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Abstract

We introduce a novel method for extracting a fragmentation model directly from experi-
mental data without requiring an explicit parametric form, called Histories and Observ-
ables for Monte-Carlo Event Reweighting (HOMER), consisting of three steps: the train-
ing of a classifier between simulation and data, the inference of single fragmentation
weights, and the calculation of the weight for the full hadronization chain. We illustrate
the use of HOMER on a simplified hadronization problem, a qq̄ string fragmenting into
pions, and extract a modified Lund string fragmentation function f (z). We then demon-
strate the use of HOMER on three types of experimental data: (i) binned distributions of
high-level observables, (ii) unbinned event-by-event distributions of these observables,
and (iii) full particle cloud information. After demonstrating that f (z) can be extracted
from data (the inverse of hadronization), we also show that, at least in this limited setup,
the fidelity of the extracted f (z) suffers only limited loss when moving from (i) to (ii) to
(iii). Public code is available at https://gitlab.com/uchep/mlhad.
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1 Introduction

Machine Learning (ML) methods provide a new set of tools that may be able to improve current
descriptions of the non-perturbative process of hadronization – the binding of quarks and glu-
ons into observable hadrons. Indeed, the past several years have seen a gradual development
of ML approaches to hadronization, notably from the MLHAD [1,2] and HADML [3–5] collab-
orations. The long-term goal of such efforts is not only to supplement the phenomenological
hadronization methods used in the state-of-the-art Monte Carlo simulations such as PYTHIA

[6], but to also use these models to better understand the underlying physics of hadroniza-
tion. This can be particularly useful in cases where hadronization uncertainty plays a critical
role in experimental measurements, e.g., the mass of the top quark, or when an accurate sub-
traction of the underlying event is necessary as is common in heavy ion jet measurements.

In this manuscript, we demonstrate how the symmetric Lund string fragmentation func-
tion f (z) can be learned directly from data using ML techniques in the simplified case of a qq̄
string fragmenting to pions. We do this using a new strategy, the Histories and Observables for
Monte-Carlo Event Reweighting (HOMER) method, which uses phenomenologically-motivated
hadronization models, e.g., the Lund string model from PYTHIA, as a starting point. In the
HOMER method, one first learns the event-level likelihood ratios between the distributions
from data and the chosen hadronization model. These event-level likelihood ratios are then
used to build a modified hadronization model by assigning likelihood ratios for each individ-
ual hadronization emission. The output of the HOMER method is a data-driven reweighting of
the baseline PYTHIA event generator, such that the resulting distributions match the observed
training data. In our previous work, ref. [2], we introduced a similar methodology for extract-
ing microscopic dynamics from macroscopic observables relying on the explicit construction
of a likelihood using normalizing flows, which also utilized the Lund string model as a starting
point. In contrast, the HOMER method does not construct an explicit likelihood function but
instead learns the likelihood ratio. This allows for a more straightforward incorporation of
the model into the simulation pipeline. HOMER also implements a different training proce-
dure based on a convex loss function, improving convergence during training in comparison
to using an adversarial non-convex loss function.
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This manuscript is structured as follows. We briefly review the Lund string fragmentation
model in section 2.1, present the details of the HOMER method in section 2.2, and compare the
HOMER method with Generative-Adversarial-Network (GAN)-based approaches in section 2.3.
Numerical results are presented in section 3 for three different examples of available exper-
imental information; in section 3.1.1, binned distributions of high-level observables such as
event shapes and particle multiplicities are used, in section 3.1.2 the unbinned measurements
of high-level observables on an event-by-event basis are used, and in section 3.2 we explore
the case where full particle-cloud information is available. Section 4 contains our conclusions
and future outlook. Appendix A contains details of the public code, while for convenience, ap-
pendix B defines the shape observables used in section 3.1, and appendix C contains additional
numerical results and figures, supplementing the results shown in sections 3.1.2 and 3.2.

2 The HOMER method

The HOMER method is a framework to learn a hadronization model from data without requiring
an explicit parametric functional form; here, the model is a modified Lund string fragmentation
function f (z), described below in section 2.1. We demonstrate the functionality of the HOMER

method using synthetic data generated with PYTHIA, which allows us to examine how well
the extracted string fragmentation function fHOMER(z) approximates the actual function used
by the synthetic data fdata(z). This actual fdata(z) is not available in data, even synthetic data,
where the ordering of the hadron emissions cannot be measured and leads to an ambiguity in
the possible fragmentation chains that could produce an observable event.

The starting point of HOMER is a simulated hadronization model, e.g., PYTHIA with a rea-
sonable set of parameters, which is assumed to already give a decent approximation of the
data. HOMER then uses data in a two step procedure to transform this baseline simulation
model to match the data. In our case, the simulator is PYTHIA, but with the initial string
fragmentation function, fsim(z), using different parameters than those used to generate the
synthetic data, fdata(z). The simulator produces events, which can then be compared to data.
In our terminology, an event ei is a list of observables, x⃗ i , which describe a single collision,
e.g., a single instance of e+e− → uū annihilation. A collection of events { x⃗1, . . . , x⃗N} is called
a run. For observables x⃗ i we consider two possibilities:

i. high-level observables (section 3.1) constructed from particle level information, such as
thrust, multiplicity, etc. and

ii. point cloud (section 3.2), in which case x⃗ i contains the four momenta of all hadrons.

In the following sections, we review the Lund string fragmentation model and give further
details about the HOMER method.

2.1 Lund string fragmentation model for the qq̄ case

The hadronization model in PYTHIA is the Lund string fragmentation model [7, 8]. PYTHIA

is a multi-purpose Monte Carlo event generator which can simulate particle collisions for a
wide range of initial states, including proton-proton and heavy-ion collisions. A PYTHIA event
begins with the production of a hard partonic process, followed by the application of a parton
shower, underlying event production, and finally hadronization of the partons and particle
decays. Here we limit our discussion to the simplest hadronizing partonic system: a pair of
massless first generation quarks with flavor i, qi q̄i , with no gluons attached and fragmenting
only into pions. The addition of gluons will be explored in future work [9]. The momenta
of the quarks are taken to be oriented along the z axis, and the quark flavors are u = q1 and
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d = q2. In the Lund model, an approximately uniform flux tube of color field, a massless
relativistic string with tension κ ≈ 1 GeV/fm, forms when the quark and antiquark become
spatially separated. The two endpoints of the string are thus the quark and antiquark. This
state will decay into multiple hadrons. In a simple model with one spatial dimension and only
one quark flavor, the probability for a state with n mesons with momenta pi = {1,2, ..., n} is
given by [7]:

P∝
¨� n
∏

1

Nd2piδ
�

p2
i −m2
�

�

δ(2)
�∑

pi − Ptot

�

«

exp(−bA) , (1)

where the term bA corresponds to the imaginary part of the action of a massless string. The
area A is the space-time area of the string scaled by κ2. Generating the transition from a
string state to a hadronic state which fulfills eq. (1), is now a question of selecting a specific
implementation. In the Lund model, the increasing separation between the quark and the
antiquark, makes it energetically favorable to create q j q̄ j pairs out of the vacuum. The string
therefore breaks into spacelike separated fragments, i.e., hadrons. Due to the spacelike sepa-
ration, there is no preferred time-ordering, and the hadronization process could therefore be
described either by an inside-out cascade, starting from the center and fragmenting outwards,
or an outside-in cascade, starting from the string ends. The Lund model makes the latter se-
lection. Starting from one string end, a string break now produces a hadron containing the
string end quark (or anti-quark), and the anti-quark (or quark) from the string break. In this
way, the j’th string break will produce the hadron containing q j−1q̄ j or vice versa. We call this
sequence of multiple hadron emissions from a single string fragment a fragmentation chain.

Each string break is treated probabilistically. After flavor selection, the transverse mo-
mentum of the q j q̄ j pair, ∆p⃗T = (∆px ,∆py), is sampled from a phenomenological normal
distribution that has an adjustable width of σT/

p
2. The emitted hadron is given longitudinal

lightcone momentum, by taking away a fraction z of the remaining lightcone momentum of
the string, defined as

z ≡ (E ± pz)had/(E ± pz)string , (2)

where E and pz are the energy and longitudinal momentum of the hadron or string, as labeled,
and the + (−) sign corresponds to the string break occurring at the +ẑ (−ẑ) end of the string.
This updates the remaining light-cone momentum of the string for the next iteration. The
value of z is sampled from the symmetric Lund fragmentation function

f (z)∝
(1− z)a

z
exp

�

−
bm2

T

z

�

, (3)

where m2
T ≡ m2

i j + p2
T is the square of the transverse mass, mi j is the mass of the emitted

hadron, and a and b are fixed parameters determined from fits to data. Note that in eq. (3)
we do not include a normalization factor to make this a true probability distribution.1 Each
iteration of causally disconnected string fragmentations consists of:

1. randomly selecting one string end;

2. assigning probabilistically a quark flavor to be pair produced during string breaking;

3. selecting the corresponding hadron defined by its mass and spin, in other words, resolv-
ing the system as a hadron;

4. generating the transverse momentum of this pair;

1In PYTHIA, samples from f (z) are obtained via an accept-reject algorithm where only the location of its maxi-
mum, which can be calculated analytically, is needed.
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5. generating the light-cone momentum fraction of the new hadron;

6. and finally computing the energy and longitudinal momentum of the new hadron from
eq. (2) and

(E − pz)had(E + pz)had = m2
T .

The transverse momentum of the emitted hadron, p⃗T, is constructed as the combined p⃗T of the
two quarks entering it. If the hadron is the result of two neighboring string breaks i and j, then
p⃗T is the (vector) sum of p⃗T,i and p⃗T, j . The end-point hadrons contain the endpoint quarks,
which have no p⃗T (the simulation of hadronization takes place in the string rest frame).

Since hadron masses are discrete and the fragmentation function in eq. (3) carries no in-
formation about the global state of the string, care must be taken near the end of the iterative
process to produce a physical state. When the remaining string system has an invariant mass
below a chosen low-energy threshold, it is then converted into a final pair of hadrons. In
PYTHIA, this conversion is performed by the finalTwo algorithm. The finalTwo method
effectively works as a filter by checking whether the final hadrons can be produced on-shell
while ensuring that the overall fragmentations follow the left-right symmetric Lund fragmen-
tation function. If this is not the possible, the entire generated fragmentation chain is rejected,
and the simulation of hadronization starts anew, taking again the original string as the starting
point. This process can be repeated several times until the finalTwo step is successful.

The effect of finalTwo is that the observable event does not contain enough informa-
tion to reconstruct the full internal simulation history2 since rejected chains are not stored
in the PYTHIA event record. In experimental data, the observable event contains all the par-
ticles measured by the detector for a single collision.3 Our simulated data from PYTHIA is
the ideal case where all of the final-state particles produced by the event generator are de-
tectable. The simulated data suffers from the same problem that it does not include enough
information to describe the internal simulation history. In general, it is uncommon to retain
information about states that were rejected, because the amount of data from an inefficient
filter would be prodigious.4 To build the necessary internal simulation history, we supply a
custom UserHooks object5 to PYTHIA. This distinction between the observable event and
internal simulation history will be important to keep in the HOMER setup, in order to faith-
fully re-interpret PYTHIA simulated data, so that the simulated observable event becomes
statistically indistinguishable from the measured observable event.

String breaks are the production points of hadrons in the hadronization process. They
are described by seven dimensional vectors containing: the light-cone momentum fraction
of the hadron, z; the two-dimensional momentum kick ∆p⃗T = (∆px ,∆py) of the emitted
hadron; the hadron mass mi j; a boolean that encodes whether the string break occurred at the
positive or the negative end of the string, stored within PYTHIA as fromPos; and the transverse
momentum of the string before the breaking, p⃗ string

T = (pstring
x , pstring

y )6

s⃗hcb = {z,∆p⃗T, m,fromPos, p⃗ string
T }h,c,b . (4)

2It is possible to reconstruct p⃗T, flavour and the full string area c.f. eq. (1), but not the ordering.
3This neglects detector effects such as efficiency and resolution which degrade the observable event.
4In principle, all of the details of the generation can be reconstructed from the algorithm and random number

seed.
5A UserHooks object allows the person running the program, a User, to Hook into the event generation process

and access internal variables normally not visible.
6In general, the energy of the string in its center-of-mass frame, Estring, would also be included in this list. We

are able to use the shorter list in eq. (4), since the fragmentations in the Lund string model do not depend explicitly
on Estring. Additional information must also be included in the case where gluons are attached to the string, and
the initial state changes between events.
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The indices h, c, and b indicate the history, fragmentation chain, and string break the vector be-
longs to, as defined below. Note that s⃗hcb contains redundant information, since the transverse
momentum of the string fragment after the hadron emission, (p⃗ string

T )hcb, can be reconstructed
from the (∆p⃗T)hcb of all previous hadron emissions. However, we find it convenient to keep
p⃗ string

T explicitly as a datum in s⃗hcb.
A sequence of string breaks forms a fragmentation chain,

S⃗hc = {s⃗hc1, . . . , s⃗hcNh,c
} , (5)

while a vector of rejected fragmentation chains and the accepted fragmentation chain form a
fragmentation history,7

S⃗h = {S⃗h1, . . . , S⃗hNh
} . (6)

Here, the indices are defined as: h = 1, . . . , Ndata is the fragmentation history index, with
Ndata the total number of events in a run; c = 1, . . . , Nh is the fragmentation chain index for
a particular fragmentation history h, which has Nh − 1 rejected fragmentation chains and one
accepted fragmentation chain; and b = 1, . . . , Nh,c is the string break index, that runs over
the fragmentation chain c with a total of Nh,c string breaks. The form of eq. (6) assumes the
simplified scenario of this work, where only one string is hadronized per event. When there
are multiple strings per event then the fragmentation history is simply expanded to be the
vector of accepted and rejected fragmentation chains for all strings, including the energy of
each string.

In summary, a measurable event eh, where the index h = 1, . . . , Ndata runs over all events
in a run, is fully described by specifying the accepted fragmentation chain

eh ≡ e(S⃗h)≡ e(S⃗hNh
) . (7)

Explicitly, eh is an unordered list of Nhad = Nh,Nh
+ 2 laboratory frame four momenta, (Ei , p⃗i),

and masses, mi , of the produced hadrons,8

eh = {{mh1, Eh1, p⃗h1}, . . . , {mhNhad
, EhNhad

, p⃗hNhad
}} . (8)

This unordered list is constructed from the accepted fragmentation chain quantities, S⃗hNh
, by

boosting the momenta of the produced hadrons to the laboratory frame. If two simulation
histories differ only by their rejected chains, they result in the same event and are equal to the
event given by the accepted fragmentation chain. An example schematic of all the components
for a fragmentation history, and run, are shown in fig. 1. In this work here, it is important to
note that our synthetic PYTHIA data, unlike real data, also contain the rejected fragmentation
chains, so that the fragmentation history contains a vector {S⃗h1, . . . , S⃗hNh

} for each event eh.
This is not relevant for the HOMER method, but allows us to perform a closure test of the
method.

2.2 Details about the HOMER method

In the Lund string fragmentation model, the probability of a given string break s⃗hcb depends
on the p⃗ string

T of the string fragment that is emitting the hadron. We write this conditional

7For the accepted fragmentation chain, finalTwo proceeds to generate two additional hadrons from the re-
maining string. Thus, the total number of hadrons will be the number of string breaks contained in the accepted
chain plus the additional two hadrons, which are not counted as string breaks in this work. This is because their
kinematic distribution does not depend on the a and b Lund parameters as long as the low-energy threshold that
determines whether finalTwo is applied remains fixed, and thus do not need to be reweighted for the example
we consider here.

8Additional information could be optionally included for each hadron such as flavor composition or charge.
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Figure 1: Schematic detailing the different components of a simulated run. String
breaks are grouped into fragmentation chains, while collections of rejected and ac-
cepted fragmentation chains form fragmentation histories. Observable events are
obtained from the last, accepted fragmentation chain. A collection of multiple events
is a run.

probability as

p(s⃗hcb)≡ p({z,∆p⃗T, m,fromPos}h,c,b|{p⃗
string

T }h,c,b) . (9)

HOMER aims to learn a fragmentation weight wdata
s (s⃗hcb) for individual hadron emissions. This

is achieved by taking an initial guess for the fragmentation probability function psim(s⃗hcb) from
the baseline simulation model, e.g., PYTHIA, and reweighting it to a data-driven fragmenta-
tion function

psim(s⃗hcb)→ winfer
s (s⃗hcb)psim(s⃗hcb) . (10)

In this work, we make the simplifying assumption that only pions are produced in frag-
mentation, leading to a simpler transverse mass spectrum (the exploration of more realistic
scenarios, including data-driven flavor selection is left for future work). The baseline simula-
tion model is taken as eq. (3), with parameters chosen to differ sufficiently from those used to
produce the synthetic data. Nsim baseline simulation model events are generated. The baseline
simulation model events are then compared with the experimental run dataset that contains
Ndata events. In obtaining winfer

s (s⃗hcb), HOMER only uses information that is experimentally
accessible.

In the HOMER method, the inference process is divided into three steps. In step 1 the
ratio of probabilities for a given event eh to occur in data compared to the baseline simulation
model,

wexact(eh) =
pdata(eh)
psim(eh)

, (11)

is estimated with a classifier, wclass(eh) ≈ wexact(eh). The classifier weights of step 1 are then
used in step 2 to infer single emission weights, winfer

s (s⃗hcb). These single emission weights are
finally combined in step 3 to give the predicted weight for a fragmentation history, wHOMER(S⃗h).
In the following, we provide details for each of these three steps.

Since the data used in this work is synthetic data produced with PYTHIA, the exact weights,
wexact(eh), are known. These weights are controlled by the ratio of probabilities for an event
produced either using the “sim” or “data” values of parameters for the Lund fragmentation
function of eq. (3); the corresponding fragmentation functions for these two parameter sets
are denoted as fsim(z) and fdata(z), respectively. For a single emission the exact weight is then
simply given by

wexact
s (s⃗hcb) =

fdata(z)
fsim(z)

, (12)
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and thus is a known analytic function, up to the normalization constants for each f (z) (see
ref. [10] for details). The exact weights for an event, wexact(eh), are then built from the exact
single emission weights wexact

s (s⃗hcb).

2.2.1 Step 1: Event classifier

To estimate wexact(eh), we train a Machine Learning (ML) algorithm to distinguish between
data and the events produced from the baseline simulation model. This classifier can only
have access to measurable quantities – the kinematic and flavor information for the observ-
able hadrons in each event – and not to the full fragmentation history. In practice, the experi-
mental measurements that can be made realistically now or in the near future never use this
full information, but, rather, collections of high-level observables. To study the performance
of HOMER with such observables, we consider two limits: unbinned and binned scenarios.
The unbinned scenario requires dedicated experimental measurements in the same vein as
ref. [11], while the binned scenario uses only information that is already available from LEP
measurements archived on HEPDATA [12]. We also benchmark the performance of our model
when using the full information available, a point cloud representation of events. Such point
cloud datasets will be available from experiments either as full phase-space measurements un-
folded using techniques such as OMNIFOLD [13–15], or through open-data initiatives that will
still require detector simulations and performance maps to correct reconstruction-level data.

The unbinned scenario. In this scenario, the information available for an event consists of
values for observables Oi , such as the charged multiplicity, thrust, etc., for every event. A full
list of the Nobs = 13 observables we use is given in section 3.1. More precisely, in this scenario
the information for each event eh is given by a vector

x⃗h = {O1(eh), . . . ,ONobs
(eh)} . (13)

The available information for an experimental run is therefore represented by a collection of
all x⃗h, giving the input vector X⃗data = { x⃗1, . . . , x⃗Ndata

}. Similarly, the Nsim baseline simulation
model events are collected in the baseline simulation model input vector, X⃗sim = { x⃗1, . . . , x⃗Nsim

}.
The step 1 classifier is trained using the standard Binary Cross-Entropy (BCE) loss function,

which for balanced classes is

Lunbin = −
1

Nsim

Nsim
∑

h=1

ln (1− y( x⃗h))−
1

Ndata

Ndata
∑

h=1

ln (y( x⃗h)) , (14)

where y( x⃗h) ∈ [0,1] is the output of a classifier for the input vector x⃗h, and Nsim and Ndata are
the number of training samples per class, which we assume to be equal in eq. (14). If needed,
we weight the classes to ensure that each class has the same weighted number of events.
This choice of the loss function guarantees that when the classifier training converges, we can
obtain a good estimator for the event weight of eq. (11) from the output of the classifier,

wclass(eh)≡
y( x⃗h)

1− y( x⃗h)
, (15)

so that wexact(eh)≈ wclass(eh).

The binned scenario. Here, the classifier input is still the vectors of observables for each
event, x⃗h of eq. (13). However, measured data is partitioned into disjoint bins ni of observable
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Oi values. The classifier is trained using a loss function constructed from the binned measured
data and the reweighted baseline simulation model,

Lbin =
∑

Oi

Ndata

ni

ni
∑

k=1

�

pOi
k − p̄Oi

k (y)
�2

pOi
k

, (16)

where the summation is over all the observables up to index Nobs. The classifier attempts to
minimize the difference between the measured distributions and the reweighted distributions
of the baseline simulation model. That is, for each observable Oi , the fractions of events pOi

k
in a particular bin are given by,

¦

pOi
1 , . . . , pOi

ni

©

=
1

Ndata

¦

Ndata
1

�

�

Oi
, . . . , Ndata

ni

�

�

Oi

©

, (17)

and similarly for the expected fractions of events, p̄Oi
k , estimated from the baseline simulation

model. For this, each event eh is weighted with wclass(eh) = y( x⃗h)/
�

1− y( x⃗h)
�

, so that Lbin
is minimized for wclass(eh) ≈ wexact(eh). For instance, if the observable Oi is the charged
multiplicity, nch, then Ndata

1 |nch
gives the number of events in the run that have nch = 2, Ndata

2 |nch

the number of events in the run that have nch = 4, etc., and similarly for simulation, but now
for weighted distributions.

By construction, the loss function Lbin in eq. (16) again guarantees that the output of
a converged classifier can be used to approximate the event weights of eq. (11), using the
output of the classifier from eq. (15). The use of classifiers for reweighting simulated events
so that their distributions match the measured event distributions is a common technique
(see, e.g., refs. [16–19]). The novelty of the current approach is in establishing a relation-
ship between event weights and the underlying fragmentation function, made possible via the
application of eq. (23). This is exploited in step 2 to infer an estimator for ws.

The Point cloud scenario. For this scenario we represent an event eh as a vector x⃗h of four
momenta, see eq. (8). x⃗h contains all the information available in the event except particle
type and charge. This is the limiting case of the unbinned scenario and therefore proceeds anal-
ogously; the available information about the experimental run is represented by a collection
of all x⃗h, giving the input vector X⃗data = { x⃗1, . . . , x⃗Ndata

}. The Nsim baseline simulation model
events are collected in the baseline simulation model input vector, X⃗sim = { x⃗1, . . . , x⃗Nsim

}. As in
the unbinned scenario, a classifier is trained using the standard BCE loss function of eq. (14),
and we obtain wclass(eh)≈ wexact(eh) through eq. (15).

2.2.2 Step 2: Inference of fragmentation weights

The goal of this step is to construct the appropriate single emission weights ws such that the
probability for each string break that produces the emission, pdata(s⃗hcb) of eq. (10), will re-
produce data by reweighting the baseline simulation model string breaks. However, there
are two complications. First, in PYTHIA, the baseline fragmentation history also contains the
string fragmentation chains that do not pass the finalTwo filter (as explained in section 2.1).
That is, the finalTwo filter divides the fragmentation chains {S⃗hc} in two: chains that pass
the finalTwo filter, a set consisting of {S⃗acc

hc }, and those that do not, set {S⃗rej
hc }. Second, the

measurable event quantities, i.e., the momenta of the outgoing hadrons of eh, given by eq. (8),
form an unordered list, since there is no information about the sequence of causally discon-
nected string breaks. This means that two fragmentation chains, S⃗hNh

and S⃗′hNh
, which give rise
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to exactly the same hadron four momenta except with a different order of emissions, are phys-
ically indistinguishable. That is, the two fragmentation chains give rise to the same observable
event, eh = e(S⃗hNh

) = e(S⃗′hNh
).

The probability for an event in the baseline simulation model is thus given by

psim(eh) =
� ∞
∑

Nh=1

�

prej
sim

�Nh−1
�

×
�

∑

e(S⃗hNh
)=eh

psim(S⃗hNh
)
�

=
1

1− prej
sim

∑

e(S⃗hNh
)=eh

psim(S⃗hNh
) =

1
pacc

sim

∑

e(S⃗hNh
)=eh

psim(S⃗hNh
) ,

(18)

where the second summation of the first line is over the set of accepted fragmentation chains
that lead to the same observable event eh. The total probability of producing the event eh also
contains the probability of rejecting fragmentation chains. Since the specifics of the rejected
chains do not matter, as they are statistically independent of the accepted chain, the accepted
chain has no dependence on past rejected chain(s) and the probability that enters psim(eh) is
the probability of rejecting any chain. This is given by summing over the set of rejected chains,

prej
sim =
∑

S⃗ jk∈{S⃗
rej
hc }

psim(S⃗ jk) , (19)

where the summation over Nh in eq. (18) counts the number of fragmentation chains that
are rejected in the simulation before S⃗hNh

is accepted.9 Similarly, the total probability for the
accepted fragmentation chains is given by

pacc
sim = 1− prej

sim =
∑

S⃗ jk∈{S⃗acc
hc }

psim(S⃗ jk) , (20)

Note that the probabilities for individual fragmentation chains are products of string breaks,

psim(S⃗hc) =
Nb
∏

b=1

psim(s⃗hcb) . (21)

We use the label “data” for the probabilities that describe the measured distributions and
the equivalent expressions of eqs. (18) to (21), i.e., pdata(eh), prej

data, pacc
data and pdata(S⃗hc), re-

spectively. With real measured data, these probabilities may only be approximate, but for the
synthetic data that we use as an example in this paper, we know these exact probabilities must
exist. Below, we describe how the best estimate for pdata(s⃗hcb) is found.

For step 2, rather than directly working with pdata(s⃗hcb) and psim(s⃗hcb), we introduce
weights by which the baseline simulation model results need to be reweighted in order to
match the measured data. The exact weight for a single emission is given by, see also eq. (12),

wexact
s (s⃗hcb) =

pdata(s⃗hcb)
psim(s⃗hcb)

, (22)

and the corresponding weight for the event eh is given by,10

wexact(eh) =
pacc

sim

pacc
data




wexact(S⃗hNh
)
�

e(S⃗hNh
)=eh

, (23)

9Note that the Nh index for S⃗hNh
in eq. (18) is a dummy index, and thus the prej is truly independent from the

second term in eq. (18).
10In a Bayesian context, the weight in terms of e is the evidence ratio between models obtained by marginalizing

over all possible histories h that are compatible with e.
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with

wexact(S⃗hNh
) =

Nhad−2
∏

b=1

wexact
s (s⃗hNh b) , (24)

where Nhad is the number of hadrons in the event. Here, the number of hadrons is two larger
than the number of string breaks in the accepted simulation chain due to finalTwo, i.e., in
our notation Nhad − 2 = Nh,Nh

. In eq. (23), the product of single weights is averaged over
fragmentation chains that produce the same event, see also eq. (18).

To achieve wexact(s⃗hcb) ≈ winfer(s⃗hcb), several approximations can be made. First, it is
unlikely to encounter two fragmentation chains simulated with very similar observable kine-
matics. In HOMER we can thus replace the average in eq. (23) with the weight for a single
fragmentation chain11

winfer(eh,θ ) =
pacc

sim

pacc
infer(θ )

winfer(S⃗hNh
,θ ) , (25)

where

winfer(S⃗hNh
,θ ) =

Nhad−2
∏

b=1

winfer
s (s⃗hNh b,θ ) . (26)

To find the form of winfer(eh,θ ), we parameterize winfer
s using a neural network g with param-

eters θ ,
winfer

s (s⃗hcb,θ ) = gθ (s⃗hcb) . (27)

The two acceptance probabilities in eq. (25) are therefore given by

pacc
sim =

Nacc

Ntot
, pacc

infer(θ ) =

∑

S⃗ jk∈{S⃗acc
hc }

winfer(S⃗ jk,θ )
∑

S⃗ jk∈{S⃗hc}winfer(S⃗ jk,θ )
, (28)

where Nacc = Nsim is the number of accepted fragmentation chains in the simulation with Nsim
events, while Ntot is the total number of chains in the fragmentation history, including the
rejected ones.

The neural network of eq. (27) takes as input the seven-dimensional string break vector,
s⃗hcb given by eq. (4), and outputs the weight winfer

s for this string break. Since the event
weight, winfer(eh,θ ), involves products of multiple weights, see eq. (25), it is easier to learn
the logarithm of ws. In fact, it is numerically expedient to introduce ln gθ (s⃗) as a difference of
two neutral networks

ln gθ (s⃗) = g1(z,∆p⃗T, m,fromPos, p⃗ string
T ;θ )− g2(p⃗

string
T ;θ ) , (29)

where θ denotes the parameters of the neural network.
This choice of parameterization is not strictly necessary, however, it does allow us to impose

the conditional structure eq. (9) explicitly in the loss function, see discussion surrounding
eq. (36) below. The estimator for the fragmentation chain weight, winfer(S⃗hNh

,θ ), is obtained
by combining all individual gθ contained in that chain, c.f. eq. (26). We do this by treating
each chain S⃗hc as a string-break point cloud, not to be confused with the hadron-level point
cloud discussed in section 2.2.1, and implementing eq. (29) as a module in a Message-Passing
Graph Neural Network (MPGNN) written using the PYTORCH GEOMETRIC library [20].

The loss function for gθ has two terms

Linfer = LC +L12 , (30)

11Approximating eq. (23) with eq. (25), while accurate enough for the case of qq̄ strings of fixed energy, was
found empirically to break down when gluons are added to the string. A modified version of HOMER will therefore
be needed in order to handle more general string hadronization cases [9].

11

https://scipost.org
https://scipost.org/SciPostPhys.18.2.054


SciPost Phys. 18, 054 (2025)

where LC , given in eq. (34) below, ensures that the event-level weights winfer(eh,θ ) reproduce
the weights wclass(eh) of eq. (11) well, which were learned in step 1. The second term, L12,
given in eq. (36) below, is a regularization term that ensures a proper convergence of the g1
and g2 NNs towards a solution that satisfies the conditional structure imposed by the string
breaks within the Lund string model. In the remainder of this section, we motivate the forms
of these two loss functions.

The main ingredient that makes step 2 of the HOMER method possible is that in step 1
we obtained a good approximation for the event weights, wclass(eh). All we need to ensure in
step 2 is that winfer(eh, gθ ) reproduces well wclass(eh), and thus wexact(eh), by minimizing the
appropriate loss function. One possibility is to treat this as a regression problem and minimize
an MSE loss

LR =
1

Nsim

Nsim
∑

h=1

(wclass(eh)−winfer(eh, gθ ))
2 . (31)

However, for a finite dataset the MSE loss may not force winfer(eh, gθ ) to behave as a likeli-
hood ratio. A conceptually clearer approach is to view the problem of constructing winfer(eh,θ )
as yet another classification problem, where the learnable function observes both data and
simulation to obtain the necessary likelihood-ratio. If we had access to histories for both sim-
ulation and measurements we could obtain the NN parameters in gθ by minimizing the BCE
loss

LBCE
C = −Esim

�

ln
�

1
1+winfer(eh, gθ )

��

−Edata

�

ln
�

winfer(eh, gθ )
1+winfer(eh, gθ )

��

, (32)

where the two expectation values E are over simulation and data, respectively. The above
loss function is minimized when winfer

s (s⃗hcb) = pdata(s⃗hcb)/psim(s⃗hcb). While the fragmentation
histories are not accessible in data, the expectation value over data in eq. (32) can be ap-
proximated through the use of the event weights that were learned in step 1. That is, for any
observable O the expectation value over events is given by

Edata[O(eh)] = Esim[w(eh)O(eh)] . (33)

This allows us to rewrite the BCE loss function as

LC = −
1

Nsim

Nsim
∑

h=1

�

ln
�

1
1+winfer(eh, gθ )

�

+wclass(eh) ln
�

winfer(eh, gθ )
1+winfer(eh, gθ )

��

, (34)

which is minimized when winfer(eh, gθ ) = wclass(eh). That is, we can achieve the same objective
as the regression problem by taking the expectation value over simulated events, where we
consider each event twice,12 once unweighted and then once again weighted by wclass. This
approach regularizes the problem by ensuring that the likelihood ratio behaves well both for
simulated events and for measured events, where for the latter the distributions are approxi-
mated via the reweighted simulations.

The second term in the loss function, L12, treats g1 and g2 differently, and ensures that
the individual string break weights, winfer

s (s⃗hcb,θ ), are given by the ratios of conditional prob-
abilities, see also eq. (22),

winfer
s (s⃗hcb,θ )≈ wexact

s (s⃗hcb) =
pdata

�

p({z,∆p⃗T, m,fromPos}h,c,b|{p⃗
string

T }h,c,b)
�

psim

�

p({z,∆p⃗T, m,fromPos}h,c,b|{p⃗
string

T }h,c,b)
� . (35)

The form of the loss function that ensures this property is given by,

L12 = −
∑

s⃗hbc

�

ln
�

1

1+ exp
�

g2(s⃗hbc)
�

�

+ exp
�

g1(s⃗hbc)
�

ln
� exp
�

g2(s⃗hbc)
�

1+ exp
�

g2(s⃗hbc)
�

�

�

. (36)

12A feature of using the same data twice is that statistical fluctuations cancel out, see, e.g., ref. [21].
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In the limit of infinite baseline model simulation, i.e., training data, L12 is minimized by g1
and g2 that satisfy

exp
�

g2(p⃗
string

T )
�

=

∫

dΩ psim(z,∆p⃗T, m,fromPos|p⃗ string
T )

× exp
�

g1(z,∆p⃗T, m,fromPos, p⃗ string
T )
�

,

(37)

where Ω denotes the variables that are being sampled, i.e., all the variables except the trans-
verse momentum of the string, p⃗ string

T .
In the infinite simulation sample limit, the following relations hold,

exp
�

g1(z,∆p⃗T, m,fromPos, p⃗ string
T )
�

→
pclass({z,∆p⃗T, m,fromPos, p⃗ string

T })

psim({z,∆p⃗T, m,fromPos, p⃗ string
T })

, (38a)

exp
�

g2(p⃗
string

T )
�

→
pclass(p⃗

string
T )

psim(p⃗
string

T )
, (38b)

exp
�

g1 − g2

�

→ ws , (38c)

where pclass refers to the probability distributions obtained with wclass
s such that we have

winfer(eh, gθ ) = wclass(eh) and pclass,sim(p⃗
string

T ) are the marginal distributions over the trans-
verse momenta of the string. These are obtained by integrating out all the other variables.
Equation (38c) is the limit of LC , and L12 enforces eq. (37) which produces the limits of
eqs. (38a) and (38b). Combined, this results in the limiting behavior for Linfer, the loss func-
tion of eq. (30). We observe that in this infinite simulation sample limit, the parameterization
of eq. (29) and the presence of the L12 term in Linfer ensure that we are computing the weight
between two conditional distributions, as dictated by how PYTHIA samples string breaks, avoid-
ing other more expensive solutions, see e.g., ref. [22].

2.2.3 Step 3: HOMER output

Once the weights for each individual string fragmentation winfer
s (s⃗hcb,θ ) are known, it is

straightforward to reweight any baseline simulation model fragmentation history. The output
of HOMER is the weight, which is a product of the weights for all the string fragmentations in
the baseline model simulation fragmentation history, including the rejected string fragmenta-
tions,

wHOMER(S⃗h) =
Nh
∏

c=1

Nhc
∏

b=1

winfer
s (s⃗hcb,θ ) , (39)

where Nhc are the string breaks contained in chain c. Compared to the event weight wexact(eh)
of eq. (23), which contains averaging over histories that lead to the same event, the HOMER

output is a weight for each individual fragmentation history. The event weight is the average
of the compatible history weights. That is,

wexact(eh)≃ wHOMER(eh)≡ 〈wHOMER(S⃗h)〉e(S⃗h)=eh
. (40)

Note that the event weight inferred in step 2, i.e., winfer(eh) of eq. (25), differs from wHOMER(S⃗h),
because of averaging over rejected fragmentations. That is, winfer(eh) in eq. (25) contains
the ratio pacc

sim/p
acc
infer(θ ), while wHOMER(S⃗h) is a weight for a particular instance of a simulated

fragmentation history. Once averaged over all fragmentation histories that produce the same
event, the two weights winfer(eh) and wHOMER(S⃗h) coincide. However, the weight wHOMER(S⃗h)
can be calculated from a single baseline simulation model fragmentation history, i.e., for our
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baseline simulation model this weight can be calculated directly from a single PYTHIA event.
This is critical for any practical application of the method, where the correction can be applied
on an event by event level for the baseline simulation model.

More importantly, as we have shown, the expectation values that enter the calculation of
event weights can be estimated efficiently using simulated Monte Carlo samples where we have
access to the simulated histories. This allows us to accurately estimate the new fragmentation
function without explicit access to the analytic form of the baseline fragmentation function. That
is, the new fragmentation function fdata is implicitly defined through winfer

s (s⃗hcb,θ ). The value
of fdata for a particular bin in the lightcone momentum fraction, z ∈ [zi , zi+1), and in the
squared transverse mass, m2

T ∈ [m
2
T, j , m2

T, j+1), can be obtained by reweighting a sample of
string breaks s⃗hcb that were simulated using the baseline model. Explicitly, we have

fdata(zi , m2
T, j) = Es⃗hcb∼sim

�

winfer
s (s⃗hcb

�

�

�

�

z∈[zi ,zi+1),m2
T∈[m

2
T, j ,m

2
T, j+1)

, (41)

where the averaging of the weights winfer
s is performed only over the string breaks that corre-

spond to the particular (z, m2
T) bin. In section 3 we also consider 〈 f (z)〉, the fragmentation

function averaged over all the sampled m2
T values, which is thus given by

〈 fdata(zi)〉= Es⃗hcb∼sim

�

winfer
s (s⃗hcb

�

�

�

�

z∈[zi ,zi+1)
. (42)

Note that in both of the above expressions the only requirement on the baseline fragmentation
function is that it can be sampled.

We emphasize that we are exploiting the fact that, for simulated events, we have both the
underlying fragmentation history, as produced by the model, and observable quantities that
can be compared with measurements. If we learn how to reweight a given history to match
the measured event distribution, we are effectively updating the fragmentation model.

2.3 Contrasting the HOMER method with GANs

To recapitulate, HOMER learns a data-driven fragmentation function fdata(z) by estimating
the likelihood ratio ws for each string break, eq. (22), which depends on the yet-to-be-
determined fdata(z) and the baseline simulation model fragmentation function fsim(z). The
HOMER method divides the task of learning fdata(z) into three steps. In step 1, event-level
observables x⃗h = x⃗h(eh) are used to estimate the event-level weights wexact(eh). In step 2, the
event-level weights wexact(eh) are used to train two neural networks g1 and g2. These two
neural nets then provide ws for each string break such that the reproduced w(eh) best matches
the target value, wexact(eh). The string break weights are then used to reweight the baseline
simulation model output, including rejected fragmentations, in step 3. The loss function that
is used in the training of the g1,2 networks is given in eqs. (30), (34) and (36), while fig. 2
shows the flowchart of the HOMER method.

Upon initial inspection, the HOMER method may appear similar in spirit to the adversarial
strategies employed when training GANs [3, 4]. However, the optimization sequence in the
HOMER method is significantly different. Rather than incorporating the weights w(eh) into a
GAN-like loss function of the form

LGAN = −
∑

sim

w(eh) ln (1− D( x⃗h))−
∑

data

ln D( x⃗h′) , (43)

and alternating between minimization through D( x⃗h) updates and maximization through w(e)
updates, in HOMER the event-level weights w(eh), obtained during step 1, are first frozen, and
then the individual string break weights, winfer

s (s⃗hcb), are learned in step 2 by explicitly relating
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Figure 2: Summary flowchart of the HOMER method. Here C is the event-level classi-
fier and R is the weight-level regressor that transforms the event-level weights into
string break-level weights.

them to the event-level weights. The difference between the two approaches is more evident,
if the BCE loss function LC used in HOMER, eq. (34), is rewritten as

LC = −
1

Nsim

∑

sim

�

ln
�

1
1+w(eh)

�

+
D( x⃗h)

1− D( x⃗h)
ln
�

w(eh)
1+w(eh)

��

, (44)

where D( x⃗h) is obtained in step 1, and w(eh) is determined by the g1,2 NNs in step 2.
Although both approaches require a very precise discriminator D( x⃗h), framing the training

problem using the HOMER approach avoids certain pitfalls of an adversarial strategy at the ex-
pense of more involved computations. In particular, in the HOMER method, the estimate for the
weight w(eh) is updated by minimizing a convex function. The solution does not correspond
to an equilibrium between competing tasks but rather to a possible underlying model that
yields the appropriate observables after integration over the unseen latent variables. While
the HOMER method provides a regularized training and can be framed in fully probabilistic
terms as an evidence ratio estimation, there is an added complication; in step 2 all the rele-
vant details regarding the baseline simulation model need to be fully incorporated, e.g., the
PYTHIA finalTwo efficiency estimation, which can otherwise be ignored when trying to fool
the discriminator.

3 Numerical results

To showcase the use of the HOMER method we used PYTHIA to generate two different sets
of 2 × 106 events, in each case hadronizing a uū string with a center-of-mass frame energy
of
p

s = 90GeV, while permitting only emission of pions for simplicity. The two sets were
generated using two different sets of values for the Lund parameters. The baseline sim-
ulation model dataset was generated using the default Monash values for the parameters,
asim = 0.68, b = 0.98,σT = 0.335, while the synthetic measured data were generated for a
changed value of adata = 0.30, with all the other parameters kept the same. The choice of pa-
rameters was based on the benchmarks studied in ref. [10], where we found the reweighting
from “sim” to “data” for this change in the Lund a parameter to be non-trivial yet still achiev-
able with good coverage, albeit with low effective statistics. Both the synthetic measured data
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and baseline simulation model datasets were generated using PYTHIA, in order to be able to
perform a closure test. In future applications, only the baseline simulation model dataset need
be generated using PYTHIA, or another generator of choice, while the actual experimentally
measured observables will be used for step 1.

The two 2× 106 event datasets were both split in half, with Ntrain = 106 and Ntest = 106

events in each dataset used for training and testing, respectively. All the figures below were ob-
tained using the testing datasets, which were also used to verify the absence of any significant
over-fitting both in step 1 and step 2 of the HOMER method. In more realistic applications,
where HOMER is to be tuned to data instead of performing a closure test using simulated
datasets, the datasets should be divided into three subsets for training, testing and visualiza-
tion. This will avoid overfitting of the test dataset.

For step 1 we consider three different cases, distinguished by the level of available informa-
tion. In section 3.1 only high-level observables were used to train the classifier in step 1. The
high-level observables were either grouped into histograms, section 3.1.1, or were provided
on an event-by-event basis, section 3.1.2. In section 3.2, a point-cloud representation of the
events was used instead.

The training method of step 2 was same for all three cases. Only the input wclass(eh)weights
from step 1 differ between these three cases, as detailed in sections 3.1 and 3.2. It is important
to note that for all three cases, the string breaks in step 2 are described by seven-dimensional
vectors s⃗hcb, see eq. (4). These seven variables are further partitioned into two groups; the
first group characterizes each string break, while the second group encodes the state of the
string fragment before the break.

1. The five variables that are sampled by our baseline simulation model PYTHIA for a string
break are: {z,∆px ,∆py , m,fromPos}. Here, z is sampled from the symmetric Lund
string fragmentation function, eq. (3), ∆px and ∆py are sampled from a normal distri-
bution of width σT/

p
2, and the hadron mass m is randomly selected from either the

mass of the π± or π0 mesons. Finally, a binary random variable fromPos determines
whether the string break occurs on the negative or the positive end of the string. Inclu-
sion of this variable is necessary to fully relate z to pz and E, while also allowing to check
that any learned hadronization function does not spoil the required left-right symmetry
of the string.

2. The two remaining variables in s⃗hcb are the components of the transverse string mo-
mentum, pstring

x and pstring
y , which describe the string state prior to the string break. The

probability for a string break, pdata(s⃗hcb), depends conditionally on these two variables,
see eqs. (3) and (10).

To minimize the step 2 loss function, Linfer of eq. (30), we use an MPGNN implemented in
the PYTORCH GEOMETRIC library [20]. We treat each fragmentation chain as a particle cloud
with no edges between the nodes,13 with string break vectors s⃗hcb with b = 1, . . . , Nh,c , as the
nodes. The learnable function ln gθ = g1−g2 corresponds to an edge function that is evaluated
on each node and produces updated weights for that node. The updated weight winfer(S⃗hNh

,θ )
for the whole fragmentation chain is then obtained by summing ln gθ over all the nodes and
exponentiating the sum, c.f. eq. (26).

The g1 and g2 are fully connected neural networks with 3 layers of 64 neurons each
and rectified-linear-unit, ReLU, activation functions. The inputs are either string break vec-
tors s⃗hcb for g1, or p⃗ string

T for g2, see eq. (29). The output of each neural network is a real
number with no activation function applied. The weight for a single string break is given by

13We do not need to connect the string breaks since s⃗hcb already tracks the relevant information about the string
state prior to the string break, p⃗ string

T , which enters the string break probability distributions, see eq. (3).
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winfer
s = exp(g1 − g2), c.f. eq. (27), which are then combined according to eq. (25) to produce

the event weight, winfer(eh). Note that the loss function to be optimized, Linfer in eq. (30), is
a sum of two terms, the loss function LC of eq. (34), which depends on event weights, and
L12 of eq. (36), which depends directly on the values of g1 and g2 for each string break. We
optimize Linfer using the Adam optimizer with an initial learning rate 10−3 that decreases by
a factor of 10, if no improvement is found after 10 steps. We train for 100 epochs with batch
sizes of 104. To avoid over-fitting, we apply an early-stopping strategy with 20 step patience.

Next, we show the numerical results for the three different treatments of step 1, starting
with high-level observables as inputs in section 3.1, while the results for point-cloud inputs
are given in section 3.2.

3.1 High-level observables

The high-level observables that we use as inputs to the classifier in step 1 are the same 13
high-level observables that were used in the Monash tune [23], though now only for light
flavors:

• Event shape observables: 1 − T , BT , BW , C and D; their definitions are collected in
appendix B.

• Particle multiplicity n f , the total number of visible particles in the event, and charged
particle multiplicity nch, the number of charged particles in the event.

• The first three moments of the | ln x | distribution, the second and the third moment are
computed around the mean, where x is the momentum fraction of a particle. Explicitly
x = 2|p⃗|/

p
s where

p
s is the center of mass of the collision and p⃗ the momentum of the

particle. This is computed both for all visible particles, ln x f , and for just the charged
particles, ln xch.

These 13 high-level observables must all be calculated on an event-by-event basis. How-
ever, experimental measurements are currently only available for aggregate distributions
of these observables, i.e., histograms. Below, we thus distinguish two possibilities. In sec-
tion 3.1.1 we first show results for the case where the classifier in step 1 is trained on binned
distributions of high-level observables. In section 3.1.2 we then show by how much the
performance of the HOMER method improves, if event-by-event information for high-level
observables was available.

3.1.1 Using binned distributions in the step 1 classifier

We start the analysis by considering the case where the classifier in step 1 is trained on distribu-
tions of high-level observables. Such binned distributions are already available experimentally,
see e.g., ref. [23]. The results of this section can thus be viewed as a proxy for what can already
now be achieved in determining the form of the Lund string fragmentation function from data.

The loss function that is being minimized in step 1 is given in eq. (16). We consider 10 bins
for each continuous high-level variable, and natural binning for the n f and nch multiplicities,
i.e., the bins are the values of the discrete variable, where for nch only even values are allowed.
The choice of a number of bins has a noticeable impact on the performance. This particular
choice of 10 bins ensures enough statistics per bin, while avoiding the total number of bins
from becoming so large that the curse of dimensionality enters. In the future, when existing
measurements such as those considered in ref. [23] will be used, the binning will by necessity
be dictated by the measured data. Additionally, correlations between observables can and
should be included, when available.
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Figure 3: (left) The distributions of event weights w(eh) that follow from the HOMER

method applied to the binned high-level observables, section 3.1.1. (right) Compari-
son between wclass(eh) from step 1, on the x axis, and winfer(eh,θ ) from step 2, on the
y axis. The closer the Pearson correlation coefficient r is to 1, the closer the match
between wclass(eh) and winfer(eh,θ ), signaling better training during step 2.

The classifier in step 1 is a feed-forward NN implemented with the PYTORCH library [24].
To avoid over-fitting, we consider a small NN composed of two inner layers with 13 and 26
neurons each, and with ReLU activation functions. The final layer has a Sigmoid activation
function to ensure y( x⃗h) ∈ [0,1]. Step 2 and step 3 are as described in sections 2.2.2 and 2.2.3,
respectively. The results are shown in figs. 3 to 8 with the following labels:

• Simulation: The simulated distributions obtained using the baseline simulation model,
i.e., PYTHIA.

• Data: The experimentally measured distributions. In this work these are obtained from
our synthetic data, produced from a PYTHIA simulation that uses the adata Lund param-
eter rather than asim. Close Simulation and Data distributions indicate that the baseline
simulation model already describes the data well. The goal of HOMER is to reproduce
the Data distributions.

• HOMER: The distributions that follow from reweighting the Simulation dataset using the
per event weights wHOMER(eh), i.e., the outputs of the HOMER method given by eq. (39). A
comparison between the Data and HOMER distributions is a gauge of the HOMER method
fidelity.

We also give distributions for two intermediate results of the HOMER method, namely using
the weights that were derived at the end of step 1 and step 2, respectively.

• Classifier: Here, the reweighting of the Simulation datasets was performed using the per
event weights wclass(eh) from eq. (15), obtained as a result of the classifier training in step
1. A comparison of the Data and Classifier distributions is a gauge of the performance
of the classifier used in step 1 of the HOMER method.

• Inference: Similar to Classifier, but using per event weights winfer(eh,θ ) obtained in step
2. A comparison of Inference and HOMER distributions measures the difference in two
ways of calculating the weights due to the rejected fragmentation chains, eq. (25) versus
eq. (39). In the limit of an infinite baseline simulation sample size, the two should match
for the observable distributions.

18

https://scipost.org
https://scipost.org/SciPostPhys.18.2.054


SciPost Phys. 18, 054 (2025)

0

25

50

75

D
en

si
ty

Simulation

Data

Classifier

Inference

HOMER

Best NN

Exact w.

0.005 0.010 0.015 0.020 0.025
1-T

0.8

1.0

1.2

R
at

io χ2 / Nbins = 3074

χ2 / Nbins = 1.26

χ2 / Nbins = 23.35

χ2 / Nbins = 21.09

χ2 / Nbins = 1.38

χ2 / Nbins = 1.15

0

10

20

D
en

si
ty

Simulation

Data

Classifier

Inference

HOMER

Best NN

Exact w.

0.02 0.04 0.06 0.08 0.10
C

0.8

1.0

1.2

R
at

io χ2 / Nbins = 3884

χ2 / Nbins = 1.3

χ2 / Nbins = 32.8

χ2 / Nbins = 29.94

χ2 / Nbins = 1.43

χ2 / Nbins = 1.04

0

200

400

D
en

si
ty

Simulation

Data

Classifier

Inference

HOMER

Best NN

Exact w.

0.000 0.002 0.004 0.006
D

0.8

1.0

1.2

R
at

io χ2 / Nbins = 4030

χ2 / Nbins = 3.23

χ2 / Nbins = 32.14

χ2 / Nbins = 29.31

χ2 / Nbins = 1.63

χ2 / Nbins = 0.98

0

25

50

75

D
en

si
ty

Simulation

Data

Classifier

Inference

HOMER

Best NN

Exact w.

0.010 0.015 0.020 0.025 0.030
BW

0.8

1.0

1.2

R
at

io χ2 / Nbins = 5249

χ2 / Nbins = 3.87

χ2 / Nbins = 51.7

χ2 / Nbins = 46.29

χ2 / Nbins = 1.49

χ2 / Nbins = 1.14

0

20

40

D
en

si
ty

Simulation

Data

Classifier

Inference

HOMER

Best NN

Exact w.

0.02 0.03 0.04 0.05
BT

0.8

1.0

1.2

R
at

io χ2 / Nbins = 6491

χ2 / Nbins = 10.44

χ2 / Nbins = 68.19

χ2 / Nbins = 62.2

χ2 / Nbins = 2.01

χ2 / Nbins = 0.72

Figure 4: Distributions of high-level observables 1− T , C , D, BW and BT , for defini-
tions see appendix B, for the case where step 1 of the HOMER method is performed
on the binned high-level observables. See the main text for details.
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Figure 5: (left) The particle multiplicity n f and (right) the charged particle multiplic-
ity nch, for the case where step 1 of the HOMER method was performed using binned
high-level observable distributions.

In addition, we show distributions that use the reweighting approach to transform Simu-
lation distributions to Data distributions, but utilize information that is not available exper-
imentally. In this way we can disentangle the inverse problem, how well we can learn f (z)
from data, from the statistical uncertainties that are introduced due to the use of reweighting
and the use of NNs on finite samples. These two sets of distributions are labeled as follows.

• Exact weights: In this case the Simulation distributions are reweighted following
ref. [10], including reweightings due to the rejected chains. The Exact weights and
Data distributions should be nearly identical, except for increased statistical uncertain-
ties in parts of the distributions due to differing supports of the underlying fragmentation
functions, fdata(z) and fsim(z). In this sense the Exact weights distributions represent an
upper limit on the fidelity that can be achieved by the HOMER method, since this also
uses reweighting.

• Best NN: In this case the g1 and g2 NNs are trained directly on exact single emission
weights wdata

s (s⃗hbc), eq. (22), which are known only because both the synthetic data
and baseline simulation model are from PYTHIA. The comparison of Exact weights and
Best NN distributions is a measure of the g1,2 NNs’ fidelity. Since HOMER uses both
reweighting and g1,2 NNs, this is also an upper limit on the fidelity that can be achieved
by the HOMER method, albeit a more realistically achievable one.

The HOMER, Classifier, Inference, Exact weights, and Best NN distributions of event weights
w(eh) are shown in the left plot of fig. 3. We observe that the distributions of wHOMER(eh)match
well both the Best NN and the Exact weights distributions, while being closer to the Best NN
distribution, as expected, since this encodes both the approximations due to weighting and
the use of g1,2 NNs. The distribution of the weights for the intermediate results, the Classifier
distribution from step 1 and Inference distribution from step 2, are further away, which is
not surprising since they are truly the weights of the events, while the previous weights are
calculated on individual histories.

In the right plot of fig. 3 we also show the comparison between step 1 Classifier and step 2
Inference event-level weights, wclass(eh) and winfer(eh,θ ), respectively. Since the goal of step 2
is to obtain Inference weights that match the Classifier weights, their correlation is a possible
metric of training success. The closer their correlation coefficient r is to 1, the more successful
the training. Deviations from identical reconstruction can be due to finite samples, imperfect
optimization of the loss function, and the breakdown of the approximate expression for the
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Figure 6: Distributions of the first three moments of ln x , where x = 2|p⃗|/
p

s for
visible particle and charged particle distributions. Here, step 1 of the HOMER method
is performed on binned high-level observables. See the main text for details.
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Figure 8: The distribution of the optimal observables (left) −2 ln wclass and (right)
−2 ln wexact. The results are for a classifier trained on the binned high-level observ-
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Inference weight, eq. (25). The right plot results of fig. 3 show that a relatively successful
training was achieved but is by no means perfect.

The distributions of high-level observables are shown in fig. 4 for 1− T , C , D, BW and BT ,
in fig. 5 for n f and nch, and in fig. 6 for the three moments of the ln x f and ln xch distributions.
To quantify the agreement between the reweighted simulated samples and the Data we also
show the χ2 goodness of fit metric

χ2

Nbins
=

1
Nbins

Nbins
∑

k=1

�

pOdata,k − pOpred,k

�2

(σO
data,k)

2 + (σO
pred,k)

2
, (45)

where observable O was binned into Nbins bins. Similar to the notation of eq. (16), pOdata,k

denotes the fraction of experimental events in bin k, while pOpred,k is the corresponding pre-
dicted fraction. The statistical uncertainties, Poisson and reweighted Poisson, on experimental
and predicted distributions are denoted as σO

data,k and σO
pred,k, respectively. Both the measure-

ment and the simulation uncertainties are used in the definition of the goodness-of-fit metric
in order to adequately account for the impact of low statistics in some of the bins.
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From the results shown in figs. 4 to 6, we see that all the reweighted distributions, including
the HOMER output, approximate well the Data distributions. However, while the Exact weights
and Best NN distributions, which use information not available in data, reproduce data almost
perfectly, there is some degradation of fidelity for both the HOMER output, as well as for the
two intermediate results of the HOMER method, the Classifier and Inference distributions. Here,
the use of event weights that are the result of step 1, i.e., the Classifier distributions, perform
better than the other two. This shows that there is some, though small, drop in fidelity when
going from step 1 to step 2, that is, once wclass is expressed in terms of a learned fragmentation
function. Because the learned function is not perfect, the performance degrades.

Figure 7 shows the symmetric Lund string fragmentation function that is extracted from
data using the HOMER method. Since the new function is expressed implicitly through the
string-break weights winfer

s (s⃗hcb), we can plot it by binning the z values of the individual string
breaks sampled with the baseline simulation model and reweighted with winfer

s (s⃗hcb) as de-
tailed in section 2.2.3. The left plot shows the string fragmentation function averaged over
all the sampled values of m2

T, which we denote as 〈 f (z)〉, while the right plot shows f (z) for
a particular transverse mass squared bin, m2

T ∈ [0.063, 0.09)GeV2. We see that the HOMER

method is able to extract both the correct 〈 f (z)〉 and the form of f (z) at a fixed value of m2
T.

Over most of the range of z, the difference between the true form of f (z) and the one extracted
using the HOMER method are below few percent level, and are comparable with the Best NN
result. Recall that the HOMER method does not require a parametric form of the fragmentation
function, but rather learns the functional form from data. The numerical results in fig. 7 can
be viewed as the main result of this paper, and show that, at least in principle, it is possible to
solve the inverse problem and learn the form of the Lund string fragmentation function from
data.

Given sizable datasets, it is possible to distinguish the HOMER, Best NN and true f (z) on a
statistical basis, as indicated by the values χ2/Nbins of fig. 7 that are still much larger than one.
This statement is more clearly illustrated with one-dimensional summary statistics. Based on
the Neyman-Pearson lemma [25], we can use the likelihood ratio to construct a summary statis-
tic which condenses the information that distinguishes between two hypotheses. In analogy
to the test statistic used for hypothesis tests, we compute −2 ln Ldata

Lsim
, where Ldata

Lsim
is the likeli-

hood ratio between data and simulation. The likelihood ratio is computed either in terms of
observable quantities, which are approximated by wclass, or using wexact which we have access
to in our synthetic data. The distribution of −2 ln wclass in the left plot of fig. 8 indicates that
there is a difference between the learned and the true fragmentation functions, but it is not too
large. However, this difference is much more prominent in the distribution of −2 ln wexact, see
the right plot of fig. 8, which indicates that the observables used so are not sufficient to fully
determine the form of f (z). We thus also explore in the two subsequent sections the training
of the step 1 classifier on unbinned high-level data and on point-cloud datasets, respectively.

It is also important to keep in mind that the above analysis includes only statistical uncer-
tainties. Given that the extracted and true forms of f (z)mostly match at the percent level, it is
reasonable to expect that the proper inclusion of systematic uncertainties will be more impor-
tant than the above differences, once real data is used. That is, it is reasonable to expect that
in view of other sources of uncertainties, that the accuracy achieved above from the binned
high-level observables will likely suffice in practice.

3.1.2 Using unbinned distributions in the step 1 classifier

Next, we explore possible gains, if more information beyond the binned distributions consid-
ered in the previous section, should be measured in the future. We consider two possibilities:
in this section we first assume that the same set of high-level observables that we considered in
section 3.1.1 will be measured in the future on an event-by-event basis. That is, for each event
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Figure 9: Shapley values for the classifier employed in step 1, using the unbinned
high-level observables.

the 13 high-level observables would be measured, unlike in section 3.1.1, where only the dis-
tributions of these observables over entire experimental runs were assumed to be known. In
section 3.2 we will then go one step further and assume that for each event the four momenta
and the flavor labels for all of the outgoing hadrons are known. This will then represent the
limit on information that can be extracted experimentally.

If we have access to the event-by-event information about the high-level observables, we
can minimize the loss function of eq. (14) so that the outputs of the classifier then determines
the event weights via eq. (15). For this task we used a gradient boosting classifier (GBC)
implemented in the XGBOOST library [26], with a learning rate of 1, lambda of 0, max_depth
of 10, min_child_weight of 1000, colsample_bytree of 0.5, colsample_bylevel of
0.5, colsample_bynode of 0.5, and all the other parameters set to their default values. The
hyper-parameters were manually tuned such that the resulting classifier was smooth and well
calibrated, since a well calibrated classifier is essential for successful training in step 2.

The use of a GBC rather than a feed forward NN is motivated by the GBC’s speed, simplicity
regarding hyper-parameter selection, and access to easily computable Shapley values [27,28].
The Shapley values, shown in fig. 9 provide an estimate of the relative importance of each
individual observable for the classifier. The Shapley values in fig. 9 show the multiplicity n f
to be the most important feature, closely followed by BT . Since multiplicity n f is correlated
with charged multiplicity nch, while BT is correlated with the other event shape observables,
fig. 9 implies that for determining the string fragmentation function the overall hadron multi-
plicity is more important than the event shape observables, at least in this particular scenario.
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Figure 10: Distributions for the n f and nch high-level observables; the distributions
for other high-level observables are shown in appendix C.1. All weights are from the
model trained with the unbinned high-level observables.

There are also correlation effects between n f and BT that are not captured by fig. 9. How-
ever, since the multiplicities are inherently infrared and collinear unsafe, we do expect them
to always be sensitive to hadronization effects and have an important role, as reported in
refs. [23,29].

The improvement in the event-level weights compared to the case of binned distributions
for high-level observables, section 3.1.1, is clearly visible in fig. 10, where we show the pre-
dictions for hadron and charged hadron multiplicities. The results for the other high-level
observables are collected in appendix C.1, and show a similar trend. The n f and nch Classifier
distributions, obtained using the wclass event weights from the step 1 classifier, are closer to
the Data distribution, signaling better learning using event-by-event information, as expected.
For hadron multiplicity, this improvement translates to a better performance for step 2 results,
the Inference distributions from winfer weights, as well as for the final HOMER predictions. For
charged multiplicity, the improvement is not present due to step 2 not perfectly reconstructing
step 1.

The χ2/Nbins for the HOMER distributions are even slightly smaller than for the Inference
ones. This can be explained by the fact that the HOMER distributions are based on an instance
of a full fragmentation history for an event, while the Inference ones use average acceptance
probabilities for the rejected fragmentation chains. As can be seen in fig. 3, the HOMER distri-
butions have a larger tail than the Inference ones, since the former are obtained by multiplying,
on average, a larger number of individual string break weights. This larger variance then trans-
lates to a lower χ2/Nbins for similar central values. Compared to the case where the step 1
classifier was trained on binned data, the χ2/Nbins changed from about 32 (9) to 9 (38) for
n f (nch), c.f. fig. 5. This is typical for all other high-level observables; for most, the χ2/Nbins
reduces significantly between the binned and unbinned case, unless the agreement with data
was already reasonable.

This improvement in fidelity is perhaps best illustrated by the improved agreement between
the extracted and true f (z), in which case for 〈 f (z)〉 the χ2/Nbins drops from 35 to 7, c.f. figs. 7
and 11. Note that the χ2/Nbins for HOMER extraction of f (z) is very close to the Best NN one;
the fragmentation function is almost as good as it can be. However, it still is not identical,
i.e., despite sub-percent agreement between the HOMER extracted and true f (z), due to the
large statistics available and no systematic uncertainties, we still have χ2/Nbins ≫ 1. When
extracting f (z) from real data, the result could be improved by imposing more structure in
the data-driven fragmentation function, in terms of specific functional dependencies on the
different variables contained in s⃗hcb. However, this risks turning HOMER into merely a more
convoluted Lund string model.
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Figure 11: Distributions for the fragmentation function averaged over all string break
variables except (left) z and (right) fixing the transverse mass bin. All model weights
originate from the model trained with the unbinned high-level observables.

3.2 Using point cloud in the step 1 classifier

Finally, we examine the use of the HOMER method with a point cloud representation of the
event in the step 1 classifier. While in principle the point cloud contains all the available
information about the event, including all the high-level observables studied in section 3.1, it
is not clear a priori that this is the best form of the data to achieve a high fidelity extraction
of f (z) with limited resources. That is, in practice any algorithm trained on a point cloud has
the added cost of extracting more useful representations for the task at hand. This cost can be
expressed in the number of training samples needed.

In the following, we show how the HOMER method performs when the loss function of
eq. (14) is minimized using a point cloud representation of the data. The x⃗h inputs to the clas-
sifier of eq. (14) are now unordered lists of particles as in eh, eq. (8), containing the laboratory
frame four momenta of hadrons. Thus, an event with Nhad hadrons is represented by an array
of dimension {Nhad, 4}. In practice, events are zero-padded for storage to a size of {100,4}
and masking is used to restore the point cloud representation with variable multiplicity when
training and evaluating the classifier.
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Figure 12: Distributions for the n f and nch high-level observables; the distributions
for other high-level observables are shown in appendix C.2. All weights are from the
model trained with the with the point cloud representation.
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Figure 13: Distributions for the fragmentation function averaged over all string break
variables except (left) z and (right) fixing the transverse mass bin. All model weights
originate from the model trained with the point cloud representation.

Our implementation of the point-cloud classifier is inspired by the PARTICLENET method
[30] which uses a graph neural network to tag jets represented as particle clouds or Deep
Sets, and is implemented in PYTORCH GEOMETRIC [20]. It consists of an MPGNN with two
internal edge convolution layers. The edge convolution layers update each node by summing
the edge function evaluated over all the neighbors of that node. To cluster the hadrons, we use
k-nearest neighbors with k = 8. The two edge functions are neural networks with one inner
layer of 64 neurons and a ReLU activation function. The first edge convolution returns a 64-
dimensional embedding that is fed into the second-edge convolution, which again produces
a 64-dimensional embedding. The point cloud is then summed over nodes to obtain a 64-
dimensional vector which is fed to a multi-layer perceptron classifier with one inner layer of
64 neurons and a ReLU activation function, and an output layer consisting of one node and
a Sigmoid activation function. The output of the classifier y( x⃗h) ∈ [0,1] is fed into the BCE
loss function of eq. (14).

The predictions for n f and nch are shown in fig. 12; additional results are collected in
appendix C.2. While there is a degraded performance compared to the results based on high-
level observables, shown in section 3.1, in the point-cloud case these high-level observables
were never directly seen during training. The degraded performance is seen across all three
steps of the HOMER method. The imperfect reconstruction of the weights from the step 1
classifier translates to a degraded performance in the predictions based on inference weights
from step 2 and the final HOMER results. Ultimately, this is due to the increased inductive bias
in the reconstructed fragmentation function, shown in fig. 13. However, while the learned
fragmentation function is sub-optimal compared to the event-by-event high-level case, the
difference between reconstructed and true f (z) is still at the percent or even sub-percent level.

It will be interesting to see how these results carry over to an analysis based on real ex-
perimental data, which will have the added complication of experimental uncertainties due
to detector and reconstruction effects. Nevertheless, a primary takeaway of our point-cloud
analysis appears to be that full individual particle information does not provide significantly
more information than event-by-event high-level observables, when learning hadronization
models applied to simplified qq̄ systems.
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4 Conclusions and outlook

We have introduced the HOMER method for learning the fragmentation function f (z) directly
from data. The HOMER method reweights the probabilities for single hadron emissions in a
baseline simulation model, such that the experimentally accessible observables match mea-
surements. The HOMER method consists of three steps. In step 1 the classifier is trained on
experimental data. This then provides an estimate of a probability weight by which each event
of the baseline simulation model should be reweighted to match the experimental data. In step
2 this is then converted to an ML-based reweighting of single hadron emissions that are af-
terward combined into a weight for the full fragmentation history in the baseline simulation
model.

As a proof of concept, we applied the HOMER method to a simple qq̄ scenario where the
relationship between fragmentation chains and observed events is rather straightforward. We
studied three distinct cases for the measured observables which differ by the level of infor-
mation available. The first case is binned distributions of high-level observables such as the
particle multiplicities, thrust, etc., all of which have already been experimentally measured.
Thus, with this choice of observables the HOMER method could be immediately applied to ex-
isting experimental data. In the second case we assumed that the same high-level observables
were measured on event-by-event basis. In the third and final case, the experimental data was
assumed to be in the form of a point cloud, which in principle carries all the experimentally
available information.

In all three cases, the HOMER method results in a fragmentation function f (z) that is a
very good approximation of the true f (z) with which our synthetic measured data was gen-
erated; the difference between the true and learned f (z) is at the percent level or below.
While there is some degradation moving from unbinned to binned high-level observables, the
achieved precision is already well below the anticipated experimental systematic uncertain-
ties. This implies that for the simplified case of qq̄ string fragmentation with fixed initial state
kinematics, there is little incentive to perform measurements of high-level observables on an
event-by-event basis. However, this is not necessarily true, and in fact we expect it not to be
so, for the more complicated and realistic scenario of strings composed out of both quarks
and gluons [9], as well as for complex topologies generated by color reconnection. The lat-
ter introduces further complications similar to the finalTwo issue, such as the convergence
criteria in junction fragmentation [31, 32]. Additionally, the difference in performance when
training HOMER using binned or unbinned high-level observables might increase significantly
when the training is performed on actual measurements rather than performing a closure test
on synthetic data. Further exploration in this direction, including comparison with dedicated
event-by-event measurements, if these become available, is needed. Another interesting out-
come of our proof-of-concept is that learning f (z) from the unbinned high-level observables
using the HOMER method already saturates the best possible NN-based description. Moving
from unbinned high-level observables to a point-cloud trained classifier in step 1, we even find
a slight degradation in performance, most likely due to the added difficulty in training.

In summary, we have demonstrated that fragmentation functions can be learned from data
using the HOMER method. To make contact with real experimental data several extensions
of presented results are required. First, the HOMER method should be extended to the case
of strings with any number of attached gluons, as well as full flavor structure. Because we
implemented the HOMER method using PYTHIA as the baseline simulation model, we expect
our framework to translate straightforwardly to these types of extensions as they are already
present in PYTHIA [9]. Second, a much larger change to the HOMER method would be to
avoid the main underlying assumption of the method as presented in this manuscript, namely
that the the Lund string fragmentation model sufficiently describes hadronization. At least in
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principle, the method can be expanded to replace this specific choice of fragmentation model
in its entirety, simply producing hadron collections from color singlets. To do this, state-of-
the-art algorithms for point cloud generative models, e.g., refs. [33–38], may prove useful.
We leave such explorations for future work.
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A Public code

The public code for this work can be found at https://gitlab.com/uchep/mlhad in the HOMER/
subdirectory. The repository consists of a hierarchical structure with four major components:
one for data generation and the other three corresponding to the three HOMER steps. Detailed
explanations and instructions of usage can be found within the code documentation. All code
is written in Python v3.10.8, and heavily utilizes the XGBOOST library version 1.7.6, the
PYTORCH library v2.1.2 and the PYTORCH GEOMETRIC library v2.4.0. Finally, all datasets
were produced using PYTHIA v8.311.

B Definitions of shape observables

In this appendix we collect the definitions of shape observables 1− T , BT , BW , C and D that
were used in section 3.1. Here, thrust is defined as [39,40]

T =

∑

i |p⃗i · n⃗T |
∑

i |p⃗i|
, (B.1)

where the sum is over particles i with three momenta p⃗i , and the unit vector nT is chosen such
that the above expression is maximized. The thrust takes values between 0.5 for spherical
events and 1.0 for 2-jet events with narrow jets. The thrust axis n⃗T divides the space into two
hemispheres, S±, which are then used in the definitions of other shape variable.

The two jet broadening variables are obtained by computing for each hemisphere [41,42]

B± =

∑

i∈S±
|p⃗i × n⃗T |

2
∑

i |p⃗i|
. (B.2)
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The total jet broadening is then defined as

BT = B+ + B− , (B.3)

while the wide jet broadening is defined as

BW =max(B+, B−) . (B.4)

The C and D parameters, on the other hand, are related to the eigenvalues of the linearized
momentum tensor [43,44]

Θi j =
1
∑

a |p⃗a|

∑

a

pi
ap j

a

|p⃗a|
, i, j = 1,2, 3 , (B.5)

where the summation is over different particles, with three momenta p⃗a, while pi
a denotes

component i of the momentum. The three eigenvalues of Θi j are denoted λ1,2,3, and the C
and D parameters are

C = 3(λ1λ2 +λ2λ3 +λ3λ1) , D = 27λ1λ2λ3 . (B.6)

C Additional numerical results

In this appendix we collect additional figures that supplement the results of section 3.1.2 for
a step 1 classifier trained on unbinned high-level data in appendix C.1, and the results of
section 3.2 for a step 1 classifier trained with a point cloud in appendix C.2.

C.1 Step 1 with unbinned high-level observables

In this appendix we collect figures that supplement the ones shown in section 3.1.2, where the
results of training the step 1 classifier using unbinned high-level observables was shown. The
results of figs. 14 to 17, along with figs. 10 and 11 in the main text, mirror the results in figs. 3
to 8 of section 3.1.1, which were obtained using binned high-level observables.

Figure 15 shows distributions for the high-level observables 1−T , C , D, BW , and BT , while
fig. 16 shows the distributions for moments of ln x f and ln xch. These are to be compared with
the results of figs. 4 and 6 in section 3.1.1 of the main text, respectively. There is a significant
reduction in χ2/Nbins for the shape observables when moving from binned to unbinned train-
ing, and similarly for the moments of ln x f and ln xch, unless these were already captured well
by the binned training.

Figure 14 shows the event weights that are obtained at different stages of the HOMER

method, for the case of training on the unbinned high-level observables. The right plot in
fig. 14 shows a comparison between the step 1 and step 2 event-level weights, wclass(eh) and
winfer(eh,θ ). We observe how each winfer(eh,θ ) is a satisfactory reconstruction of winfer(eh),
although with a somewhat lower correlation coefficient r than in the case of training on binned
observables, c.f. fig. 3 of section 3.1.1. However, this slight decrease in correlation is less a
reflection of worse performance than a consequence of a better underlying model that corrects
any issues step 1 had by means of added inductive bias. As shown in the left figure, now the
HOMER distribution is closer to the Best NN and thus a better approximation of the Exact weights
distribution.

The lack of exactness is clearly evident in the optimal summary statistic shown in the right
plot of fig. 17. Although the fragmentation function is a very good approximation, any differ-
ences accumulate quickly when computing the full history weight, and the optimal summary
statistic reflects this. However, the main takeaway here is that HOMER is able to learn a good if
not perfect approximation for the high-level observables, as evidenced by the summary statistic
shown in the left plot of fig. 17.
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Figure 14: (left) The distributions of event weights w(eh) that follow from the HOMER

method applied to the unbinned high-level observables, section 3.1.2. (right) Com-
parison between wclass(eh) from step 1, on the x axis, and winfer(eh,θ ) from step 2,
on the y axis. The closer the Pearson correlation coefficient r is to 1, the closer the
match between wclass(eh) and winfer(eh,θ ), signaling better training during step 2.

C.2 Point cloud case

In this appendix we collect figures that supplement the ones shown in section 3.2. The event
weights are shown in fig. 18. The results show that the weights obtained in step 2 are a very
good reconstruction of the weights from step 1, though the distribution of the HOMER weights
is still not as good of an approximation of the Exact weights as the Best NN weights are. There
are several possible sources of this slight degradation in performance. First, it could be due
to the additional cost of extracting useful information from the point cloud representation of
data, compared to the data projected on a set of high-level observables, resulting in reduced
performance compared with the high-level observables. However, it could also be due to the
relative simplicity of the qq̄ string fragmentation example, for which, as shown in section 3.1.2,
multiplicity is the main feature that distinguishes between the measured data and the baseline
simulation model.

The difference in performance is consistently reflected in the distributions of the high-
level observables. This is not surprising, since unlike the case of the step 1 classifier trained on
either binned or unbinned data, here, the high-level observables are not seen directly during
the training. The resulting distributions for the point cloud case are shown in figs. 19 and 20,
see also fig. 12 in the main text. These are to be compared with figs. 15 and 16 in appendix C.1,
and with fig. 10 in the main text, respectively.

We see that the results of step 1, the Classifier distributions, show a slightly degraded
performance compared to the case where the classifier is trained directly on the high-level
distributions. The step 2 Inference and the HOMER distributions similarly show an imperfect
reconstruction of step 1. This degrades the reconstruction performance due to the slight in-
crease in the inductive bias, also in the reconstruction of the fragmentation function, shown
in fig. 13. That is, the 〈 f (z)〉 reconstructed using the point cloud, shown in fig. 13, has a
χ2/Nbins = 46, to be compared with a significantly smaller χ2/Nbins = 9 for the case of un-
binned high-level observables, c.f. . fig. 11. Though, it is worth reiterating that the differences
between learned and true 〈 f (z)〉 are in both cases at or below percent level, and thus more
than suffice in practice.

The summary statistics of fig. 21 also capture the degradation in performance of the point
cloud case compared to the unbinned high-level observables one. Signs of sub-optimal train-
ing due to the added difficulties of training a point cloud can be found in the results shown
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Figure 15: Distributions of high-level observables 1− T , C , D, BW and BT , for defi-
nitions see appendix B, for the case where step 1 of the HOMER method is performed
on the unbinned high-level observables. See the main text for details.

32

https://scipost.org
https://scipost.org/SciPostPhys.18.2.054


SciPost Phys. 18, 054 (2025)

0.0

0.5

1.0

1.5

D
en

si
ty

Simulation

Data

Classifier

Inference

HOMER

Best NN

Exact w.

2.25 2.50 2.75 3.00 3.25
〈| ln xf |〉

0.8

1.0

1.2

R
at

io χ2 / Nbins = 2648

χ2 / Nbins = 2.72

χ2 / Nbins = 1.22

χ2 / Nbins = 0.92

χ2 / Nbins = 1.09

χ2 / Nbins = 0.45

0.00

0.25

0.50

0.75

D
en

si
ty

Simulation

Data

Classifier

Inference

HOMER

Best NN

Exact w.

1 2 3
〈(| ln xf | − 〈| ln xf |〉)2〉

0.8

1.0

1.2

R
at

io χ2 / Nbins = 1172

χ2 / Nbins = 3.12

χ2 / Nbins = 2.68

χ2 / Nbins = 2.54

χ2 / Nbins = 1.73

χ2 / Nbins = 1.74

0.0

0.2

0.4

D
en

si
ty

Simulation

Data

Classifier

Inference

HOMER

Best NN

Exact w.

−2 −1 0 1 2 3
〈(| ln xf | − 〈| ln xf |〉)3〉

0.8
1.0
1.2

R
at

io

χ2 / Nbins = 478

χ2 / Nbins = 2.01

χ2 / Nbins = 1.69

χ2 / Nbins = 1.36

χ2 / Nbins = 0.86

χ2 / Nbins = 0.81

0.0

0.5

1.0

D
en

si
ty

Simulation

Data

Classifier

Inference

HOMER

Best NN

Exact w.

2.0 2.5 3.0 3.5
〈| ln xch|〉

0.8

1.0

1.2

R
at

io χ2 / Nbins = 1571

χ2 / Nbins = 1.92

χ2 / Nbins = 3.2

χ2 / Nbins = 3.04

χ2 / Nbins = 1.06

χ2 / Nbins = 0.83

0.0

0.5

D
en

si
ty

Simulation

Data

Classifier

Inference

HOMER

Best NN

Exact w.

1 2 3
〈(| ln xch| − 〈| ln xch|〉)2〉

0.8
1.0
1.2

R
at

io

χ2 / Nbins = 644

χ2 / Nbins = 2.07

χ2 / Nbins = 3.04

χ2 / Nbins = 3.15

χ2 / Nbins = 1.11

χ2 / Nbins = 0.87

0.0

0.2

0.4

D
en

si
ty

Simulation

Data

Classifier

Inference

HOMER

Best NN

Exact w.

−2 0 2
〈(| ln xch| − 〈| ln xch|〉)3〉

0.8
1.0
1.2

R
at

io

χ2 / Nbins = 273

χ2 / Nbins = 1.9

χ2 / Nbins = 1.8

χ2 / Nbins = 1.7

χ2 / Nbins = 1.49

χ2 / Nbins = 1.4

Figure 16: Distributions of the first three moments of ln x , where x = 2|p⃗|/
p

s for
visible particle and charged particle distributions. Here, step 1 of the HOMER method
is performed on unbinned high-level observables. See the main text for details.
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Figure 17: The distribution of the optimal observables (left) −2 ln wclass and (right)
−2 ln wexact. The results are for a classifier trained on the unbinned high-level ob-
servables, see the text of section 3.1.2 for details.

in the left plot of fig. 21, where the χ2/Nbins for the exact weights becomes smaller than for
the unbinned high-level case shown in fig. 17. The cause of this decrease is a small fraction
of events with large weights populating high-probability regions instead of the tails, increas-
ing the uncertainty in those bins and thus reducing χ2/Nbins, while also sculpting the wclass
distribution.

Another diagnostic tool is the calibration curve of the classifier that compares the predicted
positive ratio with the true positive ratio as a function of the classifier score. This curve, not
shown here, yields worse results for the point cloud when compared to the case of training on
unbinned high-level observables, with larger deviations from perfect calibration in the tails.
The above observations indicate that there is room for improvement in the training of the
point-cloud classifier, perhaps by increasing the number of training samples.
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Figure 18: (left) The distributions of event weights w(eh) that follow from the
HOMER method applied to the point cloud, section 3.2. (right) Comparison between
wclass(eh) from step 1, on the x axis, and winfer(eh,θ ) from step 2, on the y axis.
The closer the Pearson correlation coefficient r is to 1, the closer the match between
wclass(eh) and winfer(eh,θ ), signaling better training during step 2.
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Figure 19: Distributions of high-level observables 1− T , C , D, BW and BT , for defi-
nitions see appendix B, for the case where step 1 of the HOMER method is performed
on the point cloud. See the main text for details.
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Figure 20: Distributions of the first three moments of ln x , where x = 2|p⃗|/
p

s for
visible particle and charged particle distributions. Here, step 1 of the HOMER method
is performed on point cloud. See the main text for details.
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Figure 21: The distribution of the optimal observables (left) −2 ln wclass and (right)
−2 ln wexact. The results are for a classifier trained on the point cloud, see the text of
section 3.2 for details.
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