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Abstract

Parisi-Sourlas (PS) supersymmetry is known to emerge in some models with random
field type of disorder. When PS SUSY is present the d-dimensional theory allows for a
d − 2-dimensional description. In this paper we investigate the reversed question and
we provide new indications that any given CFTd−2 can be uplifted to a PS SUSY CFTd . We
show that any scalar four-point function of a CFTd−2 is mapped to a set of 43 four-point
functions of the uplifted CFTd which are related to each other by SUSY and satisfy all
necessary bootstrap axioms. As a byproduct we find 43 non trivial relations between
conformal blocks across dimensions. We test the uplift in generalized free field theory
(GFF) and find that PS SUSY is a powerful tool to bootstrap an infinite class of previously
unknown GFF observables. Some of this power is shown to persist in perturbation theory
around GFF. We explain why all diagonal minimal models admit an uplift and we show
exact results for correlators and CFT data of the 4d uplift of the Ising model. Despite
being strongly coupled 4d CFTs, the uplifted minimal models contain infinitely many
conserved currents and are expected to be integrable.
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1 Introduction

Parisi-Sourlas supersymmetry was first introduced in [1] in order to explain a very peculiar
behaviour of critical theories with quenched random field type of disorder. The story started
a few years prior when Aharony, Imry, and Ma conjectured that the IR fixed point of random
field models is described by pure models in two less dimensions [2]. This was motivated by the
behaviour of the Feynman diagrams of the random field Ising model in d dimensions, which in
the IR limit match the diagrammatic computations of the pure Ising model in d−2 dimensions.
Parisi and Sourlas provided an explanation of such behaviour by conjecturing that random
field models have emergent supersymmetry in the IR, which they further showed (through a
perturbative argument) to be responsible for the dimensional reduction [1]. Namely, following
picture 1, the relation A of Aharony, Imry, and Ma, was explained by Parisi and Sourlas by
a combination of B and C. The explanation by Parisi and Sourlas is very appealing since the
emergence of symmetries at a fixed point is not uncommon. Moreover the original perturbative
argument for C was later made non-perturbative and more rigorous [3–6]. A CFT argument
was also recently provided in [7].
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Figure 1: Relations between theories: the fixed point of a random field theories in d
dimensions (RFd f.p.), a Parisi-Sourlas SUSY CFTd (PS CFTd) and a pure CFT in two
lower dimensions (CFTd−2).

Unfortunately the beautiful conjecture by Parisi-Sourlas was quickly found to have flaws.
In particular the arrow A for the Ising model clearly cannot be fully correct. Indeed the RF Ising
model has a critical point in 3≤ d ≤ 5 [8], while the pure d̂ ≡ d − 2-dimensional Ising model
only has a critical point in 2 ≤ d̂ ≤ 3. Thus A is certainly violated in d = 3. Furthermore
in later numerical studies it was found that both A and B fail in d = 4 [9]. It came as a
surprise that numerical simulations in d = 5 [10, 11] gave instead strong indications for the
both the emergence of supersymmetry B and the dimensional reduction A. The Parisi-Sourlas
conjecture can also be studied in a different random field model, RF φ3, which has a phase
transition between d ≤ 2 < 8. In this case numerical simulations indicate that the fixed point
is always compatible with A [12].

While many studies were produced in the past decades, no fully conclusive explanation of
when/why the conjecture works was found. This motivated a revised study of the emergence
of SUSY in RF models (arrow A) using a perturbative RG setup [13–16]. This series of works
showed in epsilon expansion that the PS CFT for the Ising case is reached in the vicinity of the
upper critical dimension, namely at d = 6− ε for small ε. Conversely, when ε is of order 1,
some SUSY breaking deformations develop a large negative anomalous dimension becoming
relevant for d less than a critical value dc . A two-loop analysis predicts that dc ≈ 4.2 − 4.7,
which is in perfect agreement with the numerical simulation described above. The same setup
was also applied to the RF φ3 model, showing that in this case all SUSY breaking deforma-
tions remain irrelevant in all dimensions, again in agreement with the numerical results. In
summary it was found that the SUSY fixed point sometimes is not reached because of new rele-
vant SUSY breaking perturbations. However, whenever it is reached, dimensional reduction is
expected to always occur. This thus provides an explanation for when/why the Parisi-Sourlas
conjecture works.

While this could seem the conclusion of a story, by revisiting the topic new interesting
directions emerged. In particular, as we mentioned, the arrow C of figure 1 was also studied
in an axiomatic CFT context in [7]. In this paper it was first defined what is a PS CFTd .
Then it was shown in which sense such a theory has a description in terms of a CFTd−2. It
was shown that a huge part of the spectrum and OPE coefficients of (also non protected)
superprimaries of the PS CFTd exactly matches the CFT data of the CFTd−2. E.g. the spectrum
and OPE coefficients of all the scalar operators would match in the two theories (in d ≥ 3).
This result was obtained by using arguments only based on symmetry and therefore applies
to any possible PS CFTd . The work of [7] thus motivated a new question: given any CFTd−2
is it possible to define a PS CFTd which dimensionally reduces to it? This is what we refer
to as the Parisi-Sourlas dimensional uplift, represented as the arrow D of figure 1, and it is
the focus of this paper. In particular the results of this paper are in support of the conjecture
that, independently on the properties of the CFTd−2, the uplift always exists. This is mostly
independent from random field models, meaning that the uplifted models may or may not
emerge at the fixed point of a disordered system. One may thus ask why should we study the
uplift. There are various motivations.
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CFTd CFTd+2 CFTd+4 . . .

Figure 2: Iterated uplift.

One important motivation is to understand the space of possible consistent CFTs, which
is the ultimate goal of the conformal bootstrap. If the uplift always exists, then it can also be
iterated. Therefore given a CFTd one could in principle define an infinite tower of PS CFTd+2n
for n= 1,2, . . . as shown in figure 2.

There is an important catch: PS CFTs are non-unitary. Therefore figure 2 shows that the
space of non-unitary CFTs is infinitely much larger than the one of unitary ones: for every
unitary CFT there exists an infinite tower of non unitary CFTs in higher dimension. The tower
in figure 2 has increasing amount of SUSY. It is interesting to speculate what could be the fixed
point of this sequence (indeed this would live in infinite dimensions and would enjoy infinite
SUSY).

Another very interesting motivation is to find the first examples of fully solvable non-trivial
CFTs in d > 2. Indeed in d > 2 there is no example of interacting CFT where the full CFT data is
accessible exactly. The situation is much better in 2d where in the minimal models it is possible
to compute spectrum, OPE coefficients and even correlation functions exactly. The idea is
thus to uplift all minimal models obtaining infinitely many towers of infinitely many solvable
CFTs in all even dimensions. Notice also that such models might be physically relevant. For
example the uplift of the Yang-Lee minimal model describes the 4d universality class of RF
φ3 model (which also describes systems like branched polymers and lattice animals [12]).
In this universality class there exists also a model defined by Brydges and Imbrie [17] (see
also [18]) which has SUSY at the microscopic level. The microscopic SUSY ensures the model
to dimensionally reduce all along the RG flow and not only at the IR fixed point. In the same
spirit, in [19] Cardy recently proposed a supersymmetric microscopic model that flows to the
uplifted Ising model. In d = 4 this thus flows to the uplifted Ising minimal model. It would be
very interesting to see whether new supersymmetric microscopic theories can be defined such
that they flow to other minimal models.

Another motivation is to use the supersymmetry of the uplifted theory as a tool for solving
problems of the original theory. This might sound surprising since we argued that the two
theories are somewhat equivalent. However the information is packaged very differently in
the two formulations and it can happen that the SUSY formulation is more suitable to answer
some questions, as we shall exemplify in the following.

Other applications will appear as we will enter the details of the paper. For example the
SUSY structure of the uplifted theory provides some powerful kinematical constraint on CFTs.
In particular we will see that PS SUSY implies a set of 43 relations between conformal blocks in
d −2 and in d dimensions, which are interesting in their own rights. For example one of such
equation was already obtained by Dolan and Osborn to compute conformal blocks in higher
dimensions from the knowledge of conformal blocks in lower dimensions. With this work we
find that such equation actually has a very clear physical interpretation in the SUSY theory.

The plan of the paper is as follows. We start section 2 with a basic introduction on CFTs,
which will be followed by a review on PS SUSY and dimensional reduction/uplift.

In section (3) we explicitly show how to extract different primary components from su-
perspace correlators with two, three and four scalar insertions. We show that all of them are
(as expected) compatible with conformal symmetry which is a further check that PS CFTs are
well defined. In the four-point function case we show that there are 43 independent primary
components in a generic four-point function which are obtained by acting with 43 differential
operators (in the conformal cross ratios) on the lowest component.
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In section 4 we show that these differential operators on d − 2-dimensional conformal
blocks can be written in terms of a linear combination of at most five d-dimensional conformal
blocks. We further analyze these relation and explain how the linear combinations are tuned
to cancel possible poles of the conformal blocks.

In section 5 we provide some examples of how to use the supersymmetry of the uplifted
theory as a tool to compute observables of the original theory. We find that in the uplift
of generalized free field theory (GFF) there exists an infinite class of non trivial correlators
which have some vanishing primary components. In terms of four-point functions this means
that some of the differential operators of section 3 annihilate the correlator. We then show
that this constraint can be used in two ways. Firstly to obtain a recurrence relation for the
coefficients in the conformal block decomposition, which we also show how to solve in the
case of 〈φφnφmφm〉 in closed form for any n, m (which is a new result in GFF). Secondly we
explain how to use the differential operators to fix the correlator itself (up to some constants).
Then we also show how this type of logic can be generalized to perturbative computations
around GFF, giving rise to differential equations for the perturbative correlators.

In section 6 we start by briefly introducing the minimal models. We give an RG argument
of why diagonal minimal models should have a well defined uplift. We then exemplify how
to uplift all four-point functions of Virasoro primaries in the Ising minimal model. We then
proceed at computing the first few terms of their conformal block decomposition. We end
the section by commenting on the properties of the spectrum which must contain an infinite
number of conserved higher spin currents.

Section 7 is devoted to a general property of all uplifted theories: they are expected to
have a larger set of operators than the reduced ones. These extra operators are projected to
zero under dimensional reduction. In section 7 we exemplify a class of such operators. We
then consider the uplift of a 1d GFF four-point function as a toy model to show how the larger
kinematic space of the uplifted theory (in 3d there are two independent cross ratios instead of
the single cross ratio of one-dimensional CFTs) is exactly reconstructed by the extra operators
of the uplifted theory, which in this case are the spin ℓ≥ 1 traceless and symmetric operators.

In section 8 we conclude the paper and mention future directions. More details are de-
ferred to the appendices. Finally, a Mathematica code with the definitions of the differential
operators (and some extra checks) is attached to the publication.

2 Background and review of Parisi-Sourlas CFTs

2.1 CFT basics

To set our conventions let us start by reviewing some basic facts on d-dimensional CFTs (see
e.g. [20] for a more detailed review). Correlation functions up to three insertions are fixed by
symmetry. One-point functions vanish besides the one of the identity which equals one. The
two-point function of a scalar primary O with dimension ∆ takes the form

〈O(x1)O(x2)〉=
1

(x2
12)∆

, (1)

where xµi j ≡ xµi − xµj and x i ∈ Rd . In a unitary theory the basis of primary operators can
be diagonalized such that the two-point functions of different primaries vanish. Three-point
functions of scalar primaries Oi with dimensions ∆i take the form

〈O1(x1)O2(x2)O3(x3)〉=
λ123

(x2
12)

∆1+∆2−∆3
2 (x2

13)
∆1+∆3−∆2

2 (x2
23)

∆2+∆3−∆1
2

, (2)
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where λ123 is a theory-dependent quantity called OPE coefficient. With four insertions we can
build two independent conformal invariant cross ratios,

u≡
x2

12 x2
34

x2
13 x2

24

, v ≡
x2

14 x2
23

x2
13 x2

24

, (3)

therefore a four-point functions of scalars can be fixed as

〈O1(x1)O2(x2)O3(x3)O4(x4)〉= K∆i
(x i) f (u, v) , (4)

where f (u, v) is a theory-dependent function and K is a kinematic factor defined as

K∆i
(x i)≡

1

(x2
12)

1
2 (∆1+∆2)(x2

34)
1
2 (∆3+∆4)

�

x2
14

x2
24

�−∆12
2
�

x2
14

x2
13

�

∆34
2

, (5)

where∆i j ≡∆i−∆ j . Sometimes we shall use different cross ratios as z, z̄ and ρ, ρ̄ [21]. They
can be related to u, v using

u= zz̄ , v = (1− z)(1− z̄) , z =
4ρ

(1+ρ)2
, z̄ =

4ρ̄
(1+ ρ̄)2

. (6)

A crucial property of CFTs is the operator product expansion (OPE) which allows to replace
two operator insertions by a sum of single operators insertions,

O1(x)O2(0) =
∑

∆ℓ

λ12O

� xµ1
· · · xµℓ

|x |∆1+∆2−∆+ℓ
Oµ1...µℓ(x) + . . .

�

, (7)

where the sum runs over all operators O with dimension ∆ and spin ℓ and the dots stand for
the contribution of the descendants operators. Using the OPE of operators O1 and O2 inside
the four-point function (4), we obtain

f (u, v) =
∑

∆ℓ

a∆ℓ g∆ℓ(u, v) , (8)

where a∆ℓ ≡ λ12OλO34. This formula represents the decomposition of a four-point function
in conformal blocks g∆ℓ which are functions fixed by symmetry that encode the exchange of
a primary O with dimension ∆ and spin ℓ along with all its descendants. The blocks g∆ℓ are
function of the variables ∆12, ∆34 and d, but we will often suppress these dependencies in
order to streamline the notation.

2.2 Conformal blocks

Conformal blocks are fixed by symmetry. In even dimensions d they can be expressed in closed
form [22]. For example in d = 2, 4 they read [23]

g(d=2)
∆ℓ (z, z̄) =

k∆−ℓ(z)k∆+ℓ(z̄) + k∆+ℓ(z)k∆−ℓ(z̄)

2ℓ+δℓ,0
, (9)

g(d=4)
∆ℓ (z, z̄) =

zz̄
z̄ − z

[k∆−ℓ−2(z)k∆+ℓ(z̄)− k∆+ℓ(z)k∆−ℓ−2(z̄)]
2ℓ

, (10)

where kη is defined as follows

kη(z)≡ zη/2 2F1

�

η−∆12

2
,
η+∆34

2
,η, z
�

. (11)
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Table 1: Position of the poles and labels of the blocks at the residue in (12), where
∆A ≡∆∗A+ nA.

Type, n ∆⋆A nA ℓA

I, n ∈ [1,∞] 1− ℓ− n n ℓ+ n
II, n ∈ [1,ℓ] ℓ+ d − 1− n n ℓ− n
III, n ∈ [1,∞] d

2 − n 2n ℓ

For generic dimensions d, the blocks are typically not known in a closed form but never-
theless they can be determined in several ways (see [20] for a review of various techniques).
For this paper it will be useful to keep in mind a recursion relation [24–27] that defines the
blocks from their analytic structure in∆. Indeed conformal blocks have poles in∆with residue
proportional to other blocks,1

g(d)∆ℓ ∼
RA

∆−∆∗A
g(d)∆AℓA

. (12)

The label A ≡ type, n is specified by a type between I, II, III and an integer n in some range,
while all other labels appearing in (12) are defined in table 1. The coefficients RA at the residue
are known in a closed form as follows

RI,n=
−n(−2)n

(n! )2
∏

δ=∆12,∆34

�

δ+ 1− n
2

�

n
,

RII,n=
−nℓ!

(−2)n(n! )2(ℓ− n)!
(d + ℓ− n− 2)n
� d

2 + ℓ− n
�

n

� d
2 + ℓ− n− 1
�

n

∏

δ=∆12,∆34

�

δ+ 1− n
2

�

n
,

RIII,n=
−n(−1)n
� d

2 − n− 1
�

2n

(n! )2
� d

2 + ℓ− n− 1
�

2n

� d
2 + ℓ− n
�

2n

∏

δ=∆12,∆34

∏

σ=±1

�

δ−σ d
2 −σℓ− n+ 1+σ

2

�

n

.

(13)

One can thus reconstruct the full conformal blocks by summing all the poles and an entire
function in ∆. This gives rise to the following recurrence relation of the conformal blocks as
functions of the radial coordinates r ≡ |ρ| and η≡ cos argρ,

h∆ℓ(r,η) = h∞ℓ(r,η) +
∑

A

RA

∆−∆⋆A
(4r)nAh∆A ℓA

(r,η) , (14)

where g(d)∆ℓ (r,η) ≡ (4r)∆h∆ℓ(r,η) and the sum over A is a sum over the three types and over
n. Finally the regular part in ∆ of h∆ℓ is defined by

h∞ℓ(r,η)≡
ℓ!
�

1− r2
�1− d

2

(−2)ℓ ( d
2 − 1)ℓ

�

r2 − 2ηr + 1
�

∆12−∆34−1
2

(r2 + 2ηr + 1)
∆12−∆34+1

2

C
d
2−1
ℓ
(η) , (15)

where Cν
ℓ
(x) is a Gegenbauer polynomial. The normalization of the blocks is chosen to match

the one of the closed form solutions in d = 2,4 written above.

2.3 Parisi-Sourlas supersymmetry

In this section we present a short introduction to PS SUSY based on the more complete results
of [7].

1In even dimensions higher order poles are allowed to appear, but here we work in arbitrary d as an analytic
continuation around odd d, where only single poles appear.
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In order to introduce PS supersymmetry it is convenient to work in a superspace Rd|2,
parametrized by coordinates ya = {xα,θ , θ̄}, where the index a takes d + 2 possible values
a = 1, . . . d,θ , θ̄ . A QFT with PS SUSY is invariant under superrotations and supertranslations
which are the transformations that preserve the superspace distance

y2 ≡ ya y b(gd|2)ab , with gd|2 =

�

gd 0
0 gsp(2)

�

, (16)

where gd is just the rank-d identity matrix which defines the metric of a Euclidean d-
dimensional space, while gsp(2) =

�

0 −1
1 0

�

is the symplectic metric. We name the generator
of supertranslations and superrotations respectively as Pa and M ab. They can be represented
as

Pa = ∂ a , M ab = ya∂ b − (−1)[a][b] y b∂ a , (17)

where the derivative in superspace is defined as ∂a ≡
∂
∂ ya ≡ (∂α,∂θ ,∂θ̄ ) and the bracket in

[a] measures if the index a is bosonic or fermionic, namely [a] = 0 for a = 1, . . . , d, while
[θ] = 1= [θ̄]. A PS CFT is further invariant under superdilation D and special superconformal
transformation Ka, which are represented as

D = −ya∂a , Ka = 2ya y b∂b − y b yb∂a . (18)

The full set of generators of a PS CFT satisfies the osp(d + 1,1|2) algebra.
It is convenient to consider local (super) operators O(y) inserted at points ya in super-

space. We will consider operators that have a well defined superconformal dimension ∆ un-
der the action of the superdilation generator D and that transform in irreducible represen-
tations of OSp(d|2), such that tensor indices will be of the form ai = 1, . . . , d,θ , θ̄ . Stan-
dard OSp(d|2) representations are labelled by Young tableaux with [d/2] rows of length
ℓ1 ≥ ℓ2 ≥ . . .≥ ℓ[d/2] ≥ 0 and an arbitrary long column, as follows

· · · · · · ℓ1...
...

... . . .

· · · ℓ[d/2]

...

(19)

where rows are graded symmetric, columns graded antisymmetric and all traces are removed.
For example the spin ℓ graded symmetric and traceless representation is labelled by a single
row with ℓ boxes. We can write a spin ℓ operator in components as follows2

Oa1...aℓ(y) =Oa1...aℓ
0 (x) + θOa1...aℓ

θ̄
(x) + θ̄Oa1...aℓ

θ
(x) + θθ̄Oa1...aℓ

θθ̄
(x) . (20)

When ℓ = 0 the components O0 and Oθθ̄ are bosonic while Oθ and Oθ̄ are fermionic. As
a convention, throughout the paper we will use upper indices of operators to denote graded
tensor indices, while the subscript of the operator will be reserved to denote the components.
In terms of the usual dilation generator, the component operators in (20) have dimensions
∆, ∆+ 1, ∆+ 2 where each theta in the expansion is responsible for a one unit shift in the
conformal dimensions. Since θ and θ̄ do not carry indices, all components of O transform in

2The following notation slightly differs from the one of [7] in order to make R-symmetry properties of the
operators more readable.
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the same OSp(d|2) representation. However every OSp(d|2) representation can be decom-
posed in SO(d) ones, so each component of (20) can be further decomposed in four different
operators with SO(d)-spin equal to ℓ, ℓ− 1, ℓ− 2, e.g.

Oα1...αℓ
0 (x) , Oα1...αℓ−1θ

0 (x) , Oα1...αℓ−1θ̄
0 (x) , Oα1...αℓ−2θθ̄

0 (x) . (21)

Every time an index takes the value a = θ , θ̄ , then the operator changes grading. E.g. Oα1...αℓ
0

and Oα1...αℓ−2θθ̄
0 are bosonic while Oα1...αℓ−1θ

0 and Oα1...αℓ−1θ̄
0 are fermionic. It is also worth

commenting on the R-symmetry of the model, which is Sp(2) and it is generated by Mθθ ,
M θ̄ θ̄ and Mθθ̄ = M θ̄θ . It is easy to see that, given a scalar O, the component Oθ̄ has charge
−1 under Mθθ̄ , while Oθ has charge +1. The bosonic components are charged zero. Similarly
by taking indices in the direction θ , θ̄ we select operators with different R-symmetry charge.
E.g. given a vector Oa, Oθ0 has charge +1, Oθ

θ
has charge +2, while Oθ

θ̄
has charge 0. As

usual, R-symmetry is a global symmetry, thus all non-vanishing correlation functions must be
invariant under Sp(2).

Since the theory has superconformal symmetry, it is convenient to classify the operators
as superconformal primaries and descendants. The super primaries are operators O(0) de-
fined such that they are annihilated by the special superconformal generators, [Ka,O(0)] = 0.
Superdescendants are instead obtained by acting with derivatives ∂a on the superprimaries.

Correlation functions of local operators are restricted by superconformal symmetry. One-
point functions take the form 〈O(y)〉 = δOI, while two- and three-point functions are fixed
as

〈O(y1)O(y2)〉=
1

(y2
12)∆

, (22)

〈O1(y1)O2(y2)O3(y3)〉=
λ123

(y2
12)

∆1+∆2−∆3
2 (y2

13)
∆1+∆3−∆2

2 (y2
23)

∆2+∆3−∆1
2

, (23)

where ya
i j ≡ ya

i − ya
j . Four-point functions can be written as

〈O1(y1)O2(y2)O3(y3)O4(y4)〉= K∆i
(yi) f (U , V ) , (24)

where the superspace cross ratios are defined as

U ≡
y2

12 y2
34

y2
13 y2

24

, V ≡
y2

14 y2
23

y2
13 y2

24

, (25)

and K∆i
is the same as in (5), where we replace x by y , namely

K∆i
(yi)≡

1

(y2
12)

1
2 (∆1+∆2)(y2

34)
1
2 (∆3+∆4)

�

y2
14

y2
24

�−∆12
2
�

y2
14

y2
13

�

∆34
2

. (26)

One can also introduce other cross ratios like the ones of (6), e.g. U = Z Z̄ , V = (1− Z)(1− Z̄)
and similarly for ρ and ρ̄. The OPE in superspace takes the form

O1(y)O2(0) =
∑

∆ℓ

λ12O

� ya1
· · · yaℓ

|y|∆1+∆2−∆+ℓ
Oa1...aℓ(x) + . . .

�

, (27)

where because of the graded commuting properties of ya, the spin ℓ operators Oa1...aℓ trans-
form in the graded symmetric and traceless representation of OSp(d|2). The dots contain
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x̂1

x̂n

y1
yn

. . .

. . .

Rd|2

Md̂

Figure 3: Dimensional reduction: All points yi ∈ Rd|2 are projected to Md̂ .

contributions from the superdescendants. We can apply the OPE in the four-point function
and get

f (U , V ) =
∑

∆ℓ

a∆ℓ G(d|2)∆ℓ (U , V ) , (28)

where a∆ℓ ≡ λ12OλO34 and G(d|2)∆ℓ is the superspace superconformal block, which is equal to a

usual conformal blocks g(d−2)
∆ℓ in two less dimensions [7]

G(d|2)∆ℓ = g(d−2)
∆ℓ . (29)

The equality between superspace superblocks and lower-dimensional blocks was proven in [7]
to hold also for correlators of generic tensor operators.

2.4 Dimensional reduction

Any given PS CFT can be dimensionally reduced to a CFT in two less dimension d̂ ≡ d − 2.
Let us explain how this works. The main idea is that, given a correlator in superspace, if one
restricts all the insertions to Md̂ ≡ {y ∈ R

d|2 : y = ( x̂ , 0, 0, 0, 0), x̂ ∈ Rd̂} as in figure 3, then
one defines the dimensionally reduced theory. Namely all reduced correlators are obtained as

〈O1(y1) . . .On(yn)〉|Md̂
= 〈Ô1( x̂1) . . . Ôn( x̂n)〉 , (30)

where Ôi are operators of a CFTd̂ . Here we considered Oi and Ôi to be scalars, but the gen-
eralization to operators with spin is straightforward (see comments below and in [7]). It is
well known that any set of correlators which arises from any type of reduction automatically
satisfies the axioms of crossing and conformal block decomposition as a usual CFTd̂ . What is
special to this kind of reduction is that the resulting CFTd̂ can be shown to be local3 and with
a very small operator content, which is smaller (or equal) than the superprimary content of
the original PS CFTd [7]. Both properties are very atypical since: 1) the stress tensor is not
expected to be conserved on Md̂ since in principle the energy is allowed to leak orthogonally
to Md̂ and 2) usually for every operator in a higher dimensional theory we expect infinitely
many operators in the dimensionally reduced theory, and therefore a much larger spectrum.
These remarkable properties are due to a decoupling of infinitely many operators because of
SUSY. Let us explain how this decoupling arises.

Restricting operator insertions to a hyperplane in the CFT literature is often called
“trivial defect”. In our case the trivial defect breaks the OSp(d + 1,1|2) symmetry to
SO(d − 1,1) × OSp(2|2) where SO(d − 1,1) is understood as the conformal group in d̂ di-
mensions and OSp(2|2) is a global symmetry. The prescription to get dimensional reduction

3The precise statement is that, whenever the PS CFT contains a conserved super stress tensor, then the reduced
theory contains a conserved stress tensor (as long as d̂ > 1). When d̂ = 1, as expected, the reduced stress tensor
does not exist as we shall discuss in section 7.
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(30) focuses on the singlet sector of the OSp(2|2) symmetry. For any given primary operator
O there is an infinite set of OSp(2|2) singlets in the trivial defect. Indeed, in addition to the
OSp(2|2)-singlet primary O( x̂) considered in (30), one may also consider OSp(2|2)-singlet
primary operators obtained as (∂ 2

⊥)
nO( x̂), where ∂⊥ is the derivative in the direction perpen-

dicular to the hyperplane Md̂ , namely ∂ a
⊥ = gab

2|2∂b. The statement is that all these operators
decouple from the theory if they are inserted in correlators of only OSp(2|2)-singlets. This can
be easily understood, since the g2|2 metric orthogonal to the plane has two free indices that
cannot be contracted with anything to build an OSp(2|2)-singlet. Indeed

gab
2|2 x̂ i b = 0 , gab

2|2 g2|2 ba = 0 , (31)

the former relation due to the orthogonality of the vectors x̂ i and the perpendicular metric,
while the latter due to the properties of the supertrace of the orthosymplectic metric which
satisfies str gd|2 = d−2. A similar decoupling works at the level of operators with spin. In this
case to define operators on the trivial defect we must project the tensor indices to directions
either orthogonal or parallel to Md̂ . The only OSp(2|2)-singlets which do not decouple have
all indices along the trivial defect Md̂ . So in practice given a superfield OY that transforms in
a representation of OSp(d|2) labelled by a Young tableau Y as in (19), the reduced field trans-
forms in a representation of SO(d̂) labelled by the same Young tableau Y . It can happen that
the dimension of the representation Y in SO(d̂) is zero. When this happens, the dimensionally
reduced field vanishes, so the superfield OY is projected to zero upon dimensional reduction.
We will expand on this point in section 7.

2.5 Reduction and uplift of Lagrangians

There are explicit realizations of PS QFTs. An important class is defined through the following
scalar action in superspace [1],

Sd|2 =

∫

dd xdθdθ̄
1
2
∂ aΦ(y)∂aΦ(y) + V (Φ(y)) , (32)

where V is a given polynomial potential and the scalar superfield Φ can be decomposed in
components as

Φ(x ,θ , θ̄ ) = ϕ(x) + θψ̄(x) + θ̄ψ(x) + θθ̄ω(x) . (33)

We can integrate out the Grassmann variables obtaining the action

Sd|2 =

∫

dd x ∂ µϕ∂µω−ω2 + ∂ µψ∂µψ̄+ωV ′(ϕ) +ψψ̄V ′(ϕ) , (34)

where we notice that the classical dimensions of the fields is

[ϕ] =
d
2
− 2 , [ψ] = [ψ̄] =

d
2
− 1 , [ω] =

d
2

. (35)

This action can be dimensionally reduced to [1]

Sd̂ =

∫

d d̂ x̂
1
2
(∂µφ̂( x̂))

2 + V (φ̂( x̂)) . (36)

In this case the dimensional reduction is more powerful than in (30). Indeed here we know
that correlators on the lhs of (30) which are computed using the action (32) can be equivalently
calculated by the prescription in the rhs defined using the action (36), e.g.

〈Φ(y1) . . .Φ(yn)〉Sd|2

�

�

�

�

Md̂

= 〈φ̂( x̂1) . . . φ̂( x̂n)〉Sd̂
. (37)
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Therefore there exist two separate computations which give the same result. Because of this we
can conclude that when a PS SUSY Lagrangian is available, not only dimensional reduction
is available, but also the uplift. Indeed the equivalence (37) can be also read backwards,
implying that every scalar action of the form (36) can be uplifted to (32) which can be used
to compute the same observables. The prescription to uplift Lagrangians is thus trivial and it
amounts to uplifting fields to superfields, and derivatives to superderivatives,

φ̂( x̂)→ Φ(y) , ∂µ→ ∂a . (38)

This can be further generalized to any number or scalar fields and also to theories where the
fundamental fields are not scalars, see for example the realizations for spinors and gauge fields
presented in [28].

2.6 Uplift of CFTs

While we showed that given a Lagrangian, its uplift is somewhat straightforward, this result
does not help much in defining the uplift of CFTs which typically do not have useful Lagrangian
descriptions. However in CFT we can use the power of symmetry to uplift some observables
for free. This is indeed a basic idea in CFT where it is known that one can use conformal sym-
metry to set the operator insertions to special locations. E.g. by knowing two and three-point
functions of scalar operators on a line one can recover their full dependence on coordinates,
and similarly four-point functions of scalar operators are completely determined by their ex-
pression on a plane. The same idea works for PS CFTs. For these theories the dimensionally
reduced two and three-point functions of scalar operators determine the uplifted ones as long
as d̂ ≥ 1, while for four-point functions of scalar operators the uplifted correlator is fully
reconstruct if d̂ ≥ 2. The reconstruction in these cases is trivial and it amounts to replace

x̂ → y , (39)

in correlation functions. For example a two-point function 〈Ô1( x̂1)Ô2( x̂2)〉 = | x̂12|−2∆ is
simply uplifted to 〈O1(y1)O2(y2)〉 = |y12|−2∆, where now the distance is computed us-
ing the gd|2 metric instead of a gd−2 metric. Similarly for any scalar four-point function
〈Ô1( x̂1)Ô2( x̂2)Ô3( x̂3)Ô4( x̂4)〉 = F( x̂ i · x̂ j), as long as d̂ ≥ 2, then its uplift is just given by
F(yi · y j) where all distances are replaced by superspace distances.

Of course this prescription cannot be used to fix all possible observables. In general for
any fixed dimension d̂, when the number of insertion is high enough and/or the operators
have spin large enough, then a piece of the information of the correlation function cannot be
reconstructed. One can easily see when this happens for any given observable by counting the
number of cross ratios and invariant tensor structures [29]. E.g. in d̂ = 1 a four-point function
is fixed in terms of a single cross ratio and therefore one cannot simply reconstruct a full PS
CFT four-point function in d = 3, but only its restriction to a line (we expand on this point
in section 7). This is also related to the fact that some operators of the PS CFT are projected
to zero after dimensional reduction. This is easy to see, indeed in the PS CFT there can exist
operators with an arbitrary number of graded antisymmetric indices [7], but in d̂ dimensions
one cannot antisymmetrize more that d̂ indices otherwise the result is trivially zero. This will
be further discussed in section 7.

In this paper we will mostly focus on scalar correlators of n ≤ 4 insertions in dimensions
d̂ ≥ 2 so for these cases the uplift will trivially work. It is interesting to stress that this is a
huge number of observables which know a lot about the theory. Indeed we are saying that all
possible four-point functions of scalar operators will be exactly uplifted. The latter contain in
their conformal block decomposition a lot of information about operators with spin. It is an
interesting open question whether the information contained in this infinite set of correlators
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is enough to fix the rest of the observables by e.g. applying bootstrap techniques. We leave
this question for future investigations.

3 Extracting primary components of correlation functions in
superspace

One of the results of this paper is to put on a firm footing the uplift of scalar n-point functions
for n ≤ 4. For the uplift to make sense all components of the superspace correlator must
behave appropriately as correlators of a CFTd . In the following we show how to obtain the
different primary components from the superspace correlators for the cases of two, three and
four-point functions. We explicitly show the form of all components and that they indeed have
the correct covariance properties of correlators of primary operators. Moreover we will show
that all the primary components can be fully reconstructed by the knowledge of the lowest
component, which is fixed by the dimensionally reduced theory. This result will be important
for the rest of the paper where we will input a four-point function of a CFTd̂ to obtain all the
primary components of the uplifted four-point functions. Since this philosophy works for any
CFTd̂ (at least when d̂ > 1) this result also supports the conjecture that the dimensional uplift
works for any theory.

Given a scalar superprimary O(yi) with dimension∆i inserted at a point yi in superspace,
the correspondent primaries are defined as follows4

O(yi)|0 =O0(x i) , (40)

∂θi
O(yi)|0 =Oθ̄ (x i) , (41)

∂θ̄i
O(yi)|0 =Oθ (x i) , (42)

D[i]O(yi)|0 = Õθθ̄ (x i) , (43)

where throughout the paper the notation |0 will mean that we set to zero all θi and θ̄i . The
differential operator in (43) is defined as

D[i] ≡ ∂ 2
x i
− (2∆i − d + 2)∂θ̄i

∂θi
. (44)

Notice that, while O0,Oθ ,Oθ̄ are the same as the components defined in (20), the tilded
operator Õθθ̄ differs from the component Oθθ̄ . The two operators are related since Õθθ̄ is a
linear combination of Oθθ̄ with a descendant of O0. In practice we can think of Õθθ̄ as an
improved version of Oθθ̄ which is primary; indeed Oθθ̄ by itself is not a primary operator.

Correlation functions of a PS CFTd can be written in terms of superspace distances y2
i j . By

opportunely acting with the operators ∂θi
,∂θ̄i

,D[i] on superspace correlators we can extract
the correlators of CFTd primaries. The generic form is as follows

D[S⃗]〈O1(y1) . . .On(yn)〉|0 , (45)

where D[S⃗] is a differential operator in x i ,θi , θ̄i defined as follows

D[S⃗] ≡ D[S1...Sm] ≡ D[S1]· · ·D[Sm] , (46)

where each Sk can be either i or i j̄ and we define

D[i j̄] ≡ ∂θ̄ j
∂θi

(i ̸= j) . (47)

4One could change the normalization of the primaries and require that their two-point function is unit normal-
ized. We did not do it here since we privileged having a simpler form for the differential operators. Moreover in
our normalization ∆ never appears at the denominator thus avoiding singularities in the differential operators at
special values of ∆.

13

https://scipost.org
https://scipost.org/SciPostPhys.18.2.056


SciPost Phys. 18, 056 (2025)

We find it convenient to use D[i j̄] instead of the building blocks ∂θi
, ∂θ̄ j

, because all observables
must be Sp(2) invariants, so if ∂θi

is used then we must also use ∂θ̄ j
for some j. As an example

the operators will be of the form D[12̄34̄] = D[12̄]D[34̄] (of course this could be equivalently
written in terms of D[14̄]D[32̄]), D[124] = D[1]D[2]D[4], D[214̄] = D[2]D[14̄].

It will also be useful to introduce some shift operators Σ[S⃗], which take into account that
the dimension of the operator ∆i is shifted by one unit if D[S⃗] contains ∂θ̄i

or ∂θi
and by two

units if D[S⃗] contains ∂ 2
x i
− (2∆i − d + 2)∂θ̄i

∂θi
. To be precise

Σ[S⃗] ≡ Σ[S1...Sm] ≡ Σ[S1]· · ·Σ[Sm] , (48)

where Σ[Si] implement the following shifts

Σ[i]g(∆k) = g(∆k + 2δik) , Σ[i j̄]g(∆k) = g(∆k +δik +δ jk) , (49)

for any function of g that depends on the conformal dimensions ∆k, where k = 1, . . . , n in
formula (45).

3.1 Two-point functions

As we explained in section 2.3, the scalar two-point function in superspace is fixed as (22). Us-
ing the differential operators defined above, we can easily compute all the associated primary
components as follows

〈O0(x1)O0(x2)〉≡ 〈O(y1)O(y2)〉|0 =
1

(x2
12)∆

, (50)

〈Oθ (x2)Oθ̄ (x1)〉≡ D[12̄]〈O(y1)O(y2)〉|0 =
2∆

(x2
12)∆+1

, (51)

〈Õθθ̄ (x1)Õθθ̄ (x2)〉≡ D[12]〈O(y1)O(y2)〉|0 =
−4∆(∆+ 1)(−d + 2∆+ 2)(−d + 2∆+ 4)

(x2
12)∆+2

. (52)

We notice that all these two-point functions have the correct properties to be two-point func-
tions of primary operators. Moreover we further checked that the two-point functions of differ-
ent primaries are diagonal, namely 〈Õθθ̄O0〉= 0. Indeed one of the ways to fix the differential
operator D[i] is to require that the latter is true. We notice that the normalization of the two-
point functions above may be zero. This happens when ∆= 0, which is the trivial case of the
identity, but also at the free field dimension ∆ = d−2

2 and at ∆ = d−4
2 which is the dimension

of a free field in the dimensionally reduced theory. In section (6) we will see that indeed a
field with dimensions ∆ = 1 in d = 4 will appear, in that circumstance we will explain how
the vanishing norm (52) will have important implications.

3.2 Three-point functions

We now focus on three-point functions of scalar operators, which in superspace are defined
as (23). This observable contains 14 inequivalent three-point functions of primary operators
corresponding to the different primary components of the supermultiplets. To capture the
three-point functions of all components at once we use the following compact formula

D[S⃗]〈O1(y1)O2(y2)O3(y3)〉
�

�

�

�

0
= c[S⃗]λ123Σ[S⃗]

1

(x2
12)

∆1+∆2−∆3
2 (x2

13)
∆1+∆3−∆2

2 (x2
23)

∆2+∆3−∆1
2

, (53)

where D[S⃗] are the differential operators defined in (46) and Σ[S⃗] implement the shifts in
∆i according to (48). In this notation we only need to define what the coefficients c[S⃗] are.
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They encode the relation between the OPE coefficient of the superprimary and the ones of its
superdescendants. When S⃗ is the empty list, which corresponds to the lowest component, the
coefficient equals one, namely c[ ] = 1. All other cases are below

c[1] = −α13,2α12,3 , c[2] = −α23,1α21,3 ,

c[12̄] = −α12,3 , c[23̄] = −α23,1 ,

c[123̄] = α13,2α12,3(β − d + 2) , c[231̄] = α23,1α21,3(β − d + 2) ,

c[3] = −α31,2α32,1 ,

c[31̄] = −α31,2 , (54)

c[312̄] = α31,2α32,1(β − d + 2) ,

c[12] = α12,3

�

α12,3 + 2
�

(β − d + 2)(d − 4−α12,3) ,

c[13] = α13,2

�

α13,2 + 2
�

(β − d + 2)(d − 4−α13,2) ,

c[23] = α23,1

�

α23,1 + 2
�

(β − d + 2)(d − 4−α23,1) ,

c[123] = α23,1α12,3α13,2(β − 2d + 6)(β − d + 2)(β − d + 4) ,

where αi j,k ≡∆i +∆ j −∆k and β ≡∆1 +∆2 +∆3. For the sake of clarity we show a couple
of three-point functions in a more explicit form,

〈O0 1(x1)O0 2(x2)Õθθ̄ 3(x3)〉=
λ123 (∆1 −∆2 −∆3) (∆1 −∆2 +∆3)

(x2
12)

∆1+∆2−∆3−2
2 (x2

13)
∆1+∆3+2−∆2

2 (x2
23)

∆2+∆3+2−∆1
2

, (55)

〈O0 1(x1)Oθ̄ 2(x2)Oθ 3(x3)〉=
λ123(∆2 +∆3 −∆1)

(x2
12)

∆1+∆2−∆3
2 (x2

13)
∆1+∆3−∆2

2 (x2
23)

∆2+∆3−∆1+2
2

. (56)

As a comment, let us mention that it is a non-trivial consistency check that in all 14 cases these
take the form of three-point functions of primary operators. The shifts Σ[S⃗] keep track of the
correct scaling of the operators and thus the theory behaves correctly as a CFTd . The OPE
coefficients of the (primary) superdescendants are just related to the ones of the superprimary
by some coefficients c[S⃗] which are fixed by SUSY. Therefore by knowing the lowest component
one can reconstruct all the other ones.

3.3 Four-point functions

Scalar four-point functions in superspace are written as (24), in terms of a single function
f (U , V ) of superspace cross ratios U , V . Of course since the theory is a CFT, all components
of this superspace four-point function should be written in terms of usual d-dimensional cross
ratios u, v. The lowest component is just f (u, v). The other components are obtained by acting
with a differential operator in u, v that acts on f (u, v). The latter can be computed by acting
with some differential operators on a four-point function, as follows

D[S⃗]K∆i
(yi) f (U , V )|θ ,θ̄=0= (Σ[S⃗]K∆i

(x i))D[S⃗] f (u, v) , (57)

where D[S⃗] and Σ[S⃗] are defined in (46) and (48) while D[S⃗] is a differential operator in u, v
which we computed for all 43 components. Some cases are too lengthy to be shown in a paper,5

but they will be collected in a Mathematica file included with the publication. Below we show

5Indeed the maximal order of the differential operator in ∂u and ∂v is eight, and the coefficients are polynomials
of the seven variables d,∆1,∆2,∆3,∆4, u, v Because of this, the resulting expressions are sometimes several pages
long.
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their explicit form in a few instances. First the lowest component is the trivial differential
operator D[ ] = 1. Let us now focus on the operators D[i] for i = 1,2, 3,4,

D[1] ≡
�

−∆2
12 +∆

2
34u−∆34∆12(u+ v − 1)− 2∆2

�

∆12 +∆34(v − 1)
��

− 2u
�

∆12(u+ v − 1)−∆34(u+ v − 1) + 2∆2v − 2v
�

∂u

− 2v
�

−2
�

∆34 + 1
�

u+∆12(u+ v − 1) + 2∆2(v − 1)
�

∂v

+ 4uv(u+ v − 1)∂u∂v + 4u2v∂ 2
u + 4uv2∂ 2

v ,

(58)

D[2] ≡
�

∆2
1 −∆

2
2

�

− 4 (∆1 − 1)u∂u + (2 (−∆1 +∆2 + 2)u− 2 (∆1 +∆2) (v − 1))∂v

+ 4u2∂ 2
u + 4uv∂ 2

v + 4u(u+ v − 1)∂u∂v ,
(59)

D[3] ≡
�

∆2
4 −∆

2
3

�

− 4
�

∆4 − 1
�

u∂u +
�

2∆3(u− v + 1)− 2∆4(u+ v − 1) + 4u
�

∂v

+ 4u2∂ 2
u + 4uv∂ 2

v + 4u(u+ v − 1)∂u∂v ,
(60)

D[4] ≡
�

∆12

�

∆12 −∆34

�

u+
�

∆4 +∆3

� �

∆34 +∆12(v − 1)
��

+ 4uv(u+ v − 1)∂u∂v

− 2u
�

∆12(u+ v − 1) +∆34(−u+ v + 1) + 2∆4v − 2v
�

∂u + 4u2v∂ 2
u

+ 2v
�

−2∆12u+∆34(u− v + 1) + 2u− 2∆4(v − 1)
�

∂v + 4uv2∂ 2
v .

(61)

We further exemplify the form of D[i j̄] for 1≤ i < j ≤ 4,

D[12̄] ≡ (−∆1 −∆2) + 2u∂u , (62)

D[34̄] ≡
�

−∆3 −∆4

�

+ 2u∂u , (63)

D[13̄] ≡ −2u3/2∂u −∆34
p

u − 2
p

uv∂v , (64)

D[24̄] ≡ −2u3/2∂u +∆12
p

u − 2
p

uv∂v , (65)

D[14̄] ≡
�

−∆12 +∆34

�p
u + 2
p

uv∂v , (66)

D[23̄] ≡ 2
p

u∂v . (67)

It is easy to see that D[i j̄] = −D[ī j], so these components are redundant and are not taken into
account in the counting. Let us also show the cases of four fermionic components. In this case
there are only three independent operators given by

D[12̄34̄] ≡ (∆1 +∆2)
�

∆3 +∆4

�

+ 4u2∂ 2
u + 2
�

∆12 −∆34 − 2
�

u∂v

− 2
�

∆1 +∆2 +∆3 +∆4 − 2
�

u∂u − 4uv∂ 2
v ,

(68)

D[13̄24̄] ≡ 2
�

−∆12 +∆34 + 2
�

u2∂u + 4u3∂ 2
u + 8u2v∂u∂v −∆12∆34u

− 2
�

∆12 −∆34 − 2
�

u(v − 1)∂v + 4u(v − 1)v∂ 2
v ,

(69)

D[12̄43̄] ≡
�

(∆1 +∆2)
�

∆3 +∆4

�

+∆12∆34u
�

+ 2
�

∆12 −∆34 − 2
�

uv∂v

+ 2
��

∆12 −∆34 − 2
�

u−
�

∆1 +∆2 +∆3 +∆4 − 2
��

u∂u

− 8u2v∂u∂v + 4 (1− u)u2∂ 2
u − 4uv2∂ 2

v .

(70)

The other combinations are equivalent, e.g. D[1̄23̄4] = D[12̄34̄]. Finally we show a single repre-
sentative of the family D[i jk̄] since these are already quite lengthy,

D[123̄]≡ +(∆1 +∆2)∆34
p

u (−d + 2∆1 + 2) − 2
�

∆1 +∆2 −∆34 − 2
�

u3/2 (d − 2 (∆1 + 1))∂u

+
�

4u3/2v
�

d − 3∆1 −∆2 +∆34 + 2
�

− 4
�

∆12 −∆34 − 2
�

(u− 1)u3/2
�

∂u∂v

−2
p

u
�

(∆1 +∆2) v
�

d − 2∆1 +∆34

�

+
�

∆12 −∆34 − 2
� �

∆1 +∆2 +∆34u+ 2u
��

∂v

+8u3/2v2∂ 3
v + 8u3/2v (v + u− 1)∂u∂

2
v + 4u5/2 (d − 2 (∆1 + 1))∂ 2

u

+8u5/2v∂ 2
u ∂v + 4

p
uv
��

∆1 +∆2 −∆12u+ 2∆34u+ 6u
�

− (∆1 +∆2) v
�

∂ 2
v . (71)
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The operator (71) has an explicit dependence on d. This feature is shared with all the other
operators which we are omitting from the text.

All differential operators are written in a form where the derivatives in u and v are on
the right and thus act directly on the function. This formulation is the most convenient for
computations, however there may exist a different formulation which makes the differential
operators more compact. We did not invest time in searching for compact rewritings, which
we postpone for future work.

We checked that the differential operators automatically satisfy crossing. For example the
crossing 1↔ 3 is written as

D[S⃗] f (u, v)|∆1↔∆3,u↔v = σS⃗′
D[S⃗′] f (u, v)

Σ[S⃗′]v
−∆2−∆3

2 u
∆1+∆2

2

, (72)

where we assume that f (u, v) is crossing covariant, namely f (u, v) = v
−∆2−∆3

2 u
∆1+∆2

2 f (v, u)
(which must be the case since it comes from a well defined CFTd−2). Here we define
[S⃗′] = [S⃗]|1↔3 and σS⃗ = ±1 is the fermionic signature of S⃗, namely it computes how
many permutations of the fermionic operators are needed to restore the canonical order, e.g.
σ2̄143 = σ2̄134 = −σ12̄34 = −1.

We further checked the crossing 1↔ 2 and 1↔ 4, which also work out correctly. These
equations generically map D[S⃗] into a different D[S⃗′], which is a check that all the differen-
tial operators are correct. Moreover this implies that all primary components of the super-
space four-point functions automatically satisfy crossing in all channels. This is an important
check for the uplift, indeed we find that given one four-point function in d − 2 we get 43 new
four-point functions in d dimensions which are crossing covariant and consistent with super-
symmetry. In the next section we explain that they can also be automatically decomposed in
d-dimensional conformal blocks.

4 Conformal block expansion in PS CFTs

In this section we want to study how the different components of a four-point function are all
compatible with the conformal block decomposition. This will give rise to 43 relations between
conformal blocks in d − 2 and d dimensions.

As explained in section 2.3, the scalar four-point function in superspace is determined in
terms of a single function f (U , V ) of super cross ratios which can be decomposed in superspace
superconformal blocks G(d|2)∆ℓ as in (28). On the other hand f (u, v) also defines the dimension-
ally reduced four-point function (which depends on the usual cross ratios u, v) and thus it can
be decomposed in (d − 2)-dimensional blocks

f (u, v) =
∑

∆ℓ

ã∆ℓg
(d−2)
∆ℓ (u, v) , (73)

where in principle ã∆ℓ and a∆ℓ of the two decompositions could be different. In [7] it was
shown that they are actually the same ã∆ℓ = a∆ℓ, since also the conformal blocks are the same
function (29). This already explains that given a scalar four-point function in d−2 dimensions
compatible with the conformal block decomposition (and other bootstrap axioms like crossing)
one can define a scalar four-point function in Rd|2 superspace which is compatible with the
superconformal block decomposition (and the other bootstrap axioms).

However it is also important to check that the d-dimensional PS CFT behaves as a good
CFTd and therefore its four-point functions are decomposed in terms of d-dimensional con-
formal blocks g(d)∆ℓ. In particular this means that each component of G(d|2)∆ℓ (U , V ) should be
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decomposed in terms of a finite number of g(d)∆ℓ in a precise linear combination fixed by super-
symmetry. In [7] we showed that this is indeed true for the lowest component. In particular
since the lowest component of G(d|2)∆ℓ (U , V ) is also equal to the block g(d−2)

∆ℓ itself, we obtained
the following beautiful formula relating conformal blocks in d − 2 and d dimensions [7]

g(d−2)
∆ℓ = g(d)∆ℓ + c2,0 g(d)∆+2ℓ + c1,−1 g(d)∆+1ℓ−1 + c0,−2 g(d)∆ℓ−2 + c2,−2 g(d)∆+2ℓ−2 , (74)

where the generic scalar block in d − 2 dimensions is written as a linear combination of only
five blocks in d dimensions. The coefficients can be written in closed form as follows:

c2,0 = −
(∆−1)∆(∆−∆12+ℓ)(∆+∆12+ℓ)(∆−∆34+ℓ)(∆+∆34+ℓ)

4(d−2∆−4)(d−2∆−2)(∆+ℓ−1)(∆+ℓ)2(∆+ℓ+1) ,

c1,−1 = −
(∆−1)∆12∆34ℓ

(∆+ℓ−2)(∆+ℓ)(d−∆+ℓ−4)(d−∆+ℓ−2) , (75)

c0,−2 = −
(ℓ−1)ℓ

(d+2ℓ−6)(d+2ℓ−4) ,

c2,−2 =
(∆−1)∆(ℓ−1)ℓ(d−∆−∆12+ℓ−4)(d−∆+∆12+ℓ−4)(d−∆−∆34+ℓ−4)(d−∆+∆34+ℓ−4)

4(d−2∆−4)(d−2∆−2)(d+2ℓ−6)(d+2ℓ−4)(d−∆+ℓ−5)(d−∆+ℓ−4)2(d−∆+ℓ−3) .

Because of this relation it is trivial to see that if f (u, v) is decomposed in g(d−2)
∆ℓ , then it can

be also decomposed in g(d)∆ℓ and the explicit form of the coefficients ci, j can be used to simply
map the OPE coefficients of the d − 2 dimensional decomposition, to the OPE coefficients of
the d-dimensional one.

This relation however was obtained by only considering the lowest component of f (U , V ).
Now we want to see how this relation generalizes for the other components.

4.1 43 relations between conformal blocks across dimensions

As we showed in section 3.3, inside a single superspace four-point functions there are 43 in-
equivalent four-point functions specified by the list S⃗. Using (57) we can reconstruct each
primary four-point function by acting with a given differential operator D[S⃗] in the variables
u, v on the function f (u, v) that specifies the lowest component. This is of course also true at
the level of conformal blocks if we replace f → G(d|2)∆ℓ in (57). In particular this replacement

defines what are the superconformal blocks for each component. In other words G(d|2)∆ℓ (U , V )

is the superspace superconformal blocks, while D[S⃗]G
(d|2)
∆ℓ (u, v) defines what is usually called a

superconformal block, which is just a function of u, v. Each D[S⃗]G
(d|2)
∆ℓ (u, v) must be decom-

posed in a finite number of d-dimensional blocks. Using again formula (29), we can replace
G(d|2) → gd−2 and thus obtain 42 extra relations between blocks in d − 2 and d dimensions
labelled by the component S⃗. We can capture all such relations by the following compact
formula

(76)D[S⃗]g
(d−2)
∆ℓ =
∑

(i, j)∈P[S⃗]

c[S⃗]i, j Σ[S⃗] g(d)∆+i ℓ+ j ,

where we recall that Σ[S⃗] just implements some shifts in the conformal dimensions ∆k of the
external operators by some units as defined in (48) and (49), while the differential operators
D[S⃗] are defined in section 3.3 and explicitly given in a Mathematica file attached to the pub-

lication. We computed in a closed form all coefficients c[S⃗]i, j for all 43 possible choices of S⃗ as
we will show in the following section and in appendix A (for convenience in the Mathematica
file we also include the full list of the coefficients together with a check of (76)).
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Table 2: For all possible components [S⃗] of four-point function we show which is
their associated P[S⃗]. The set P(0) appears in 26 instances, P(1) in 16 while P(2) only
in a single one.

P[S⃗] # [S⃗]

P(0) 26
[ ], [12̄], [34̄], [1], [2], [3], [4], [134̄], [234̄], [312̄], [412̄], [12̄34̄], [12̄43̄],

[12], [13], [14], [23], [24], [34], [1234̄], [3412̄], [123], [124], [134], [234], [1234]

P(1) 16
[13̄], [14̄], [23̄], [24̄], [2314̄], [1324̄], [2413̄], [1423̄],
[123̄], [124̄], [213̄], [214̄], [314̄], [324̄], [413̄], [423̄]

P(2) 1 [13̄24̄]

Finally it is crucial that the summation over P[S⃗] is finite; in particular it contains at most 5
terms depending on the choice of S⃗. Indeed P[S⃗] is defined as one the following three possible
sets

P[S⃗] =











P(0) ≡ {(0,0), (0,−2), (1,−1), (2,0), (2,−2)} , if Q1[S⃗] +Q2[S⃗] = 0 ,

P(1) ≡ {(0,−1), (1, 0), (1,−2), (2,−1)} , if Q1[S⃗] +Q2[S⃗] = ±1 ,

P(2) ≡ {(1,−1)} , if Q1[S⃗] +Q2[S⃗] = ±2 ,

(77)

where Qk is the Sp(2) R-symmetry charge (computed by Mθθ̄ ) of the operator at the position
k. Namely if the k-th operator is a fermion then Qk = 1, if it is an antifermion Qk = −1, while
if it is bosonic Qk = 0. The charge of the k-th operator can be extracted from the list S⃗ in a
very simple way, by defining Qk[S⃗] =Qk[S1, . . . , Sn] =Qk[S1] + · · ·+Qk[Sn] with

Qk[i j̄] = δik −δ jk , Qk[i] = 0 . (78)

In table 2 we present a table that summarizes all components [S⃗] of the four-point function
and their associated sets P[S⃗].

Of course it is natural that the rhs of (76) depends on the charge of the operators at position
1 and 2. Indeed, since the Sp(2) charge is conserved, the charge of these two operators speci-
fies which operator can flow in their OPE and thus which conformal blocks can be exchanged.
Keeping this in mind let us now explain why the specific form of (77) arises.

Let us first consider the case Q1 +Q2 = 0 when bosons are exchanged. In this case there
are 5 different primaries that can be exchanged for every spin ℓ super primary.6 These are
obtained from a single spin ℓ super primary Oa1...aℓ as follows

Oα1...αℓ
0 , Oα1...αℓ−2θθ̄

0 , Oα1...αℓ
θθ̄

, Oα1...αℓ−1θ̄

θ
(Oα1...αℓ−1θ

θ̄
) , Oα1...αℓ−2θθ̄

θ θ̄
. (79)

These have quantum numbers (∆,ℓ), (∆ + 2,ℓ), (∆ + 1,ℓ − 1), (∆ + 2,ℓ), (∆ + 2,ℓ − 2) as
prescribed by (77) and (76). To be precise the operators above may not be all primaries,
but they can be always improved to be primaries, so this argument is enough to explain the
counting and the quantum numbers of the conformal blocks in the rhs of (76). Similarly when
Q1+Q2 = ±1 there are 4 primaries which are fermionic (or antifermionic), which are related
to the following operators

Oα1...αℓ−1θ
0 , Oα1...αℓ

θ
, Oα1...αℓ−2θθ̄

θ
, Oα1...αℓ−1θ

θθ̄
, (80)

6For this counting we consider ℓ large enough otherwise there may be less than 5 coefficients. The coefficients
c[S⃗]i, j have zeros which automatically take into account when some contributions do not arise. Similar remarks hold
for the other cases below.
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for Q1 +Q2 = 1 and similarly for the opposite charge. These corresponds to operators with
quantum numbers (∆,ℓ−1), (∆+1,ℓ), (∆+1,ℓ−2),(∆+2,ℓ−1), as shown in (77). Finally
when Q1 +Q2 = ±2 there is a single charge-2 (or −2) fermion

Oα1...αℓ−1θ

θ
(Oα1...αℓ−1θ̄

θ̄
) , (81)

with quantum numbers (∆+ 1,ℓ− 1). This simple analysis fully explains the sets in (77) and

thus the structure of equation (76). In what follows we explicitly show the form of c[S⃗]i, j .

4.2 Examples

In the previous section we introduced all ingredients for the equation (76) besides the coef-

ficient c[S⃗]i, j . Here we want to show their form in a few examples (the rest can be found in
appendix A). While doing it we will also provide a few explicit examples of equation (76) for
some choices of S⃗.

Let us first consider the case of S⃗ = i for i = 1, . . . 4, namely when there is a single level-
2 superdescendant and all other operators are lowest components. Let us exemplify in this
case all the ingredients entering (76). The differential operators D[i] are defined in equations
(58)-(61). The charges Q1 and Q2 defined in (78) are zero, thus P[i] = P(0) which contains 5
terms. We thus find that there are five d-dimensional conformal blocks appearing in the rhs of
(76), with ∆i shifted by two units (namely ∆i → ∆i + 2). We therefore obtain that (76) can
be unpacked as follows

(82)D[i]g
(d−2)
∆ℓ = c[i]0,0Σig

(d)
∆ℓ+ c[i]0,−2Σig

(d)
∆ℓ−2+ c[i]1,−1Σig

(d)
∆+1ℓ−1+ c[i]2,0Σig

(d)
∆+2ℓ+ c[i]2,−2Σig

(d)
∆+2ℓ−2 ,

where i = 1, 2,3,4. For i = 1 the exact form of the coefficients is as follows,

c[1]0,0 = (−∆−∆12 − ℓ) (−∆+ β12 + ℓ) , (83)

c[1]0,−2 =
(ℓ− 1)ℓ (d −∆−∆12 + ℓ− 2) (d +∆− β12 + ℓ− 2)

(d + 2ℓ− 4)(d + 2ℓ− 2)
,

c[1]1,−1 =
(1−∆)∆34ℓ (d − β12) (∆+∆12 + ℓ) (−d +∆+∆12 − ℓ+ 2)

(∆+ ℓ− 2)(∆+ ℓ)(−d +∆− ℓ)(−d +∆− ℓ+ 2)
,

c[1]2,0 =
(1−∆)∆(∆+∆12 + ℓ) (∆+∆12 + ℓ+ 2)

�

∆−∆34 + ℓ
� �

∆+∆34 + ℓ
�

(−d +∆+∆12 − ℓ+ 2) (−d +∆+ β12 + ℓ)

4(2∆− d)(−d + 2∆+ 2)(∆+ ℓ− 1)(∆+ ℓ)2(∆+ ℓ+ 1)
,

c[1]2,−2 =
(1−∆)∆(ℓ− 1)ℓ (∆+∆12 + ℓ) (d −∆−∆12 + ℓ− 4) (d −∆−∆12 + ℓ− 2) (2d −∆− β12 + ℓ− 2)

�

d −∆−∆34 + ℓ− 2
� �

d −∆+∆34 + ℓ− 2
�

4(d − 2∆− 2)(d − 2∆)(d + 2ℓ− 4)(d + 2ℓ− 2)(d −∆+ ℓ− 3)(d −∆+ ℓ− 2)2(d −∆+ ℓ− 1)
,

where we introduced the notation βi j ≡∆i +∆ j .

All other coefficients c[k]i, j (for k = 2,3, 4) are obtained by a simple map of the coefficient

c[1]i, j , namely

c[2]i, j = π(12)(34)c
[1]
i, j , c[3]i, j = π(13)(24)c

[1]
i, j , c[4]i, j = π(23)(14)c

[1]
i, j , (84)

where π implements permutations of the labels ∆i . In particular

π(i j)F(∆k)≡ F(∆k)|∆i↔∆ j
, π(i1 j1)...(in jn)F(∆k)≡ π(i1 j1) · · ·π(in jn)F(∆k) , (85)

for any function F of the conformal dimensions ∆k.
Let us mention a common feature that we will see for most of choices of S⃗: the relations

(76) can be though as equations for the conformal blocks, but the latter only depend on the

differences ∆12 and ∆34, while the coefficients c[S⃗]i, j (see e.g. (83)) as well as the differential
operators D[S⃗] (see e.g. (58)) depend also on β12, β34 (polynomially). Therefore one can
expand the equations (76) in β12 and β34 and each term of the expansion can be understood
as a valid equation for the blocks.
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Let us now consider the case of S⃗ = i j̄ (i ̸= j), which corresponds to two level-one superde-
scendants and two lowest components. There are two distinct situations. First we consider
(i, j) = (1,2), (3,4). In this case P[i j̄] contains 5 terms. Therefore the action of D[i j̄] (defined
in (62) and (63)) on the d−2-dimensional conformal blocks can be written in terms of a sum
of five conformal blocks in d-dimensions,

(86)D[i j̄]g
(d−2)
∆ℓ = c[i j̄]

0,0 g(d)∆ℓ + c[i j̄]
0,−2 g(d)∆ℓ−2 + c[i j̄]

1,−1 g(d)∆+1ℓ−1 + c[i j̄]
2,0 g(d)∆+2ℓ + c[i j̄]

2,−2 g(d)∆+2ℓ−2 .

Here the conformal blocks are not shifted since they only depend on ∆12 and ∆34 and thus
the shift act trivially. The form of the coefficients is as follows,

c[12̄]
0,0 = ∆− β12 − ℓ , (87)

c[12̄]
0,−2 =

(ℓ− 1)ℓ (β12 − d −∆− ℓ+ 2)
(d + 2ℓ− 4)(d + 2ℓ− 2)

,

c[12̄]
1,−1 =

(∆− 1)∆12∆34ℓ (β12 − d)
(∆+ ℓ− 2)(∆+ ℓ)(−d +∆− ℓ)(−d +∆− ℓ+ 2)

,

c[12̄]
2,0 = (∆− 1)∆(∆−∆12 + ℓ) (∆+∆12 + ℓ)

�

∆−∆34 + ℓ
� �

∆+∆34 + ℓ
�

(−d +∆+ β12 + ℓ)

4(2∆− d)(−d + 2∆+ 2)(∆+ ℓ− 1)(∆+ ℓ)2(∆+ ℓ+ 1)
,

c[12̄]
2,−2 =

(∆− 1)∆(ℓ− 1)ℓ (d −∆+∆12 + ℓ− 2) (∆12 − d +∆− ℓ+ 2) (β12 − 2d +∆− ℓ+ 2)
�

∆− d −∆34 − ℓ+ 2
� �

∆− d +∆34 − ℓ+ 2
�

4(d − 2∆)(d − 2(∆+ 1))(d + 2ℓ− 4)(d + 2ℓ− 2)(d −∆+ ℓ− 3)(d −∆+ ℓ− 2)2(d −∆+ ℓ− 1)
.

The other case [34̄] is defined by

c[34̄]
i, j ≡ π(13)(24)c

[12̄]
i, j . (88)

In the cases (i, j) = (1,3), (1,4), (2,3), (2,4) the set P[i j̄] contains 4 terms. We thus find
that the action of D[i j̄] (defined in (64)-(67)) on the d − 2-dimensional conformal blocks can
be written in terms of a sum of only four conformal blocks in d-dimensions, with ∆i and ∆ j
shifted by one unit,

D[i j̄]g
(d−2)
∆ℓ = c[i j̄]

0,−1Σi j̄ g
(d)
∆ℓ−1 + c[i j̄]

1,0 Σi j̄ g
(d)
∆+1ℓ + c[i j̄]

1,−2Σi j̄ g
(d)
∆+1ℓ−2 + c[i j̄]

2,−1Σi j̄ g
(d)
∆+2ℓ−1 . (89)

The coefficient for [13̄] takes the following form

c[13̄]
0,−1= −ℓ ,

c[13̄]
1,0 = −

(∆− 1) (∆+∆12 + ℓ)
�

∆+∆34 + ℓ
�

2(∆+ ℓ− 1)(∆+ ℓ)
,

c[13̄]
1,−2=

(∆− 1)(ℓ− 1)ℓ (d −∆−∆12 + ℓ− 2)
�

d −∆−∆34 + ℓ− 2
�

2(d + 2ℓ− 4)(d + 2ℓ− 2)(d −∆+ ℓ− 2)(d −∆+ ℓ− 1)
,

c[13̄]
2,−1=

(∆− 1)∆ℓ (∆+∆12 + ℓ)
�

∆+∆34 + ℓ
�

(d −∆−∆12 + ℓ− 2)
�

d −∆−∆34 + ℓ− 2
�

4(2∆− d)(−d + 2∆+ 2)(∆+ ℓ− 1)(∆+ ℓ)(−d +∆− ℓ+ 1)(−d +∆− ℓ+ 2)
.

(90)

The other three coefficients are defined by

c[24̄]
i, j = π(14)(23)c

[13̄]
i, j , c[14̄]

i, j = (−1) jπ(34)c
[13̄]
i, j , c[13̄]

i, j = (−1) jπ(12)c
[13̄]
i, j , (91)

where (−1) j changes the sign of the coefficients c0,−1 and c2,−1 (notice that these correspond
to operators with spin ℓ− 1, thus they have an extra sign with respect to operators with spin
ℓ or ℓ− 2).

Let us consider in details also the three cases when all four operators are level-one su-
perdescendant. In the first case 12̄34̄, the set P[12̄34̄] contains 5 terms and thus

D[12̄34̄]g
(d−2)
∆ℓ = c[12̄34̄]

0,0 g(d)∆ℓ + c[12̄34̄]
0,−2 g(d)∆ℓ−2 + c[12̄34̄]

1,−1 g(d)∆+1ℓ−1 + c[12̄34̄]
2,0 g(d)∆+2ℓ + c[12̄34̄]

2,−2 g(d)∆+2ℓ−2 , (92)
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where D[12̄34̄] is defined in (68) and the coefficients read

c[12̄34̄]
0,0 = (β12 −∆+ ℓ)

�

β34 −∆+ ℓ
� , (93)

c[12̄34̄]
0,−2 =

(ℓ− 1)ℓ (d +∆− β12 + ℓ− 2)
�

β34 − d −∆− ℓ+ 2
�

(d + 2ℓ− 4)(d + 2ℓ− 2)
,

c[12̄34̄]
1,−1 =

(∆− 1)ℓ
�

∆12∆34 (−d + β12)
�

d − β34

�

+ (∆+ ℓ− 2)(∆+ ℓ)(d −∆+ ℓ− 2)(d −∆+ ℓ)
�

(∆+ ℓ− 2)(∆+ ℓ)(d −∆+ ℓ− 2)(d −∆+ ℓ)
,

c[12̄34̄]
2,0 = (∆− 1)∆(∆12 −∆− ℓ) (∆+∆12 + ℓ)

�

∆−∆34 + ℓ
� �

∆+∆34 + ℓ
�

(−d +∆+ β12 + ℓ)
�

−d +∆+ β34 + ℓ
�

4(2∆− d)(−d + 2∆+ 2)(∆+ ℓ− 1)(∆+ ℓ)2(∆+ ℓ+ 1)
,

c[12̄34̄]
2,−2 =

(∆− 1)∆(ℓ− 1)ℓ (d −∆−∆12 + ℓ− 2) (2d −∆− β12 + ℓ− 2) (d −∆+∆12 + ℓ− 2)
�

d −∆−∆34 + ℓ− 2
� �

2d −∆− β34 + ℓ− 2
� �

d −∆+∆34 + ℓ− 2
�

4(d − 2∆)(d − 2(∆+ 1))(d + 2ℓ− 4)(d + 2ℓ− 2)(d −∆+ ℓ− 3)(d −∆+ ℓ− 2)2(d −∆+ ℓ− 1)
.

The case 12̄43̄ is similar and the coefficients are related to the ones above by
c[12̄43̄]

i, j = (−1) jπ(34)c
[12̄34̄]
i, j .

We now consider the case 13̄24̄. This is the only case where the set P[13̄24̄] contains only

one term. The single coefficient is defined as c[13̄24̄]
1,−1 = 2(∆− 1)ℓ, therefore the final formula

takes the very simple form

(94)D[13̄24̄]g
(d−2)
∆ℓ = 2(∆− 1)ℓg(d)∆+1ℓ−1 ,

where D[13̄24̄] is defined in (69). The differential operator D[13̄24̄]/(2(∆− 1)ℓ) is very useful
since it can be applied to define conformal blocks in higher dimensions knowing the ones in
lower dimensions.

Indeed the relation (94) was already found in equation (4.37) of [30]7 by searching for
a differential operator that shifts the dimension of the conformal blocks. Now we can give a
physical interpretation to this relation as arising from supersymmetry.

We avoid the exemplifications of all other cases, but it should be clear that all 43 relations
in (76) can be easily implemented using the differential operators and the coefficients defined
in the Mathematica file attached to the publication. For completeness in appendix A we also
define the remaining coefficients.

4.3 Poles in the conformal blocks and SUSY

In this section we aim at studying the possible singularities in ∆ of conformal blocks. Below
we warm up by considering a unitary CFT and show that in this case the blocks are always
finite even when they naively look singular. Then we turn to a PS CFT and consider the su-
perconformal blocks, which by equation (76) are written as a linear combination of conformal
blocks. We will show that in this case it may also happen that some blocks in the linear com-
bination diverge, but the specific linear combination provided by (76) is fine tuned to cancel
all singularities and gives a finite result. On one hand this remark can be understood as a con-
sistency check of (76). On the other hand it will also uncover some interesting features which
will play an important role in the conformal block decompositions of the following sections.

To start let us consider the conformal block decomposition of a four-point correlation func-
tion in usual (compact unitary) CFTs. In this case it is expected that both the OPE coefficients
and the conformal blocks appearing in the decomposition are finite quantities and sum up to
a finite result. The fact that conformal blocks are finite is non trivial since they have poles in
∆ as shown in (12), which for convenience we rewrite here

g∆ℓ ∼
RA

∆−∆∗A
g∆AℓA

, (95)

where ∆∗A,∆A =∆∗A+ nA,ℓA are defined in table 1 and the coefficient RA is defined in (13). So
the conformal blocks seem to diverge for the exchange of an operator with labels ∆ = ∆∗A,ℓ.

7The normalization of the blocks is different g(d),here
∆,ℓ =

(−2)ℓ( d−2
2 )ℓ

(d−2)ℓ
g(d),there
∆,ℓ .
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At a first sight this might be puzzling since these labels include the ones of a free scalar
(∆ = d/2− 1,ℓ = 0) and a conserved tensors (with ∆ = d + ℓ− 2 for any spin ℓ = 1, 2, . . . ).
So naively it may seem that free scalars and conserved tensors cannot be exchanged. How can
this be compatible with the fact that these operators exist in physical theories? The answer is
simple. In unitary theories when ∆,ℓ equals the ones of a free scalar or a conserved tensor
then the associated residue RA vanishes to cancel the pole. This gives a non trivial restriction
on the possible set of correlation functions that exchange such operators. For example for a
free scalar exchange the conformal block diverges as

g∆ℓ=0 ∼
RIII,1|ℓ=0

∆− (d/2− 1)
g∆+2,ℓ=0 , for ∆→ d/2− 1 . (96)

The residue at ∆= d/2− 1 vanishes when

RIII,1|ℓ=0=
(d/2− 1−∆12) (d/2− 1+∆12)

�

d/2− 1−∆34

� �

d/2− 1+∆34

�

4(d − 2)d
= 0 , (97)

which implies that either∆12 = ±(d/2−1) or∆34 = ±(d/2−1). This is indeed what happens
in free theory: in order to exchange a free field in an OPE, the dimensions of the (external)
operators in the correlation function must differ by ±(d/2− 1), e.g. φn ×φn−1 ∼ φ.

Similarly when we exchange a conserved tensor of spin ℓ the conformal block diverges as

g∆ℓ ∼
RII,1

∆− (d + ℓ− 2)
g∆+1,ℓ−1 , for ∆→ d + ℓ− 2 . (98)

Thus we need to require that the residue at ∆= d + ℓ− 2 has to vanish, namely

RII,1 =
∆12∆34ℓ! (d + ℓ− 3)

2(ℓ− 1)! (d + 2ℓ− 4)(d + 2ℓ− 2)
= 0 , (99)

which is possible only for either ∆12 = 0 or ∆34 = 0. This condition is indeed required by
Ward identities of the conserved tensors 〈φ∆1

φ∆2
Tµ1...µℓ〉 ∝ δ∆1∆2

.
We thus found that in unitary theories the singularities of the conformal blocks are avoided

because the residue RA is zero. Let us discuss what this means physically. Let us consider a
conformal multiplet/module labelled by a primary with dimension ∆ and spin ℓ. Now we
want to see what happens to this multiplet when changing ∆. Using the notation of equation
(95), when ∆=∆∗A the module becomes singular/reducible, namely it contains a descendant
labelled by ∆A,ℓA which becomes primary. The primary descendant together with all its de-
scendants define the submodule. All states of the submodule have vanishing norm. These are
responsible for the pole in the conformal block. The condition RA = 0 is equivalent to the fact
that there is a shortening condition that the primary descendant must satisfy. For example
□φ = 0 for a free scalar or ∂µJµµ2...µℓ = 0 for a spin ℓ conserved current. These shortening
conditions can be understood as a way to mod out the primary descendant and its associated
multiplet. This is necessary in a unitary theory to avoid non-trivial states with vanishing norms.
In the following we see how this does not happen in PS CFTs.

Avoiding poles with Parisi-Sourlas SUSY

Above we showed that a tuning of the conformal blocks is required when operators at the
unitarity bound are exchanged. Here we exemplify how this is not necessary in PS CFTs. This
will also generalize to exchanges below the unitarity bound which are naively singular (as we
detail in appendix B).
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Let us exemplify the new mechanism for the case of an exchanged scalar superblock with
∆ = d/2 − 1. We further think of this superblock as arising from the uplift of a d̂ = d − 2-
dimensional block. Since in d̂ dimensions nothing special happens for exchanges of operators
of dimensions ∆= d/2− 1 = d̂/2, we would expect that the same is true for the superblocks
of the uplifted theory, however this is non-trivial since in d-dimensions the blocks have a pole
at this value of ∆ (unless (97) is satisfied). Let us show how this pole is erased in the case
of the lowest component of a four-point function. The lowest component of a scalar (ℓ = 0)
superblock takes the form

g∆ℓ=0 + c(ℓ=0)
2,0 g∆+2ℓ=0 , where c(ℓ=0)

2,0 = −
(∆−∆12) (∆+∆12)

�

∆−∆34

� �

∆+∆34

�

4∆(∆+ 1)(d − 2∆− 4)(d − 2∆− 2)
. (100)

We can explicitly see that the coefficient c(ℓ=0)
2,0 in front of g∆+2ℓ=0 diverges as follows

c2,0 ∼ −
RIII,1

∆− (d/2− 1)
, for ∆→ d/2− 1 . (101)

The contribution of c2,0 g∆+2ℓ=0 exactly cancels the pole at ∆→ d/2− 1 of g∆ℓ=0 defined in
formula (12), and thus we get that the combination provided by (the lowest component of)
the superblock

g̃d/2−1ℓ=0 ≡ lim
∆→d/2−1

g∆ℓ=0 + c2,0 g∆+2ℓ=0 (102)

is finite. Therefore in a PS CFT the pole at ∆= d/2−1 in the conformal block cancels thanks
to supersymmetry and the conformal block g̃d/2−1ℓ=0 can always be exchanged independently
on the value of∆12 and∆34. This mechanism is unconventional because the pole of the block
is cancelled because of a divergent OPE coefficient (to be precise it is only the kinematic part
c2,0 of the OPE which diverges). In all theories with finite OPE coefficients this can never
happen and the only mechanism allowed is the one of the cancellation of the residues RA.

The fact that RA ̸= 0 means that the module of the primary descendant is not modded
out and thus it will be part of the spectrum. Another consequence of this is that we can
consider these primary descendants as insertions in a correlation function without getting a
vanishing result, because no shortening condition has to be satisfied (this is in contrast with
the unitary cases described above where if one considers e.g. □φ as an insertion in any free
boson correlation function, the resulting correlator vanishes). We will see how all these facts
will play a role in the study of the uplifted minimal models.

There are other important cases where this mechanism takes place. Indeed, besides for
exchanges of operators at the unitarity bound, the conformal blocks diverge for infinitely more
values of ∆ = ∆∗A (the unitary values appear only for the type III, n = 1 when ℓ = 0 and for
II, n= 1 when ℓ > 0, but in general one could consider any of the three types I, II, III for any n).
All these extra cases lye below the unitarity bounds, so these exchanges do not arise in unitary
theories. However these may arise in non-unitary theories, like the PS CFTs. For such theories
there should be a mechanism to cancel the singularities whenever one of these operators is
exchanged.

First it is interesting to ask which are the possible problematic exchanges which arise in
the Parisi-Sourlas uplift of a unitary d̂ ≡ d −2-dimensional theory (these are the theories that
we consider in the rest of the paper). The answer is easy: the operators of such uplifts satisfy
bounds which arise by uplifting the unitarity-bounds of the lower dimensional theory. Namely
they satisfy ∆ ≥ d

2 − 2 for scalar operators and ∆ ≥ d + ℓ− 3 for operators of spin ℓ ≥ 1. In
particular in these theories one can exchange scalar operators with dimensions∆= d

2−2, d
2−1

and operators with dimensions∆= d+ℓ−3, d+ℓ−2, d+ℓ−1 and spin ℓ. For all these values
the blocks have singularities. For the uplift to make sense it is crucial that all these singularities
are resolved. In appendix B we show that all these poles are erased, sometimes because RA
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vanishes and sometimes because of the special linear combination of the blocks provided by
supersymmetry which gives rise to new regularized blocks that exactly cancels the singularity
as we showed for (102). The specific form of the regularized blocks computed in appendix B
is going to play a role in the next sections, when we will decompose correlations functions of
the uplifted minimal models.

5 Bootstrapping GFF using PS SUSY

In the previous sections we determined a set of kinematic properties shared by all PS CFTs. We
now want to apply the PS CFT framework to the simple theory of a generalized free boson field
(GFF). Below we will start by a basic introduction to GFF to set some conventions. We define
it in d̂ = d − 2 > 1 dimensions (the case d̂ = 1 is studied in section 7.2) so that the uplifted
theory lives in d > 3 dimensions (for the purposes of this section one could also drop the hat
of d̂ in every formula). In the next subsection we will define the uplifted theory. We will show
that, besides being well defined, the PS uplift of GFF can be used to infer some properties
of the original GFF, thus helping to bootstrap some observables. As an example we will be
able to compute, without doing any Wick contraction, the conformal block decomposition of
〈φφnφmφm〉 for any power n, m, which is a new result in GFF. We will also explain how the
uplift can be used to constrain perturbative computations around GFF.

GFF can be defined through a non-local d̂-dimensional Lagrangian φ□ξφ, where ξ is a
real parameter. The theory is Gaussian and therefore is solvable. An equivalent way to define
the theory without introducing a Lagrangian is as follows. The defining property of GFF is
that correlation function of fields φ can be computed through Wick contractions where the
propagators are 〈φ(x)φ(0)〉= |x |−2∆φ . Since the theory enjoys a Z2 symmetry (which acts as
φ→−φ) correlation functions of an odd number of φ fields vanish.

When ∆φ = d̂/2 − 1 (which corresponds to ξ = 1 in the Lagrangian) the theory is the
usual free theory, which has local equations of motions □φ = 0 and infinitely many conserved
(higher spin) currents. However we shall study the more generic case of ∆φ being a generic
real parameter. In this case the fieldφ does not satisfy any local shortening condition. Similarly
no local composite of φ (built out of an integer number of φ dressed with an integer number
of derivatives) can play the role of a conserved current/tensor, simply because it would not
have integer conformal dimensions (which is required by representation theory). So naively
we do not expect shortening conditions for any operator or in other words we do not expect the
correlation functions of GFF to satisfy any local differential equation. In the next subsection
we shall see that such differential equations can be defined because of the existence of the PS
uplift. Before that let us continue the review of GFF by describing some observables.

In GFF it is straightforward to compute correlation functions by Wick contractions. A
simple example is

〈φ(x1)φ(x2)φ(x3)φ(x4)〉=
1

x
2∆φ
12 x

2∆φ
34

�

1+ u∆φ + u∆φ v−∆φ
�

. (103)

The OPE in GFF can also be fixed by Wick contractions, for example

φ(x)φ(0) =
1

|x |2∆φ
+
∑

n,ℓ

λn,ℓ|x |2n+ℓ[φφ]n,ℓ , (104)

where the first term is obtained as by Wick contraction of φ(x)φ(0) and is associated to the
exchange of the identity operator, while [φφ]n,ℓ are called double twist operators and λn,ℓ
are the associated OPE coefficients. The double twists are obtained by Taylor expansion of
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: φ(x)φ(0) : around x = 0 and are defined as

[φφ]n,ℓ ≡: φ□n∂ µ1 · · ·∂ µℓφ : + . . . , (105)

where the dots take into account terms that make the operator symmetric and traceless in the
indices µ1 . . .µℓ together with terms that make the operator primary. By taking the OPE in a
four-point function we obtain

〈φ(x1)φ(x2)φ(x3)φ(x4)〉=
1

x
2∆φ
12 x

2∆φ
34

�

1+
∑

n,ℓ

an,ℓg
(d̂)
2∆φ+2n+ℓℓ

�

. (106)

Since we know the exact form of the four-point function we can easily read off the coefficients
an,ℓ = λ2

n,ℓ by simply expanding the conformal blocks and the four-point functions in powers
of the cross ratios and match the coefficients. There are more sophisticated ways to compute
an,ℓ from the four-point function, e.g. the inversion formula of [31], which however will not
be needed for this work.

The same logic can be applied for any four-point function. In the following we show
how one can use the PS uplift as a tool to compute the conformal block decomposition of a
four-point function of 〈φφn2φn3φn4〉 for generic n2, n3, n4. In this case the conformal block
expansion takes the form

〈φ(x1)φ
n2(x2)φ

n3(x3)φ
n4(x4)〉= K∆i

(x i)
�

an2,n3,n4 g(d̂)∆=−∆12 ℓ=0 +
∑

n,ℓ

an2,n3,n4
n,ℓ g(d̂)∆=∆1+∆2+2n+ℓ ℓ

�

, (107)

where ∆1 = ∆φ , ∆i = ni∆φ (i = 2, 3,4) and the contribution at ∆ = −∆12 = (n2 − 1)∆φ
comes by taking a Wick contraction of φ with the operator φn2 . Very interestingly PS super-
symmetry gives a set of recurrence relations for an,ℓ, which we were able to solve in the case of
n3 = n4. Besides the specific result it is very interesting that just kinematic considerations of
PS supersymmetry can be used to fix the dynamical data an,ℓ with the only input of the Ansatz
(107).

Before explaining how this bootstrap problem works, let us present the simplest set of GFF
correlators. Because of the tower of double twist operator, in a four-point function we typically
expect the exchange of an infinite number of operators. However there is a set of “extremal”
four-point function where only one operator is exchanged. These take the simple form

〈φn1(x1)φ
n2(x2)φ

n3(x3)φ
N (x4)〉= K∆i

(x i)u
−∆34

2 N != K∆i
(x i)N ! g(d̂)∆=−∆34 ℓ=0(u, v) , (108)

where N = n1 + n2 + n3 and ∆34 = (n3 − N)∆φ . The factorial is simply obtained from the
combinatorics. Nicely enough this actually corresponds to a single conformal block exchange.8

Whenever n1 = 1 and 1+n2+n3 = N we can compare the result (108) with the Ansatz (107),
which shows that all the coefficients an2,n3,n4

n,ℓ of the double twist operators vanish, leaving as

only contribution an2,n3,N = N !.
Below we want to study an2,n3,n4

n,ℓ for generic values of ni .

5.1 Bootstrapping GFF using PS supersymmetry

Given the GFF in d − 2 dimensions, we can obtain its relative PS CFTd by explicitly uplifting
the Lagrangian of the theory, namely φ(∂ µ∂µ)ξφ→ Φ(∂ a∂a)ξΦ. Like GFF, its uplifted version

8Similarly if the operator φN is at position x1 we get g(d̂)∆=∆12 ℓ=0(u, v) = u
∆12

2 . If it is at x2, the single block is

g(d̂)∆=−∆12 ℓ=0(u, v) = u−
∆12

2 v
1
2 (∆12−∆34). While if it is at x3, the single block is g(d̂)∆=∆34 ℓ=0(u, v) = u

∆34
2 v

1
2 (∆12−∆34). So

in particular these exchanges are crossing covariant, meaning that a single exchange in the s-channel is mapped
to a single exchange in the t-channel.
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can be defined by saying that all correlators are computed by Wick contractions, where now
the two-point function lives in superspace 〈Φ(y1)Φ(y2)〉 = |y12|−2∆φ , where ∆φ is the same
as in the dimensionally reduced theory. When ∆φ = d/2−2, the model becomes the uplift of
free theory but we will keep ∆φ generic.9 Composite operators are mapped by following the
rules that φ→ Φ and ∂µ→ ∂a.

Now we show how the existence of the uplift can be used to constrain (the dimensionally
reduced) GFF. For example to constrain GFF correlation functions, we can leverage the simple
fact that

D[1]〈Φ(y1)Φ(y2)〉|0= 0 , (109)

where D[1]Φ(y1)|0≡ Φ̃θθ̄ (x1) is the superdescendant of Φ0. This two-point function vanishes
simply because it involves two different primaries, namely 〈Φ̃θθ̄ (x1)Φ0(x2)〉 = 0.10 Indeed
any correlation function of the following form vanishes,

D[1]〈Φ(y1)Φ
n2(y2) . . .Φnk(yk)〉|0= 0 , (110)

for generic k and n1, . . . , nk. This is true because the correlation function in GFF is computed
by Wick contraction and therefore it is equal to as a sum of terms that contain a vanishing term
D[1]〈Φ(y1)Φ(yi)〉|0= 0. For the sake of clarity let us show how the vanishing result appears in
the simplest four-point function

D[1]〈Φ(y1)Φ(y2)Φ(y3)Φ(y4)〉|0 = +〈Φ(y3)Φ(y4)〉D[1]〈Φ(y1)Φ(y2)〉|0
+ 〈Φ(y2)Φ(y4)〉D[1]〈Φ(y1)Φ(y3)〉|0
+ 〈Φ(y2)Φ(y3)〉D[1]〈Φ(y1)Φ(y4)〉|0= 0 .

(111)

Equation (110) can be generalized to other differential operators: all those that do not involve
D[i] at other points i ̸= 1. Let us exemplify this for four-point functions,

D[S⃗]〈Φ(y1)Φ
n2(y2)Φ

n3(y3)Φ
n4(y4)〉|0= 0 , [S⃗] = [1], [134̄], [124̄], [123̄] . (112)

Moreover for other differential operators the result is not zero but it greatly simplifies. E.g. for
S = [12], [1234̄], [12̄] the field at position 1 must be contracted with the one at position 2 and
no possible contraction 1−3 and 1−4 are allowed: the latter are the contractions responsible
to double twist contributions, which for these correlation functions are thus absent. In this
case we obtain that the correlator is written in terms of a single conformal block

D[S⃗]〈Φ(y1)Φ
n2(y2)Φ

n3(y3)Φ
n4(y4)〉|0= N n2,n3,n4

[S⃗]

�

Σ[S⃗]K∆i
(x i)
�

g(d)∆=−∆12 ℓ=0 , (113)

[S⃗] = [12], [1234̄], [12̄] ,

where N n2,n3,n4

[S⃗]
is an overall constant and g(d)∆=−∆12 ℓ=0(u, v) = u−

∆12
2 v

∆12−∆34
2 . Because of the

absence of double twist operators, the correlators (113) behave like the extremal correlators
defined in (108).11

In all cases (112) and (113) we found that the double twist contributions are annihilated
by the differential operators. Below we explain how to exploit this fact to find recurrence
relations for the OPE coefficients in the conformal block decomposition of the correlators. In
section 5.3 we also show how to use (112) to find the correlators themselves.

9For the connection of uplifted free theory and random field models see [32].
10Notice that Φ̃θθ̄ = (d − 2 − 2∆φ)ω + □ϕ. This primary is identically zero in the uplift of local free theory

because □ϕ = −2ω and ∆φ = (d − 4)/2. On the contrary it is non vanishing in GFF, where we do not impose the
latter constraints. In fact in GFF the operator Φ̃θθ̄ has a non vanishing two-point function.

11E.g. in a simple case D[12]〈ΦΦΦ2Φ2〉|0= −8∆φ
�

∆φ + 1
� �

−d + 2∆φ + 2
� �

−d + 2∆φ + 4
� �

Σ[12]K∆i
(x i)
�

, which
is constant in u, v and only exchanges the identity.
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5.2 Bootstrapping OPE coefficients

We now show how to use (112) and (113) to find recurrence relations for the OPE coefficients
in the conformal block decomposition of 〈φφn2φn3φn4〉. We further show how to solve these
recurrence relations when n3 = n4, giving rise to new closed form expressions for these OPE
coefficients.

To start we uplift the Ansatz (107) and act with the operators D[S⃗] with
[S⃗] = [1], [134̄], [124̄], [123̄]. According to (112) we find

0=
�

Σ[S⃗]K∆i
(x i)
�−1

D[S⃗]〈Φ(y1)Φ
n2(y2)Φ

n3(y3)Φ
n4(y4)〉|0

=a{nk}D[S⃗]g
(d−2)
∆=−∆12 ℓ=0(u, v) +

∑

n,ℓ

a{nk}
n,ℓ D[S⃗]g

(d−2)
∆=β12+2n+ℓℓ(u, v) , (114)

where we use the notation β12 ≡∆1 +∆2 = (1+ n2)∆φ . From equation (76) it is easy to see

that D[S⃗]g
(d−2)
∆=−∆12 ℓ=0(u, v) = 0 for [S⃗] = [1], [134̄], [124̄], [123̄]. On the other hand D[S⃗] does

not trivially vanish when acting on each double twist conformal block. Miraculously there is
a very non trivial cancellation which arises in the sum. Using (76) we find that

∑

n,ℓ

a{nk}
n,ℓ

∑

(i, j)∈P[S⃗]

�

c[S⃗]i, j Σ[S⃗] g(d)∆+i ℓ+ j(u, v)
�

∆=β12+2n+ℓ
= 0 . (115)

We set ∆ = β12 + 2n + ℓ because the coefficients c[S⃗]i, j are functions of ∆, which should be
evaluated to the correct value depending on the exchanged block. Because of the shifts in i
and j, now the blocks at different values of n and ℓ can mix. It is however simple to rear-
range the formula above collecting the contributions of d-dimensional blocks with given ∆
and ℓ. Let us do it first for the cases [S⃗] = [1], [134̄] (we will see that this can be extended to
[S⃗] = [12], [1234̄], [12̄]) which have P[S⃗] = P(0),

0=
∑

n,ℓ

�

a{nk}
n,ℓ c̃[S⃗]0,0 + a{nk}

n−1,ℓ+2 c̃[S⃗]0,−2 + a{nk}
n−1,ℓ+1 c̃[S⃗]1,−1 + a{nk}

n−1,ℓ c̃
[S⃗]
2,0 + a{nk}

n−2,ℓ+2 c̃[S⃗]2,−2

�

Σ[S⃗] g(d)∆ℓ

�

�

�

�

�

∆=β12+2n+ℓ

,

(116)
where a{nk}

n<0,ℓ ≡ 0 and the tilded coefficients c̃ are related to c by simple shifts of ∆ and ℓ,
namely

c̃[S⃗]i, j ≡ c[S⃗]i, j |∆→∆−i ℓ→ℓ− j . (117)

Similarly we can write this expansion for the cases [S⃗] = [124̄], [123̄] which have P[S⃗] = P(1),

0=
∑

n,ℓ

�

a{nk}
n+1,ℓ c̃

[S⃗]
0,−1 + a{nk}

n,ℓ c̃[S⃗]1,0 + a{nk}
n−1,ℓ+2 c̃[S⃗]1,−2 + a{nk}

n−1,ℓ+1 c̃[S⃗]2,−1

�

Σ[S⃗] g(d)∆ℓ

�

�

�

�

�

∆=β12+2n+ℓ+1

. (118)

Now let us discuss the cases [S⃗] = [12], [1234̄], [12̄] of equation (113). In practice the argu-
ment goes the same way besides that in these cases D[S⃗]g

(d−2)
∆=−∆12 ℓ=0(u, v)∝ g(d)∆=−∆12 ℓ=0(u, v).

But we can forget about this contribution in (114) and focus on the sum of double traces that
vanishes, thus equation (115) still holds for these cases. Now since the blocks in (116) and
(118) are linearly independent,12 in order to get zero the terms in the parentheses must be
vanishing. In summary with this simple argument we have found seven recurrence relations

12If the blocks were linearly dependent, the conformal block decomposition would not be unique. In the case of
(116) and (118) it is easy to see that this is not the case by expanding the blocks in powers of the cross ratios.
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for a{nk}
n,ℓ which take the form

0= a{nk}
n,ℓ c̃[S⃗]0,0 + a{nk}

n−1,ℓ+2 c̃[S⃗]0,−2 + a{nk}
n−1,ℓ+1 c̃[S⃗]1,−1 + a{nk}

n−1,ℓ c̃
[S⃗]
2,0 + a{nk}

n−2,ℓ+2 c̃[S⃗]2,−2

�

�

�

�

∆=β12+2n+ℓ
, [S⃗] =

[1], [134̄],
[12], [1234̄], [12̄]

,

0= a{nk}
n+1,ℓ c̃

[S⃗]
0,−1 + a{nk}

n,ℓ c̃[S⃗]1,0 + a{nk}
n−1,ℓ+2 c̃[S⃗]1,−2 + a{nk}

n−1,ℓ+1 c̃[S⃗]2,−1

�

�

�

�

∆=β12+2n+ℓ+1
, [S⃗] = [124̄], [123̄] .

(119)

Notice that the coefficients c̃[S⃗]i, j are all known in a closed form as shown in section 4.2. There-
fore these relations are very explicit. Let us show a couple of examples for concreteness. A
simple recursion can be obtained by summing the relation labelled by [S⃗] = [124̄] with the
one of [S⃗] = [123̄]. The result is

2(ℓ+ 1)
�

n3 − n4

�

∆φ (−β12 + d − n− 2) (β12 + ℓ+ 2n− 2) (β12 + ℓ+ 2n− 1) (2β12 − d + 2ℓ+ 2n+ 2)
�

d − 2∆φ − 2n− 2
� �

∆φ + ℓ+ n
�

(−β12 + d − 2n− 2) (−β12 + d − 2n− 1) (β12 + 2ℓ+ 2n− 1) (β12 + 2ℓ+ 2n) (2β12 − d + 2ℓ+ 4n)
a{nk}

n−1,ℓ+1

+
2(ℓ+ 1)(ℓ+ 2)(d + 2ℓ+ 2n− 2) (−β12 + d − n− 2) (β12 + ℓ+ 2n− 1)

�

d − 2∆φ − 2n− 2
�

(d + 2ℓ− 2)(d + 2ℓ) (−β12 + d − 2n− 1)
a{nk}

n−1,ℓ+2 (120)

+
4n (β12 + ℓ+ 2n− 1) (2β12 − d + 2ℓ+ 2n+ 2)

�

∆φ + ℓ+ n
�

β12 + 2ℓ+ 2n− 1
a{nk}

n,ℓ = 0 .

Another nice combination is obtained by subtracting [S⃗] = [124̄] with [S⃗] = [123̄] (we also
divide by the factor 2(ℓ+1) (β12 + ℓ+ 2n− 1)

�

d − 2∆φ − 2(n+ 1)
�

to shorten the expression,
this is normally allowed since we are taking ∆φ to be an arbitrary real number),

(−β12 + d − n− 2) (β12 + ℓ+ 2n− 2) (−2β12 + d − 2(ℓ+ n+ 1))
�

∆φ + ℓ+ n
�

�

(−β12 + d − 2(n+ 1)) (β12 + 2(ℓ+ n))−
�

n3 − n4

�

2∆2
φ

�

(−β12 + d − 2n− 1) (−β12 + d − 2(n+ 1)) (β12 + 2ℓ+ 2n− 1) (β12 + 2(ℓ+ n)) (−2β12 + d − 2(ℓ+ 2n)) (−2β12 + d − 2(ℓ+ 2n+ 1))
a{nk}

n−1,ℓ+1

−
(ℓ+ 2)
�

n3 − n4

�

∆φ(d + 2(ℓ+ n− 1)) (−β12 + d − n− 2)

(d + 2ℓ− 2)(d + 2ℓ) (−β12 + d − 2n− 1) (−β12 + d − 2(n+ 1))
a{nk}

n−1,ℓ+2

+
2n
�

n3 − n4

�

∆φ (−2β12 + d − 2(ℓ+ n+ 1))
�

∆φ + ℓ+ n
�

(ℓ+ 1) (β12 + 2ℓ+ 2n− 1) (β12 + 2(ℓ+ n))
�

−d + 2∆φ + 2n+ 2
�a{nk}

n,ℓ

+
2n(d + 2(ℓ+ n− 1))

(β12 + ℓ+ 2n− 1)
�

−d + 2∆φ + 2n+ 2
�a{nk}

n,ℓ+1 = 0 . (121)

Similar nice combinations can be defined using the remaining five recurrence relations, but
we will omit them here to avoid clutter. One can in principle try to solve this set of seven
relations for generic ni . We did not invest enough time in this, however we want to point out
that the solution of the recursion is straightforward when n3 = n4. Indeed in this case the two
recursions above greatly simplify (they only involve two terms) and can be solved by13

an2,n3,n3
n,ℓ =an2,n3

0

�

β12−1
2

�

ℓ
2

�

β12
2

�

ℓ
2

�∆φ
2

�

ℓ
2

�∆φ+1
2

�

ℓ
2

ℓ!
�

β12−1
4

�

ℓ
2

�

β12+1
4

�

ℓ
2

×
(−d + β12 + 3)n

�

− d
2 +∆φ + 2
�

n

�

ℓ+β12−1
2

�

n

�

ℓ+β12
2

�

n
(ℓ+∆φ)n
�

− d
2 + ℓ+ β12 + 1
�

n

24nn!
� d

2 + ℓ− 1
�

n

�

−d+β12+3
2

�

n

�

ℓ+ β12
2 −

1
2

�

n

�

−d+2ℓ+2β12+2
4

�

n

�

−d+2ℓ+2β12+4
4

�

n

.

(123)

Here we solved the recursion only for ℓ even since the equality n3 = n4 selects only even spin
operators in the OPE. Notice that n2 enters in the definition of β12 = (1+n2)∆φ , while n3 only

13The recurrence relations take the following form which can be trivially solved

An = An−1

j
∏

i=1

(pi + qi n)
ri =⇒ An = A0

j
∏

i=1

�

qn
i

�

pi

qi
+ 1
�

n

�ri

, (122)

for any set of constants pi , qi , ri and any j ∈ N. The second line of (123) comes by solving (5.2) in n while the first
line comes by solving (120) in ℓ (using the dependence in n just computed).
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appears in the overall constant an2,n3
0 , which is the seed of the recursion for ℓ = 0 and n = 0.

We checked that this solution automatically satisfies the remaining five recurrence relations.
Interestingly we found in a closed form all the OPEs of double traces exchanges of any

correlator 〈φφn2φn3φn3〉 without ever computing any correlation function. The expression is
given up to an overall constant which is the seed of the recursion and can be fixed from explicit
computations of the simplest double twist exchange, φn2+1. Indeed the computation of such
coefficient is a simple combinatorial exercise which is solved by14

an2,n3
0 = n3!
�n2 + 1

n2+1
2

��

1− n2 + 2n3

2

�

n2+1
2

, (124)

where n2 must be even, otherwise the correlator vanishes. We also notice that the correlator is
extremal when n2 = 1+2n3 and thus an2,n3

0 = 0 for all n2 ≥ 1+2n3 as it should. The other OPE
coefficient which is missing in the Ansatz (107) is the one of the exchange of φn2−1 which can
also be trivially computed by combinatorics an2,n3,n3 = n2an2−2,n3

0 , indeed the combinatorics is
the same as the one of an2,n3

0 but with two less fields n2, and adding an extra factor of n2 to
take into account the left OPE φ ×φn2 ∼ n2φ

n2−1.
As a consistency check, for the case of the four-point function of 〈φφφφ〉 these coefficients

were computed in [33]; it is easy to see that our solution matches theirs once we restrict to
n2 = 1 and we shift d → d + 2 (recall that the original GFF leaves in two less dimension).

In summary this method solves for the OPE coefficients that are harder to compute (the
ones of double twist operators which contain derivatives), while the remaining ones can be ob-
tained from a one-line combinatoric computation. Moreover, at a more abstract level, PS SUSY
provides a novel way to understand why double twist families (in GFF) are tied together: one
cannot simply modify one of the OPE coefficients in the family without violating the recursion
relations provided by supersymmetry.

5.3 Bootstrapping correlators and extension to perturbation theory

In the previous section we found a sophisticated way to extract information from supersym-
metry. There is also another simple way to make use these constraints. Indeed in (112) we
found that a differential operator was annihilating the correlators, therefore we obtained a
differential equation that the correlators must satisfy. Below we show how to use this infor-
mation to fix the form of the GFF correlators 〈φφn2φn3φn4〉 up to a few constants. Moreover
we will see that this logic can be also used to bootstrap the form of correlation functions in
perturbation theory around GFF.

Let us first see how to use (112) to fix the correlation function. We require that the GFF
correlators are written as finite sums of powers uavb. This is always true if the correlator
contains a finite number of fields and derivatives. Then we notice that the differential operators
D[S⃗] acting on uavb produce a sum of terms with different powers, e.g. D[1]u

avb is a linear
combination of uavb, ua+1vb, uavb+1. Because of this reason and the fact that the correlator is
written as a finite sum of powers, the action D[S⃗] must annihilate separately each power. By
requiring

D[S⃗]u
avb = 0 , (125)

we obtain a constraint on the possible powers a and b. If we apply this logic to 〈φφn2φn3φn4〉
using e.g. [S⃗] = [1] we find that there are only three allowed powers and thus the correlator

14The rationale is the following: we need to find φn2+1 in the OPE of φn3 ×φn3 , we thus choose n2+1
2 fields out

of the n3 of both φn3 fields, which gives
� n3

n2+1
2

�2
(these form the field φn2+1), the remaining n3 −

n2+1
2 fields of

each φn3 should be contracted giving a (n3−
n2+1

2 )!. Moreover we need to introduce an extra factor of (n2+1)! to
account for the normalization of the operator φn2+1. Putting the factors together and simplifying the expression,
we obtain (124).
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must take the form

〈φ(x1)φ
n2(x2)φ

n3(x3)φ
n4(x4)〉= K∆i

(x i)
�

k1u
n2−1

2 ∆φ v−
n2+n3−n4−1

2 ∆φ

+k2u
n2+1

2 ∆φ v−
n2+n3−n4−1

2 ∆φ + k3u
n2+1

2 ∆φ v−
n2+n3−n4+1

2 ∆φ
�

,
(126)

were ki are undetermined coefficients. In this case the computation of the four-point function
is actually quite simple, indeed by some combinatorics it is easy to find that the four-point
function indeed matches the form above and that the coefficients are15

k1 = n2Cn2−1,n3,n4
, k2 = n3Cn2,n3−1,n4

, k3 = n4Cn2,n3,n4−1 , (127)

where we defined Cm1,m2,m3
≡ m1!m2!m3!
�

m1+m2−m3
2

�

!
�

m1−m2+m3
2

�

!
�−m1+m2+m3

2

�

!
.

In this example we were able to obtain the Ansatz (126) without doing any Wick contrac-
tion. This may not seem a very impressive result since the direct computation of the four-point
function is quite straightforward. However this idea can be applied to more generic cases,
where the computation is more involved as we show below.

Let us give an example of how to use this same logic for perturbative computations. We
consider the one-loop integral of a φ4 perturbation around GFF,

F(x i)≡
∫

d d̂ x0〈φ(x1)φ(x2)φ(x3)φ(x4)φ
4(x0)〉=
∫

d d̂ x0

4
∏

i=1

|x i0|−2∆φ . (128)

Instead of trying to compute the integral in Rd̂ we uplift the correlator to Rd|2,

F(yi)≡
∫

dd x0dθ0dθ̄0〈Φ(y1)Φ(y2)Φ(y3)Φ(y4)Φ
4(y0)〉 . (129)

The fermionic part of the integral has the effect of taking the highest component of Φ4 which is
written in terms ofΦθΦθ̄Φ

2
0 andΦθθ̄Φ

3
0. Moreover can rewriteΦθθ̄ in terms of the primary Φ̃θθ̄

and ∂ 2
x Φ0. So F(yi) is obtained as a linear combination of the following five-point functions

integrated over x0,

〈ΦΦΦΦ[Φ̃θθ̄Φ
3
0](x0)〉 , 〈ΦΦΦΦ[(∂ 2

x Φ0)Φ
3
0](x0)〉 , 〈ΦΦΦΦ[ΦθΦθ̄Φ

2
0](x0)〉 , (130)

where we suppressed the position y1, y2, y3, y4 of the first four Φ fields to shorten the notation.
Looking at the correlators above, just from factorization and the fact that two-point functions
of different primaries are diagonal, we see that they are annihilated every time we act with at
least two differential operators of the form D[i] or D[i j̄], namely

D[S⃗]F(yi)|0 = 0 , [S⃗] = [ij], [i jk̄], [i j̄kl̄], [ijk], [1234] , (131)

where i, j, k, l are all different and run over 1, 2,3, 4.
The same logic can be generalized to the correlator of n different generalized free bosons

φi with dimension ∆i , coupled by the interaction φ1 · · ·φn where at one loop we find

F∆1,...,∆n
(x i)≡
∫

d d̂ x0〈φ1(x1) . . .φn(xn)[φ1 · · ·φn](x0)〉=
∫

d d̂ x0

n
∏

i=1

|x i0|
−2∆φi . (132)

15The OPE coefficients in the previous section are related to these coefficients as an2 ,n3
0 = 2n3Cn2 ,n3 ,n3−1 and

an2 ,n3 ,n3 = n2Cn2−1,n3 ,n3
.
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Again the correlator can be uplifted to superspace and it is easy to see that for the same reasons
of above, it should satisfy a large set of differential equations. In particular by acting with two
or more differential operators of the type D[i] or D[ jk̄] the uplifted correlator is annihilated.

Let us now focus of the case d̂ =
∑n

i=1∆i , when the integral is conformal [34]. We further
consider a four-point function where by conformal symmetry we can write

F∆1,∆2,∆3,∆4
(x i) = K∆i

(x i) f∆1,∆2,∆3,∆4
(u, v) , (133)

where K∆i
is the kinematic factor of (5). The set of equations (131) can then be written directly

in terms of u and v using the differential operator D[S⃗],

D[S⃗] f∆1,∆2,∆3,∆4
(u, v) = 0 , [S⃗] = [ij], [i jk̄], [i j̄kl̄], [ijk], [1234] . (134)

These types of integrals are very common in the literature. Indeed F computes the so called
D-function which defines a contact Witten diagram in AdS (while f computes the D̄-function)
see for example [23]).16

The fact that D-functions satisfy many relations is a well known fact in the literature. These
can be obtained by manipulating the integrals (e.g. by taking derivatives in the propagators)
and re-expressing the result as D-functions with shifted ∆i , see for example formulae (C.4),
(C.5) and (C.7) in [23]. Using the latter formulae we could prove that (134) is indeed correct
(the proof is included in the Mathematica file attached to the publication). It is however
interesting that for us the relations (134) came without doing any computation. In practice
it was sufficient to notice that the integral in θ0, θ̄0 cannot create more than one term Φ̃θθ̄ or
one term ΦθΦθ̄ , which automatically implies that the external operators have vanishing Wick
contractions with the vertex.

Let us also mention that the relations (134) impose strong constraint on the shape of the
correlator. For example let us show what happens in the simplest case of ∆i = 1 and d̂ = 4,
where the form of the D̄ function is known [23]

f1,1,1,1(u, v)∝
zz̄

z − z̄

�

log
�

1− z̄
1− z

�

log (zz̄) + 2Li2 (z̄)− 2Li2(z)
�

. (136)

First it is easy to check that (136) is indeed annihilated by all the differential operators in
(134). Moreover we found that (134) can be used to bootstrap the correlator. In partic-
ular one can consider the Ansatz made by a generic linear combination of the three terms
zz̄

z−z̄ {log
�1−z̄

1−z

�

log (zz̄) , Li2 (z̄) , Li2(z)} in (136).17 We noticed that requiring that the Ansatz is
annihilated by any of D[12̄34̄], D[12̄43̄] or D[13̄24̄] (since D[12̄34̄]− D[12̄43̄]− D[13̄24̄] = 0, these are
just two independent differential equations) is sufficient to fix the relative coefficients of the
three terms.

This section was a very basic sample of applications of the idea of bootstrapping correlators
using PS supersymmetry, which should be understood more as a proof of concept. One could
extend this to more sophisticated cases where the final answer is not known and leverage PS
SUSY to obtain new results. We leave this direction for future investigations.

16Let us match our conventions with the definition of D and D̄ in [23],

F∆1 ,...,∆n
(x i) =

2πd̂/2

Γ(
∑n

i=1
∆i
2 −

d̂
2 )

D∆1 ,...,∆n
(x i) , f∆1 ,∆2 ,∆3 ,∆4

(u, v) =
πd̂/2u∆1+∆2

∏4
i=1 Γ(∆i)

D̄∆1 ,∆2 ,∆3 ,∆4
(u, v) . (135)

17This Ansatz can be motivated by the degree of trascendentality of the functions appearing in a one-loop integral.
Of course one could find a more restrictive Ansatz or even the full solution f1,1,1,1 by requiring that it satisfies extra
conditions (e.g. we could impose that f1,1,1,1 is invariant under z → z̄ and/or is a single-valued function of the
cross ratios). Here we only wanted to show that (134) is also a powerful condition.
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6 The 4d Parisi-Sourlas uplift of diagonal minimal models

The minimal models are an infinite set of solvable two-dimensional CFTs. They can be com-
pletely fixed through bootstrap constraints which yield the exact spectrum of conformal dimen-
sions and OPE coefficients. Their correlation functions can be also computed exactly giving
rise to the best known examples of interacting CFTs. In the following we will start by a quick
introduction to these models following [35] and then we will give an argument for why these
should have a Parisi-Sourlas uplift to four dimensions. In the next subsection we will further
investigate the uplift of the know correlation functions and show that they do not possess any
inconsistency.

Minimal models are defined by requiring that their spectrum only contains a finite number
of Virasoro primaries. They are denoted as M(p, p′) and are labelled by two coprime integers
p, p′ with p, p′ ≥ 2 which determine the central charge [36]

c = 1− 6
(p− p′)2

pp′
. (137)

The holomorphic weight of the Virasoro primaries is labelled by

hr,s =
(pr − p′s)2 − (p− p′)2

4pp′
, (138)

with 1 ≤ r ≤ p′ − 1 and 1 ≤ s ≤ p − 1. We will be mostly interested in the diagonal min-
imal models defined by |p − p′|= 1, where all Virasoro primaries have identical holomor-
phic and antiholomorphic weights, namely they are labelled by h = h̄ = hr,s or equivalently
∆= 2hr,s,ℓ= 0.

Minimal models are known [37] (see also section 7.4.7 of [35]) to have an effective de-
scription in terms of the following Landau-Ginzburg Lagrangian,

S =

∫

d d̂ x
1
2
(∂ aφ)2 + V (φ) , (139)

where d̂ = 2. By choosing a Z2 invariant polynomial potential V (φ) of degree 2m
(m = 2,3, . . . ) we obtain a multicritical system in the universality class defined by the di-
agonal minimal models (m+ 2, m+ 1) where m = 2 is Ising, m = 3 is the tricritical, etc. Of
course it is hard to use this action for actual computation since there is no small coupling.
Typically one performs computation in ε-expansion (namely one works in d̂ = duc − ε dimen-
sions where duc = 2m/(m− 1) is the upper critical dimension) such that the interaction φ2m

is weakly relevant. One can then tune all the strongly relevant perturbation φ2i with i < m
and study the IR fixed point in perturbation theory for small ε. To recover the 2-dimensional
results one must then set ε = duc − 2. Similarly by introducing also Z2-odd terms in the po-
tential one can study a class of non-unitary minimal models, e.g. the cubic potential is in the
same universality class as the Lee-Yang minimal model which corresponds to M(5,2).

The Lagrangian description (139) is not particularly useful to compute observables since
minimal models can be solved exactly through bootstrap methods. On the other hand this
formulation has a clear benefit for our purposes since it can be easily uplifted to d = d̂ + 2
dimension as we showed in section 2.5. Indeed the action (139) can be trivially uplifted to

S =

∫

dd xdθdθ̄
1
2
(∂ aΦ)2 + V (Φ) . (140)

One can consider this action in d = 4 which reduces to (139) in d̂ = 2, where both actions
are strongly coupled.18 Alternatively it is also possible to consider (140) in d = duc + 2 − ε

18Notice that when written in components the action becomes (34), where one can easily see that all polynomial
interactions are relevant since [ϕ] = 0.
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dimensions which corresponds to the uplift the ε-expansion of the model (139). Since the
superspace action (140) dimensionally reduces to the d̂ = d − 2 action (139) for any d̂, then
the ε-expansion of (140) matches the one of (139) for every ε. Therefore it is natural to
assume that ε-expansion of (140) when continued to d = 4, dimensionally reduce to minimal
models. The action (140) in d = 4 therefore can be thought as a definition for the Parisi-
Sourlas uplift of the diagonal minimal models. While this Lagrangian description of the uplift
is not particularly useful (as it was the case for the usual minimal models), at least it tells us
that the uplift of the diagonal minimal models should exist. This argument is also valid for the
non-unitary minimal models which have a Lagrangian description (like Lee-Yang) and even
for the Liouville model which is also defined through a scalar field action. In the following we
assume that indeed the Parisi-Sourlas uplift of the diagonal minimal models exists, and we see
if any problem arises by looking at the concrete example of the Ising minimal model.

6.1 Example: Parisi-Sourlas uplift of the Ising minimal model

In this section we test the dimensional uplift on the explicit correlators of the 2d critical Ising
model. This model contains the identity and two scalar Virasoro primaries called σ and ε,
which respectively have conformal dimensions ∆ = 1

8 and ∆ = 1. The model has a Z2 sym-
metry under which σ is odd while ε and the identity are even.

All correlators of Virasoro primaries can be computed in a closed form, see e.g. [38]. In
particular the four-point functions in the notation (4) take the form

fσσσσ =

�

�

�

�

1
(1−ρ2)1/4

�

�

�

�

2

+

�

�

�

�

p
ρ

(1−ρ2)1/4

�

�

�

�

2

, fσσεε =

�

�

�

�

1+ρ2

1−ρ2

�

�

�

�

2

,

fσεεσ =

�

�

�

�

ρ1/16(1+ 6ρ +ρ2)
27/8(1−ρ)2(1+ρ)1/8

�

�

�

�

2

, fεεεε =

�

�

�

�

1+ 14ρ2 +ρ4

(1−ρ2)2

�

�

�

�

2

,

(141)

where we wrote f in terms of the cross ratios ρ, ρ̄ defined in (6) to get more compact expres-
sions. The subscripts of f specify the correspondent four-point functions.

Being four-point functions of scalar operators, all correlators in (141) can be trivially up-
lifted to 4d using the prescription (39). Moreover, as explained in section 3, for each of these
four-point functions we obtain 43 different four-point functions in four dimensions, which
can be simply computed using the differential operators D[S⃗] defined in (57). As an exam-
ple we present the action of these differential operators on the correlator of four ε. We start
by showing in table 3 the components19 in P(0). In table 3 we show all the 16 components
in P(1). Finally let us show the remaining single component in P(2) which takes the form
D[13̄24̄] fεεεε = 4uv−2(v − 1)

�

u2 − u(v + 1) + v2 + 1
�

. These results show that for any given
four-point function it is straightforward to compute all its 43 components. Of course many of
the entries in tables 3 and 4 are redundant since they could be obtained by permutations of
the external operators. However we decided to present all the components in order to show
that they are compatible with crossing. E.g. the component [1] and [3] are related by the
crossing 1↔ 3 which amounts to take the component [1], change u↔ v and multiply by
u

1
2 (∆1+∆2)v

1
2 (−∆2−∆3) = u2v−1.

We did repeat this exercise for the other correlators but we do not show the results here
because the expression are lengthy, however we stress that this can be easily done in all cases
using the differential operators D[S⃗] computed in section 3.3.

19The component [1234] did not fit the table so for cosmetic reasons we present it here:

D[1234] fεεεε =45v−3[
�

8u2 + 9u+ 8
�

v4 −
�

4u3 + u2 + u+ 4
�

v3 +
�

8u4 − u3 − u+ 8
�

v2

−
�

10u5 − 9u4 + u3 + u2 − 9u+ 10
�

v + 2(u− 1)2
�

2u4 − u3 − u+ 2
�

− 10(u+ 1)v5 + 4v6]
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Table 3: For the components [S⃗] ∈ P(0) we present the explicit action D[S⃗] fεεεε.

[S⃗] D[S⃗] fεεεε

[ ] v−1
�

u2−uv−u+v2−v+1
�

[1] 4v−1
�

u2(v+1)−u3+u
�

v2+1
�

−(v−1)2(v+1)
�

[2] 4v−2
�

u2(v+1)−u3+u
�

v2+1
�

−(v−1)2(v+1)
�

[3] 4v−2
�

u2(v+1)−u3+u
�

v2+1
�

−(v−1)2(v+1)
�

[4] 4v−1
�

u2(v+1)−u3+u
�

v2+1
�

−(v−1)2(v+1)
�

[12̄] 2v−1
�

u2−v2+v−1
�

[34̄] 2v−1
�

u2−v2+v−1
�

[12̄34̄] −4v−2(u−v)((u−1)u+(v−1)v+1)
[12̄43̄] −4v−1(−1+u)(1+u2−(1+u)v+v2)
[134̄] −8v−1

�

−u2(v+1)+u3+u
�

v2+1
�

−(v−1)2(v+1)
�

[234̄] −8v−2
�

−u2(v+1)+u3+u
�

v2+1
�

−(v−1)2(v+1)
�

[312̄] −8v−2
�

−u2(v+1)+u3+u
�

v2+1
�

−(v−1)2(v+1)
�

[412̄] −8v−1
�

−u2(v+1)+u3+u
�

v2+1
�

−(v−1)2(v+1)
�

[12] 16v−2
�

u2
�

v2+1
�

−u3(v+1)+u4+u
�

−3v3+v2+v−3
�

+2(v−1)2
�

v2+1
��

[13] 16v−2
�

u2
�

4v2+v+1
�

−u3(4v+3)+2u4+u
�

−4v3+v2−1
�

+(v−1)2
�

2v2+v+1
��

[14] 16v−1
��

u2+1
�

v2+
�

−3u3+u2+u−3
�

v+2(u−1)2
�

u2+1
�

−(u+1)v3+v4
�

[23] 16v−3
��

u2+1
�

v2+
�

−3u3+u2+u−3
�

v+2(u−1)2
�

u2+1
�

−(u+1)v3+v4
�

[24] 16v−2
�

u2
�

4v2+v+1
�

−u3(4v+3)+2u4+u
�

−4v3+v2−1
�

+(v−1)2
�

2v2+v+1
��

[34] 16v−2
�

u2
�

v2+1
�

−u3(v+1)+u4+u
�

−3v3+v2+v−3
�

+2(v−1)2
�

v2+1
��

[1234̄] −32v−2
�

u2
�

v2+1
�

+u3(v+1)−u4+u
�

−3v3+v2+v−3
�

+2(v−1)2
�

v2+1
��

[12̄34] −32v−2
�

u2
�

v2+1
�

+u3(v+1)−u4+u
�

−3v3+v2+v−3
�

+2(v−1)2
�

v2+1
��

[123] −256v−3
�

u2−u(v+1)+(v−1)v+1
��

−u2(v+1)+u3−u
�

v2+1
�

+(v−1)2(v+1)
�

[124] −256v−2
�

u2−u(v+1)+(v−1)v+1
��

−u2(v+1)+u3−u
�

v2+1
�

+(v−1)2(v+1)
�

[134] −256v−2
�

u2−u(v+1)+(v−1)v+1
��

−u2(v+1)+u3−u
�

v2+1
�

+(v−1)2(v+1)
�

[234] −256v−3
�

u2−u(v+1)+(v−1)v+1
��

−u2(v+1)+u3−u
�

v2+1
�

+(v−1)2(v+1)
�

Notice also that the expressions (141) determine all correlators of Virasoro primaries, but
from these it is also possible to obtain the correlators global primaries by studying descen-
dants under Virasoro. In particular we could build an infinite set of scalar global primaries by
acting on each of these correlators with some appropriate choices of Virasoro generators (see
appendix C). All four-point functions of scalar global primaries can be equally trivially uplifted
to 4d and for any such correlator it is straightforward to obtain the 43 components as above.

From this exercise we therefore conclude that we know a huge amount of information
for the uplifted Ising minimal model. In this model we can in principle obtain all possible
correlators of global scalar primaries and we can easily uplift any of them and obtain all its
components as shown above. All components will automatically transform correctly under
crossing, respect supersymmetry, and —because of equation (76)— they will also have a good
four-dimensional conformal block decomposition. In what follows we will show some explicit
conformal blocks decompositions of the uplifts of the Ising correlators.

6.2 Conformal block decomposition of the uplifted correlators

We now consider some four-point functions of the uplifted Ising minimal model and show how
they decompose in d = 4 conformal blocks. In principle this exercise is automatic since it is
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Table 4: For all components [S⃗] ∈ P(1) we show the explicit action D[S⃗] fεεεε.

[S⃗] D[S⃗] fεεεε

[13̄] −2
p

uv−1
�

u2 − uv + v2 − 1
�

[14̄] 2
p

uv−1
�

−u2 + u+ v2 − 1
�

[23̄] −2
p

uv−2
�

(u− 1)u− v2 + 1
�

[24̄] −2
p

uv−1
�

u2 − uv + v2 − 1
�

[123̄] 8
p

uv−2
�

−u2(v + 1) + u3 + u
�

v2 − 1
�

− (v − 1)
�

v2 + 1
��

[124̄] 8
p

uv−1
�

−u2(v + 1) + u3 − uv2 + u+ (v − 1)
�

v2 + 1
��

[213̄] 8
p

uv−2
�

−u2(v + 1) + u3 − uv2 + u+ (v − 1)
�

v2 + 1
��

[214̄] 8
p

uv−2
�

−u2(v + 1) + u3 + u
�

v2 − 1
�

− (v − 1)
�

v2 + 1
��

[314̄] 8
p

uv−2
�

−u2(v + 1) + u3 + u
�

v2 − 1
�

− (v − 1)
�

v2 + 1
��

[324̄] 8
p

uv−2
�

−u2(v + 1) + u3 − uv2 + u+ (v − 1)
�

v2 + 1
��

[413̄] 8
p

uv−1
�

−u2(v + 1) + u3 − uv2 + u+ (v − 1)
�

v2 + 1
��

[423̄] 8
p

uv−2
�

−u2(v + 1) + u3 + u
�

v2 − 1
�

− (v − 1)
�

v2 + 1
��

[1324̄] −32
p

uv−2
�

u2
�

4v2 + v + 1
�

− u3(4v + 3) + 2u4 + u
�

−4v3 + v2 + 1
�

+ (v − 1)
�

(2v − 1)v2 + 1
��

[1423̄] −32
p

uv−2
��

u2 + 1
�

v2 +
�

−3u3 + u2 + u− 3
�

v + 2(u− 1)2
�

u2 + 1
�

+ (u+ 1)v3 − v4
�

[2314̄] −32
p

uv−3
��

u2 + 1
�

v2 +
�

−3u3 + u2 + u− 3
�

v + 2(u− 1)2
�

u2 + 1
�

+ (u+ 1)v3 − v4
�

[2413̄] −32
p

uv−2
�

u2
�

4v2 + v + 1
�

− u3(4v + 3) + 2u4 + u
�

−4v3 + v2 + 1
�

+ (v − 1)
�

(2v − 1)v2 + 1
��

easy to compute the decomposition in two-dimensional conformal blocks (see appendix C.1)
and for each such block one can use formula (76) to obtain the four-dimensional counterpart.
However we find it useful to exemplify what happens in a few instances in order to discuss
some features of the theory. As we explained above, there are in principle infinitely many
correlators of scalar primary operators which we could consider and for each of them we
could further study 43 components. For the following examples we find it enough to only
consider the uplift of all four-point functions of Virasoro primaries. Moreover we will restrict
our attention to their lowest components, which in practice are exactly the ones in (141). In
appendix D we further show the decomposition of a few higher components of the four-point
function of ε.

Correlator εεεε
In d̂ = 2 the correlation function of four ε only exchanges a single Virasoro block associated

to the identity, which can be written in terms of infinitely many global conformal primaries
which contain all spin ℓ conserved currents (with ℓ even, since the odd ℓ operators are never
exchanged in the OPE of two equal operators). Let us see how is the d = 4 counterpart of
these exchanges

fεεεε =
∑

∆=2N≥0

∑

ℓ=0,2,...,∆

a∆ℓ g(d=4)
∆ℓ , (142)

where the conformal blocks have ∆12 = ∆34 = 0. To make this formula more transparent in
table 5 we explicitly list all the coefficients up to ∆ ≤ 10. As a first comment, we notice that
for this correlator a∆ℓ are just square of OPE coefficients. In a unitary theory a∆ℓ should be
always positive, while here we also find negative values, which signals the non unitarity of the
theory. This will be a recurrent feature also of the next decompositions.

Let us spell out some of the operators with interesting features. The first operator is simply
the identity with ∆ = 0 and spin zero. Another important operator is the stress tensor with
∆= 4 and ℓ= 2. We notice that it is accompanied by a spin 2 lower dimensional counterpart
with ∆ = 2, which lies below the unitarity bounds. Indeed the stress tensor multiplet takes
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Table 5: Decomposition of εεεε: All coefficients for exchanged operators with di-
mension ∆≤ 10.

(∆,ℓ) (0,0) (2,0) (2,2) (4,0) (4,2) (4,4) (6,0)

a∆ℓ 1 −1 4 1 −2
3

8
5

−1
6

(∆,ℓ) (6,2) (6,4) (6,6) (8,0) (8,2) (8,4) (8,6)

a∆ℓ
2
5

−8
35

32
63

1
60

−2
35

8
63

−16
231

(∆,ℓ) (8,8) (10,0) (10,2) (10,4) (10,6) (10,8) (10,10)

a∆ℓ
64
429

−1
700

1
189

−4
231

16
429

−128
6435

512
12155

the form
T ab(x ,θ , θ̄ ) = T ab

0 (x) + θT
ab
θ̄
(x) + θ̄T ab

θ (x) + θθ̄T
ab
θθ̄
(x) , (143)

where T µν0 has ∆ = 2 and ℓ = 2 and dimensionally reduces to the two-dimensional stress
tensor. On the other hand T µν

θθ̄
has ∆ = 4 and ℓ = 2 and is related to the 4d stress tensor (to

be precise this operator should be improved to be a primary, which we call T̃ µν
θθ̄

). Similarly
this happens for all higher conserved currents. We have

J a1...aℓ(x ,θ , θ̄ ) = J a1...aℓ
0 (x) + θJ a1...aℓ

θ̄
(x) + θ̄J a1...aℓ

θ
(x) + θθ̄J a1...aℓ

θθ̄
(x) , (144)

where J µ1...µℓ
0 has dimension ∆ = ℓ and dimensionally reduces to a 2d conserved current.

This operator is below the unitarity bound in 4d and appears always accompanied with both

J µ1...µℓ
θθ̄

and J µ1...µℓ−2θθ̄
0 which have dimension that satisfy ∆ = ℓ + 2 and thus define 4d

conserved currents when opportunely improved to be primary operators which we shall call

J̃ µ1...µℓ
θθ̄

and J̃ µ1...µℓ−2θθ̄
0 . It is interesting that these two operators correspond to 4d currents of

spin ℓ and ℓ−2 which appear inside the same spin ℓ supercurrent. In particular since there are
infinitely many supercurrents of increasing ℓ it means that there are typically two 4d higher-
spin conserved current for each spin. E.g. there is a stress-tensor-like field appearing as T̃ µν

θθ̄
,

but there is also one from J̃ µνθθ̄
0 which appears inside the spin-four supercurrent. Both of

them have spin equal to two and dimension ∆ = 4. This fact also means that the respective
coefficients a∆ℓ in table 144 will contain an admixture of such contributions.

Correlator σσεε
Another d̂ = 2 correlator which only exchanges the Virasoro identity block is the one of

σσεε. Let us show how this can be decomposed in d = 4,

fσσεε =
∑

∆=2N≥0

∑

ℓ=0,2,...,∆

a∆ℓ g(d=4)
∆ℓ . (145)

Examples of the coefficients a∆ℓ for all ∆≤ 10 can be found in table 6. As expected the same
supercurrents are exchanged and therefore we obtain two towers of operators with dimensions
∆= ℓ and ∆= ℓ+ 2.

Correlator σεεσ
The correlation function σεεσ in d̂ = 2 is written in terms of the contribution of the single

Virasoro block associated to σ. Let us see how this contribution is written in the Parisi-Sourlas
minimal model in d = 4. We get a decomposition of this form (here the conformal blocks
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Table 6: Decomposition of σσεε: All coefficients for exchanged operators with
dimension ∆≤ 10.

(∆,ℓ) (0,0) (2,0) (2,2) (4,0) (4,2) (4,4) (6,0)

a∆ℓ 1 −1
8

1
2

1
64 − 5

96
3
40

−5
3072

(∆,ℓ) (6,2) (6,4) (6,6) (8,0) (8,2) (8,4) (8,6)

a∆ℓ
3

1280
−19
2240

5
336

1
16384

−19
71680

5
10752

−205
118272

(∆,ℓ) (8,8) (10,0) (10,2) (10,4) (10,6) (10,8) (10,10)

a∆ℓ
175

54912
−57

22937600
25

2064384
−205

3784704
175

1757184
−497

1317888
441

622336

Table 7: Decomposition of σεεσ: All coefficients for exchanged operators with
dimension ∆≤ 10.

(∆,ℓ) (1/8,0) (17/8,0) (25/8,1) (25/8,3) (33/8,2) (41/8,1) (41/8,3) (41/8,5)

a∆ℓ
1
4

4
7

1
51

−4
51

32
495

16
357

332
38335

−16
1045

(∆,ℓ) (49/8,0) (49/8,4) (49/8,6) (57/8,3) (57/8,5) (57/8,7) (65/8,0) (65/8,2)

a∆ℓ
1

2601
9496

759525
32

215865
64

7315
1262672

766768275
−14400
4411463

−83
1955085

4
53295

(∆,ℓ) (65/8,4) (65/8,6) (65/8,8) (73/8,1) (73/8,3) (73/8,5) (73/8,7) (73/8,9)

a∆ℓ
−128

1511055
3896384

1472798433
256

4373439
142

246685725
−8

11009115
57600

30880241
52942784

157026025485
−265984

366285997

have ∆12 = −∆34 = −7/8),

fσεεσ =
∑

∆= 1
8+N≥0

∆− 1
8
∑

ℓ=0

a∆ℓ g(d=4)
∆ℓ . (146)

In table 7 we show all the non-vanishing coefficients with ∆ ≤ 10. We see that for each spin
there exists one contribution below the unitarity bound. In particular the scalar bound ∆≥ 1
is violated by an operator with dimension 1

8 . This in d̂ = 2 corresponds to the field σ itself. In
d = 4 we instead have a scalar superprimary

S(x ,θ , θ̄ ) = S0(x) + θSθ̄ (x) + θ̄Sθ (x) + θθ̄Sθθ̄ (x) , (147)

which has lowest component S0 with dimensions 1
8 . The bounds for operators with spin are

∆ ≥ ℓ+ 2. We see that there is a tower of operators below this bound which have spin ℓ and
dimensions ∆ = 1

8 + ℓ (for ℓ = 3,5, 6,7, . . . ). All other operators are instead above unitarity
bounds.

Correlator σσσσ
In d̂ = 2 the correlator of four σ exchanges two Virasoro multiplets: the one of the identity

which we already saw in previous cases, and the one of ε, which will give rise to new features in
the uplifted theory. Let us write the conformal block decomposition on the lowest component
of the uplifted correlator of four σ operators in d = 4,

fσσσσ =
∑

∆=0,2,...

∑

ℓ=0,2,...∆

a∆ℓg
(d=4)
∆ℓ +
∑

∆=5,7,...

∑

ℓ=0,2,...∆−2

a∆ℓg
(d=4)
∆ℓ + a10 g̃(d=4)

∆=1ℓ=0 +
∑

∆=5,7,...

a∆∆−1 g̃(d=4)
∆ℓ=∆−1 , (148)
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Table 8: Decomposition of σσσσ: All coefficients for exchanged operators with
even dimension ∆≤ 10.

(∆,ℓ) (0,0) (2,0) (2,2) (4,0) (4,2) (4,4) (6,0)

a∆ℓ 1 −1
64

1
16

1
4096

−31
6144

9
2560

−31
1572864

(∆,ℓ) (6,2) (6,4) (6,6) (8,0) (8,2) (8,4) (8,6)

a∆ℓ
9

655360
−381

1146880
25

57344
93

335544320
−381

293601280
25

14680064
−21653

484442112

(∆,ℓ) (8,8) (10,0) (10,2) (10,4) (10,6) (10,8) (10,10)

a∆ℓ
15527

224919552
−3429

751619276800
775

22548578304
−21653

124017180672
15527

57579405312
−1600069

215922769920
251145

20392706048

Table 9: Decomposition ofσσσσ: All coefficients for exchanged operators with odd
dimension ∆≤ 10.

(∆,ℓ) (1,0) (5,2) (5,4) (7,4) (7,6) (9,0) (9,6) (9,8)

a∆ℓ
1
8

−1
16384

1
4096

−29
1048576

1
20480

1
1073741824

−5501
1006632960

1125
117440512

where the tilded conformal blocks are as follows: the block g̃(d=4)
∆=1ℓ=0 is defined as in (102),

while the blocks g̃(d=4)
∆ℓ=∆−1 are defined as in (B.5) with [S⃗] being trivial, i.e. the lowest com-

ponent. More about the tilded blocks below. We explicitly computed the coefficients a∆ℓ of
(148) for all operators with ∆ ≤ 10. All operators have integer conformal dimensions. There
is a tower of even dimensional operator whose coefficients are shown in table 8. There is also
a tower of odd dimensional operator whose coefficients are presented in table 9. All other
coefficient with ∆≤ 10 vanish.

We notice that the unitarity bound ∆≥ d
2 −1= 1 for scalars and ∆≥ ℓ+ d −2= ℓ+2 are

not always respected. Many special operators appear in this decomposition. Let us start by
analyzing the spectrum of operators with even scaling dimensions. These correspond in 2d to
the contributions of the Virasoro multiplet associated to the identity. Like for the correlation
function of σσεε and εεεε above we recognize the exchange of the identity, the super stress
tensor T ab and all possible conserved super currents J a1...aℓ with even spin ℓ. In particular
we consistently see the pattern that each d = 4 conserved tensors ∆ = ℓ + 2 are always
accompanied with a lower dimensional operators with ∆= ℓ according to (144).

Let us now focus on the operators with odd scaling dimensions which in 2d correspond
to contributions of the Virasoro multiplet of ε. First we find a scalar with dimension ∆ = 1
which has the same quantum numbers of the 2d field ε. In d = 4 this corresponds to a scalar
superfield

E(x ,θ , θ̄ ) = E0(x) + θEθ̄ (x) + θ̄Eθ (x) + θθ̄Eθθ̄ (x) , (149)

where the lowest component E0 has dimension ∆ = 1. Since E0 has the quantum number
of a free field in d = 4 we would expect a singularity in the respective conformal block with
∆= 1,ℓ = 0 (see e.g. formula (96) with ∆12 = 0 =∆34). However —as explained in section
4.3— supersymmetry works by exactly subtracting the singularity. Meaning that the conformal
block for the exchange of E0 is divergent, but the singularity is exactly cancelled by the block
of the exchange of the primary built out of Eθθ̄ , namely

g̃(d=4)
∆=1ℓ=0 ≡ lim

∆→1

�

g(d=4)
∆ℓ=0 −

∆2

16(∆− 1)(∆+ 1)
g(d=4)
∆+2ℓ=0

�

, (150)

which, because of formula (74), is equal to its two-dimensional counterpart
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g̃(d=4)
∆=1ℓ=0 = g(d=2)

∆=1ℓ=0. To be precise, according to (43), the actual primary is defined as
Ẽθθ̄ = [∂ 2

x E − (2∆E − d + 2)∂θ̄∂θE]θ=0 = ∂ 2
x E0, which is just the level-two descendant of

E0 with dimension ∆ = 3 and spin zero. This operator is both a primary and a descendant,
and it has zero norm as it can be easily seen by considering the form of the two-point function
(52) with ∆= 1, d = 4. It is however crucial to notice that while being an operator with zero
norm, Ẽθθ̄ should not be modded out from the spectrum. Indeed even if the two-point function
of Ẽθθ̄ is zero, its higher point correlation functions with generic operators are typically non-
vanishing. We can explicitly see this in the tables 3 and 4, by considering any [S⃗] that contain
a bold entry. E.g. the case [1] is just the four-point function 〈Ẽθθ̄E0E0E0〉, which is clearly
non vanishing. This can also be seen in full generality at the level of three-point functions by
looking at the explicit formulae of section 3.2, e.g. equation (55) with ∆i = 1.

In fact the presence of Ẽθθ̄ is crucial since it plays the role of artificially shortening the
multiplet of E0. By this we mean that the pole in the block of E0 is associated to the exchange of
the descendant ∂ 2

x E0, but this contribution is cancelled by the exchange of the supersymmetric
partner Ẽθθ̄ . So we can conclude that the tilded block is in practice encoding the exchange of
a shortened multiplet of E0 where one removes the submultiplet of ∂ 2

x E0 because of a tuned
addition of the multiplet of Ẽθθ̄ .

As an observation, we find it interesting that in two-dimensions the field ε can be consid-
ered as a product of chiral free fermions ε=ψψ̄. On the other hand in d = 4 the field E0 has
the dimension of a free boson. In both cases this operator looks like a free field in a strongly
coupled theory. However the reason why this happens in the two situations is somewhat dif-
ferent. In d̂ = 2 the reasoning is that the operator σ does not have a simple local expression
in terms of ψ, so correlators involving σ cannot be obtained by Wick theorem. On the other
hand in d = 4 the operator E0 only shares the quantum numbers of a free field, but it does not
satisfy the same equations of motion, namely ∂ 2

x E0 = Ẽθθ̄ ̸= 0, where Ẽθθ̄ is a good primary
operator in the spectrum.

There is also another type of tilded block in (148), namely g̃(d=4)
∆ℓ=∆−1 for all odd ∆ ≥ 5.

These correspond to the exchange of primaries in the supermultiplet of

Ya1...aℓ(x ,θ , θ̄ ) = Ya1...aℓ
0 (x) + θYa1...aℓ

θ̄
(x) + θ̄Ya1...aℓ

θ
(x) + θθ̄Ya1...aℓ

θθ̄
(x) , (151)

where the lowest component Yµ1...µℓ
0 had dimension ∆ = ℓ + 1 and lies below the unitarity

bounds.20

In particular the tilded block g̃(d=4)
ℓ+1ℓ arises because of the exchange of Yµ1...µℓ

0 combined

with the primary built out of Yµ1...µℓ−2θθ̄

θ θ̄
(which we shall call Ỹµ1...µℓ−2θθ̄

θ θ̄
) that has dimensions

∆ = ℓ + 3 and spin ℓ − 2. In this case the block of Yµ1...µℓ
0 has a pole due to the primary-

descendant ∂µ1
∂µ2

Yµ1µ2...µℓ
0 , which is erased thanks to the exchange of Ỹµ1...µℓ−2θθ̄

θ θ̄
. In partic-

ular,

g̃(d=4)
ℓ+1ℓ ≡ lim

∆→ℓ+1

�

g(d=4)
∆ℓ +

(ℓ−∆)2

64(−∆+ ℓ− 1)(−∆+ ℓ+ 1)
g(d=4)
∆+2ℓ−2

�

. (152)

The resulting regularized block can be written in a closed form (making use of formula (74))
and gives

g̃(d=4)
ℓ+1ℓ =

8ℓ (z̄ − 2) z̄
1
2 zℓ−

1
2 K (z̄)

π(−2)ℓ(2ℓ− 1) (z − z̄)

�

(z − 2) 2F1

�

ℓ−
1
2

,ℓ−
1
2

;2ℓ− 1; z
�

− 2(z − 1) 2F1

�

ℓ−
1
2

,ℓ+
1
2

; 2ℓ− 1; z
��

+ z↔ z̄ ,

(153)

20These exchanges only happen for ℓ ≥ 4, and in particular it is missing the operator with ∆ = 3 and spin
ℓ = 2. This is expected since this operator is also missing in the d̂ = 2 decomposition because by BPZ equations
L−2ε=

3
4 L2
−1ε is a descendant [36]. Similar considerations apply to the module ofσwhich satisfies L−2σ =

4
3 L2
−1σ.
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where K(x) is the complete elliptic integral of the first kind.
It is interesting that the operators in (151) come from the uplift of Virasoro descendants

of ε in d̂ = 2 (e.g. L−kε has dimension ∆ = 1 + k and spin ℓ = k). On the other hand
Yµ1...µℓ

0 in d = 4 have the same quantum numbers of generalized currents, namely they satisfy
∆= ℓ+d−3. Operators with these quantum numbers typically satisfy a conservation equation
of second order in the derivative, however in this case the conservation does not hold namely
∂µ1
∂µ2

Yµ1µ2...µℓ
0 ̸= 0 (as in the case of E0 the shortening condition is artificial and due to the

exchange of Ỹµ1...µℓ−2θθ̄

θ θ̄
). So we see that, as ε is uplifted to an operator with the same quantum

number of a free field, the uplift of the Virasoro descendant of ε also have the flavour of an
infinite set of (generalized) currents which one expects to find in free theories. However in
both the cases the uplifted operators do not satisfy the shortening conditions which one expects
in free theory and therefore are fundamentally different.

In the conformal block decomposition (148) there are also other operator exchanges in

the same supermultiplet of Ya1...aℓ , e.g. Yµ1...µℓ−2θθ̄
0 which has dimensions ∆= ℓ+ 1 and spin

ℓ−2. These other operators lye above the unitarity bounds and are associated to non-singular
conformal blocks.

6.3 Comments on the operator spectrum

Let us summarize some features of the spectrum of the uplifted Parisi-Sourlas minimal mod-
els. First let us review some features of the original two dimensional models. In d̂ = 2, given
a Virasoro primary O, one can build all possible Virasoro descendants applying the Virasoro
generators Ln, L̄n as follows L̄ n̄k

−k · · · L̄
n̄1
−1 Lnk
−k · · · L

n1
−1O. The resulting operators have quantum

numbers h =
∑k

m=1 nmm + hO and h̄ =
∑k̄

m=1 n̄mm + h̄O (in the case of the two dimen-
sional Ising model O = 1,σ,ε and thus we get three towers of operators with respectively
(hO, h̄O) = (0, 0), ( 1

16 , 1
16), (

1
2 , 1

2)). If the module is non-degenerate all the Virasoro descen-
dants are independent, however in minimal models all modules are singular, namely there are
relations between Virasoro descendants —the BPZ equations [36]— which should be modded
out. Between the independent Virasoro states one can generate all the global primaries by
requiring that they are annihilated by L1 and L̄1. It is easy to see that the number of the global
primaries exponentially grows with the Virasoro level. In appendix C we show the construction
of such primaries and their counting more explicitly in the Ising case.

Every global primary in d̂ = 2 has an uplifted superprimary counterpart which itself has
various components. We could see the presence of such operators directly in the conformal
block decompositions above. We noticed that any holomorphic or antiholomorphic global
primary in the identity module (namely any operator built out of Lnk

−k · · · L
n2
−21 such that L1

annihilates it and similarly for the antiholomorphic case, as shown in appendix C) gives rise
to a superfield J a1...aℓ with superdimension ∆ = ℓ. The number of such supercurrents grows
exponentially in ℓ (see appendix C). The supermultiplet of each J a1...aℓ in contains various
interesting primaries which we explicitly observe in the conformal block decompositions.21

The primaries J̃ µ1...µℓ
θθ̄

and J̃ µ1...µℓ−2θθ̄
0 play the role of four-dimensional conserved currents of

respectively spin ℓ and ℓ− 2. These appeared in the decompositions above. Moreover there
are also other important components of the same supermultiplet, like the fermionic currents
J̃ µ1...µℓ−1θ

0 and J̃ µ1...µℓ
θ

which appear in the decomposition in appendix D. They have dimension
∆ = ℓ + 1 and spin respectively equal to ℓ − 1 and ℓ. These operators satisfy a generalized
conservation equation of the type ∂µ1

∂µ2
J̃ µ1...µℓ−1θ

0 = 0 and ∂µ1
∂µ2

J̃ µ1...µℓ
θ

= 0. Finally there

exists also a component J̃ µ1...µℓ−1θ

θ
which has charge two under Sp(2), and satisfies ∆= ℓ+2

21It is worth noticing that the Virasoro identity multiplet can be exchanged only in the OPE of equal operators,
which is consistent with the fact that the higher spin currents can also only appear in the OPE of equal operators.
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with spin ℓ − 1. This also satisfies a conservation equation ∂µ1
J̃ µ1...µℓ−1θ

θ
= 0. With each

such current one can in principle construct topological operators that in turn define conserved
charges (whose number will also grow exponentially in ℓ). This property is shared by all
minimal models since it only relies on the existence of the Virasoro multiplet of the identity.

Let us also stress that in d̂ = 2 all the different global currents discussed above can be
packaged in a unique Virasoro multiplet. This structure should play a role also in the uplifted
theory. However in the uplifted theory for every current one can build more charges than in
d̂ = 2. The simplest example is that of (super)translations. Indeed in d̂ = 2 we can build a
topological operator by integrating the stress tensor to define the translations L−1 and L̄−1.
When we do the same using the super stress tensor in d = 4 we can build six different types of
supertranslations: four bosonic and two fermionic. Only two of the bosonic ones are related
to L−1 and L̄−1, while the other four are new charges that cannot be defined in d̂ = 2. If we
believe that these charges will be packaged with all the ones of the higher spin tensors inside
a single algebra, we should imagine that the resulting algebra must contain infinitely many
more charges than Virasoro. It would be very interesting to better understand this infinite-
dimensional algebra in the uplifted theory.

It is also important to mention that the existence of higher spin conserved currents in d = 4
is in contrast with the no-go theorem of [39], which showed that under some assumptions the
only theory with higher spin symmetry in d ≥ 3 is free theory. However this is not a paradox
since one of the assumptions of [39] is unitarity. Therefore [39] does not apply to the PS uplift
of the minimal models.

The rest of the operator content depends on the chosen minimal model. It happens that
the case of the Ising model is somewhat special since it also contains the operator ε which has
dimension one. Because of this fact we find that in the supermultiplet of its uplifted counterpart
E there exists the operator E0 which has the same quantum numbers of a free scalar but does
not satisfy equation of motions. Similarly in the same Virasoro multiplet of ε there are all
the (anti) holomorphic global primaries which again they are defined by Lnk

−k · · · L
n1
−1ε (and

barred version of it) which are annihilated by L1 ( L̄1) as in appendix C. The uplift of the
latter give rise to the superfields Ya1...aℓ with superdimension ∆= ℓ+ 1 (again the number of
such superfields grows exponentially with ℓ). In their supermultiplet there exist the primaries
Yµ1...µℓ

0 which have ∆ = ℓ + d − 3. Operators with these quantum numbers typically satisfy
the generalized conservation equations ∂µ1

∂µ2
Yµ1µ2...µℓ

0 = 0, but in this case this equation does
not hold so these currents are not conserved. A similar story works for other components of
Y , like Yµ1µ2...µℓ

θ
and Yµ1µ2...µℓ−1θ

0 which have the quantum numbers of higher spin conserved
currents but they do not satisfy shortening conditions as one can infer from (B.7) and (B.8).
The fact that all these operators do not satisfy shortening conditions implies that the theory
contains zero norm states which are not modded out. This would in principle be a problem
in the OPE, since the exchange of null states would give rise to poles. However because of
supersymmetry other operators in the same supermultiplet are perfectly tuned to cancel the
poles. This is an instance of the general discussion of section 4.3.

Finally for the case of the Ising model one can study the uplift of the Virasoro multiplet
of the spin operator σ. Since the latter has rational dimensions it does not give rise to short-
ened global representations. However we can point out that the uplifted field S has lowest
component S0 with dimension 1

8 which lyes below the unitarity bound and similarly that the
uplift of all the holomorphic global primaries in the multiplet of σ have lowest component
with dimension ∆= 1

8 + ℓ which lye below the unitarity bound.
To complete the discussion on the spectrum we should mention that in the uplifted theory

there should exist new operators which do not exist in the dimensionally reduced theories. It
would be interesting to see if it is possible to reconstruct them by performing a bootstrap anal-
ysis of correlators that cannot be trivially reconstructed from their lower dimensional counter-

42

https://scipost.org
https://scipost.org/SciPostPhys.18.2.056


SciPost Phys. 18, 056 (2025)

parts, e.g. by considering the four-point functions of spinning operators (e.g. stress tensors)
or by increasing the number of insertions (e.g. the six-point function of σ or ε in the Ising
model). This might be possible since we know a huge amount of exact information for the
model. Another possible strategy to fill out this missing information is to better understand
the underlying infinite dimensional symmetry of the uplifted theory and see if this can be
used to completely solve the model, in the same spirit as it was done for its two-dimensional
counterparts.

7 Comments on the loss of information in the reduction

In this paper we always considered cases when the uplift works trivially. In particular we
could simply use the prescription (39), which replace the insertions in Rd−2 with insertions
in Rd|2. This is possible when the symmetry of the observable is sufficient to reconstruct the
full kinematic dependence of the 2|2 extra dimensions. However in some cases this complete
reconstruction cannot be done. Here we want to mention a couple of explicit examples.

7.1 On the operators that dimensionally reduce to zero

In Parisi-Sourlas theories one is allowed to define some operators in OSp(d|2) representations
which cannot possibly be reduced to non vanishing operators in d̂ = d − 2 dimensions. The
representations of OSp(d|2) allow for superprimaries labelled by a Young tableau of [d/2]
rows and one arbitrarily long column as in (19) (where rows are graded symmetrized and
columns graded antisymmetrized). In particular one can consider a superprimary with an ar-
bitrary number of graded antisymmetric indices. This for sure cannot have any dimensionally
reduced counterpart since there are no available representations of SO(d−2) labelled by these
Young tableau. Namely it is not possible to antisymmetrize an arbitrary number of indices of
a SO(d − 2)-tensor and therefore such operators are projected to zero in the dimensionally
reduced theory. In order to make this less abstract we want to give a very explicit construction
of such class of PS CFT operators which projects to zero.

A simple way to study this problem is to consider a Parisi-Sourlas O(n) vector model defined
by the action,

∫

dd xdθdθ̄
1
2
(∂ aΦi)

2 + V (Φ2
i ) , (154)

where the summation of the vector index i = 1, . . . , n is understood and
Φi = ϕi + θ̄ψi + θψ̄i + θθ̄ωi . This model can be reduced to

∫

d d̂ x
1
2
(∂ µφ̂i)

2 + V (φ̂2
i ) . (155)

For simplicity we shall work in the free case V = 0, but similar considerations would also apply
in perturbation theory.

As we explained in section 2.5, the map between the superprimaries of the PS CFT and the
primaries of the reduced theory is given by replacing Φi → φ̂i and ∂a → ∂α. For example this
maps works perfectly when considering

Φi → φ̂i , Φ2
i → φ̂

2
i , Φ[i∂

aΦ j]→ φ[i∂ αφ̂ j] . (156)

These are different operators, the first is a scalar O(n)-vector, the second is a scalar O(n)-
singlet, while the third is the current, which is a vector operator in the rank-two antisymmetric
representation of O(n). We could continue writing infinitely many of such examples which
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have a 1↔ 1 map between the reduced theory and the uplift. Let us however consider the
superprimary22

Oa1...an−1 = εi1...inΦi1∂
[a1Φi2 · · ·∂

an−1]Φin , (157)

which is a O(n)-(pseudo)-singlet which transforms in the rank-(n− 1) graded antisymmetric
representation of OSp(d|2) (namely it is defined by a Young tableau (19) with a single column
with n−1 boxes). If we set all indices ai of (157) to θ and take its lowest component, we see
that this operator just becomes

Oθ ...θ
0 ∝

n
∑

i=1

(−1)iϕiψ1 · · ·ψi−1ψi+1 · · ·ψn . (158)

This component can be written down in any dimension d and it is clearly non vanishing,
so the superprimary Oa1...an−1 is always non-trivial. On the other hand the prescription to
dimensionally reduce this operator to d̂ = d − 2 dimensions does not always give a non-zero
result. Indeed it gives

Oa1...an−1 → Ôα1...αn−1 = εi1...inφ̂i1∂
[α1φi2 · · ·∂

αn−1]φ̂in , (159)

which again is a O(n)-(pseudo)-singlet in the rank-(n − 1) antisymmetric representation of
SO(d̂). When n − 1 ≤ d̂ the operator Ôα1...αn−1 is non-vanishing.23 Conversely for every
n− 1 > d̂, the operator Ôα1...αn−1 vanishes because it is not possible to antisymmetrize n− 1
indices that take less than n− 1 possible values. In the latter case we thus conclude that the
superprimary Oa1...an−1 is projected to zero in the dimensionally reduced theory. This means
that it will not be part of the spectrum of the reduced theory and thus that when we uplift the
reduced theory we will not be able to get any information about such operator.

To conclude, (157) gives a very explicit example of a non-trivial operator that always
dimensionally reduces to zero independently on the chosen dimension d (when n is large
enough). While this was a fairly specific construction, we expect that the uplifted theory will
generically contain a larger spectrum with respect to the reduced one, where the extra oper-
ators project to zero when dimensionally reduced. Of course any correlation function which
contains at least one of these operators will dimensionally reduce to zero. A less trivial state-
ment is that these operators strongly affect the dimensional reduction also when they can be
exchange in the OPE. In the following we give a precise example of this phenomenon in d = 3.

7.2 On the uplift of one-dimensional GFF

In this paper we studied the cases when the prescription 5.1 fully reconstructs the uplifted
observables, however sometimes this is insufficient. The simplest example is when we uplift a
d̂ = 1 four-point function to d = 3. This procedure cannot reconstruct the full 3d correlator
because the latter is a functions of two cross ratios while in 1d̂ only a single independent cross
ratio is available. Let us show in more details what happens in this case. In particular we focus
on the case of GFF, where we know both the 1d̂ GFF and the 3d PS GFF and we can explicitly
see which part of the uplifted theory is reconstructed by the prescription of section 5.1.

It is easy to define the PS uplift of 1d̂ GFF. Indeed following the definition of sec-
tion 5.1 there is a natural way to uplift the 1d̂ action

∫

d x φ̂(∂ 2)ξφ̂ to 3d by considering
∫

d3 xdθdθ̄Φ(∂ a∂a)ξΦ. Using this we can compute the four-point function of Φwhich is equal

22The operator εi1 ...in∂ [a1Φi1∂
a2Φi2 · · ·∂

an]Φin would provide a simpler example, but it is a superdescendant of
Oa1 ...an−1 and for this reason we preferred the latter.

23For n− 1 ≤ [d̂/2] the operator Ôα1 ...αn−1 automatically transforms in a standard SO(d̂) representation, while
for [d̂/2] < n− 1 ≤ d̂ one should dualize the operator using the SO(d̂) epsilon tensor. E.g. in the limiting case of
n− 1= d̂ we can dualized it to a (pseudo) scalar εα1 ...αd̂

Ôα1 ...αd̂ .
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to 1+U∆φ+U∆φV−∆φ (where∆φ = 3/2−ξ), which is indeed the answer of the Parisi-Sourlas
uplift of GFF in any dimension d > 1. Let us consider the lowest component of this four-point
function, namely of 〈Φ0Φ0Φ0Φ0〉, which is just Auplift = 1 + u∆φ + u∆φ v−∆φ . Its superblock
decomposition reads

Auplift = 1+
∑

ℓ=0,2...

∑

∆=2∆φ+ℓ+2N≥0

a∆ℓ
�

g(3)∆ℓ + c2,0 g(3)∆+2ℓ + c0,−2 g(3)∆ℓ−2 + c2,−2 g(3)∆+2ℓ−2

�

, (160)

where ci, j are the coefficients (75) of the superblocks computed for d = 3 and∆12 =∆34 = 0.
We dropped the term proportional to c1,−1 which is zero for equal external operators. The
coefficients in the decomposition read

a2∆φ+2n+ℓ,ℓ =
2ℓ+1
�

∆φ +
1
2

�2
n

�

∆φ
�2

n+ℓ

n!ℓ!
�

ℓ+ 1
2

�

n

�

n+ 2∆φ
�

n

�

n+ ℓ+ 2∆φ −
1
2

�

n

�

2n+ ℓ+ 2∆φ − 1
�

ℓ

. (161)

These coefficients are actually equal to the ones computed for GFF in generic dimensions d̂
when restricted to d̂ = 1. For example (161) can be obtained from (123) setting n2 = n3 = 1
and d = 3.

Let us now consider the setup for CFTs in 1d̂. First let us mention that in 1d̂ a correlation
function of equal operators takes the simpler form

〈φ̂(x1)φ̂(x2)φ̂(x3)φ̂(x4)〉=
A(z)

|x12|2∆φ |x34|2∆φ
, (162)

where z = x12 x34
x13 x24

. In principle one could also define a second cross ratio ζ = x14 x23
x13 x24

, but it
is easy to see that in one dimension z + ζ = 1, so the two cross ratios are not independent.

Notice that the d̂ = 1 setup can be recovered from higher dimensions where
x2

12 x2
34

x2
13 x2

24
= u = zz̄

by considering the diagonal limit z = z̄ of the cross ratios.
In the next we shall focus on 1d̂ GFF, for which

A(z) = 1+
� z

1− z

�2∆φ
+ z2∆φ . (163)

Let us now discuss how to possibly uplift this result to d = 3. If we are only given the final
expression for the correlator (without knowing to which uplifted theory it corresponds), our
only way to define the uplifted correlator becomes the replacement (39). This however is
ambiguous. Indeed z2 uplifts to the cross ration U and ζ2 to V , but since in 1d̂ it is always
possible to replace z↔ 1−ζ we conclude that the uplifted correlation function is known only
on the slice

p
U = 1−

p
V (which corresponds to Z = Z̄). Therefore the reconstruction of the

uplift provided by the prescription (39) is incomplete. But what does (39) reconstruct exactly?
To answer this question let us perform the conformal block decomposition in d̂ = 1,

A(z) = g(1)0 (z) +
∑

∆=2∆φ+2N≥0

a∆g(1)∆ (z) , (164)

where g(1)∆ = z∆ 2F1(∆,∆; 2∆; z) are the one-dimensional conformal blocks and a∆ are the
(squared) OPE coefficients for the exchange of the double twist operators φ∂ 2nφ. These take
the following form

a2∆φ+2n =
2
�

∆φ
�

n

�

2∆φ
�

n

�

∆φ +
1
2

�

n

(2n)!
�

n+ 2∆φ −
1
2

�

n

. (165)
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Now it is possible to perform the uplift of the 1d̂ blocks to 3d blocks by applying equation
(74). In particular a d̂ = 1 conformal block is uplifted to a sum of diagonal (i.e. with z = z̄)
3d blocks as follows,

g(1)∆ (z) = g(3)∆ℓ=0(z, z) + c2,0 g(3)∆+2ℓ=0(z, z) , (166)

where c2,0 = −∆3/[4(∆+1)(2∆−1)(2∆+ 1)] is the one of (75) restricted to ℓ,∆12,∆34 = 0
and d̂ = 1. Since there is no spin in d̂ = 1, equation (74) defines d = 3 blocks which are also
scalar. Equation (166) can be checked using the closed form of the diagonal blocks [40]

g(3)∆ℓ=0(z, z) =
�

z2

1−z

�∆/2
3F2

�

∆−1
2 , ∆2 , ∆2 ; ∆+1

2 , 2∆−1
2 ; z2

4(z−1)

�

. (167)

One possible idea to get the uplifted correlator in 3d is to take the decomposition (164), uplift
each block according to (166), and finally make the 3d blocks depend on both z and z̄ as
follows

Auplift?(z, z̄) = 1+
∑

∆=2∆φ+2N≥0

a∆[g
(d=3)
∆ℓ=0(z, z̄) + c2,0 g(d=3)

∆+2ℓ=0(z, z̄)] . (168)

This prescription however clearly misses information. Indeed the conformal block decomposi-
tion of the 3d theory contains infinitely many spinning operators according to (160), however
we only see scalar exchanges, which is a trivial consequence of the fact that we only uplifted
scalar blocks. Of course (168) is not the full uplift, but now at least we know exactly which
information it reconstructs by comparing (168) with the true uplifted correlator (160). In
particular we can see that the coefficients (165) in (168) exactly match the ones of (161) in
(160) when restricted to ℓ= 0 (and so do the superblocks). Let us explain why this is the case.

Mathematically this happens because of an interesting property of the superblocks in the
square brackets of (160): one can check that they all vanish at z = z̄ for ℓ≥ 2. A more physical
point of view is related to the fact that in the 3d PS GFF there are more operators than in 1d̂
GFF. In particular we can define superprimaries in the graded symmetric and traceless repre-
sentation of spin ℓ, which do not have any representative in one dimensions. The prescription
for the dimensional reduction indeed would be that a graded traceless and symmetric super-
primary Oa1...aℓ is mapped to a traceless and symmetric primary operator Ôα1...αℓ that lives
in two less dimensions. However the dimensions of spin ℓ traceless and symmetric represen-
tations of SO(d) is (d+2ℓ−2)Γ(d+ℓ−2)

Γ(d−1)Γ(ℓ+1) , therefore in one dimension the only representations that
survive are the ones with ℓ= 0,1. The spin one representation is better understood as a parity-
odd scalar by dualizing it with the epsilon tensor, e.g. Oαεα, but this will not play a role in
our discussion since we only probe even spin and parity-even operators in the decompositions
above.24 Therefore the dimensional reduction of graded traceless and symmetric spin ℓ ≥ 2
superprimaries from a 3d PS CFT to 1d̂ reads

Oa1...aℓ → 0 . (171)

We thus conclude that the spin ℓ ≥ 2 operators in the OPE define the missing information of
the 1d̂ correlator (164) with respect to its uplift (160). Their presence in the uplift is crucial

24It is instructive to show what happens when spin ℓ= 1 superblocks are exchanged in d = 3. As we explained,
these correspond to parity odd scalar exchanges in d̂ = 1. Indeed we find

g(1)∆ (z) = g(3)∆ℓ=1(z, z)−
(∆− 1)(∆+ 1)2

4(∆+ 2)(2∆− 1)(2∆+ 1)
g(3)∆+2ℓ=1(z, z) , (169)

where the coefficient above is obtained by evaluating c2,0 at ℓ = 1 = d̂, ∆12,∆34 = 0 and the spin-one diagonal
blocks are defined as [40]
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. (170)
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to get a four-point that depends on two cross ratios. These operators are projected to zero by
dimensional reduction which is also related to the fact that the 1d̂ four-point function only
depends on one cross ratio.

Let us be very explicit on the missing operators in (168) with respect to (160). In the
uplifted theory we can write double twist operators labelled by two numbers n and ℓ as in
(105), and their reduction from 3d to 1d̂ is as follows

Φ(∂ a∂a)
n∂ a1 · · ·∂ aℓΦ →











φ̂∂ 2nφ̂ (ℓ= 0) ,
φ̂∂ 2n+1φ̂ (ℓ= 1) ,
0 (ℓ≥ 2) ,

(172)

where here we suppressed the normal ordering and the dots of (105) to shorten the notation.
So in practice (168) only captures the spin zero double twist operators Φ(∂ a∂a)nΦ.

Now that we explained that the complication in the uplift is due to the different opera-
tor content of the two theories, we may further ask whether starting from (168) one could
reconstruct (160). We did not attempt it here but we think that this might be possible. In
particular we notice that (168) contains the correct spectrum and OPE coefficients of the part
of the spectrum which is not projected to zero, namely all the scalar operators. Moreover, if on
one hand (168) misses completely the information of all spinning superprimaries, we never
imposed the constraint of crossing symmetry and we expect that the expression (168) is not
crossing invariant (one may try to prove this since the blocks at ℓ = 0 are known exactly in
every dimension, but we did not attempt it). It would be interesting to see whether by re-
quiring crossing symmetry and possibly inputting extra information about the uplifted theory
one could actually reconstruct the uplifted correlator from the one on the line. We leave this
problem for the future.

As a final comment it is interesting to notice that the uplift (160) can be understood as a
better analytic continuation of GFF to one dimension. In the sense that by continuing the OPE
and spectrum as function of the spacetime dimension we would find (160) and not (164). Also
the uplift (160) is expected to have all properties of a CFT3, which has a richer structure (e.g.
the operators should lie in Regge trajectories which are analytic in spin) and can possess a
conserved stress tensor (when∆φ = 1/2). It may be interesting to investigate better the uplift
of one dimensional theories to give them a higher dimensional interpretation. This study could
be also fruitful in order to find new ways to export tools which are better understood in one
dimension (e.g. the analytic functionals of [41–43]) to higher dimensions.

8 Conclusion and outlook

In this paper we started the study of the Parisi-Sourlas uplift of CFTs. We explained that
it is possible to uplift correlators of a generic CFTd−2 to define correlators of a PS CFTd .25

In particular any given correlation function in d − 2 dimensions gives rise to a superspace
correlator in d dimensions, which can then be expanded in components generating a set of
correlators of primary operators in the uplifted theory. We explicitly checked that for two,
three and four insertions of scalar operators the kinematic structure of all components is (as
expected) compatible with conformal symmetry. All components can be extracted by the action
of known differential operators in superspace. In section 3.3 we further show that four-point
functions have 43 independent components which can be obtained by applying 43 differential
operators D[S⃗] in u and v on the lowest component of the four-point function.

25As reviewed in the introduction, PS CFTs are known to have physical applications for models with random
fields, e.g. they describe the RF Ising model in d = 5 and the RF φ3 in 2≤ d < 8.
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In section 4 we provide a very robust check that for any CFTd−2 its uplifted PS CFTd makes
sense. Indeed we check that for any scalar four-point function in the CFTd−2, the 43 compo-
nents of the uplifted correlator have a good d-dimensional conformal block decomposition.
This is ensured by formula (76), which rewrites the action of D[S⃗] on block in d−2 dimension
as a linear combination of at most five conformal blocks in d dimensions. Formula (76) is
also a beautiful result for the theory of conformal blocks, indeed it provides very interesting
relations between blocks shifted by two dimensions.26 Between such relations we find (94)
which was already obtained by Dolan and Osborn in [30] to map lower dimensional blocks to
higher dimensional ones. Our work gives a clear physical interpretation of such equation.

PS CFTs are non unitary CFTs and by dimensional uplift we expect that their conformal
block decomposition often contains exchanges of subtle conformal block which naively seem
to diverge. However in section 4.3, by analyzing formula (76), we showed that all these
singularities are cancelled. Physically the singularities of the blocks signal the presence of null
states in the spectrum of the theory. In unitary theories these are cancelled by modding out
the null states. In PS CFT we show that null states can also be part of the spectrum without
giving rise to singularities in correlators, because these are subtracted by other conformal
blocks contributions with singular OPE coefficients. This structure is ensured kinematically at
the conformal block level thanks to PS SUSY.

These results can also be understood as new checks that both PS CFT make sense and that
they can arise from the uplift of any CFTd−2. While some checks were also performed in [7], in
that paper it was given most attention to the lowest component of the superspace correlation
functions, which is the one entering the dimensional reduction. In this paper we wanted to
give extra motivation for the uplift, and therefore also the other components were carefully
studied.

We then give specific applications of the uplift. In particular we focused on models that
must possess a well defined uplift (because of Lagrangian arguments). The first case is GFF,
while the second one consists in all the diagonal minimal models.

In section 5 we defined the uplifted GFF explaining how to compute any observable by
using Wick contractions in superspace and we show that this description is sometimes very
useful as a tool. In particular some observables of the original GFF are constrained by the
supersymmetry of the uplift. The constraints arise in GFF because of factorization (therefore
our computations can be extended to any theory with this property), namely the fact that any
GFF correlator can be written in terms of product of two-point functions. In the uplift we find
that some components of some infinite families of correlation functions vanish. This happens
because their factorized form always contains a two-point function of different primaries (be-
longing to the same supermultiplet), which therefore is zero. In practice this reasoning tells
us that some classes of GFF correlators are annihilated by some differential operators. In the
case of four-point functions these differential operators are a subset of the 43 possible D[S⃗]
defined in section 3.3. Combining the fact that D[S⃗] annihilates the correlator and that it maps
a block in lower dimensions to a sum of blocks in higher dimensions according to (76), we
find that PS SUSY gives rise to recursion relations on the OPE coefficients of the double twist
exchanges. We showed this for any four-point function of the form 〈φφn1φn2φn3〉 for any
power ni . For all such four-point functions we find seven recurrence relations, which can be
compactly written as in (118). In the case of n2 = n3 we show that these relations can be
easily solved by (123). This is a new result on GFF which was obtained by only assuming the
existence of double twist operators and imposing the supersymmetry of the uplift. It is quite
remarkable that such minimal assumptions fix the form of infinitely many OPE coefficients of
infinitely many correlators.

26Notice also that relations between conformal blocks can be used to find relations for exchange Witten diagrams
[44].
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On the philosophical side, the PS SUSY of the uplift defines a new mechanism (besides the
usual one of analyticity in spin) which links together different operators of the same double
twist family. Indeed the recurrence relations (118) just descend from the fact that a given spin ℓ
double twist superprimary contains in its supermultiplet a number of primaries of different spin
and dimensions. So around GFF, it happens that primaries belonging to different double twist
supermultiplets have the same quantum numbers and recombine in such a way to give zero
OPE coefficients in the conformal block decomposition, which in turns give rise to vanishing
correlation functions. In practice the fact that some components have correlation functions
requires a miraculous tuning of all the infinitely many OPE coefficients in the double twist
family.

Besides solving for the OPE coefficients, we can also use the fact that D[S⃗] annihilates some
correlators to solve for the correlators themselves. We showed this in some simple cases. In
particular we could fix the correlator of 〈φφn1φn2φn3〉 up to three constants without doing any
Wick contraction. Moreover we show that this same logic can have application at perturbative
level (around GFF). For example we explain that the D-functions (which also describes contact
Witten diagrams in AdS) are also annihilated by some of the operators D[S⃗] and that this
can be helpful to bootstrap their form. This idea can be surely extended to a large set of
diagrammatic computations giving rise to a new tool to bootstrap correlators in perturbation
theory. This would be very interesting to explore. On a similar note it would be interesting
to check whether the uplifted formulation has benefits for the analytic conformal bootstrap,
which is also perturbative in nature.

In section 6 we turned our attention to the uplift of diagonal minimal models. We gave a
simple RG argument which explains why the uplift of such models should exist. The idea is
that diagonal minimal models can be obtained as the fixed point of the (multicritical) RG flow
of a scalar Lagrangian. Since scalar Lagrangians can be uplifted, then these RG flows can be
uplifted and so it must be the case for their IR fixed points. We focused on the Ising model
and considered the four-point functions of Virasoro primary operators (namely combinations
of ε and σ). We explained that they can be trivially uplifted to four dimensions (as it is
the case for all scalar four-point functions) and showed as an example the 43 components
of the uplift of 〈εεεε〉. We then proceeded to the decomposition of the uplifted four-point
functions in 4d conformal blocks. This analysis shows explicitly that in the spectrum of the
uplifted minimal models there exist infinitely many conserved higher spin currents. These
were expected because they also exist in the minimal models themselves. Such operators can
be in principle used to define an infinite set of conserved charges which extends the one of
the minimal models. It would be very exciting to find the explicit expression for the charge
algebra, which certainly deserves further investigations.

Interestingly the integrability properties of minimal models (meaning the existence of in-
finitely many commuting charges) should uplift to higher dimensions, giving rise to examples
of non-trivial higher dimensional integrable models (these would be truly integrable in d > 2
without resorting to an auxiliary integrable 2d description). Notice that the existence of in-
finitely many conserved currents in a strongly coupled theory is in contradiction with the no-go
theorem of [39], however for PS CFTs this no-go theorem does not apply because it relies on
unitarity.

As a curiosity, the uplifted Ising model has special features with respect to other uplifted
minimal models. This is due to the Virasoro multiplet of ε. By uplifting the operators in this
multiplet we find that they map to 4d operator with the same quantum numbers of free fields
and conserved currents. However we show that, despite the resemblance, the uplifted fields
do not satisfy shortening conditions. Namely the 4d multiplets contain null states which are
not modded out from the spectrum of the theory. In order to prove that the exchange such
multiplets is well defined we make use of the observations of section 4.3 which allows us to
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conclude that the conformal block decomposition of the uplift of 〈σσσσ〉 does not give rise
to singularities even if zero norm states are exchanged.

As we mentioned in the introduction, some of the uplifted minimal models have a micro-
scopic definition in terms of a supersymmetric statistical physics model [17–19]. It would be
interesting to see whether this type of construction can be extended to other uplifted minimal
models.

All along the paper we focused on observables that are “equivalent” in the CFTd−2 and the
PS CFTd , meaning that they can be dimensionally reduced or uplifted without ever loosing
information (or in other words the missing information of the uplift can be fully recovered
using the symmetry of the model). From this, it might seem that the uplifted PS CFTd is just
equivalent to a CFTd−2, but this is actually incorrect. The PS CFTd contains the whole infor-
mation of the CFTd−2 but it also contains more operators and OPE coefficients, so it is a bigger
theory. Indeed it is easy to see that some operators of the PS CFTd are dimensionally reduced
to zero. We exemplify a class of such operators in section 7. Moreover in the same section
we also explain that the projection to zero of these operators is responsible for the smaller
kinematic space (e.g. the number of cross ratios and tensor structures) in some dimensionally
reduced correlators. Indeed it is well known that the kinematic space of correlators depends
on the spacetime dimensions and it might seem surprising that the uplift should make sense
also when the two kinematic spaces are different. The easiest example is that scalar four-point
functions in a CFT1 depend on a single cross ratio, while their uplifted PS CFT3 counterparts
depend on two. In section 7 we give the example of 1d GFF and its 3d PS uplift. The PS GFF
contains spinning operators which are absent in 1d and we show that these are responsible
for creating the dependence on the extra cross ratio in four-point functions. We believe that
this picture should hold in general, e.g. also in relation to the number of tensor structures in
correlators of spinning operators. It would be very interesting to check if this is indeed correct.

The existence of operators that dimensionally reduce to zero gives rise to a technical com-
plication in the uplift of theories, like the minimal models, that are defined only in terms of a
CFT (and not with a Lagrangian like GFF). Indeed for such theories we do not have access to
a part of the spectrum of the uplifted models and one may ask whether it is possible to recon-
struct it only by CFT considerations. While we do not have an explicit answer to this question
we think that by imposing the knowledge of the reduced theory along with crossing symmetry
it might possible to reconstruct the missing information. It would be very interesting to show
if this is the case. Indeed we think that the following conjecture might be true:27

given any CFTd−2, its Parisi-Sourlas uplift exists and is unique.

Let us comment on this conjecture. As far as the existence, all results of this paper and of [7]
point to the fact that the uplift automatically holds just by kinematics, without ever requiring
specific properties of the CFTd−2. So this suggests that all CFTs should have an uplift. About
the uniqueness, we find it very unlikely to have two different PS CFTd realizations that share
such enormous part of their spectrum (which indeed defines a full non-trivial CFTd−2) and yet
differ on the CFT data of some more exotic spin representations. E.g. in d ≥ 4 all the four-point
functions of scalar superprimaries of the uplifted theory are completely fixed by the CFTd−2
input. We think that the associated CFT data is too large to admit different completions.
It would be very interesting to find a proof of such statements, establishing rigorously the
existence and uniqueness of the uplift of generic CFTs.

A very interesting extension of this paper is to consider correlators of operators with spin.
This has various applications. First one can extend the relations (76) to spinning conformal
blocks. Also it would be interesting to see how the spinning setup constrains the CFT data of
theories which factorize. It would be nice to see whether one can reconstruct some spinning

27This conjecture probably requires a lower bound in the dimensions, which might be d ≥ 3.
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correlators of the uplifted minimal models, like the ones involving the stress tensor. This is
not a straightforward uplift since the 4d spinning correlators contain more tensor structures
with respect to their 2d counterparts. However we might hope that such correlators will be
constrained enough by superconformal Ward identities.

A very promising idea is to use the uplift of spinning correlators to simplify the numerical
conformal bootstrap of setups that involve spinning operators like conserved currents and
stress tensors (these setups were sometimes considered in the literature [45–47], but they
are very heavy both to implement and at the level of the numerics). Let us explain how
this new strategy works. The main idea is to use the basic fact that the supermultiplet of
spinning operators (e.g. of spin one and two) contains scalar operators. One could thus
perform a bootstrap study of such scalar operators in the uplifted theory to learn about the
constraints of the spinning operators in the original theory. Notice that, while the uplifted
theory is non-unitary, the unknown OPE coefficients are actually the lower dimensional ones,
which satisfy the usual positivity properties that allow for efficient implementations of the
numerical bootstrap. We do not know how much information would be encoded in this uplifted
scalar bootstrap, but it is surely worth exploring this direction.

Finally one can also study deformations of the PS CFTs. Indeed we might hope that in
the near future some PS CFTs like the uplifted minimal models will be fully solved. So it is
natural to ask whether one can define new theories by deforming the uplifted ones. If the
deformations preserve PS SUSY, then the flows can be dimensionally reduced and thus they
would again correspond to uplift of known theories. However one could also deform the
model by operators that break (part of) the supersymmetry and get completely new higher
dimensional models which do not have any lower dimensional counterpart. This could be a
new tool to shed light on the space of higher dimensional QFTs.
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A Coefficients of the relations between conformal blocks

In section 4.2 we showed some explicit expressions for the coefficients c[S⃗]i, j of formula (76).
In this appendix we present all remaining coefficients.

Let us start by considering the case of S⃗ = i, jk̄ with i, j, k all different. There are two
separate cases. If ( j, k) = (1, 3), (1, 4), (2, 3), (2, 4) (independently on i as long as it is different
from j and k) the set P[S⃗] contains only four elements. We can for example compute

c[123̄]
0,−1 = −ℓ (β12 −∆+ ℓ) (d +∆− β12 + ℓ− 4) , (A.1)

c[123̄]
1,0 =

(∆− 1) (∆− β12 − ℓ) (∆+∆12 + ℓ)
�

∆+∆34 + ℓ
�

(d −∆− β12 − ℓ− 2)

2(∆+ ℓ− 1)(∆+ ℓ)
,

c[123̄]
1,−2 =

(∆− 1)(ℓ− 1)ℓ (d +∆− β12 + ℓ− 4) (−d +∆+∆12 − ℓ+ 4) (−2d +∆+ β12 − ℓ+ 6)
�

−d +∆+∆34 − ℓ+ 4
�

2(d + 2ℓ− 6)(d + 2ℓ− 4)(d −∆+ ℓ− 4)(d −∆+ ℓ− 3)
,

c[123̄]
2,−1 =

(∆− 1)∆ℓ (∆+∆12 + ℓ)
�

∆+∆34 + ℓ
�

(d −∆−∆12 + ℓ− 4) (β12 − 2d +∆− ℓ+ 6) (β12 − d +∆+ ℓ+ 2)
�

∆34 − d +∆− ℓ+ 4
�

4(d − 2(∆+ 1))(d − 2(∆+ 2))(∆+ ℓ− 1)(∆+ ℓ)(d −∆+ ℓ− 4)(d −∆+ ℓ− 3)
,
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where we recall that βi j ≡ ∆i +∆ j . All other seven coefficients are defined by the following
maps,

c[214̄]
i, j = π(12)(34)c

[123̄]
i, j , c[3,14̄]

i, j = π(13)(24)c
[123̄]
i, j ,

c[4,23̄]
i, j = π(14)(23)c

[123̄]
i, j , c[124̄]

i, j = (−1) jπ(34)c
[123̄]
i, j ,

c[213̄]
i, j = (−1) jπ(12)c

[123̄]
i, j , c[324̄]

i, j = (−1) jπ(13)(24)(13)c
[123̄]
i, j ,

c[413̄]
i, j = (−1) jπ(12)(23)(14)c

[123̄]
i, j .

(A.2)

In the second case of S⃗ = i, jk̄ with ( j, k) = (1,2), (3,4), the set P[S⃗] contains five terms. For
[134̄] we obtain

c[134̄]
0,0 = c[1]0,0

�

∆− β34 − ℓ
�

,

c[134̄]
0,−2 = c[1]0,−2

�

d +∆− β34 + ℓ− 4
�

,

c[134̄]
1,−1 = c[1]1,−1

�

d − β34 − 2
�

,

c[134̄]
2,0 = c[1]2,0

�

d −∆− β34 − ℓ− 2
�

,

c[134̄]
2,−2 = c[1]2,−2

�

2d −∆− β34 + ℓ− 6
�

,

(A.3)

where here we relate these coefficients to the c[1]i, j of (83) to get more compact expressions.
All other three coefficients are obtained as

c[234̄]
i, j = (−1) jπ(12)c

[134̄]
i, j , c[312̄]

i, j = π(24)(13)c
[134̄]
i, j , c[412̄]

i, j = π(14)(23)c
[134̄]
i, j . (A.4)

Let us now consider two level-two superdescendants, namely the cases [S⃗] = [ij]. In all
these cases there are five terms in P[S⃗]. However we find it convenient to separate the cases
[12], [34] from the rest. For [12], the result is

c[12]
0,0 = c[12̄]

0,0 (β12 −∆+ ℓ+ 2) (−β12 + d −∆− ℓ− 2) (−β12 + d +∆+ ℓ− 4) ,

c[12]
0,−2= c[12̄]

0,−2 (β12 −∆+ ℓ) (−β12 + 2d −∆+ ℓ− 6) (−β12 + d +∆+ ℓ− 6) ,

c[12]
1,−1= c[12̄]

1,−1
(β12 −∆+ ℓ) (−β12 + d −∆− ℓ− 2) (−β12 + 2d −∆+ ℓ− 6) (−β12 + d +∆+ ℓ− 4)

−β12 + d − 2
,

c[12]
2,0 = c[12̄]

2,0 (β12 −∆+ ℓ) (−β12 + d −∆− ℓ− 4) (−β12 + 2d −∆+ ℓ− 6) ,

c[12]
2,−2= c[12̄]

2,−2 (β12 − d +∆+ ℓ+ 2) (−β12 + 2d −∆+ ℓ− 8) (−β12 + d +∆+ ℓ− 4) ,

(A.5)

where we related these coefficients to c[12̄]
i, j defined in (87). The coefficients [34] are defined

by the relation
c[34]

i, j = π(14)(23)c
[12]
i, j . (A.6)

We then define the case [13] in terms of the coefficients c[1]i, j of (83),

c[13]
0,0 = c[1]0,0

�

∆+∆34 + ℓ
� �

−β34 +∆− ℓ
�

,

c[13]
0,−2 = c[1]0,−2

�

d −∆−∆34 + ℓ− 4
� �

β34 − d −∆− ℓ+ 4
�

,

c[13]
1,−1 = c[1]1,−1

�

β34 − d + 2
� �

∆+∆34 + ℓ
� �

d −∆−∆34 + ℓ− 4
�

∆34
,

c[13]
2,0 = c[1]2,0

�

∆+∆34 + ℓ+ 2
� �

d −∆−∆34 + ℓ− 4
� �

−β34 + d −∆− ℓ− 2
�

∆−∆34 + ℓ
,

c[13]
2,−2 = c[1]2,−2

�

∆+∆34 + ℓ
� �

d −∆−∆34 + ℓ− 6
� �

β34 − 2d +∆− ℓ+ 6
�

d −∆+∆34 + ℓ− 4
.

(A.7)
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The other three coefficients are related to these by

c[14]
i, j = (−1) jπ(34)c

[13]
i, j , c[23]

i, j = (−1) jπ(12)c
[13]
i, j , c[24]

i, j = π(14)(23)c
[13]
i, j . (A.8)

We now focus on the cases S⃗ = ijmn̄. Again there are two different cases. First we consider
the case when (m, n) = (1,3), (1,4), (2,3), (2,4). We start by defining S⃗ = 1324̄,

c[1324̄]
0,−1 = c[123̄]

0,−1

�

−∆+ β34 + ℓ
� �

d +∆− β34 + ℓ− 4
�

,

c[1324̄]
1,0 = c[123̄]

1,0

�

∆− β34 − ℓ
� �

−d +∆+ β34 + ℓ+ 2
�

,

c[1324̄]
1,−2 = c[123̄]

1,−2

�

−2d +∆+ β34 − ℓ+ 6
� �

d +∆− β34 + ℓ− 4
�

,

c[1324̄]
2,−1 = c[123̄]

2,−1

�

−d +∆+ β34 + ℓ+ 2
� �

2d −∆− β34 + ℓ− 6
�

,

(A.9)

where we defined these coefficients in terms of c[123̄]
i, j of (A.1). The other three cases are

defined by

c[1423̄]
i, j = (−1) jπ(34)c

[1324̄]
i, j , c[2413̄]

i, j = π(12)(34)c
[1324̄]
i, j , c[2314̄]

i, j = (−1) jπ(12)c
[1324̄]
i, j . (A.10)

Now we turn to S⃗ = ijmn̄ with (m, n) = (1, 2), (3, 4) and show the coefficients for S⃗ = 3412̄,

c[3412̄]
0,0 = c[12̄]

0,0

�

β34 −∆+ ℓ
� �

β34 −∆+ ℓ+ 2
� �

β34 − d +∆+ ℓ+ 2
� �

d − β34 +∆+ ℓ− 4
�

,

c[3412̄]
0,−2 = c[12̄]

0,−2

�

β34 −∆+ ℓ
� �

2d − β34 −∆+ ℓ− 6
� �

d − β34 +∆+ ℓ− 6
� �

d − β34 +∆+ ℓ− 4
�

,

c[3412̄]
1,−1 = c[12̄]

1,−1

�

β34 −∆+ ℓ
� �

d − β34 −∆− ℓ− 2
� �

2d − β34 −∆+ ℓ− 6
� �

d − β34 +∆+ ℓ− 4
�

, (A.11)

c[3412̄]
2,0 = c[12̄]

2,0

�

β34 −∆+ ℓ
� �

d − β34 −∆− ℓ− 4
� �

d − β34 −∆− ℓ− 2
� �

2d − β34 −∆+ ℓ− 6
�

,

c[3412̄]
2,−2 = c[12̄]

2,−2

�

β34 − d +∆+ ℓ+ 2
� �

2d − β34 −∆+ ℓ− 8
� �

2d − β34 −∆+ ℓ− 6
� �

d − β34 +∆+ ℓ− 4
�

,

where c[12̄]
i, j is defined in (87). The coefficients labelled by 1234̄ are then obtained through the

map
c[1234̄]

i, j = π(14)(23)c
[3412̄]
i, j . (A.12)

We proceed by defining the coefficients with S⃗ = ijk. For all four cases there are always
five coefficients. Let us define c[123]

i, j ,

c[123]
0,0 = c[134̄]

0,0

�

β34 −∆+ ℓ+ 2
� �

β34 − d −∆− ℓ+ 4
� �

β34 − d +∆+ ℓ+ 2
�

,

c[123]
0,−2 = c[134̄]

0,−2

�

β34 −∆+ ℓ
� �

−β34 + 2d −∆+ ℓ− 6
� �

−β34 + d +∆+ ℓ− 6
�

,

c[123]
1,−1 = c[134̄]

1,−1

�

β34 −∆+ ℓ
� �

−β34 + d −∆− ℓ− 2
� �

−β34 + 2d −∆+ ℓ− 6
� �

−β34 + d +∆+ ℓ− 4
�

−β34 + d − 2
,

c[123]
2,0 = c[134̄]

2,0

�

β34 −∆+ ℓ
� �

−β34 + d −∆− ℓ− 4
� �

−β34 + 2d −∆+ ℓ− 6
�

,

c[123]
2,−2 = c[134̄]

2,−2

�

β34 − d +∆+ ℓ+ 2
� �

−β34 + 2d −∆+ ℓ− 8
� �

−β34 + d +∆+ ℓ− 4
�

,

(A.13)

where c[134̄]
i, j is defined in (A.3). The other three coefficients are then obtained as

c[124]
i, j = π(23)(14)c

[134]
i, j , c[123]

i, j = π(24)(13)c
[134]
i, j , c[234]

i, j = (−1) jπ(12)c
[134]
i, j . (A.14)

Finally we define the last coefficients related to the top primary components of all four oper-
ators. This takes the form

c[1234]
0,0 = c[3412̄]

0,0 (β12 −∆+ ℓ+ 2) (d − β12 −∆− ℓ− 2) (d − β12 +∆+ ℓ− 4) ,

c[1234]
0,−2 = c[3412̄]

0,−2 (β12 −∆+ ℓ) (2d − β12 −∆+ ℓ− 6) (d − β12 +∆+ ℓ− 6) ,

c[1234]
1,−1 = c[3412̄]

1,−1
(β12 −∆+ ℓ) (d − β12 −∆− ℓ− 2) (2d − β12 −∆+ ℓ− 6) (d − β12 +∆+ ℓ− 4)

d − β12 − 2
,

c[1234]
2,0 = c[3412̄]

2,0 (β12 −∆+ ℓ) (d − β12 −∆− ℓ− 4) (2d − β12 −∆+ ℓ− 6) ,

c[1234]
2,−2 = c[3412̄]

2,−2 (β12 − d +∆+ ℓ+ 2) (2d − β12 −∆+ ℓ− 8) (d − β12 +∆+ ℓ− 4) ,

(A.15)
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where the coefficients c[3412̄]
i, j are defined in (A.11).

B Resolving the singularities of the conformal blocks

As we explained in section 4.3, there are various conformal block exchanges which naively
diverge in the PS uplift of a unitary CFT. These correspond to scalars with ∆ = d

2 − 2, d
2 − 1

and operators with ∆ = d + ℓ− 3, d + ℓ− 2, d + ℓ− 1 and spin ℓ. In this appendix we show
that all the these exchanges are well defined, and non-singular.

d/2− 1

First we pursue the study of the exchange of an operator with the same labels of a free scalar
in a PS CFT. In section 4.3 we explained what happens to the lowest component of the four-
point function but we need to investigate also all other 42 components. The result is that for
all 26 components that belong to the set P(0) (like the lowest component) the same argument
of section 4.3 holds. In particular we checked that all components [S⃗] ∈ P(0) of the scalar
superblocks collapse to the sum of two terms

g̃[S⃗]d/2−1ℓ=0 ≡ lim
∆→d/2−1

c[S⃗]0,0Σ[S⃗]g∆ℓ=0 + c[S⃗]2,0Σ[S⃗]g∆+2ℓ=0 , (B.1)

where we checked that the coefficients satisfy

c[S⃗]2,0/c
[S⃗]
0,0 ∼ −

RIII,1

∆− (d/2− 1)
, for ∆→ d/2− 1 . (B.2)

So, as above, for all these cases, supersymmetry implies that the block g̃[S⃗]d/2−1ℓ=0 is finite. For

the 16 cases belonging to [S⃗] ∈ P(1) the situation is easier because the superblocks reduces to
a single scalar block with dimension ∆ = d/2, which has no poles. For the remaining case in
P(2) the scalar superblock collapses to zero, so again no singularity is present.

∆= d + ℓ− 2
We now consider the case of the exchange of an PS superblock with spin ℓ and dimension

∆ = d + ℓ− 2. Again we can think of this as arising from the uplift of a d̂-dimensional block
with the same labels. As before in d̂ dimensions there are no poles for this exchange so the
same should happen also in d, even if this is not trivial since a single conformal block has a
pole at∆= d+ℓ−2. In this case the superblocks of all 26 components P(0) generically contain
five contributions of g∆ℓ, g∆ℓ−2, g∆+1ℓ−1, g∆+2ℓ, g∆+2ℓ−2, where g∆ℓ is the only one that has
pole at ∆= d + ℓ− 2. The combination

g̃[S⃗]d+ℓ−2ℓ ≡ lim
∆→d+ℓ−2

c[S⃗]0,0Σ[S⃗]g∆ℓ + c[S⃗]1,−1Σ[S⃗]g∆+1ℓ−1 , (B.3)

which is contained in the superblock is perfectly tuned to cancel the pole of formula (98),
indeed

c[S⃗]1,−1/c
[S⃗]
0,0 ∼ −

RII,1

∆− (d + ℓ− 2)
, for ∆→ d + ℓ− 2 , (B.4)

for all [S⃗] ∈ P(0). The rest of the c[S⃗]i, j and respective conformal blocks inside the superblock

are finite. It is also easy to see that all the blocks exchanged in the cases P(1) and P(2) are not
singular.
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∆= d + ℓ− 3
We now turn to the exchange of a superblock with spin ℓ and dimension ∆ = d + ℓ − 3,

which again arises from the uplift of a non-singular block in d̂ dimensions. Let us consider the
components in P(0) of the superblock. As for the previous case they contain generically five
contributions, where only g∆ℓ has a pole at ∆= d + ℓ− 3 with residue equal to RII,2 g∆+2ℓ−2.
In this case the combination

g̃[S⃗]d+ℓ−3ℓ ≡ lim
∆→d+ℓ−3

c[S⃗]0,0Σ[S⃗]g∆ℓ + c[S⃗]2,−2Σ[S⃗]g∆+2ℓ−2 , (B.5)

given by the superblock cancels the pole because of

c[S⃗]1,−1/c
[S⃗]
0,0 ∼ −

RII,2

∆− (d + ℓ− 3)
, for ∆→ d + ℓ− 3 , (B.6)

for all [S⃗] ∈ P(0). In this case also for the components in P(1) there are poles to consider which
are due to g∆+1ℓ and g∆ℓ−1, however in both cases the pole is cancelled because these blocks
appear in the combination

g̃[S⃗]d+ℓ−2 ℓ ≡ lim
∆→d+ℓ−3

c[S⃗]1,0Σ[S⃗]g∆+1 ℓ + c[S⃗]2,−1Σ[S⃗]g∆+2 ℓ−1 , (B.7)

˜̃g
[S⃗]
d+ℓ−3 ℓ−1 ≡ lim

∆→d+ℓ−3
c[S⃗]0,−1Σ[S⃗]g∆ ℓ−1 + c[S⃗]1,−2Σ[S⃗]g∆+1 ℓ−2 , (B.8)

where the coefficients satisfy

c[S⃗]2,−1/c
[S⃗]
1,0 ∼ −

RII,1

∆− (d + ℓ− 3)
, c[S⃗]1,−2/c

[S⃗]
0,−1 ∼ −

RII,1|ℓ→ℓ−1

∆− (d + ℓ− 3)
, for ∆→ d + ℓ− 3 . (B.9)

Finally the block in P(2) is not singular.
Now we turn to the uplift of blocks that are at the unitarity bound in d̂ dimensions. Because

of this, already in d̂ dimensions, they must satisfy some constraints in order to be exchanged
(as shown in (97) and (99)).

∆= d/2− 2

Let us start by a the exchange of a scalar block with ∆ = d
2 − 2, which corresponds to the

exchange of a free field in d̂ dimensions. The d̂-dimensional block must satisfy the condition
(97) with d → d̂. For simplicity we focus on the case

∆12,∆34 = ±
�

d
2
− 2
�

. (B.10)

Let us consider the components [S⃗] ∈ P(0) of the superblock. Because of ℓ = 0, they are
written as a liner combination of only two conformal blocks, namely g∆ℓ=0 and g∆+2ℓ=0 (see
e.g. (100)) where now in principle both blocks would diverge. However when we impose

(B.10) we find that the coefficients c[S⃗]2,0 always vanish, so the superblock collapses to a single
contribution

lim
∆→ d

2−2
c[S⃗]0,0Σ[S⃗]g∆ℓ=0 , (B.11)

where the remaining single block diverges as g∆ℓ=0 ∼
RIII,2

∆−( d
2−2)

g∆+4ℓ=0 for ∆ → d
2 − 2. For-

tunately we could show that this singularity is always avoided. Indeed after imposing (B.10)
one of the following two conditions happens, depending on the choice of [S⃗]:

• either Σ[S⃗]RIII,2 = 0 (e.g. for the lowest component) thus the superblock is non-singular,
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• or c[S⃗]0,0 = 0, thus the superblock vanishes.

In both cases the resulting superblock is non-singular. This resolves all singularities for the
components P(0). The situation for P(1) is similar: the superblock collapses to

lim
∆→ d

2−2
c[S⃗]1,0Σ[S⃗]g∆+1ℓ=0 , (B.12)

where g∆+1,ℓ=0 in principle has a pole at∆= d
2 −2. However this singularity is avoided either

because the respective residue Σ[S⃗]RIII,1 vanishes, or because the coefficient in front of the

block is zero c[S⃗]1,0 = 0 depending on the case [S⃗]. To conclude, for the component in P(2) the
scalar superblocks vanish.

∆= d + ℓ− 4

Finally we turn to the exchange of a conserved tensor in d̂ dimensions, namely an operator
of spin ℓ and dimension ∆ = d + ℓ − 4, where we have to impose (99) (with d → d̂). In
particular, for conserved currents, we should require a stronger version of (99), namely

∆12,∆34 = 0 . (B.13)

Let us start by analyzing the components [S⃗] ∈ P(0) of the superblock and check that the five
conformal block contributions are non-singular. First we find that two blocks never contribute

because, when (B.13) holds, c[S⃗]1,−1, c[S⃗]2,−2 = 0. Therefore the superblock collapses to

lim
∆→d+ℓ−4

c[S⃗]0,0Σ[S⃗]g∆ℓ + c[S⃗]0,−2Σ[S⃗]g∆ℓ−2 + c[S⃗]2,0Σ[S⃗]g∆+2ℓ . (B.14)

The three blocks naively have a pole at∆= d+ℓ−4, but we shall argue that these singularities
are always avoided. First it is useful to notice that for all [S⃗] ∈ P(0) the action Σ[S⃗] on (B.13)
is such that Σ[S⃗]∆12,Σ[S⃗]∆34 = 0,+2,−2. Keeping this in mind it is easy to see that the block
Σ[S⃗]g∆ℓ has no pole at ∆= d + ℓ− 4 because the residue Σ[S⃗]RII,n=3 vanishes. The fate of the
remaining two contributions depends on whether Σ[S⃗] acts trivially or not. When Σ[S⃗] = 1 the
blocks g∆+2ℓ and g∆ℓ−2 have no singularity at∆= d+ℓ−4 because the residue RII,n=1 at this
pole vanishes thanks to (B.13). Conversely for all [S⃗] such that Σ[S⃗] is non-trivial, we checked

that the coefficients c[S⃗]0,−2, c[S⃗]2,0 are always zero which implies that the associated blocks are not
exchanged (this is important since the residue Σ[S⃗]RII,1 at their pole ∆= d + ℓ−4 can now be
non-vanishing because of the shift).

Let us now consider the components in P(1) (which all satisfy Σ[S⃗]∆12,Σ[S⃗]∆34 = ±1).

First we checked that all c[S⃗]1,−2, c[S⃗]2,−1 vanish because of (B.13). This leaves us with a superblock

lim
∆→d+ℓ−4

c[S⃗]0,−1Σ[S⃗]g∆ℓ−1 + c[S⃗]1,0Σ[S⃗]g∆+1ℓ , (B.15)

which is finite. Indeed, while in principle the two blocks have a pole at ∆ = d + ℓ − 4, the
associated residue Σ[S⃗]RII,n=2 vanishes when Σ[S⃗]∆12,Σ[S⃗]∆34 = ±1. Finally in the case of
P(2) the block g∆+1ℓ−1 has a pole at ∆ = d + ℓ − 4 but the residue RII,n=1 vanishes because
of (B.13).

With this we finished the study of possible singularities of the Parisi-Sourlas uplift of all
d̂-dimensional blocks with ∆ above/at the unitarity bounds. We conclude that, because of
supersymmetry, the uplifted blocks are such that the singularities are always cancelled.
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Table 10: The first global primaries currents in the Virasoro multiplet of the identity.

n Holomorphic global primaries currents at level n

1 0

2 c1 L−2I

3 0

4 c1(L−4−
5
3 L2
−2)I

5 0

6 (c1 L−6+c2 L−4 L−2+
21c1−10c2

4 L2
−3+

5c2−14c1
3 L2

−2 L−2)I

7 0

8
�

c1 L−8+c2 L−6 L−2+c3 L−5 L−3+
−15c1+7c2+9c3

30 L4
−2+

9(5c1−7c2−9c3)
50 L2

−4+
60c1−63c2−56c3

20 L2
−3 L−2+

−15c1+21c2+17c3
5 L−4 L2

−2

�

I

9 c1(8L−9−6L−7 L−2+12L−6 L−3−8L−5 L2
−2−5L2

−3 L−3+12L−4 L−3 L−2)I

C Global multiplets inside Virasoro multiplets

In this appendix we study the global primaries inside Virasoro multiplets. Given a Virasoro
primary O we can build the possible states in the module as L̄ n̄k

−k · · · L̄
n̄1
−1 Lnk
−k · · · L

n1
−1O. Global

primaries are annihilated by L1 and L̄1, while descendants are created by applying L−1, L̄−1
on global primaries. In order to count the holomorphic global primaries we can take the
holomorphic Virasoro character χh(q) = qh

∏∞
k=1

1
1−qk and multiply it by (1− q), indeed 1

1−q
counts the descendants in a global multiplet. So the number of global primaries in a non-
singular Virasoro multiplet is encoded by χh(q)χh̄(q̄)(1− q)(1− q̄).

We are interested in the multiplets which appear in minimal models. These are by defi-
nition singular, and thus satisfy BPZ shortening conditions. Let us first focus on the identity
multiple which satisfies the condition LnI for all n≥ −1 (and similarly for the antiholomorphic
part). The possible states in the module are defined by L̄ n̄k

−k · · · L̄
n̄2
−2 Lnk
−k · · · L

n2
−2I, which can be

global primary or descendants. E.g. L−2I is a global primary, while L−3I = L−1 L−2I is a de-
scendant. Let us focus on just the holomorphic part of the multiplet, which is very important
since it only contains global conserved currents of spin ℓ =

∑

i ini = ∆, where ℓ also counts
the Virasoro level (see [48] for a related discussion). In table 10 we present the first few holo-
morphic global primaries in the identity multiplet. The constants ci in table 10 parametrize
the dimensionality of the space of such operators at each level. E.g. at level eight there are
three constants c1, c2, c3 and thus three possible independent primaries. It is easy to generate
a table of all such primaries at given level (e.g. with a simple code we could generate the 192
primaries at level 30), but this explicit computation quickly becomes too expensive since their
number grows very fast. In order to count the number p(I)n of such holomorphic primaries at
level n one can use the following character,

χI global(q) = (1− q)

�∞
∏

k=2

1
(1− qk)

− 1

�

+ 1=
∞
∑

n=0

p(I)n qn . (C.1)

This is built as the generating function of all states in the multiplet
∏∞

k=2
1

(1−qk) where the
multiplication by (1− q) removes all the global descendants. We subtract one and add one in
order to eliminate from the counting all the descendants of the identity since they vanish. It
is easy to see that p(I)n = pn−2 − 2pn−1 + pn + δn,1, where pn counts the number of partitions
of the integer n. One can easily table these numbers, as shown in table 11. Using the known
large n behaviour of the partition of integers, it is straightforward to find that asymptotically
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p(I)n grows as

p(I)n ∼
π2eπ
q

2
3 n

24
p

3n2
(n→∞) . (C.2)

This means that in the Virasoro multiplet of the identity there is an exponentially growing
number of higher spin currents of increasingly large spin (recall that ℓ= n). Using the global
conserved current it is possible to construct charges, which will satisfy an algebra inherited
from the Virasoro one. It is worth mentioning that there exists an infinite dimensional abelian
subalgebra which can be constructed by considering a special linear combination of these
currents for every even spin (see e.g. [48]). Finally in order to get all the global primaries
inside the Virasoro multiplet, one only needs to combine the holomorphic and antiholomorphic
modules (e.g. L̄−2 L−2I is a scalar global primary with∆= 4). The resulting operators however
are typically not holomorphic (antiholomorphic) and they do not define conserved currents.

A similar construction works for the multiplets of ε and σ. For these cases the shortening
conditions are L−2ε−

3
4 L2
−1ε= 0 and L−2σ−

4
3 L2
−1σ = 0 (and similarly for the antiholomorphic

part). One can generate again the global primaries in the multiplet by requiring this shortening
condition and that they are annihilated by L1 and L̄1. In table 12 we present the explicit form
of the first few operators. We further want to count their number using a character. In this
case the holomorphic character is

χO global(q) = qhO(1− q)
∞
∏

k=1

1− q2

1− qk
= qhO

∞
∑

n=0

p(O)n qn (O = σ,ε) . (C.3)

Since the shortening condition has the same structure the two characters are the same for ε and
σ, thus p(σ)n = p(ε)n . Using this formula one can also obtain p(σ)n = p(ε)n = pn−pn−1−pn−2+pn−3
in terms of the partitions of integers pn. For concreteness in table 13 we show the number of
primaries up to degree n = 30. Finally we can study the asymptotic behaviour of p(σ)n = p(ε)n
which reads,

p(σ)n = p(ε)n ∼
π2eπ
q

2
3 n

12
p

3n2
(n→∞) . (C.4)

As before one could combine holomorphic and antiholomorphic multiplets to generate all
possible global primaries.

C.1 Global conformal block decomposition of minimal model correlators

Let us perform the conformal block decomposition of the four-point functions of Virasoro pri-
maries (141) in the Ising model. We present in table 14 the decomposition of 〈εεεε〉, in table
15 the one of of 〈σσεε〉, in 16 the one of 〈σεεσ〉, and finally in 17 the one of 〈σσσσ〉. The
notation is as usual that fO1O2O3O4

=
∑

∆ℓ a∆ℓ g∆ℓ (where we suppress the dependence of the
external operators in a∆ℓ). It is important to notice that all the decompositions are compat-
ible with tables 11 and 13. In particular the latter predict when a coefficient a∆,ℓ is missing.
On the other hand the opposite is not true, meaning that there are more operators in tables
11 and 13 then the ones that are really exchanged in the OPE. This might be puzzling at first,
but it is ultimately due to the infinitely many symmetries that minimal models possess. Such
symmetries impose new selection rules which at first sight are not expected, e.g. they must

Table 11: Number of global primaries p(I)n at level n in the module of the identity.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
p(I)n 0 1 0 1 0 2 0 3 1 4 2 7 3 10 7 14 11 22 17 32 28 45 43 67 63 95 96 134 139 192
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Table 12: First holomorphic global primaries in the multiplets of O = σ,ε where
respectively h= 1

16 , 1
2 .

n Holomorphic global primaries in the multiplets of O = σ,ε at level n

1 0

2 0

3 c1

�

L−3−
2L−2 L−1

3h+1

�

O

4 c1(L−3 L−1−
2
5 (h−1)L−4−

2
3 L2
−2)O

5 c1(h2 L−5−3hL−4 L−1+(5h+2)L−3 L−2−2L2
−2 L−1)O

6

�

L2
−3(40c2−3(3h−1)(2c2h+7c1))

4(9h+5) +
(c2(2h+5)+7c1)(9L−3 L−2 L−1−4L2

−2 L−2)
3(9h+5) +c1 L−6+c2(L−5 L−1−2L−4 L−2)

�

O

Table 13: Number of global primaries p(σ)n = p(ε)n at level n in the multiplets of σ
and ε.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

p(σ)n 0 0 1 1 1 2 2 3 4 5 6 9 10 13 17 21 25 33 39 49 60 73 88 110 130 158 191 230 273 331

Table 14: Decomposition of εεεε: coefficients (in the identity multiplet) with
∆≤ 10.

(∆,ℓ) (0,0) (2,2) (4,0) (4,4) (6,2) (6,6) (8,0) (8,4) (8,8) (10,2) (10,6) (10,10)

a∆ℓ
1
2 4 1

2
8
5

2
5

32
63

1
200

8
63

64
429

1
315

16
429

512
12155

Table 15: Decomposition of σσεε: coefficients (in the identity multiplet) with
∆≤ 10.

(∆,ℓ) (0,0) (2,2) (4,0) (4,4) (6,2) (6,6) (8,0) (8,4) (8,8) (10,2) (10,6) (10,10)

a∆ℓ
1
2

1
2

1
128

3
40

3
1280

5
336

9
819200

5
10752

175
54912

1
229376

175
1757184

441
622336

Table 16: Decomposition of σεεσ: All coefficient with ∆≤ 10.

(∆,ℓ) (1/8,0) (25/8,3) (41/8,5) (49/8,0) (49/8,6) (57/8,7) (65/8,2) (65/8,8) (73/8,3) (73/8,9)

a∆ℓ
1
8

−4
51

−16
1045

1
5202

32
215865

−14400
4411463

4
53295

256
4373439

−8
11009115

−265984
366285997

ensure that the coefficient a∆,ℓ with (∆,ℓ) = (33/8, 4) in table 16 vanishes. We checked that
this is indeed true because the OPE coefficients is zero. This can be shown by using the precise
form of the level four global primary defined in table 12 and applying it to the three-point
function with σ and ε. Similarly there is an extra selection rule in the OPE of equal opera-
tors which forbids the exchanges of global primaries built with an odd holomorphic and/or
antiholomorphic level. So for example L−3 L̄−3ε is not exchanged in 17.
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Table 17: Decomposition of σσσσ. The table on the top contains even dimensions
exchanges which belong to the identity multiplet with ∆ ≤ 10. The table on the
bottom contains odd dimensions exchanges which belong to the ε multiplet with
∆≤ 11.

(∆,ℓ) (0,0) (2,2) (4,0) (4,4) (6,2) (6,6)

a∆ℓ
1
2

1
16

1
8192

9
2560

9
655360

25
57344

(∆,ℓ) (8,0) (8,4) (8,8) (10,2) (10,6) (10,10)

a∆ℓ
81

3355443200
25

14680064
15527

224919552
45

7516192768
15527

57579405312
251145

20392706048

(∆,ℓ) (1,0) (5,4) (7,6) (9,0) (9,8) (11,2) (11,10)

a∆ℓ
1
8

1
4096

1
20480

1
2147483648

1125
117440512

1
5368709120

227
117440512

Table 18: Decomposition of the component [14] of εεεε: Coefficients for exchanges
with ∆≤ 10.

(∆,ℓ) (2,2) (4,0) (4,4) (6,0) (6,2)

a∆ℓ 256 64 2048
5 −96 512

5

(∆,ℓ) (6,6) (8,0) (8,2) (8,4) (8,8)

a∆ℓ
2048

7
192
5

−640
7

512
7

65536
429

(∆,ℓ) (10,0) (10,2) (10,4) (10,6) (10,10)

a∆ℓ
−64

7
192
7

−1792
33

16384
429

163840
2431

D More conformal block decompositions in the uplifted Ising
model

As we explained, for each four-point function in d̂ = 2 there are 43 correlators in d = 4
which we can in principle decompose in conformal blocks. Let us consider e.g. the component
[14] of the correlation function of four E , which is defined in table 3. Its conformal block
decomposition reads

D[14] fεεεε =
∑

∆=2N≥0

∑

ℓ=0,2,...,∆

a∆ℓg
(d=4)
∆ℓ , (D.1)

where we computed all a∆ℓ for ∆ ≤ 10, which are shown in table 18. We notice that the
decomposition of the correlator 〈Ẽθθ̄E0E0Ẽθθ̄ 〉 is controlled by the OPE of Ẽθθ̄ with E0 which
are different primaries, but still the only exchanged operators have even spin ℓ because of the
specific supersymmetric relation between these two fields (for this it is also crucial that the
superdimension of E is equal to one). The decomposition (D.1) shares the same features of
the one of (142), in particular it contains the exchanges of the operators in the multiplet of the
supercurrents J of (144). However it is interesting to point out that the operators J µ1...µℓ

θθ̄
and

J µ1...µℓ−2θθ̄
0 (or better their primary counterparts) which have ∆ = ℓ+ 2 are not exchanged,

as we mentioned in the discussion below equation (B.14). This must happen because such
exchanges would give rise to a singularity in the conformal block which is due to the fact that
the variables ∆12,∆34 for the component [14] are shifted by two units and thus the condition
(99) is not satisfied.
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Table 19: Decomposition of the component [1] of εεεε: coefficients for exchanged
operators with ∆≤ 10.

(∆,ℓ) (2,2) (4,0) (4,4) (6,0) (6,2)

a∆ℓ −32 8 −128
5 −4 32

5

(∆,ℓ) (6,6) (8,0) (8,2) (8,4) (8,8)

a∆ℓ
−256

21
4
5

−16
7

64
21

−2048
429

(∆,ℓ) (10,0) (10,2) (10,4) (10,6) (10,10)

a∆ℓ
−4
35

8
21

−32
33

512
429

−4096
2431

Table 20: Decomposition of the component [134̄] of εεεε: All exchanged operators
with ∆≤ 10.

(∆,ℓ) (2,2) (4,0) (4,4) (6,0) (6,2)

a∆ℓ 64 16 256
5 −8 64

5

(∆,ℓ) (6,6) (8,0) (8,2) (8,4) (8,8)

a∆ℓ
512
21

8
5

−32
7

128
21

4096
429

(∆,ℓ) (10,0) (10,2) (10,4) (10,6) (10,10)

a∆ℓ
−8
35

16
21

−64
33

1024
429

8192
2431

Table 21: Decomposition of the component [1234] of εεεε: All exchanged operators
with ∆≤ 10.

(∆,ℓ) (2,2) (4,4) (6,0) (6,6) (8,0) (8,2) (8,8) (10,0) (10,2) (10,4) (10,10)

a∆ℓ 16384 1179648
5 −6144 3276800

7
110592

5
−163840

7
205520896

429
−147456

7
307200

7
−344064

11
849346560

2431

In table 19, 20 and 21 we present respectively the decompositions of the components [1],
[134̄] and [1234] of εεεε. We see that these share most of the features of the component
[14]. In the case of [1234] there are fewer coefficients because of the specific form of (A.15).

So far we only considered components in P(0), but it is worth showing a couple of examples
of components in P(1), where fermionic operators are being exchanged in the OPE. In table 22
and 23 we show respectively the decomposition of the component [14̄] and [123̄] of εεεε. A
first feature which we observe is that there are odd spin exchanges. This is generically expected
since we are taking the OPE of two different operators (even with different bosonic/fermionic
statistics). A more detailed property of these decompositions is the presence of new oper-
ator exchanges inside the supermultiplet of the supercurrents J a1...aℓ . In particular we see
superblock exchanges of the type (B.15) which are made of two finite contributions (because
∆12 = 0=∆34). The two finite exchanges correspond to the operators J µ1...µℓ−1θ

0 and J µ1...µℓ
θ

(or better their primary counterpart which we call J̃ µ1...µℓ−1θ
0 and J̃ µ1...µℓ

θ
) which have dimen-

sions ∆ = ℓ+ 1 spin respectively equal to ℓ− 1 and ℓ. These operators satisfy a generalized
conservation equation of the type ∂µ1

∂µ2
J̃ µ1...µℓ−1θ

0 = 0 and ∂µ1
∂µ2

J̃ µ1...µℓ
θ

= 0. From these
operators it is therefore possible to build conserved charges. In table 24 we provide the final
example of the decomposition of the component [13̄24̄] of εεεε. This belongs to P(2) and
thus all the exchanges are charge-two under Sp(2). First we notice that there are exchanges
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Table 22: Decomposition of the component [14̄] of εεεε: All exchanged operators
with ∆≤ 10.

(∆,ℓ) (2,1) (3,2) (4,3) (5,0) (5,4) (6,1) (6,5)

a∆ℓ 8 −8
3

32
5 −2 −96

35
4
5

64
21

(∆,ℓ) (7,0) (7,2) (7,6) (8,1) (8,3) (8,7) (9,0)

a∆ℓ
1
3

−8
7

−320
231

−8
105

32
63

512
429

−1
25

(∆,ℓ) (9,2) (9,4) (9,8) (10,1) (10,3) (10,5) (10,9)

a∆ℓ
4
27

−16
33

−3584
6435

2
315

−32
693

32
143

1024
2431

Table 23: Decomposition of the component [123̄] of εεεε: All exchanged operators
with ∆≤ 10.

(∆,ℓ) (2,1) (3,0) (3,2) (4,1) (4,3) (5,0) (5,2) (5,4) (6,1) (6,3)

a∆ℓ −32 16 128
3

−64
3

−512
5 −16 256

5
4224
35

112
5

−2112
35

(∆,ℓ) (6,5) (7,0) (7,2) (7,4) (7,6) (8,1) (8,3) (8,5) (8,7) (9,0)

a∆ℓ
−2816

21
16
3 −32 1408

21
2560
21

−464
105

2048
63

−1280
21

−4096
39

−28
25

(∆,ℓ) (9,2) (9,4) (9,6) (9,8) (10,1) (10,3) (10,5) (10,7) (10,9)

a∆ℓ
160
27

−1024
33

2048
39

530432
6435

40
63

−3392
693

3712
143

−265216
6435

−151552
2431

Table 24: Decomposition of the component [13̄24̄] of εεεε: All exchanged operators
with ∆≤ 10.

(∆,ℓ) (3,1) (5,3) (7,1) (7,5) (9,3) (9,7)

a∆,ℓ 16 192
5 8 640

21
64
9

7168
429

of novel components of the supercurrents, namely J µ1...µℓ−1θ

θ
, which satisfy∆= ℓ+2 and thus

have the quantum numbers of usual conserved currents in four dimensions. We also notice
that because of the form of (94), to each block in lower dimension we have at most one block
in higher dimension. Moreover (94) is such that all scalar exchanges are automatically pro-
jected to zero (and similarly ∆ = 1 exchanges). Because of these reasons the decomposition
is extremely sparse and contains even less terms than the original one in table 14. It is quite
interesting that the action of the differential operator (69) on a correlator provides a new
crossing covariant correlator where all scalar contributions are subtracted. It would be nice to
find a bootstrap application of this observation.
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[42] D. Mazáč and M. F. Paulos, The analytic functional bootstrap. Part I: 1D CFTs and 2D
S-matrices, J. High Energy Phys. 02, 162 (2019), doi:10.1007/JHEP02(2019)162.
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