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Abstract

Higher-matter is defined by higher-representation of a symmetry algebra, such as the
p-form symmetries, higher-group symmetries or higher-categorical symmetries. In this
paper, we focus on the cases of higher-group symmetries, which are formulated in terms
of the strictification of weak higher-groups. We systematically investigate higher-matter
charged under 2-group symmetries, defined by automorphism 2-representations. Fur-
thermore, we construct a Lagrangian formulation of such higher-matter fields coupled
to 2-group gauge fields in the path space of the spacetime manifold. We interpret such
model as the Landau-Ginzburg theory for 2-group symmetries, and discuss the sponta-
neous symmetry breaking (SSB) of 2-group symmetries under this framework. Examples
of discrete and continuous 2-groups are discussed. Interestingly, we find that a non-split
2-group symmetry can admit an SSB to a split 2-group symmetry, where the Postnikov
class is trivialized. We also briefly discuss the strictification of weak 3-groups, weak
3-group gauge fields and 3-representations in special cases.
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1 Introduction

In the recent years, there have been a plethora of approaches to extend the notion of symme-
tries beyond the group theory paradigm, see the review articles [1-5]. The most general alge-
braic structure for generalized symmetries is an n-category, where the morphisms correspond
to symmetry transformations. If these morphisms are all invertible, the algebraic structure
is called an n-group. Physically, it consists of codimension-1, 2, ..., n-topological generators
of symmetry transformations. Higher-group symmetries have been extensively discussed in
physics literature, see e.g. [6-53].

For 2-groups, there are actually two different mathematical formulations that are used in
different contexts:

1. Strict 2-group, which is defined as a strict 2-category whose morphisms are invertible
and associative. Strict 2-groups commonly appears in the mathematical formulations
of 2-group gauge theories [6,7,54-56]. Algebraically, a strict 2-group is described by a
crossed module (G, H, d,r>), as reviewed in section 2.

2. Weak 2-group, which is defined as a weak 2-category (bicategory) whose morphisms are
invertible but not associative. A weak 2-group is characterized by a tuple (I1;, I1,, p, B),
where I1; and II, are interpreted as the physical “O-form” and 1-form symmetries,
p : II; =»Aut(Il,) is a group action and 3 € H g (BII;; I1,) is called the Postnikov class.
When the Postnikov class f = 0(# 0), the weak 2-group is called split (non-split). In
condensed matter physics literature, a split 2-group symmetry is also denoted as “sym-
metry fractionalization”, see e.g. [20,57,58]. Weak 2-group is the most commonly used
notion of 2-groups in the generalized symmetry literature.

Different strict 2-groups could be equivalent to the same weak 2-group via weak equiva-
lence. On the other hand, for a given weak 2-group (I1;,II,, p, 8), there are multiple ways to
construct a corresponding strict 2-group. Such a choice of strict 2-group (crossed module) is
called a strictification of the weak 2-group (I1;,II,, p, ).

Although the weak 2-group description is more appropriate to define symmetry generators,
we find that the strict 2-group description is more convenient in many physical aspects. In a
theory with 2-group global symmetry, the symmetry defects can be labeled by weak 2-group
elements or by elements of the corresponding strict 2-group. For the latter case, the strict
2-group labeling is not faithful because the map from the strict 2-group to the corresponding
weak 2-group description is not injective.

Strictification of gauge fields First, when discussing the gauging of 2-group symmetry and
constructing a 2-group gauge theory, the gauge transformation rules of strict 2-group gauge
theory in terms of the strict gauge fields (A, B) is much simpler than that of weak 2-group gauge
theory with weak gauge fields (a, b) [7]. We present a derivation of strict 2-group gauge fields
from the weak 2-group counterpart in section 4.

Higher-matter For an ordinary symmetry group G, it acts on matter fields ¢ € V in forms
of a representation G — Hom(V, V). More abstractly, a representation is defined as a functor
G — Vect from the 1-category G into the category of vector spaces Vect.

As a generalization, the (higher-)matter fields charged under higher-group G global or
gauge symmetries are described by a higher-representation, defined as a functor G — nVect
from the higher-group to an n-category of n-vector spaces (also known as the higher
charge) [43,59]. The detailed definitions and structures of general higher-representations
are open problems in mathematics. For weak 2-groups, the characterization and classification
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of 2-representations are well studied, see e.g. [43,45,60,61]. Nonetheless, we would still like
to ask a question: how to write down higher-matter coupled to higher gauge fields in a more
physical, Lagrangian formulation?

It turns out that the higher vector spaces are not convenient for our purpose. In this
paper, we instead propose to use the automorphism 2-representation of an algebra A, to model
the 2-representations of 2-groups in the strict description. In particular, we often use the
group algebra A = C[K] for a group K, which can correspond to a collection of “Wilson loop”
operators physically.

Then there is another question: what is the physical operator on which the 2-group act, in
the Lagrangian form?

Our answer is that the proper way for writing down the coupling of 2-group gauge fields
with 2-matter is to work in the path space (loop space) P(M) of the spacetime manifold M,
which we elaborate in section 6. Again we would utilize the strict 2-group gauge fields, and
realizing the 2-matter in terms of an automorphism 2-representation.

Landau-Ginzburg model for strict 2-group symmetries For the physical applications, we
establish the Landau-Ginzburg model of 2-group symmetries as a strict 2-gauge theory in the
path space in section 7. We discuss the SSB (Spontaneous Symmetry Breaking) of 2-group
symmetry using this effective field theory. When the 2-group only contains a 1-form symmetry,
our model is reduced to the Mean String Field Theory, which is the Landau-Ginzburg model
of 1-form symmetries [62].

We apply the formalism to a simple example of non-split weak 2-group
(Zy, Zy,id., B # 0 € H3(BZ,; Z,)), which has a strictification (Z,,%4,0 = x2,1>a =4—a)
(note that we use the additive notation for Z, cyclic groups in the paper). Interestingly, we
found that in the strict formulation, the non-split 2-group can be SSB to a split 2-group with a
trivial Postnikov class, without breaking I1; = Z, or I, = Z,!

We also attempt to discuss the SSB of a continuous non-split weak 2-group
(Zy,U(1),id., B # 0 € H3(BZy; U(1)) by the approximation limy;_, o Zy; = U(1). The SSB be-
havior of this 2-group Landau-Ginzberg model can break the symmetry to I1; = Zg, I1, = Zp,
and the Postnikov class is broken to # mod gcd(P,K). With suitably chosen parameters, we
can still realize a symmetry breaking from a non-split 2-group to a split 2-group.

3-groups We have also extended beyond the level of 2-category, and explored the cases of
3-group symmetries, whose physical applications were explored in [16,22,63]. In this case, a
weak 3-group is formulated by the following Postnikov tower [64]:

B’ll; — BG4
l

B’l, — BG, @)
l
BII,

and is parameterized by the tuple (I1;, 11,115, p, B,7). Where p is a group action of II; and
B,y are two group cohomology elements:

B €H*BI,, M), ye€HY(BG,, ). 2)

For a general weak 2-category, one can always strictify it into a strict 2-category. But for
a general weak 3-category, it can only be strictified into a semi-strict (Gray) 3-category [65].
Hence for a weak 3-group, one can only strictify it into a semi-strict 3-group in general, which is
described by the algebraic structure of 2-crossed-module (G, H, L, 9;, 85, >, {—,—}). We discuss
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the definitions of these notions of 3-groups and the strictification in the special cases of either
I1; = 0 or II, = O in section 3. We have also shortly discussed the 3-representations and
physical aspects of strict 3-gauge theories.

Structure of this paper

In pursuit of higher-gauge theory with matter under higher representations, we must clarify
the algebraic structure of higher-groups (2-group and 3-group), and work out how the weak-
category language of predecessors aligns with the strict-category language we predominantly
utilize.

In section 2, we briefly review the basic algebraic structure of 2-groups in both strict and
weak languages, and discuss their transitions. We also explicitly construct both discrete and
continuous examples. More examples can be found in appendix B.

In section 3, we investigate the algebraic structure of semi-strict and weak 3-groups, and
construct algebraic models for strictification of weak 3-groups in the special cases of I, = 0
or IT; =0.

In section 4, we present a dictionary of gauge fields, gauge transformations and observables
between the weak-/strict- categorical languages in 2-group gauge theories. We also build the
strictification of 3-gauge theories.

With the algebraic structures and categorical languages clarified, we can define higher-
matter through automorphism higher-representations of higher-groups, and fit them into
gauge theories.

In section 5, we introduce automorphism 2-representation with explicit examples, and
discuss its relation with previous definition of higher-representation. We also extend the au-
tomorphism 2-representation to define 3-representation for semi-strict 3-groups with IT; = 0.

In section 6, we build 2-group gauge theories with 2-matter using the path space formalism
developed in [55]. We give explicit construction of 2-matter in both continuous and discrete
cases using fields in the path space, and discuss n-matter forming brane fields.

In section 7, with all the previously defined 2-matter, we construct the Lagrangian Landau-
Ginzberg theory of 2-groups in both continuous and discrete languages, and discuss their spon-
taneously symmetry breaking patterns.

2 Strictification of 2-groups

2.1 A review of 2-groups

As mentioned in section 1, there are two notions of 2-groups that are used in different refer-
ences. We review the relation between strict 2-groups and weak 2-groups in this section.

We first write down the formulation of a strict 2-group in terms of a crossed module
(G,H,d,>). G and H are two groups, the map d : H — G is a group homomorphism, i.e.
9(hihy) = (dhy)(@hy) for all hy,hy, € H, and >: G — Aut(H) is an action of G on H. In
particular, for any g € G, g > induces a group automorphism of H, and it is required that

g > 1H = 1H'
Furthermore, for all g € G, h,h’ € H, the following equations hold:
d(g>h)=g(n)g™", 3
(0h)>h =hh'h7L. 4

If we define the action of G on itself >: G x G — G as

g>g =gg's ™, (5)
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(3) can be rewritten as

d(g>h)=g>(dh). (6)

Following [7], a better way to classify a crossed module (G,H, d,>) is by the equivalent
classes of strict 2-groups, which preserves the groups I1; = G/im(J) and II, = ker(d) instead
of G and H.

One defines the quadruple (I14,II,, p, ), which is called a weak 2-group out of the crossed
module (G, H, d,). The action of p : II; x [T, — II, is naturally induced from >: G x H — H.
The non-trivial element € Hg (BII;I0,) = ngp, p(l'[l ;I1,) is called the Postnikov class of
the weak 2-group. If the group action p is trivial, # is an element of the group cohomology,
otherwise it is an element of the twisted group cohomology with action p.

Now we want to ask the following question: given a weak 2-group (I1;,II,, p, ), how to
construct its corresponding strict 2-group (G, H, d,1>) (which is not unique). If the Postnikov
class f3 is trivial, we can simply construct the strict 2-group as

G=H1, H:H2, 3h=1G(Vh€H), >=p (7)

If B is a non-trivial element, the answer is not obvious, and we need to construct an exact
sequence accompanied with an action >: G — Aut(H):

] a
150, —H-— G511, > 1, (8)

such that it gives the correct group cohomology element 3 € H3(BII;;I1,).

After the strictification, the pullback of the Postnikov class is trivial, p*() = 0, see ap-
pendix A for a proof.

We use the procedure and notations in [66] to compute the Postnikov class . First we
choose a cross-section function s : II; — G, which satisfies p os = id.. The failure of group
associativity for s(g) is encoded in a map f : II; x I1; — ker(p), defined as

s(g)s(h) =s(gh)f (g,h). )
The function f (g, h) satisfies the 3-cocycle condition
s(g)f (h,K)s(g) ™' f (g,hk) = f(g,h)f (gh,k). (10

Now we uplift f to a function F : II; x I[I; — H by requiring that d(F(g)) = f(g) for all
g € I1;. The failure of cocycle condition for F(g,h) can be written in terms of

(s(g) > F(h,k))F(g,hk) = i(B(g, h, k))F(g,h)F(gh,k), (1D

where f3 : IT; x IT; x [I; — II, is the desired Postnikov class in H3(BII;;11,).
It is worth noting that if two exact sequences of strictification with the same (II;, 115, p)
can weave a commutative diagram:

a
Hi — G

e ~

1 — 11, ty tg nm, — 1, (12)

N >

%
Hy — Gy

then the two strict two groups renders the same Postnikov class 3, and are thus equivalent up
to the classification by (I1;, I1,, p, ) [66].
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We have to emphasize the point that middle arrows above (i.e. ty, t;) are not necessarily
isomorphisms. In this case, there is no “inverse” of above morphism between 2-groups in
general. In mathematics, this equivalence relation is called weak equivalence.

As a consequence, given a weak 2-group, we can strictify it into many different crossed
modules. Although these crossed modules have the same Postnikov class, there might be no
weak equivalence between them.

For the later application to gauge theory, to construct a sensible 2-bundle, we require that
im(2) c Z(G) (Z(G) is the center of G), see (4.2.2).

2.2 A general procedure of strictification

In this section, we describe a general procedure of strictification that works for (finitely gen-
erated) Abelian groups as well as U(1). This construction is a slight generalization of [67].

Let ¢ € H3(BII;;11,) be a cocycle that is additive w.r.t the first argument. Let us denote
A= Hom(I1;;II,) in this section. Thus, w determines a 2-cocycle Z € H2(BII;;A), that is

Z(g2,83)(g1) :=c(g1,82,83)- (13)

Hence Z determines a central extension
15A->G—-1I; - 1. (14)

Locally, G can be described by a pair (y,g) € A x I1;. However, the group operation of G is
twisted by Z as

(r.2)- (v, gh=(ry'Z2(g,¢g"), g¢"). (15)

In the next step, we fix an extension
1-I0,->H—->A—>1. (16)

It turns out that the choice of H is rather arbitrary, and we can simply choose H = I1, x A and
use the trivial extension.! Now the decomposition H — A — G gives a desired boundary map
0:

a(b,y)=(y,0). a7)

0 is the identity element of IT;. The group action of G on H can be described as (11, is additive)

(r,8)> (b, Y )= +7v(g), 7). (18)

Now we show that above construction indeed gives our desired Postnikov class. It’s easy
to see that

F(gb gZ) = (OJZ(gl) g2)) . (19)

Now we have

B(g1,82,83) = (Z(g2,83)(€1),6Z(g1,&2,83)) = (B(&1, 82, €3),0), (20)

where we used the fact §Z = 0 (cocycle condition of Z).

So the only question is, how general it is to assume that cocycle f € H3(BII;; I1,) is additive
(w.r.t. at least one argument). Actually; it is indeed the case provided I, is finitely generated
Abelian groups or their product of U(1). This can be deduced by investigating the structure of
cohomology ring and the additivity of generators.

In the following subsections, we present three examples of weak 2-groups and discuss their
strictifications. We show more examples in appendix B.

1Other choices are also possible, but following steps must be modified as well.
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2.3 Example: I1; =11, = Z,

The first example is a case of discrete 2-group, with II; = Z,, II, = Z,. Since
H3(BZy; Zy) = Z,, there is only one non-trivial element 3 # 0 € H3(BZ,; Z,).

Because Aut(Z,) = 1, the action of I1; = Z, on II, = Z, can only be taken as the trivial
one.

For the strictification, let us choose G = H = Z, and the following exact sequence:

i ol
1—)22_1724—)241722—)1. (21)
The maps are
i:a—2a, J: a—2a, p: (mod 2). (22)

Note that we are using the additive notation for the group elements of Z,,.

Besides the exact sequence, we also need to specify the action >: G x H — H, which
trivializes after restricted to >: IT; x [T, — I, .

We show that there are two different choices of >, which realizes the two different elements
of H3(BZy; 7Zy) = Zs.

In the computation of the Postnikov class 3, we choose the cross-section s : [1; — G as the
identity map s(g) = g. Then the function f : IT; x I1; — ker(p) defined as

s(g)s(h) = f(g,h)s(gh), (23)
takes the following values:
f(0,0)=f(0,1)=f(1,0)=0,  f(1,1)=2. 24

After lifting f to a function F : I1; x II; — H by requiring that d(F(g,h)) = f(g,h), we can
choose

F(0,0)=F(0,1)=F(1,0)=0, F(1,1)=1. (25)
The failure of cocycle condition for F(g,h) can be written in terms of
(s(g) > F(h,k))F (g, hk) = i(B(g,h, k))F(g,h)F(gh, k), (26)

where f : IT; x IT; x IT; — II, is the desired Postnikov class in H3(BII;11,).
Now there are the following two choices of >>:

1. Trivial action: a > b = b for any a € G, b € H. In this case, one can check that
F(h,k)F(g,hk) = F(g,h)F(gh,k) 27)
holds for every g,h,k € TII;. Hence we have a trivial Postnikov class
B =0€H3BZy;Zy) = Zs.
2. Non-trivial action: a > b = (2a + 1)b (mod 4). One can check that the action is indeed
trivial for b € im(i) C H .

In this case, we can compute the evaluation table for (g, h, k):

B(g,h,k) | g h k
0 0 00
0 0 0 1
0 010
0 01 1 (28)
0 100
0 1 01
0 110
1 111

Hence f(g, h, k) leads to the non-trivial Postnikov class 8 = 1 € H3(BZy; Z,) = Zs.

8


https://scipost.org
https://scipost.org/SciPostPhys.18.2.052

e SciPost Phys. 18, 052 (2025)

2.4 Example: I, = Zy, I, = U(1)

We take an example where I1; is discrete and II, is continuous. When I1; = Zy, I, = U(1),
we can choose the following exact sequence

i 0
15 UQ) - U)X Zy — Zy Zy —> Zy — 1. (29)

We use additive notations for Zy and multiplicative notations for U(1). G = Zy.Zy denotes a

generally non-split group extension of Zy by Zy, and its group elements are in form of (a, b),

(0 < a,b < N). The group elements of H = U(1) x Zy are (¢?™%,b),(0<a<1, 0<b<N).
The maps are

i: e?ma ;5 (e2ma ), 9 : (e*™2 b) — (b,0), p:(a,b)—b. (30)
The group action >: G — Aut(H) is
(a,b) > (€2™¢, d) = (e2m(c+bd/N) gy (31)
The Postnikov class element
m € H3(BZy; U(1)) = Zy , (32)
is encoded in the group operation on G = Zy.Zy, which takes the form of

_Jla+c,b+d) (b+d<N),
(a,b)+(c,d) = {(a +c+m,b+d) (otherwise). .

Hence for different Postnikov class elements, in order to strictify the weak 2-group, we should
choose different groups G with N2 elements. If m = 0, the 2-group is split and we have
G= ZN X ZN

2.5 Example: IT; =11, = U(1)

We also discuss the case of continuous weak 2-group of II; = II, = U(1). This case was
extensively studied in [9]. where the weak 2-group symmetry (U(1),U(1), 1, m) is denoted as
U(1)© X m U(1)®. The element of H3(BU(1); U(1)) = Z is characterized by an integer m. We
can use the following exact sequence

1-U1) -5 UMW) xz-52.00) L Uu)—1. (34)

We use additive notations for Z and multiplicative notations for U(1).
The maps are

i1 e2me L, (e2ia 0 3 : (2™ b) = (b,1), p: (a,e27b) = o27ib (35)
The group action >: G — Aut(H) is
(a,e®™b) > (27, d) = (e2™ic+dD gy (36)
The Postnikov class element
meH3(BU(1);U(1) =% (37)
is encoded in the group operation on G = Z.U(1), which takes the form of

(a + ¢, e2mi(b+d)) (b+d<1),

. 38
(a + ¢ + m, e2mi(b+d)y (otherwise). (28)

(a,ezmb) + (C,ezmd) — {

9
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3 Strictification of 3-groups

3.1 Semi-strict 3-group as a 2-crossed-module

In this section we discuss the strictification of weak 3-groups. Let us review the notion of a
semi-strict 3-group in terms of a 2-crossed-module: (G,H, L, d;, d,,>, {—,—}), which has the
following components (see e.g. the appendix of [16]):

1. G, H and L are groups.

2.0 : H - Gand 0, : L — H are group homomorphisms, which means that
01 (hihy) = (8;h1)(0,hy) for all hy,hy € H and 4(1;1,) = (9,1;)(8,1,) for all 14,1, € L.
Furthermore, they satisfy

d100,()=1g, (39)

forallle L.

3. There are group actions >: G x G — G, >: G xH — H, >: G x L — L, where the first
one is

g>g' =gg's™, (40)
forall g,g’ €G.

4. G-equivariance of 9, d,: forallge G,heH,l € L,
d1(g >h) =g > (d,h), (g>1)=g> (0. (41)

5. Finally, there is a map called Peiffer lifting: {—,—} : H x H — L, which satisfies for any
h1,2,3 S H, l, l]_, lz eL:

0,{h1,hy} = hyihyh ' (81hy) > B3,
g > {hy,hy} = {g > hy,g > hy},
{B,11,0,1,} = L1 LIT'L, T,
{hihy, h3} = {h1:h2h3hgl}(31h1) > {hy, hs},
{h1,hyhs} = {hy, ho}{hy, h3}{8,{hy, h3} ', (31h1) > By},
(6,0, h}{h, 3,1} = 1(3,h) > 171,

(42)

A 3-group (G,H, L, d,,3,,>,{—,—}) contains a 2-group (H, L, 3,,>") as a subgroup, where
the action >’ is defined as
h'h =hh'h7,

43
h' 1 =1{8,l"},h}, (43)

forh,h" €H andl € L.

If we want to realize the O-form, 1-form and 2-form symmetry of a physical theory using
a 2-crossed-module. It is natural to let H and L be Abelian, which simplifies a lot of axioms
in the previous section. Furthermore, similar to the classification of 2-groups, the physical
symmetry group is given by a weak 3-group, with the group components

I, =G/im(3;), My =ker(d;)/im(8,), T3 =ker(d,). (44)
The maps 0, and J, becomes trivial when acting on II, and I13: d;h = 1y, for any h € II,,

Ol =1y, for any [ € I13.
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In general, the classification of weak 3-groups is based on the following Postnikov tower
[64]:

BMl; — BG,
1
BIl, — BG, (45)
1
BIL,.
Here Gj is the structure group of the whole 3-group, and G, C G4 is the structure group
involving IT; and II,.
A general weak 3-group (II;,I1,, 113, p, B,7) is characterized by two group cohomology
elements
B eH(BI;I,), v €HY(BGy;I;). (46)
The group homology H3(BII;;I1,) characterizes the equivalence class of the following exact
sequence:
2
0— I, — H/(imd,) > G — I1; - 0. (47)

This sequence is exact because J; o 9,(1) = 1, always holds for any [ € L, hence the image of
the map J; : H/(imd,) — G is exactly the same as the image of the map J; : H — G.

3.2 Weak 3-groups with I1, =0

The strictification of a general weak 3-group is involved. Here we first discuss the special case
where IT, = 0. Physically, this case can arise from gauging a finite subgroup of 0-form symme-
try in 4d in presence of mixed 't Hooft anomaly [68]. In this case, as ker(d;)/im(3,) =TI, =0
in (44), the following sequence is exact:

0. 0.
1—>H3—>L—2>H—1>G—>1'[1—>1. (48)

Thus the equivalence class is characterized by a degree 4 cohomology class ¢ € H*(BII;; II;).
We can also assume c is additive with respect to the first argument, which holds if IT; is product
of finitely generated Abelian groups and U(1)-factors. Let us again denote A := Hom(I1;; IT3).
Then we have a degree 3 cocycle Z € H3(BII;;A), which is given by

Z(82,83,84)(81) :==c(g1,82,83,84) - (49)

Now Z determines a 2-group, and we can translate it into a crossed module as in the sec-
tion 2.2:

0
15A->H-56-51, >1. (50)

In addition, we fix a trivial exact sequence
1->Il3>L—->A—1, (5D
where L :=TII; x A. Similarly, the G-action on L factorizes through IT;. Explicitly, if g € G

g (b,y):=(b+r(p(g)7), (52)

where (b,y) € L =113 x A and I15 is additive.

At last, the boundary map J, is given by composition L. — A — H. Hence we obtain a
2-crossed module with trivial Peiffer lifting. Triviality of Peiffer lifting is completely due to
I1, =0.

It is easy to verify that this 2-crossed module has the desired Postnikov class. Apparently,
similar procedure works for H""2(BII;; I1,,,) provided II, satisfies our assumption (i.e. it is
a product of finitely generated Abelian group and U(1) factors).
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Example: I1; = Z,, [I, =0, II3 = Z, In this case, A= Hom(Z,; Z,) = Z,, and the elements
of A are

fo€A:  fo(x):=0,
fLeA: f1(x) :=x.

Let us construct the crossed module (50) which is a strictification of 2-group
(H1 = ZZ: A= ZZ)OJZ):

(53)

%
1_)Z2—>Z4_1)Z4LZZ—)1. (54)

As in the strictification of 2-group in section 2.3, we take G = H = Z4, 0; : a — 2a, p : (mod 2).
Now there are two different group actions >: G — Aut(H), leading to different Z € H>(BII;;A)
and finally different Postnikov classes ¢ € H*(BII;I1;) for the weak 3-group:

1. Trivial group action g > h = h, giving rise to the trivial element 0 € H3(BII;;A) = Z,.
In this case, from (49), since Z(g,,83,84) = fo for all g,,83,84 € II;, we
have c(g,82,83,84) = 0 for all g;,82,83,84 € II;, hence the weak 3-group
(Z,1,7Zy,id.,0, c;) has a trivial Postnikov class ¢ = ¢, € H*(BII;; 13) = Z,.

2. Non-trivial group action g > h = (2g + 1)h, giving rise to the non-trivial element
B € H3(BII;;A) = Z,. In this case, we have

fis 8 =83=84=1,
Z(82,83,84) = (55)
fo, other cases.

Hence
1, g81=82=83=8 =1,

(56)
0, other cases.

c(g1,82,83,84) = {

This corresponds to the weak 3-group (Z,, 1, Z,,id., 0, ¢c;) with non-trivial Postnikov class
¢, € H*(BIlI;; II3) = Z,. Note that in this case BG,, = BII, since IT, = 0.

Finally, for either of these two cases, from (51) we have L = Z, x Z,, and the group action
>: G — Aut(L) is defined as (52):

g>(a,b)=(a+ f,(g mod 2),b). (57)

3.3 An algebraic model of weak 3-groups with IT; =0

In this section, we provide an algebraic model of weak 3-groups with I1; = 0, which is more
convenient for computations.
Before that, we need to recall the notion of quadratic functions/forms.

Definition 3.1. Given A and B are Abelian groups, a function on A (valued in B) is said to be
quadratic if there is a bilinear function F : A x A — B such that

f(x)=F(x,x), x,y €A. (58)
The key point is following result by Eilenberg and Maclane [69]

Theorem 1. The cohomology class H*(B2I1,; I15) is in one to one correspondence with I13-valued
quadratic functions on I1,.

Given an Abelian group A, there is an associated group I'(A) called the universal quadratic
group [11] (unique) with a (non-unique) map y : A — I'(A) such that for any quadratic function

f on A (values in B), there is a unique homomorphism f : T'(A) —» B with f = f oy.
In this sense, we only have to consider the universal quadratic groups.
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We have following theorem:

Theorem 2. 1. IfA=Z, with even r, then T(A) = Z,, and y(1) = 1.
2. IfA=7Z, with r odd, then T'(A) = Z, with y(1) = 1.

3. For finite Abelian group A= @' A;, we have

r)=Pru)Pa e4;, (59)

i<j
where ® stands for the tensor product of Z-modules.

Example 1. Let’s consider A= Z4 and B = Z,. In this case, the bilinear forms F, : AxA— B are
given by Fi.(x,y) =kxy (k=0,1,2,3). The associated quadratic form f; : A— B are classified
as fi(x) =kx? (k=0,1,2,3).

Next, we strictify the weak 3-group with IT; = 0 to semi-strict 3-group, i.e. the 2-crossed
module. We claim that the choice

(G)HJ L; al; 82: DJ {_, _}) = (O, HZJ HBJ O: 0: id') F) (60)

will do the job, where F is the bilinear form defined by (58). Note that this choice ensures
that H and L are Abelian groups. Especially this construction will satisfy the axioms of Peiffer
lifting listed in (42), as we will check below.

The first axiom that d,{h;,hy} = hlhthl(alhl) > hgl follows trivially because both sides
are 1. This follows from that , = 0 and H is Abelian.

The second axiom states that g > {h;,h,} = {g > h;, g > h,}, which is also obviously true
since G = 1 by our choice so it acts trivially on H, L.

The third axiom {J,1, 515} = 111211_112_1 is true because d, = 0 and L is Abelian.

The fourth property and fifth axiom is ensured by bilinearity of F and Abelian nature of H
and L.

The sixth, the last axiom {8,1, h}{h, 3,1} = 1(d;h) > 1! is ensured by 3, = 0 = J,.

So the choice (0, I1,,115,0,0,id., F) does give us a 2-crossed module, which is semi-strict
3-group.

4 Strictification on higher gauge fields

In most of the physics literature, people prefer to work with weak 2-groups as they describe
“physical” global symmetries. However, in mathematics literature, people prefer to construct
2-gauge theories with strict 2-groups, e.g. [55]. Based on the fact that strict version of 2-groups
is equivalent to weak 2-groups [54], we should expect that gauge theories based on strict or
weak 2-groups should be somehow equivalent as well. In this section, we obtain an explicit
relation between “strict gauge fields” and “weak gauge fields”. We derive the Green-Schwarz
shift in [7,9]. Furthermore, we will consider this equivalence at the level of observables, and
extend the discussions to the cases of 3-groups. In section 4.1 we focus on the cases of discrete
2-groups,

4.1 The dictionary of discrete gauge fields

In this section we will perform the strictification on the level of gauge field content. In the
following discussion, we will use Cech cohomology to formulate bundles.
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For simplicity, we work with discrete groups. Given following crossed module extension:

i a
150, —H-— G511, > 1, (61)

with the group action >: G — Aut(H) and the associated Postnikov class € H3(BII;;I1,). We
will collect these data (G, H, d,>) and denote it as the 2-group G. We introduce the following
notations:

1. M is our n-dimensional spacetime.

2. a, b are “weak” gauge fields on M with gauge groups H[lo] and H[Zl] respectively, where
the superscript means that I1, acts as a 1-form symmetry group and II; is a O-form
symmetry group. We will model a as a 1-cochain and b as a 2-cochain. Similarly A and
B will be the gauge fields of G and H respectively and again, A is a 1-cochain, B is a
2-cochain.

3. The Cech differential will be denoted as &, and the differential twisted by A will be & 4.
4. BG will be the classifying space of our 2-group [70].
5. Some notations of crossed module extension will be the same as section 2.1.

Gauge fields of discrete gauge group can play many roles, including classifying map, or
transition functions of the bundle (equivalently, lattice gauge field defined on the nerve of
trivialization charts), see e.g. [5] for more details. Hence we will not distinguish the gauge
field a and the classifying map M — BII; for the IT; bundle over M.

We have the following commutative diagram:

<5— BI,.

1

M~ BG
N (62)

BII,

The right hand part is the Postnikov tower associated to the 2-group G. It means that whenever
we have a 2-bundle f : M — BG, we automatically get a principal II; bundle a : M — BII,,
which implies that

da=1y,. (63)

This is the cocycle condition of the transition function. However, we should not expect
6b = 1y, since the image of the map f does not fall into BIl, in general. Let us choose
a lift of s : II; — G that satisfies p os = 1, and define A = s(a). In fact, our construction
does not depend on the choice of the lift. Different choices of s result in a “1-form” gauge
transformation, as will be clear in section 4.2.

We apply the Cech differential § on A= s(a):

p(6A) = 6p(A) =6a =1y, (64)

hence 6A = 9B for some B € H (note that ker(p) = im(J)). This is the exactly the flat
condition of fake curvature described in [55].

On the other hand we have A = s(a) = a*(s), where a* is the pullback by the map a. Hence
6A = a*(6s) = a*(9F), where F is the one in (11). Using

d(a*F)=0(B), (65)
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we finally get

b =B Ya*F) € kerd. (66)

Note that there exists the 2-truncation condition for our case 4B = 1y [55], since we have a
2-group rather than a 3-group (there is no 3-morphism). Now we apply the twisted differential
6,4 on both sides of (66):

O4b = 0,(a*F) = a*(64F). (67)

Recall that §4F = 3 € H3(BIl;;11,) (11). Furthermore, since b € II,, which is an element of
the central subgroup of H, the group action by A on b will descent to an action by a = p(A).
Hence we can write

Sb=a*p. (68)

This is the Green-Schwarz shift occured in [7]. We demand the equation (68) to be covariant
under the gauge transformation of a, i.e. after a — ad A, we need to impose b — by, where y
satisfies

6,y =(6A)'F. (69)

This equation determines the gauge transformation of weak gauge fields and explain how the
gauge transformations in [9] arise.

4.2 Gauge transformations and consistency

In this section, we discuss the gauge transformations of gauge field A and B. In particular, we
will write down a discrete analogy of the gauge transformations for Lie 2-gauge theory in [55].
We will work with Cech cohomology, and we need to choose trivialization charts {U,};c7
(Z is the set of indices). We define A;; as the locally constant gauge field A on U; NUj, similarly
Bjji is that of B on U; N U; N U.
Let us summarize the dictionary between strict and weak gauge fields derived in sec-
tion 4.1:
A;j =s(a;;),
OBiji = (0A)ijk » (70)
biji = B F(aij, aji) -

Here s : TI; — G is a section and see (11) for the definition of F.

4.2.1 O0-form gauge transformations

First, we expect

Aij = AAATt (71)

where 4, is a G-valued function on U;. To preserve 6A = 9B, note that (6A);jx = AjjAj A
we have

(8A);jx = Ai(8A) kA (72)

Hence we expect
(@B)ji = Aj(OB)ijeA; - = 3(A; > Byji).- (73)
Thus we deduce that under the gauge transformation A;; — kiAijAj_l, B transforms as
Bijx — Bl{jk = (4; > Bjjr)piji, where p;j € ker(d) = II,. However, this p does not play a

significant role and can be omitted here.

Let us check that the 2-truncation condition 6,B = 1j; is well-defined (covariant) under
the gauge transformation with parameter A. Note that both A and B will undergo the gauge
transformation, not only B:

/ Al / /=1 p/—1 1/
du(B )ijit = (A3 > By DB By Bije - (74)
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It simplifies to

Sa(B)ijrn = (A)(>(A;; DBjkz)BﬁBi_k%Bijk) =A;>(04B) = 1y, (75)

and the 2-truncation condition is indeed gauge invariant.
In summary, under the 0-form gauge transformation, we have

Ajj — }'iAijAj_l , (76)

Bjjx = A; > Bjji, (77)

for a G-valued function A; defined on U;.

4.2.2 1-form gauge transformation

Before starting the discussions, we emphasize that it is necessary to assume im(&) is a central
subgroup of G in order to have a well-defined

5A=0B. (78)
We apply & on both sides of (78), and get
1, =39(06B). (79)
Meanwhile we have 6,B = 1y, so
9(64B) = 16 (80)
trivially. We compare (79) and (80) and deduce that

a(AUDBUk):aBUk (81)

Again it is equivalent to A;;9(B;;i) = (B )A;j, which holds under the assumption that im(J)
is central in G, for arbitary A;; and Bj .. This justifies the use of Bockstein homomorphisms.
For the 1-form gauge transformation, we observe that §,B = 1y is preserved by
Bijx — Bijk(64M);jk, since 5% = 1 (A;j; € H here). We perform such a transformation in
OBiji = (6A);ji- Note 8 05, =6 o J, hence the full 1-form gauge transformation is given by

A = AjjOA, 82)
Bijk = Biji(6aM)ijk »
for A€ H.

Remark 1. Consider A = s(a) as in the dictionary, let us choose another section s’. Note that
s’(a) = s(a)0A where A € H. Hence A' = s'(a) = s(a)dA = AJ A, and changing the choice of
section amounts to a 1-form gauge transformation.

4.3 Dictionary on observables

Now we discuss the definition of observables in terms of the strict gauge fields (A, B). For sim-
plicity we work on a spacetime lattice, i.e. picking up a good cover of the spacetime manifold
and taking its nerve.? On this lattice, the 1-form gauge field A is defined on links. Given a link
e we will write A, for the gauge field on it. Similarly, given a 2-simplex o, there is a 2-form
gauge field defined on it o.

2A good cover means that for {U;} a cover of M, each U; = R" and each intersection N;U; = R". Also, we do
always have such a choice of good cover.
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Given a loop 7 on the lattice and a representation p of group G, we can define the Wilson
loop operator

w, =Te(] [pa)). (83)

ey

Now let us check gauge invariance of (83). Under the O-form gauge transformation

It is easy to see the Wilson loop is invariant. On the other hand, to make the Wilson line (83)
invariant under the 1-form gauge transformation

Ajj = A0 (A, (85)

we need to impose that imd C ker(p). In this case, p induces a well-defined map 6 on
G/imd = I1;. Hence the gauge invariant Wilson loops of the theory is labelled by representa-
tions of I1;.

Now we consider surface operators. Given a closed surface ¥ and a representation 1) of H,
we define the surface operator by

Wy =Tr([ [n(B,))- 86)

oED
To ensure the Wilson surface operator is invariant under the 0-form gauge transformation
Bijk = A > Bjji, (87)
we impose that 7 is a G-invariant representation of H, that is

n(g>h) =n(h), (88)

for any g € G, h € H. With such constraint, Wilson surface is manifestly invariant under the
0-form gauge transformation.
For the 1-form gauge transformation

Bijx = Bijk(6aM);jk » (89)
we note that n(64A) = 6m(A) since 7) is G-invariant. Hence A will contribute a factor

[ [eenan, =1, (90)

[

by “Stokes” theorem. In conclusion, gauge invariant Wilson surface operators correspond to
G-invariant representations of H.

One can also construct gauge invariant operator using the fake curvature § = dA— 9B (in
the additive form). We take a surface ¥ with boundary ¢, and define the gauge invariant

operator
WZ,p =exp (J P(S))
=

(9D
= exp (J p(A)) exp (J p(B(B))) .
ax b
p is an arbitary representation of G.
In the multiplicative notations, we can write an equivalent form
Wep =T([ | @ DT([ (2B, N™. 92)

ecdx OEL
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4.4 Lie 2-gauge theory

Now we briefly discuss the case of Lie 2-groups, and we will derive the famous Green-Schwarz
shift [9] algebraically.
As before, we have the exact sequence

5}
1—>H2—>H—>GL>H1—>1, (93)

and a section map s : II; — G st. p os =id.. Here II, , are both Lie groups.

Now we start from a IT;-bundle and derive Cech cohomology. We denote a an Lie(I1; )-
valued 1-form (1-form gauge field), where Lie denotes the functor mapping Lie groups to their
corresponding Lie algebras. As a principal I1,-bundle, we should obviously have

8ij&ik&ki = lm, - 94)

Taking section s on both sides (g;; = s(g;;)),
8ij&ik8ki =5(1n1)59ijk- (95)

Since p os = id., we clearly have Q;;; € ker(p) = im(d). Thus we can assign an w;j st.
Qijr = 0 (wiji)-

Consider the g-valued 1-form A induced by I1; connection a through A = s(a) where the
underline denotes the differential of a map. The induced gauge transformation of A is therefore

_ ~13=

To arrive at the relation for w; jk; We permute the labels of (96) (ij, jk, ki) and sum them up,
to get
0= Q(wi_j}{dwijk). 97)

Thus the h-valued 1-form wLdw;;, € ker(d) = Lie(I1,).
ijk ijk < 2
Then let’s consider the derivation of Cech 3-cocycle 3. This would require an intersection

of four U; patches, namely we can calculate g;;g kg in two different orders of composition
and the result should agree in G:

Qi1 = Qjr Qe - (98)
So the corresponding ws should have the following relation,
Wi Wik = Wik ik Bijki » (99)

where f3;j;; € ker(d) = II, carries the information of Postnikov class. We can check that by
taking d on both sides of (99) we clearly have (98).
To view fij as an element in group cohomology H 3 (Il;;T0,), we simply take
grp
Bijir = Ty x Ty x Iy — T, (&;j, &jk> ki) — Bijki> and the cocycle condition can be checked
by pentagon identity. To view 8 as Cech cohomology H>(I1;I1,), we naturally take the in-

dices as intersection of elements of {U;} and f as the map from 3 Cech simplexes into II;.
Note that in the crossed module p*f = 0, we can describe the bundle with strict 2-group
(G,H, d,r) in the way of [55].

To consider the gauge transformation, we make the following correspondence, a is the
Lie(I1,)-valued 1-form gauge field, B as a Lie(II,)-valued 2-form gauge field and 8 the 3-form
gauge field on BII;. Consider the classifying map f : M — BII;, we directly derive from Cech
cohomology that

dB = f*B, (100)
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and the gauge transformation rules can be derived from that.

An example would be the Chern-Simons form for II; = II, = U(1). For
B € H3(BU(1);U(1)) = Z, its pullback corresponds to the Z-graded Chern-Simons form,
namely,

dB = ~anda, (101)
2T

with corresponding gauge transformation when a — a +dAa,

B =B+~ AAda. (102)
21T

4.5 Strictification of 3-gauge fields

In this subsection, we present a similar construction for 3-group gauge fields. We focus on
two special cases which are discussed in section 3, which are 3-groups with either IT; = 0 or
H2 - 0.

The case of I, = 0. This case is completely in analogue with the 2-group case with degree
shift by one. More precisely, let us fix the exact sequences

1-T1;—>L—im(d)—1, (103)

and
1-im(d,) > H -1, —>1. (104)

Given b € H?(M,I1,) for spacetime manifold M which satisfies 6b = 1 , Where 6 is the Cech
differential. Then one chooses a section s : II, — H which may not be a homomorphism.
So 6s(b) # 1y in general. Nonetheless, we can easily verify that 6s(b) € im(d,), so one can
further lift

0(s(b)) = 0,(), (105)

for some [ € L. Note that 2 = 0, hence we obtain
H(6)=1y. (106)

It means that 51 = b*y € H*(M, I1;) where y € H*(B2Il,; ;) is the Postnikov cocycle.

The case of II, = 0. In the case of IT, = 0, let us fix the exact sequences

1-1I3—L—im(d,)—1,

107
1—-ker(d)) > H—->G—-Il; > 1. (107)

Consider the second exact sequence in (107), one starts with a € H'(M, I1;) in this case
which satisfies 5a = 1y;, as usual. We fix a set theoretic section s : IT; — G and we have

6(s(a)) = 0,(b), (108)
as before. Taking Cech differential of (108), we obtain
0,(6b)=1, (109)

which means that there exists [ € L such that 8,(1) = 5(b). We take yet another Cech differen-
tial, we obtain 8,(51) = 1. So it defines a Cech cohomology class y = 5(1) € H*(M;I15), which
is the pullback of Postnikov cocycle in H*(BII;; I13) by the classifying map a : M — BII;.
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G Aut(A)
H R A*
A

Figure 1: This figure shows how we construct an automorphism 2-representation. We
choose a suitable algebra A, and its automorphism 2-group .Aut(A) can be calculated
by definition. Then we build an intertwiner R to embed the 2-group structure into

Aut(A).

5 Higher-representations

5.1 Automorphism 2-representation

The mathematical theory of higher representations of higher groups is not fully established.
In this paper, for the physical application purpose, we would construct 2-representations of
strict and weak 2-groups using the automorphism 2-group of algebras.

Definition 5.1. Given an algebra A, the automorphism 2-group [71 ] of the algebra Aut(A) is
defined to be
H =A™ = {invertible elements in A},

G = Aut(A), (110)
Ad.: AX — Aut(4), a— Adj, .

This definition gives a crossed extension sequence,
1 — Z(A*) - A* - Aut(A) - Out(4) — 1. (111)
Therefore we define a 2-representation of a 2-group on A as follows.

Definition 5.2. Given an algebra A, Aut(A) is the automorphism 2-group, we define a represen-
tation of a strict 2-group G on A to be a strict intertwiner [72]

R: G— Aut(A), (112)

see figure 1.

This could be considered as a “homomorphism” (with respect to the group laws, & map
and action) from a strict 2-group to an automorphism 2-group of an algebra. Note that this is
not a weak equivalence, since we do not require the IT; and II, of the two crossed modules to
be the same.

Algebraically, a 2-representation breaks down to building a commutative diagram preserv-
ing the strict 2-group action >, namely,

H—2—¢G to(g)(tu(h)) = ty(g > h),

“’l rcl (113)

Ad.
AY — Aut(A)
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thus we can denote a 2-representation by (ty,ts,A). We define the automorphism 2-
representation to be faithful if both tj; and ¢ are injective group homomorphisms.

During the process of constructing automorphism 2-representations, we may sometimes
take considerations of the subgroup of our choices, since the entirety could be massive and
redundant. For example, when we take A = C[K ], we sometimes only consider

im(tg) € Aut(K) € Aut(A). (114)

We will write out the maps explicitly if anything may cause confusion.

The physical meaning of the algebra A here is typically the fusion algebra of line operators.

For example, in the case of pure U(1) 1-form symmetry of Maxwell theory, these line opera-
tors are Wilson lines of electromagnetic fields. They are described by the algebra A = (C[[T(l\)]
where C[K] stands for the group algebra of discrete group K and K := Hom(K, U(1)) is the
Pontryagin dual. More concretely, let’s denote the Wilson line with fundamental charge as x,
then

A=C[x,x7']. (115)
Note that only finite sums are allowed. In this situation, Aut(A) = C* X Z,. Given k € C*,
the automorphism acts as x — kx. On the other hand, for 1 # o € Z,, we have o(x) = x!,
which is actually charge conjugation.

Thus, the automorphism 2-representation of BU(1) on A is labelled by Hom(U(1),C*) = Z,
which is the charge of Wilson lines, as expected.

More generally, for Wilson lines in K-gauge theory, we have A = C[K].

In the 2-representation, both Aut(A) and Aj shall admit an action on the algebra A, the
former by natural action, and the latter by left multiplication. However, if we choose the
algebra A to be a group algebra A = C[K] as we do in most cases, there can be another type
of action given by Pontryagin dual. We denote the duality map by

~

K —» K =Homg,(K,U(1)), k—k. (116)

In this notation, the two types of actions of the 2-group G on the algebra A can also be con-
structed as

to(g) > D f) k=" f(k) t(g)(K), (117)
keKk keK

tu(h)- D F) k=>" f(k)-k(ty(R)) k. (118)
kek kek

In the following, we will call the first type of action in (117), in which H acts by left
multiplication, the natural H-action. The second type of action in (118), in which H acts by
a phase determined by Pontryagin dual of each element, is called the Wilsonian H-action,
as the 2-matter operator would correspond to a linear combination of a collection of Wilson
loops with coefficients.

5.1.1 Example: II; =11, = Z,

Here we give a concrete example of faithful automorphism 2-representation for the case of
I1; =II, = Z,. We present both cases of Postnikov classes f = 0,1 € Hg’rp(Zz;Zz) = Zy. In
the construction below, we use the scheme of taking the algebra A to be group algebra C[K],
and roughly takes Aut(K) € Aut(C[K]). It does not cause any problem, since we can always
embed Aut(K) back into Aut(C[K]).

Trivial 3: With the above formulation, one simple example we can show is for

i a
152y Ly~ Ty =7y — 1, (119)
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and the strict action > being trivial, we choose the algebra of representation to be C[D,]. The
notation for group elements of D, is D, = (a, xla*=e,(a"x)* =e Vn). Thus we have

Zs 553 La
Al L (120)

Dy =37 Da

where Aut(D,) = Dy; ty(1) = a, from this one can see that Ad > = id. is exactly what we would
expect for the diagram to commute; t;(1) = « is the representative of outer automorphism,
acting as x(x) = ax,k(a) = a, and acts on Im(ty) trivially.

Non-trivial : Suppose now we are trying to represent the I1; = I1, = Z, case with a non-
trivial Postnikov class non-trivial. The closest automorphism 2-group we can naively imagine
would be

(Z4,Z5 = Aut(Zy),>,9),

121
1>1=3, 1>3=1, J =x2. (121)

But this 2-representation is not faithful. The construction we attempt to build now is to prop-
erly expand the algebra (and in this simple case, a group K) to accommodate the G. Here is
how we can do it in the example of 2.3 with non-trivial action.

We can slightly decorate to the automorphism 2-group that fixes the deficiency of order-4-
elements in the automorphism group. The proposal is

Z4 > Z4

" ) I (122)

where
ty(1) =(1,(13)(24)), tg(1) = ((1 > 3),Ad(1234)) - (123)

In this way, we successfully made ¢ injective by decorating some group with order-4 auto-
morphism element.

One may ask if we can choose an Abelian K. The answer is no, since we hope for both
ty and tg to be faithful, and imd # {eg}, tg ©imd # {id.oyx)}. But an Abelian K will most
certainly have Ad.(K) = {id. oy }-

5.2 Relation to 2-representations of weak 2-groups

Here we review the 2-representations for weak 2-groups, see e.g. [45], and observe how it
could be related with automorphic 2-representations for strict 2-groups.

For a weak 2-group (II;,II,,p,B), a 2-representation is labeled by (n,o,y;,c;),
(i = 1,...,n). The object for the 2-representation is n line operators L;(y), i = 1,...,n.
o :I1; — S, is a permutation of the line operators.

An element g € I1; acts on L;(y) as

g Li(r) = Lo »(7), (124)

where o,4(i) € {1,...,n}.
xi - I, = U(1)" is a n-dimensional unitary representation of I1,, which obeys

xi(@)yxi(b) = xi(ab). (125)

It is also called the character of the 2-representation.
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An element a € I, acts on L;(y) as

a-Li(y) = xi(a)Li(y). (126)

The functions y also satisfy the constraint

xi(a) = %o i (pg(a)). (127)

Finally, we have ¢, : IT; x II; —» U(1)" (i = 1,...,n), which describes the additional phase
factor when two I1; symmetry generators act on the same line operator, see Figure 14 of [45].
They are required to satisfy

(5O'C)l(g7 h) k) = Xl(ﬁ(g)hr k)) (128)

Hence for a split weak 2-group with 8 =0, ¢ is an element of H 3(31’[1, um.
Two 2-representations (n, o, y,c) and (n,o”, y’,c’) are equivalent if there exists a permu-
tation T € S,, such that
o'=to0001 !, ['1=[7"-c], Y=7-x. (129)

How does the weak 2-representation relate to the automorphism 2-representation for strict
2-groups? One way is to construct the following commutative diagram.
M, —i— H —a— G —p—> II;

I
D N

Uu()" —y > A -ad.» Aut(A) —p' > Sn

1 (130)

By carefully choosing the algebra A, and respectively the homomorphisms ¢ 5, we shall ensure
that (ty, tg,A) forms an automorphism 2-representation, and the lower row forms a crossed
module.

Notably, the role of ¢ is played by F in the procedure of obtaining the Postnikov class from
strict 2-group in section 2.1. More precisely, we should have

i'(c(g1,82)) = ty(F(g1,82)), (131)

which in terms re-generate (11) mapped into the lower crossed module in (130).

5.2.1 Example: Hl = 1-.[2 = Zz

Let us shed some concreteness into the construction relating strict and weak 2-representations
through the simplest discrete example. Unless specified, we will still adopt the abbreviation
by taking group algebra and only consider the automorphism of groups. In this example, we
do not consider one particular outer automorphism of U(1),

a;:U1) - U(1), ef—e, (132)
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Trivial f3:

In the case where the crossed module is

i a
152y Ly~ Ty =7y — 1, (133)

with the action > trivial, one can have myriad choices of weak 2-representations. In the
follows, we will discuss some of these weak 2-representations (n, o, y;,c;) and relate them
with automorphism 2-representations.

1. When n = 1, ¢ has to be trivial, and we can choose y; to be either y;(a) = 1 or
y1(a) = (=1)%. ¢; € C?(Z,, U(1)) is a choice independent of y;.

In the strict description, we choose A* = U(1), t5(1) = id.,, hence the actual Aut(A)
does not matter. There are 2 choices for ty, ty(1) = 1 if y;(a) = 1; ty(1) = e7 if
x1(a) = (—1)“. Any of the above choices yields trivial Postnikov class and gives trivial c
up to coboundary.

2. When n = 2, there are two choices for o:

(a)

(b)

o is trivial, and one may choose y1, x2, €1, ¢5 independently. The representation
is a direct sum (1,1, y1,¢1) ® (1,1, x4, ).
In the strict description, one correspondingly choose A* = U(1)?, ty = (£1,£1)
being the direct sum of previous results, and t;(1) = id.
o(0) =1id, (1) = (12). In this case, because of the condition (127), we have to
impose

x1(a@) = x2(a),  Va. (134)
Hence we have either y;(a) = y,(a) =1 or y,(a) = y,(a) = (—1)~
The choices of ¢y, ¢, are independent of y;, x,, they need to satisfy

Co i (h K)ei(g, k) (g, e (gh, k) =1, (i=1,2). (135)

In this case we can still choose A* = U(1)?, and take S, C Aut(A) to be where im(tg)
resides. Then we can still have 2 choices for ty, ty(1) = (£1,£1) if y1(a) = 1;
ty(1) = (ei%, ei%) if y1(a) = (—1)%. For t, we take t;(1) = (12). One can check
that this choice will make the diagram commutative while preserving the action.

Non-trivial f: Now suppose the crossed module is same as before,

[ a
1—)22_1724—)241722—)1, (136)

but the action B> is non-trivial, thus yielding the Postnikov class non-trivial. The situation
becomes more interesting.

1. When n = 1, ¢ has to be trivial, and we can choose y; to be either y;(a) = 1 or
x1(a) =(=1)

(a

(b)

If y,(a) = 1, ¢; € C%(Z,,U(1)). The strict automorphic representation is same as
before, since we do not allow any information of action (and Postnikov class) to
appear.

If y;1(a) =(—1)%, c; satisfies
c1(h, k)ey (g, hk)ey (g, h)er (gh k) = x1(B(g, h, k). (137)

However, the above equation has no solution, hence when this weak 2-group has
a non-trivial 3, there is no one-dimensional non-trivial representation.
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2. When n = 2, if ¢ is trivial, the 2-representation is a direct sum of two 1-dimensional
2-representations. And we do not repeat the details here.

However, if o(1) = (12), from (127) we have to impose

x1(a) = x2(a), Va. (138)

There are two choices for y;:

(a)

(b)

If y,(a) = y2(a) = 1, the choices of y; satisfy the same equation of (135), hence
the strict automorphic 2-representation has the same structure.

If y,(a) = y,(a) = (—1)%, the equations (128) for ¢; become
¢1(0,0) =¢1(0,1) = ¢5(1,0),
¢5(0,0) =¢5(0,1) =¢,(1,0), (139)
c2(1,1)cy(1,0)c; (1, 1)e; 1(0,1) = —1.

There are eight choices of (¢q,c,). Using a construction resembling the non-trivial
Postnikov class case of section 5.1.1, we give a commutative diagram
S Z4 S Z4 Y Zy

1/'ZJ¢2 tw l l\l (140)
N1 ] I~

U(1)? — U1)? xS, — Aut(U(1)? x S,) — out(U(1)% x S,)

where we take

ty(1)= ((eio fm),(1234)), to(1)= ((12),(1234)) € S, x S, € Aut(U(1)? x S,),
ert2

it U2 > U1 xSy, (_01 _01) — ((_01 _01),(13)(24)) ) (141)

b 0

o(1)=(12) € Out(U(1)* x S,), a(1)- (g 2)= (0 .

), Ya,b e U(1).

One can verify that this diagram is indeed commutative and is consistent with the
group action.

With this construction, we can uncover the information of [c] in 2-representation
by choosing im(t;;), where each diagonal element e*2 can take the + indepen-
dently. If t;(1) o< diag(1,1), then the swapping generated by t;(1) and o(1)
acts trivially; if t;(1) o< diag(1,—1), tg(1) acts non-trivially on im(ty), render-
ing the automorphism 2-representation faithful, while o acting on im(y) is still
trivial by definition. It’s the two classes of choices gives different [c¢] informa-
tion: the ty(1) o< diag(1,1) case cannot generate c satisfying Eq.(139) from F;
while the t;(1) oc diag(1,—1) can generate a non-trivial Postnikov class in the
2-representation of our choice, in other words, it faithfully represent the Postnikov
class information.

5.3 3-representations

In this section, we discuss the 3-representations of 3-group (G, H, L, d;, 35,5, {, }) in the special
case of [1; = G/im(d;) = 0.

When IT; = 0, we can choose G to be trivial in the semi-strict 3-group. In this case, the
3-group is essentially characterized by a 2-group structure (H, L, d,,>") as described by (43).

Therefore,

we can still use the automorphism representation for 2-groups to construct the

representation of 3-groups. We will now see for the simplest case how this works.
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Table 1: This table shows the choice of quadratic forms F : Z4 x Z4 — Z4 and the
resulting action >": Z, — Aut(Z,) = Z, in the sub 2-group structure. In this table,
F = (F)4x4 means that F(i, j) = Fi14 j;1 for i,j € Zy.

F >’ F >’
0 00O 0 00O
0 0 0 O . . 0 2 0 2 . .
000 0 trivial 000 0 trivial
0 0 0 O 0 2 0 2

F >’ F >’
0 0 0 O 0 0 0 O
01 2 3 .. 0 3 21 ..
02 0 2 non-trivial 02 0 9 non-trivial
0 3 2 1 01 2 3

Example: II, = II3; = Z4. In this example, we consider the case when II; = 0 and
I, = T3 = Z,. With the choice of 3, = x2, to determine the 2-group (I1,, 15, d,,>"), we
long to see what choices of Peiffer lifting could give trivial or non-trivial actions >’. The re-
sults of calculation is presented in Table 1. We can construct both the case of trivial action and
the case of non-trivial action with suitable choices of the quadratic form F, which correspond
to elements of H*(B2Z,;Z,). With the 2-group structure determined, we can extradite this
case back to section 5.1.1 where the 2-representation of this particular 2-group is explicitly
constructed.

6 Higher gauge theory in path space

6.1 Path space formalism

In this section, we formulate the 2-group gauge theory in the path space following [55]. We
denote by M the base manifold, (G, H, @, >) the Lie 2-group, and the Lie algebras take basis

g=Span(T%, a=1,---,dim(g)),

b= Span(s%, a=1,---,dim(h)), (142)

and we follow the mathematicians’ notation of gauge group and holonomy as in [55] (i.e. a
Wilson line is exp( f YA) instead of exp(i fyA)). For two points s,t € M, P!(M) denotes the

path space,
Pi(M)={X:[0,1] - M, X(0) =s, X(1) = t}. (143)

We also define the evaluation map
ey Pi =M, X »X(0), (144)
which would induce a natural pullback,
et QP(M) - Q(PLM)), w = €} () = (). (145)
The specific components are

oxWw.0)  gx(u2,0) 8x Wp,0)

. (v.e1) AL x(Vpepp)
w‘ulm‘up aX(Vl’pl) aX(VzaPz) T aX(Vp:pp)dX /\ X e (146)

w(o)=e (w)=
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Given that (o)
ox\W9
— S — .
0Xipi) 6”1’5(0 pl)’
the components are explicitly

w(0) = wy, .., (X(0)) dxW0) A Lo A dxe0) |

As such, the exterior differential d on the path space P! (M) is written as

o
—dxwo) A %
d=dXx A Sk
For a given line X, there is a vector field generating reparameterizations,
dx
KX)=—.
do

Given a family of forms {w;} on M, we introduce an integral

Qo) (ap) = jg ﬁ(wl,m , )
x|f

:J Lle(Ol)A"'ALKCOn(Gn).
aﬁaiﬁaiﬂﬁﬁ

If each deg(w;) = p; + 1, then deg(Q,, }) = >3 Pi-
Now we introduce the line holonomy,

WiX1(oq,0,) = Pexp(f A)
X|g?

oo

EZ§ (Aalj...’Aan).Tal...Tan'
n=0 X|g%

The parallel transport of g-valued element is
T(0) = T"X)(0) = W [X](0, DT (0)W,[X](0, 1),
$4(0) = s"ilXl(o) =W [X](0,1) > S(0).

Now we abbreviate the integral for g-valued forms on M,

§(w1>"':wn)Ejﬁ(w]{VAﬂ':wnWA)
A

:J (W, X 1(o, Devy (0 )Wa[X (o, D) A+
a<0;<0i1<PB

A LK(WA_l [X](an’ 1)wn(o-n)WA[X](O-n: 1)) >

and similarly for the h-valued forms, we substitute the adjoint with 2-group action.

More precisely, for 56 (@) for an h-valued 1-form a, the explicit expression is

aehQ(M)—a(o)= e;(a)ehe® Ql(Pst(M))
— W [X](0,1) > a(o) € h & QY (PL(M))
— (W, [X](0,1) > a(o)) € b

1
— § (a) = J do LK(WA_l[X](a, D >a(o))el.
A 0
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Notably, the integral f , helps us to see how a correspondence

QP (M) < QP7L(P(M)) (156)

takes place, the important thing here is that a 1-form connection A in path space shall cor-
respond to a 2-form field B in the real space, and a first-order derivative d of the path space
correspond to an area derivative in the real space. Notably, there is the following formula for
w € QKM),

d jg (w)=— jé (dgw) — (—1)des() f (T°> w,FY). (157)
A A A

Given A a g-valued 1-form and B an h-valued 2-form on M, we define the path space 1-form

1
Aup) = f (B) = J do (W [X1(0,1) > B(0)) € Q' (P{(M)) &b, (158)
A 0

and the path space holonomy is thus (X in P/(M) is a curve from X, to X;, which sweep
through a surface in M)

Wyu(Z) = Pexp(J A) ) (159)

by
which admits 2 kinds of gauge transformations.
The first kind of gauge transformation is for a given ¢ € Q°(M, G), when the path space
is a loop space P (M),
Wty (B) = $() > Wy, (),
A =¢Ap~ '+ pdo, (160)
B'=¢ >B.

The second kind of gauge transformation is for a given a € Q'(M, ), (infinitesimal version)

Wy, B =1 —e ﬁ (@), Wty (Bl )1+ € ﬁ (@),

A =A+ed(a),
B'=B—¢dya,

(161)

the finite version of the second kind is denoted a, in the above.
Now we see precisely what should & the matter field be. We would like to have a term
looking like
(d+A)-o, (162)

sod e QO(P;(M ), V), where A admits a representation on V. Also, for the O-form action g to
be well-defined, we should assert that € QO(P;C (M), V).

6.2 Path space derivative

In this subsection we provide more detailed explanations of the exterior derivative in the path
space.

In the above, the basis for differential are denoted as dX ), which could be depicted
as infinitesimally dragging the line segment at ¢ along the u direction, pictorially shown as
Figure 2.

Formally speaking, we consider two vectors t* and n", which are tangent vector of the
line and the normal vector that generates the shift of line segment at o. The area of the zone
swept through by the line segment is therefore

SAHY =nMtV —nVtH. (163)
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\“/a(u,cr)
\U%
w
Figure 2: Here we demonstrate the picture of path space derivative. The above shows
the original line in magenta, the below shows both the original line in magenta and

the deformed line in cyan. The line in cyan is formed by a deviation from o to o + €
along the u direction.

We can re-write this in the path space language, suppose 6X*(o) denotes such a deviation
and plays the role of normal vector, and K = dX /do plays the role of tangent vector, thus

1
SAMY = f do sxg1| . (164)
0

g
When we take 6X*(o) to be localized in a certain point y(o), namely
6XH(o)=6vH6(o—0y), (165)

one can decompose v* = v} +v!" into components normal and tangent to the chosen path. By
doing this, one finds out that only normal component contributes to the area, while tangent
components generate reparameterization. To sum up, the localized path space derivative goes
back to the area derivative described in [62].

6.3 Pure 1-form gauge theory

In this subsection, we observe that this formulation derives the mean string field theory for-
mulation in [62], when IT; = G = 0.

Consider the case of gauge theory with pure 1-form symmetry described by a Lie group
H =TI,. The covariant derivative written in explicit formula is

1

d+.A=d+f do 1x(B). (166)
0

The exact meaning of d in the path space can be perceived from using the (157). In the absence
of group G, (157) reads

1 1
df do ix(w) = —J do 1x(dw). (167)
0 0

Consider the action on the matter field,

(1- e§(a)) — exp( J do LK(a)) = exp( }S(a))

(168)
dexp( j{(a)) = exp(f (a)) %(da)
While its action on the 2-form gauge field B gives
zé(B)HA’zﬁ(B—da). (169)
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Since the G-action is trivial, we omit the A in 9€ - Thus, a matter field ¢ in the path space

transforming as
d— exp(—f(a)) -, (170)

(d+A)-&— (d+A)- exp(—ff(a))fb

= (dexp(—jg(a)))é + exp(—jﬁ(a))dfb + jg(B +da) exp(—f(a))é
= exp(—%(a)) -[d® + jé(B +da—da)®]
= exp(—jg(a))(d +A)-d.

The resulting covariant derivative on & exactly matches the one in [62] (with a difference of
conventions). Along this line, we can choose a unitary representation for H, and construct
the kinetic terms and mass terms which lead to a Landau-Ginzburg Lagrangian for the 1-form
symmetry H.

generates the covariant term

(171)

6.4 Discrete gauge fields
For the discrete case, we take a triangulation of the spacetime manifold M, with each vertex

labelled by i. A path on M is defined to be a ordered set of vertex labels

y =[iy,i,...,1,], (172)

with each link (iy, i;,;) being a 1-simplex in the triangulation. A 1-form field A € Q(M, g) is
translated as an assignment of each link with a G element, with

Likewise, a 2-form field B € Q%(M, b) is translated as an assignment of each 2-simplex with an
H element.

As we previously described, the path space derivative is generated by deviation of a path
on a certain point, which should be translated as

Ay =l iyl =y =il Jy k- Inds (174)
where (i, j, ix41) forms a 2-simplex.® Thus, a path space 1-form should be defined as

_ -1
Ay, €H, Ay, =A (175)

Yo,r1’

Following the continuous version (158), we could define the discrete version of path space
1-form as

Ay ag,in = Walier, -, i) > B i (176)

3To make things consistent, we induce an identification of

[ll’~~~7lk71)lk51;lk71k+1---5ln]:[11:~~~7lk71:lkilk+1"--»ln]'
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For multiple such line segments placed together, the 2-holonomy should be an ordered product

Wa= l—[ Ay - 177)

ki<kii1

Under the 0-form gauge transformation, the 1-form connection A of path space transforms as
(Waligs,--orin )71 &i, - Waliksr,- -, i) 'gi_kil ,
B ik ™ iy & Biy ko (178)

= Ay agmn = & > Ay am -

ik+l ’j’k

For 1-form transformation, we only have to do a direct translation. But if we take the assump-
tion we had before in section 4.2.2, A shall become

Apag o = Adu(A )0 AT LAy (AL VoA > By i (84N, i), (179)

Ur1lk+2 Ue+1 42

for computational convenience, if we take the assumption that H is Abelian,* we get

“1r . —1r- .
Arag ) PWa Tiegrs o @ > By i - W Tierns -0 ] B (840, i

o . (180)
=Aya,m Wa Lt 01> (840, iy -

Note that in the discrete scenario, we still require that the fake curvature should vanish, mean-
ing that

6A=Jd(B), (181)
as Cech cocycles.

We can also see at what the 1-form transformation looks like in the discrete case. A 1-form
transformation is defined as (e = 1/N)

lim (1—e§(a))(1—e§ (a))(l—e§ (a))...(l—ef (a)),
N=eo A Ated(a) A+2¢8(a) A+Y¥=15(a)

(182)
and in the discrete language, for a € Q!(M) ® by, a gives an H element on each link, then for
a given line vy = [iy,...,1,],

1
exp(é (a)) — l_[ WA_l[ik+1,. . .,in] > a[ik, ik+1] . (183)
A

k=n—1

Thus the consistency condition is

exp(—§ (Cl)) WA(Zyl,h)eXp(jg (a)) =Wal(Z, 1,), (184)
A 71 A Y

2

which in the case of minimal deformation Ay ;,

. —1r: . —1r- . -1 —1r. .
LHS = WA [lk+1: ey ln] > Bik+1,j;ik . [WA [lk+1> ey ln] > aik’ik+1] . WA [lk+1) ey ln] > aj,ik+1
—1rs .
B/ N R PTETN M P
_ —1r: . -1 -1
- AY:Ak,j(Y) W, RISETRPN e (Aik+1J > aj,ikaik+1,ikaik+1,j)
—1r- . -1 .
= AY,Ak,j(Y) W, [igg15---,0n] > (64(a” 7)) = RHS( taking a = —A ),
(185)

is indeed correct.

“Note that by assuming H is Abelian, we do not mean that the chosen group algebra of the automorphism
2-representation should also be Abelian. Suppose that the automorphism 2-representation is faithful and H is
Abelian, we should still have Im(t,) is Abelian, and the formulas we introduce here will still hold.
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6.5 Discrete 2-matter

In this section, we build the non-local matter fields in the discrete case. In this section, we
suppose the 2-group is represented by an automorphism 2-group,

1-Z(r) > T - Aut(Y) - Out(¥) - 1, (186)

naturally, the matter field should take value in the algebra T. Note that we do not require any
Abelian property of the T in the 2-representation we choose.
Suppose we would like the matter ® to be a scalar field in the path space, then due to the

§ , construction, we should build ¢ by an Y-valued 1-form ¢ in the real spacetime. We could

take the construction®

n
&, = > Wi lligerse- 0 n] & i (188)
k=1
where under O-form gauge transformation
bij— & > dij, (189)
® is covariant under this construction,
o, g >O . (190)

Now we should consider how d 4®(A) transforms under O-form gauge transformation. Note
that

(d4®)y,y, = (Ay, 'q’rz)q’;ll = g o (da®)y, (191)

where o is the adjoint action of element of H on A= T*. Now let’s consider the transformation
of d 4® under 1-form gauge transformation,

d, - exp(f (a)) o,
A Y

(da®)y,r, = {[ Ay Wi i1 | > (Ba@))] 0 [exp( f (a)) 2,]} a9
A Y2

-{exp(ﬁ (a))y o}

1

= exp(§ (a)) Ay, Py, -<I>;11 -exp(—jg (a))
A Y1 A Y

ool §) @, o f0)
A Y A Y

1
where exp( ff A(a)) is defined in the discrete case by (183), and we see this is indeed covariant
under both 0-form and 1-form gauge transformation.

1

1

>There can be another valid construction by substituting sum (in the algebra) with multiplication (in the alge-
bra),

n
A= l—[WA’I[ikH, R L (187)
k=1

but as we will see, ® is a better choice for discussing 2-matter for higher gauge theories.
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6.6 Continuous 2-matter

The discrete version shed light on how we can define the continuous 2-matter.
Given an T (the algebra of 2-representation)-valued 1-form ¢ € QY(M,T), one can build
the 2-matter in path space by

1
¢, = f (¢) =J do (W, (0,1) 0 ¢(0)) € QU(PL(M),T). (193)
A 0

Here o denotes the G = Aut(Y) element acting on T-element. But in general, we merely
require the 2-matter to be

@ € Q°(PH(M),T). (194)
The gauge transformation for ¢
Pu() = g(x)ody(x),  Walo,1) = g(y(1)Wag ' (v(0)), (195)
induces the transformation
@, — g(y(1))o®,. (196)

The 1-form gauge transformation is non-local, since it’s related to a path. We write the in-
finitesimal transformation as

<I>Yr—>(1+e§(a))yoq>y=(1+e§(a))y-<1>),, (197)
A A

where o denotes the H = T element acting on T-element by adjoint action, and - denotes the
multiplication of T-elements. Similarly, we can deduce the 1-form gauge transformation

db=do+ Aod

—d[(1 +ej§(a))0<1>]+[A’(1 +6§(a))]0<1>
A A

= (1+e j€ (@) (d%) (198)

+(ed§(a))o<l>+ {[(1+6§)(d+¢4)(1—6§(Cl))](l +e§(a))}ofl>
A A A A
=(1 +6§(a))0(qu))+O(62).

A

Thus we have proved this covariant derivative term is indeed covariant under both 0-form and
1-form gauge transformation. Notably, for the continuous case, we do not require H to be
Abelian.

6.7 Towards n-matter

In this part, we consider a Lie 3-group with I1; = 0. In this case we have showed that the
structure of 3-group is essentially encoded a 2-group, see section 3.3). Hence we can also
describe the 3-representation of the 3-group by the language of 2-representation as depicted
in section 5. The corresponding spacetime gauge fields are

ce®W,n, BeQ?(M,p). (199)
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Since we turn off the zero form part G and its 1-form gauge field A in the 3-group, it is within
our purview to write

C= jﬁ(c:) e Q2(P(M),1),
(200)

B= }(B) e QY(P(M),1).

We could observe an acquainted visage on the path space! We could once again define

9= %(C) e QY(P(P(M)), D), (201)
B

where P(P(M)) = P?(M) is the surface space of M. There should also be a fake-curvature
condition
dYB-3(C) =0, (202)

where d©) denotes the exterior derivative in the k—path space PX(M). Thus the 3-curvature
constructed is

z=dYCce®(PM),D), Fgc= j%ﬁ(Z) € QX (PA(M),1). (203)
B

Likewise, given a 2-representation on algebra T, we can similarly define a matter field
U € Q°(P2(M),Y), which is a brane field, s.t. dg)\If is covariant under both 1-form and 2-
form gauge transformations.

This could be easily generalized to n-group with only the n-th and (n — 1)-th categorical
layer non-trivial. This generalizes the result in [73].

7 Landau-Ginzburg model of higher-group symmetries

7.1 2-group gauge theory with 2-matter

With the formalism constructed in the last sections, we summarize the 2-group covariant terms
as follows,

Z:dAB, ]:.A:§(Z)7 qu), q>, (204)
A
and the vanishing condition for the fake curvature,
O(B)—F,=dZ+AAN"Z =0, (205)

which could be inserted into the Lagrangian through Lagrange multipliers.
With this regard, suppose both Y and Aut(T) act on T unitarily, we propose an action of
the following form,

L

z=J[@A][@B][%][@¢]exp{if L(C)

1
|~
P(M)

o (449)/(d4®) + V(2,8 | [dC]
+i f Ad=2) A (3(B) —FA)} ) (206)
M
[dC] denotes the integration measure of the path space.

For 3-group with II; = 0, we can build a similar 3-group gauge theory with 3-matter
utilizing the 3-gauge-covariant terms constructed in section(6.7).
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7.1.1 Spontaneously symmetry breaking and area law

In absence of gauge fields, i.e. A= B = 0, above Lagrangian reduces to following form

1 . .
S= ——(d®)'(d®)+ V(2,9") |[dC]. (207)

This Lagrangian has following global symmetries:

1. & - go®, where g € G. This action is induced by the automorphic 2-representation on
T-valued 1-form ¢ (Recall that 2-representation contains a map G — Aut(T)).

2.2, — e'? fr90 ®,, where a is a h-valued 1-form. This action is induced by the 2-
representation H — Y.

The equation of motion is

1 oV
*d*(md@)—ﬁ —0, (208)

where L(C) is the length of the path (especially, it is not a constant on the path space) and *
is supposed to be the Hodge start operator on path space P(M). In components, we have

1 oV
Loy |l -~ =0. 2
Onor (L(C)E/J ) 60T 0 (209)

The contraction of index u is usual Einstein convention, however, o should be thought as a
continuous index, hence the contraction of o involves an integration over o.

Now, let us focus on loops for now, thus we can talk about the area A(C) bounded by the
loop C. Notice that dA should be thought as a 1-form on P(M). Given a tangent vector, i.e. a
deformation vector 6X*¢ (they are really vector fields defined along the curve C), we have

5
dA( i ) = K"(0). (210)

u . .
Let usrecall that K*(o) = dXd—g') is the tangent vector of the curve. Below, we fix the parameter

o to be the arc length s of path C. Hence, we can define

L(C)
|dA]* := 9, ,A0" A= J IK|%ds = L(C). (211)
0

Since |K|?> = 1 if o = s. Intuitively, above equation means, the infinitesimal variation of area
is proportional to length.

Now we focus on the simplest potential V(®'®) = r|®|2. Without higher order terms, r
should be positive to make sure that V is bounded from below. Besides, we take the ansatz
& = ¢5l4] where S[A] is a functional of A on the path space.

The equation of motion reduces to

1
S'[A]*+ 3, (—s’ A 8“"’A) =r, 212
AP + 810 7055 1A ' (212)
where we have used (211) in the first term. If we only consider loops with large areas, for
regular curves, we should expect that L(C) o< /A, so the second term is as worst as S'[A]/v/A,
hence it can be omitted safely.

To sum up, we have

S[A] = —v/TA+ O(A2). (213)
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In the lowest order, we can see ® decays with area-law.
Now suppose that r < 0, in that case we have to incorporate the u|®|* term, making the
equation of motion Eq.(209)

1 o
0o (ma“’ cb) =r®+2u|®’d. (214)

One can consider a static stable solution of the form
—r
d| =4/ —. 215
o= /5 (215)

An easy observation is that one can choose a special direction s.t. the O-form part of the
symmetry is broken. Let’s take the example of T = C(U(1)"), thus Aut(T) =S,, T* =U(1)".
Under this specific 2-representation, one can choose

@ =1/2-(1,0,...,0). (216)
2u

Thus, the S, symmetry breaks down to S,,_; symmetry. Yet one is not limited to make only this

choice, for example,
b=1/—(1,...,1), (217)
2nu

which preserves the entire S,, permutation symmetry is also plausible. For the 1-form symmetry
spontaneously broken phase, one can fix a local counter term on ,

d— exp(icf dx)@, (218)
Y

s.t. the (®) = const phase is equivalent to the (®) = exp(—aL[C]) perimeter law phase.

We can also formulate the above discussion in the discrete scenario. For simplicity, let us
assume that the spacetime is discretized into square lattices with uniform edge length 1, and
we work in the loop space of the system. Thus a loop is defined as®

C=[i1,-- - irc1-1> 11l (219)

s.t. iy(¢) = 1; and each ixiy,; is a link in the plaquettes. In this sense, a minimal deformation
of a loop at site iy € C = [iy,...,i1[¢]-1,i1(c)] towards the direction u becomes

Aik’MC = [i]_, ceey ik,jk,jk+1, ik+1, ey iL[C]—].J lL[C]] = C/ 5 (220)

S.t. ik, jk» Jk+1, lks1 forms a plaquette spanning the u direction and the i.i,,; direction. Note
that the sequence described in (220) may be redundant, and can be reduced up to thin homo-
topy equivalence.

One can classify the loop deformation into 3 types, (we always assume that i;i;, is or-
thogonal to the u direction), see figure 3 for visual demonstration:

* SUppose jii1 7 ixs2s ik—1 7 Jk @nd jiq1 7 ix42 We have

Aik,uL[C] =42, Aik’“A[C] ==1. (221)
* Suppose ji;1 = ix42, then the sequence [... 0 Jijks1iks1iks2 -] =L+ ldklqa - - - J> TEN-

dering
A, 4LICTI=0, A, ,AIC]=#1. (222)

%A loop is defined up to thin homotopy equivalence when we consider the mapping into the algebra. When we
count length, we choose the configuration with minimal length.
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loop before deformation

loop after deformation

Jir1= iklz ‘

[ )
j | s =i |
® k+1 i - +1 k+2‘
| | Lk Jk | |
@

% Jk Le—1 = Jk Lk

Figure 3: From left to right, this figure demonstrates three different cases of loop
deformation described above. The orange lines are the loops before deformation
and cyan lines are loops after deformation. The lime-coloured region signifies the
change of area.

* Suppose i;_1 = jx and jii1 = kg2, then [ G ik lksrlosz - 1= Lo letipga - 1
resulting in

A, L LICT==2, A A[C]=%1. (223)
We could recover (211) up to a normalization factor,
2 2
‘dA[C]‘ = > g“M‘Aik’MA[C]‘ = (D—2)L[C]. (224)
ikEC , U

To write down the equation of motion, we need to explicitly define how the differential
operators acts on the functions. We define

A, fIC1= FIA, ,C1—fICT. (225)
For example,
) — ey, | ALCl=2,
RACCIA IR - < S
LICI(L[C]-2)" -

Suppose V(&) = r|®|? (r > 0), the equation of motion is

(D —2)S'[A]? + Aik,“(ﬁS’[A]Aik’“A[C]) =r, (227)

where the (D — 2) comes from the normalization in (224). Taking that the loop is large and
roughly rectangular, we can assume L[C] o< vA and omit the second term as we previously
analyzed. Thus

r 1
S[A[C]] o< mA+ O(A2). (228)

The result unabated if we do a discrete analysis.
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7.1.2 A concrete example: G =H =7,

In this section we make precise of the simplest non-trivial example of 2-group gauge theory
with the framework we just developed.

Suppose we have a 2-group G = (Z,,Z,,a = id, 3 # 0), this weak 2-group admits a
strictification (Zy4, Z4,™>, ), where d = x2, (1) > (k) = 4—k mod 4 as established in section
2.3. The next thing to do is automorphic 2-representation, which is discussed in section 5.1.1.
In this simple case, we merely use the 2-representation for completeness of the procedure,
since after 2-representation, we choose a group representation s.t. only the

im(ty) =24, im(t;) = Zy, (229)

parts are left non-trivial.
With the chosen representation, the 2-group globally symmetric action takes the form of
(207), with space discretized and 8(%0) substituted by Ay ; defined as (174),

1 .
S = —(d®)"(d®) + V(@) |[dC]. (230)
[ }

In this example, there are two ways of H = Z, action on the vector @ as stated in section 5.1.
The natural action is given by

a d
b a
Lo [ =14 | (231)
d c
and the Wilsonian action is given by
a a
b ib
1oy N E (232)
d —id

With discrete 2-global symmetry (Zy4, Z4, X2,1>), the potential term V(@) to the lowest orders
shall include
%, o (233)

Only for the natural action can we admit * term into the potential.
Now suppose the spacetime dimension D > 2, we study the 2-matter field configuration
a
b
®[C]= eS[A[C]]<1>0 = ¢StAlCl] = eS[A[C]](aO +b1+c2+d3), (234)

d

where we have chosen a canonical representation for group H, and the group algebra structure
should be

a, ay a1a2+b1d2+d1b2+C1C2
_ bl bz _ blaz + aq bz + Cle + d1C2

®1- %= a ¢y | 7 | cqay+cyay + byby +did, | (235)
dl d2 d1a2 + d2a1 + b1C2 + b2C1

one can verify that this multiplication is associative. Later we will use

3 a® +3(ac? + b%c + cd?) + 6abd
_ d® +3(a®b + bc? + b%d) + 6acd (236)
| @ +3(a®c+ab?®+ad?)+6bcd |

b3 + 3(a®d + bd? + ¢2d) + 6abc

QL o o QR
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Since we assume that a, b,c,d do not depend on the path space, the variation only concerns
the eS¢ factor. In the following, we always assume &, # 0.

The result of V(@) = r|®|*> (r > 0) is given previously by (228). In the following, we
will discuss the case of r < 0 for this 2-group, and analyze the configurations of spontaneous
symmetry breaking.

A potential admitting broken symmetry can take the form of’

Vi(®) =rl®)* +ul®|* (r<0, u>0), (237)

for both choices of H-action. The analysis is identical with the previous analysis. A static

solution with
—r
@] =1/ —, (238)
2u

would satisfy the equation of motion.
Also one can consider the potential (when taking the natural H-action)

V(@) = r|®|* +ul®|* +s Try(29°90*)  (r <0, u,s >0), (239)
where
a
Try IC) =Try(®)=a+b+c+d, (240)
d
Try(80*®®*) = (a+b+c+d)*(@+b+c+d)>. (241)

The static solution shall satisfy

rd + 2u|®2® + 25 Tr(®)% Try (%) (242)

[ T G
I
(@)

When considering the Wilsonian H-action, we can add another |<I>2| term into V;(®),®
resulting in the potential
Va(@) = r|®f* + w|®?| + ul|*, (243)

and the equation of motion
ré + 2ul9|*® + w|?| = 0. (244)

In the following we will analyze the configurations and the symmetries they preserve and
break with either the natural H action or the Wilsonian H action.
With natural H action and V,(®)

Note that as stated before, the solution could both preserve and break the G-action symmetry.
Namely, the & configurations of the form

a
o=y |, P+ pP+Rrar=1, b=a, (245)

2uf ¢

d

"Note that here we take |®|> = |a]* + |b|* + |c|* + |d|*.
81t is also plausible to add |<I>4| term, but doing so will significantly increase the complexity of the situation
without providing new insights.
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preserves the G symmetry, while configurations with b # d breaks the G symmetry.
For H symmetry acting on ® by multiplying an element in the group, the only configuration
preserving the complete H = Z, symmetry is

1
—1 gl 1
=4/ —e 246
\ 8 1 (246)
1
This configuration preserves the entire 2-group symmetry, both strict and weak.
The configuration preserving Z, C H is
a
—r| b 2 2
d=4/— , 2lal*+2[b|" =1, a,b#0. (247)
2ul a
b

This configuration preserves the sub-2-group symmetry (Zq,Z,,%2,id), which has
[T, =11, = Z,, a trivial Postnikov class and trivial action in the weak 2-group language.

With natural H-action and V,(®)

There can be several non-trivial solutions, one type of which is

1
1
d=c 1] (248)
1
making (242)
(r + 8ulc|* + 128s|c[*)c =0, (249)
solved by
1
@:,/_—rei" ! , @®=0 (Yoelo0,2m)). (250)
8u +128s 1
1
These solutions preserve the entire 2-group symmetry.
Another type of solution is
—2 0
1 1
®1=b| |, ®=b|_, | (251)
1 1

with

_
|b|_,/—ﬁ. (252)

From the strict 2-group perspective, these two solutions preserve the G-action symmetry and
breaks the H-symmetry completely, the preserved sub-2-group is (Z,,0, 0,id). From the weak
2-group perspective, the only remaining symmetry is the Z, O-from symmetry, rendering
(Z,,0,id, 0).
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The third type of solution we introduce here is

, a#bh. (253)

SR o Q

Notice that now (242) reads

(r +4u(lal® +1b/*)) =—16s(a+b)*(a+b) , (254)

[l =B e
[ T g

which is never going to hold for a # b, unless certain terms equal to zero. Here the obvious
choice is a = —b, rendering |a| = 1/ —r/(8u), the final configuration becomes

1

= o] -1
&= —Leif . Yoe[o,2n). (255)
8u 1

-1
This configuration preserves the G symmetry and Z, C H = Z, symmetry. From the strict
2-group perspective it preserves (Z,, Z-,0,id) symmetry. From the weak 2-group perspective,
it preserves the (Z,, Z,, id, 0) symmetry, the O-form and 1-form symmetry groups are preserved
respectively, but the Postnikov class is trivialized.
With Wilsonian H-Action and V(%)

The analysis procedure is largely the same. The & configurations can be classified as follows,

1. Configuration

1
—r i0 0
=4/ —e , 256
2 0 (256)
0
preserves the entire 2-group symmetry from both strict and weak perspective;
2. Configuration
a
—r|0 2 2
®=4/= , la®+I[b"=1, a,b#0, (257)
2u| b
0

preserves the (Z,, Z,, x2,id) sub-2-group symmetry, as before, the I1; = II, = Z, are
preserved but the Postnikov class is rendered trivial;

3. Configuration

—-r
o=/ —

5 , la|®> +2|b)* +|c|* =1, b#0, (258)
u

St o o Q

preserves only G symmetry action, thus the remaining 2-group symmetry is (Z,, 0, 0,1id).
From the weak perspective, only I1; = Z, survives.
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With Wilsonian H-action and V5(®)

Adding |#?| term into the potential drastically changes the structure of the equation of motion.
Here we analyze a few types of solutions.

1. The first type of solution is

1
—_ + X
¢=\Me19 0 , r+w<0, u>0, (259)
2u 0
0

which preserves the entire 2-group symmetry.

2. The second type of solution is

0
o=\ 2 W) o 1 o=\ ZtW) i
2u 0]’ 2u

0

, r+w<0, u>0, (260)

— O O O

which completely breaks the 2-group symmetry.

3. The third type of solution is

0
r+ \/EW i 1
= —_—e =
0
1

0
+ V2w 1
—ﬂele L r+v2w <0, u>0. (261)

4u ’ 4u

-1

The first solution preserves the G-symmetry and breaks the entire H-symmetry, pre-
serving the weak 2-group (Z,, 0,0, 0), while the second solution completely breaks the
2-group symmetry.

In summary, we discussed various phases of SSB of the weak 2-group symmetry
(Z4,7Z4,id., B # 0) in the strict formulation, and interestingly we found that such a non-split
2-group symmetry can be spontaneously broken to a split 2-group (Z,, Z,,id., 0) with trivial
Postnikov class!

7.1.3 Approaching continuous 2-groups

In this section we consider the Landau-Ginzberg model of the 2-group
15 U(1) =5 U(1) X Zy — Zy Ty~ Zy — 1, (262)
as described in section 2.4. It is a 2-group (G = Zy.Zy,H = U(1) x Zy, 9,>) with
3(e*™9,b)=(b,0),  (a,b) > (e*™¢,d) = (*™(*%), q), (263)
and the addition in G = Zy.Zy is

_Jla+c,b+d) (b+d<N),
(a,b)+(c.d)= {(a+c+m,b+d) (otherwise). (264)
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Here we will approach the U(1) x Zy continuous group by considering a sequence
of {Zy; x Zy}y with increasing M to infinity. In other words, we consider the limit of
{(G = ZNZN’H = ZM X ZN, 3, D)}M with

3(a,b)=(b,0), (a,b)>(c,d)=(c+ Z])V—d,d). (265)

For the action to be well-defined, we require that gcd(M,N) = 1.

We can build an automorphism 2-representation for such a discrete 2-group
(ZyZy,Zy; % Zy, @,5>) and build the Landau-Ginzberg theory as we previously performed.
We consider the 2-matter field  to take value in C[Zy; x Zy ].

The question is what kind of terms can appear in the potential V(®). Of course |®|*> and
terms proportional to that can appear, and all the ® terms do not survive the limit M — oo,
since such term depends explicitly on M and N to satisfy 2-group global symmetry in the
Lagrangian.

Therefore, we can consider the previously considered potential

Vi(®) =r|®* +ul®|*, (r<0,u>0), (266)

with static solution satisfying
—r

|| =4/ —. (267)
2u
Passing to the M — oo limit, this should become
N-1 p2n
® = £(8,k)[e,k]d6,
k=00

N—1 pr2n _, (268)
Zf £(0, 01> do = —,
= Jo 2u

where [el% k] signifies group element.

With natural H-action

There are several possible types of solutions. The first type is uniform distribution of coeffi-
cients,
—r

f(8,k)= 4nuNe s a€R. (269)

This configuration preserves the entire 2-group symmetry. Also we can observe another type

of solution
£(6,K) =\ ﬁem’@, PeZ.,, (270)

which breaks H = U(1) x Zy down to H = Zp x Zy, and the G = Zy.Zy is broken down to
G' =757y Jq> where Q is the smallest positive integer satisfying
p
QIN, e €L, (271)
N
and we will denote K = N/Q. While the additive rule signifying the Postnikov class is un-
changed, the Postnikov class would generically be changed. Since the weak symmetries after
the SSB age given by IT} = Zg, I1,, = Zp, the group cohomology accommodating the Postnikov
class is ngp(ZK, Zp) = ZLgcacpk)-
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Since all groups are subgroups of the entire 2-group symmetry while preserving the alge-
braic structure of i, & and p, each step of the calculation of the Postnikov class can be directly
transformed by substituting the group elements with sub-group elements (id est, cosets).

More precisely, the exact sequence after the SSB is

15 Zp = Zp X Zy —0 Ty Ty = 2y > 1, (272)

where we still have
i: a—(a0), d: (a,b)—(b,0), p: (c,d)—d, (273)
(a,b) > (c,d)=(c+ bd (mod P),d), (274)

and the group operation on Zy.Zg:

+c,b+d), b+d< ¥,
(@b +(ay={ 0 o0*D Q 275)
(a+c+m,b+d), otherwise.
As a result the Postnikov class inherited from m € Zy, = ngp(ZN» U(l1))is
[m] =m mod gcd(BK) € Zgeqpx) = ngp(ZK,Zp). (276)

Therefore, such configuration completely trivializes the Postnikov class if m|gcd(P, K).

With Wilsonian H-action

With Wilsonian H action, the only configuration that preserves the H-symmetry is to concen-
trate on the identity. Consider the sequence of C[Z,; x Zy ], the coefficients are given by

— .
f(p,k)= v Eela5p,o5k,o . 277)

The reason we fall back to finite group case is that for U(1) x Zy, we would encounter the
difficulty of defining a square root of Dirac Delta function. Since only identity element enjoys a
non-zero coefficient, it automatically preserves the G-symmetry, rendering the entire 2-group
symmetry preserved from both strong/weak category perspective.

The previously considered
0.0 =\ ge™ 278)

solution, however, breaks the entire H symmetry while preserving the entire G symmetry. In
weak 2-group perspective, it preserves (I, = Zy.Zy,0,0,0).
Then, the previously considered

£0,k) =\ ﬁeme, Pz, (279)

QIN, ?V—PGZ, K=N/Q, (280)

would preserve only (I1; = Zy.Zg, 0,0, 0).

solution with
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7.2 Screening center 2-form symmetry in 2-group gauge theory

In the scenario of screening 1-form symmetry, if one can construct a Wilson line with end
points (i.e. if there is a field ¢ in the same representation with the Wilson line),

$(x)PLe [+ 41 (y), (281)

which becomes gauge invariant under
pOx) = e p(x),  Pletf A e UIPel i Afeie0), (282)

then we say the matter field screens the 1-form symmetry. In many cases, the 1-form symmetry
acting on the Wilson lines are the center 1-form symmetry, i.e., GV = Z(G©).

We can build an analog mechanism in 2-group gauge theories. In pure 2-group gauge
theories without matter, consider a closed Wilson surface

WA(ZYL“) =P exp(i f A) s (283)
27’1’7’2

where y; = y, and thus the surface %, . resembles a spindle. This operator also possess a
center symmetry. Suppose there is a 2-form field A € Q?(M, Z(h)) valued in the center of the
Lie algebra b, since automorphisms shall preserve the center, we have

1
jg 1) = J do (W [X1(o,1) > A(0)) € QH(P(M), Z(h)). (284)
A 0

[é (B),jg(l)]h = [A,jg (M) =0
A A A

Following the previous formalism of center 1-form symmetry in a O-form symmetry gauge
theory, we have a center 2-form symmetry for a 2-group gauge theory.

Now we can elaborate on the idea of screening a 2-form center symmetry with the presence
of 2-matter. Since under H-gauge transformation, the 2-matter field ® transforms as (197),
we can also define a gauge-invariant term

Thus we arrive at

<I>;’,1WA(ZY1’Y2)‘1>Y2 . (285)

As aresult, in a 2-group gauge theory with matter, the center 2-form symmetry can be screened.

7.3 Higgs mechanism

The Higgs mechanism of our effective model does not differ much to the Higgs mechanism
of the ordinary gauge theory. Suppose that we take the form of potential and the ansatz of &
matter field to be

2

1 V452
V(®'e) = Z}L(@’@—E) , (286)
21 = v+ pexp L2, (287)
V2 %
With this assumption, the action becomes
L= __a(“ D p 8.0y — —(1 +£ ) (Buont — €VA(o)) (@ g — ev A

(288)

1 y
_Z _ _ = _ = (p,o)(v0')
4A(V P VP 4p ) 4]: f(u,a)(v,o’) .
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Just as in QFT, here we can do a gauge transformation to make

(Ou,or X — evA(H’U))2 — e2v2 42, (289)

The Lagrangian becomes
1 1 1
_ _ = alu,0o) _ = 2.2 3_ .4
L= 28 POu,0)P 4A(v pPe—vp 4p )

1 / 1 P 2
_ Z #po)vo) _ Py 2.2 (2
4.7:HU g 'F(,u,a)(v,a’) 2(1+ V) e“veAL.

(290)

We can observe that the Higgs mechanism of 2-gauge theories with 2-matter resembles that of
ordinary gauge theories. With proper gauge-fixing, one can have a massive boson in the path
space.

8 Discussions

In this paper, we provided a Lagrangian formulation of 2-matter charged under 2-group sym-
metries in the path space, and discussed the spontaneous symmetry breaking of 2-group sym-
metries under such Landau-Ginzburg model. A key technique is to consider the strictifica-
tion of weak 2-group symmetry, and construct the 2-matter & living in an automorphism
2-representation. Using different Landau-Ginzburg potential V(®), we can realize different
symmetry breaking patterns including the one from a non-split 2-group to a split 2-group. In
the future, it would be interesting to further investigate the dynamics of the 2-group gauge
theory defined in the path space, and it is also worthy to extend the discussions to other 2-
representations and 2-groups.

For weak 3-groups, we only provided the strictification procedure for special scenarios
with either IT; = 0 or 1, = 0. Hence a more complete discussion of the strictification of
general weak 3-groups would be subject to future work. The discussions of 3-representations
of 3-groups are also quite limited, and we hope to further investigate the structures of 3-
representations in a more detailed manner, for instance, using automorphism 3-groups Aut(G)
for 2-groups G. As a goal of this line of research, we hope to formulate higher representations
of higher groups in a more clear, algebraic language.

We have shown that when generalized into n-groups and n-matter, the brane fields natu-
rally appear into the higher gauge theory with higher-matter (for higher-form symmetry case,
it was discussed in [73,74]). A natural question would be to build an algebraic and physical
model to formulate such brane-field mechanism for general n-group symmetries and further,
generic higher-categorical symmetries.

Another important direction is to apply this formulation to physical systems with higher-
group global symmetries, and discuss the SSB of these symmetries, such the lattice models
in [33, 39] which possess higher-group symmetries and realize topological error correction
codes. It would also be interesting to further investigate concrete continuous QFT models
with higher-group symmetries, and see how to encode its SSB structure in the path space
Landau-Ginzburg theory. There could also be interesting interplay with supersymmetry if we
also consider the fermionic 2-group gauge theory discussed in [75].

We briefly discussed the screening of center 2-form symmetry in 2-group gauge theory,
without specifying the particular 2-representation. It is known in the usual gauge theory that
matter under different representations shall provide different screenings of the center 1-form
symmetries. The role of different higher-representations in screening such center higher-from
symmetries shall be subject to future research.
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The Higgs mechanism of field theory in path space is also to be developed. Future research
may consider the formulation of Goldstone bosons and their counting in path space, and relate
such theories with physical models.
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A Triviality of Postnikov class after the strictification

We present a general proof that given exact sequence
150, >H—>G—51, -1, (A1)

the Postnikov class satisfies p*f3 = 0.
Let us consider following lemma case first.

Lemma 1. Given a principal G bundle (G is assumed to be a 1-group) P N M, then the pullback
bundle p*P — P is trivial.

Proof. Recall that for principal bundles, they are trivial iff they admit a global section (in
contrast to vector bundles, they always have trivial zero section). Set theoretically, the pullback
bundle is constructed as P X, P := {(x, y) € P x P|nt(x) = n(y)}, there is a canonical diagonal
map A : P — P x, P given by x — (x,x). As a result, the pullback bundle admits a global
section and hence trivial. O

Let us go back to 2-group case. Consider the Postnikov tower of the bottom layer, as
indicated in following diagram.

B?Il, — BG

I

BII,

The classifying space of 2-group G is a total space of a principal B2II, bundle over BII,.
As a result, it is labelled by a particular class in Cech cohomology H'(BII;; B*Il,). We have
known that this is Postnikov class .

Now the Postnikov class is trivial iff the bundle itself is trivial. We have argued that p*BG
is trivial, as a result p*f3 = 0.
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This has confirmed that Postnikov class is necessarily zero after strictification.
There is another algebraic proof based on decomposition of 2-groups:

i d

1 y 11, y H—2% imd —> 1
N
1 —> imd 4> ¢ 2>, > 1.

We view the bottom line as a group extension and top line as a sequence of coefficients. Hence
we have Bockstein homomorphism:

Bock:ngp(Hl;ima) —>H§rp(1'[1;l'[2). (A.3)

This is completely valid at least when H is Abelian. We denote the extension class of the bottom
line as a € H;rp(ﬂl;ima), SO

p*(Bock(a)) = Bock(p*a) =0. (A.4)

(This is due to the naturality of Bock.)

B More examples of strictification of weak 2-groups

B.]. Hl - ZN) H2 - ZM

We discuss the case for a general I1; = Zy, [I, = Z,,. In this case, H>(BZy; Z,,) is generated
by the N-torsion subgroup of Z,;, which consists of elements {a € Z;;|Na = 0 (mod M)}.
Hence we have

H*(BZy; Zyy) = Zgean ) - (B.1)

The general exact sequence is

i 2 P
The maps are
i: a—Ka, 0 : a— Na (mod NK), p: (mod N). (B.3)

The section s : Zy — Zyy is chosen as s(g) = g, and the map f : Zy X Zy — Zyy is

0 (g+h<N),

f(g’h):{N (g+h=N). (B4)

The map F : Zy x Zy — Zyx is

_]o (g+h<N),
F(g,h)—{1 (g +h>N). (B.5)

In order to have a non-trivial Postnikov class, it is required that the short exact sequence
0 p
1—-ker(0) —Zyx —Zy — 1, (B.6)

is a non-split central extension (H2(BZy;Zg) # 0), such that s cannot be taken as a homo-
morphism.
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The Postnikov class element ¢ : Zy X Zy X Zy — Zj; and the action >: Zy — Aut(Zy,)
depends on the choice of action >: Zyx — Aut(Zyx).

If the action >: Zyx — Aut(Zyx) is trivial, then both the Postnikov class and the ac-
tion of Zy on Z,; will be trivial. To write down all the non-trivial actions, we first need
a mathematical fact that Aut(Z,,x) is generated by the units of Z,;x, which form a set
{p € Zjyx|gcd(p, MK) = 1}. Each element p corresponds to the following action:

a>, b= (p® (mod MK))-b. (B.7)

Furthermore, to satisfy the conditions (3) of a strict 2-group, it is also required that

p =1 (mod K),

pY =1 (mod MK). 8)

For each p € {0,1,...,MK — 1} satisfying (B.8), there is a well-defined strict 2-group
(Znk>Zyk, 9,>) that gives rise to different weak 2-groups (Zy, Zy, p, B).

In particular, when p = 1 (mod M), the action >: Zy — Z,; is trivial, and we get an
element in the untwisted cohomology H3(BZy,Z,;). On the other hand, if p # 1 (mod M),
the action >: Zy — Z;; is non-trivial, and we get an element in the twisted cohomology
Hg (BZy, Zyy).

Actually, all classes in (B.1) can be constructed in this way, as we will describe below.

First, we have three constraints on the choice of p in (B.7): two of them are given by (B.8)
and the other is ged(p, MK) = 1.

For general K, we have p = 1 (mod K), hence we can write

p =wK + 1 (mod MK), w=12,...M—1. (B.9)
The untwisted condition is p = 1(mod M), which amounts to say M|wK. We require

W(wmz +...=0(mod MK). (B.10)

(WK +1)N —1=NwK +
Note M|wK, above equation is actually equivalent to M|Nw. Now we write M = md,N = nd
where d = ged(M, N) and gcd(m, n) = 1. The condition is m|nw hence m|w.

We can now write an admissible w as w = ms,s = 0,1,..,d — 1. But we need M|wK
(untwisted condition), which now simplifies to d|sK for any s = 0,1,2,...,d —1. Hence we
have d|K by taking s = 1. So we have K > d = ged(M, N).

Let us fix K = d and choose any admissible w, one can compute the Postnikov class on
(81,82,83), 0< g1, 82, 83 <N

wg1, & +8 =N,

c(gq, 29, = (B.11D)
(81,82, 83) {0, ot gs <N.

This class has some general features:
1. It’s linear in the first argument g;.

2. We can check, using GAP package that it’s indeed a nontrivial cohomology class param-
eterized by group actions.

Let’s comment on twisted case, i.e., there is nontrivial group action of II; on II,. We
still have (B.9) and (B.10) in this case. Given M,N, one can always check if there is any
p # 1(mod M) satisfying these equations, however, it’s unlikely to obtain a general solution in
this case. We will be content with several examples described below:
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1. M = N = 2. This is the case in section 2.3. The action Z, — Aut(Z,) is always trivial.
The minimal K is

min.(K) = {1 (wrivial ), (B.12)

2 (non-trivial ).

2. M =N = 3. In this case there is no non-trivial action of Z5 — Aut(Z,).

The smallest K with a non-trivial H%(BZs; Zy ) is K = 3. The actions >, satisfying (B.8)
are p = 1, 4, 7, which one-to-one corresponds to the three elements in H3(BZ3; Z3) = Z.

Hence for any non-trivial Postnikov class f3, the smallest K = 3.

min.(K) = ! (wrivial ), (B.13)
3 (non-trivial ).

3. N =2, M = 4. In this case there exists a non-trivial action of Z, — Aut(Z,) = Z,.
H3(BZy;7Z4) = 7, and we denote its generator by a.

min.(K) = {1 (wrivial £), (B.14)

2 (non-trivial 8 or non-trivial p).

4. M = N = 4. In this case there exists a non-trivial action of Z;, — Aut(Z,) = Z,.
H3(BZ4;7Z4) = 7, and we denote its generator by a.

The smallest K with a non-trivial H(BZ,;Zy) is K = 2. For K = 2, the actions >,
satisfying (B.8) are p = 1, 3, 5, 7. For p = 5, the induced action of Z, — Aut(Z,)
is trivial, and the Postnikov class § = 2a. For p = 3 or p = 7, the induced action of
Z4 — Aut(Z,) is non-trivial.

On the other hand, we can also choose K = 4, and the actions >, satisfying (B.8) are
p=1,5,9, 13. For these cases, the induced action of Z, — Aut(Z,) is always trivial.
The Postnikov class f = }‘(p —1a.

As a conclusion, for a given weak 2-group (Z4, Z4, p, ), the smallest K is
1 (trivial ),
min.(K) =1 2 (non-trivial p, or trivial p, f =2a), (B.15)
4 (trivial p, B =2k + 1)a).

B.Z Hl == ZN’ H2 == @:n:l ZMi
In this case, we note following identity in cohomology groups:
m m
H3(I;; P 2y) ~ P H3 (1115 2y,) - (B.16)
i=1 i=1

It means, essentially summands in IT, are decoupled, we can treat them separately. As a result,
we can obtain following crossed module extension:

m
15 P Zy, = Zyx D Zyy, — Zyg — Zy — 1. (B.17)
i=1 i#j
The boundary map 0 : Zyx @ Dixj Zy, — Zyk is given by
0(x1, X2, ..Xjue, Xp) :=Nx; (modNK), (B.18)

j
described in sec B.1. These extensions realized all classes in (B.17).

where x; € Zyx and x; € Zy, for i # j and K can be chosen as K = gcd(M;,N) as we
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B.3 Hl == ®?=1 ZNi’ H2 == ZM

For simplicity, we will begin with n = 2 case, i.e., Il = Zy, X Zy;.
We define a group

I,(N;,Ny,K):= (a, b,x|x¥=aV1 =pM =1, ax = xa,bx =xb,bab ! = axa> ,  (B.19)

where K € Z”0 is a free parameter to be specified later.The group can be viewed as some kind
of generalization of finite Heisenberg group. Note bab™! = ax® imposes a strong constraint
on a: taking N;-th power of both sides, we find:

x® =1, (B.20)
which means K|aN;. Analogously, K|aN,, Bezout’s identity shows
Klaged(Ny,N). (B.21)
Denote K = kd where d := gcd(N;, N,, K),we now obtain admissible values of a:
a=0,k,..,(d—1)k <kd =K. (B.22)

This group satisfies following exact sequence:

0 = Zg —><5 Ty(Ny, Ny, K) = Zy, X Zy, — 1, (B.23)

where we write Zy additively and Zy, x Zy, multiplicatively. The maps are i(a) = x%, Va € Z,
p is a surjection whose kernel is generated by x, i.e., p(x) = 1. Sometimes, we will denote
p(a) as a and p(b) as b if there is no confusion.

We now construct the crossed module extension. Note the cohomology class is calculated
by Kiinneth formula

H3(Zy, % Zy,; Zy) ~ €D H (Zy,; H (Z,; Zy)). (B.24)
i+j=3

Note following result:
HY(BZp; Zy) ~ Lgeampy, k> 0. (B.25)

Now, we have
H®(B(Zy, % Zn,); Zaa) == Zgean, i) @ Zgeay, i) @ Ligqiaa ny vy (B.26)

2
where Zng(M,Nl No)

those extensions in which Zy, or Zy, decouple in the sense of following sequences:

= Zged(MN,Ny) D Zged(M N, N,)- The first two terms above correspond to

1> Zy = Zyg = Zng X Ly, = Ly, X Zy, > 1, (B.27)

where the map 9 : Zyx — Zy,x X Zy, is given by d(a) = (N;a,0). Symmetrically, we have
the same construction involving Zy, but Zy, decouples.

o . . . 2
So we only concentrate on mixing case, i.e., corresponding to L N, N,)

ogy group. We will argue following extension can realize all the mixing classes:

in the cohomol-

' F}
OHZM_I)ZMK_>F¢1(N1,N2:K)LZN1 XZy,— 1. (B.28)

(See (B.19) for the definition of T,.)
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Before diving into details, note following commutative diagram:

ZMK — 1—‘ot
V \«
O H ZM x1 ¢l ZN] XZN2 H 1, (B-29)

Zivk — lia

where [ =0, 1,2, ...,gcd(K, Ny, N,) and the morphism ¢, is given by ¢;(x) = x’! where x and
x’ are generators of the centers of T, and T}, respectively. By definition, we know the sequence
(B.28) is (weakly) equivalent to

i 3
0 = Zy — Zinx — TNy, N, K) — Ly, X Ly, = 1, (B.30)

hence they correspond to the same element in cohomology class H3(I1;;I1,). For this reason,
.. . .. N _ K

we can limit us with minimal choice: a = AN N
Let’s discuss the group action in this case. It is determined by a homomorphism I}, — Zg .,
where Zy . is the group of units in Zy (i.e., invertible elements under ring multiplication).
Since T, is generated by x,a, b, we only need to determine their images in Zy,,. We will
denote the image of a, b, x as py, pa, p3 respectively. They are subject to group relations from
Falpha) that is

p) =1(modMK), i=1,2, (B.31)

Note x = [b,a] = bab 'a™! and Zj, is Abelian, hence p; = 1, i.e., the center Zy must act
trivially. And p;’s have to satisfy equivariance (3) and Peiffer identity (4), explicitly,

p; = 1(modK), i=1,2. (B.32)
And we assume the weak 2-group is untwisted, hence
p; =1(modM), i=1,2. (B.33)

We can combine (B.32) and (B.33), write

MK
;i =w;———— + 1(mod MK), B.34
where w; =0,1,2,...,gcd(M,K) — 1. We now solve (B.31). It’s easy to see MKl(%)” if
n > 2, so if we expand (B.31), we see it is equivalent to
ged(M, K)|(w;N;). (B.35)

M .
Let d; := gcd(M,K,N;) and m; := M. We have w; =s;m;, s; =0,1,2,...,d; — 1. There is
no more constraint on group actions.
Let’s summarize the discussion on group actions: group I, acts on Zyx as

siMK
1= + 1) (mod MK B.36
a>l=( AOLEN) )l (mo ), (B.36)
MK
bol=(—2 +1)I (mod MK), (B.37)

where s; = 0,1,...,gcd(M,K,N;) — 1,i = 1,2. There is no further constraint on the group
action.
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Let’s compute the Postnikov cocyle. Following the notation of section B.1, we denote
x = (x1,Xx3) € Zy, X Zy, (in additive notation) and s((1,0)) = a, s((0,1)) = b, hence

flx,y)=x*12, (B.38)

We then lift f to F(x,y) = ax;y,. According to (11), we have

2

Ms; x;
c(x,y,2) = ay 2, (Z #) , s;=0,1,...,gcd(M,K,N;)—1. (B.39)
i=1 ng(MJKJNi)

We can argue that these classes are indeed mixing case. Note ¢ vanishes if it’s evaluated on
(x,y,2) with x; = y; =2, =0 or x4 = ¥y, = 2, = 0. It cannot happen in non-mixing case (i.e.
first two summands in (B.26)) unless the class is trivial.

In fact, if K = gcd(M,N;,N,), then we set a = 1 (see the discussion below
(B.30)). In this case s;,s5 € {0,1,2,...,gcd(M,N;,N,) — 1} in one-to-one correspon-
dence with ch AN, N,)" Obviously, K can’t be smaller than ged(M,N;,N,), otherwise,
ged(M,N;,K) <K < ged(M,N;,N,), i =1, 2. In that situation, one cannot realize all (mixing)
cohomology classes in (B.26).

There is no difficulty to generalize above construction to any finite Abelian group (which
is product of cyclic groups after all). So one immediate corollary of our construction is that:
if one starts with finite Abelian II,, IT, (without twist), one can always assume that H in (8)
is also finite Abelian (a cyclic group actually).

B.4 Examples with non-Abelian Lie groups

Let us consider the field theory examples with a weak 2-group symmetry (II;, I1,,id., 8). II;
is the O-form symmetry group, which is non-simply-connected. We can write I1; = G/(imd),
where G is a simply-connected Lie group and imd is a subgroup of the center of G. II, is the
1-form symmetry group of the theory.

In the terminology of [26], we have the identification

I, = F, ,=0, G=F, H=E&, imd = Z, (B.40)
and these groups fit into the following commutative diagram

i

1 S 11, y H —> imd —> 1
l la l (B.41)
1 — imd y G —2 1, > 1.

Here H = & C Z(F) X Z(Ggayge) is the maximal subgroup of the product of flavor center Z(F)
and gauge center Z(Ggayge) O O that acts trivially on matter fields. For example see the context
of 5D SCFTs with M-theory geometric construction [26,32].

For example, Let us consider the 5d rank-1 SCFT with IR gauge theory description SU(2),.
In [26] it is shown that the theory has a weak 2-group symmetry with I1; = SO(3), II, = Z,.
We first use the following commutative diagram

i

11— 7, > Z4 > Z, > 1

l i"’ l (B.42)

1 — 7, —> SU(2) —2> S0(3) — 1.
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We show that the exact sequence

i a
1> Zy — Z, —> SU(2) =5 S0(3) > 1, (B.43)

realizes the non-trivial element 3 in H*(BSO(3), Z,) = Zs.
Let us denote the group elements in SU(2) by g and the group elements in SO(3) by the
conjugacy class {g,—g}. The identity element of SO(3) is {I,—I}. The maps in (B.43) are

i:a—-2a, d:a—e™y, p: g—{g,—g}. (B.44)

Let us choose the section s : SO(3) — SU(2) as a canonical way to embed an SO(3) element
into SU(2). The group multiplication in SO(3) can be written as

{gh,—gh},  s(g)s(h)=s(gh),
—g}-{h,—h} = .
tg,—g}- {h,~h} {{—gh,gh}, s()s(h) = —s(gh). (B45)

Hence we can write down the function f (g, h) (in the multiplicative notation) and its uplift
F(g,h) (in the additive notation):

I, {g,—g}-{h,—h} ={gh,—gh},
)= B.46
Fle {_I’ {g,—g}-{h,—h} = {—gh, gh}, (B.46)
0, {g—g} {h,—h}={gh,—gh},
h) = )
Fle:h) {1, {g,—g} - (h,—h} = {—gh, gh}. (B.47)

Plug in the formula (11), we can compute the following discontinuous map c(g, h, k)

c(g. k) = S (F(h,K) + F(g,hK) — F(g,h) — F(gh, )

(1, s(@)s(hk) = —s(gh)s(k),  s()s(h)s(k) = s(ghk), (B.48)
B 0, other cases.

c(g,h, k) corresponds to the non-trivial element in H3(BSO(3); Z,), because it cannot be writ-
ten as a coboundary (%F (g,h) is not a well-defined function).
On the other hand, if one uses the exact sequence

i a
1= Zy —> Ty X Zy — SU(2) = SO(3) —> 1, (B.49)

one can derive c¢(g,h, k) = 0 and the Postnikov class is trivial.

Physical example Let us show an physical example corresponding to the case of non-trivial
c(g,h,k) € H3(BSO(3);Z,), which can be applied to the case of 5d SU(2), SCFT in [26].
Consider a gauge theory with gauge group Gg,,e = SU(2) and flavor algebra su(2) (with
simply-connected group G = SU(2)), and the following charges of matter fields:

‘ u( 1 )gauge u( 1 )ﬂavor Z2,ﬂavor
¢ 2 —1 1 (B.50)
b 0 2 0

The listed numbers are the charges under the Cartan subalgebra and center of Gg,yge = SU(2)
and su(2). We have the following observations:
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1. Each matter field has integral charge under the linear combination
‘1‘(11(1)2&1uge + 2u(1)favor)- This is the source of H = Z,. Roughly speaking, the com-
putation of H = Z, is achieved by computing the Smith normal form of the charge
matrix which involves both u(1)gayge @and u(1)gayor-

2. The Z, center part of the G = SU(2) is a part of the U(1)g,uge, hence the actual flavor
symmetry group is II; = G/Z, = SO(3), which is consistent with the weak 2-group
structure.

In summary, one can see that in the strictification (B.43), the group G = SU(2) is bigger than
the actual 0-form symmetry group II; = SO(3). The group H = Z, is also bigger than the
actual 1-form symmetry group I1, = Z,.

Gauge theory For the strict 2-group, we have the following gauge transformation (following
[56] for example)
A =2A T+ AdAT 4 A,

B.51
B'=B+8A. ( )

A is the gauge field for G = SU(2), which takes value in the Lie algebra su(2) = s0(3). B is
the discrete gauge field for H = Z,. The gauge parameters A € SU(2), A € Z,. Finally, dA
corresponds to the center gauge transformation Z, € SU(2) when A € {1, 3}, which is not a
part of the su(2) Lie algebra.

Representations We investigate the representation of this strict (weak) 2-group. First let us
take the 2d fundamental rep. 7 of SU(2). Now note that we can naturally define a unitary
projective representation 7 : SO(3) — SU(2) of SO(3), such that 7 = 7t op, & =s o 7. For any
{g,—g}, {h,—h} € SO(3), we have

({g,—gHR({h,—h}) = ({gh,—gh})f (g, h). (B.52)

Similar to the computation of Postnikov class, the phase factor f (g, h) = %I can also be uplifted
to F(g,h) = 0,1 and one can compute the non-trivial c(g, h, k) € H3(BSO(3); Z»).

If we start from other irreducible representation , there are two different scenarios. If
7 is even-dimensional, it corresponds to a projective representation of SO(3), and the above
discussions still hold. If 7 is odd-dimensional, it would correspond to a representation of
S0(3), hence in (B.52) the phase factor f(g,h) = I, and we are unable to generate a non-
trivial Postnikov class (the representation is not faithful).

Nonetheless, this is not the notion of 2-representations introduced in the main text.
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