Universality of closed nested paths in two-dimensional percolation
Yu-Feng Song, Jesper Lykke Jacobsen, Bernard Nienhuis, Andrea Sportiello, Youjin Deng
SciPost Phys. 18, 057 (2025) · published 18 February 2025
- doi: 10.21468/SciPostPhys.18.2.057
- Submissions/Reports
-
Abstract
Recent work on percolation in $d=2$ [J. Phys. A: Math. Theor. 55, 204002 (2015)] introduced an operator that gives a weight $k^{\ell}$ to configurations with $\ell$ 'nested paths' (NP), i.e.\ disjoint cycles surrounding the origin, if there exists a cluster that percolates to the boundary of a disc of radius $L$, and weight zero otherwise. It was found that $\mathbb{E}(k^{\ell}) \sim L^{-X_{NP}(k)}$, and a formula for $X_{NP}(k)$ was conjectured. Here we derive an exact result for $X_{NP}(k)$, valid for $k ≥ -1$, replacing the previous conjecture. We find that the probability distribution $\mathbb{P}_\ell (L)$ scales as $ L^{-1/4} (\ln L)^\ell [(1/\ell!) \Lambda^\ell]$ when $\ell ≥ 0$ and $L \gg 1$, with $\Lambda = 1/\sqrt{3} \pi$. Extensive simulations for various critical percolation models confirm our theoretical predictions and support the universality of the NP observables.
Authors / Affiliations: mappings to Contributors and Organizations
See all Organizations.- 1 2 Yu-Feng Song,
- 3 4 5 6 7 8 9 10 11 Jesper Lykke Jacobsen,
- 12 Bernard Nienhuis,
- 9 13 14 Andrea Sportiello,
- 1 2 Youjin Deng
- 1 中国科学技术大学 / University of Science and Technology of China [USTC]
- 2 闽江学院 / Minjiang University [MJU]
- 3 Sorbonne Université / Sorbonne University
- 4 Université Paris-Saclay / University of Paris-Saclay
- 5 École Normale Supérieure [ENS]
- 6 L'Institut de physique théorique [IPhT]
- 7 Université de Paris / University of Paris
- 8 Commissariat à l'énergie atomique / CEA Saclay [CEA Saclay]
- 9 Centre National de la Recherche Scientifique / French National Centre for Scientific Research [CNRS]
- 10 Laboratoire de Physique de l’École Normale Supérieure / Physics Laboratory of the École Normale Supérieure [LPENS]
- 11 Université de recherche Paris Sciences et Lettres / PSL Research University [PSL]
- 12 Instituut Lorentz / Lorentz Institute
- 13 Laboratoire d'Informatique de Paris-Nord / Laboratoire d'Informatique de Paris-Nord [LIPN]
- 14 Université Sorbonne Paris Nord / Sorbonne Paris North University