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Abstract

We study multiscalar theories with O(N) × O(2) symmetry. These models have a sta-
ble fixed point in d dimensions if N is greater than some critical value Nc(d). Previous
estimates of this critical value from perturbative and non-perturbative renormalization
group methods have produced mutually incompatible results. We use numerical confor-
mal bootstrap methods to constrain Nc(d) for 3 ⩽ d < 4. Our results show that Nc > 3.78
for d = 3. This favors the scenario that the physically relevant models with N = 2, 3 in
d = 3 do not have a stable fixed point, indicating a first-order transition. Our result ex-
emplifies how conformal windows can be rigorously constrained with modern numerical
bootstrap algorithms.
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1 Introduction

It has been known for decades now [1] that a multiscalar theory with O(N) × O(2) global
symmetry describes the critical modes of N -component classical stacked triangular antiferro-
magnets (STAs) and helimagnets (see App. A for a brief review). The Hamiltonian is [1]:

H = ∂µϕ · ∂µϕ∗ +m2ϕ ·ϕ∗ + u(ϕ ·ϕ∗)2 + v(ϕ ·ϕ)(ϕ∗ ·ϕ∗) , (1)

where ϕ is an N -component complex field.1 The basic question is:

For the physical values N = 2,3 and in three dimensions, does the model (1)
have a stable fixed point of the Renormalization Group (RG) flow?

(2)

If yes, for materials within the basin of attraction of this fixed point, experiments should ob-
serve second-order phase transitions. In the opposite case, all phase transitions should be first
order.

1In this representation, O(N) acts as ϕ→ Rϕ, while O(2) acts as ϕ→ eiαϕ and ϕ↔ ϕ∗.
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Figure 1: RG flow and fixed point of the model (1) in d = 4 − ε dimensions, for
N > Nc(d) (left) and N < Nc(d) (right). Figure from [1].

Figure 2: Comparison between NPRG, fixed-dimensional RG and the ε-expansion.
Figure from [10].

Although the model and the question are simple enough, the subject has been the arena
of a controversy [2–4], with various methods giving contradictory results, as we now review.

A time-honored way to study the critical properties of multiscalar models is through the
ε-expansion around d = 4 [5]. Applied to our model, the ε-expansion predicts the existence
of a critical curve Nc(d) above which a stable fixed point exists. This stable fixed point is
called chiral and we will denote it as C+ in Fig. 1. At N = Nc(d), the chiral fixed point merges
and annihilates with an unstable fixed point C−, called antichiral.2 Below this collision, only
two fixed points remain, both unstable: the Gaussian G and the O(2N) invariant “Heisenberg”
fixed point H, which has v = 0 in (1). These RG flows at N > Nc and N < Nc are illustrated in
Fig. 1. Perturbation theory allows to compute Nc(d = 4−ε) as an asymptotic series expansion
in ε, known up to 6 loops [6].3 Using various resummation techniques, [6] concludes that
Nc(3) = 5.96(19), well above the physical values. To summarize, the ε-expansion predicts
first-order phase transitions for N = 2,3.4

2The “chiral fixed point” refers to chirality present in low-T ground states of STAs, see App. A. The “antichiral
fixed point” refers not to opposite chirality of the ordered phase (both chiralities may be present), but to the
possibility of annihilation with the chiral fixed point.

3The very first RG studies of the bifundamental scalar model with O(M)×O(N) symmetry, at the lowest order
in the ε-expansion, were performed in mid-1970’s in [7–9].

4The ε-expansion also predicts further changes to the phase diagram below N = 2, see [1] and footnote 22 for
more details. We will not be concerned with these transitions.
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A competing theoretical view is that of the perturbative RG performed directly in d = 3
[11–14] (fixed-dimensional (FD) RG). For this method, β-functions are expanded in powers
of the quartic couplings of the model in the dimension of interest. The β-functions are then
resummed before looking for a fixed point. This may be contrasted to the ε-expansion, where
fixed points and critical exponents are found in the perturbative regime as series-expansions
in ε, and resummation is performed at the last step when extrapolating the exponents to the
desired dimension. For the simpler O(N) model these two methods agree, however they do
not agree very well for O(N) × O(2). The fixed-dimensional RG predicted the region of the
(d, N) plane where a stable chiral fixed point exists to be bounded by an S-shaped curve which
is not a single-valued function Nc(d), see Fig. 2. Although the boundary agrees near d = 4
with the ε-expansion, it deviates and takes a couple of turns as N is lowered. The resulting
region where a stable chiral fixed point exists is significantly larger than for the ε-expansion.
Furthermore, the new stable fixed points found within FD schemes but not in the ε-expansion
turn out to be “of focus type”, meaning that they have complex correction-to-scaling exponents.
This is in conflict with the unitarity of the model, requires unlikely crossings in the operator
spectrum, and contradicts basic principles of renormalization group such as the gradient flow
property.5 See Appendix B for a more detailed discussion.

Unfortunately, experimental data and Monte Carlo simulations do little to clear up the
picture. Some Monte Carlo results show clear signs of first-order transitions [20, 21] while
some claim to confirm the existence of focus-type fixed points [22].6 Experiments are plenti-
ful, but the consensus is that there is such a large discrepancy of critical exponents in the cases
where a second-order phase transition is believed to happen, that it is impossible to discern
between true second-order and weak first-order behavior [2, 3]. We are left with an unfortu-
nate situation where the most standard methods fail to give a coherent picture, and thus new
perspectives from alternative methods are necessary.

In this respect, calculations have also been performed using Functional, or Nonperturbative
RG (NPRG). The results rather confirm the picture of the ε-expansion [3, 23], producing a
curve Nc(d) in a reasonably good agreement with the ε-expansion all the way down to three
dimensions, see Fig. 2.

In this paper we will approach the problem using another nonperturbative method - the
numerical conformal bootstrap.7 Since its inception [26], thanks to many technical and con-
ceptual improvements such as [27–38], the method has achieved several important results,
notably the high precision determination of the critical exponents of the 3D Ising, O(2) and
O(3) universality classes [39,40]. It has already contributed to the resolution of some puzzles
such as the liquid helium heat capacity anomaly [41] and the cubic instability of the Heisen-
berg magnets [42]. See [43–46] for reviews and results for other models, including with gauge
fields and fermions.

Conformal bootstrap relies on the basic fact that a fixed point of the renormalization group
flow is normally described by a unitary conformal field theory (see Appendix C), as well as on
some assumptions about gaps in the operator spectrum. This represents a very different set
of assumptions as compared to the renormalization group studies. In particular, the confor-
mal bootstrap analysis does not suffer from truncation and resummation ambiguities inherent

5The RG flow of multiscalar models is widely expected to be a gradient flow. This has been long known to be true
to three loops [15,16], and recently has been verified at five loops (and even six loops with some assumptions) [17],
using the six-loop beta function results from [18,19]. Refs. [11–14] resummed each component of the beta-function
separately - a procedure which may not have preserved the gradient property.

6It should be noted that the lattice model in [22] is reflection positive, rigorously excluding complex crit-
ical exponents (see Appendix B.1). This is in stark conflict with the complex correction-to-scaling exponent
ω= 0.1+0.4

−0.05 + i 0.7+0.1
−0.4 they report.

7Previously, conformal bootstrap has already been used to study this problem in Refs. [24,25]. There are some
methodological differences between our work and the approaches of these prior works, whose review is postponed
to Section 4.
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to perturbative and nonperturbative RG techniques mentioned above. It is therefore partic-
ularly interesting to inquire what the conformal bootstrap has to say about the O(N)×O(2)
controversy.

For the purposes of conformal bootstrap analysis, question (2) is reformulated as:

For N = 2, 3 and in d = 3, is there a unitary conformal field theory (CFT)
with O(N)×O(2) symmetry and with one relevant singlet scalar operator in
its spectrum?

(3)

The latter condition is how the fixed point stability is translated into the CFT language, the
only relevant singlet being the mass term in (1). Further conditions on the CFT to allow its
identification with the RG fixed point of (1), such as a low-lying bifundamental scalar, will be
discussed in Section 2.

Answering (3) directly is out of reach with the current state of the art. Instead we will
address the question:

What is the shape of the critical curve defining Nc(d) as we lower the spacetime
dimension d from 4 to 3?

(4)

Recall that we have perturbative control near d = 4 (as well as at large N for any d), so the
existence of the curve is uncontroversial. But could it be that the ε-expansion and NPRG are
wrong, and the boundary of the region where the stable fixed point exists is indeed S-shaped
as in FD-studies [11–14]? We would like to be open-minded about this, even though another
aspect of the FD-studies - focus fixed points - is ruled out as contradicting above-mentioned
general principles.

Our strategy for investigating (4) is as follows. After making some minimal assumptions
we will find a small allowed island in the space of CFT data that matches all the expectations
for the C+ fixed point for large N . As we then lower N this island varies in size, but eventually
it shrinks and disappears entirely at some numerically determined value NCB

c (d). So if one
believes that the C+ fixed point was indeed located inside this island then the conclusion is
unavoidably that NCB

c (d) provides a rigorous lower bound for Nc(d).8

In Fig. 3 we show NCB
c (d) for 3 ⩽ d ⩽ 3.8. The main salient features of this plot are as

follows:

• The bootstrap curve NCB
c (d) shows the same single-valued monotonic behavior as the ε-

expansion and NPRG curves. There is no sign of a turnaround similar to the one reported
in FD-studies.

• At d = 3, we have NCB
c (3) = 3.78. This is quite a bit lower than the ε-expansion and

NPRG predictions, but above the physical values N = 2,3.

The use of a vanishing island is the most natural way to determine the endpoint of a conformal
window with the numerical conformal bootstrap. We expect it to be useful also in many other
cases.

The paper is structured as follows. In Section 2 we describe our bootstrap setup, detailing
in particular in Section 2.3 our choice of gap assumptions in important symmetry channels.
We then move on to the detailed description of our bootstrap study and results in Section 3. In
Section 4 we review previous bootstrap studies of the same problem [24,25]. In Section 5 we
conclude. In particular, we discuss how our results about the shape of the boundary curve re-
late to the question (3) about the existence of N = 2,3 CFTs. We also have several appendices.
Appendix A is dedicated to introducing frustrated noncollinear magnets, Appendix B critically

8With more computational resources we would obtain a smaller island and therefore potentially a disappearance
for N greater than NCB

c (d). This is why NCB
c (d) is a lower bound.

5

https://scipost.org
https://scipost.org/SciPostPhys.18.2.060


SciPost Phys. 18, 060 (2025)

* * *
* * *

* * * *
* * *

* *
* *

* *
* *

* *
* *

*
*
* *

*
* *

*
*
*
*
*
*
*
*

3.0 3.2 3.4 3.6 3.8 4.0
d

5

10

15

20

Nc

CB

* NPRG

ϵ-expansion

Figure 3: This plot, the main result of our paper, reports NCB
c (d) extracted by the

conformal bootstrap (blue dots, joined by an interpolating blue curve). We also show
the results of NPRG [3, Fig. 9] (red asterisks) and of the ε-expansion (green band,
whose width is the uncertainty obtained as in Appendix E.1). Conformal bootstrap
results used spectrum gap assumptions (7), (9), (10) and the derivative orderΛ= 31.

reviews the controversial notion of focus fixed points, and Appendix C reviews why scale in-
variance is expected to be enhanced to conformal invariance for our models. Appendix D is
devoted to the calculation of the scaling dimension at O (1/N) of a certain crucial operator, and
Appendix E discusses results obtained in the ε-expansion. Details of the numerical methods
are collected in Appendix F.

In the ancillary mathematica notebook EFM_Spectrum_Along_Our_Curves.nb, we give the
full spectrum and OPE coefficients extracted through the extremal functional method [31]
along the Λ= 31 curves of Figs. 3, 8 and 9. The notebook explains the formatting of this data
and provides example plots and tables to help visualize it.

We will be assuming that the reader is reasonably familiar with the conformal bootstrap
philosophy and standard technology. We refer to the reviews [43–46] and to the pedagogical
lecture notes [47,48]. We will be also using more modern tools such as the navigator function
[49] and the skydiving algorithm [50].

2 CFT setup

We are interested in the existence of the stable RG fixed point C+ of (1) with O(N)×O(2) global
symmetry. The scale invariance of the fixed point is expected to be enhanced to conformal
invariance, as we briefly review in Appendix C. We can therefore use the language of CFTs
and the tools of the numerical conformal bootstrap. Instead of focusing only on the physically
interesting cases of d = 3 and N = 2, 3, we will explore the wider range 3⩽ d ⩽ 4 and N ⩾ 2.
This includes the regimes d → 4 and N →∞ which are controlled by the ε-expansion and
the 1/N expansion.

Primary CFT operators are characterized by dimension∆, spin ℓ, and by a global symmetry
irrep R, which in our case are labeled XY, where X is an irrep of O(N) and Y of O(2). In the
rest of this paper we will be using real notation in which the complex vector field ϕ of (1) is
repackaged as a real matrix field φ = φai (a = 1, . . . , N , i = 1, 2), in the bifundamental (VV)
representation of O(N)×O(2).9

9The complex field ϕ in (1) is ϕa = φa1 + iφa2.
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Our study will use crossing symmetry constraints for the correlation functions

〈φφφφ〉 , 〈φφss〉 , 〈ssss〉 , (5)

where φ and s are the lowest-lying scalar primaries in the bifundamental (VV) and the total
singlet (SS) irreps. In the Lagrangian description we have s = φ2, but we will not use this
notation. The operator s is relevant. All subsequent total singlet scalars have to be irrelevant
– this is the RG fixed point stability condition.

Operators in the operator product expansion (OPE)φ×s transform as VV. In the Lagrangian
description, the VV scalars after φ are the cubic operators φaiφ

2 and φa jφbiφb j . One linear
combination of these, the derivative of the fixed point potential with respect to φai , is a de-
scendant of φ.10 The orthogonal linear combination is a primary, denoted φ′.11 Made out of
three scalar fields in the perturbative notation, this primary is expected to be relevant, while
the subsequent primaries in the VV sector, made of 5 or moreφ’s, are expected to be irrelevant.

Operators in the φ×φ OPE have X,Y= S, T, A, where T, A are the symmetric traceless and
antisymmetric 2-index tensor irreps. The important operators in this OPE include the stress
tensor Tµν, which is a spin-2 SS primary of dimension∆= d, and the conserved currents of the
O(N) and O(2) symmetries, which are spin-1 primaries transforming as AS and SA respectively,
of dimension ∆= d − 1. Below we will specify gap assumptions above these operators.

A recurrent theme of our study will be how to distinguish our CFT of interest C+ from
the Heisenberg CFT H, which has a larger symmetry O(2N). This is a crucial issue since H is
present below Nc(d), and thus has the potential to pollute our bootstrap analysis. A particularly
elegant way to disentangle the two theories in the correlator system Eq. (5) turns out to be
the ST scalar channel in the φ ×φ OPE, as we now proceed to discuss.

In model (1), the lowest operator in this channel is OST = φaiφa j− trace. At leading order
in the 1/N expansion it has dimension close to 2 (in any d) for C+, whereas it has dimension
d − 2 in H. Since this difference is fairly big, a gap assumption in this channel might allow
us to distinguish between both theories. In practice we have enough computational power
to assume the existence of OST and impose a gap to the subleading primary instead. This
operator also has different large-N behavior in H and C+:

∆ST′ =

¨

4+O(1/N) , in C+ ,

d +O(1/N) , in H .
(6)

This is explained in more detail in Appendix D, where also the O(1/N) terms are given. We see
that, for d < 4 and for N sufficiently large, ∆ST′ is expected to be larger in C+ than in H. The
simplest thing to do would be to put a carefully chosen gap above OST, chosen precisely so that
we exclude H but include C+. It turns out that we can do even better: with a smaller gap in
the ST channel, which allows both H and C+, we are able to isolate both theories into separate
islands. This will be enough for all practical purposes because we can track the disappearance
of the C+ fixed point without interference from the H fixed point. The usefulness of the ST
channel for this purpose is one of the main discoveries of our work.

To summarize, in Table 1 we list operators treated in our study as isolated. The φ and s
appear as both external and internal (i.e. exchanged) operators, the rest only as internal. As
we explain in more detail below, we will numerically explore the three-dimensional parameter
space corresponding to the varying scaling dimensions ∆φ , ∆SS and ∆ST.

2.1 Ideas about separating C+ not used in this work

Remark 2.1. Another way to distinguish C+ from H would be as follows. Primaries of H
transform in irreps of O(2N). Decomposing these irreps under O(N)×O(2), each primary of H

10Just like φ3 in the Wilson-Fisher fixed point is a descendant of φ [51].
11As usual, we denote by O′,O′′, . . . the subsequent primaries having the same quantum numbers as O.
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Table 1: Operators treated in our study as isolated; ext.=external, int.=internal.

name ℓ R ∆ Note

φ 0 VV ext./int.
s 0 SS ext./int.
Tµν 2 SS d int.
JO(N)
µ 1 AS d − 1 int.

JO(2)
µ 1 SA d − 1 int.
OST 0 ST int.

gives rise to several primaries in different O(N)×O(2) irreps having exactly the same scaling
dimension. These exact degeneracies are not expected in C+. For example, the conserved
currents of O(2N) would give, upon reduction under O(N)×O(2), conserved spin-1 operators
in the AT and TA irreps. On the other hand, conserved currents in these irreps are not expected
in C+. We could have imposed small gaps above the unitarity bound in the AT and TA spin-1
channels, with the goal of excluding H and keeping C+. In this work we will not use these
gaps, because instead of excluding H, we will be able to isolate H and C+ into two separate
islands, thanks to the ST channel gap assumption.

Remark 2.2. Here is one more idea which we cannot rely on in this work, but which could
be useful in future studies.12 We know that C+ is stable and H is unstable, hence H contains
one more relevant SS scalar. This operator can be written as O = hI JK LW I JK L where W is
a rank-4 symmetric traceless primary of O(2N) and hI JK L is a tensor which breaks O(2N) to
O(N)×O(2). Can we use the existence of O to distinguish H from C+? Unfortunately, in our
setup this will not work, because the O(2N) selection rules of H preclude the appearance of
O in the OPEs φ ×φ, s× s to which we are sensitive. To be sensitive to O, we would have to
enlarge the setup by including external fields in T representations of O(N) and/or O(2). This
is left for the future.

2.2 Unitarity assumption

The unitarity assumption about the CFT is going to play an important role in our numerical
conformal bootstrap analysis. Namely we will be assuming, as usual, reality of scaling dimen-
sions ∆i and of the OPE coefficients fi jk, and the unitarity bounds on ∆i . Strictly speaking,
these constraints are satisfied only for integer N and d. Indeed it is known that CFTs for
non-integer N [52] and non-integer d [53, 54] are not unitary. However, one can argue [54]
that violations of unitarity for d ⩾ 2 are restricted to the sector of high-dimension operators,
whose exchanges contribute exponentially little to CFT four-point functions of low-dimension
operators that we will be studying. At present these effects are likely below the precision of
numerical conformal bootstrap algorithms. In agreement with this intuition, the Ising model
for 2⩽ d ⩽ 4 was studied in [55–58] under the unitarity assumption, strictly speaking invalid
for non-integer d, finding no inconsistency. On the other hand going below d = 2 without
accounting for the loss of unitarity did lead to suspect results [59].

Analogously, one can argue that violations of unitarity should be negligible in the O(N)
model provided that N is sufficiently large. A rule of thumb is to require that the dimensions
of the exchanged O(N) representations should be non-negative. E.g. the antisymmetric two-
index tensor has dimension N(N − 1)/2, so if it is exchanged, we should impose N ⩾ 1.
This intuition is confirmed by the numerical conformal bootstrap analysis of the O(N) CFT
in 3 ⩽ d ⩽ 4, 1 ⩽ N ⩽ 3 [60]. There, assuming unitarity, the O(N) CFT was isolated to a

12We thank Ning Su for discussions concerning this remark.
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bootstrap island whose position was in excellent agreement with the resummed ε-expansion.
Furthermore, this island disappeared when N → 1+. The conclusion is that non-unitarity was
negligible for N ⩾ 1 but not for N < 1. Indeed, a low-lying state CFT state whose norm
becomes zero at N = 1, and would have become negative for N < 1, was identified in [60].

As already mentioned, the O(N)×O(2) fixed point C+ is expected to merge and annihilate
with C− at a critical value Nc(d). Our working assumption will be that violations of unitarity
are negligible for N > Nc(d), when the fixed points C± have real couplings. For N < Nc(d) the
fixed points go into the complex plane and continue their life there as “complex CFTs” [61,
62], having complex scaling dimensions and complex OPE coefficients, which is a much more
violent violation of unitarity. Thus, while we expect to find solutions to the unitary bootstrap
equations at N > Nc(d), we may hope that these solutions will disappear at N < Nc(d). This
will be our method of determining Nc(d).

2.3 Gap assumptions

The gap in the symmetry channel XY of spin ℓ will be denoted gapXYℓ. This means that all
operators in this channel, except for the isolated operators from Table 1, are assumed to satisfy
∆⩾ gapXYℓ. The first group of gap assumptions is:

gapSS0 = d , (7a)

gapSS2 = d + 1 , (7b)

gapAS1 = (d − 1) + 1 , (7c)

gapSA1 = (d − 1) + 1 . (7d)

These are easy to motivate. The SS0 assumption is simply the fixed point stability condition of
C+ (see as well Remark 2.2). In the SS2, AS1 and SA1 channels, we have respectively Tµν of
dimension d, and the conserved currents of dimension d−1. At large N , the gaps above these
operators are equal to 2 at leading order. The increment 1 in (7b), (7c), (7d) was chosen in
order to be comfortably below this large N value.

Let us discuss next the VV0 channel, which has two relevant operators φ and φ′. The
operator φ is treated as isolated. The leading order predictions for the dimension of φ′ in the
ε-expansion and at large N are:

∆φ′ =

¨

3× d−2
2 +O(ε) ,

d−2
2 + 2+O(1/N) .

(8)

We are not aware of results beyond the leading order. To be safe, we will use values for gapVV0
comfortably below the ε-expansion result from (8) which is the smaller prediction:

gapVV0 = d − 2 . (9)

As already mentioned, we will also need a gap assumption in the ST0 channel. The precise
value of gapST0 will be informed by the value of ∆ST′ in H and C+, given in Eqs. (D.3),(D.8)
to the first subleading order in 1/N . In Fig. 4 we plot these values as a function of d, for the
value N = Nεc (d), which is the ε-expansion for Nc(d), discussed in Appendix E.1. Given these
curves, we will consider

gapST0 =
d
2
+

3
2

, (10)

a conservative gap assumption, since it lies comfortably below the large-N predictions for∆ST′

in both C+ and H. In Section 3.4, we will also consider the effect of varying gapST0.
In all other channels, gapXYℓ will be set to the unitarity bound.
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of OST′ in H and C+ at the first subleading order in 1/N , evaluated at N = Nεc (d)
from the ε-expansion. The C+ curve has a kink due to crossing between the γ1 and
γ2 coefficients from (D.7).

3 Conformal bootstrap analysis

As we saw in the previous section, our setup leads to a three-dimensional parameter space
P consisting of points x = (∆φ ,∆SS,∆ST), which are respectively the dimensions of the first
primary scalars in the VV, SS and ST channels. With our gap assumptions not every point
in this space is allowed, and our first order of business will be to get an idea of the allowed
regions for various N and d.

We will search for allowed points by the navigator function method [49], which was already
used in several bootstrap studies [58,60,63–65]. We recall that the navigator function is con-
structed so that it is positive on disallowed points and negative on allowed points. Therefore,
to find allowed points we can use a local minimization algorithm for the navigator function.
Technical details of the navigator approach are discussed in Appendix F. Some parts of our
study also used the new skydive algorithm [50] for increased efficiency, which solves both
the navigator optimization problem and the semi-definite programming problem at the same
time.

We will first use the navigator method to find islands in the three-dimensional space P
for fixed N , d. If by varying N or d an island disappears, or equivalently a negative local
minimum turns positive, then this is evidence that the corresponding CFT ceases to exist. We
will determine the exact point at which this happens by including N in our search, so we will
‘navigate’ towards the vanishing point of the island in the four-dimensional space spanned by
x and N . Our notation below will reflect these two different setups: although the navigator
function N always depends on all five variables N , d, and x = (∆φ ,∆SS,∆ST)we will suppress
the directions that we hold fixed and write N (x) if we move in three dimensions and N (x , N)
if we move in four.

In all our searches we will hold fixed the gap assumptions of the previous subsection.

3.1 Finding islands for large N

We will begin by fixing N to be significantly larger than the expected critical value. In this
region the existence of chiral fixed points is not in doubt, and our first task will be to show
that the conformal bootstrap analysis is able to isolate them. We will carry out the analysis
first near d = 4, namely for d = 3.8 and N = 20. We will then carry out similar analysis
for d = 3 and N = 8. With d and N fixed we will navigate in the remaining three variables
x = (∆φ ,∆SS,∆ST) and look for islands of allowed points.
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Figure 5: Top: Minimal bounding boxes containing three isolated allowed regions,
at Λ= 31, in the space of O(N)×O(2)-symmetric unitary14 CFTs at N = 20, d = 3.8
under the gap assumptions (7), (9), (10). Bottom: The solid lines are the projections
of these allowed regions to the planes of (∆φ ,∆SS) and (∆φ ,∆ST). The dashed lines
indicate the same bounds if weakening (10) to gapST0 =

d
2+1. For reference, we also

include the perturbative estimates of the ε-expansion for the locations of H (blue),
C+ (red) and C− (green), see Appendix E.2. An allowed region containing the fixed
point C− exists at this Λ despite the actual physical fixed point violating the stability
assumption (7a), indicating insufficient sensitivity to this constraint. We checked that
all three islands still survive at the higher derivative order Λ= 43 (see footnote 15).

3.1.1 d = 3.8 and N = 20

We begin our search by exploring d = 3.8 and N = 20. The former is close to d = 4, so we
will be able to match our numerical results to the ε-expansion, and the latter is moderately
above the ε-expansion prediction Nεc (3.8) = 17.3997(6) (see Appendix E.1) so we expect C+
to exist. The result of our investigations at the derivative order Λ = 31 (see Appendix F for
the numerical details) is shown in Fig. 5. Within the shown ranges we find that almost every
point is excluded with the exception of three small allowed regions in close vicinity of the
perturbative predictions for the scaling dimensions of H, C+ and C−.13

Before we discuss the physical consequences of this result, let us explain the precise mean-
ing of the three boxes shown in Fig. 5. For each region we first found a point where the
navigator function was negative, indicating that the point was allowed. By continuity this
point should be part of a larger allowed region, called an “island”, which one could in prin-
ciple delineate by carefully tracing its boundary where the navigator function is exactly zero.
To save computational time, we have however chosen not to do so, and instead simply de-
termined the extremal dimensions of the islands along the three axes of the search space P .
The islands are thus contained within the boxes shown in Fig. 5, or as we say “boxed in.” See
Appendix F for further details.

13A further allowed region exists for larger ∆φ , outside the range shown in the plot. This region, known as the
“peninsula”, is analogous to the one first identified in the three-correlator study for the 3D Ising model [34].

14See the caveats discussed in Section 2.2.
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Figure 6: Top: Minimal bounding boxes containing isolated allowed regions in the
space of O(N)×O(2) symmetric unitary CFTs for N = 8, d = 3 under the assump-
tions (7), (9), (10) at Λ = 31. Bottom: Projections of these allowed regions on the
(∆φ ,∆SS) and (∆φ ,∆ST) planes (solid). The dashed lines indicate the same bounds
under the weaker gap assumption gapST0 =

d
2 + 1. For reference, we also include

the resummed field theory estimates of [6,66], along with their uncertainty, for C+;
and the unresummed large-N expansion for H and C− (see the end of Appendix E.2).
In this plot we did not find a separate isolated region associated to C−.

The most encouraging aspect of Fig. 5 is the clean separation between the different fixed
points. To see why, suppose that we had instead found one big allowed region encompassing
all three theories. For lower N we would then know that this big region can never disappear,
simply because H always exists, which would make it impossible to determine Nc . The possible
way out of that impasse could have been to exclude H from the analysis by making stronger
gap assumptions, such as increasing gapST0. But this would have been very delicate since the
estimated values for this gap in C+ and H are close (see Fig. 4). Fortunately the separated
islands that we found, shown in Fig. 5, instead allow us to proceed differently: we can simply
determine Nc(d) by the vanishing of the C+ and C− islands at lower N , all without worrying
about the continued existence of the H island. This is how we will proceed below.

Finally we should comment on the unexpected appearance of the C− island. The C− fixed
point is RG-unstable, i.e. it has a second relevant singlet scalar, and in principle it should be
ruled out by the gap assumption (7a). That we still see an allowed region around C− means
that our bootstrap setup is not sufficiently sensitive to this particular gap assumption (although
it is sensitive to other assumptions, because the allowed region is actually quite small). This
may be due to the additional singlet scalar being only slightly relevant, since N = 20 is not too
far above Nεc (3.8). We checked that the C− island, as the other two, survives also at Λ= 43.15

15Namely, we checked that the Λ = 43 navigator is negative at the minima of the Λ = 31 navigator inside each
of the three islands.
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3.1.2 d = 3 and N = 8

In Fig. 6, we show the results of the same exercise carried out for d = 3 and N = 8, which is
close to but above the ε-expansion value Nεc (3) = 5.9(2) obtained as in Appendix E.1.16 In
this case we see two disconnected islands, one around H, the other around C+. The islands are
significantly larger than in Fig. 5. Predictions of the (resummed) ε-expansion for the scaling
dimensions at the H and C+ fixed points comfortably fall into the corresponding islands. In this
figure, unlike for d = 3.8, there is no separate disconnected island around the C− fixed point;
instead, the predicted C− scaling dimensions fall inside the same island as C+ (or close to it).
Once again, this shows low sensitivity to the gap assumption (7a). While there is no separate
C− island, the navigator function has two separate minima inside the island containing both
fixed points, close to their predicted positions, see Fig. 8 below.

3.2 Nc(d) from the disappearance of the C+ island

In Section 3.1 we chose N to lie well above its critical value predicted by the ε-expansion. We
showed bootstrap evidence that for those values of N the C± fixed points do exist, and have
operator dimensions consistent with the ε-expansion.

We will now lower N and determine the critical Nc at which the island containing C+
and C− disappears. We will denote the corresponding conformal bootstrap determination as
NCB

c (d). This NCB
c (d) should be seen as a rigorous lower bound on the true Nc(d). It is a lower

bound because the island can disappear only faster with improved numerical precision, and it
is rigorous because all our gap assumptions were rather conservative.

As mentioned above, for this analysis we consider N as a varying parameter of the navigator
function, on par with the CFT data variables x = (∆φ ,∆SS,∆ST). Thus, we will be considering
four-dimensional allowed regions where the navigator function

N (∆φ ,∆SS,∆ST, N) (11)

is negative. The C+ island now lives in the four-dimensional parameter space, and finding
NCB

c (d) is equivalent to finding the extremal point of the island in the N direction, i.e. the
point where the navigator minimum turns from negative to positive. See Appendix F.5 for
technical details. In this way we determined NCB

c (d) in the range 3⩽ d ⩽ 3.8 in steps of 0.1.17

The result of this analysis was shown in Fig. 3 on page 6. This plot, which directly addresses
question (4), is the main result of our paper. In Fig. 3 we also show for comparison Nεc (d) from
the ε-expansion (Appendix E.1) and NNPRG

c (d) from the NPRG results of [3, Fig. 9]. For d close
to 4, the curve Nεc (d) should be trustworthy. In this region, our curve NCB

c (d) shows a rather
good agreement with Nεc (d) to linear order in ε, while NNPRG

c (d) shows a small but noticeable
negative first-order deviation from Nεc (d). In the range 3.5⩽ d ⩽ 3.8 the curve NCB

c (d), which
as mentioned is a rigorous lower bound on Nc , lies above the NPRG curve and rules it out.

As d approaches 3, the difference between the NPRG and ε-expansion predictions de-
creases, and we have:

Nεc (3) = 5.96(19) , NNPRG
c (3) = 5.1 . (12)

On the other hand our curve lies quite a bit lower than the other two in this range, and it ends
in d = 3 at

NCB
c (3) = 3.78 . (13)

16This number is close to Nc(3) = 5.96(19) obtained in [6] from the ε-expansion, which was obtained using a
different method from the one described in Appendix E.1 and instead was based a combination of several resum-
mation techniques.

17We note that there is a subtlety in our reasoning which has to do with the fate of the islands as we lower N
continuously from large values, where they are isolated, to Nc , where they disappear. This will be discussed below
in Section 3.4.3.
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Although this value is significantly lower than ε and NPRG values, we stress again that it is a
rigorous lower bound. Importantly, even this lower bound (13) is strong enough to rule out
the physically relevant values N = 2, 3.

A final feature of our curve is that it shows no sign of the turnaround behavior predicted
to happen by the fixed-dimensional RG in Fig. 2 for d ≈ 3.2.

We emphasize again that we used the gap assumptions laid out in Section 2.3, in particular
(7), (9), as well as (10) for gapST0. As mentioned, we can afford putting this gap conserva-
tively low, since our method does not require eliminating the H island. It is interesting to
inquire how our Nc(d) depends on the imposed gap assumptions, in particular on gapST0.
This will be done in Section 3.4 below for d = 3, where we will see that the dependence on
gapST0 is rather weak in a certain range around (10). On the other hand, we could try to
improve NCB

c (d) by increasing Λ or by considering more correlators. These improvements will
be left for the future.

3.3 Tracking the navigator minima

In Section 3.1 we have found isolated bootstrap islands for N much above the critical value,
and for two values of d. Being in the region of large N and, for d = 3.8, also close to d = 4,
the position of those islands could be with confidence identified with the Heisenberg and the
chiral fixed points of the O(N) × O(2) model. Then, in Section 3.2 we found that bootstrap
islands are disappearing along the curve N = NCB

c (d) shown in Fig. 3. The gap assumptions
which went into the determination of the islands are expected to be satisfied by both the
Heisenberg and the chiral fixed points. The Heisenberg fixed point exists for any N ⩾ 1 and
the island containing it is not expected to disappear as N decreases. Naturally, we associated
the disappearing islands with the chiral fixed point.

In this section we will provide further evidence confirming that the identification of the
disappearing islands with the chiral fixed point is correct. For this we will track, for two values
of d, the minimum of the navigator function with respect to (∆φ ,∆SS,∆ST), within the C+
island, as a function of N . Varying N from large values down to Nc , we will show that the
minimum varies continuously. We track minima and not the whole islands, since it would be
much more costly numerically to determine the island extensions in every N .

3.3.1 d = 3.8

The position of C+ navigator minima for d = 3.8 and for N ranging from N = 30 down to
NCB

c (3.8) is shown in Fig. 7.18 The leftmost points correspond to N = NCB
c (3.8) = 17.1585

which is where the C+ island disappears for our chosen value of Λ = 31. In the same plots
we show by red curves the ε-expansion prediction for the same quantities, computed as in
Appendix E.2. These curves end at Nεc = 17.3997(6) for d = 3.8. We see that the navigator
minimum varies continuously with N , tracking closely the ε-expansion curve, except for a
few leftmost points, close to Nc . We interpret the difference between NCB

c and Nεc , as well as
the residual deviations between the bootstrap points and the ε-expansion curves as numerical
artifacts, expected to disappear as Λ →∞. We have indeed observed that these deviations
decrease as Λ is increased through Λ= 19,23, 27 (not plotted) to Λ= 31.

These plots also allow us to demonstrate another expected feature of the mechanism be-
hind the disappearance of the chiral fixed point at N → Nc(d)+. As mentioned, this should
happen via “merger and annihilation”: two fixed points C± which exist at N > Nc(d) merge

18The gap assumptions used were the same as in Fig. 5, except for the use of the aggressive gapST0 = 3.85,
roughly halfway between the C+ and H large-N curves in Fig. 4 at d = 3.8. As N grows, the C+ dimension of OST’

tends to 4, so this gap should be valid for N ⩾ Nc(3.8).
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Figure 7: Diamonds: ∆φ ,∆SS,∆ST at the minimal navigator point within the C+
island, as a function of N , for d = 3.8 and the derivative order Λ= 31. The leftmost
points corresponds to N = NCB

c (3.8) = 17.1585 which is the critical N value at which
the C+ island disappears. Red curves: the ε-expansion prediction for the same quan-
tities.

into a single CFT at N = Nc(d). At even lower N , the fixed points C± would have complex cou-
plings and complex anomalous dimensions. These are “complex CFTs” [67], and they become
invisible in our studies since we assume real scaling dimensions.

The merger and annihilation scenario was discussed in various contexts in many works,
notably [65, 67–70]. Its telltale signature is a near-marginal singlet scalar operator O whose
scaling dimension shows a square-root behavior near the merger point (see e.g. [67], Eq.(2.4))

∆O ≈ d ± const.
Æ

N − Nc(d) (N − Nc(d)≪ 1) , (14)

where the sign ± corresponds to C±. This behavior can be linked to a square-root singularity
in the coupling of O near the merger.

For us O = SS′, the second-lowest SS scalar. In our numerical study, we found it hard to
extract its dimension reliably using the Extremal Functional Method [31], likely because it is
too close to the gap assumption (7a). We leave direct numerical bootstrap verification of (14)
to future work.

However, since related to a square-root singularity of a coupling, square-root behavior
should be present not just in∆O but in any scaling dimension or any OPE coefficient (see [68],
or [62], Fig. 7). And indeed, in Fig. 7 we clearly see such a square-root behavior in∆SS and∆ST
data. According to the ε-expansion, the expected square-root singularity in these quantities is
quite pronounced, so it is easy for us to detect it numerically. For the third quantity ∆φ , the
ε-expansion predicts a tiny square-root singularity not visible on the scale of Fig. 7.

Remark 3.1. We note a recent conformal bootstrap attempt to observe the merger and annihi-
lation scenario in a different model [65]. That paper studied the critical and tricritical point of
the 3-state Potts model as a function of dimension d ⩾ 2. Merger and annihilation is supposed
to occur at some d = dc between 2 and 3. As a sign of this, a square-root behavior of multiple
scaling dimensions seems be setting in, as expected, in their Fig. 2, at least sufficiently below
the merger point. However in their study this behavior is replaced closer to the merger point
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Figure 8: Diamonds and dots: positions of the C+ and C− navigator minima for d = 3,
as a function of N , at the derivative order Λ = 31. The leftmost points corresponds
to N = NCB

c (3) = 3.78 where the C island disappears. Red, green, blue curves: the
ε- and 1/N -expansion predictions. Red error bars: estimate of ∆ST in C+ from fixed-
dimensional RG (see [66, Table III] and Appendix E.2).

by a linear approach, which is not expected theoretically and is likely a numerical artifact. Our
d = 3.8 results in Fig. 7 show a clearer picture. Note that in our study we managed to isolate
the C+ fixed point to an island, which was not the case for the theories studied in [65].

3.3.2 d = 3

We now move to d = 3 and show in Fig. 8 the position of navigator minima for N ranging
from N = 8, the value in Fig. 6, down to NCB

c (3) = 3.78 where the C island disappears.
We observe several different features compared to Fig. 7. First, at N = 8 the navigator

function now has two well separated minima, close to the respective expected positions of C±
within the island. We track both minima which we therefore tentatively call the C+ navigator
minimum (diamonds) and the C− minimum (dots).

As we decrease N we find that the C+ minimum is the first to disappear, around N = 7.
At this point the local minimum collides with a saddle, leading to the disappearance of both.
Precisely at this transition, one Hessian eigenvalue is zero, which we checked by explicitly
computing the Hessian. However, the navigator function itself is still negative so we are within
the island.19

The C− minimum on the other hand, which we recall now lies within the same island,
continues to exist for lower values of N . As shown in Fig. 8, it varies continuously with N until
it becomes a positive minimum at N = NCB

c (3) = 3.78, at which point the C island disappears.
Various colored curves in Fig. 8 show the ε-expansion or 1/N -expansion predictions for the

positions of various theories. The blue lines show the position of the O(2N) fixed point. We

19While it is very interesting to note that all local minima of the navigator function discovered up to now seem
to have their origin in physical theories it is important to keep in mind that the absence of the C+ minimum below
N < 7 does not imply this theory does not exist. What is more important is that the conformal data values that
such a stable CFT would have are not excluded by our current analysis for N > 3.78, but are rigorously excluded
for N < 3.78.
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see that the C− minimum remains well separated from this line for all N of interest. The red
and green lines show the positions of the C± fixed points, which according to the ε-expansion
annihilate at N = 5.96(16). We see that the C− minimum tracks closely the green ε-expansion
curve for N ≳ 6.5.

Fig. 8 in d = 3 paints a somewhat less satisfactory picture than Fig. 7 in d = 3.8. Ideally we
would have found two persistent local minima, one positive (so excluded, corresponding to C−)
and the other negative (corresponding to C+), which upon decreasing N would merge precisely
at NCB

c (3) and then remain positive for smaller N . Such a scenario would then naturally also
produce the desired square-root behavior of the scaling dimensions.

Instead we see in Fig. 8 that the C+ minimum disappears too soon, followed by a rather
large region between NCB

c (3) = 3.78 and N ≈ 6.5 without good agreement with the ε-
expansion. All of this could however be numerical artifacts, and in future work it would be
interesting to see how the Fig. 8 evolves when increasing Λ and whether the features at small
N remain or the bounds converge closer to the ideal scenario.20

On the positive side, Fig. 8 does demonstrate a continuous connection between the dis-
appearing island at N = NCB

c (3) and the island at N = 8 which could be unambiguously
associated with the C± fixed points. It is therefore not in contradiction with our claim that
NCB

c (3) is a rigorous lower bound for the disappearance of C+.

3.4 How does NCB
c (3) depend on the choice of gapST0?

In this subsection we will investigate the dependence of NCB
c (d) on gapST0. The best possible

scenario would be that NCB
c (d) does not change at all if we vary gapST0 within a certain in-

terval. Of course we cannot increase gapST0 above the actual dimension ∆ST′ of the second
scalar in the ST representation since this would exclude the C+ fixed point altogether. We
probably cannot decrease gapST0 too much either, because then the allowed regions can be-
come so big that the C+ island merges with either the H island or the larger peninsula region
discussed in footnote 13.

The actual variation of NCB
c (3) with gapST0 is shown in Fig. 9. Most importantly it shows

a rather mild dependence as long as we choose gapST0 between about 2.8 and 3.4, confirming
the robustness of our estimate Eq. (13) in the sense that it does not depend significantly on
this gap assumption. Note that the upper value of about 3.4 is roughly compatible with the
first-order large N estimate for ∆ST′ which is shown as the red dashed curve in the figure. We
unfortunately see no evidence for a flattening of the curve with increasing Λ, but at the same
time it is clear that our result is far from being converged.

Another way to check for the sensitivity with respect to gapST0 is to extract the operator
spectrum from the extremal functional at Nc(3), which we did for the blue points in Fig. 9.
In an ideal scenario there is simply no operator with a scaling dimension equal to gapST0,
as this would mean that we could vary gapST0 a bit without changing the functional and
the bound. It is however often the case that numerical artefacts spoil this scenario, and this
appears to be the case here. Indeed, as we show in Fig. 10, the scalar spectrum in the ST sector
consistently shows an operator at the gap for each value of gapST0. We also verified that its
OPE coefficient is non-vanishing: λφφOST′

varies smoothly from 0.06 to 0.03 in the plotted
window. (For comparison, we obtained λφφOST

≈ 0.3 and λφφOST′′
≈ 0.005.) It is the square

of these coefficients that multiplies the conformal blocks, whose normalization we took to be
that of [44].) In future work it will be important to verify that both Fig. 9 flattens out and that
λφφOST′

decreases upon increasing Λ.

20At this point it is for example unclear whether there is any physical significance to the change of slopes in the
conformal data that is observed around N = 4.2. This would be interesting to investigate further.
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Figure 9: Lower bound on Nc as found by the numerical conformal bootstrap as
a function of the assumed value of gapST0 at Λ = 31 (in blue). Some additional
points are shown for Λ = 27,29, 33,35 in respectively orange, green, red, purple.
The dotted vertical line corresponds to the previously chosen value gapST0 = 3,
yielding NCB

c (3) = 3.78 at Λ = 31 as stated previously in Eq. (13). The dashed
curved line indicates the large N estimate of ∆ST′ in C+ (see Eq. (D.8)). It is natural
to expect the C+ island to disappear somewhat to the right this curve.

In the remainder of this subsection we discuss interesting subtleties that arise from studying
the endpoints of the Λ= 31 curve in Fig. 9. These endpoints came about as follows. Fig. 9 was
obtained by simply repeating the analysis of Section 3.2 for different values of the gapST0,
using again the skydive algorithm of [50], see Appendix F. In practice this procedure turned
out to be very delicate for small and large values of gapST0. We frequently observed runaway
behavior, forcing us to restart with a slightly different initial point. The endpoints of theΛ= 31
curve are the last points for which we were able to obtain convergence.

3.4.1 Hessian and derivative information

Let us first discuss the behavior of the navigator function N (∆φ ,∆SS,∆ST, N) in the vicinity
of Nc for a generic value of gapST0. Recall that Nc is the lowest point in the N direction where

2.8 2.9 3.0 3.1 3.2 3.3 3.4
gapST0

1

2

3

4

5

6
Δ

Figure 10: The first three scalar operators in the ST sector in the extremal spectrum as
a function of gapST0. (More precisely, this is the extremal spectrum corresponding to
the blue points with Λ= 31 in Fig. 9.) The first operator (∆ST, blue dots) is isolated,
the second one (∆ST’, orange dots) is precisely at the gap imposed by gapST0 (as
indicated by the blue area), and the third operator (∆ST”, green dots) lies above it.
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Figure 11: Eigenvalues of the Hessian H of the navigator function at Nc in the three
∆ directions, as a function of gapST0 for d = 3.

N ⩽ 0. Since the navigator function is smooth, this must mean that:

N (∆φ ,∆SS,∆ST, Nc) = 0 ,

∂

∂ N
N (∆φ ,∆SS,∆ST, Nc)⩽ 0 ,

(15)

where saturation of the inequality on the last line would be atypical and would imply a con-
straint on the higher derivatives such that the N is positive for N a little bit below Nc . Likewise
the navigator function must be at a local minimum with respect to the other parameters, so if
we define its gradient and Hessian in ∆-space at the critical point Nc as

gi :=
∂

∂∆i
N (∆φ ,∆SS,∆ST, Nc) , ∆i ∈ (∆φ ,∆SS,∆ST) , (16)

Hi j :=
∂ 2

∂∆i∂∆ j
N (∆φ ,∆SS,∆ST, Nc) ,

then we know that
gi = 0 , and H ≻ 0 . (17)

Note that the second derivative in the N direction is not constrained.
Experimentally the observed behavior agrees with the previous discussion for all the points

where our algorithm converges. The algorithm itself guarantees that N = 0 and gi = 0 at
optimality. Properties of the other derivatives of the navigator are shown in Figs. 11 and 12.
In the first we show the eigenvalues of H, which are indeed all positive. In the second figure
we include the N direction. We first of all see that the gradient is negative, as expected. We
also see that including the fourth direction yields a second-order derivative that is generally
positive but turns negative at both endpoints.

3.4.2 Left endpoint behavior

At the leftmost point we observe from Fig. 12 that the gradient in the N direction rapidly de-
creases in magnitude and that the four-dimensional Hessian has a negative eigenvalue. Since
we have both gradient and Hessian information, we can construct a quadratic approximation
to the real navigator function. This approximation predicts that N becomes negative again
for N somewhere below Nc . For example, for the leftmost point in Fig. 9 at gapST0 = 2.82,
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Figure 12: Behavior of the navigator function at Nc in the N direction, as a function of
gapST0 for d = 3. On the left we plot the gradient. On the right we plot the fourth
eigenvalue of the Hessian of the four-dimensional navigator N (∆φ ,∆SS,∆ST, N).
We note that its corresponding eigenvector mostly in the N direction, and the other
three eigenvalues agree to within 10% with those shown in Fig. 11. This eigenvalue
therefore accurately captures the second-order behavior of the navigator when one
includes the N direction. (We could have opted to simply plot the second partial
derivative in the N direction, but this always comes out positive and therefore does
not convey the right information.)

where we obtained Nc ≈ 3.62, this quadratic approximation would predict that the navigator
becomes negative again at N ≈ 3.13.

The analysis of gradient and Hessian therefore provides evidence for another allowed re-
gion that exists for N < Nc and low values of gapST0. This is not in disagreement with the
expectations we formulated above, where we stated that gapST0 must be chosen sufficiently
large for the C+ island to (a) exist as an isolated island, and then (b) to disappear. It is however
surprising that this additional region is disconnected, since it would have been more natural
to see a smooth merging of the C+ island with another allowed region. Such a scenario would
correspond to the three-dimensional H becoming singular, but Fig. 11 shows no indication of
such behavior near the left endpoint at low gapST0.

In future work it will be important to investigate in detail the existence of a disconnected
region below Nc . Is this region connected to the H island or the pensinsula? And is it due
to the unnecessarily low value of gapST0 or does it also persist for higher values? And is it
related to the existence of fixed points below N = 2 predicted by the ε expansion as discussed
in footnote 22?

3.4.3 Right endpoint behavior

The behavior at the right endpoint is more surprising. Here the main novel characteristic
is the steep drop in the lowest eigenvalue of the three-dimensional H as shown in Fig. 11.
Naive extrapolation then predicts that the Hessian H would become singular for a slightly
higher value of gapST0. We would then necessarily have a direction in ∆ space in which the
navigator decreases, simply because the leading term in that direction is the cubic term. The
C+ island is then no longer isolated and instead gets connected to another region which does
not disappear for N below Nc . We do not know what this additional allowed region is, but the
natural candidate would be the aforementioned peninsula that we know exists for all N .

Although we discovered this behavior at large gapST0, it must actually also persist at lower
gapST0 because lowering a gap can only make the allowed region larger (at fixed N).

Let us therefore return to our earlier chosen value of gapST0 = 3. If the above scenario is
correct then the behavior is as follows. For N = 8 Fig. 6 shows an isolated C+ island. For N
slightly above Nc there is likewise an isolated island (by continuity of the navigator function
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and the positivity of H). But for intermediate values of N there may not be a well-defined
island. Instead, we would predict a merger with the peninsula and then again a re-detachment
of an island.21

We emphasize that we observed this issue only for larger values of gapST0 simply because
that is the only place where we investigated these intermediate values of N . Investigating the
structure of the allowed regions in detail should be a priority for future numerical bootstrap
studies.

4 Review of prior bootstrap studies

Let us review the previous bootstrap studies on the O(N)×O(2) model [24, 25]. Comparison
to our work will be done in the conclusions sections.

Ref. [24] was the first bootstrap work on the O(N)×O(2) model. It was a single-correlator
study, using only the 4pt function 〈φφφφ〉. Working in d = 3 and specializing to N = 3, they
found a mild kink in the gap maximization plot in the STℓ=0 channel, as a function of∆φ . They
observed that at the kink, ∆φ as well as the dimensions of scalars in the SS, ST, TS, TT, and
AA representations extracted using the extremal functional method agree reasonably well with
the values of these dimensions predicted for the putative chiral O(3)×O(2) fixed point of focus
type found using the fixed-dimension expansion (for one of two RG schemes). Of course the
focus fixed point, if it existed, would not be unitary since it would have a scaling operator with
complex dimension. Ref. [24] assumed unitarity, and in particular real scaling dimensions for
all operators. Be that as it may, Ref. [24] interpreted the existence of the kink and the above-
mentioned agreement as evidence for the actual existence of a chiral O(3)×O(2) unitary fixed
point.22

The more recent study [25] developed the initial findings of [24] in two directions:
1. With the same single-correlator setup as in [24], they carried out gap maximization in

the STℓ=0 and TSℓ=0 channels23 for N = 3,4, 5,10, 20. They found that for large N (N=10, 20)
when the corresponding unitary CFTs are reliably known to exist, there are kinks in these plots
which match closely with the chiral (TSℓ=0) and antichiral (STℓ=0) fixed points.24 For smaller
N the kinks get milder, and their association with actual unitary CFTs is unclear.

Note the surprising inversion: at large N the chiral fixed points are associated with TSℓ=0
gap maximization kinks [25], while for N = 3 they are associated with STℓ=0 gap maximization
kinks [24].

2. The second part of the study in [25] proceeds in the three-correlator setup 〈φφφφ〉,
〈φφss〉, 〈ssss〉 (i.e. the same as in our paper), imposing an assumption that the TSℓ=0 or STℓ=0
gap saturates the corresponding gap maximization bound from the single-correlator analysis,

21An island that first grows and then shrinks as one decreases N can also be found in the numerical investigations
of the O(N) models, see for example Fig. 1 of [36].

22It should be mentioned that Ref. [24] also discussed the “collinear” (also called “sinusoidal” [1]) fixed point,
which has the quartic coupling v < 0. According to the state-of-the-art resummed ε-expansion results, the collinear
fixed point exists only when N < 1.970(3) [6], by far excluding the physically interesting value N = 4 when such a
fixed point, if it existed, could describe the chiral phase transition in QCD with two massless quark flavors. In this
case, there are again fixed-dimension schemes which do find a collinear fixed point for N = 3,4 [66, 71]. In the
interest of space, and since our focus in this paper is on the chiral fixed point, we will not discuss this additional
controversy here (see also [72]).

23Note that the symmetry group is O(2)×O(N) in [25] while it is O(N)×O(2) for us and [24]. Therefore the
order of representations is reversed TS↔ST. We are using our conventions here. In [25], ST is called W and TS is
called X .

24This attribution goes back to [73], where O(N)×O(3) CFTs were studied in d = 3, for 5⩽ N ⩽ 20. There, the
kinks in the TSℓ=0 and STℓ=0 gap maximization plots at large N were first identified with the chiral and antichiral
fixed points. Refs. [24,73] were the first bootstrap studies of multiscalar models with more complicated symmetry
than O(N).
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plus several other reasonable gap assumptions on the spectrum. With these assumptions, they
are able to turn kinks into islands of rather complicated shapes. For large N , these islands can
be mapped to the chiral and antichiral CFTs.

Then they consider small N = 3, and for STℓ=0 saturated gap (see the inversion noted
above) the island they find agrees with the location of the putative O(3)×O(2) chiral focus-
type fixed point (in the same MS scheme that saw better agreement with the single-correlator
results of [24]). Concerning the issue that the putative fixed point is focus-type, they say that
“It is unclear to us how sizable nonunitarities could have been missed by our bootstrap results.”
As they point out, some previously found non-unitary CFT islands disappeared with increasing
the constraining power of the numerics [74], and this may also happen to their island. They
conclude by saying “Our results provided support for the existence of these fixed points, but
we saw no signs of nonunitarity. Overall, we were unable to provide conclusive answers, but
we believe that more dedicated bootstrap work with stronger numerics will be able to reach
definitive conclusions in the near future.”

5 Comparison to prior work, conclusions and outlook

Let us start by emphasizing the aspects in which our study which were different from prior
work [24, 25], reviewed in Section 4. The setup of [24, 25], working in d = 3 and for a dis-
crete sequence of N , could not clearly see if and how the putative O(3)×O(2) CFT connected
to well-established O(N)×O(2) CFTs at large N and for d close to 4. In contrast, our study
investigated continuously the 2-dimensional parameter space (d, N). We could therefore see
the unitary O(N)×O(2) CFTs disappear as N approaches some critical curve Nc(d) from above.
The second difference between our study and [25] is in how the STℓ=0 channel of the φ ×φ
OPE was treated in the multiple correlator setup. They set the first operator in this channel to
saturate the single correlator bound, while making no assumptions about subsequent opera-
tors. We, on the other hand, treated ∆ST as a free parameter which was one of the arguments
of the navigator function, while restricting the next operator in this channel to be above a
gap gapST0. We saw in Section 3.4 that with this assumption, NCB

c (d = 3) shows only mild
dependence on gapST0, while remaining safely above 3. It is possible that the setup of [25]
was simply not constraining enough to see a large-enough NCB

c (d = 3). Finally, our study used
Λ= 31, while [25] used Λ⩽ 25.25

Our curve NCB
c (d) of Fig. 3 is, in the range 3 ⩽ d ⩽ 3.84, a monotonic curve consistent in

shape and position with the curves extracted from the NPRG and the ε-expansion. We have
thus ruled out the S-shaped FD curve in Fig. 2, which has a turnaround point at d ≈ 3.2 [14].26

Let us now come back to the question (3) about the existence of unitary stable CFTs with
O(N)×O(2) symmetry for N = 2, 3. Being fully agnostic, there still remains small loopholes
which might allow their existence. First, on the basis of our results alone, we cannot rule
out a turnaround of the Nc(d) curve at some d•< 3, i.e. somewhat below the range explored
here. Indeed, in the MZM fixed-dimensional scheme (see footnote 26), such a turnaround does
happen for d slightly below 3 (see the discussion in [14] below Fig. 3), although its precise
location has not been determined. It seems implausible from the look of our curve in Fig. 3
that such a turnaround would happen just below d = 3. In the future it would be interesting
to extend our study to smaller d in order to definitively exclude such a turnaround.

25The PyCFTboot parameters m_max = 7, n_max = 9 in [25] correspond to a subset of
Λ= 2n_max+m_max= 25 derivatives.

26The turnaround point d ≈ 3.2 corresponds to the MS fixed-dimension scheme, generally considered in the
literature as more reliable than another scheme called MZM (massive zero-momentum). The fixed points found in
the MZM scheme for N = 2,3 lie outside of the region where the beta functions are Borel summable [11], whereas
they are found around the boundary of this region in the MS scheme [14].
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Figure 13: Three scenarios for the shape of the curve separating the region of the
(d, N) plane where a unitary O(N)×O(2) CFT exists (white) from the one where it
does not (gray). The scenario on the left, where the boundary curve has a turnaround
point (•) at a d• > 3, is excluded by our work. The two other scenarios, where the
turnaround point is at a d• < 3, or where the allowed region is not connected, are
still allowed.

Second, even if there is no turnaround, we cannot a priori exclude an allowed (d, N) region
which is disconnected from the region at large N . These two still allowed scenarios (as well
as the excluded one) are illustrated in Fig. 13. We are however adamant that the CFTs in the
allowed region for integer d and N , being unitary, cannot be of focus type, but should have
real correction-to-scaling exponent ω.
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A Frustrated magnets

The theoretical study of noncollinear magnets dates back to the 1970s ( [1,76–80], reviewed
e.g. in [81]). It is interesting to compare them to the usual ferromagnets described by the fer-
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FIG. 1. Illustration of the two energetically degenerate spin
structures of opposite chirality, ~, in the ordered states of (a)
helical magnets, and of (b) layered triangular antiferromagnets.

FIG. 2. Representations of "instability points, " solid and
open circles, in wave-vector space for (a) ferromagnets, (b) anti-
ferromagnets on bipartite lattices, (c) layered triangular antifer-
romagnets, and (d) helical magnets. The dashed lines outline
the first Brillouin zone. Double lines represent the reciprocal-
lattice vectors K: as usual, points connected by a K should be
fully identified.

3 3 (( )

(1.4)

where the summation runs over the three directed bonds
surrounding each plaquette, p. Physically, the chirality
represents the sense of the 120' structure or the helix (see
Fig. 1). In terms of the GLW Hamiltonian (1.2), this
chirality variable, K, can be generalized to the n X n an-
tisymmetric tensor,

a&„azb„a„bz (——1 & A, ,p—& n ) . (1.5)

For the XY case this reduces simPly to K=azby Qy&z,
which essentially represents (1.4). In the
renormalization-group analysis, we find that chirality ap-
pears as a new relevant operator at the chiral fixed points.

which have only one instability point (see Fig. 2). The
dipole-locked A phase of helium 3 can be described by
essentially the same GI.W Hamiltonian. ' '

The purpose of this paper is to investigate the critical
properties of the GLW Harniltonian (1.2) within the
framework of renormalization-group s and I/n expan-
sions, and, in particular, to identify and characterize in
detail a new chiral fixed point which describes intrinsical-
ly noncollinear spin criticality. Chirality is, in fact, in-
herent in the noncollinear spin orderings. For concrete-
ness, consider a layered triangular XY (n =2) antifer-
romagnet. A local chirality variable Kp may be defined
on each plaquette, or elementary triangle on the triangu-
lar lattice, by

The associated crossover exponent, P„, is calculated by
both s and 1/n expansions. Unexpectedly, P„exceeds the
susceptibility exponent y; however, this turns out to be
consistent with a recent Monte Carlo result. The ex-
ponents y and v are found to be smaller than the corre-
sponding O(n) exponents. More generally, in the space
of bilinear spin operators, we find four different crossover
exponents, including the chiral crossover exponents; by
contrast the usual O(n) model, (1.1), has only one bilinear
crossover exponent.

The remainder of the paper is arranged as follows. In
Sec. II we derive the GLW Hamiltonian (1.2) from vari-
ous microscopic spin Hamiltonians and analyze its sym-
metry properties carefully. Section III is devoted to the c.

expansion: some of the results have been reported previ-
ously, ' ' but various new results are also presented. A
variety of fixed points are identified and their stability is
studied to O(c. ). In particular, we highlight the chiral
fixed point relevant to helical spin ordering. The associ-
ated exponents y and ri are calculated to O(s) and O(E ),
respectively. The I /n expansion is considered in Sec. IV.
After summarizing the behavior in the limit n ~~, the
exponents y, q, and a are calculated to O(1/n) The na-.
ture of chiral ordering is studied in Sec. V. The chiral
crossover exponent is calculated both by c and 1/n ex-
pansions. The crossover exponents for all operators
quadratic in the spin variables are calculated in Sec. VI.
The corresponding scaling fields are identified and their
physical meaning is clarified. Finally, in Sec. VII, we
summarize the results and compare them with available
Monte Carlo results and experimental data.

Figure 14: The ordered states of an STA (figure from [1]). The shown states have
opposite chirality. There is a continuum of states obtained from the shown ones by a
global rotation of all spins.

romagnetic O(N)model (N -component spins at each vertex of a lattice, with nearest-neighbor
ferromagnetic interactions). The usual ferromagnets have a disordered state at high T and,
in d > 2, an ordered state at low T , which breaks O(N) spontaneously to O(N − 1) (“all spins
point in the same direction”). The critical behavior is the standard O(N) universality class,
also known as the Wilson-Fisher O(N) fixed point, or the O(N) model CFT.

In contrast to the usual ferromagnets, noncollinear magnets have couplings between spins
which involve some frustration. This leads to low-temperature states with a more complicated
ordering. The symmetry breaking structure is different and the phase transition, if second
order, is expected to be in a universality class distinct from O(N).

Frustration is achieved by introducing some degree of antiferromagnetism, i.e. changing
the sign of some nearest-neighbor couplings. On the cubic lattice with only nearest-neighbor
couplings, every spin will be exactly anti-aligned with its neighbors at low-T , so there is no
frustration and the phase transition is still in the O(N) universality class. True frustration may
appear on a lattice involving triangular faces.

One type of frustrated magnets which exhibits critical behavior distinct from O(N) are the
so-called stacked triangular antiferromagnets (STA). Spins are placed at the vertices of planar
triangular 2d lattices stacked on top of one another in the third direction. Within each plane,
nearest-neighbor interactions J∥ are antiferromagnetic. The sign of interactions between the
spins on nearby planes, denoted J⊥, is not important. For continuous spins, possible ordered
states at low-T will have the structure in each plane shown in Fig. 14, with spins at nearby
sites rotated by 120◦.

Frustration can also be obtained directly on the cubic lattice, by adding to the ferromag-
netic O(N) model a competing antiferromagnetic next-to-nearest neighbor interaction along
a given direction. This construction models so-called helical magnets, and together with STAs,
they have been referred to in the literature as noncollinear magnets.

Both systems near criticality enjoy the same continuum description. The procedure to ob-
tain the Landau-Ginzburg-Wilson (LGW) Hamiltonian from a lattice model is straightforward
and quite short (see Appendix A of [1]). This Hamiltonian is written in terms of the coarse-
grained magnetization field S⃗(x) ∈ RN . The interaction, assumed to be a polynomial in S⃗,
is expanded around every minimum of the quadratic part of the Hamiltonian density in mo-
mentum space. For the usual ferromagnets described by the O(N) model, there is only one
minimum in momentum space, located at p = 0. This leads to the well-known φ4-theory
in terms of a single N -component field. In contrast, for noncollinear magnets, one finds two
minima at two inequivalent Brillouin zone momenta ±Q. The effective Hamiltonian is written
in terms of a complex field ϕ⃗(x) = eiQx S⃗(x). O(N) invariance and momentum conservation
shows that the numbers N and N∗ of ϕ⃗’s and ϕ⃗∗’s should satisfy the relation N − N∗ = 0
mod 6.27 This implies that the effective Hamiltonian has symmetry O(N)×Z6. At the level of
the quartic effective Hamiltonian, Z6 gets enhanced to a continuous O(2). One thus obtains

27To derive this relation, one observes that 3Q is in the reciprocal lattice.
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the Hamiltonian (1) or, by writing ϕ = a+ i b where a, b are real N component fields,

H = 1
2

�

(∂µa)2 + (∂µb)2
�

+ r0

�

a2 + b2
�

+ u
�

a2 + b2
�2
+ v
�

(a · b)2 − a2 b2
�

. (A.1)

One may wonder why such anisotropic systems as the STAs and helimagnets are described
near criticality by the isotropic effective Hamiltonian (A.1)? Let us consider for exam-
ple the case of STAs. After performing every step listed above in going from the micro-
scopic to the effective Hamiltonian, one ends up with a kinetic term of the schematic form
∫

ddq (|J⊥|q2
∥ + |J⊥|q

2
⊥) (a(q) · a(−q) + b(q) · b(−q)), where ∥,⊥ refers to directions inside

of/perpendicular to the triangular lattice planes [82]. The anisotropy depending on the rel-
ative strength of the intra-plane and inter-plane couplings J∥ and J⊥ is then scaled away by
rescaling momenta.

Let us describe the phase transitions expected in (A.1). As the mass r0 is tuned, (A.1)
undergoes a phase transition from the disordered state with 〈a〉 = 〈b〉 = 0 to a nontrivially
ordered state whose structure crucially depends on the sign of the coupling v. Namely one
finds a ⊥ b for v > 0, while a ∥ b for v < 0. The first possibility reproduces the noncollinear
chiral behavior of Fig. 14, while the second describes so-called spin-density waves. In mean
field theory the sign of the coupling v is arbitrary, while in RG theory the sign of v will be the
one corresponding to the stable fixed point. Since noncollinear magnets have low-T ground
states like in Fig. 14, we expect that the RG fixed point describing their phase transition (if
second-order) should have v > 0. Indeed the stable fixed point C+ in Fig. 1 is located at v > 0.

B Critical remarks about the focus fixed points

B.1 Problems with unitarity

The main reason to doubt focus fixed points is that they contradict unitarity. Our model is
unitary, i.e. reflection positive in the Euclidean signature. The critical points, if they exist,
should be consistent with unitarity. This would imply that the scaling dimensions of scalar
operators must be real. Instead, the focus fixed points have a complex correction-to-scaling
exponent ω. This means that there exists an operator O with a complex scaling dimension
∆= d +ω , whose two point function is given at large distances by

〈O(0)O(x)〉 ∼ 1
r2∆

. (B.1)

The complex conjugate operator O∗ will have the complex conjugate correlator. Assuming
conformal invariance (see Appendix C), only operators of equal scaling dimensions have non-
vanishing 2pt functions, hence 〈O(0)O∗(x)〉 vanishes at large distances. Now consider a real
operator Φ=O+O∗. Its 2pt function is given by

〈Φ(0)Φ(x)〉 ∼
1

r2∆
+

1
r2∆∗

=
2 cos(2b log r)

r2a
, (B.2)

where a = Re∆, b = Im∆. If b ̸= 0, there are distances at which 〈Φ(0)Φ(x)〉 < 0. This
contradicts reflection positivity.

B.2 Merger curve and bifurcation theory

As discussed in the introduction, both the NPRG and the ε-expansion predict a monotonic
single-valued curve N = Nc(d), while some fixed-dimension (FD) RG schemes predict a more
complicated S-shaped curve (see Fig. 2).
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As was emphasized by [69], the curve along which two fixed points (for us, C+ and C−)
merge and annihilate (the merger curve) corresponds to a saddle-node bifurcation in the space
of RG flows. This bifurcation is known to be a stable codimension-1 bifurcation for any num-
ber of parameters. In particular, for the 2-dimensional parameter space (d, N), we expect the
saddle-node bifurcation to occur, generically, along a smooth 1-dimensional line in the param-
eter space. Nothing can be predicted about the shape of this line on the basis of bifurcation
theory alone. Our merger curve could as well be monotonic or S-shaped.

However, FD not only predicts the S-shape of the merger curve, but also focus fixed points.
How can the appearance of focus fixed points be accommodated by bifurcation theory? A hint
can be found in [83] which points out the existence on the merger curve of a special point S
where both eigenvalues of the stability matrix vanish: ω1 =ω2 = 0, whereas at generic points
on this boundary only one eigenvalue vanishes. Using this hint, we identify the point S as a
Bogdanov-Takens (BT) bifurcation [84]. It is a codimension-2 bifurcation with the property
that the stability matrix (for two dimensional flows) has the form:

�

0 A
0 0

�

, A ̸= 0 . (B.3)

By a change of coordinates, the BT bifurcation flow can be brought to the normal form:

ẏ1 = y2 , (B.4)

ẏ2 = β1 + β2 y1 + y2
1 +σy1 y2 ,

where σ = ±1. In what follows we consider σ = +1.28 Here y1, y2 should be thought of as
coordinates in the u, v space near the point S, while β1,β2 are coordinates in the parameter
space (d, N) near (dS , NS). In the new coordinates, the point S is realized for β1 = β2 = 0 and
is located at y1 = y2 = 0.

The phase portraits of RG flows around the BT bifurcation are shown in Fig. 15.29 To
the right of the point S, at β1 > β

2
2/4, we have region 1⃝, in which there are no real fixed

points. In terms of N and d this is the region delineated by the merger curve, on which S
is a distinguished point. Rotating countercklockwise, we cross the part of the merger curve
labeled T+ beyond which two fixed points appear, one stable and one unstable. So far this is
just a saddle-node bifurcation, but if we go a bit further we cross a new curve L+ on which a
stable node-to-spiral transition happens (the two real eigenvalues ω1,ω2 collide and go into
the complex plane).30 In region 3⃝ we have a saddle and a stable spiral. Rotating further
still, we reach curve P, where a (global) saddle homoclinic bifurcation happens. Namely, on
P we have a homoclinic orbit which encircles the stable spiral fixed point and joins the saddle
point to itself. On the other side of P, in region 4⃝, the homoclinic orbit turns into an unstable
cycle which limits the basin of attraction of the stable fixed point (which is still a spiral). This
unstable cycle shrinks to a point on line H (the Andronov-Hopf bifurcation), and in region 5⃝

28σ = −1 is obtainable by flipping the sign of y2 and t. Flipping the sign of t would turn stable foci into unstable
ones, which is not what we need.

29Many of these features were mentioned in [83], however the identification with the BT bifurcation is made
here for the first time. Previously, BT bifurcations were found in perturbative RG flows of a scalar-fermion model
in d = 3− ε dimensions with O(N)×O(M) symmetry, φ6 interactions, and N = 1 supersymmetry, for noninteger
values of N and M [86].

30Near S, curve L lies very close to curve T, its equation being

β1 = 8β2 + (16− 2β2)
Æ

4− β2 − 32= β2
2 /4− β

4
2 /1024+O(β5

2 ) .

The distance between L and T was artificially increased in Fig. 15 for readability. It is significant that region 2⃝
(as well as region 6⃝), where all exponents are real, is non-empty. Indeed, the direct annihilation of a spiral and
a saddle is non-generic. The spiral has to first turn into a node, and only then annihilate. Region 2⃝ grows as one
gets further away from S, see e.g. [87].
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Figure 15: Phase portraits of RG flows in the vicinity of a BT bifurcation. See similar
figures in [84] and [85], Fig. 137. Compared to [84], we added the lines L± which
are the loci of the spiral to node transitions. (Note that these are technically not
bifurcations but they are physically important.)

we have an unstable saddle and an unstable spiral. The unstable spiral turns into an unstable
node along L−. Finally, the unstable node and the saddle merge and annihilate on T−.

B.3 Further problems of focus fixed points

Using the previous subsection, we can point out the following further problems raised by focus
fixed points. A basic principle of RG theory is the gradient flow property (see footnote 5), which
says that the beta function equations should have the form

β I = G I J∂JA , (B.5)

where A is a scalar function of the couplings and G I J is a symmetric, positive-definite metric in
the coupling space. This property is widely expected, although not yet proven. This property
was originally found to hold up to three loops in a general multiscalar model in d = 4− ε di-
mensions [15,16]. In d = 4 dimensions, a weaker form of the gradient flow property is proven
to all orders of perturbation theory [88], where the metric G I J may have an antisymmetric part
starting from four loops (it is not known if the antisymmetric part actually occurs).31 Later the
stronger form of the gradient property, with a symmetric metric, was checked at four loops [89]
and, very recently, at five and six loops both in d = 4 and d = 4− ε dimensions [17], using
the six-loop beta function computed in [18].

If the gradient flow property holds, the fixed points are identified with the critical points
of the potential function A. The stability matrix at a fixed point is then given by:

Γ I
K = ∂Kβ

I = G I J∂J∂KA . (B.6)

31It is also recognized that for the property to hold, the beta function should be computed in a particular “gauge”,
where it is known as the B-function [88]. The B-function fixed the beta-function ambiguity which exists in any
multi-field theory, in which a renormalization group step can be accompanied by an infinitesimal rotation in the
field space.
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Although this stability matrix is not necessarily symmetric, it is a product of two symmetric
matrices. The eigenvalue problem Γ I

K vK = λv I for the stability matrix is equivalent to the
generalized eigenvalue problem

(∂J∂KA)vK = λGJK vK . (B.7)

This implies that all eigenvalues λ must be real. This excludes focus fixed points.
Another consequence of the gradient flow property is that A changes monotonically along

the RG flow:32

Ȧ= −β I∂IA= −G I J∂IA∂JA< 0 . (B.8)

This excludes cyclic RG flows. We have seen in the previous section that the RG flow diagram
around a BT bifurcation contains RG cycles in region 4⃝ - a further conflict.

Our final remark concerns the fact that focus fixed points appear when two correction-
to-scaling critical exponents ω1, ω2 collide and then go to the complex plane. This happens
along the curve L in Fig. 15. Such level crossings between scaling dimensions of operators
having the same symmetry are normally not allowed without finetuning. See [58, 90, 91] for
recent discussions.

All of the above reasons lead us to believe that the focus type chiral fixed points found
in [11–14] are artifacts of uncontrolled resummations. For previous exchanges on the contro-
versy surrounding focus fixed points in the context of the O(N)×O(2) model, see [4, 10, 92,
93].33

C Conformal invariance of multiscalar models

In this appendix we recall why multiscalar fixed points are believed to be conformally invariant
and not just scale invariant. The multiscalar fixed points in any d are local, i.e. they have a
local conserved stress tensor Tµν of scaling dimension d. The condition for a local fixed point
in d > 2 to be scale invariant without being conformal is that the trace of the stress tensor be
a divergence of a local vector operator Vµ known as a virial current [95]

Tµµ = ∂µVµ , (C.1)

where Vµ ̸= Jµ + ∂νLµν with Jµ a conserved current (∂µJµ = 0) and Lµν = Lνµ. Here and
below, we do not keep track of the terms in Tµµ which vanish by the equations of motion.

Since scaling dimensions of non-conserved vector operators are not protected, we do not
generically expect an interacting fixed point to have a virial current candidate of precisely
dimension d − 1 so that it can appear in the r.h.s. of (C.1). Hence generically scale invariance
in presence of interactions implies conformal invariance [96,97].34

For multiscalar fixed points one can also give an argument not relying on the genericity as-
sumption. The argument below is in perturbation theory in d = 4−ε dimensions (to all orders
in ε). Consider a multiscalar theory of n real scalar fields with a general quartic interaction:

1
4!
λi jklφiφ jφkφl =: λIOI . (C.2)

Here we introduced the notation λI for all couplings. The stress tensor trace along the RG
flow has the form

Tµµ = β
IOI + ∂µJµv + ai j∂

2(φiφ j) , (C.3)

32This would hold even if G I J → G I J + B[I J] in (B.5), as the antisymmetric part B[I J] drops out.
33It has also been reported to us that these problematic fixed point also have unstable quartic potentials, which

would be yet another reason to discard them [94]. We thank Marco Serone for discussions.
34Some interacting models with scale invariance without conformal invariance do exist [98–100]. They all have

an additional noncompact “shift” symmetry which protects the virial current dimension [100].
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where β I = dλI/d logµ is the beta function, and Jµv is a flavor current associated with the O(n)
Lie algebra element v, Jµv = vi jφi

←→
∂µφ j . The last term ai j∂

2(φiφ j) corresponds to “improvable
terms” [95] and we will omit it in the discussion below since by itself it does not preclude the
theory from being conformal.

At the fixed point we have βI = 0. It looks like the theory may not be conformal if the
second term ∂µJµv appears in (C.3) with a v corresponding to a broken generator of O(n). We
do not know of a completely general argument to all orders in ε that this may not happen. For
arguments at low orders in perturbation theory see [95,101].35

An all-order argument can however be given for fixed points with a sufficiently large sym-
metry group G ⊂ O(n). Namely, suppose that the representation in which the broken currents
transform does not contain a singlet. Then, since the stress tensor is a singlet, the broken cur-
rents cannot appear in the r.h.s. of (C.3), and scale invariance implies conformal invariance.

For the O(N) × O(2) model studied in this paper, the broken currents transform in the
bifundamental representation, and the above argument applies.

D 1/N expansion

We review here the 1/N expansion of model (1) [1,102–104], and compute the leading 1/N
correction to the dimension of ST′. The Lagrangian in the form relevant to the large-N expan-
sion reads [104]

L= 1
2
(∂µφ)

2 +
1
2
σφaiφai +

1
2

Ti jφaiφa j −
σ2

16u+ 4v
−

1
8v

Tr T2 , (D.1)

where we introduced two auxiliary fields σ and Ti j . They are scalars belonging to the SS and
ST irreps, and they morally replace φ2 and φaiφa j −

1
2φ

2δi j . They have scaling dimensions

∆σ,∆Ti j
= 2+O(1/N) , (D.2)

in any d, in contrast with the classical dimension ∆= d −2 of the fields they replace. Scaling
dimensions and OPE coefficients may be obtained as expansions in 1/N , the coefficients of
these expansions being computable by standard diagrammatic techniques.

At large N , all four fixed points on the left of Fig. 1 exist. They are distinguished by which
of the auxiliary fields propagate: at G, of course none does; at H, only σ does, leading to the
well known 1/N expansion of the O(N) model; at C−, only Ti j propagates; and finally, both
auxiliary fields propagate at C+. The difference in field content between C+ and H leads to
an appreciable difference between the large-N spectrum of both theories, the most obvious
differences being in the scalar ST sector. At C+, OST = Ti j , followed by two subleading fields
OST′ and OST′′ with∆= 4+O(1/N) resulting from the mixing of (T2)i j−

1
2 Tr T2δi j and σTi j .

In contrast, Ti j is absent at H, so that OST = φaiφa j −
1
2φ

2δi j , followed by OST′ = σOST with
∆= d +O(1/N).

Although imposing a gap of the order of d − 2 in the ST channel might have been enough
to differentiate between both theories, we have found more constraining power by assuming
the existence of OST, and imposing a gap above it. To motivate the value of this gap, it helps to
know the 1/N correction to the dimension of OST′ in H and C+. In H, this operator descends
from the subleading symmetric traceless 2-tensor operator of O(N), which has been computed
long ago in [105]:

∆ST′ =∆
(1)
ST′ +O(1/N2) , ∆

(1)
ST′ = d −

2
�

d2 − 3d + 4
�

Γ (d − 1)

Γ
�

1− d
2

�

Γ
� d

2 + 1
�

Γ
� d

2

�2

1
N

. (H) (D.3)

35S.R. thanks Yu Nakayama, Hugh Osborn and Andy Stergiou for discussions.
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In C+, this computation requires resolving the mixing problem between OST′ and OST′′ .
Ref. [106] gives a nice and concise description of the procedure to follow to compute anoma-
lous dimensions of composite operators at large-N . The example provided in this paper lists
and explicitly computes all diagrams contributing to the anomalous dimension of σ2 in the
O(N)model. Since C+ differs from H by the addition of a new Ti j propagator as well as a new
Tφφ vertex [102]:

Ti jφakφbl −→ δabKi jkl ,

Ki jkl =
1
2

�

δikδ jl +δilδ jk −δi jδkl

�

,
(D.4)

it should be clear that we can recycle some of the results of [106]. Indeed, the diagrams
contributing to the renormalization of (T2)i j − trace and σTi j will have the same geometry as
those contributing to σ2. Here is an example of such a diagram arising in the computation of
the anomalous dimension of σ2:

σ2

φ

σ
(D.5)

One can think of this diagram as computing the renormalization ofσ2 by considering the three
point function 〈σ2σσ〉. Diagram (D.5) has the following two nonzero cousins in C+ :

Tσ K
T

T 2 (D.6)

These are determinable from Diagram (D.5) up to O(2) group structure factors, coming from
Ti j propagators and Tφφ vertices, and differences in symmetry factors. There is luckily no
need to compute any loop integrals. After the dust settles, the leading order anomalous di-
mensions of this mixing problem are given by36

γ1 =
4(12− 22d + 13d2 − 2d3) sin

�

πd
2

�

Γ (d − 2)

πdΓ
� d

2 − 1
�

Γ
� d

2

�

1
N

,

γ2 =
2d−3(24− 28d + 5d2 + d3) sin

�

πd
2

�

Γ
� d−1

2

�

π3/2Γ
� d

2 + 1
�

1
N

.

(D.7)

The scaling dimensions of OST′ in C+ is then given by

∆ST′ =∆
(1)
ST′
+O(1/N2) , ∆

(1)
ST′
= 4+min(γ1,γ2) +O(1/N2) . (D.8)

E ε-expansion results

E.1 Nc(d)

In the ε-expansion, the location (u∗, v∗) of fixed points and critical exponents in d − 4 − ε
are obtained as asymptotic series expansions in ε. To locate the critical value of N where C+

36We checked this result by comparing it at O(ε, 1/N) to the anomalous dimensions of the corresponding oper-
ators in the ε-expansion. These do not seem to have been previously computed, but they are easily obtained using
the OPE method described e.g. in [54].
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merges and annihilates with C−, one can ask that the location of both fixed points coincide:

u∗−(ε, Nc(4− ε)) = u∗+(ε, Nc(4− ε)) , (E.1)

v∗−(ε, Nc(4− ε)) = v∗+(ε, Nc(4− ε)) . (E.2)

Equivalently, one can look for the value of N at which the critical exponent ω, related to the
scaling dimension of the subleading SS scalar, is zero:

ω±(ε, Nc(4− ε)) = 0 . (E.3)

In both cases, one obtains Nc(4 − ε) as a series expansion in ε. We have ( [6], Table I, first
line)37

Nc(4− ε) = 21.798− 23.431ε+ 7.0882ε2 − 0.0321ε3 + 4.2650ε4 − 8.4436ε5 +O(ε6) . (E.4)

This series is divergent, and to obtain the best possible estimate of Nc(d) one would need to
resum it. There are many ways to do so, see [6] for investigations on how to do so optimally.
Here we used the method of [6], Eqs. (25),(26) which goes back to [107], Eq. (7). Rather
than working with the original series, we first input the expected d = 2 behavior:

Nc(4− ε) = 2+ (2− ε) a(ε) , (E.5)

and then expand 1
a(ε) . The coefficients of the series for 1

a(ε) are better behaved than those
of the original series, and we sum it directly, using the contribution of the last term as the
error estimate. The so obtained Nc(d) will be denoted Nεc (d). This method is simple and
gives results in good agreement with other methods, based on Padé and Borel resummation as
in [6]. This procedure was also used to compare the ε-expansion to the results of the NPRG
in [108].

E.2 Scaling dimensions

In several parts of the paper we referred to the values of the critical exponents evaluated in
the ε-expansion. We first explain the general methodology used in the literature [6,66,102].

The ε-expansion is easiest performed for N > Nc(4) = 4(3+
p

6). In this range of N the
fixed point couplings, and therefore the critical exponents, can be expanded as (asymptotic)
power series in integer powers of ε with real, N -dependent, coefficients. However in several
places in this paper we need the critical exponents for N < Nc(4). In this range of N we
cannot simply use the series computed for N > Nc(4), since those series have some coefficients
proportional to

p

N − Nc(4), and become complex for N < Nc(4).
At the formal level, what is happening is that the assumption of expanding the couplings

in integer powers of ε breaks down for N = Nc(4) − O(ε). One can see for example that
for N = Nc(4− ε) given by (E.4) the fixed point couplings have an expansion in half-integer
powers. On general grounds, we expect that for N = Nc(4−ε)+δN with δN > 0, the critical
exponents should have dependence on δN involving positive half-integer powers. We can
determine this expansion in δN by substituting N = Nc(4−ε)+δN into the series derived for
N > Nc(4), and reexpand in ε. This was proposed below Eq.(3.29) of [102], referred there as a
“trick”, although it’s not a trick but a mathematically legitimate way to match two asymptotic
expansions with overlapping ranges of validity. As a consistency check, one observes that
all terms involving negative half-integer powers of δN , which could appear a priori when
expanding
p

δN +O(ε) in ε, cancel order by order in the expansion in ε.

37The first two terms are given exactly by 12+4
p

6−(12+14
p

2/3)ε. This is useful for checking the cancellation
of 1/

p
δN singularities in the reexpansion of critical exponents discussed in Appendix E.2.
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One thus obtains critical exponents as a series in ε (with integer powers) with coefficients
real functions of δN with at most positive square-root singularities at δN = 0. Substituting,
for a given N , δN = N − Nεc (d) where Nεc (d) is as in Appendix E.1, we get critical exponents
as a series in ε with numerical coefficients. For small ε, these series can be used by directly
summing the first few terms. For larger ε, such as in d = 3, these series need to be Borel or
Padé resummed to be useful.

We now give precise references to sources for each figure.
In Fig. 5, to position H,C± we used expansion of critical exponents listed in the ancillary

file of [25]. This corresponds to order ε3 for ∆φ and to order ε2 for ∆SS and ∆ST. In their
conventions:

• ∆φ is deltaPhiChiralEps (C+), deltaPhiAntiEps (C−), deltaPhiONEps (H)

• S≡ SS and W≡ ST

• ∆SS, ∆ST is deltaScalarsChiralEps[[i]] (C+), deltaScalarsAntiEps[[i]]
(C−), deltaScalarsONEps[[i]] (H), where i = 1,2 for ∆SS, ∆ST.

As described above, we substitute N = Nc(4 − ε) + δN , reexpand in ε, and subsitute
δN = N − Nεc (d). Since we are at small ε= 0.2, the resulting series is simply summed.

In Fig. 7, we obtained, as described in the previous paragraph, ∆φ ,∆SS and ∆ST at the C+
fixed point as a series in ε, to order ε2 for∆SS and∆ST and to order ε3 for∆φ , with coefficients
depending on δN . We plugged ε= 0.2 and plotted the resulting function, too bulky to report
here, as a function of δN = N − Nεc (3.8).

In Fig. 6, since we are dealing with ε = 1, the ε-expansion series from [25] are too short
to be useful, and anyway they would have to be resummed. Fortunately for C+ this has been
done elsewhere in the literature, so we borrow the available results. Thus, for C+, we ex-
tract the scaling dimensions of φ and SS from the n = 8 “Final” values of η = 0.042(2) and
ν = 0.745(11) in Table 9 of [6]. These critical exponents are related to the scaling dimen-
sions as ∆φ =

d−2
2 +

η
2 and ∆SS = d − 1

ν . ∆ST for C+ was obtained from the critical exponent
y4 = 1.13(8) in the MS scheme of Table III of [66]. The two are related as ∆ST = 3 − y4.
We have not found in the literature equally precise resummed estimates for C−, or for H (at
N = 8 that we need for Fig. 6). For them, we used the large-N results at the highest known
order. For C−, this is 1/N order, and the results are tabulated in the ancillary file of [25]. For
H, ∆φ is known to order 1/N3 [109], and the other two to order 1/N2 [110,111]. The three
are nicely tabulated in the ancillary file of [112].

In Fig. 6, since we are dealing with ε = 1, the ε-expansion series has to be resummed to
be useful. Fortunately for C+ this has been done elsewhere in the literature, so we borrow the
available results. Thus, for C+, we extract the scaling dimensions of φ and SS from the n = 8
“Final” values of η = 0.042(2) and ν = 0.745(11) in Table 9 of [6]. These critical exponents
are related to the scaling dimensions as ∆φ =

d−2
2 + η2 and ∆SS = d − 1

ν . ∆ST for C+ was
obtained from the critical exponent y4 = 1.13(8) in the MS scheme of Table III of [66]. The
two are related as∆ST = 3− y4. We have not found in the literature equally precise resummed
estimates for C−, or for H (at N = 8 that we need for Fig. 6). For these cases, we instead used
the large-N results at the highest known order. For C−, this is 1/N order, and the results are
tabulated in the ancillary file of [25]. For H, ∆φ is known to order 1/N3 [109], and the other
two to order 1/N2 [110,111]. The three are nicely tabulated in the ancillary file of [112].
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F Numerical bootstrap details

F.1 The navigator method

The central problem in the numerical conformal bootstrap is classifying parameter space into
allowed and disallowed regions. With the navigator function technology [49] this is done by
splitting the problem into two steps. First step: look for an allowed point by minimizing the
navigator N (x) from a starting point x0. In Appendix F.4 we will show how to construct a
navigator function for the class of numerical conformal bootstrap problems that we consider
in this paper. We recall that this function should be negative for allowed values of x , positive
for disallowed values, and zero at the boundaries between these regions. It should also be
differentiable.

Once an allowed point x∗ is found, the second step is: look for the boundaries of the al-
lowed region around x∗ which is the zero set of the navigator. Both steps can be phrased as
non-convex optimization problems, and algorithms for solving them were given in [49]. A
particular second-step problem concerns finding the maximal extent of the allowed region in
a fixed direction, which can be phrased as

maximize nT x over all x such that N (x)⩽ 0 . (F.1)

Here n is a vector describing the direction in parameter space that we want to maximize, while
still remaining in the same isolated allowed region to which x∗ belongs.

As in the main text, we generally suppress the dependence of the navigator function on
any parameters that are held fixed in the optimization process (like d and N in some cases).

F.2 Details for Figs. 5 and 6

The above strategy is precisely how the islands in Figs. 5 and 6 were “boxed in.” First we
located an allowed point in each isolated allowed region, by minimizing N (x) starting from
many initial starting points. Subsequently, within each islands we determined the minimal
and maximal allowed values for all three parameters∆φ ,∆SS,∆ST that the navigator function
depends on.

We stress again that the optimizations problems encountered in both steps are non-convex.
In the first step, the navigator N (x) has multiple minima. All navigator minima which we
observed in our searches, starting from many initial points, fell into one of the following three
categories:

1. A negative minumum in one of the isolated allowed regions corresponding to an allowed
physical CFT (like H or C+).

2. A negative minimum near the location of a CFT that is (barely) excluded by the bootstrap
assumptions, like C− in Section 3.1.

3. As the parameters N and gapST0 vary, some of the isolated allowed regions may disap-
pear, but the corresponding minima may still remain, although they are now positive.

In this sense, all seen navigator minima were related to either a CFT satisfying the bootstrap
assumptions or a CFT that “nearly” obeys the bootstrap assumptions.

In the second step, when finding the boundaries of the islands, non-convexity again plays
a role. By extremizing from multiple different points and in additional directions n⃗ we found
that at certain derivative orders Λ the isolated allowed regions are not convex. Specifically for
some Λ and for some gapST0, we detected a narrow “bridge” between the C+ and H islands.
However, we ascertained that for the Λ and gapST0 used in Fig. 5 and Fig. 6 no such bridge
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Table 2: Parameters for skydive.

Λ 31
κ 30

order 120
spins {0, . . . , 40} ∪ {46,47, 51,52, 55,56, 59,60}

precision 768
dualityGapThreshold 10−20

primalErrorThreshold 10−15

dualErrorThreshold 10−15

initialMatrixScalePrimal 1020

initialMatrixScaleDual 1020

feasibleCenteringParameter 0.3
infeasibleCenteringParameter 0.3

stepLengthReduction 0.7
maxComplementarity 10100

dualityGapUpperLimit 0.2
externalParamInfinitestimal 10−40

findBoundaryObjThreshold 10−20

betaScanMin 0.3
betaScanMax 1.01
betaScanStep 0.1

stepMinThreshold 0.1
stepMaxThreshold 0.6

primalDualObjWeight 0.2
navigatorWithLogDetX False

navigatorAutomaticShift False
gradientWithLogDetX True

betaClimbing 1.5
optimalbeta False
stickToGCP False

exists. To check this we extremized from different starting points and in additional directions
n⃗, including from starting points in each isolated allowed region in the direction of the other
allowed regions.

F.3 The skydive algorithm

For initial explorations of plots like in Figs. 5 and 6, up to Λ = 27, we used Algorithm 1
(for the first step) and Algorithm 2 (for the second step) from [49]. For the final computa-
tions at Λ = 31 we instead used the skydive algorithm [50]. Both of these methods use
a BFGS-like quasi-Newton method. The algorithms from [49] required computing the exact
navigator function N (x) at each point x along the minimization path. The skydive algorithm
operates instead with an approximate navigator function Nµ(x) where µ is an internal SDPB
parameter which can be thought of as describing the accuracy of the approximation. We have
limµ→0 Nµ(x) = N (x). In skydive, µ is lowered gradually as the minimization progresses.
As a result the total minimization cost in skydive is comparable to a single evaluation of the
navigator function. This algorithm offered a significant speed-up, allowing us to use Λ = 31
for most of our results, and even use Λ= 43 in some checks.

In skydive, the navigator function and its derivative are sometimes estimated poorly in
the early steps when µ is large, which can degrade the performance. To mitigate this, it is
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essential to choose an appropriate value for the dualityGapUpperLimit. This value sets an
upper limit on µ for each step, which ensures that the approximation of the navigator function
is good enough to guide the search towards the minimum of the true navigator function N (x).
Setting this value too small leads to a slow search, while setting it too large often results in
the search steering off towards the allowed “peninsula” at large external dimensions, despite
being in the region of attraction of another minimum of the true navigator. In the first step
problem, we found the value of 0.05 to be effective for searches starting relatively far from the
allowed point, while 0.005 is appropriate for searches starting close to the navigator minimum
(the same holds for searches of the second step).38

The complete workflow was as follows. We used scalar_blocks [113] to generate con-
formal blocks; simpleboot [75] to setup the semi-definite problems and to manage the com-
putations on the cluster; either SDPB [35,37] to solve the SDPs (i.e. to compute the navigator
function) and BFGS-like Algorithms 1 and 2 from [49] (implemented in simpleboot) to move
in the parameter space, or the new skydive to perform the last two steps at once [50]. These
codes depend on a number of parameters that must be set by the user, the most crucial being
the derivative order Λ that dictates the dimension of the space of functionals SDPB will search
in. For the most important computations at Λ = 31 we used skydive, with the parameters
given in Table 2.

F.4 Constructing the navigator function

In order to start applying the navigator method in Section 3.1, we have to first make a choice
of the particular navigator function we are going to use. Ref. [49] introduced two different
navigator constructions: the GFF navigator and the Σ navigator. For the entirety of the paper,
we chose to work with the GFF navigator, which has an advantage of a natural normalization
and an upper bound: N (x)⩽ 1. Say we are considering a given set of crossing equations

E⃗(x) = 0 , (F.2)

depending on a set of parameters x , usually scaling dimensions or ratios of OPE coefficients.
We add a term λM⃗add to this crossing equation such that the augmented crossing equation

E⃗(x) +λM⃗add = 0 , (F.3)

always has a solution for some positive λ. The navigator function is defined [49] as the min-
imal value of λ for which a solution exists. Different terms M⃗add lead to different navigator
functions. The GFF navigator function is obtained by adding the contribution of every op-
erator below the assumed gaps from a solution where each external field is an independent
generalized free field (GFF). This idea is completely general and was already used to study the
Ising model [49] and the O(N) model [60].

Here we use it for O(N)×O(2) symmetric CFTs. We have chosen the additional terms to
correspond to the solution to crossing where φ is an O(2N) GFF, and s is another, indepen-
dent GFF. The O(2N) invariant GFF solution for φ also has the symmetry of its O(N)×O(2)
subgroup, and thus solves the O(N) × O(2) crossing equation. To explicitly write M⃗add in
this case, we need to know how operators in the O(2N) invariant solution decompose under
O(N)×O(2). The nontrivial decomposition rules (including the weights in the conformal block
decomposition) are:

T→
1
2

TT+
1
2

AA+
1
2

TS+
1
N

ST , (F.4a)

A→
1
2

AT+
1
2

TA+
1
2

AS+
1
N

SA . (F.4b)

38This choice of course strongly depends on the normalization of the navigator functions that is used. Here we
are assuming a navigator function that has been normalized to be bounded by 1.
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The terms in the r.h.s. are the irreps XY of O(N)×O(2) appearing in the decomposition of irreps
T, A of O(2N). The coefficients multiplying them are the relative weights needed to pass from
the O(2N) invariant conformal block decomposition of 〈φφφφ〉 to the O(N)×O(2) invariant
one. These are obtained as follows. Consider the O(2N) generalized free field φI ≡ φai . Its
4pt function decomposes into contributions of the different O(2N) irreps R present in the
φI ×φJ OPE, weighted by tensor structures:

〈φIφJφKφL〉 ≡ 〈φaiφb jφckφdl〉= TS
I JK LGS+ TT

I JK LGT + TA
I JK LGA ; (F.5)

TS
I JK L = δI JδK L ≡ δi jδklδabδcd ,

TA
I JK L = δIKδJ L −δI LδJK ≡ δikδ jlδacδbd −δilδ jkδadδbc ,

TT
I JK L=δIKδJ L+δI LδJK−

2
2N
δI JδK L≡δikδ jlδacδbd+δilδ jkδadδbc+

2
2N
δi jδklδabδcd .

(F.6)

We obtain the branching rules (F.4) by decomposing these tensor structures in terms of prod-
ucts TX

i jklT
Y
abcd , where XY is an irrep of O(N)×O(2) appearing in the decomposition of R.

F.5 Minimum-following for Fig. 3

As explained in Section 3.2, finding the minimal allowed value of N for Fig. 3 can be seen as
a second-step optimization problem for the navigator function depending on N as the extra
fourth parameter. We used the skydive algorithm at Λ= 31 to solve this problem.

The initial points for the skydive algorithm were obtained using an auxiliary run at
Λ = 19, using the following different strategy inspired by [60], which we call “minimum-
following.” In this strategy we first minimize the navigator function with respect to the pa-
rameters x = (∆φ ,∆SS,∆ST). We then track the location of this minimum as we vary N and
d.

In this section we write N (x , N , d) to emphasize that our algorithm also moves us around
in N and d.

For example, suppose we start at an allowed value of p where N ≫ Nc(d), so at the mini-
mum xmin(N , d) we find that the navigator function is negative:

N (xmin(N , d), N , d)< 0 . (F.7)

If we now decrease N we can follow this minimum until we reach Nc , where N = 0. Then,
once we have found this Nc at some value of d, we may follow this extremum Nc as we change
d from say d near 4 to d = 3.

When we have minimized the navigator function over its internal parameters x , with N
close to Nc(d), we can predict the shape of Nc(d) by solving the following equation

N (xmin +δxmin, N +δN , d +δd) = 0 (F.8)

to first order in δN and δd. Note that the linear term in δxmin vanishes because we are at
the navigator minimum. For example, if we are at a fixed d (so δd = 0), we can step towards
Nc(d) by taking the step

δN = −
N (xmin, N , d)
∂N
∂ N (xmin, N , d)

, (F.9)

which is the Newton step following from the first-order expansion of (F.8). The partial deriva-
tive in the denominator can be computed via finite differences or with the SDP gradient formula
of Section 4 of [49]. Then, once we have determined Nc at this d, we can take a step δd. To
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remain on the critical curve Nc(d) we should take a corresponding step δN = N ′c (d) × δd,
where from (F.8):

N ′c (d) = −
∂N
∂ d (xmin, N , d)
∂N
∂ N (xmin, N , d)

. (F.10)

This minimum-following method has advantages and disadvantages which make it comple-
mentary to the direct method based on extremizing the 4-variable navigator island in the N
direction. By construction, it sticks close to the navigator minima, thus exploring less pa-
rameter space. This is both a positive, since the searches are less likely to be attracted by
another unimportant navigator minimum, such as the peninsula, but also a downside, since
it might miss important minima not connected smoothly enough to previous minima. The
direct method proved less robust, as it sometimes makes too large a step and escapes from
the region of interest (the C+ island) to disconnected regions like the H island or the penin-
sula. However, when successful, the direct method is more computationally efficient. Also,
the direct method can be parallelized, running separate computation for several d ’s, while the
minimum-following method cannot be easily parallelized as it explores the shape of the curve
Nc(d) locally in d.

In the end, both methods proved useful. We first used minimum-following to find the entire
curve Nc(d) for Λ= 19 and some particular set of gap assumptions.39 To move to higher Λ as
in Fig. 3, we used the allowed points of zero navigator obtained from minimum-following to
initialize parallel skydive computations of Nc(d) for the 9 values d = 3.0,3.1, . . . , 3.8.

F.6 Gap sensitivity

We finish this appendix by reporting some tests concerning the impact of gap assumptions
(7b)-(7d) on Nc(d). Since we have chosen them very conservatively, Nc(d) should not depend
much on them. This is indeed what we observe. More precisely, we see that varying these gaps
has a moderate effect on the shapes of the island, but a much smaller effect on the value of
Nc(d). E.g. we see that NCB

c in d = 3.8 varies by 0.02 when varying the gaps above the stress
tensor and the conserved currents between 0.7 and 1.2 (these gaps are set to 1 in (7b)-(7d)).

A similar remark concerns the gapVV0 assumption (9). We observed (again in d = 3.8)
hardly any effect on NCB

c (d) when we varied gapVV0 between 1.7 to 2.5. On the other hand
the negative navigator minimum disappeared when we set this gap to a much larger value
gapVV0 = 3.2. This behavior is consistent with the estimates ∆VV′ ≈ 2.7−2.9 in d = 3.8 from
(8).

Finally, the dependence of the bounds in d = 3 on gapST0 was discussed around Fig. 9 in
the main text.
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