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Abstract

Recent work on percolation in d = 2 [J. Phys. A: Math. Theor. 55, 204002 (2015)]
introduced an operator that gives a weight kℓ to configurations with ℓ ‘nested paths’
(NP), i.e. disjoint cycles surrounding the origin, if there exists a cluster that percolates
to the boundary of a disc of radius L, and weight zero otherwise. It was found that
E(kℓ) ∼ L−XNP(k), and a formula for XNP(k) was conjectured. Here we derive an exact
result for XNP(k), valid for k ≥ −1, replacing the previous conjecture. We find that the
probability distribution Pℓ(L) scales as L−1/4(ln L)ℓ[(1/ℓ!)Λℓ]when ℓ ≥ 0 and L≫ 1, with
Λ = 1/

p
3π. Extensive simulations for various critical percolation models confirm our

theoretical predictions and support the universality of the NP observables.
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1 Introduction

After more than 60 years of intensive study since 1957, percolation [1–5] still remains a central
and active research topic in statistical mechanics and probability theory [6–8]. It is a proto-
typical and perhaps the simplest example of collective behavior. For bond percolation, each
lattice edge or bond is independently occupied with probability p, or left vacant (empty). Two
sites are said to be connected if there is a path of occupied bonds from one site to the other, in
which each pair of subsequent bonds is adjacent to a common site. A cluster is a maximal set
of sites connected to each other, and accordingly the set of all lattice sites can be decomposed
into clusters (including clusters of just one isolated site). For site percolation, each lattice site
is independently occupied with probability p, or left vacant, and any pair of neighboring oc-
cupied sites is said to be connected. A cluster is then a maximal set of mutually connected
occupied sites, and the set of occupied sites is partitioned into clusters.

Clusters are small for small p, but letting p tend to the percolation threshold pc > 0 from
below, p ↑ pc, causes the emergence of a so-called giant cluster at p > pc, namely a cluster
that occupies a finite fraction of the lattice sites, in the thermodynamic limit. The percolation
transition is one of the simplest examples of a continuous phase transition [9,10] and provides
a vivid illustration of many important concepts of critical phenomena [11]. In the sub-critical
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phase (p < pc) the correlation length ξ, a scale proportional to the diameter of the largest
(finite) cluster, diverges as ξ∼ (pc−p)−ν when p ↑ pc, with ν the correlation-length exponent.
In the super-critical phase (p > pc), the probability m that a randomly chosen site is in the
giant cluster vanishes as m ∼ (p − pc)β when p ↓ pc. In many textbooks, it is claimed that
ν and β are essentially the only two basic independent exponents, from which other critical
exponents can be obtained via (hyper-)scaling relations.

Exact calculations of ν and β are available for the Bethe lattice (or Cayley tree), and for the
complete graph, both of which can be considered as the limit of infinite spatial dimension [2].
Furthermore, these mean-field results, ν = 3/d and β = 1, are believed to hold already for
any dimension d ≥ du above the upper critical dimension, du = 6 [12,13]. In two dimensions
(2D), exact values, ν = 4/3 and β = 5/36, were predicted by the Coulomb-gas (CG) method
[14], conformal field theory [15] and stochastic Loewner evolution (SLE) techniques [16],
and crowned by a rigorous proof for triangular-lattice site percolation [17]. For 2 < d < du,
estimates of ν and β are available from numerical simulations and perturbative methods.

1.1 General considerations

Fractal structures . At the percolation threshold pc, clusters are scale-invariant, with fractal
dimension dF = d − β/ν. To further characterize geometric structures of critical percolation
clusters, one considers also the fractal dimensions of geometrical objects other than the giant
cluster itself, for instance the set of red (or pivotal) bonds, backbones, shortest paths, hulls and
external perimeters [2,18]. The red-bond dimension is dR = 1/ν, whereas the other exponents
are considered to be independent of ν and β , at odds with the over-simplified textbook scenario
mentioned above. In 2D some exact results are known, including dF = 91/48 for clusters,
dH = 7/4 for hulls and dE = 4/3 for external perimeters [2,20]. Very recently the value of dB

for backbones was determined [21] using SLE and turns out to be transcendental. But despite
many efforts, the exact value of dS for shortest paths is still unknown. For d ≥ 6, one has
dF = 2d/3 and dB = dS = dR = d/3 [12, 13]. For 2 < d < 6, only numerical estimates are
available.

Correlation functions . It is also well known that, at pc, a variety of connectivity probabilities
between two far-away regions decay algebraically with distance r as r−2X , where X is called
the scaling dimension [2,18]. Alternatively, one can consider a domain with the topology of a
disc. The corresponding one-point function, giving the probability that the chosen connectivity
exists between the center of the disc and its boundary, then decays with the disc radius r as
r−X . The property ‘connecting the center of a disc to its boundary’ we will henceforth indicate
with the word radial. The typical example of such connectivity observables concerns the so-
called magnetic operator, which gives the probability that the two different regions belong to
the same cluster. The corresponding exponent is X = XF = d − dF determining the fractal
dimension dF of the percolating cluster. In two dimensions XF = 5/48. In the following we
discuss a number of generalizations of the magnetic operator, culminating with the nested-path
operator which is the focus of this work.

Duality . In 2D, dual or empty clusters and paths can be related to the corresponding con-
struction for empty elements by duality [20]. When the distinction between dual clusters and
the original clusters needs to be emphasized, we shall call the original clusters ‘primal’. For
bond percolation, clusters for empty elements consist of bonds on the dual lattice, where a
dual bond is occupied iff the intersecting original bond is empty, and vice versa. For site per-
colation, dual or ‘empty’ clusters consist of connected empty sites on the matching lattice. For
the definition of dual and matching lattices, see Refs. [3,5]. In 2D at pc both direct clusters and
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dual clusters are fractal. For self-dual and self-matching lattices (for bond– and site percolation
respectively), the clusters and dual clusters have the same properties, so that the boundaries
between them are symmetric. It follows that pc = 1/2 for such lattices.

1.2 Operators and exponents

Monochromatic N-arm operator . A direct generalization of the magnetic operator is the
family of monochromatic N -arm (MA) operators, defined for integer N ≥ 1. The two-point
function of the MA operator is defined as the probability that two distant small regions are
connected by at least N independent paths in the same cluster. Two paths are called inde-
pendent if they do not share a common occupied bond (site) for bond (site) percolation, and
do not cross [22, 23]. The one-point function of this observable is the probability that the
cluster that contains the center of a disc with radius r contains N independent radial paths.
The corresponding exponent is denoted as XMA(N), and, for N = 1, it reduces to the magnetic
exponent. The N = 2 case is called the backbone exponent XMA(2) = d − dB, of which the
exact value remained a challenge until very recently. Nolin et al. [21] successfully determined
the value of XMA(2) as the root of a transcendental equation, with a value in good agreement
with the best numerical estimates [19, 25]. This striking result provides an example that the
2D critical exponents do not necessarily take fractional values. Exact values of XMA(N) are still
unavailable for N ≥ 3.

Polychromatic N-arm operator . Besides the monochromatic N -arm operator, also the poly-
chromatic N -arm (PA) operator is an object of study. The corresponding exponent XPA(N) gov-
erns the probability that two patches are connected by N paths of which some are on primal
clusters, and others are on dual clusters. Remarkably, XPA(N) is equal to the ‘watermelon’ ex-
ponent, XWM(N), to be introduced next. This equality was first argued succinctly in Ref. [20].
Below, in Sec. 2.2, we present a more detailed version of the argument.

Watermelon operator . The N -arm watermelon exponent [26, 27] governs the probability
that two distant patches are connected by N cluster boundaries (the two-point function) or
that there are N radial cluster boundaries (the one-point function). Its value is known to be

XWM(N) =
N2

12
−

1
12

. (1)

For N = 2, the two-point function gives the probability that two points sit on the hull of the
same cluster, so that XWM(2) = d−dH = 1/4. An observer passing around the insertion point of
an N -arm watermelon operator once, crosses N cluster boudaries. Thus, for odd N the cluster
he started in must have switched from empty to occupied or vice versa. Thus the operator
requires anti-cyclic conditions (empty↔ occupied) under a full rotation around its insertion
point. This is analoguous to the well-known disorder operator of the Ising model. A more
detailed description will be given in Sec. 2.2.

For even N , Eq. (1) governs the decay of the probability that two distant regions are con-
nected by N/2 distinct clusters, in which each cluster corresponds to two boundaries. In other
words, the N -cluster correlation functions in 2D have the scaling dimension X = N2/3−1/12.
Further, a refined family of N -cluster correlations can be constructed according to the require-
ments of logarithmical conformal field theory and the relevant symmetric group, and such a
construction is valid both in 2D and higher dimensions [24, 28–31]. In 2D, the exact values
of these N -cluster exponents can be inferred from the branching rules of the symmetric group
down to the cyclic group and from exact CFT results [24].
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Nested-loop operator . There exists another family of operators based on cluster bound-
aries, called nested-loop (NL) operator [32,33]. To describe it we again consider the one-point
function on a domain with the topology of a disc, of linear size (diameter) L. For each config-
uration, let ℓ denote the number of cluster boundaries surrounding the center of the domain.
The NL operator assigns a statistical weight, k ∈ R, to each of these boundaries. Then the
one-point correlator, WNL(k) ≡ 〈kℓ〉, is parametrized by k. This correlator WNL(k) varies with
L as L−XNL(k) at criticality. By CG and CFT methods, the exponent XNL is found to be

XNL(k) =
3
4
φ2 −

1
12

, k = 2cos(πφ)≥ −2 . (2)

For −2 ≤ k ≤ 2, φ is real, while for k > 2 it is purely imaginary. The name ‘nested loop’
refers to the fact that the relevant cluster boundaries are closed and must be nested, as they
do not cross each other. Some special cases are the following. For (k,φ) = (1, 1/3), the
weights of the configurations are unaffected by the insertion of the NL operator, implying
WNL(1) = 1, and XNL(1) = 0. For (k,φ) = (0, 1/2), WNL(k) corresponds to the probability that
ℓ = 0. When ℓ = 0 the cluster containing the center is connected to the boundary. Thus,
XNL(0) = XF = 5/48, the magnetic scaling dimension.

Nested-path operator . In a recent article [34], we introduced what we call the nested-path
(NP) operator, whose definition draws on several of the developments outlined above. It is the
main object of study also in this article. The watermelon (WM) operator and the nested-loop
(NL) operator are both defined in terms of cluster boundaries, emanating from the insertion
point or surrounding it, respectively. One can consider paths over clusters in the same two
topologies. While the monochromatic N -arm operator (MA) measures the probability that N
paths emanate from an insertion point, it is naturally complemented with an operator that
weights the monochromatic closed paths nesting around the insertion point. Like the N -arm
operator, we may distinguish two varieties: a monochromatic case where all paths are on the
primal cluster, and a polychromatic one with some paths on primal and some on dual clusters.
Where the distinction is important we will refer to the monochromatic nested-path (MNP)
operator and the polychromatic nested-path (PNP) operator, while the label NP is used for
both.

We define the NP operators as follows. Let ℓ be the maximum number of independent
nested closed paths surrounding the center that can be drawn on primal and dual clusters.
Further, let R be the indicator function that there exists a radial cluster. We then define the
continuous families of NP correlators as WMNP(k) ≡ 〈R · kℓ〉, and WPNP(k) ≡ 〈kℓ〉. This assigns
in both cases a statistical weight k ∈ R to each independent closed path (analogously to the NL
operator), while for the MNP operator only the configurations with R = 1 contribute. Notice
that the factor R ensures that all the surrounding paths (if any) are contained in the same
percolating cluster, and if ℓ > 0 the percolating cluster must be unique. This guarantees that
the nested paths measured by WMNP(k) are monochromatic. The one-point functions WMNP(k)
and WPNP(k) vary with domain diameter L as L−XMNP(k) and L−XPNP(k) respectively, thus defining
the exponents XMNP and XPNP.

For two special values of k, the NP correlators can be readily inferred. First, WMNP(1)
reduces to the percolating probability 〈R〉, which is known to decay as L−XF . This implies
XMNP(1) = XF = 5/48. More trivially, WPNP(1) = 1 implies XPNP(1) = 0. Second, the con-
figurations contributing to WMNP(0) have a primal radial path, because of the factor R, and
since they have no primal path surrounding the center, they must also have a dual radial
path. Likewise since the configurations contributing to WPNP(0) have neither a primal path
nor a dual path surrounding the center, they must have both a dual and a primal radial
path. This implies the existence of two radial cluster boundaries. The dominant contribu-
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tions to WPNP(0) and WMNP(0) are thus those of the N = 2 path watermelon operator, imply-
ing XPNP(0) = XMNP(0) = XWM(2) = 1/4. Furthermore, in Ref. [34] we proved the identity
WMNP(2) = 1 for site percolation on regular or irregular planar triangulation graphs of any size
L, and for any shape and position of the center. By universality we infer XMNP(2) = 0 for site
or bond percolation on any 2D lattice.

In [34] we only considered the monochromatic nested paths, so the label NP in that pa-
per corresponds to MNP here. There we conjectured an analytical formula for XMNP(k), as a
function of k, on the basis of numerical results. Under the parametrization k = 2cos(πφ),
this conjecture reads XMNP(k) = (3/4)φ2 − (5/48)φ2/(φ2 − 2/3). It reproduces the known
exact results for k = 0, 1,2 and agrees very well with numerical estimates of XMNP(k) for other
values of k. Unfortunately, this formula turns out to be incorrect. Below in Sec. 2.3, we shall
provide a rigorous argument which relates the one-point functions WMNP(k) and WPNP(k) to
the one-point NL function WNL(k′) where the weight of the loop k′ has a simple relation to the
weight k of the nested paths. In view of Eq. (2) this leads to the explicit expression for the
MNPs:

XMNP(k) =
3
4
φ2 −

1
12

, k = 1+ 2 cos(πφ) . (3)

For the polychromatic case the expression in terms of φ is the same, but its relation to the NP
weight is different:

XPNP(k) =
3
4
φ2 −

1
12

, k =
1
2
+ cos(πφ) . (4)

Obviously, these expressions reproduce the known exact results mentioned above.

1.3 Outline and overview

The main purpose of this work is two-fold: to derive theoretically the correct analytical for-
mulae (3) and (4) for the NP exponents, and to examine their universality. To this end we
perform extensive Monte Carlo (MC) simulations for a number of critical percolation models,
including one bond- and five site-percolation systems, and study an extended set of quantities.
The universality of the power-law scaling for the one-point MNP function is well demonstrated
and the estimates of the MNP exponent agree well with the derived formulae.

In addition, we study the probability distribution Pℓ(L) that the cluster percolates from the
center site to the boundary (R= 1) and supports ℓ nested paths. Since the analysis of Pℓ(L) as
well as the MC study concerns only the monochromatic nested paths, we omit in the relevant
sections the corresponding label MNP, and replace WMNP(k) by Wk, or with explicit dependence
on the system size, Wk(L). Likewise XMNP will be simply denoted by X . For ℓ= 0, notice that,
by definition, P0 ≡WMNP(0)∼ L−1/4. For each ℓ≥ 1, on the basis of formula (3) we show that
the leading scaling behavior of Pℓ(L) is L−1/4(ln L)ℓ[(1/ℓ!)Λℓ], with Λ = 1/

p
3π. We then

consider the average number of nested paths conditioned by the existence of a percolating
cluster, N ≡ 〈ℓ·R〉/〈R〉. It is shown that, as L increases, this conditional path number diverges
logarithmically as N ≃ κ ln L, with κ = 3/8π. The theoretical predictions for Pℓ and N are
well confirmed by our high-precision MC results.

The remainder of this work is organized as follows. Section 2 demonstrates relations be-
tween the polychromatic N -arm and the watermelon exponent and between the NP operator
and the NL operator. Section 3 describes the models, the algorithm and the sampled quantities
from which we estimate the exponents. Section 4 presents the MC results for the one-point
function of the NP operator, WMNP(k), and the determination of its exponent XMNP(k). Sec-
tion 5 derives the universal scaling of the probability distribution of the MNP number, Pℓ, on
the basis of the scaling behavior of its generating function WMNP(k), and then presents the MC
results confirming these predictions. A brief discussion of our results is given in Sec. 6.
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(M1) (M2)

Sq6 Sq6 Sq Sq8

Figure 1: Two matching pairs constructed from the square lattice. For the left two
figures (M1), half of the elementary faces are chosen, and diagonals are added either
to faces in the chosen set (left) or to those in its complement (right). The generated
pair of matching lattices are isomorphic and are denoted Sq6. For the right two figures
(M2), none of the squared faces is chosen, and the matching pair corresponds to the
original square lattice (Sq) and a square lattice with both nearest- and next-nearest
neighboring interactions (Sq8).

2 Exponent relations

In this section we shall demonstrate that XPA(N) = XWM(N), the equality between the poly-
chromatic N -arm exponent and the N -arm watermelon exponent. We will also relate the NP
exponents to the NL exponents. Both arguments make use of a crucial property of site perco-
lation on self-matching lattices: at the percolation threshold pc = 1/2, occupied and empty
sites play symmetric roles, and the color-inversion operation (occupied↔ empty) changes a
critical configuration into another critical one.

2.1 Matching lattices

The concept of matching lattices plays an important role in percolation theory [3,5]. It is also
an essential ingredient in the study of the NP operators: in the calculation of their exponents,
in the proof [34] of the identity WMNP(2) = 1 for planar triangulation graphs of any size and
shape, and in the algorithm for evaluating the nested-path number ℓ.

We now briefly recall how to construct a pair of matching lattices. Given a planar graph
L0, one selects an arbitrary set of elementary faces, and then generates a pair of graphs by
adding any missing diagonal edges to each face in the chosen set (respectively to each face
in the complementary set). In other (more graph theoretical) words, we replace each chosen
face by the corresponding clique. The generated pair of graphs, denoted L and L∗, has the
same vertex set as the original one L0, and are called a matching pair.

It can be shown [5] that the site percolation thresholds for a matching pair of (regular and
infinite) lattices satisfy pc+p∗c = 1. In particular, if the pair of matching graphs are isomorphic,
L ∼= L∗ the site-percolation threshold is pc = 1/2. A lattice for which all faces are triangles
already has all diagonals, so that L = L∗ for any choice of faces: such a lattice is called self-
matching. Any planar triangulation graph, such as the triangular or the Union-Jack lattice, is
self-matching and thus has pc = 1/2.

Figure 1 shows two pairs of matching lattices constructed from the square lattice. In the
right two figures, none of the elementary faces is chosen, and the matching pair consists of the
original square lattice (Sq) and the square lattice with additional next-nearest neighbor inter-
actions (Sq8). Thus, the respective site-percolation thresholds satisfy pc(SSq) + pc(SSq8) = 1.
In the left two figures, the chosen set contains half of the square faces (shown in pink) in
a checkerboard fashion, and the generated matching pair of lattices both have coordination
number z = 6 and are isomorphic (they differ only by a rotation); we denote them as Sq6.
Moreover, by the bond-to-site transformation (defined in Fig. 2), it can be shown that site
percolation SSq6 is equivalent to bond percolation on the square lattice (BSq).
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Figure 2: Illustration of the bond-to-site transformation. Each edge in the bond-
percolation problem is transformed into a vertex (blue dot) in the site-percolation
problem, and two sites are taken to be neighboring if the corresponding bonds are
adjacent. This example maps bond percolation on the self-dual lattice (BSq) onto
site percolation on the self-matching lattice (Sq6).

The construction of matching lattices for finite graphs is analogous to that for infinite
graphs, except that special treatment is needed at boundaries. But the boundary effect is
expected to play a vanishing role for percolation thresholds and bulk properties of systems.

2.2 Polychromatic N-arm exponent

Consider the configurations contributing to the one-point function of the polychromatic N -
arm operator placed in the center of a domain. These configurations by definition support
N radial paths. At least one of these paths is on a primal cluster, and at least one path is
on a dual cluster. If the arms strictly alternate between primal and dual clusters, it is clear
that each pair of adjacent arms is separated by a radial cluster boundary. In this case also N
cluster boundaries connect the center to the rim. Conversely, the existence of N radial cluster
boundaries implies the existence of (at least) N radial paths between them. When the disc
is large enough, we may neglect the probability of having more than N paths, because the
exponents XWM(N) form a strictly monotonic sequence (i.e., the probability of having more
paths decays algebraically faster). As a consequence, for the case in which the polychromatic
arms alternate in color, XPA(N) = XWM(N). Although it is conceivable, in principle, that the
exponent XPA(N) depends on the precise (cyclic) sequence of primal and dual arms, we will
argue below that the exponent XPA(N) = XWM(N) irrespective of this sequence, by elaborating
on the ideas of [20].

We start by introducing a construction to allow for the N -arm WM operator with odd N ,
where primal and dual clusters exchange roles for an observer passing around the insertion
point. Thus for the WM operator inserted in the center of a domain, we must include the
possibility of anticyclic symmetry. We note that this is only possible in a self-matching lattice
model. We allow anticyclic symmetry by introducing a radial chain of sites which from one
side of the chain are seen as primal, and from the other as dual or vice versa. We call such
chain an inversion chain. It is illustrated in Fig. 3b, where the three cluster boundaries are
shown in bold white. An inversion chain can be moved around (while keeping its end points
fixed) without affecting the position of the cluster boundaries. Therefore two radial inversion
chains can be moved to coincide, thus annihilating each other. Moreover we do not consider
the locus of the inversion chain as being defined by the configuration.

Let us now consider a configuration contributing to the polychromatic N -arm one-point
function in a self-matching lattice model for site percolation, with the operator inserted in the
center of a domain with the topology of a disc. There must be at least one radial cluster bound-
ary separating a primal path and a dual path. An example is shown in Fig. 3a, contributing to
the one-point function of the polychromatic (N=4)-arm operator, as it has four radial paths
from the center to the rim, three red (primal) and one green (dual), and two radial cluster
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a b c

Figure 3: Configurations contributing to the one-point function of the polychromatic
4-arm operator. A bijective transformation described in the text, a↔b and b↔c,
adds or removes a radial cluster boundary, here indicated in bold white.

boundaries. We choose a radial cluster boundary, in the example, the one ending on the right-
most side of the hexagonal domain. From this cluster boundary in the positive (anti-clockwise)
direction, we consider the adjacent path, primal or dual. Unlike a cluster boundary, a path is
not uniquely defined by the configuration. We choose the closest path, i.e. the path as close as
possible to the cluster boundary: all its elements touch the cluster boundary. Then, we switch,
from occupied to unoccupied or vice versa, all the elements that lie in the positive direction
from this path (not including the path itself) until an inversion chain that is either created or
annihilated in this flipping operation. In the transformation shown in Fig. 3 a→b, an inversion
chain is created running straight from the center to the lower-left corner of the domain. It is
immaterial where the inversion chain is positioned. In the case that an inversion chain already
exists and intersects the closest path, it may first be moved to a position without such overlap
to avoid ambiguity.

If the second path in the positive direction from the chosen domain wall has the same color
as the first path, a new radial domain wall is created by this flipping operation. If they are
different, a domain wall disappears between the two paths. Examples of these two cases are
the transformations in Fig. 3 from a to b and from b to c respectively. Note that the flipping op-
eration by its definition is bijective, since the defining objects: a given radial cluster boundary,
and its closest radial path in the positive direction remain unchanged in the operation.

By this flipping operation, any configuration contributing to the one-point function of the
N -arm PA operator with the coloring of the arms in some arbitrary order, can be turned bijec-
tively into a configuration of the corresponding one-point function with primal and dual arms
strictly alternating. As a consequence XPA(N) = XWM(N) irrespective of the order in which the
primal and dual paths follow each other around the PA operator, provided there is at least one
radial cluster boundary. We note that this argument was presumably implicit in Ref. [20], but
the details were only sketched very briefly there.

2.3 Nested-path exponent

We next show how to calculate the NP exponents by rigorousy relating the one-point func-
tions of the NP operators to the one-point function of the NL operator. A so-called color-
inverting technique, similar to the one used above in the argument for establishing the identity
XPA(N) = XWM(N), is applied to site percolation on a self-matching lattice. By universality we
assume the result to be true also for bond percolation, and for other regular 2D lattices.

We take a domain with a fixed boundary condition, i.e. the sites on the boundary of the
domain are all occupied (or all unoccupied). We note however, that the boundary condition
only affects WNL, not the WNP themselves. The fixed boundary condition ensures that all cluster
boundaries are closed loops.
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Figure 4: Examples of a set of site configurations on the triangular lattice with ℓ= 2
nested closed paths. The central site is neutral (white), the occupied (empty) sites
are represented as red (green) sites, and the sites on the fixed boundary are marked
gray. The map P1, associated with the first NP, leads to (a)↔ (b) and (c)↔ (d),
while P2 leads to (a) ↔ (c) and (b) ↔ (d). For a given statistical weight k, all
the four configurations contribute to the one-point NL function WNL(k), with a total
amount 1+k+k+k2 = (k+1)2. By comparison, only (a) contributes to the one-point
NP function WNP(k) with an amount k2.

All percolation configurations contribute to WNL(k), with a weight k for each nested loop.
We first focus on the complete set of nested paths, not necessarily all of the same color. We
make the NPs unique by choosing each one closest to the interior NP, starting with the inner-
most NP closest to the center; the exact algorithm for doing so is provided in Ref. [34] and
discussed further in Sec. 3. We introduce the transformations Pj , that flip all the sites of the
j-th path (counted from the center) and all the sites interior to it. Thus a configuration with
ℓ polychromatic NPs, is a member of a set of 2ℓ configurations, generated by (all subsets of)
the Pj acting on it. An example is given in Fig. 4, where there is a total number of 2ℓ = 4
configurations (ℓ = 2). The ensemble of all configurations is the disjoint union of these sets.
Whenever two consecutive NPs or the outermost NP and the boundary are colored differently
they are separated by an NL. This mechanism accounts for all possible NLs. The total contri-
bution of the set of configurations to WNL(k) is (k + 1)ℓ as each Pj increases or decreases the
number of NLs by one. Of the set of configurations only one contributes to WMNP(k), namely
the one in which each of the nested paths is occupied. By setting the weight of the MNPs to
(k+ 1), the two one-point operators are equal, WMNP(k+ 1) =WNL(k), or for the exponents

XMNP(k) = XNL(k− 1) . (5)

To the one-point function of the PNP operator, WPNP, all 2ℓ configurations contribute equally,
as they are all equiprobable and have ℓ PNPs. The total contribution thus agrees with that of
WNL if the PNPs have weight (k+ 1)/2, leading to the exponent relation

XPNP(k) = XNL(2k− 1) . (6)

In view of the expression for XNL (2), this leads to the expressions (3) and (4) respectively.
This simple relation is also valid for a domain with a free boundary condition, with a center

which itself is occupied. In this case the same argument holds, with an alternative definition
of the Pj: flipping the j-th NP and all the sites exterior of it.

3 Model, algorithm and sampled quantities

Apart from bond percolation on the square lattice (BSq), we also consider site percolation on
the triangular lattice (STr), and on four other lattices, which are the Union-Jack (UJ) lattice
with the center site respectively on each of the two sublattices (SUJ4 and SUJ8), and the square
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Figure 5: Union Jack lattice with the center site (denoted by the red star) on different
sublattices (UJ4 and UJ8). The coordination number of the center site is 4 for the left
and 8 for the right.

lattice with only nearest- (SSq) and with both nearest- and next-nearest neighbor interactions
(SSq8), respectively. The subscript of SUJ specifies the coordination number z for the sublattice
with the center site, as illustrated in Fig. 5. In the thermodynamic limit (L →∞), SSq and
SSq8 are matching to each other, and all the others are self-matching (see Sec. 2.1).

Since only the MNP operator will be considered from now on, we avoid heavy notation
using the symbols Wk or Wk(L) for the MNP correlator and X for the MNP exponent, instead
of WMNP(k) and XMNP. Also the label NP will typically refer to monochromatic nested paths,
unless explicitly specified otherwise.

3.1 Algorithm

In this work, percolation is studied on a domain with the topology of a disc, with free boundary
conditions. The domain shape is chosen to be hexagonal for the triangular lattice and square
for the others. The scale L is the length of the corner-to-corner diagonal for the former, and the
side length for the latter. Figure 4(a) shows an example configuration for STr with L = 9. The
central site is neutral and the other sites are occupied with the critical probability pc = 1/2.

Meanwhile, we consider only the central cluster that contains the central site or bond, and
use R = 1 to specify the percolating event that the central cluster reaches the boundary, and
otherwise we set R = 0. For the R = 1 case, we calculate the maximum number ℓ of inde-
pendent closed paths in the central cluster that surrounds the center. We stress that, while the
number ℓ of nested paths is well defined, their locations might not be unique. Thus, the method
used to evaluate ℓ need not specify the location of the paths uniquely, but it must guarantee
that it is not possible to find a larger number of nested paths in the given configuration.

By carefully examining Fig. 4(a) for the triangular-lattice site percolation, we observe that
a unique innermost nested path can be identified. By growing the matching cluster of empty
sites starting from the center and terminating when the cluster cannot be grown any further,
one obtains the first nested path as the outer boundary of the matching cluster. Similarly, the
second nested path can be regarded as the outer boundary of the matching clusters which are
linked together by the first nested path. In other words, by growing the matching clusters from
the first closed path, one can locate the second nested path as the chain of occupied sites that
stops the matching-cluster growth. The procedure is repeated until the growth of matching
clusters reaches the open boundary of the domain. By this method, we obtain a specific and
complete set of independent nested paths, and in particular the number ℓ of nested paths.

The procedure works for site percolation on any self-matching lattice L = L∗. For a non-
self-matching lattice L, the matching clusters of empty sites must be defined on the corre-
sponding matching lattice L∗. For instance, to evaluate ℓ for SSq, matching clusters are grown
on SSq8, and vice versa. The procedure is similar for bond percolation, where the nested path
is now defined as the chain of occupied bonds that stops the growth of dual clusters that live
on the dual lattice.
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Figure 6: Log-log plot of one-point MNP correlator Wk versus linear size L, for (a)
STr, (b) SUJ4, (c) SUJ8, (d) SSq, (e) SSq8 and (f) BSq. The lines represent fits to
Eq. (7) and strongly indicate the algebraic dependence of Wk on L. Moreover, the
striking similarity exhibited by the six models clearly supports the universality of Wk.

3.2 Sampled quantities

For each configuration at criticality, we record the percolation indicator R and, if R = 1,
evaluate the MNP number ℓ. On this basis, we calculate and study:

1. The probability distribution Pℓ(L) of having ℓ closed, monochromatic nested paths in the
percolating cluster (R= 1), each surrounding the center. By definition,

∑

ℓ≥0 Pℓ = 〈R〉.

2. The one-point MNP correlator Wk ≡ 〈R · kℓ〉 ≡
∑

ℓ=0 kℓ Pℓ, where the NP fugacity k ∈ R
(by convention, 00 = 1 for k = 0). Notice that, once the Pℓ have been computed in the
simulations, the Wk for any k can be readily calculated afterwards. At criticality, it has
been observed for STr and BSq [34] that Wk depends on L as L−XMNP .

3. The conditional NP number N ≡ 〈R · ℓ〉/〈R〉. This is the average number of independent
nested paths conditioned by the existence of a percolating cluster.

4. The probability ratio Γℓ = (ℓ!Pℓ/P0)1/ℓ for ℓ≥ 1.

4 Numerical results for the one-point function

Simulations were carried out at the percolation threshold, which is pc = 1/2 for BSq, STr, SUJ4
and SUJ8. For SSq, albeit the exact value of pc is still unknown, it has been determined with a
high precision as pc = 0.592746 050792 10(2) [35–37]; for SSq8, the self-matching argument
gives pc(SSq8) = 1− pc(SSq). The linear system size L was taken in the range 3 ≤ L ≤ 8189.
For each system, and for each L, the number of samples is at least 5×109 for L ≤ 100, 2×108

for 100< L ≤ 1000, 2× 107 for 100< L ≤ 4000, and 5× 106 for L > 4000.

4.1 Scaling and universality of Wk

For the one-point NP correlation functions Wk(L), Fig. 6 displays the MC data versus the linear
size L for all the six percolation models considered in this work. For k < 0, the contributions
to Wk from even and odd values of ℓ partly compensate, and thus the relative error margin
becomes larger as k decreases. As a consequence, for large negative k it is difficult to obtain
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Figure 7: Log-log plot of W0 (top) and W1 (bottom) versus rescaled size L∗ = aL,
where a is a model-dependent constant (we fix a = 1 for STr). By fine-tuning the
value of a, the MC data for all the six models collapse onto an asymptotically straight
line, with slope −1/4 for W0 and −5/48 for W1. This strongly supports the univer-
sality of Wk, at least for k = 0 and 1.

meaningful data (with small relative error bars for Wk). Further, finite-size corrections for
small L become more pronounced as k decreases.

As will be shown in Sec. 5, it is observed that, for any given size L, the probability distri-
bution Pℓ would vanish super-exponentially fast as the NP number ℓ increases. This means
that, given any finite k and L, the series kℓPℓ is always convergent and thus the NP correlator
Wk ≡
∑

kℓPℓ is always well defined. Nevertheless, as k increases, the contribution from large
ℓ becomes more important. In practice, the MC method is not well suited for sampling a large
number with a small probability and can in principle introduce bias in the estimate of error
bars if the number of samples is not sufficiently big. Therefore, with our current simulations,
we cannot calculate Wk for very large k, and thus restrain to values k < 60.

The approximate linearity of the log-log plot in Fig. 6 demonstrates the expected power-law
scaling Wk(L) ∼ L−X for a broad range of k ≥ −1. Moreover, the striking similarity exhibited
by the different percolation models clearly indicates that the scaling of the NP correlations
does not depend on microscopic details, and is thus universal.

4.2 The k = 0, 1 cases

As discussed earlier, W1 reduces to the percolating probability 〈R〉, which is known to decay
as W1 ∼ L−XF = L−5/48, and W0 corresponds to the polychromatic two-arm correlation, with
exponent X (2) = XWM(2) = 1/4. The universality of W1 and W0 is further illustrated in Fig. 7.
With a rescaled linear size L∗ = aL where a is a model-dependent constant of order unity, the
MC data of W1 for different systems collapse nicely onto an asymptotically straight line, upon
fine-tuning a. The same holds true for W0.

We fit the Wk data, according to the least-squares criterion, to the form

Wk = L−X (c0 + c1 L−ω + c2 L−2ω) , (7)
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Table 1: Fitting results for W1 and W0 by Eq. (7) with correction exponent
ω = 1. The exponents X (1) and X (0) are well consistent with the exact value 5/48
≈ 0.10417 · · · and 1/4.

Lm χ2/DF X c0 c1 c2

STr 29 0.98 0.1043(2) 1.206(1) -0.22(4) -1.3(6)

61 1.22 0.1043(4) 1.205(3) -0.2(2) -2(6)

SUJ4 29 0.48 0.1043(1) 1.120(1) -0.17(3) -0.3(4)

61 0.58 0.1043(3) 1.120(2) -0.2(1) -1(4)

SUJ8 29 1.28 0.1042(2) 1.227(1) -0.24(4) -2.1(6)

W1 61 0.59 0.1040(3) 1.225(2) -0.1(1) -6(5)

SSq 29 1.00 0.1042(2) 1.168(1) -0.14(4) -1.3(6)

61 1.10 0.1043(4) 1.169(3) -0.2(2) 1(5)

SSq8 29 0.94 0.1042(2) 1.207(1) -0.24(4) -1.6(6)

61 1.15 0.1042(3) 1.207(3) -0.3(2) -1(5)

BSq 29 0.97 0.1042(2) 1.186(1) -0.12(4) -1.2(6)

61 0.90 0.1044(3) 1.188(3) -0.2(1) 2(5)

STr 29 0.78 0.2500(3) 1.658(3) -1.64(8) 1(1)

61 0.96 0.2500(4) 1.658(7) -1.6(4) 0(8)

SUJ4 29 0.49 0.2503(2) 1.379(2) -0.76(6) 0.1(8)

61 0.37 0.2500(4) 1.377(4) -0.6(2) -5(6)

SUJ8 29 0.92 0.2500(3) 1.731(3) -2.03(8) 2(1)

W0 61 0.26 0.2495(3) 1.726(3) -1.7(2) -9(6)

SSq 29 0.31 0.2501(2) 1.604(2) -1.51(5) 1.4(8)

61 0.28 0.2503(3) 1.606(3) -1.6(2) 6(6)

SSq8 29 1.15 0.2499(3) 1.602(3) -1.48(9) 1(1)

61 1.10 0.2502(6) 1.606(6) -1.7(4) 8(8)

BSq 29 1.08 0.2500(3) 1.600(3) -1.2(1) 1(1)

61 0.91 0.2503(6) 1.604(6) -1.5(4) 9(8)

where the terms with c1 and c2 account for finite-size corrections. We impose a lower cutoff
L ≥ Lm on the data points admitted in the fits, and systematically study the effect on the
residual χ2-value upon increasing Lm. For percolation systems with free boundary conditions,
one generally expects the correction exponent ω = 1. With ω = 1, the fitting results are
shown in Table 1 for W1 and W0. The estimates of X (1) and X (0) agree excellently with the
exact values, which are 5/48 and 1/4 respectively. The fits withω being a free parameter give
consistent results and ω≈ 1.

4.3 The k = 2 case

By definition, Wk is an increasing function of k. It is thus expected that a special value ks
exists such that, as L increases, Wk(L) decays for k < ks, diverges for k > ks, and converges to
some constant for k = ks. From Ref. [34], it is known that ks = 2, and this is well confirmed
by Fig. 6.

The MC data of W2(L), plotted in Fig. 8, give further strong evidence for ks = 2. For
the three site-percolation systems on the triangulation lattices (STr, SUJ4 and SUJ8), the MC
data, with a precision of the order O(10−6) for some sizes, suggest that W2(L) = 1 for any L.
This observation is further supported by the exact enumeration results, which are obtained for
L = 3,5, 7 for STr and L = 3, 5 for SUJ4 and SUJ8. For the three other percolation models (BSq,

14

https://scipost.org
https://scipost.org/SciPostPhys.18.2.057


SciPost Phys. 18, 057 (2025)

0.9995

1.0000

1.0005 W2 versus L

0.97

1.00

1.03

16 64 256 1024

STr
SUJ4
SUJ8

SSq
SSq8
ASq
BSq

W2 versus L

W2

L

W2

Figure 8: Plot of W2 versus the linear size L for STr, SUJ4 and SUJ8 (top) and for
BSq, SSq and SSq8 (bottom). Also shown are the averaged data for SSq and SSq8,
denoted by “ASq”. For triangulation lattices (top), the value of W2(L) is exactly 1
for any L, while for other lattices, W2(L→∞) converges to some constant slightly
away from 1. The curves, obtained from the least-squares fits, are guides to the eye.

SSq and SSq8), the W2(L) value also converges to some constant, which is slightly but clearly
different from 1. We fit the W2(L) data to Eq. (7), according to the least-squares criterion, by
fixing X = 0, and the results are given in Table 2.

Motivated by the observation that W2(L), as obtained from either MC simulations or exact
enumerations, is consistent with 1 for STr for any L, the authors of Ref. [34] proved that
indeed W2(L) = 1 for site percolation on regular or irregular planar triangulation graphs, of
any shape and position of the centering site. This proof eventually led to the more general
proof given in Sec. 2.3.

A natural question arises for bond percolation on the self-dual square lattice (BSq), which
also has pc = 1/2. Further, as illustrated in Fig. 2, it can be regarded as site percolation on the
lattice Sq6, a lattice isomorphic to its matching lattice. With the same squared shape as in [34],
it is found from Fig. 8 and Table 2 that W2(L) depends non-trivially on L, and the asymptotic
value W2(L → ∞) is different from 1. We have studied BSq with other domain shapes,

Table 2: Fitting results of W2 for SSq, SSq8 and BSq, by Eq. (7) with X (2) = 0. The
asymptotic values c0 ≡W2(L→∞) and the averaged value 1.0015(2) for SSq and
SSq8 are slightly but clearly different from 1.

Lm χ2/DF c0 c1 c2

SSq 29 0.73 0.9712(1) 0.063(8) 0.1(2)

61 0.50 0.9713(2) 0.04(2) 1(2)

SSq8 29 0.14 1.03165(6) -0.110(4) 0.22(8)

61 0.13 1.0317(1) -0.12(2) 0.7(8)

BSq 29 0.99 0.9948(1) 0.12(1) -1.1(2)

61 1.24 0.9949(2) 0.11(5) -1(2)
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Figure 9: The MNP exponent −X ≡ −XMNP versus parameter φ2. Estimates of X for
all the six percolation systems agree very well with Eq. (3) for a broad range of k.
The analytical formula is represented by the brown line.

arriving at the same observations. Further, for different domain shapes, the asymptotic values
of W2(L → ∞) are different. The appendix in Ref. [34] provides some further analytical
discussions on W2(L) for BSq.

Figure 8 shows that W2(L) < 1 for SSq and W2(L) > 1 for SSq8. Since these lattices
are mutually matching in the L →∞ limit, we calculate the average values of their W2(L),
denoted as “ASq” in Fig. 8. This value is very close to, but still different from 1.

In short, despite the fact that W2(L) = 1 for self-matching triangulation graphs, the asymp-
totic value W2(L → ∞) is in general non-universal and depends on lattice types, domain
shapes, and the location of the center.

4.4 Nested-path exponent

In Sec. 2.3, we have derived the analytical formula (3) for the NP exponent X (k), where k
is parameterized as k = 1 + 2cos(πφ). For −1 ≤ k ≤ 3, φ has a real solution in the range
0 ≤ φ ≤ 1, and the known exact values are X (0) = 1/4, X (1) = 5/48 and X (2) = 0. For
k > 3, φ becomes purely imaginary, and, letting φ = iα yields k = 1 + 2 cosh(πα). For
k < −1, φ2 is not real, and, most probably, one has no longer the power-law scaling behavior
as Wk(L)∼ L−X .

Table 3: Some results for the fit of the NP exponent X (k). The last row contains
the theoretical prediction of Eq. (3). The fitting results X (−1) = 0.548(7) is smaller
than the predicted value 2/3 by about fifteen error bars. This indicates that the fitting
formula (7) is not sufficient to describe the W−1(L) data.

k 23.18 15.26 5.02 -0.48 -0.69 -1
BSq -0.810(2) -0.617(1) -0.215(2) 0.355(1) 0.416(2) 0.551(6)
STr -0.813(3) -0.619(1) -0.2163(6) 0.354(1) 0.414(2) 0.544(6)
SUJ4 -0.813(4) -0.619(2) -0.2167(2) 0.356(1) 0.419(2) 0.564(9)
SUJ8 -0.812(3) -0.618(1) -0.2165(2) 0.355(2) 0.416(3) 0.543(5)
SSq -0.808(6) -0.607(8) -0.215(1) 0.355(1) 0.416(1) 0.549(6)
SSq8 -0.812(3) -0.61(1) -0.216(2) 0.354(1) 0.415(2) 0.548(7)
Theory -0.8123 -0.6180 -0.2163 0.3558 0.4215 0.6667
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Figure 10: Log-log plot of W−1 versus rescaled size L∗ = aL, where a is a model-
dependent constant (a = 1 for STr). The formula (3) predicts the slope to be 2/3,
while the numerical estimate is 0.544(6) for STr. The huge difference indicates that
Eq. (7) is not sufficient to describe the W−1 data.

Figure 6 shows the numerical results of Wk versus L, for a broad range of k. The ex-
pected power-law scaling is clearly observed, though strong finite-size corrections exist for
k ∈ [−1,−0.5). Furthermore, the Wk(L) data are well described by Eq. (7) for most k with
correction exponent ω = 1 for reasonable values of Lm. The details of the fits are described
in the appendix, and the results of X (k), from the six percolation models, are plotted versus
φ2 in Fig. 9. For convenience of comparison, the results for some values of k are also listed in
Table 3. It is shown that the estimated values of X for different percolation systems are con-
sistent with each other within the error bars. This demonstrates the universality of the critical
behavior associated with nested paths. Moreover, except the last three data points that are for
k ≃ −0.69,−0.88 and k = −1, the estimates of X (k) are in good agreement with the prediction
by Eq. (3). Also for k ≃ −0.69, the agreement between the numerical and theoretical results
is acceptable, to within twice the quoted error bars.

It is interesting to note that, if our numerical estimates of X (k) were compared to the
previously conjectured formula in [34], the agreement would also look good, even for small
values k ∈ [−1, 0.5). For instance, for the k = −1 case, the fit by Eq. (7) yields X (−1)≈ 0.544,
which nicely agrees with the conjectured value 13/24 ≈ 0.542. Further, as shown in Fig. 10,
theW−1 data versus a rescaled size L∗ = aL in the log-log scale, collapse onto an asymptotically
straight line for all the six percolation systems. Actually, for k slightly smaller than −1, one
can still obtain reasonably good fits by Eq. (7). This interesting fact is a warning that, without
theoretical guidance, the fitting of ill-behaved numerical data may produce misleading results.

4.5 The k=−1 case

We reexamine the finite-size scaling analysis for the W−1(L) data by noticing the following
general picture. As the statistical weight k decreases, the one-point NP correlation function
exhibits algebraic scaling behavior for k > kc = −1, and then enters into a ‘disordered’ phase
in which Wk(L) vanishes exponentially as L increases. This behavior is reminiscent of that
observed for a phase transition between a quasi-long-range ordered phase and a disordered
phase, occuring in particular in the Berezinskii-Kosterlitz-Thouless (BKT) phase transition. In
this analogy, the special value kc = −1 acts as the BKT transition point. There is another
interesting fact exhibited by the NP exponent as a function of k: from Eq. (3), one observes
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Figure 11: Illustration of the logarithmic correction by plottingW−1 L2/3 versus a ln L,
with a a model-dependent constant (we set a = 1 for STr). The approximate linearity
for all systems supports W−1 ∼ L−2/3(ln L).

that the derivative of X (k) with respect to k diverges at kc = −1. At the critical point kc ,
one might expect that the power-law scaling behavior of the one-point correlation Wk(L) is
modified by additive and multiplicative logarithmic corrections.

Since the numerical estimate XNP(−1) ≈ 0.544 is significantly smaller than the theo-
retical value 2/3, we simply assume that a multiplicative logarithmic correction arises as
W−1(L)∼ L−2/3(ln L). Fig. 11 shows a plot of the W−1 L2/3 data versus a ln L, with a a model-
dependent rescaling constant. It can be seen that the data for all the six percolation systems
collapse resonably well onto an approximately straight line.

Furthermore, by assuming some analogy with the BKT phase transition and borrowing in-
sights from the latter, we can try to make a finite-size scaling analysis for the Wk(L) data
for some range k < kc . According to the BKT theory, as the BKT transition point is ap-
proached from the disordered phase, the correlation length ξ would diverge exponentially
as ξ ∼ exp(c/

p
t), where t represents the distance to the criticality and c is a non-universal

constant. For any physical observable Q, the finite-size scaling near criticality would behave as
Q(t, L)∼ LY Q̃(t ln2 L), where Y is the corresponding exponent. Accordingly, in Fig. 12 we plot
Wk L2/3/ ln(L/L1) versus (k−kc) ln

2(L/L0), where L0 and L1 are model-dependent constants.
Indeed, the numerical data for different system sizes more or less collapse onto each other.
Despite of its incomplete theoretical foundations, this analysis indicates that kc = −1 seems to
behave like a BKT transition point, and we conclude that logarithmic corrections are likely to
exist at kc .

5 Probability distribution

We now consider the probability distribution Pℓ that the center cluster is percolating (R= 1)
and has ℓ independent closed nested paths (NPs) surrounding the center. The MC results for
the six percolation systems are given in the appendix, and, as an example, the results for STr
are shown in Fig. 13. It indicates that Pℓ vanishes super-exponentially fast as a function of ℓ.
Actually, the number of NPs detected in our current simulations is limited to ℓ ≤ 5, even for
L = 8189. For ℓ = 0, the algebraic decay, P0 ∼ L−1/4, is consistent with the approximately
linear decrease on the logarithmic scale used in Fig. 13. For ℓ = 1, Table 6 in the appendix
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Figure 12: Wk L2/3/ ln(L/L1) versus (k− kc) ln
2(L/L0) for STr, where L0 and L1 are

non-universal constants. The more-or-less collapse of numerical data for different
sizes indicates that kc = −1 seems to behave like a BKT transition point.

tells that P1(L) first increases with L but then starts decreasing; actually, this can be seen
by zooming in on Fig. 13 since the error bars are much smaller than the symbol size for the
ℓ = 1 data points. For ℓ ≥ 2, Pℓ(L) increases as a function of L within the current range
253 ≤ L ≤ 8189 of simulations, but the increasing speed seems to slow down. This makes us
suspect that: (i) there are two or more competing L-dependent behaviors in Pℓ(L) for ℓ ≥ 1,
and (ii) for sufficiently large L, Pℓ(L) would become a decreasing function of L.

5.1 Universal scaling form

We shall show that the leading L-dependent behavior of Pℓ(L) for any fixed ℓ≥ 1 is described
asymptotically by a universal scaling function that includes a logarithmic factor. First recall
the definition of Wk(L) as the generating function of Pℓ(L), and its asymptotic L-dependent
scaling form:

Wk(L) =
∑

ℓ≥0

kℓ Pℓ(L) , (8)

Wk(L)≃ ak L−X (k) , (9)

where both the NP exponent X (k) and the non-universal constant ak are smooth functions of k
for k > −1. Let us also recall the scaling of P0 as obtained by setting k = 0 in Eqs. (8) and (9).
Only the leading term, with ℓ = 0, survives on the right-hand side (r.h.s.) of Eq. (8), and one
has P0 =W0 ∼ a0 L−1/4.

Let us now derive the scaling of P1 by calculating the partial derivative of Wk, with respect
to k, and then setting k = 0. From Eqs. (8) and (9), we have

∂Wk

∂ k
=
∑

ℓ≥1

ℓkℓ−1Pℓ , (10)

∂Wk

∂ k
≃ (−X ′k ln L)ak L−Xk + a′k L−Xk

= (−X ′k ln L)Wk [1+O(1/ ln L)] , (11)

where the derivative of L−Xk , with respect to k, gives a multiplicative logarithmic factor ln L
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Figure 13: Probability distribution Pℓ versus the nested-path number ℓ for a series of
sizes L for STr at criticality.

and a universal amplitude −X ′k. The second term in the first line of Eq. (11) acts as a logarith-
mic subleading correction.

Similarly, by setting k = 0, only the term with ℓ = 1, which is P1(L), survives on the r.h.s.
of Eq. (10), giving W ′0 = P1. From Eq. (11), we have

P1(L)≃ a0 L−1/4(Λ ln L) [1+O(1/ ln L)] , (12)

where P0 ≃ a0 L−1/4 is used and the universal constant Λ = −X ′0 = 1/
p

3π can be calculated
from Eq. (3).

The asymptotic scaling of Pℓ for ℓ > 1 can be derived in an analogous way by taking the
ℓ-th derivative of Wk and setting k = 0. From Eqs. (8) and (9), we have

∂ ℓWk

∂ kℓ
=
∑

ℓ′≥ℓ

(ℓ′)!
(ℓ′ − ℓ)!

kℓ
′−ℓPℓ′ , (13)

∂ ℓWk

∂ kℓ
≃ (−X ′k ln L)ℓWk

�

1+
ℓ
∑

ℓ′=1

bℓ′
(ln L)ℓ′

�

, (14)

where a series of logarithmic subleading corrections arise. Setting k = 0 and combining these
two equations give

Pℓ ≃ a0 L−1/4
�

1
ℓ!
(Λ ln L)ℓ
�

�

1+
ℓ
∑

ℓ′=1

bℓ′
(ln L)ℓ′

�

. (15)

Notice that, as ℓ increases, the scaling behaviors of Pℓ would involve a longer series of loga-
rithmic corrections, which vanish extremely slowly.

5.2 Numerical verification

In order to numerically verify the asymptotic universal scaling form (15), we consider the
ratio Γℓ ≡ (ℓ!Pℓ/P0)1/ℓ which, for any ℓ ≥ 1, should diverge as Γℓ(L) ≃ Λ ln L for L →∞. As
mentioned above, finite-size corrections will become more severe as ℓ increases, which would
obscure the numerical observation of the asymptotic logarithmic behavior, and therefore we
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Figure 14: Semi-log plot of the ratios Γ1, Γ2 and Γ3 versus re-scaled size L∗ = aL,
where a is a model-dependent constant (a = 1 for STr). The asymptotic slope agrees
well with the theoretical value Λ= 1/

p
3π≈ 0.183 776.

do not consider Γℓ with ℓ ≥ 4. The Γℓ data with ℓ = 1,2, 3 are shown in Fig. 14, where the
logarithmic divergence ln L and the universal amplitude Λ = 1/

p
3π ≈ 0.184 are illustrated,

and, indeed, the corrections for small L are more pronounced for higher ℓ.
We then fit the Γℓ data to

Γℓ(L) = ln L
�

Λ+
b1

ln L
+

c1

L
+

c2

L2

�

, (16)

Table 4: Fitting results of Γ1 by Eq. (16). For all the six percolation systems, the esti-
mates for Λ agree well with the predicted value 1/

p
3π≈ 0.183776. The amplitude

b1 of the logarithmic correction is also well determined.

Lm χ2/DF Λ b1 c1 c2

STr 29 0.17 0.1840(2) -0.465(1) 0.483(9) 0.9(1)

61 0.19 0.1838(5) -0.464(3) 0.47(3) 1.2(9)

SUJ4 29 0.32 0.1845(4) -0.319(2) 0.24(2) 0.9(2)

61 0.29 0.1840(7) -0.316(5) 0.21(5) 2(1)

SUJ8 29 1.11 0.1840(6) -0.497(4) 0.56(3) 0.8(3)

61 1.15 0.184(1) -0.494(9) 0.52(9) 2(2)

SSq 29 0.33 0.1844(3) -0.463(2) 0.48(1) 0.9(2)

61 0.41 0.1845(8) -0.463(6) 0.49(6) 1(2)

SSq8 29 0.91 0.1840(6) -0.423(4) 0.45(2) 0.6(3)

61 1.10 0.184(1) -0.425(9) 0.5(1) 0(2)

BSq 29 0.22 0.1840(3) -0.435(2) 0.38(1) 1.1(1)

61 0.24 0.1842(6) -0.437(4) 0.40(5) 1(1)
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Figure 15: Semi-log plot of conditional nested-path number N versus re-scaled sys-
tem size L∗ = aL, where a is a model-dependent constant (a = 1 is for STr). The
asymptotic slope agrees well with the theoretical value κ= 3/8π≈ 0.119 366.

which includes only the leading logarithmic correction term for simplicity, but includes con-
ventional correction terms, 1/L and 1/L2. The results for Γ1 are given in Table 4. For all the
six percolation systems, the estimates of Λ are in good agreement with the theoretical value
Λ= 1/

p
3π.

The correction term b1/ ln L is also well determined in Table 4, where the amplitude b1 is
negative for all the systems and has similar magnitude. As seen from the first line in Eq. (11),
this logarithmic correction comes from the sub-leading term a′k L−Xk at k = 0. Since Λ = −X ′0
and a0 are both positive, the sign of b1 must stem from the sign of a′0. In other words, the
fitting results in Table 4 suggest that, near k = 0, the amplitude ak in the scaling Wk ≃ ak L−Xk

is a decreasing function of k. Actually, for the whole range k > −1, ak is a monotonically de-
creasing function of k, as shown in Tables 9, 10 and 11 in the appendix where ak corresponds
to parameter c0.

Table 5: Fits of the conditional NP number N by Eq. (17). The estimate of κ is well
consistent with the theoretical value κ= 3/8π≈ 0.119366.

Lm χ2/DF κ b1 c1 c2

STr 29 0.55 0.1197(3) -0.232(2) 0.071(1) 1.2(1)
61 0.40 0.1194(4) -0.230(3) 0.04(3) 1.9(9)

SUJ4 29 0.35 0.1197(2) -0.145(2) 0.05(1) 0.6(1)
61 0.22 0.1193(4) -0.142(3) 0.02(3) 1.4(8)

SUJ8 29 1.04 0.1198(3) -0.254(2) 0.09(1) 1.3(2)
61 0.18 0.1193(3) -0.250(2) 0.04(2) 2.6(6)

SSq 29 0.53 0.1198(3) -0.231(2) 0.08(1) 1.1(1)
61 0.44 0.1195(5) -0.229(3) 0.05(4) 1.8(9)

SSq8 29 0.31 0.1196(2) -0.200(1) 0.050(9) 1.0(1)
61 0.38 0.1196(4) -0.199(3) 0.05(3) 1.1(9)

BSq 29 0.16 0.1196(2) -0.218(1) 0.068(7) 0.80(8)
61 0.14 0.1194(3) -0.217(2) 0.05(2) 1.2(5)

22

https://scipost.org
https://scipost.org/SciPostPhys.18.2.057


SciPost Phys. 18, 057 (2025)

5.3 Discussion of logarithmic subleading corrections

In probability theory, if the probability distribution of some random variable {Y} is known, it
is usually straightforward to derive the behavior of quantities that are defined in terms of {Y}.
However, for the current case for nested paths, this procedure does not work since the scaling
of the probability distribution Pℓ is itself obtained from the scaling of the correlator Wk(L)
near k = 0. As a consequence, the L-dependent scaling behavior of Wk(L) for k ̸= 0 cannot
be calculated from the asymptotic leading behavior of Pℓ(L) in Eq. (15). Take the percolating
probability as an example, which, by definition, is 〈R〉 =W1 ≡

∑

ℓ≥0 Pℓ(L). Notice that, for

any ℓ ≥ 1, Pℓ involves the summation of ℓ+ 1 terms as Pℓ ≃ L−1/4
∑ℓ
ℓ′≥0 bℓ′(ln L)ℓ

′
. It seems

impossible to obtain the pure power-law scaling W1 ≃ L−5/48 from Eq. (15), unless all the
logarithmic corrections are taken into account in a smart way.

In other words, we appear to be in a situation of non-commuting limits. Indeed, in the
correlator Wk with a given L, the contributions from all possible ℓ are summed up, whereas
Eq. (15) describes, for a fixed and finite ℓ, the L-dependent scaling of Pℓ(L).

5.4 Conditional nested-path number

We now consider Wk and its derivative at k = 1. First of all, setting k = 1 in Eqs. (8)
and (9) gives 〈R〉 = W1 ∼ L−X1 with X1 = 5/48. Then, for the first derivative, setting
k = 1 in Eq. (10) leads to

∑

ℓ≥0 ℓPℓ ≡ 〈R · ℓ〉, where the percolating indicator R en-
sures no contribution from non-percolating configurations. Further, from Eq. (11), we obtain
〈R · ℓ〉 ≃ (κ ln L)W1[1+O(1/ ln L)], with κ= −X ′1 = 3/8π.

In Monte Carlo simulations, it is convenient to define and sample N ≡ 〈R · ℓ〉/〈R〉. Phys-
ically, N represents the number of independent nested paths averaged in the ensemble of
percolating configurations, and we shall call N the conditional NP number. From the discus-
sion above, N is known to diverge logarithmically as N ≃ κ ln L[1+O(1/ ln L)]. The data for
N in the six percolation models are shown in Fig. 15. Since the logarithmic scaling behavior
is manifest, we fit the data to the form

N = ln L
�

κ+
b1

ln L
+

c1

L
+

c2

L2

�

, (17)

and the results are given in Table 5. The estimate of κ agrees well with the theoretical value
3/8π≈ 0.119 366.

The scaling behavior of the conditional NP number implies that, given any critical percola-
tion cluster with gyration radius r, the mean number of nested paths diverges logarithmically
as κ ln r.

Similar calculations, involving higher-order derivatives of Wk at k = 1, imply that the
number N of nested paths is asymptotically normal, with average κ ln L (as stated above), and
variance κ′ ln L, where κ′ = 3(π− 1)/(8π2).

The probability distribution of PNPs and NLs can be obtained readily from the probability
distribution Pℓ for MNPs. First recall the identities between the one point functions (3, 4):
WPNP(k) = WMNP(2k) and WNL(k) = WMNP(k + 1). Expressing the one-point functions in the
corresponding probability distributions, immediately leads to the following equations for the
probability distributions of nested paths and loops, the type being indicated with a superscript:

PPNP
ℓ
= 2ℓ PMNP

ℓ
and PNL

ℓ
=
∑

ℓ′≥ℓ

�

ℓ′

ℓ

�

PMNP
ℓ′

.
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6 Discussion

Following the initial work [34]we have further studied the nested-path (NP) operator for two-
dimensional critical percolation. We have complemented the original monochromatic version
with a polychromatic variety. And we have derived analytical formulae (3)–(4) for the corre-
sponding power-law exponents XMNP(k) and XPNP(k). By simulating six different percolation
models, we have provided explicit and strong evidence for the universality of the power-law
scaling, with respect to the linear size L, of the NP correlation function Wk(L). The fitting
results of exponent XMNP(k) are in excellent agreement with the formula (3) for a broad range
of k. For the marginal case k = −1 with XMNP(−1) = 2/3, we have conjectured that the power-
law scaling is modified by a multiplicative logarithmic correction as W−1 ∼ L−2/3(ln L), which
is also supported by our high-precision data.

For the k = 2 case, the exact identityW2(L) = 1 for site percolation on self-matching planar
triangulation lattices has been well demonstrated for triangular and Union-Jack lattices with
different center locations and domain shapes. However, for bond percolation on the square
lattice, the identity W2(L) = 1 fails, and the asymptotic value of W2(L→∞) depends on the
domain shape and on the location of the center. Similarly, for SSq and SSq8, an asymptotically
matching pair of site percolation, neither the W2(L →∞) values nor their average is equal
to 1.

For the probability distributions Pℓ(L), we have derived the asymptotic L-dependent scal-
ing (15), for any fixed and finite ℓ, with the universal constant Λ = 1/

p
3π. In addition, we

have shown that the conditional NP number N diverges logarithmically as N ≃ κ ln L, with
κ = 3/8π. Excellent agreement between the numerical and theoretical results was observed,
both for the probability ratios Γℓ and the conditional NP number N .

It is natural now to consider the nested-path and nested-loop operators for other statistical-
mechanical models in two dimensions, particularly the Q-state Potts model in the Fortuin-
Kasteleyn cluster representation that includes bond percolation as a special case for Q → 1.
In fact, very recently M. Ang, X. Sun, P. Yu and Z. Zhuang [38] computed the Q-dependent
exponent by means of Loewner Evolutions.
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A Data for nested-path probability distribution Pℓ(L)

Tables 6, 7 and 8 give the Monte Carlo data for the probability distribution Pℓ, for the event
that the center cluster is percolating (R= 1) and has ℓ independent closed nested paths (NPs)
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surrounding the center, for all the six critical percolation models discussed in the main text.
Let us recall our abbreviations for their names: bond percolation on the square lattice (BSq),
and site percolation on the triangular (STr), Union-Jack (SUJ4 and SUJ8) and square lattice
without/with next-nearest-neighbouring interactions (SSq and SSq8). Also included are the
data for the probability that the center cluster is not percolating (R = 0). As the system size
L increases, the probability for R = 0 grows and saturates to 1 as 1−R = 1− aL−5/48, with
a a non-universal constant.

For the ℓ = 0 case, the probability P0 monotonically vanishes as L−1/4. However, the
probability P0 keeps growing until L = 509, and then starts to decrease. This is due to the
competing terms ln L and L−1/4 in the scaling P1(L)∝ (ln L)L−1/4. For higher ℓ > 1, since
Pℓ(L)∝(ln L)ℓL−1/4, the probability Pℓ(L) would keep increasing till even larger system size
before it starts to drop.

B Fitting results of nested-path correlation function Wk(L)

The results of fitting the nested-path (NP) correlation function Wk(L) by Eq. (7) are given
in Tables 9, 10 and 11, where Lm represents the cut-off linear size such that only the data
for L ≥ Lm are admitted in the fits. As k becomes negative and approaches −1, finite-size
corrections become more and more severe, and the reliability of the fitting results decreases.
Actually, for k = −1, we conjecture that Eq. (7) is modified by a multiplicative logarithmic
correction. The estimated values of XNP are consistent with each other for the six percolation
models, and this strongly supports the universality of the nested-path operator.
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Table 6: Monte Carlo data for nested-path probability distribution Pℓ(L) for STr and
BSq. The column with R= 0 represents the probability that the center cluster is not
percolating. The maximum number of nested paths is ℓmax = (L − 1)/2 (L is odd),
which is 1, 2,3 respectively for L = 3, 5,7. However, due to the super-exponentially
fast decaying of Pℓ(L) as ℓ increases, the probability P2(L = 5) is already very small,
which is O(10−6) for BSq and similar for the others.

L R= 0 ℓ= 0 1 2 3 4 5

3 0.015625(2) 0.968748(2) 0.015627(2)

5 0.034370(2) 0.931273(4) 0.034353(3) 3.79(2)E-6

7 0.052561(2) 0.894969(3) 0.052425(3) 4.54(1)E-5

9 0.068618(3) 0.863076(6) 0.068153(4) 1.527(2)E-4 1.6(4)E-9

13 0.094857(3) 0.811400(4) 0.093187(4) 5.556(4)E-4 8.1(4)E-8

29 0.157898(4) 0.690883(7) 0.147895(5) 0.0033168(9) 7.10(4)E-6 1.6(4)E-9

61 0.217367(5) 0.583879(6) 0.189584(4) 0.009099(1) 7.060(9)E-5 8.4(3)E-8

STr 125 0.27252(2) 0.49205(2) 0.21752(2) 0.01760(1) 3.05(1)E-4 1.14(7)E-6 4(4)E-9

253 0.32354(3) 0.41418(3) 0.23340(2) 0.02801(1) 8.67(2)E-4 7.1(2)E-6 8(5)E-9

509 0.37089(3) 0.34844(3) 0.23953(2) 0.039222(9) 0.001889(2) 2.83(4)E-5 1.5(2)E-7

1021 0.4147(1) 0.2932(1) 0.2382(1) 0.05032(5) 0.00344(1) 9.0(2)E-5 6(2)E-7

2045 0.4557(1) 0.2464(1) 0.23142(8) 0.06071(5) 0.00561(2) 1.91(3)E-4 2.9(4)E-6

4093 0.4943(7) 0.2073(7) 0.2201(6) 0.0695(4) 0.0084(1) 3.7(3)E-4 8(4)E-6

8189 0.5278(7) 0.1749(4) 0.2086(5) 0.0769(3) 0.0111(2) 6.1(3)E-4 2.2(7)E-5

3 0.015624(2) 0.968750(3) 0.015626(2)

5 0.037387(2) 0.925263(3) 0.037349(2) 9.3(1)E-7

7 0.057693(3) 0.884854(4) 0.057429(4) 2.412(6)E-5

9 0.075222(4) 0.850168(6) 0.074508(5) 1.027(1)E-4

13 0.103291(3) 0.795233(5) 0.101025(4) 4.514(3)E-4 2.1(2)E-8

29 0.168562(8) 0.671663(8) 0.156571(5) 0.0032001(8) 4.37(4)E-6

BSq 61 0.228468(6) 0.565362(7) 0.196889(5) 0.009223(1) 5.757(9)E-5 3.8(3)E-8

125 0.28335(3) 0.47551(3) 0.22277(3) 0.018093(8) 2.80(1)E-4 7.7(6)E-7

253 0.33376(3) 0.39994(4) 0.23660(3) 0.02885(1) 8.45(2)E-4 6.0(2)E-6 4(4)E-9

509 0.38050(4) 0.33631(4) 0.24095(3) 0.040331(9) 0.001887(3) 2.54(3)E-5 1.0(2)E-7

1021 0.4237(1) 0.28289(8) 0.2383(1) 0.05150(5) 0.00352(1) 7.7(2)E-5 5(1)E-7

2045 0.4641(1) 0.23773(9) 0.23045(9) 0.06187(5) 0.00568(2) 1.94(4)E-4 2.2(4)E-6

4093 0.5008(7) 0.2004(6) 0.2192(5) 0.0709(4) 0.0083(1) 3.9(3)E-4 2(2)E-6

8189 0.5365(8) 0.1673(5) 0.2059(7) 0.0783(4) 0.0113(2) 7.0(3)E-4 2.0(5)E-5
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Table 7: Monte Carlo data for nested-path probability distribution Pℓ(L) for SSq and
SSq8.

L R= 0 ℓ= 0 1 2 3 4 5
3 0.027508(2) 0.957254(2) 0.015239(2)
5 0.052157(3) 0.912493(4) 0.035346(2) 3.57(3)E-6
7 0.073218(4) 0.873314(5) 0.053427(3) 4.07(1)E-5
9 0.090746(4) 0.840281(5) 0.068834(4) 1.396(2)E-4 1.0(4)E-9

13 0.118292(4) 0.788115(6) 0.093074(4) 5.188(3)E-4 5.4(3)E-8
29 0.181852(5) 0.669222(6) 0.145745(4) 0.0031753(9) 6.04(3)E-6 2(2)E-10

SSq 61 0.240394(6) 0.564957(8) 0.185786(5) 0.008799(1) 6.383(9)E-5 6.5(3)E-8
125 0.29424(2) 0.47585(3) 0.21251(2) 0.017111(9) 2.88(1)E-4 8.8(5)E-7
253 0.34382(2) 0.40048(3) 0.22761(3) 0.02725(1) 8.27(2)E-4 6.4(1)E-6 1.6(7)E-8
509 0.38978(3) 0.33685(3) 0.23328(3) 0.03825(1) 0.001816(2) 2.61(3)E-5 1.1(2)E-7

1021 0.43235(9) 0.28328(8) 0.23187(7) 0.04910(5) 0.00331(1) 8.0(2)E-5 3(1)E-7
2045 0.4720(1) 0.23826(8) 0.2251(1) 0.05902(5) 0.00543(1) 1.86(4)E-4 2.0(3)E-6
4093 0.5075(6) 0.2000(4) 0.2156(6) 0.0683(3) 0.0082(1) 3.5(3)E-4 1.8(5)E-5
8189 0.5431(8) 0.1685(5) 0.2022(6) 0.0745(4) 0.0109(1) 7.0(5)E-4 2.0(4)E-5

3 0.015240(2) 0.957247(2) 0.027513(2)
5 0.035373(3) 0.912497(4) 0.052081(3) 4.94(1)E-5
7 0.053661(3) 0.873305(4) 0.072780(3) 2.541(3)E-4 6(1)E-9
9 0.069497(4) 0.840293(5) 0.089621(3) 5.890(3)E-4 1.00(5)E-7

13 0.095236(3) 0.788110(5) 0.115157(4) 0.0014962(6) 1.19(2)E-6
29 0.157254(4) 0.669231(5) 0.167651(6) 0.0058350(8) 2.926(7)E-5 1.6(1)E-8

SSq8 61 0.216242(8) 0.564967(7) 0.205464(6) 0.013154(2) 1.729(2)E-4 4.40(9)E-7 6(3)E-10
125 0.27126(3) 0.47585(3) 0.22949(2) 0.022821(9) 5.74(2)E-4 3.52(9)E-6 4(4)E-9
253 0.32222(3) 0.40050(3) 0.24204(3) 0.03386(1) 0.001370(3) 1.70(3)E-5 5(1)E-8
509 0.36961(3) 0.33690(3) 0.24543(3) 0.04533(2) 0.002685(3) 5.35(4)E-5 3.8(4)E-7

1021 0.4135(1) 0.2835(1) 0.2419(1) 0.05635(3) 0.00457(2) 1.40(2)E-4 1.6(3)E-6
2045 0.45438(9) 0.23822(9) 0.2338(1) 0.06637(6) 0.00695(3) 2.94(4)E-4 4.8(5)E-6
4093 0.4916(8) 0.1999(6) 0.2228(6) 0.0753(4) 0.0098(1) 5.8(3)E-4 1.4(6)E-5
8189 0.5285(9) 0.1686(6) 0.2077(6) 0.0811(4) 0.0131(2) 8.9(5)E-4 2.7(8)E-5

Table 8: Monte Carlo data for nested-path probability distribution Pℓ(L) for SUJ4 and
SUJ8.

L R= 0 ℓ= 0 1 2 3 4 5
3 0.062497(3) 0.875000(5) 0.062503(3)
5 0.083185(4) 0.833667(6) 0.083133(4) 1.520(4)E-5
7 0.107972(3) 0.784486(5) 0.107327(4) 2.157(1)E-4
9 0.126083(6) 0.749038(8) 0.124273(4) 6.061(4)E-4 8(1)E-9
13 0.153895(7) 0.695711(9) 0.148642(6) 0.0017513(6) 3.64(9)E-7
29 0.215997(6) 0.582639(7) 0.194085(5) 0.007255(1) 2.375(6)E-5 3.1(7)E-9

SUJ4 61 0.272319(6) 0.488592(8) 0.222841(3) 0.016065(2) 1.821(1)E-4 2.85(7)E-7
125 0.32387(2) 0.41022(3) 0.23827(2) 0.02699(1) 6.54(2)E-4 3.2(1)E-6 4(4)E-9
253 0.37145(3) 0.34460(3) 0.24355(2) 0.03878(1) 0.001604(3) 1.70(3)E-5 4(1)E-8
509 0.41543(3) 0.28961(3) 0.24136(2) 0.05039(1) 0.003150(2) 5.99(4)E-5 3.4(5)E-7
1021 0.4562(1) 0.24350(9) 0.2337(1) 0.06109(5) 0.00527(2) 1.58(4)E-4 1.3(2)E-6
2045 0.4943(1) 0.20465(7) 0.22264(9) 0.07015(5) 0.00794(2) 3.40(4)E-4 6.5(6)E-6
4093 0.5298(7) 0.1721(4) 0.2089(5) 0.0774(3) 0.0111(1) 6.2(4)E-4 1.6(7)E-5
8189 0.5631(8) 0.1452(6) 0.1936(9) 0.0826(3) 0.0143(3) 0.00109(5) 4(1)E-5

3 0.0039074(7) 0.992185(1) 0.0039076(8)
5 0.024692(2) 0.950617(2) 0.024691(2) 5.9(2)E-8
7 0.041136(3) 0.917751(4) 0.041104(2) 8.98(4)E-6
9 0.056485(4) 0.887134(6) 0.056327(3) 5.39(1)E-5
13 0.081778(4) 0.837026(4) 0.080906(3) 2.906(3)E-4 1.1(2)E-8
29 0.143930(5) 0.716968(8) 0.136699(6) 0.0024002(7) 3.11(2)E-6 2(2)E-10

SUJ8 61 0.203653(6) 0.607812(9) 0.181063(6) 0.007429(1) 4.358(9)E-5 2.8(3)E-8
125 0.25950(3) 0.51304(4) 0.21193(3) 0.015308(4) 2.221(8)E-4 5.2(4)E-7
253 0.31139(3) 0.43210(2) 0.23052(3) 0.025306(9) 6.85(1)E-4 4.6(1)E-6 2(1)E-8
509 0.35950(3) 0.36370(3) 0.23876(3) 0.03644(1) 0.001579(2) 2.03(2)E-5 6(2)E-8
1021 0.4040(1) 0.3059(1) 0.23928(8) 0.04769(3) 0.00300(1) 6.3(2)E-5 4(1)E-7
2045 0.4457(1) 0.25741(9) 0.23356(9) 0.05819(5) 0.00499(1) 1.62(3)E-4 2.1(4)E-6
4093 0.4845(8) 0.2166(6) 0.2234(4) 0.0676(3) 0.0076(1) 3.4(3)E-4 6(3)E-6
8189 0.5190(8) 0.1821(7) 0.2128(4) 0.0750(4) 0.0105(1) 6.3(4)E-4 2.9(8)E-5
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Table 9: Fitting results of the nested-path correlation function Wk(L) for STr and BSq
by Eq. (7). When k is large, the fit is already good without the correction term with
c2 being taken into account, and for simplicity the amplitude c2 is not presented.

k Lm -XNP c0 c1 k Lm -XNP c0 c1

57.75 29 1.31(1) 0.25(2) 0.3(1) 5.02 29 0.2163(6) 0.726(3) 0.18(8)

52.12 29 1.25(1) 0.26(2) 0.3(1) 3.88 29 0.1461(4) 0.799(2) 0.13(6)

46.90 29 1.19(1) 0.27(1) 0.3(1) 2.88 29 0.0742(3) 0.889(2) 0.07(5)

42.09 29 1.130(9) 0.28(1) 0.4(1) 2.00 29 0.0000(2) 1.000(1) 0.00(4)

37.65 29 1.068(7) 0.30(1) 0.36(8) 1.60 29 -0.0383(2) 1.068(1) -0.05(3)

33.56 29 1.005(6) 0.315(9) 0.37(7) 1.23 29 -0.0775(1) 1.146(1) -0.14(3)

29.80 29 0.941(5) 0.333(8) 0.38(6) 1.00 29 -0.1043(1) 1.206(1) -0.22(3)

26.35 29 0.877(4) 0.353(6) 0.38(5) 0.89 29 -0.1179(1) 1.238(1) -0.27(3)

STr 23.18 29 0.813(3) 0.375(5) 0.38(4) 0.57 29 -0.1599(2) 1.349(2) -0.50(4)

20.29 29 0.749(2) 0.398(4) 0.38(4) 0.27 29 -0.2037(2) 1.485(2) -0.91(6)

17.66 29 0.684(2) 0.425(3) 0.37(3) -0.00 29 -0.2500(3) 1.659(3) -1.64(8)

15.26 29 0.619(1) 0.454(3) 0.36(2) -0.25 29 -0.2994(4) 1.885(4) -3.0(1)

13.08 29 0.5532(9) 0.486(2) 0.35(2) -0.48 61 -0.354(1) 2.21(2) -6.5(9)

11.11 29 0.4872(7) 0.522(2) 0.33(2) -0.69 61 -0.414(2) 2.68(3) -13(1)

9.33 29 0.4206(5) 0.563(1) 0.30(1) -0.88 61 -0.483(2) 3.42(5) -28(3)

7.73 29 0.353(1) 0.610(5) 0.3(1) -1.00 125 -0.544(6) 4.5(2) -78(17)

6.30 29 0.2853(9) 0.663(4) 0.2(1)

57.75 29 1.31(1) 0.24(1) 0.5(1) 5.02 61 0.215(2) 0.738(9) 0.0(4)

52.12 29 1.25(1) 0.25(1) 0.5(1) 3.88 61 0.145(1) 0.808(7) 0.0(3)

46.90 29 1.188(9) 0.27(1) 0.54(9) 2.88 61 0.0736(8) 0.893(5) 0.0(3)

42.09 29 1.126(7) 0.28(1) 0.55(8) 2.00 61 -0.0004(5) 0.997(4) 0.0(2)

37.65 29 1.064(6) 0.297(9) 0.56(7) 1.60 61 -0.0385(4) 1.061(3) -0.1(2)

33.56 29 1.001(5) 0.314(7) 0.56(6) 1.23 61 -0.0777(4) 1.133(3) -0.2(2)

29.80 29 0.938(4) 0.334(6) 0.56(5) 1.00 61 -0.1044(4) 1.188(3) -0.2(2)

26.35 29 0.874(3) 0.355(5) 0.56(4) 0.89 61 -0.1180(4) 1.218(3) -0.3(2)

BSq 23.18 29 0.810(2) 0.378(4) 0.56(4) 0.57 61 -0.1600(4) 1.320(4) -0.5(2)

20.29 29 0.746(2) 0.403(4) 0.55(3) 0.27 61 -0.2038(5) 1.445(5) -0.8(3)

17.66 29 0.682(1) 0.430(3) 0.55(2) -0.00 61 -0.2503(6) 1.603(7) -1.5(4)

15.26 29 0.617(1) 0.461(3) 0.53(2) -0.25 61 -0.3002(8) 1.81(1) -2.8(6)

13.08 29 0.5514(9) 0.494(2) 0.51(2) -0.48 61 -0.355(1) 2.11(2) -5.5(9)

11.11 29 0.4856(7) 0.531(2) 0.49(1) -0.69 61 -0.416(2) 2.54(3) -11(2)

9.33 29 0.4192(5) 0.573(1) 0.45(1) -0.88 125 -0.493(5) 3.4(1) -38(12)

7.73 29 0.3522(4) 0.620(1) 0.41(1) -1.00 125 -0.551(6) 4.3(2) -73(20)

6.30 61 0.283(2) 0.68(1) 0.0(5)
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Table 10: Fitting results of the nested-path correlation function Wk(L) for SSq and
SSq8 by Eq. (7).

k Lm -XNP c0 c1 k Lm -XNP c0 c1

57.75 61 1.29(3) 0.27(4) 0.0(8) 5.02 61 0.215(1) 0.712(7) 0.0(4)

52.12 61 1.23(2) 0.27(4) 0.1(7) 3.88 61 0.145(1) 0.781(6) 0.0(3)

46.90 61 1.18(2) 0.28(3) 0.1(6) 2.88 61 0.0738(7) 0.866(4) 0.0(2)

42.09 61 1.12(2) 0.29(3) 0.2(5) 2.00 61 -0.0002(5) 0.972(3) 0.0(2)

37.65 61 1.06(1) 0.30(2) 0.2(5) 1.60 61 -0.0383(4) 1.037(3) -0.1(2)

33.56 61 1.00(1) 0.32(2) 0.3(4) 1.23 61 -0.0775(3) 1.112(3) -0.1(1)

29.80 61 0.934(9) 0.33(2) 0.3(4) 1.00 61 -0.1043(3) 1.169(3) -0.2(1)

26.35 61 0.871(8) 0.35(2) 0.3(3) 0.89 61 -0.1179(3) 1.201(3) -0.3(1)

SSq 23.18 61 0.808(6) 0.37(1) 0.3(3) 0.57 61 -0.1598(4) 1.307(3) -0.5(2)

20.29 61 0.744(5) 0.39(1) 0.3(2) 0.27 61 -0.2037(4) 1.438(4) -0.8(2)

17.66 61 0.67(1) 0.46(3) -2(2) -0.00 61 -0.2502(5) 1.605(6) -1.6(3)

15.26 61 0.607(8) 0.48(3) -1(1) -0.25 61 -0.3002(7) 1.829(9) -3.2(5)

13.08 61 0.544(6) 0.50(2) -1(1) -0.48 61 -0.355(1) 2.14(2) -6.6(8)

11.11 61 0.480(5) 0.53(2) -0.6(9) -0.69 61 -0.416(1) 2.61(3) -14(1)

9.33 61 0.416(3) 0.56(1) -0.4(7) -0.88 125 -0.486(2) 3.34(5) -29(3)

7.73 61 0.350(3) 0.61(1) -0.3(6) -1.00 125 -0.549(6) 4.5(2) -85(19)

6.30 61 0.283(2) 0.654(9) -0.1(5)

57.75 29 1.30(2) 0.45(4) -0.2(4) 5.02 61 0.216(2) 0.802(9) 0.0(4)

52.12 29 1.25(1) 0.45(3) -0.1(3) 3.88 61 0.146(1) 0.862(6) 0.0(3)

46.90 29 1.19(1) 0.45(3) -0.1(3) 2.88 61 0.0742(7) 0.937(4) -0.1(2)

42.09 29 1.12(1) 0.46(2) 0.0(2) 2.00 61 0.0000(4) 1.032(3) -0.1(2)

37.65 29 1.063(8) 0.47(2) 0.0(2) 1.60 61 -0.0382(3) 1.089(3) -0.1(1)

33.56 29 1.001(7) 0.48(2) 0.1(1) 1.23 61 -0.0774(3) 1.156(2) -0.2(1)

29.80 29 0.938(5) 0.49(1) 0.1(1) 1.00 61 -0.1042(3) 1.207(2) -0.3(1)

26.35 29 0.875(4) 0.50(1) 0.10(9) 0.89 61 -0.1178(3) 1.235(3) -0.3(1)

SSq8 23.18 29 0.812(3) 0.520(8) 0.11(7) 0.57 61 -0.1598(3) 1.332(3) -0.5(2)

20.29 29 0.748(2) 0.538(6) 0.12(6) 0.27 61 -0.2038(4) 1.452(4) -0.9(2)

17.66 61 0.68(2) 0.58(8) -1(4) -0.00 61 -0.2503(6) 1.606(6) -1.7(3)

15.26 61 0.61(1) 0.60(6) -1(3) -0.25 61 -0.3001(8) 1.81(1) -3.2(5)

13.08 61 0.55(1) 0.62(5) 0(2) -0.48 61 -0.354(1) 2.10(2) -6.2(9)

11.11 61 0.485(7) 0.64(3) 0(2) -0.69 61 -0.415(2) 2.52(3) -12(2)

9.33 61 0.419(5) 0.68(2) 0(1) -0.88 61 -0.484(2) 3.18(5) -25(3)

7.73 61 0.352(3) 0.71(2) -0.1(8) -1.00 125 -0.548(7) 4.2(2) -79(22)

6.30 61 0.285(2) 0.75(1) 0.0(6)
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Table 11: Fitting results of the nested-path correlation function Wk(L) for SUJ4 and
SUJ8 by Eq. (7).

k Lm -XNP c0 c1 k Lm -XNP c0 c1

57.75 29 1.31(2) 0.47(4) 0.6(3) 5.02 29 0.2167(2) 0.8304(8) 0.278(8)

52.12 29 1.25(2) 0.48(4) 0.7(3) 3.88 29 0.1463(1) 0.8772(6) 0.199(6)

46.90 29 1.19(1) 0.49(3) 0.7(2) 2.88 29 0.0743(1) 0.9325(4) 0.108(5)

42.09 29 1.13(1) 0.50(3) 0.7(2) 2.00 29 0.0000(3) 1.000(2) 0.00(5)

37.65 29 1.067(9) 0.51(2) 0.7(2) 1.60 29 -0.0383(2) 1.040(2) -0.06(5)

33.56 29 1.004(7) 0.53(2) 0.7(1) 1.23 29 -0.0775(2) 1.086(1) -0.12(4)

29.80 29 0.940(6) 0.54(2) 0.7(1) 1.00 29 -0.1043(2) 1.120(1) -0.18(4)

26.35 29 0.877(5) 0.56(1) 0.7(1) 0.89 29 -0.1179(2) 1.139(1) -0.20(4)

SUJ4 23.18 29 0.813(4) 0.58(1) 0.66(8) 0.57 29 -0.1599(2) 1.203(2) -0.31(4)

20.29 29 0.748(3) 0.599(8) 0.63(7) 0.27 29 -0.2038(2) 1.281(2) -0.48(6)

17.66 29 0.684(2) 0.620(6) 0.60(5) -0.00 29 -0.2503(3) 1.380(3) -0.78(8)

15.26 29 0.619(2) 0.643(5) 0.57(4) -0.25 29 -0.3004(4) 1.512(4) -1.3(1)

13.08 29 0.553(1) 0.667(4) 0.54(3) -0.48 61 -0.356(1) 1.70(2) -2.7(8)

11.11 29 0.4873(8) 0.693(3) 0.50(2) -0.69 61 -0.419(2) 1.99(3) -6(1)

9.33 29 0.4208(6) 0.722(2) 0.46(2) -0.88 125 -0.499(6) 2.6(1) -24(10)

7.73 29 0.3537(4) 0.754(2) 0.41(1) -1.00 125 -0.564(9) 3.3(2) -50(19)

6.30 29 0.2857(3) 0.790(1) 0.35(1)

57.75 29 1.31(2) 0.20(1) 0.3(1) 5.02 29 0.2165(2) 0.6980(7) 0.236(7)

52.12 29 1.25(1) 0.21(1) 0.3(1) 3.88 29 0.1463(1) 0.7782(5) 0.189(5)

46.90 29 1.19(1) 0.22(1) 0.3(1) 2.88 29 0.0743(1) 0.8762(4) 0.120(4)

42.09 29 1.127(9) 0.24(1) 0.32(8) 2.00 29 0.0000(1) 1.0002(3) -0.002(3)

37.65 29 1.064(8) 0.250(9) 0.33(7) 1.60 61 -0.0381(4) 1.073(3) 0.0(2)

33.56 29 1.002(6) 0.267(8) 0.34(6) 1.23 61 -0.0772(3) 1.159(3) -0.1(1)

29.80 29 0.939(5) 0.285(7) 0.35(5) 1.00 61 -0.1040(3) 1.225(3) -0.1(2)

26.35 29 0.876(4) 0.304(6) 0.36(5) 0.89 61 -0.1176(3) 1.261(3) -0.2(2)

SUJ8 23.18 29 0.812(3) 0.326(5) 0.37(4) 0.57 61 -0.1595(4) 1.383(3) -0.4(2)

20.29 29 0.748(2) 0.351(4) 0.37(3) 0.27 61 -0.2032(4) 1.533(4) -0.8(2)

17.66 29 0.683(2) 0.378(3) 0.37(3) -0.00 61 -0.2495(5) 1.725(6) -1.7(4)

15.26 29 0.618(1) 0.408(2) 0.37(2) -0.25 61 -0.2990(7) 1.98(1) -3.5(5)

13.08 29 0.5528(9) 0.442(2) 0.36(2) -0.48 125 -0.355(2) 2.36(3) -10(3)

11.11 29 0.4869(7) 0.480(2) 0.35(1) -0.69 125 -0.416(3) 2.93(6) -23(5)

9.33 29 0.4204(5) 0.524(1) 0.33(1) -0.88 125 -0.488(4) 3.9(1) -53(10)

7.73 29 0.3533(4) 0.573(1) 0.30(1) -1.00 125 -0.543(5) 4.9(2) -97(17)

6.30 29 0.2854(3) 0.6308(8) 0.273(8)
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