI J . The above equation implies the relation

ξI =ωI J δHξ
δqJ

, (14)

which further allows us to derive the infinitesimal charge defined near a point in the phase
space as

δHξ ≡
δHξ
δqI
δqI = −ξKωKJδqJ . (15)

For a consistent choice of the tangent vector ξI in the phase space satisfying (14), the infinitesi-
mal charge δHξ is a closed 1-form in the phase space and thus should be integrable. Therefore
charge integrability can be used as a consistent condition for ξI .
For the purpose of discussing asymptotic symmetries on the worldsheet theory, we can
determine the phase space vector ξI from its components in the spacetime coordinates
ξµ = δξxµ, µ = 1, · · · d, following the procedure proposed in [50]. For a given spacetime
diffeomorphism ξµ = {xµ, Hξ}, we can determine the variation of the momentum by requir-
ing the following conditions

δξH = {H, Hξ} → 0 ,

{ξI , H} − {{qI , H}, Hξ}= {qI , {Hξ, H}} → 0 , qI ∈ {xµ, pν} ,
(16)

where the arrow denotes the limit as it approaches the asymptotic boundary. Explicit falloff
conditions will be further specified in different examples. The first condition in (16) indicates
that the Hamiltonian is preserved by the transformation generated by Hξ in the asymptotic
region, or equivalently the charge Hξ is asymptotically preserved. The second equation in
(16) is a combination of the Jacobi identity and the charge conservation condition, and the
physical meaning is that the transformation Hξ is compatible with the Hamiltonian evolution
and thus preserves the equations of motion asymptotically.

Solving the equations (16) for the vector ξI , and plugging the solutions into (15), we
get the infinitesimal charge that generates transformation ξI in the phase space, which if
integrable, can be further integrated to obtain the finite charge Hξ. In [50], this procedure
has been used to derive the charges that generate asymptotic symmetries of the SL(2,R)WZW
model and string theory on three-dimensional flat spacetime. In this paper, we will further
carry out the analysis of the string worldsheet theory obtained from the TsT transformation of
the WZW model.
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3.2 IIB string theory on AdS3 ×N

The three dimensional part of IIB string theory on asymptotically AdS3 ×N background with
NS-NS background can be described by the SL(2,R)WZW model, a theory that has been stud-
ied extensively in the literature. The spectrum [3,59,60] contains both the long string sector
and the short string sector. For superstring with NS5-brane charge k = 1, or bosonic string
with k = 3, it has been demonstrated that the holographic dual is given by a symmetric prod-
uct CFT [5]. For generic k, while the long string sector can still be holographically described
by a symmetric product CFT [7], the symmetric product structure is necessarily broken [8–10]
in order to include the short string sector.

We are interested in the asymptotic symmetry. For that purpose, it is convenient to con-
sider cylindrical boundaries, a setup where Brown-Henneaux boundary conditions [39] were
imposed in pure Einstein gravity. The phase space is usually described by the Bañados metrics
in the Fefferman-Graham gauge and contains the global AdS3 and BTZ black holes. In particu-
lar, the string background with a non-rotating BTZ background with zero mass can be written
in the string frame by

ds̃2 = ℓ2
�

dφ̃2 + exp(2φ̃) dũ d ṽ
	

, (ũ, ṽ)∼ (ũ+ 2π, ṽ + 2π) ,

B̃µν = −
ℓ2

2
exp(2φ̃) dũ∧ d ṽ ,

e2Φ̃ =
k
N

e−2φ0 , k = ℓ2/ℓ2s ,

(17)

where we have omitted the internal spacetime, and used the lightcone coordinates ũ := ϕ̃+ t̃
and ṽ := ϕ̃ − t̃. The magnetic charge k = ℓ2/ℓ2s specifies how large the curvature scale is
compared to the string scale. A small value of k indicates strong stringy effects. N is the
electric charge, which is assumed to be large. Using the plane coordinate on the worldsheet
with z := exp(i(σ− iτ)) and z̄ := exp(−i(σ+ iτ)), the string worldsheet theory on (17) can
be written in the conformal gauge as

S̃ =
1

4πα′

∫

d2zM̃µν∂ x̃µ∂̄ x̃ν =
k

2π

∫

d2z
�

∂ φ̃∂̄ φ̃ + exp(2φ̃)∂̄ ũ∂ ṽ
	

, (18)

where d2z = dz dz̄. The stress tensor is

Tws = −k ∂ φ∂ φ − k exp(2φ)∂ u∂ v . (19)

At the quantum level, the level of the WZW model acquires a shift and the action reads [47,
61,62]

S̃ =
1

2π

∫

dz2
§

(k− 2)∂ φ̃∂̄ φ̃ + k exp(2φ̃)∂̄ ũ∂ ṽ −
1
4
φ̃Rws

ª

, (20)

where Rws is the worldsheet curvature which vanishes on a flat worldsheet metric. Throughout
this paper, we only focus on flat worldsheets where the last term in (20) does not play a role
except for deriving the stress tensor, the latter of which is given by

T̃ws = −(k− 2)∂ φ̃∂ φ̃ − k exp(2φ̃)∂ ũ∂ ṽ − ∂ 2φ̃ . (21)

The background (17) is invariant under translations along u and v, which are generated by
the Noether currents on the worldsheet,

j̃0 = k exp(2φ̃)∂ ṽ , ˜̄j0 = k exp(2φ̃) ∂̄ ũ , (22)
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with Noether charges

J̃0 := −
1

2π

∮

dz j̃0(z) , ˜̄J0 := −
1

2π

∮

dz̄˜̄j0(z̄) . (23)

The worldsheet equations of motion can be written as

(k− 2)∂ ∂̄ φ̃ − k exp(2φ̃) ∂̄ ũ∂ ṽ = 0 ,

∂̄ j̃0 = ∂
˜̄j0 = 0 ,

(24)

where the second line is just the conservation law for the two U(1) currents (22). The OPEs
in the large φ limit is given by,

φ̃(z, z̄)φ̃(w, w̄)∼ −
1

2(k− 2)
log |z −w|2,

j̃0(z)ũ(w)∼ −
1

z −w
, ˜̄j0(z̄)ṽ(w̄)∼ −

1
z̄ − w̄

.
(25)

Asymptotic symmetries for strings on AdS3

As explained in [50] and summarized in section 3.1, asymptotic Killing vectors can be deter-
mined by requiring the variation of the worldsheet equation of motion to vanish up to specific
orders at the boundary. For massless BTZ, we impose the following boundary conditions on
the equations of motion,

(k− 2)∂ ∂̄ ξ̃φ − 2k ξ̃φ exp(2φ̃) ∂̄ ũ∂ ṽ − k exp(2φ̃) ∂̄ ξ̃u∂ ṽ − k exp(2φ̃) ∂̄ ũ∂ ξ̃v = O(exp(−4φ̃)) ,

∂̄
�

exp(2φ̃)∂ ξv + 2ξφ exp(2φ̃)∂ ṽ
�

= O(exp(−2φ̃)) , (26)

∂
�

exp(2φ̃) ∂̄ ξu + 2ξφ exp(2φ̃) ∂̄ ũ
�

= O(exp(−2φ̃)) .

In addition, we note that finiteness of the currents (22) implies that u is asymptotically chiral
and v is anti-chiral. To preserve this property, we need to impose the chirality condition on
the asymptotic Killing vector,

∂̄ ξ̃u =O(exp(−2φ̃)) , ∂ ξ̃v =O(exp(−2φ̃)) . (27)

Solving the asymptotic on-shell condition and chirality condition, we obtain the Brown-
Henneaux asymptotic Killing vectors [39]

ξ̃= ξ̃u∂ũ + ξ̃
v∂ṽ + ξ̃

φ∂φ̃ , (28)

where

ξ̃u = f (ũ)−
k− 2
2k

exp(−2φ̃) f̄ ′′(ṽ) +O(exp(−4φ̃)) ,

ξ̃v = f̄ (ṽ)−
k− 2
2k

exp(−2φ̃) f ′′(ũ) +O(exp(−4φ̃)) ,

ξ̃φ = −
1
2

f ′(ũ)−
1
2

f̄ ′(ṽ) +O(exp(−2φ̃)) .

(29)

The above procedure can also be carried out for all the Bañados metrics. In the Ferfferman-
Graham gauge, we will obtain the same asymptotic on-shell condition (26) and chirality con-
ditions (27). As a consequence, we will find the same asymptotic Killing vectors (29).
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The Noether charges that generate the above asymptotic symmetry transformation can be
written down using (9), where the gauge parameter can be determined by requiring the vertex
to vanish. For AdS3, the Noether current for the symmetry parameterized by f (ũ) is given by

j̃z = k f (ũ)exp(2φ̃)∂ ṽ − (k− 2) f ′(ũ)∂ φ̃ , j̃z̄ = −
k− 2

2
f ′′(ũ) ∂̄ ũ ,

˜̄jz̄ = k f̄ (ṽ)exp(2φ̃) ∂̄ ũ− (k− 2) f̄ ′(ṽ) ∂̄ φ̃ , ˜̄jz = −
k− 2

2
f̄ ′′(ṽ)∂ ṽ ,

(30)

and the Noether charges are given by

J̃ f =
1

2π

�∮

dz j̃z −
∮

dz̄ j̃z̄

�

, ˜̄J f̄ =
1

2π

�

−
∮

dz̄ ˜̄jz̄ +

∮

dz ˜̄jz

�

. (31)

For completeness, we have kept the anti-chiral component j̃z̄ , which is necessary to generate
the e−2φ f ′′(ũ) term in (28). As this term is subleading, the current generating the transfor-
mation parameterized by f (ũ) is chiral near the asymptotic boundary.

The asymptotic Killing vectors (28) have to preserve the periodic identification
(ũ, ṽ) ∼ (ũ + 2π, ṽ + 2π), which restricts f (ũ) to be a periodic function of ũ. One can ex-
pand the periodic functions in Fourier modes

f̃n = −exp(inũ) , ˜̄fn = exp(−inṽ) . (32)

The charges J̃n ≡ J̃ f̃n
form left and right-moving Virasoro algebras

�

J̃n, J̃m

�

= (n−m) J̃n+m +
c

12
n3δn,−m ,

�

˜̄Jn, ˜̄Jm

�

= (n−m) ˜̄Jn+m +
c̄

12
n3δn,−m ,

�

J̃n, ˜̄Jm

�

= 0 ,

(33)

where the central charges depend on the worldsheet topology and are given by

c = c̄ = 6kI , I =
1

2π

∮

dz ∂ ũ . (34)

Using the OPE (25), we obtain the following OPE between the spacetime Virasoro current and
the worldsheet stress tensor

T̃ws(z) j̃z(w) =
j̃z(w)
(z −w)2

+
∂ j̃z(w)
z −w

+ · · · (35)

This means that the left-moving spacetime Virasoro currents are worldsheet primary operators
with conformal weight (1, 0), and similarly the right-moving Virasoro currents have weights
(0, 1). Performing the contour integral, we find that the spacetime Virasoro transformations
leave the worldsheet stress tensor invariant asymptotically,

[J̃m, Tws] = [ ˜̄Jm, Tws] = 0 , (36)

and thus are indeed asymptotic symmetries in the sense that they map physical states among
themselves.

4 TsT transformation and the nonlocal map

In this section, we describe TsT transformations and discuss a non-local field redefinition that
maps string theories before and after the TsT transformation. We show that such a field redefi-
nition can be understood as a canonical transformation of the worldsheet symplectic structure.
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4.1 TsT transformation on the string worldsheet

Starting from type IIB string theory on the AdS3 background (17), we perform a TsT deforma-
tion by T-duality along ũ, shifting ṽ→ ṽ− 2λ

k ũ and T-duality along ũ again. The TsT-transformed
combination Mµν = Gµν+Bµν can be obtained from the undeformed one by a relation [2,18],

M = M̃
�

I +
2λ
ℓ2
Γ M̃
�−1

, Φ= Φ̃+
1
4

log
det Gµν
det G̃µν

, (37)

where Γµν = δu
µδ

v
ν −δ

v
µδ

u
ν is a totally antisymmetric tensor along the u and v directions. This

follows directly from the Buscher rules [63] of T-dualities. This leads to the new background:

ds2 = ℓ2
§

dφ2 +
exp(2φ)

1+ 2λexp(2φ)
du dv
ª

,

B = −
ℓ2

2
exp(2φ)

1+ 2λexp(φ)
du∧ dv ,

e2Φ =
k
N

1
1+ 2λexp(2φ)

e−2φ0 .

(38)

The string theory defined on this background is given by

S =
k

2π

∫

d2z
§

∂ φ∂̄ φ +
exp(2φ)

1+ 2λexp(2φ)
∂̄ u∂ v
ª

. (39)

The quantum action can be obtained by a TsT transformation from (20) and is given by

S =
1

2π

∫

d2z
§

(k− 2)∂ φ∂̄ φ +
k exp(2φ)

1+ 2λexp(2φ)
∂̄ u∂ v −

1
4
φRws

ª

. (40)

In the classical limit with k →∞, the action (40) reduces to the classical one (39). We are
interested in the massless BTZ background whose conformal boundary is a cylinder with the
following identification,

(u, v)∼ (u+ 2π, v + 2π) . (41)

The equations of motion from the action (40) are

(k− 2)∂ ∂̄ φ =
k exp(2φ)

(1+ 2λexp(2φ))2
∂̄ u∂ v ,

∂̄ j0 = 0 , ∂ j̄0 = 0 ,
(42)

where

j0 = k
exp(2φ)

1+ 2λexp(2φ)
∂ v , j̄0 = k

exp(2φ)
1+ 2λexp(2φ)

∂̄ u , (43)

are the worldsheet Noether currents generating translations along the target space coordinates
u and v. It is not difficult to see that the action (40) is an explicit solution of the worldsheet
differential equation (1) where the currents are given by (43). The zero mode charges of these
currents are left and right moving energies in spacetime,

J0 := −
1

2π

∮

t
dσ j0(σ) = −

1
2π

∮

dz j0(z) , J̄0 := −
1

2π

∮

t
dσ j̄0(σ) = −

1
2π

∮

dz̄ j̄0(z̄) . (44)

Solutions to the equations of motion have to satisfy the boundary condition

u(σ+ 2π) = u(σ) + 2πw , v(σ+ 2π) = v(σ) + 2πw , w ∈ Z , (45)
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where w is the winding around the boundary circle (41). Physical states also need to satisfy
the Virasoro constraints, where the worldsheet stress tensor is given by

T = −
§

(k− 2)∂ φ∂ φ +
k exp(2φ)

1+ 2λexp(2φ)
∂ u∂ v + ∂ 2φ

ª

,

T̄ = −
§

(k− 2)∂̄ φ∂̄ φ +
k exp(2φ)

1+ 2λexp(2φ)
∂̄ u∂̄ v + ∂̄ 2φ

ª

.
(46)

4.2 TsT as a field redefinition

As was explained in [2, 19], the worldsheet equations of motion and the stress tensor before
and after the TsT transformation are related by the following field redefinition

φ̂ = φ ,

∂ û= ∂ u , ∂̄ û= ∂̄ u−
2λ
k

j̄0 ,

∂ v̂ = ∂ v −
2λ
k

j0 , ∂̄ v̂ = ∂̄ v .

(47)

Let us define fields

η(z)≡
∫ z

dz′ j0(z
′) +η0 , η̄(z̄)≡

∫ z̄

dz̄′ j̄0(z̄
′) + η̄0 , (48)

where η0, η̄0 are integration constants that may potentially depend on the state and will be
discussed in detail momentarily. Then the field redefinition (47) can be written as

û= u−
2λ
k
η̄ , v̂ = v −

2λ
k
η . (49)

Under the above field redefinition, the U(1) currents (43) after the TsT transformation become
those on AdS3 (22) with the tilded variables replaced by the hatted variables,

j0(x
µ) = ĵ0( x̂

µ) = k exp(2φ̂)∂ v̂ , j̄0(x
µ) = ¯̂j0( x̂

µ) = k exp(2φ̂)∂̄ û , (50)

so that the equations of motion (42) after the TsT transformation are equivalent to those on
the original AdS3 ×N background,

(k− 2)∂ ∂̄ φ̂ = k exp(2φ̂)∂̄ û∂ v̂ , ∂̄ ĵ0 = ∂
¯̂j0 = 0 . (51)

However, the boundary condition (45) implies that the hatted variables now satisfy the twisted
boundary conditions,

û(σ+ 2π) = û(σ) + 2πwRu , Ru = 1+
2λ
wk

J̄0 ,

v̂(σ+ 2π) = v̂(σ) + 2πwRv , Rv = 1+
2λ
wk

J0 ,
(52)

where J0 and J̄0 are the charges (44) which generate translations along u and v, respectively.
The twisted boundary condition in û can be realized by a spectral flow transformation, using
which the spectrum before and after the TsT transformation can be related [2, 11].4 Note
that the additional constants in the field redefinition (49) do not affect the boundary condi-
tions (52). To discuss the symmetries, it is more convenient to introduce the following new

4The field redefinition (49) and the twisted boundary condition (52) are reminiscent of the state-dependent
coordinate transformations in double-trace T T̄ deformed CFTs [53,64,65].
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variables, collectively denoted by X̂ , to absorb the twisted boundary conditions by a field-
dependent rescaling transformation in the target spacetime,

Φ̂= φ +
1
2

log(RuRv) ,

Û =
û
Ru
=
�

u−
2λ
k
η̄
� 1

Ru
,

V̂ =
v̂

Rv
=
�

v −
2λ
k
η
� 1

Rv
,

(53)

such that the X̂ variables satisfy periodic boundary conditions,

Û(σ+ 2π) = Û(σ) + 2πw , V̂ (σ+ 2π) = V̂ (σ) + 2πw . (54)

Note that the new spacetime coordinates X̂ are only defined in a fixed winding sector. We
restrict all subsequent discussions within this sector in the current paper. It is straightforward
to see that the equations of motion (42) for the TsT coordinates xµ ∈ {u, v,φ} can be written
in terms of the new variables X̂µ ∈ {Û , V̂ , Φ̂}, the latter of which takes a similar form as the
equations of motion of the tilded variables, i.e.

ke2Φ̂∂̄ Û∂ V̂ − (k− 2)∂ ∂̄ Φ̂= 0 , ∂̄j0 = ∂ j̄0 = 0 , (55)

where the chiral current j0 and anti-chiral current j̄0 are analogous to (22),

j0 ≡ k exp(2Φ̂)∂ V̂ = j0Ru ,

j̄0 ≡ k exp(2Φ̂) ∂̄ Û = j̄0Rv .
(56)

The conservation law in (55) then allows us to define the conserved charges

J0 ≡ −
1

2π

∮

dzj0 = J0Ru ,

J̄0 ≡ −
1

2π

∮

dz̄j̄0 = J̄0Rv ,

(57)

where we have also worked out the relation between these charges and the two global U(1)
charges (44). Compared to the discussion in the WZW model, it is natural to guess that the
charge J0 generates a translation of the non-local coordinate Û . As will be shown later, this is
indeed true if we carefully choose the zero modes that appear in the field redefinition (53).

We have seen that the variables X̂ satisfy the same equations of motion and boundary
conditions as variables x̃ which are coordinates of AdS3. Moreover, the stress tensor (46) can
also be written in terms of the X̂ variables, which does not explicitly depend on λ and takes a
similar form as the WZW model,

T = −
�

(k− 2)∂ Φ̂∂ Φ̂+ kexp(2Φ̂)∂ Û∂ V̂ + ∂ 2Φ̂
	

,

T̄ = −
�

(k− 2)∂̄ Φ̂∂̄ Φ̂+ k exp(2Φ̂)∂̄ Û ∂̄ V̂ + ∂̄ 2Φ̂
	

.
(58)

This also implies that the worldsheet Hamiltonian is similar to that of string theory on AdS3.
To reproduce the equations of motion (55) and the stress tensor (58), the action for X̂µ is
given by (20) with the tilded variables x̃µ replaced by the upper-case hatted variables X̂µ,

Ŝ =
1

2π

∫

d2z
§

(k− 2)∂ Φ̂∂̄ Φ̂+ k exp(2Φ̂)∂̄ Û∂ V̂ −
1
4
Φ̂Rws

ª

. (59)
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In the following, we will show that by choosing the integration constants in (48) carefully,
the symplectic form and the OPEs of the TsT string theory (40) expressed in the X̂µ variable
indeed agree with those from the auxiliary AdS3 string theory (59). This suggests that the
aforementioned two theories are equivalent even at the quantum level. Consequently, all the
rich results of the AdS3 string theory can in principle be mapped to the TsT string theory. For
instance, the meaning of (56) and (57) is clear: they are the Noether currents and charges
generating the translational symmetry in Û and V̂ .

4.3 TsT as a canonical transformation

In the previous subsection, we have shown that under the field redefinition (53) the TsT string
theory (40) and the auxiliary AdS3 string theory (59) have the same equations of motion
and constraints, and hence have the same classical solutions. To fully make use of the map,
we still need to establish the equivalence between the two theories at the quantum level. In
the following, we will first specify the integration constants of (48) so that the symplectic
structure of the TsT string theory (40) in terms of X̂µ agree with that from the auxiliary AdS3
string theory (59). Then we will show that the path integral in terms of the phase space
variables are equivalent with the said choice of integration constants, and therefore the two
apparently different actions (40) and (59) can be obtained by integrating out different choices
of momenta.

To do so, let us put the theory on the cylinder and consider the conjugate momenta in both
theories

pµ ≡ 2π
δS

δ(∂t xµ)
, pX̂µ ≡ 2π

δŜ

δ(∂t X̂µ)
, (60)

where S and Ŝ are the Lorentzian version of the TsT string action (40) and auxiliary AdS3
worldsheet action (59), respectively. Note that we have absorbed a factor of 2π in the above
definition for convenience. The momenta are given by

pu = j0 , pv = − j̄0 ,

pÛ = j0 = Rupu , pV̂ = −j̄0 = Rv pv ,

pΦ̂ = (k− 2)∂tφ = pφ ,

(61)

where we have used the relation (53) and (56). As discussed earlier, using the non-local map
(53), the stress tensor in the TsT string theory agrees with that in the auxiliary AdS3 string
theory in terms of the phase space variables. In particular, the Hamiltonian can be rewritten
in terms of the canonical variables as

H =
1

2π

∫

dσ

¨

p2
φ

2(k− 2)
+

k− 2
2
(∂σφ)

2 + pu∂σu− pv∂σv +
2 (1+ 2λexp(2φ))

k exp(2φ)
pupv

«

=
1

2π

∫

dσ

¨

p2
Φ̂

2(k− 2)
+

k− 2
2
(∂σΦ̂)

2 + pÛ∂σÛ − pV̂∂σV̂ +
2
k

e−2Φ̂pÛ pV̂

«

= Ĥ ,

(62)

where Ĥ denotes the Hamiltonian derived directly from the auxiliary AdS3 worldsheet action
(59). Note that the equivalence between the two Hamiltonians does not depend on the choice
of integration constants in the field redefinition (53). These integration constants, however,
will affect the symplectic form and Poisson brackets if they depend on the states. In terms of
the canonical momenta, the symplectic form in the two theories can be written as

ω=
1

2π

∮

dσ(δxµ ∧δpµ) , Ω̂=
1

2π

∮

dσ
�

δX̂µ ∧δpX̂µ
�

. (63)
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In order to make the TsT string theory (40) and the auxiliary AdS3 string theory (59) equivalent
in a fixed w sector, we need to require that the symplectic forms (63) agree with each other
upon the field redefinition (53), i.e.

ω= Ω̂ . (64)

Matching the symplectic form enables us to use the tools in the auxiliary AdS3 theory to study
the TsT string theory. It will be interesting to further understand if there are deeper reasons
behind this mapping, which we leave to future study. The above requirement is satisfied if the
integration constants are chosen as5

η0Ru =

∮

dσ
2πw

h[Û −wπ, X̂ ] , η̄0Rv = −
∮

dσ
2πw

h̄[V̂ −wπ, X̂ ] , (65)

where we have defined the functionals

h[F, X̂ ]≡ F(Û) pÛ −
1
2

F ′(Û) ((k− 2)∂σΦ̂+ pΦ̂)−
k− 2
2k

e−2Φ̂F ′′(Û) pV̂ ,

h̄[F̄ , X̂ ]≡ F̄(V̂ ) pV̂ −
1
2

F̄ ′(V̂ ) (−(k− 2)∂σΦ̂+ pΦ̂)−
k− 2
2k

e−2Φ̂ F̄ ′′(V̂ ) pÛ .
(66)

The first argument in h[F, X̂ ] specifies the symmetry parameter, and the second argument
specifies the coordinate system. For instance, the expression for h[ f , x̃] is the same as (66)
with F(Û) replaced by f (ũ) and X̂ = (Û , V̂ , Φ̂) replaced by x̃ = (ũ, ṽ, φ̃). Using the relation
between the X̂ and x̂ variables, we have the following relation

h[F(Û), X̂ ] =h[F(û/Ru), x̂]Ru ≡
�

F pu −
1
2
∂ûF ((k− 2)∂σφ̂ + pφ)−

k− 2
2k

e−2φ̂∂ 2
û F pv

�

Ru , (67)

where in h[F, x̂] the derivative of F is taken with respect to x̂ . In particular, we can also
express the integration constants in terms of the x̂ variables as

η0 =

∮

dσ
2πw

h

�

û
Ru
−wπ, x̂
�

, η̄0 = −
∮

dσ
2πw

h̄

�

v̂
Rv
−wπ, x̂
�

. (68)

The zero mode here is reminiscent of the zero mode in Appendix A of [51], where a bulk anal-
ysis of the asymptotic symmetry for the double-trace T T̄ holography can be found. The zero
mode in [51] is a special choice to ensure charge integrability, a condition that can be satisfied
by other choices as well. On the other hand, the zero modes in this paper are completely fixed
by identifying the worldsheet symplectic structure before and after the deformation.

Canonical quantization

We have shown that the field redefinition (53) with the choice of the integration constants
(65) preserves the canonical symplectic form, which further implies the equivalence of the
Poisson brackets

{xµ(σ), pν(σ
′)}= 2πδµν(σ−σ

′) , {X̂µ(σ), pX̂ ν(σ
′)}= 2πδµνδ(σ−σ

′) . (69)

As a consistent check, it is straightforward to verify that the Poisson brackets (69) and the
Hamiltonian (62) indeed produce the equation of motion (55) in terms of the X̂µ variables. In
fact, the equivalence between the string theory (40) after the TsT transformation and auxiliary
AdS3 string theory (59) can be preserved at the quantum level. This can be shown in the

5Here Û and V̂ are not periodic functions of σ and the range of the integration is taken to be [0, 2π].
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canonical quantization. Consider the mode expansion on the constant time slice for the X̂
variables,

Û(σ) = wσ+
∑

n∈Z
Ûne−inσ , V̂ (σ) = wσ+

∑

n∈Z
V̂ne−inσ , Φ̂(σ) =

∑

n∈Z
Φ̂ne−inσ ,

pX̂µ(σ) =
∑

n∈Z
pX̂µ,ne−inσ , X̂µ ∈ {Û , V̂ , Φ̂} , (70)

and similarly for the xµ variables. To perform canonical quantization, we simply replace the
canonical Poisson brackets by commutators with the relation [, ] = iħh{, }. For the X̂ variables,
the Poisson brackets (69) leads to the commutators

[X̂µn , pX̂ ν,m] = iδµνδn,−m , m, n ∈ Z , (71)

where we have set ħh= 1 for simplicity. The field redefinition (53) and the integration constants
(65) have to be defined in the sense of normal ordering with

: pÛ ,nÛ−n :=

¨

pÛ ,nÛ−n , n< 0 ,

Û−npÛ ,n , n≥ 0 ,
(72)

and similarly for pV̂ and V̂ . Using these conditions, one can verify that the canonical commu-
tation relations (71) indeed become

[xµn , pν,m] = iδµνδn,−m , m, n ∈ Z , (73)

which is the canonical quantization of the Poisson brackets for the TsT strings.

The OPEs

We can also proceed with a radial quantization on the plane. In the asymptotic region with
φ→∞, the OPEs from the action (40) can be written as

u(z) j0(w)∼
1

z −w
, v(z̄) j̄0(w̄)∼

1
z̄ − w̄

,

∂ v(z, z̄)u(w)∼ −
2λ

k(z −w)
, ∂̄ u(z, z̄)v(w, w̄)∼ −

2λ
k(z̄ − w̄)

,

φ(z, z̄)φ(w, w̄)∼ −
1

2(k− 2)
log |z −w|2 ,

(74)

where we have ignored terms of order e−2φ in the last two lines. With the choice of integration
constants (65), we have shown that the commutation relation of the TsT string theory (73)
is equivalent to that of the auxiliary AdS3 string theory (71). In order to find the OPE in the
X̂µ variables, it is important to specify the order of operators in the field redefinition. In the
following, we keep the order as written in (56) and (53), namely put the rescaling factor R−1

u
behind û, j0, and similarly for V̂ and j̄0. Performing the mode expansion on the Euclidean
plane with the commutation relations (71) and normal ordering prescription (72), one can
get

Φ̂(z, z̄)Φ̂(w, w̄) = : Φ̂(z, z̄)Φ̂(w, w̄) :−
1

2(k− 2)
log |z −w|2 ,

Û(z)j0(w) = : Û(z)j0(w) :+
1

z −w
, V̂ (z̄)j̄0(w̄) = : V̂ (z̄)j̄0(w̄) :+

1
z̄ − w̄

.
(75)
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Therefore the OPEs obtained using the field redefinition (53) indeed agree with that from the
auxiliary AdS3 string theory (59),

Φ̂(z, z̄)Φ̂(w, w̄)∼ −
1

2(k− 2)
log |z −w|2 ,

Û(z)j0(w)∼
1

z −w
, V̂ (z̄)j̄0(w̄)∼

1
z̄ − w̄

,

Û(z)V̂ (w)∼ 0 .

(76)

Path integral and local Lagrangian

Now we provide a formal derivation of the local Lagrangian in terms of the X̂ coordinates,
which we have assumed to be the auxiliary AdS3 string action (59). Note that if we directly
plug the field redefinition (53) into the action (40), the resulting expression is not (59), but
with some extra term. In the path integral, the field redefinition also brings a complicated
Jacobian for the measure. This makes it difficult to discuss the relationship of the two theories
in the Lagrangian version of the path integral. Instead, let us consider the Hamiltonian version
of the path integral in the sector with a fixed winding number w

ZTsT ≡
∫

∏

µ

DxµDpxµ exp [iS[x , p]] , (77)

where S[x , p] is the action (40) written in terms of the phase space variables

S[x , p] =

∫

d t

∮

dσ
�

1
2π

pxµ ẋµ −H(xµ, pxµ)
�

. (78)

Firstly, as xµ, pxµ and X̂ , pX̂µ are related by a canonical transformation, the measure of the
path integral is kept invariant, namely,6

∏

µ

DxµDpxµ ≡
∏

µ

∏

n∈Z
d xµn dpxµ,−n =ω

∧∞ = Ω̂∧∞ =
∏

µ

DX̂µDpX̂µ . (79)

This can be viewed as an infinite-dimensional version of the Liouville volume theorem for the
canonical transformation driven by λ. Secondly, we have shown in (62) that if written in terms
of the X̂ coordinates, the Hamiltonian is just that of AdS3 string theory. Finally, let us focus on
the Legendre transformation part of the action (78). Using the field redefinition, we find by
direct calculation that the difference is only a total derivative,

1
2π

∫

d t

∮

dσ
�

pxµ ẋµ − pX̂µ
˙̂Xµ
�

=

∫

d t
d
d t

B(t) , (80)

where B is located at the boundary of the worldsheet and takes the following form

B(t) =
2λ
k

�

η0 J̄0 − η̄0J0 −
1
2

∮

dσ
2π

pu(σ)

∫ σ

0

dσ′pv(σ
′) +

1
2

∮

dσ
2π

pv(σ)

∫ σ

0

dσ′pu(σ
′)

�

. (81)

Define an operator
U(t) = e−iB(t) , (82)

6The volume form of a 2m dimensional phase space is given by ω∧m = ω ∧ · · · ∧ω (m times), where ω is the
symplectic 2-form. Here we have m→∞.
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then the path integral of the TsT string theory can be written as

ZTsT =

∫

∏

µ

DX̂µDpX̂µ U−1
∞ eiŜ[X̂ ,pX̂ ] U−∞ , (83)

where the operator U acts on the past and future boundaries but will not affect the evolution
in the middle. After integrating out pX̂µ in the path integral, we find that the action in X̂µ

coordinate is indeed (59) up to terms that act on the past and future boundaries.7 When the
worldsheet manifold is topologically a cylinder, the operators U±∞ should be understood as
possible dressings of vertex operators inserted at past and future infinity, which will play an
important role in the calculation of two-point functions. It is interesting to work out the effect
of this dressing more explicitly and furthermore generalize our discussion to generic genus
and vertices insertion in general backgrounds. We leave these for future studies.

To summarize, the worldsheet theory (40) on the TsT background can be described by the
auxiliary AdS3 string theory (59), at least on flat wordsheet. Using the field redefinition (53),
the worldsheet currents, equations of motion, and the stress tensor can all be mapped to each
other. With the choice of the integration constants (65), the symplectic form and furthermore
the OPEs in the two theories are shown to be equivalent to each other. This suggests a shortcut
for studying the TsT transformed string theory: we can map quantities in AdS3 discussed in
sec. 3.2 to the TsT transformed theory using the transformation (53). We will use this method
to study the asymptotic symmetries in the next section.

5 Asymptotic symmetry for strings on TsT deformed AdS3

In this section, we study the asymptotic symmetry for string theory on TsT deformed back-
ground (40). On the string worldsheet, asymptotic Killing vectors generate target spacetime
diffeomorphisms that preserve the worldsheet equations of motion and stress tensor near the
asymptotic boundary. As the nonlocal field redefinition (53) preserves all these asymptotic
data, the asymptotic symmetry in the TsT transformed theory can also be obtained from that
in the auxiliary AdS3 string theory (59). In section 5.1, we discuss the asymptotic symmetries
by applying the idea of [50] directly to the TsT deformed background (40), and show that the
asymptotic boundary conditions can be solved by using the non-local map (53). In section
5.2 we discuss the asymptotic symmetry in terms of the X̂µ variables, and then in section 5.3
we discuss how the symmetry acts on the original target space coordinates xµ. We end this
section with some comments on the Kac-Moody algebra due to the existence of the internal
spacetime.

5.1 Asymptotic symmetries from boundary conditions

For the TsT deformed background, the equations of motion are given in (42), and the two
conserved currents of the u, v translation are in (43). As in the case of strings on AdS3, we
impose the boundary that these currents are finite asymptotically

∂̄ ξu

1+ 2λexp(2φ)
−

4λexp(2φ)ξφ ∂̄ u
(1+ 2λexp(2φ))2

∼O(exp(−2φ)) ,

∂ ξv

1+ 2λexp(2φ)
−

4λexp(2φ)ξφ∂ v
(1+ 2λexp(2φ))2

∼O(exp(−2φ)) ,
(84)

7In [66] it was also noticed that the partition function on the plane does not change under the ja ∧ jb deforma-
tion.
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and the variation of equations of motion is of the same order as in (26)

∂

�

exp(2φ) ∂̄ ξu

1+ 2λexp(2φ)
+

2 exp(2φ)ξφ ∂̄ u
(1+ 2λexp(2φ))2

�

∼O(exp(−2φ)) ,

∂̄

�

exp(2φ)∂ ξv

1+ 2λexp(2φ)
+

2exp(2φ)ξφ∂ v
(1+ 2λexp(2φ))2

�

∼O(exp(−2φ)) , (85)

∂ ∂̄ ξφ −
2k exp(2φ)(1− 2λexp(2φ))ξφ ∂̄ u∂ v

(k− 2)(1+ 2λexp(2φ))3
−

k exp(2φ)
k− 2

∂̄ ξu∂ v + ∂ ξv ∂̄ u
(1+ 2λexp(2φ))2

∼O(exp(−4φ)) .

The asymptotic symmetries determined by the above boundary conditions can be easily solved
by introducing the non-local coordinates as in (47). More explicitly, we have

∂̄ û=
∂̄ u

1+ 2λexp(2φ)
, ∂ v̂ =

∂ v
1+ 2λexp(2φ)

, φ̂ = φ . (86)

The above relation is preserved by the relation between the variations,

∂̄ ξu = ∂̄ ξû + 2λ
�

exp(2φ̂)∂̄ ξû + 2ξφ̂ exp(2φ̂)∂̄ û
�

,

∂ ξv = ∂ ξv̂ + 2λ
�

exp(2φ̂)∂ ξv̂ + 2ξφ̂ exp(2φ̂)∂ v̂
�

,

ξφ̂ = ξφ .

(87)

Using the x̂ coordinates, the conditions (84) and (85) are similar to (27) and (26). Thus the
asymptotic Killing vectors can be solved as

ξû = f (û)−
k− 2
2k

exp(−2φ) f̄ ′′(v̂) +O(exp(−4φ)) ,

ξv̂ = f̄ (v̂)−
k− 2
2k

exp(−2φ) f ′′(û) +O(exp(−4φ)) ,

ξφ̂ = −
1
2

f ′(û)−
1
2

f̄ ′(v̂) +O(exp(−2φ)) .

(88)

There are two subtleties here. First, while the non-local coordinate transformation we have
explicitly used in this section is not sensitive to the choice of the zero modes, the resulting
asymptotic Killing vectors (88) depend on the non-local coordinates themselves and hence
on the zero modes. Second, the windings of û and v̂ are not integer multiples of 2π, as can
be seen from (52). Thus the functions f (û) and f̄ (v̂) are not periodic functions of û and v̂.
One way to proceed is to introduce a linear term in f (û) to take into account the non-trivial
boundary condition, an approach similar to the one taken in [51]. On the other hand, as we
have already introduced the X̂ coordinates which satisfy standard boundary conditions (53), it
is more convenient to work in these variables. By varying the map (53), we obtain the relation
between the variations

ξû = (1+
2λ
wk

J̄0)ξ
Û +

2λ
wk

ÛδJ̄0 ,

ξv̂ = (1+
2λ
wk

J̄0)ξ
V̂ +

2λ
wk

V̂δJ0 ,

ξφ̂ = ξΦ̂ −
1
2

2λ
wkδJ0

1+ 2λ
wk J0

−
1
2

2λ
wkδJ̄0

1+ 2λ
wk J̄0

.

(89)

Using these relations, it can be directly shown that the conditions (84) and (85) in terms of
{Û , V̂ , Φ̂} are in the same form of (27) and (26). As a result, the solution to the asymptotic
Killing vector is identical to (88) with {û, v̂, φ̂} replaced by {Û , V̂ , Φ̂}. This enables us to pro-
ceed with asymptotic Killing vectors in terms of the auxiliary AdS3 variable X̂ , which we discuss
in detail in the following.
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5.2 The asymptotic symmetry in the X̂µ variables

As explained in detail in the previous section, the equations of motion (42) after the TsT
transformation is equivalent to (55) in terms of X̂µ which is the same as the equations of
motion for strings on AdS3 (24). From the field redefinition (53), the asymptotic region with
large φ implies large Φ̂ as well. Then the discussion of the asymptotic symmetry in the X̂µ

variables are completely parallel to that of AdS3 as summarized in section 3.2, with x̃µ replaced
by X̂µ. By imposing the asymptotic equations of motion similar to (26), the asymptotic Killing
vectors can be expressed in terms of two arbitrary functions F(Û) and F̄(V̂ ) as,

ΞF = F(Û)∂Û −
k− 2
2k

exp(−2Φ̂)F ′′(Û)∂V̂ −
1
2

F ′(Û)∂Φ̂ ,

Ξ̄F̄ = F̄(V̂ )∂V̂ −
k− 2
2k

exp(−2Φ̂)F̄ ′′(V̂ )∂Û −
1
2

F̄ ′(Û)∂Φ̂ ,
(90)

where prime denotes derivative with respect to its argument, and we have omitted the sub-
leading terms. To preserve the periodic boundary conditions (54), the functions F(Û), F̄(V̂ )
should be periodic functions of their respective arguments and thus can be decomposed into
Fourier modes

Fm(Û) = −exp(imÛ) , F̄m(V̂ ) = exp(−imV̂ ) . (91)

As the vectors Ξ only depend on the target spacetime coordinates with state-independent
boundary conditions, the commutator between two vectors is simply given by the Lie bracket.
Then the generators Ξm ≡ ΞFm

and Ξ̄m ≡ Ξ̄F̄m
form left and right moving Witt algebra under

Lie bracket,
[Ξn,Ξm] = i(n−m)Ξn+m ,

[Ξ̄n, Ξ̄m] = i(n−m)Ξ̄n+m ,

[Ξn, Ξ̄m] = 0 .

(92)

Now let’s calculate the conserved charge corresponding to the symmetry vector ΞF and ξF
in the Hamiltonian formalism. In the following, we focus on the left moving part parame-
terized by F(Û), whereas discussions on the right moving part are similar. As outlined in
section 3.1, at each point on the worldsheet we consider the six-dimensional phase space with
coordinates {Û , V̂ , Φ̂, pÛ , pV̂ , pΦ̂}. Let ζI denote the tangent vector in the phase space, whose
three-dimensional part is given by the asymptotic Killing vector (90), namely,

ζµ ≡ {X̂µ, JF}= Ξ
µ
F , (93)

where JF generates the transformation (90) on the target spacetime coordinates X̂µ via the
Poisson bracket. The components of ζ in the directions of the momenta are determined by the
conditions (16) which in this case are given by

{JF , H} ∼O(e−2Φ̂) ,

{ζI , H} − {{Q̂I , H}, JF} ∼O(e−2Φ̂) .
(94)

The meaning of the above two equations is that the symmetry transformation preserves the
worldsheet Hamiltonian and equations of motion in the asymptotic region. The specific fall-off
condition on the right hand side corresponds to Brown-Henneaux boundary conditions in the
auxilliary AdS3 theory as discussed in [50]. The solution to these equations is

ζ
pÛ
F = −h[F

′(Û), X̂ ] ,

ζ
pV̂
F = 0 ,

ζ
pΦ
F = −

k
2

�

∂σÛ +
2
k

e−2Φ̂pV̂

�

F ′′(Û) ,

(95)
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where the functional h is defined in (66) which we reproduce here for convenience,

h[F, X̂ ]≡ F(Û)pÛ −
1
2

F ′(Û)((k− 2)∂σΦ̂+ pΦ̂)−
k− 2
2k

e−2Φ̂F ′′(Û)pV̂ ,

h̄[F̄ , X̂ ]≡ F̄(V̂ )pV̂ −
1
2

F̄ ′(V̂ )(−(k− 2)∂σΦ̂+ pΦ̂)−
k− 2
2k

e−2Φ̂ F̄ ′′(V̂ )pÛ .
(96)

Plugging the variations (93) and (95) into (15), we can obtain the infinitesimal charge

δJF =
1

2π

∫

dσ δh[F(Û), X̂ ] , (97)

which is integrable and the resulting finite charge is given by

JF =
1

2π

∫

dσ h[F(Û), X̂ ] . (98)

Under the mode expansion (91), it is straight forward to verify that the charges Jm ≡ JFm

satisfy the Virasoro algebra via the Poisson bracket (69), namely

{Jn,Jm}= −i(n−m)Jn+m − in3 c
12
δn,−m ,

{J̄n, J̄m}= −i(n−m)J̄n+m − in3 c
12
δn,−m ,

{Jn, J̄m}= 0 ,

(99)

where the central term is c = 6(k− 2)w∼ 6kw in the classical limit. Note that the zero mode
charges J0, J̄0 generate translations in Û and V̂ , respectively.

5.3 The asymptotic symmetry for the TsT strings

So far the asymptotic charges (98) have been constructed so that they correspond to the asymp-
totic Killing vectors (90) in the X̂ variables. As shown in the last section, the auxiliary AdS3
string theory is equivalent to the string theory on the linear dilaton background (40) under
the field redefinition (53). As the transformations (90) preserve the worldsheet equations of
motion and stress tensor asymptotically in the former theory, they preserve those in the later
theory as well. Therefore the charges (98) also generate asymptotic symmetries in the TsT
string theory (40). Now let us consider the action of these charges on xµ which is the physical
target spacetime coordinates after the TsT transformation.

Using the Poisson brackets (69) and the field redefinition (53), it is straightforward to work
out the Poisson brackets between the charges and the x̂ coordinates, which can be written as

{û,JF}= fF (û)−
k− 2
2k

exp(−2φ̂)f̄′′F (v̂) ,

{v̂,JF}= f̄F (v̂)−
k− 2
2k

exp(−2φ)f′′F (û) ,

{φ,JF}= −
1
2
f′F (û)−

1
2
f̄′F (v̂) ,

(100)

where the function fF (û) is given by

fF (û) = (F(Û) + û wF )Ru , f̄F (v̂) = v̂ w̄F Ru , (101)

wF = {Ru, JF}R−2
u = −

J̄0JF ′

1+ 2λ
wk J0 +

2λ
wk J̄0

�

2λ
wkRu

�2

, w̄F =
JF ′

1+ 2λ
wk J0 +

2λ
wk J̄0

2λ
wkRu

.
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The above transformation in the x̂ variables is formally a left-moving conformal transformation
with symmetry parameter fF accompanied by a rescaling in the right-moving coordinates v̂.
Note that the transformation (100) indeed takes the general form of (88), with f (û) = fF (û)
when we take F̄(V̄ ) = 0. When F̄(V̄ ) ̸= 0, it will contribute yet another linear term in f (û),
similar to the appearance of v̂ w̄F Ru due to F(Û). To see the action on the TsT coordinates xµ,
it is useful to note that

{pu,JF}= −h[f′F (û), x̂] ,

{pv ,JF}= −h̄[f̄′F (v̂), x̂] ,

{pφ ,JF}= −
k
2

�

∂σû+
2
k

e−2φpv

�

f′′F (û) .

(102)

Using the coordinate transformation (53) and the above formula, we obtain the following
transformation

{u,JF}= fF (û)−
k− 2
2k

exp(−2φ̂)f̄′′F (v̂) +
2λ
k

∫ σ

0

dσ′h̄[f̄′F (v̂), x̂] +
2λ
k
{η̄0,JF} ,

{v,JF}= f̄F (v̂)−
k− 2
2k

exp(−2φ)f′′F (û)−
2λ
k

∫ σ

0

dσ′h[f′F (û), x̂] +
2λ
k
{η0,JF} ,

{φ,JF}= −
1
2
f′F (û)−

1
2
f̄′F (v̂) ,

(103)

where the Poisson brackets appearing in the first two lines are constants given by

{η0,JF}= −
∮

dσ
2πw

h[(
û
Ru
−wπ)f′F (û), x̂] +JF

1
wRu

,

{η̄0,JF}=
∮

dσ
2πw

h̄[(
v̂

Rv
−wπ)f̄′F (v̂), x̂] .

(104)

We note that the symmetry parameterf(û) now contains a term that is linear in the coordinate.
One may wonder if the transformation is compatible with the boundary conditions (45). It
turns out the shift of the third term in (103) under σ → σ + 2π cancels the shift from the
linear part in fF , so that the variation of the coordinates remains periodic. More explicitly, we
have

δF u(2π)−δF u(0) = 2πwRu

�

wF Ru +
2λ
wk

w̄F J̄0

�

= 0 ,

δF v(2π)−δF v(0) = 2πwRvRuw̄F −
2λ
k

∮

dσh[f′F (û), x̂] = 0 .
(105)

One particularly interesting transformation is the zero mode with F(Û) = F0 = 1, in which
case we have wF = w̄F = 0, both the linear term and the non-local term vanish, and we find
that the charge J0 shifts the coordinates u and v simultaneously,

{xµ, J0}∂µ = −Ru∂u +
2λ
wk

J0∂v . (106)

On the other hand, we expect to find a set of generators that include the translational gen-
erators J0, J̄0, which generate ∂u, ∂v respectively. The relation between J0 and J0 (57) then
suggests that we can define the following charges,

JF ≡ JF R−1
u =

∮

dσ
2π

h[F(ûR−1
u ), x̂] , J̄F̄ ≡ J̄F̄ R−1

v , (107)
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where we have used the relation (67). Acting on the TsT coordinates, we find

χ
µ
F ≡ {x

µ, JF}= {xµ,JF}R−1
u − JF

2λ
wkRu

δµv , (108)

from which we learn that the zero mode charge with F = 1 indeed generates translation in u.
The most general asymptotic charges in the target spacetime are given by

JF,F̄ = JF + J̄F̄ , (109)

and they generate the following transformations on the coordinates.

χu ≡ {u, JF,F̄}= fF,F̄ (û)−
k− 2
2k

exp(−2φ̂) f̄ ′′
F,F̄
(v̂) +

2λ
k

∫ σ

0

h̄[ f̄ ′
F,F̄
(v̂), x̂] + c f̄F,F̄

,

χ v ≡ {v, JF,F̄}= f̄F,F̄ (v̂)−
k− 2
2k

exp(−2φ) f ′′
F,F̄
(û)−

2λ
k

∫ σ

0

h[ f ′
F,F̄
(û), x̂] + c fF,F̄

,

χφ ≡ {φ, JF,F̄}= −
1
2

f ′
F,F̄
(û)−

1
2

f̄ ′
F,F̄
(v̂) ,

(110)

where8

fF,F̄ (û) = F(Û) + (wF +w F̄ )û ,

f̄F,F̄ (v̂) = F̄(V̂ ) + (w̄F + w̄ F̄ )v̂ ,
(111)

and

c f̄F,F̄
=

2λ
wk

∮

dσ
2π

h̄

��

v̂
Rv
−wπ
�

f̄ ′
F,F̄
(v̂), x̂
�

,

c fF,F̄
= −

2λ
wk

∮

dσ
2π

h

��

û
Ru
−wπ
�

f ′
F,F̄
(û), x̂
�

.

(112)

Acting on the momenta, we have

χ pu ≡{pu, JF,F̄}= −h[ f ′F,F̄
(û), x̂] ,

χ pv ≡{pv , JF,F̄}= −h̄[ f̄ ′F,F̄
(v̂), x̂] ,

χ pφ ≡{pφ , JF,F̄}= −
1
2

�

∂σû+
2
k

e−2φpv

�

f ′′
F,F̄
(û)−

1
2

�

−∂σ v̂ +
2
k

e−2φpv

�

f̄ ′′
F,F̄
(v̂) .

(113)

Note that the asymptotic Killing vector (110) depends on the state and is also non-local on the
string worldsheet. It is difficult to see directly how it acts directly on the target spacetime co-
ordinates. Nevertheless, we can show that these vectors are indeed asymptotic Killing vectors
in the sense that they preserve the Hamiltonian and the equations of motion. Similar to (94),
we find

{JF , H} ∼O(e−2φ) ,

{χ I , H} − {{qI , H}, JF} ∼O(e−2φ) .
(114)

8The asymptotic Killing vector χµ with w = 1 is similar to (A.7) in [51]. To make the comparison, we can
identify fF,F̄ , c fF,F̄

to f and cLf
in [51]. In particular, both fF,F̄ and f contain a periodic part and a linear term in

the coordinates, so that the asymptotic Killing vector still preserves the periodic boundary conditions. The charge
Jm is similar to the ‘rescaled’ charges, and Jm is similar to the ‘unrescaled’ charges in [51].
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Now let us consider the algebra formed by the charges (107). Under the mode expansion
(91), the charges Jm ≡ JFm

form the following algebra via Poisson brackets,

{Jn, Jm}= −
i(n−m)Jn+m

Ru
− i

c
12

n3δn,−m

Ru
2 −

i(n−m)( 2λ
wk )

2 J̄0JmJn

Ru(1+
2λ
wk J0 +

2λ
wk J̄0)

,

{J̄n, J̄m}= −
i(n−m)J̄n+m

Rv
− i

c
12

n3δn,−m

R2
v
−

i(n−m)( 2λ
wk )

2J0 J̄m J̄n

Rv(1+
2λ
wk J0 +

2λ
wk J̄0)

,

{Jn, J̄m}=
i(n−m)( 2λ

wk )Jn J̄m

1+ 2λ
wk J0 +

2λ
wk J̄0

.

(115)

Due to the state-dependence, the modified Lie bracket between two vectors χF and χG param-
eterized by F(Û) and G(Û) should be defined as

[χF , χG]
µ
m.L ≡ {χ

µ
G , JF} − {χ

µ
F , JG}= {{xµ, JG}, JF} − {{xµ, JF}, JG} , (116)

which can also be written as [67]

[χF , χG]m.L = [χF , χG]Lie +δχF
χG −δχG

χH . (117)

Using the Jacobi identities between JF , JG and xµ

{{xµ, JG}, JF} − {{xµ, JF}, JG}= −{xµ, {JF , JG}} , (118)

we find that the algebra formed by the asymptotic Killing vectors is given by

[χF , χG]m.L = −χ{JF , JG} , (119)

which is isomorphic to the algebra formed by the charges (115).
So far we have worked out the asymptotic symmetries in the target spacetime for the TsT

string theory (40) at the classical level. The symmetry can be organized in two ways: the Vi-
rasoro generators (98) which generate the transformation (90) in the X̂ basis, and the Jm gen-
erators which form a nonlinear algebra (115) and generate field dependent diffeomorphism
(110) in the xµ basis. The zero modes J0, J̄0 of the former algebra generate translations of
the auxiliary coordinates Û and V̂ , whereas the zero modes J0, J̄0 generate translations of
the physical coordinates u and v. The two sets of charges are related by a field-dependent
rescaling (107).

As reviewed in section 2, string theory on the TsT-transformed background (40) is con-
jectured to be holographically dual to the single-trace T T̄ deformed CFT2. For a symmetric
orbifold CFT MN/SN with seed CFT M, the single-trace T T̄ deformed theory MN

T T̄
/SN is a

symmetric orbifold theory with a (double-trace) T T̄ deformed seed theory MT T̄ . The Virasoro
algebra (99) and the non-linear algebra (115) we found from worldsheet analysis agree with
those found from the single-trace T T̄ deformed CFT [37], the latter of which was based on
the analysis of the double-trace version of T T̄ deformation [38] and its holographic dual [51].
In [51], asymptotic symmetry on the TsT-transformed background has also been discussed by
studying linearized perturbations in supergravity theory. The appearance of the infinite di-
mensional symmetry (99) or (115) is compatible with the results of [35], where correlation
functions in momentum space is found to take a very simple form. Note that the string back-
ground (17) after the TsT transformation is asymptotically flat in the string frame with a linear
dilaton, the full theory of which is also conjectured to be holographically dual to little string
theory [1]. It will be interesting to understand the implications of the asymptotic symmetries
(115) in little string theory and flat holography as well.
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5.4 The quantum algebra

We have discussed asymptotic symmetries on the string worldsheet at the classical level. We
have also shown in the previous section that the symplectic structure and the OPEs in the
auxiliary AdS3 string theory (59) are also equivalent to those in the TsT string theory (40).
This allows us to proceed with quantization and consider the symmetries at the quantum level
as well.

At the quantum level, normal ordering is assumed in the Jm generators defined in (98).
It is more convenient to put the worldsheet theory on the plane. Using the OPEs in the X̂µ

variables, it is not difficult to verify that the generators Jm indeed generate the transformation
Ξm defined in (90) in the large radius region, namely

[X̂µ, Jm] = iΞX̂µ
m , (120)

and the commutation relations form a direct sum of two Virasoro algebras

[Jn,Jm] = (n−m)Jn+m +
c

12
m3δn,−m ,

�

J̄n, J̄m

�

= (n−m)J̄n+m +
c̄

12
m3δn,−m ,

�

Jn, J̄m

�

= 0 .

(121)

As discussed around (36), the charges Jm commute with the worldsheet stress tensor and is
thus physical.

Now let us consider the Jm generators defined in (107). There is an ordering ambiguity of
the operators at the quantum level. In the following, we always multiply powers of Ru and Rv
to the right, namely

Jm = JmR−1
u , J̄m = J̄mR−1

v . (122)

This prescription is purely due to technical reasons, as it makes it possible to invert the above
relation so that we can express Jm in terms of Jm. One can also verify that these charges
commute with the worldsheet stress tensor

[Jm, Tws] = [Jm, T̄ws] = 0 . (123)

Using the relation (57), we learn that an eigenstate of J0 and J̄0 is also an eigenstate of
J0 and J̄0. Denote the eigenvalues of J0, J̄0 by p, p̄, and we have

J0|p, p̄〉= p|p, p̄〉 , J̄0|p, p̄〉= p̄|p, p̄〉 ,
J0|p, p̄〉= α(p, p̄)|p, p̄〉 , J̄0|p, p̄〉= ᾱ(p, p̄)|p, p̄〉 .

(124)

The modified eigenvalues can be read from the relation (57) which acting on the states be-
comes

p = α+
2λ
wk
αᾱ , p̄ = ᾱ+

2λ
wk
αᾱ . (125)

The solution of the above equation is given by

α(x , y) =
1
2
(x − y) +

wk
4λ

�

−1+

√

√

1+
4λ
wk
(x + y) + (

2λ
wk
)2(x − y)2
�

,

ᾱ(x , y) = α(x , y) + y − x ,

(126)

where the functions α and ᾱ can be viewed as a map from eigenvalues of J0, J̄0 to those
of J0, J̄0. The above relation is the same as single-trace T T̄ spectrum (4) if we identify
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(p, p̄) as the undeformed eigenvalues p = 1
2(E(0)R+ J(0)), and (α, ᾱ) as the deformed ones

α= 1
2(E(µ)R+ J(µ)).

Note that the aforementioned relation between the eigenvalues holds for all eigenstates
of the two U(1) generators J0 and J̄0. The Virasoro algebra (121) implies that the op-
erators Jm are ladder operators so that the state Jm|p, p̄〉 is an eigenstate of J0, J̄0 with
shifted eigenvalues (p − m, p̄), and furthermore also an eigenstate of J0, J̄0 with eigenval-
ues
�

α(p−m, p̄), ᾱ(p−m, p̄)
�

. We can promote α to a functional of the operators J0 and J̄0,
using which we find the following algebra

[Jn, Jm] = Jn+m
(n−m)

1+ 2λ
wk J̄0

+
c

12 m3δn,−m

(1+ 2λ
wk J̄0)2

− JmJn
2λ
wk
ᾱ(J0, J̄0)− ᾱ(J0 − n, J̄0)

1+ 2λ
wk J̄0

+ JnJm
2λ
wk
ᾱ(J0, J̄0)− ᾱ(J0 −m, J̄0)

1+ 2λ
wk J̄0

.

(127)

To derive the above relation, we have used the definition (122) and the commutators (121).
Alternatively, we can also multiply the quantum algebra (127) by 1+ 2λ

wk ᾱ(J0, J̄0), so that it
becomes

[Jn, Jm]= (n−m)Jn+m +
c

12

m3δn,−m

1+ 2λ
wk J̄0

−
2λ
wk

�

JnJmᾱ(J0 −m, J̄0)− JmJnᾱ(J0 − n, J̄0)
�

. (128)

To understand the relation between the above quantum algebra with the classical one (115),
we need to restore ħh and perform perturbation in ħh. Or alternatively, the classical limit can be
obtained by expanding (127) on a state with the expectation value of 〈J0〉 ≫ m, 〈J̄0〉 ≫ m.
Then we have the approximation

ᾱ(J0, J̄0)− ᾱ(J0 −m, J̄0)∼ m
∂ ᾱ

∂J0
= −

m 2λ
wk J̄0

1+ 2λ
wk J0 +

2λ
wk J̄0

. (129)

Plugging the above relation into (127), and ignoring the ordering in JmJn, we obtain an ex-
pansion of the quantum algebra up to o(ħh). The result agrees with (115) if we replace the
Poisson bracket by commutator {, } → − i

ħh[, ] with ħh = 1. The aforementioned expansion of
our quantum algebra (127) also reduces to the symmetry algebra found in the field-theoretic
analysis of double-trace and single-trace T T̄ CFT [37,38].

Similar expressions can be obtained for the commutator between the J̄ms. For the mixed
commutators, we have

[Jn, J̄m] = Jn J̄m

�

1−
1+ 2λ

wk ᾱ(J0, J̄0 −m)

1+ 2λ
wk J̄0

�

− J̄mJn

�

1−
1+ 2λ

wkα(J0 − n, J̄0)

1+ 2λ
wk J0

�

. (130)

Or equivalently,

Jn J̄m

�

1+ 2λ
wk ᾱ(J0, ¯J −m0)

1+ 2λ
wk J̄0

�

− J̄mJn

�

1+ 2λ
wkα(J0 − n, J̄0)

1+ 2λ
wk J0

�

= 0 . (131)

5.5 The fate of the spacetime Kac-Moody algebra

To end this section, we now turn to the Kac-Moody algebra due to the existence of the internal
spacetime in string theory. In the string theory on AdS3×N background, the worldsheet CFT
on the internal manifold N contains an affine Lie group, generated by currents Ka with the
following OPE

Ka(z)K b(w) =
k′δab/2
(z −w)2

+
i f ab

c K c

z −w
+ · · · , a, b, c = 1, · · · , dim G , (132)
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where G is a compact group, k′ is the level of the affine Lie algebra ĝk′ , and f ab
c is the structure

constant. For instance, when N = S3×T4, Ka can be taken as either the affineÖsu(2)k′ currents
or the currents on the T4. Our subsequent discussion is universal and does not depend on
details of the internal manifold or the choice of the currents. As shown in [47], the worldsheet
currents Ka can be used to construct affine Kac-Moody currents in the spacetime CFT. After
the TsT transformation, a similar statement can be made to string theory on the auxiliary AdS3
spacetime together with the unaffected internal manifold N. Then we have the Kac-Moody
algebra in the spacetime CFT generated by charges Ka

n ,

Ka
n =

1
2πi

∮

dzKa(z)einÛ(z) , (133)

which satisfies the algebra

[Ka
n , K b

m] = i f ab
c K c

n+m +
nk̃
2
δabδn+m,0 ,

[Jn, Ka
m] = −mKa

n+m ,

[J̄n, Ka
m] = 0 ,

(134)

where k̃ = k′
∮ dz

2π∂ Û is the Kac-Moody level in the spacetime CFT. Due to the redefinition
(122), the algebra between Ka

n and the charges Jm differ from the last line of the above equa-
tion, and becomes

[Jn, Ka
m] = −Ka

n+m
m

1+ 2λ
wk J̄0

+ JnKa
m

�

1−
1+ 2λ

wk ᾱ(J0 −m, J̄0)

1+ 2λ
wk J̄0

�

,

[J̄n, Ka
m] = J̄nKa

m

�

1−
1+ 2λ

wkα(J0 −m, J̄0)

1+ 2λ
wk J0

�

.

(135)

The classical limit of the above algebra reduces to the following Poisson bracket

{Jn, Ka
m}=

im
Ru

�

Ka
m+n +

( 2λ
wk )

2 J̄0JnKa
m

1+ 2λ
wk J0 +

2λ
wk J̄0

�

,

{J̄n, Ka
m}= −

im 2λ
wk J̄nKa

m

1+ 2λ
wk J0 +

2λ
wk J̄0

.

(136)

It is interesting to note that the Kac-Moody currents also induce translations in the u, v direc-
tions which are coordinates on the spacetime CFT. We find the following Poisson brackets

{u, Ka
n}= ka

n(û) +
2λ
k

∫ σ

0

h̄[∂v̂ k̄a
n(v̂), x̂] + c̄a

n ,

{v, Ka
n}= k̄a

n(v̂)−
2λ
k

∫ σ

0

�

h[∂ûka
n(û), x̂] +

nKae
inû
Ru

Ru

�

+ ca
n ,

{φ, Ka
n}= 0 ,

(137)

where

ka
n(û)≡ {û, Ka

n}= −
in( 2λ

wk )
2 J̄0Ka

n

1+ 2λ
wk J0 +

2λ
wk J̄0

û
Ru

,

k̄a
n(v̂)≡ {v̂, Ka

n}=
in 2λ

wk Ka
n

1+ 2λ
wk J0 +

2λ
wk J̄0

v̂ ,

(138)
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and the constants ca
n , c̄a

n are given by

ca
n = −

2λ
wk

�

∮

dσ
2π

h

�

∂ûka
n(û)
�

û
Ru
−wπ
�

, x̂
�

+

∮

dσ
2π

Ka(σ)
�

û
Ru
−wπ
�

ne
inû
Ru

Ru

�

,

c̄a
n =

2λ
wk

∮

dσ
2π

h̄

�

∂v̂ k̄a
n(v̂)
�

v̂
Rv
−wπ
�

, x̂
�

.

(139)

One can check that the transformation (137) still preserves the periodicity of u, v, despite the
fact that it contains linear parts. It is interesting to further understand the implication of this
novel transformation on the spacetime coordinates, which we leave for future study.
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