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Abstract

We demonstrate that rotation symmetry is not a necessary requirement for the existence
of fractional corner charges in Cn-symmetric higher-order topological crystalline insula-
tors. Instead, it is sufficient to have a latent rotation symmetry, which may be revealed
upon performing an isospectral reduction on the system. We introduce the concept of
a filling anomaly for latent crystalline symmetric systems, and propose modified topo-
logical invariants. The notion of higher-order topology in two dimensions protected by
Cn symmetry is thus generalized to a protection by latent symmetry. Our claims are cor-
roborated by concrete examples of models that show non-trivial corner charge in the
absence of Cn-symmetry. This work extends the classification of topological crystalline
insulators to include latent symmetries.
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1 Introduction

Topological phases of matter have been extensively studied and form a cornerstone of con-
densed matter physics. These phases were originally understood in the framework of the
celebrated Altland-Zirnbauer classification for non-interacting systems [1]. It considers the
presence of time-reversal, particle-hole, and chiral symmetry to obtain 10 symmetry classes
for topological insulators (TIs) and superconductors. It was also realized that there are var-
ious relationships between the classes in different dimensions, leading to what is called the
ten-fold way [2]. Later, there have been various extensions that lie outside the original Altland-
Zirnbauer classification. Examples are Floquet topological materials [3], disordered mate-
rials/topological Anderson insulators [4], non-Hermitian systems [5], and topological crys-
talline insulators (TCI’s) [6], to name a few. The latter are known to host quantized electronic
boundary states protected by the geometric symmetries of the crystalline system [6–9].

Of particular interest are higher-order topological (crystalline) insulators (HOTIs). While
‘conventional’ TIs in D dimension host states with codimension one on their D−1 dimensional
boundary, HOTIs host boundary states with a codimension d on their D−d dimensional bound-
ary. One way of realizing HOTIs is by considering materials with quantized higher multipole
moments in the bulk. Ref. [10] proposed a classification of materials with higher multipole
moments as an extension of the modern theory of electric polarization [11,12]. These systems
are now known to be topological and characterized in terms of nested Wilson loops. How-
ever, systems without a bulk multipole moment may still give rise to quantized edge or corner
states. Such systems are in a so-called obstructed atomic limit, a phase with a weaker topolog-
ical protection than in the conventional topological materials. This was further investigated
in Refs. [13, 14], where the presence of rotation symmetry leads to the definition of rotation
invariants to characterize the band topology. Energy spectra with different rotation invariants
cannot be deformed into each other without closing the bulk gap and are, therefore, topolog-
ically distinct. However, the protection and classification of these novel topological phases of
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matter require the presence of a geometric rotation symmetry. Additionally, the emergence
of these phases is independent of time-reversal, particle-hole, and chiral symmetries, making
them more vulnerable since rotational symmetries are more readily disrupted compared to
spectral symmetries.

Recently, a new type of symmetry, named latent symmetry, has been proposed [15, 16].
A latent symmetry only becomes apparent at the reduced level upon performing a suitable
dimensional reduction, the so-called isospectral reduction (ISR) [17]. In particular, seemingly
asymmetric Hamiltonians may feature latent geometric symmetries which have a strong impact
on the system’s eigenstates and eigenenergies [16, 18]. This connection has been used, for
instance, in the design of flat-band lattices [19], and to explain “accidental degeneracies”
in band structures [20]. Very recently, latent symmetries were also used to construct latent
versions of the Su-Schrieffer-Heeger (SSH) model [21] and of the non-Hermitian SSH model
[22].

In this work, we explore the implications of the existence of latent symmetries on the
classification of topological phases. Our main result is that the presence of a geometric rota-
tion symmetry is not a necessary constraint for obtaining the topological phases introduced in
Ref. [14]. Indeed, the requirement of a rotation symmetry can be relaxed to the less stringent
condition of a latent rotation symmetry.

The outline of this paper is the following. In Section 2, we introduce the concept of filling
anomaly in the context of the SSH model. We then relate this concept to the latent SSH model,
proposed in Ref. [21], discuss the ISR in more detail, and formalise the concept of latent crys-
talline symmetries. In Section 3, we review the topological classification of Cn-symmetric TCI’s
introduced in Ref. [14] and argue how the topological invariants should be modified for latent
symmetries. In Section 4, the notion of primitive generators is introduced, and the generators
proposed in Ref. [14] are generalized. We propose latent primitive generators that have no
direct rotation symmetry, but are latently rotation symmetric. The topological behaviour of
these generators is characterised in phase diagrams using topological rotation invariants. Us-
ing the generators, we construct examples of crystalline latent HOTIs in Section 5. Finally, we
conclude our work in Section 7.

2 Filling anomaly by latent symmetry

Crystalline symmetries impose restrictions on the distribution of electrons in a crystal. As a
consequence, it may not be possible to maintain charge neutrality everywhere in the lattice.
The simplest example of a model that exhibits this behaviour is the SSH model. Its Bloch-
Hamiltonian is given by

hSSH(k) =

�

0 v + eik

v + e−ik 0

�

, (1)

where the intracell hopping is denoted by v, the intercell hopping is fixed to 1, and k is the
dimensionless crystal momentum (we set the lattice constant a = 1). The SSH model exhibits
a mirror symmetry M , that is

MhSSH(k)M
−1 = hSSH(−k) , M =

�

0 1
1 0

�

. (2)

The presence of this mirror symmetry gives rise to two gapped phases, separated by a band
closing at |v| = 1. At half filling, the system is an insulator, and for periodic boundary con-
ditions (PBC), each unit cell hosts one electron. Overall, charge neutrality dictates that each
unit cell is composed of an ion with charge Q = |e|. For open boundary conditions (OBC),
without cutting through unit cells, the distribution of electrons depends on the phase. As a
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Figure 1: (a) Sketch of the SSH model in its trivial (|v|> 1) and topological (|v|< 1)
phase. In the trivial (topological) phase, Wannier centers localize in the center
(boundary) of the unit cell. (b) Spectrum of the SSH model for PBC (left) and OBC
(right), the OBC spectrum shows in-gap edge localized modes. (c) Latent SSH model
consisting of four sites with intra cell hoppings w (thin solid line) and

p
2w (thick

solid line). Upon performing an ISR, an energy dependent SSH model is obtained.
(d) Spectrum of the latent SSH model for PBC (left) and OBC (right). The OBC spec-
trum shows in-gap edge states for filling 1/4 and 3/4 in the topological phase.

consequence of mirror symmetry, the Wannier centers of the electrons can only be located at
either the center or the edge of a unit cell. For |v| > 1 (trivial phase), the Wannier centers
are located at the center of the unit cell and the system can be adiabatically connected to the
trivial atomic limit. On the other hand, when |v|< 1 (topological phase), the Wannier centers
sit at the edge of the unit cell and the system can be connected to its obstructed atomic limit.
The Wannier centers in both phases of the SSH model are shown in Fig. 1(a). In the trivial
phase, N electrons can be distributed symmetrically over N unit cells to yield charge neutrality.
However, in the topological phase, this is no longer possible. N unit cells can only be filled
in a symmetric manner using N − 1 or N + 1 electrons. Since mirror symmetry requires the
energies of the edge states to be degenerate [see Fig. 1(b)], increasing the Fermi energy yields
an increase of N − 1 electrons to N + 1 electrons, skipping N . This leads us to the notion of a
filling anomaly η [14], associated with a crystalline symmetry dividing the lattice in n sectors,
each spanning an angle of 2π/n rad, with n ∈ Z,

η= #ions−#electrons mod n . (3)

For the SSH model in the topological phase, we obtain η = N − (N + 1) mod 2 = 1. Mirror
symmetry distributes this charge imbalance over the two sides of the system, such that there
will be a fractional boundary charge of e/2 at the ends of the system. Consequently, the dipole
moment in the topological phase equals p = e/2, while it vanishes in the trivial phase.

2.1 Isospectral reduction and latent symmetry

Recently, Ref. [21] showed that although mirror symmetry leads to topological edge states in
the SSH model, its not a necessary constraint. Indeed, the requirement of preserved mirror
symmetry can be relaxed to preserved latent mirror symmetry. A latent symmetry is hidden
and only becomes apparent upon performing what is called an isospectral reduction (ISR)—
akin to an effective Hamiltonian—on the system [15]. Take a Hamiltonian H as a starting
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point. The Hilbert space on which it acts may be partitioned in a set S and its complement S.
The ISR RS(H, E) of H is then defined through

RS(H, E) = HSS −HSS

�

HSS − EI
�−1

HSS , (4)

where I is the identity matrix [17]. The ISR converts the linear eigenvalue problem Hψ= Eψ
into a reduced, albeit non-linear, eigenvalue problem RS(H, E)ψS = E ψS . For example,
consider the Bloch Hamiltonian

hLSSH(k) =









0 eik p2w 0
e−ik 0 w wp

2w w 0 0
0 w 0 0









, (5)

which is also depicted in Fig. 1(c) for OBC. By inspection, one can conclude that this Hamil-
tonian does not have a mirror symmetry. Nevertheless, upon performing an ISR over the red
sites, we obtain

RS[hLSSH(k), E] =

�

a(E) s(E) + eik

s(E) + e−ik a(E)

�

≡ hLSSH(k) , (6)

which bears a strong resemblance with the SSH model given in Eq. (1), though with energy-
dependent on-site potential a(E) = 2w2/E and coupling s(E) =

p
2w2/E. At the level of the

ISR, there is a mirror symmetry: MhLSSH(k)M−1 = hLSSH(−k).1 In other words, the system
given by Eq. (5) hosts a latent mirror symmetry, which is revealed through the ISR.

The main idea of this work is to employ latent symmetries to construct HOTIs. Before we
do so, let us discuss two important properties of latent symmetries and the ISR. Firstly, it has
been recently shown that the presence of latent symmetry also implies a certain (though in
general non-geometric) symmetry on the level of the original Hamiltonian [23]. Let us define
the eigenvalue problem Av= λv and let RS(A,λ) be the ISR of A. If there exist a symmetry T
that becomes apparent after the ISR, that is

TRS(A,λ)T−1 =RS(A,λ) , (7)

then there also exists a symmetry on the level of A of the form QAQ−1 = A, with Q = T ⊕Q,
where Q is a normal matrix that acts on S. Equivalently,

[T,RS(A,λ)]− = 0 ⇒ ∃Q = T ⊕Q : [Q, A]− = 0 , (8)

where [A, B]− = AB − BA denotes the commutator. Two points are noteworthy here.
Firstly, there is a strong connection between latent symmetries—symmetries of the isospec-
tral reduction—and symmetries of the underlying Hamiltonian. In particular, this connec-
tion implies that one can use the tools developed for conventional symmetries also to latent
ones. A good example is group theory and its connection to spectral degeneracies, which were
treated in Ref. [20]. Secondly, the symmetry Q corresponding to a latent symmetry T usually
has a rather complicated structure. In the latently symmetric systems presented in this work,
Q is a unitary transformation, whose action is2 not easy to interpert—as opposed to the action
of a geometric symmetry, which corresponds to a permutation matrix. We shall see examples
for this statement throughout the manuscript.

1For simplicity, from now on we will use h(k) instead of RS[h(k), E] to denote the ISR of h(k). The energy
dependence and reduction to S are implied.

2There is one exception to this statement: The isospectral reduction shown in Fig. 3(f) features a reflection
symmetry about a vertical axis that goes through the upper of the three sites; the corresponding symmetry Q of
the original setup [Fig. 3 (b)] is a permutation matrix.
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With some additional technical preface, a reasoning similar to Eq. (8) can be applied to
crystalline symmetries. Let us assume that our unit cell features a latent T symmetry (for
instance, Cn) that becomes apparent after performing an ISR to the set S of its sites, i.e.
[RS(H, E), T]− = 0. We then build a lattice such that (i) the ISR performed on the union
of sites S in all unit cells is T -symmetric, and (ii) intercell-coupling only exists between sites
S. It is now easy to show the following: If we denote the reduced Bloch-Hamiltonian of the
lattice by h(k), we find, analogous to Ref. [10],

Th(k)T−1 = h(DT k) , (9)

where DT is the representation of T on the vector space of reciprocal lattice vectors. For
example, mirror symmetry (T ≡ M) flips spatial coordinates, such that DM k = −k. The
analogue of Eq. (7) is then

�

T ⊕Q
�

h(k)
�

T ⊕Q
�−1
= h(DT k) . (10)

To make things more specific, let us now investigate the latent SSH model introduced in
Eq. (5). This model features a (1D) latent mirror symmetry: T = M = σx and DM k = −k.
The symmetry Q of hLSSH(k) is given by (details on the derivation of the matrix Q are given in
Appendix A)

Q = M ⊕Q =









0 1 0 0
1 0 0 0
0 0 1p

2
1p
2

0 0 1p
2
−1p

2









. (11)

The existence of Q is central to the analysis considered in this work. In this case, it acts as a
permutation on the red sites, but as a general orthogonal transformation on the other sites.
Importantly, since Q acts similarly on hLSSH(k) as an ordinary mirror symmetry would, that is
QhLSSH(k)Q−1 = hLSSH(−k), it poses the exact same restrictions as mirror symmetry would. For
example, the Wilson loop eigenvalues να of hLSSH(k) are restricted to be 0, π or come in pairs
{−ν,ν}. Moreover, its Zak phase ϕ is quantized to 0 or π. Both the Wilson loop eigenvalues
and the Zak phase at different filling factors are shown in Table 1.

Table 1: Wilson loop eigenvalues να and Zak phase ϕ for different fillings n of
hLSSH(k). For |v| > 1 the model is always trivial, while for |v| < 1 the model is
topological for fillings n= 1 and n= 3.

n |v|> 1 |v|< 1

να ϕ να ϕ

1 0 0 π π

2 {−ν,ν} 0 {−ν,ν} 0
3 0, {−ν,ν} 0 π, {−ν,ν} π

Secondly, besides revealing latent symmetries, the ISR also allows for a simpler topo-
logical characterisation of Bloch Hamiltonians. More concretely, consider two Hamiltonians
h1(k, t = {t1, t2, . . . , tn}) and h2(k,g = {g1, g2, . . . , gm}). The first one, h1(k, t), represents a
known model which exhibits a gap closing at E = E0 captured through a condition on the
parameters t that could equivalently be written as f (t) = 0. For the SSH-model, for instance,
we have t= (v) and the gap closes at f (v) = 1−|v|= 0; see the example below. Let us then as-
sume that the ISR of the second model has the same form as h1(k), but with energy-dependent
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parameters {t1(E,g), t2(E,g), . . . , tn(E,g)} ≡ t(E,g), up to a constant energy-dependent shift
a(E,g),3 i.e.,

h2(k) = h1

�

k, t(E,g)
�

+ a(E,g)I . (12)

Then, we can extract the gap closing energies, E∗, of h2(k,g) from

E∗ − a(E∗,g) = E0 . (13)

The corresponding values of g can be obtained by solving f
�

t(E∗,g)
�

= 0. When the ISR
reduces a system to a known model, the topological characterisation of the system is reduced
from calculating multiband topological invariants to solving an algebraic problem [21, 22].
As an example, consider now the latent SSH model described by Eq. (5). The ‘ordinary’ SSH
model has a gap closing at E0 = 0 for f (v) = 1− |v| = 0. The gap closing energies E∗ for the
latent model are thus determined through

E∗ − a(E∗, w) = E∗ −
2w2

E∗
= 0 . (14)

Equation 14 has two solutions E∗ = ±
p

2w, which is corroborated by Fig. 1(d) showing two
sets of in-gap modes in red. The energies E∗ predict the topological phase transition through
f [s(E∗, w)] = 1− |s(E∗, w)|= 0, which in this case reduces to |w|= 1, akin to the SSH model.
One can also conclude that in order to respect the symmetries of the system at bulk insulating
filling, the system with OBC must feature a filling-anomaly.

2.2 Further perspectives on latent symmetries

Classifying symmetries in physics often involves a nuanced and somewhat arbitrary distinction.
Typically, “obvious” symmetries are those identifiable by an experienced physicist through a de-
tailed examination of the system. These include geometric operations like reflection, rotation,
inversion, and their combinations. However, while predominantly encompassing geometric
symmetries, this category does not cover all potential symmetries of a given Hamiltonian h.

A perfect example of the prevalence of such an (arbitrary) classification into obvious and
non-obvious (often called “hidden”) symmetries are spectral degeneracies: In group theory,
one can make a strong link between the spectral degeneracies of h and the group that is
formed by its symmetries. In particular, through Schur’s lemma, the number and dimension of
the so-called irreducible representations of the group are directly linked to the degeneracies of
the Hamiltonian. Importantly, it might be that not all (or even none) of the degeneracies of the
Hamiltonian can be explained from the group-theoretical analysis of its obvious symmetries.
In this case, the degeneracies are colloquially said to be “accidental”, though they can be
easily explained by considering the non-obvious (hidden) symmetries as well. A pedagogical
discussion of how “accidental” double degeneracies can easily be explained has been done
in Ref. [24]. For a deeper discussion, including a list of physical setups featuring accidental
degeneracies, see, for instance, Ref. [25].

There are, nevertheless, good reasons behind the (arbitrary) division into obvious and non-
obvious (or hidden) symmetries. Perhaps the most important reason is the following. Usually,
the symmetries of a Hamiltonian are used to simplify the eigenvalue problem hψ = Eψ. For
instance, if h is reflection-symmetric, one can deduce that its eigenvectors have definite parity.
This knowledge can then be used to split the original eigenvalue problem into two smaller,
easier-to-solve problems. Overall, any obvious symmetry of h is of high value in solving eigen-
value problems. On the other hand, symmetries that are difficult to find—for instance, by first
diagonalizing h, that is, performing the expensive task that one wanted to simplify in the first
place—are usually not helpful in simplifying eigenvalue problems.

3Recall that through the ISR, the reduced parameters depend on both energy E and the original system param-
eters g.
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1
2

3

4Full
Hamiltonian

Isospectral
reduction

Figure 2: A latently C2-symmetric setup, along with the relevant matrices Q and T
(see text for details). The four sites of the original Hamiltonian are labeled 1 to 4.

Let us finally discuss the role of latent symmetries. As we have seen already in Eq. (7), if
a Hamiltonian h has a latent symmetry T on a set of sites S, that is, [RS(h), T] = 0, then the
full Hamiltonian h possesses a symmetry Q = T ⊕Q. This means that any latent symmetry
corresponds to a full symmetry, as was already implied in Eq. (8). On the one hand, this is
beneficial since it allows one to use all of the machinery developed for normal symmetries to
latent ones. On the other hand, one might be tempted to say that they are not new at all. To
judge their relevance and novelty better, let us go back to the example discussed above, that
is, the system depicted in Fig. 1 (c). The Hamiltonian of the unit cell of this lattice is depicted
again in Fig. 2. Just as the Bloch-Hamiltonian of the full lattice, Eq. (5), the unit cell Hamil-
tonian clearly has no geometric symmetry, while its isospectral reduction, depicted below the
original setup, is reflection-symmetric. According to the above discussion, the original setup
would most likely be considered “asymmetric”. We emphasize that the symmetry Q, which
corresponds to the latent reflection symmetry and is the same as in Eq. (11), corroborates this
perceived asymmetry. Indeed, Q—which we also show in Fig. 2—is difficult to interpret; it
looks like a rather generic orthogonal transformation. At this point, let us emphasize that—in
the context of a conventional tight-binding system—a “conventional” (spatial) symmetry usu-
ally can be mapped to a permutation matrix. The matrix Q, however, is clearly not of this type.
We note that the above discussion can be done in a similar manner for all the latently symmet-
ric unit cells we present in the subsequent sections. Moreover, this discussion can be repeated
(though in a more complicated manner, but with the same outcome) when embedding those
unit cells into a lattice.

Latent symmetries lie somewhat between fully obvious symmetries (like the geometric
ones) and highly non-obvious symmetries, which are both difficult to find and interpret. In-
deed, in the above example, Q is a rather abstract orthogonal operation, while T is a permu-
tation matrix that can be directly related to a reflection. The translation between these two
worlds—the abstract, and the concrete—is done by means of the isospectral reduction, which
serves as a powerful tool to eliminate the complexity. These two new tools, the isospectral
reduction and latent symmetries, further weaken the artificial divide between obvious and
non-obvious symmetries.

3 Topological indices from (latent) rotational symmetry

In the above, we have discussed a simple latent SSH model, which has been previously inves-
tigated both in its Hermitian [21] and its non-Hermitian [22] version. In the remainder of
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this work, we apply a similar reasoning to develop the concept of latent HOTIs. To this end,
we start by reviewing the existing methods for the classification of usual HOTIs. We focus
on two-dimensional insulators that preserve time-reversal symmetry (class AI in the Altland-
Zirnbauer classification [1,2]). The introduction of crystalline symmetries allows for a further
classification of these materials [6,26]. Here, we will follow Ref. [14].

3.1 Recap: Topological indices through conventional geometric rotation sym-
metries

The presence of a rotation symmetry Ĉn, which rotates sites in a lattice by 2π/n rad around
some point, is represented on the level of the Bloch Hamiltonian by

Ĉnh(k)Ĉ−1
n = h(DCn

k) , (15)

where, similar to Eq. (9), DCn
is a linear transformation on k that depends on Cn. At high sym-

metry points (HSPs) in the Brillouin zone, i.e. points that are mapped to themselves (modulo
a reciprocal lattice vector), DCn

Π(n) = Π(n), we have

�

Ĉn, h
�

Π(n)
��

− = 0 . (16)

Because Ĉn and h(k) commute at a HSP Π(n), they share an eigenbasis. Thus, the Bloch states
�

�u(k= Π(n))
�

can be chosen as eigenstates of Ĉn, such that

Ĉn

�

�u
�

Π(n)
��

= Π(n)p

�

�u
�

Π(n)
��

. (17)

Since
�

Ĉn

�n
= I, its eigenvalues are the n-th roots of unity:

Π(n)p = e
2πi
n (p−1) , with p ∈ {1, 2, . . . n} . (18)

From these eigenvalues, we can construct rotation topological invariants of the form
�

Π(n)p

�

≡ #Π(n)p −#Γ (n)p , (19)

where #Π(n)p denotes the number of bands below the energy gap with eigenvalue Π(n)p and
Γ = 0 is the gamma point in the Brillouin zone, which is a natural reference point to calcu-
late the rotational invariants.4 [Π(n)p ] characterises the topology of Cn-symmetric insulators
in a similar way to inversion eigenvalues: A difference of inversion eigenvalues between two
HSPs indicates band inversion, i.e. non-trivial topology. In a similar manner, the difference of
rotation eigenvalues between HSPs, captured by [Π(n)p ], allows for a comparison of the rep-
resentations of rotation symmetry. If different representations exist, the energy bands exhibit
non-trivial topology. As a consequence of TRS and the fact that the number of bands is con-
stant through the Brillouin zone, one obtains a set of independent topological indices χ(n) for
Cn-symmetric materials [14],

χ(2) =
��

X (2)1

�

,
�

Y (2)1

�

,
�

M (2)1

��

,

χ(4) =
��

X (2)1

�

,
�

M (4)1

�

,
�

M (4)2

��

,

χ(3) =
��

K(3)1

�

,
�

K(3)2

��

,

χ(6) =
��

M (2)1

�

,
�

K(3)1

��

. (20)
4Π (Π) should be viewed as a ‘placeholder’. It will take the values X, Y, M, K and K′ (X , Y , M , K and K ′). For

example, [K (3)2 ] represents the number of eigenvalues of Ĉ3 |u(K)〉 that are equal to exp{2πi/3}, minus the number
of eigenvalues evaluated at the Γ point.
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3.2 Topological indices through latent rotation symmetries

Having reviewed the theory regarding geometric symmetries, let us now discuss how latent
symmetries fit into the scheme. Rather surprisingly, it can be shown that the invariants χ(n)

are still applicable. The key for this insight is Eq. (8). Equipped with this equation, one only
needs to replace the symmetry operator Ĉn in Eq. (17) by Ĉn⊕Q, as defined in Eq. (10). Upon
doing so, the rotation invariants of latent symmetric models can be evaluated to characterize
the topology of the system. This leads to the definition of latent rotation symmetric HOTIs
through

�

Ĉn ⊕Q, h
�

Π(n)
��

− = 0 , (21)

where the total symmetry Ĉn ⊕Q is not necessarily geometric. Equivalently, we have
�

Ĉn,h
�

Π(n)
��

− = 0 . (22)

3.3 Classification of HOTIs: Dipole moment and corner charges

The rotation invariants χ(n) can be related to physical properties of the systems, such as the
dipole moment P(n) and corner charge Q(n). These quantities are derived in Ref. [14] for
geometric symmetries and can be easily shown to hold also for latent symmetries.

Below, we will directly state the results for the dipole moment,

P(2) =
e
2

��

Y (2)1

�

+
�

M (2)1

��

a1 +
e
2

��

X (2)1

�

+
�

M (2)1

��

a2 ,

P(4) =
e
2

�

X (2)1

�

(a1 + a2) ,

P(3) =
2e
3

��

K(3)1

�

+ 2
�

K(3)2

��

(a1 + a2) ,

P(6) = 0 , (23)

and for the corner charge,

Q(2) =
e
4

�

−
�

X (2)1

�

−
�

Y (2)1

�

+
�

M (2)1

��

,

Q(4) =
e
4

��

X (2)1

�

+ 2
�

M (4)1

�

+ 3
�

M (4)2

��

,

Q(3) =
e
3

�

K(3)2

�

,

Q(6) =
e
4

�

M (2)1

�

+
e
6

�

K(3)1

�

. (24)

The dipole moments are defined modulo e/Acell times a lattice vector and the corner charges
are defined modulo e. Here Acell denotes the area of the unit cell. Notice also that we group
the dipole moments P(2) and P(4) (P(3) and P(6)) because they share at least one common
topological index (the same is done for the corner charges as well).

Before we continue, let us briefly remind the reader about the connection between these
two quantities and HOTIs. To this end, we consider a system under OBC, terminated respecting
its (latent or geometric) Cn symmetry. The system is a HOTI if it is (higher order) topological
and insulating. The former requirement translates in a nonzero corner charge. If the dipole
moment P(n) does not vanish, there will be in-gap states when OBC are imposed. This poses
two constraints on a HOTI, be it conventional or latent:

• The corner charge Q(n), as given by Eq. (24), is nonzero.

• The dipole moment P(n), as given by Eq. (23), vanishes.

In the remainder of this manuscript, we will show how one can construct a latent HOTI, that
is, a latently Cn-symmetric system fulfilling these two criteria.
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Figure 3: Latently Cn symmetric unit cells. (a-d) Minimal examples of unit cells that
show a latent C2, C3, C4, and C6 symmetry without a direct geometric symmetry.
Relevant hopping parameters are indicated. (e-h) Cells obtained upon performing an
ISR to the red sites of the unit cells in (a-d), the reduced systems show geometric Cn
symmetries, revealing the latent symmetries in (a-d). Relevant (energy-dependent)
parameters are indicated.

4 Building blocks for latent HOTIs

A necessary first step to construct a latent HOTI is a sufficiently large set of latently Cn sym-
metric lattices. In this section, we start by showing how they can be built in subsection 4.1.

Afterwards, we introduce specific examples of unit cells that feature a latent C2−, C3−,
C4−, and C6−symmetry, as depicted in Fig. 3. Then, in subsection 4.2 we shall use these unit
cells to construct lattices such that the total system retains the latent Cn rotation symmetry.
Finally, in subsection 4.3, we present a systematic way of constructing latently Cn-symmetric
setups with a pre-defined topological index. Equipped with all these tools, we will then finally
construct latent HOTIs in Section 5.

4.1 Latently symmetric unit cells

In the following, we will present unit cells featuring a latent C2, C3, C4, or C6 symmetry. We
emphasize that each of them is just a specific example of a large class of unit cells featuring
these latent symmetries. Before we continue, let us explain how these families of latently Cn
symmetric unit cells can be designed.

For the design of latently C2-symmetric unit cells, there are different techniques that range
from exhaustive search [27] to more sophisticated graph-theoretical results [28]. The inter-
ested reader is referred to the literature on graphs5 with cospectral vertices [28, 29]; every
graph with this property has recently been shown to have a latent C2-symmetry [18]. The
four-site latently C2-symmetric cell that we depict in Fig. 3(a) was found analytically by start-
ing with a four-site long chain with couplings a, b, c and all on-site energies equal to zero.
Then, demanding that two sites u, v in this chain are latently symmetric, analytical expres-
sions for the three couplings were found.

5We note that there is a one-to-one mapping between a graph and its adjacency matrix H, which for many
graphs is Hermitian and could thus be interpreted as a Hamiltonian.
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The construction of unit cells with a latent C3, C4, and C6-symmetry is more demanding,
but can be done using the complement multiplet technique explained in the Supplemental
Material of Ref. [20]. This technique starts with a Hamiltonian that features a geometric Cn
symmetry. As can be easily shown, such a Hamiltonian likewise features a latent Cn symmetry.6

By carefully analyzing its matrix powers, sets of changes to the Hamiltonian can be identified
that keep the latent Cn symmetry. In many cases, however, these changes break the initial
geometric Cn symmetry, thus resulting in a purely latently Cn symmetric Hamiltonian. In this
manner, the setups depicted in Fig. 3(b), (c), and (d) have been found.

Having discussed how latently Cn-symmetric unit cells can be designed, let us now inves-
tigate specific examples of these.

4.1.1 Latent C2 symmetry

In Sec. 2, the notion of a latently mirror symmetric system was introduced in the context of
the latent SSH model. In 1D, C2 and mirror symmetry are the same, hence we take the latent
SSH unit cell as a building block for latent C2-symmetric HOTIs. The unit cell of the latent SSH
model, and its ISR to the red sites, are once more displayed in Figs. 3(a) and 3(e), respectively.
The Hamiltonian for the single cell in Fig. 3(a) is given by

H(2)L = t0









0 0
p

2 0
0 0 1 1p
2 1 0 0

0 1 0 0









. (25)

The parameters in the isospectrally reduced model in Fig. 3(e) are given by a(2) = 2t2
0/E and

v(2)0 =
p

2t2
0/E. The reduced model obeys a C2-symmetry,

Ĉ2 =

�

0 1
1 0

�

, (26)

which corresponds to the symmetry,

Q(2) ≡ Ĉ2 ⊕Q
(2)
=

�

0 1
1 0

�

⊕

� 1p
2

1p
2

1p
2
− 1p

2

�

, (27)

of the full Hamiltonian.

4.1.2 Latent C3 symmetry

An example of a unit cell exhibiting latent C3 symmetry is depicted in Fig. 3(b). It has 9 sites,
with hopping given by t0 (thin black lines) and 2t0 (thick black lines). Its Hamiltonian is given
by

H(3)L = t0



























0 0 0 1 1 1 2 0 0
0 0 0 0 1 2 1 1 0
0 0 0 1 0 2 1 0 1
1 0 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0
1 2 2 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0



























. (28)

6This can be shown by performing the isospectral reduction on any n sites that are mapped onto each other by
the corresponding symmetry operator Cn commuting with the underlying Hamiltonian.
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Upon performing an ISR to the red sites, the cell shown in Fig. 3(f) is obtained, displaying a C3-
symmetry. The reduced model has a single energy-dependent hopping parameter v(3)0 = 5t2

0/E
and onsite potential a(3) = 7t2

0/E.7 The corresponding symmetry matrix of the full Hamilto-
nian Q(3) [cf. Eq. (8)] of the full system depicted in Fig. 3(b) is given by

Q(3) ≡ Ĉ3 ⊕Q
(3)
=





0 0 1
1 0 0
0 1 0



⊕

















1
2 0 1

2 −1
2

1
2 0

1
2

1
2 0 0 −1

2
1
2

0 1
2

1
2

1
2 0 −1

2
0 −1

2
1
2

1
2 0 1

2
1
2 0 −1

2
1
2

1
2 0

−1
2

1
2 0 0 1

2
1
2

















. (29)

4.1.3 Latent C4 symmetry

Next, let us investigate the setup shown in Fig. 3(c), which has 13-sites and features four differ-
ent hopping parameters: t0 (black), t1 (green), t2 (red), and t3 (blue). A double-coloured line
implies a sum of the two hopping strengths, i.e. the blue-and-red line has hopping parameter
t2 + t3. The matrix form, H(4)L , of Fig. 3(c) is given in Appendix B.1 by Eq. (B.1). Depending
on the choice of couplings, this unit cell has different geometric symmetries. Firstly, if t1 = t2
and t3 = 0, it enjoys a C4-symmetry. Keeping t3 = 0 but breaking the equality of the first two
couplings such that t1 ̸= t2, this symmetry is partly broken and only a geometric C2 symmetry
is left. The situation becomes much easier, though, when performing an ISR on the red sites.
The resulting reduced model is depicted in Fig. 3(g); it has an energy-dependent on-site po-
tential a(4) and hopping parameters v(4)0 (black) and v(4)1 (grey). As can be easily checked, it
has a C4 symmetry given by

Ĉ4 =







0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0






. (30)

Thus, regardless of the choice of couplings t i , the unit cell is latently C4-symmetric. Once
again, this demonstrates that the ISR gives a wider, more comprehensive viewpoint on a system
than merely checking its geometric symmetries. Before continuing, we remark that—again, by

Eq. (8)—this latent C4 symmetry corresponds to a non-geometric symmetry Q(4) ≡ Ĉ4 ⊕Q
(4)

of the full unit cell.
Expressions for Q

(4)
and the parameters in Fig. 3(g) are given in Appendix B.1.

4.1.4 Latent C6 symmetry

Finally, we come to the unit cell depicted in Fig. 3(d). It has 19 sites and features three different
hopping parameters t0 (black), t1 (green), t2 (red). A more complex latent C6-symmetric unit
cell is given in Appendix B.2. This model is C6-symmetric only when t1 = t2 = 0. Furthermore,
it is C3 symmetric if only t2 = 0. Once again, the picture becomes clearer when performing an
ISR to the red sites. The resulting reduced model is depicted in Fig. 3(h); it is described in terms
of the on-site potential a(6) and hopping parameters v(6)0 (black), v(6)1 (grey), and v(6)2 (red). It
can be promptly seen that the reduced model is C6-symmetric. Thus, irrespective of the choice
of coupling parameters t i , the full unit cell is latently C6-symmetric. This latent symmetry

7For brevity, we have dropped the energy dependence in the notation of the reduced hopping parameter and
onsite potential: v(n)i = v(n)i (E) and a(n) = a(n)(E).

13

https://scipost.org
https://scipost.org/SciPostPhys.18.2.061


SciPost Phys. 18, 061 (2025)

corresponds to a non-geometric symmetry of the full unit cell, given by Q(6) ≡ Ĉ6 ⊕Q
(6)

, with

full expressions for Q
(6)

and the parameters in Fig. 3(h) given in Appendix B.2.

4.2 Lattice structures preserving latent Cn-symmetries

Equipped with a set of latently Cn-symmetric unit cells, the next step is to embed these into
lattices, such that the total setup keeps this symmetry. As we now show, this task is rather
simple. Let us assume that a given lattice structure is composed of a unit cell with a geometric
Cn-symmetry, such that the lattice as a whole keeps the symmetry. Next, let us replace the geo-
metrically Cn-symmetric unit cell by one whose ISR on a set S of sites has the same symmetry,
i.e. a latently Cn-symmetric unit cell. It is then a trivial task to show that the lattice’s ISR—
for clarity, we mean the simultaneous reduction on the union of sites S in each unit cell—is
Cn-symmetric. In other words, the lattice is latently Cn-symmetric.

Examples of systems with these features are discussed in more detail in the following sec-
tion.

4.3 Primitive generators and their topological classification

With the material presented so far, one could easily construct a large number of latently Cn-
symmetric lattices. However, to be HOTIs, they need a vanishing dipole moment and a non-
vanishing corner charge. Via Eqs. (23) and (24), both quantities are connected to the topolog-
ical indices in Eq. (20). In principle, one could then find latent HOTIs by a brute-force search,
that is, by computing these quantities for a large number of latently Cn-symmetric setups and
filtering out the ones that are HOTIs. However, there is a more elegant and systematic way
that is based on the concept of primitive generators [14]. Essentially, these are building blocks
with certain properties, which can be connected to each other in a specific manner, such that
the resulting setup features a well-defined topological index.

To introduce these generators, let us start with an interesting fact on topological indices.
As pointed out in Ref. [14], two models with the same Cn-symmetry, described by Bloch Hamil-
tonians h1 and h2, characterized by χ(n)1 and χ(n)2 , respectively, may be combined to form a
third model

h3 =

�

h1 γ

γ† h2

�

. (31)

Here, γ connects the two different Hamiltonians in a way that does not close any gaps
and that preserves Cn-symmetry. The rotation invariant of the new model is then given by
χ
(n)
3 = χ(n)1 + χ(n)2 . Consequently, if for a given symmetry χ(n) has N components, it is suf-

ficient to have N models with linearly independent χ(n) to span the whole topological phase
space. This sets the basis to the notion of primitive generators. The primitive generators form a
minimal set from which a setup with an arbitrary topological index can be constructed. From
there, the construction of an actual (latent) HOTI is only a minor step.

In the following, we will discuss and classify (latent) primitive generators for every one of
the four classes C2, C3, C4, and C6 that are compatible with translational invariance of a crystal.
The key results are graphically depicted in Figs. 4 to 7 and are discussed in more detail in the
text. For each of the four classes, we first treat the conventional case of geometric symmetry,
and then treat the new case of latent symmetry. This dual treatment might seem redundant,
but it serves two purposes. Firstly, the characteristics (for instance, the band structure) of the
geometric and latent setups have some striking similarity that would otherwise be unnoticed.
Secondly, our treatment of the geometrically symmetric primitive generators represents minor
generalisations of the primitive generators introduced in Ref. [14].
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In each of the following examples, the primitive generators are the Bloch-Hamiltonians
of a crystal obtained by inserting a specific unit cell (with either a geometric or latent Cn
symmetry) into a specific lattice structure. We remark that a given Cn might support different
lattice structures.

4.3.1 C2-symmetry

For a C2 symmetry, we investigate only one lattice structure, which we call the “stacked SSH
model”.

Geometric stacked SSH. We consider the primitive generator given by the Hamiltonian

h(2)1 (k) =

�

2w cos ky t + eikx

t + e−ikx 2w cos ky

�

. (32)

It is the Bloch-Hamiltonian of a system obtained by inserting the unit cell depicted in Fig. 4(a)
into the stacked SSH lattice structure of Fig. 4(d). The system corresponds to multiple SSH
chains stacked in the y-direction. Hopping within a chain occurs with an intracell hopping
given by t (solid black line) and a horizontal intercell hopping of 1 (dashed black line). The
chains are connected with a vertical intercell hopping of w (dot-dashed black line). The lattice
vectors are given by a1 = (1, 0) and a2 = (0,1). Eq. (32) admits a C2-symmetry given by

Ĉ2h(2)1 (kx , ky)Ĉ
−1
2 = h(2)1 (−kx ,−ky) , (33)

where Ĉ2 is given by Eq. (26). Consequently, the topology of the system may be characterized
using χ(2). Since the value of w does not affect the gap structure, we set w = 0. For general
values of t, the spectrum is gapped at half filling, as shown in Fig. 4(b), giving rise to two
distinct phases. These phases are separated by a gap closing at t = +1 (−1), taking place
along the XM (YΓ) path in the Brillouin zone. For |t| < 1, the system is in its topological
phase, corresponding to χ(2) = (1,0, 1) and P(2) = (e/2)a1. For |t| > 1, the system is trivial
with χ(2) = (0, 0,0) and P(2) = 0. The different topological phases are depicted in Fig. 4(c).
We note that a second, independent, generator for C2 can be obtained by rotating Fig. 4(d)
by 90 degrees. This would correspond by letting kx → ky and ky → −kx in Eq. (32). As a
result, the topological phase would now have χ(2) = (0, 1,1) and P(2) = (e/2)a2. This would
yield 2 generators for C2-symmetric systems. A third generator can be obtained by taking one
of the C4 generators in the next section and making the hopping in the x− and y−direction
different.

Latent stacked SSH. If we insert the unit cell depicted in Fig. 4(e) into the lattice structure
of Fig. 4(d), we obtain a system with a Bloch-Hamiltonian given by

h(2)L,1(k) = H(2)L +







2w cos ky eikx 0 0
e−ikx 2w cos ky 0 0

0 0 0 0
0 0 0 0






. (34)

In Fig. 4(e), the horizontal intercell hopping (dashed black line) is fixed to 1 and the vertical
intercell hopping (dot-dashed black line) is given by w. Figure 4(f) depicts the spectrum of
Eq. (34) for t0 = 1/2 and w = 0. Notice that the spectrum resembles two copies of the one
in Fig. 4(b). Since this primitive generator represents stacked (latent) SSH chains, its phase
diagram is the same as that of the SSH chain. At the end of Sec. 2, we showed that for this
specific latent SSH model, phase transitions occur at |t|= 1, just like for the SSH model (again,
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the value of w does not affect the gap structure). Following this reasoning, h(2)L,1(k) has a gap

closing at |t0| = 1, separating the trivial phase χ(2) = (0,0, 0) (|t0| > 1) from the topological
phase χ(2) = (1,0, 1) (|t0|< 1), as shown in the phase diagram in Fig. 4(g).

4.3.2 C4-symmetry

For a C4-symmetry, we consider three lattice structures: a “2D SSH”, a “breathing square-
octagon”, and a “stacked breathing square-octagon”.

Figure 4: (a) Unit cell of the geometric C2-symmetric primitive generator h(2)1 (k),
with intracell hopping t. Horizontal intercell hopping is indicated by dashed lines
and is fixed to 1; vertical intercell hopping is represented by a dot-dashed line and
is given by w. (b) Energy spectrum of h(2)1 (k) for t = 1/2 and w = 0. (c) Phase
diagram, in which the rotation invariants χ(2) are shown for gapped phases. (d)
Lattice structure of the C2-symmetric primitive generators. The lattice represents
stacked 1D SSH chains. (e) Unit cell of the Latent C2-symmetric primitive generator
h(2)L,1(k). Values of the hopping parameters are indicated in Fig. 3(a) and horizontal
intercell hoppings (dashed lines) are fixed to 1 while vertical intercell hopping (dot-
dashed lines) are given by w. (f) Spectrum of h(2)L,1(k) for t0 = 1/2 and w = 0. (g)

Phase diagram at one filled band. Rotation invariants χ(2) are displayed for gapped
phases.
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Figure 5: (a,d,g) Unit cells of the geometric C4-symmetric primitive generators
h(4)1 (k), h(4)2 (k), and h(4)3 (k), respectively. The nearest-neighbour hoppings are repre-
sented by t1; the next-nearest-neighbour hoppings are represented by t2; the intercell
hoppings are indicated by dashed lines and are fixed to be equal to 1. (b,e,h) En-
ergy spectra of h(4)1 (k) at t1 = 1/2 and t2 = 0, h(4)2 (k) at t1 = 1/2 and t2 = 0, and

h(4)3 (k) at t1 = 0 and t2 = 1/2. (c,f,i) Phase diagrams of the geometric primitive
generators. For gapped phases, the rotation invariants χ(4) are shown. (j,k,l) Lat-
tice structures of the C4−symmetric primitive generators. The lattices represent a 2D
SSH, a breathing square-octagon, and a stacked breathing square octagon lattice, re-
spectively. (m,p,s) Unit cells of the latent C4-symmetric primitive generators h(4)L,1(k),

h(4)L,2(k), and h(4)L,3(k), respectively. Values of the hopping parameters are indicated in
Fig. 3(c) and intercell hoppings (dashed lines) are fixed to 1. (n,q,t) Energy spectra
of h(4)L,1(k) for t0 = t1 = t2 = 1, t3 = 1/2, h(4)L,2(k) for t0 = t1 = t2 = 1/2, t3 = 1, and

h(4)L,3(k) for t0 = t1 = t2 = −1, t3 = 0. (o,r,u) Phase diagrams of h(4)L,1(k) at 1 filled

band, h(4)L,2(k) at 2 filled bands, and h(4)L,3(k) at 3 filled bands, as a function of t0 and

t3, t1 = t2 = t0. Rotation invariants χ(4) are shown for gapped phases.
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Geometric 2D SSH. Inserting the unit cell of Fig. 5(a) into a lattice structure, we obtain
Fig. 5(j), which corresponds to a system described by the Bloch-Hamiltonian

h(4)1 (k) =









0 t1 + eikx t2 t1 + eiky

t1 + e−ikx 0 t1 + eiky t2

t2 t1 + e−iky 0 t1 + e−ikx

t1 + e−iky t2 t1 + eikx 0









. (35)

The system has 4 sites per unit cell, as depicted in Fig. 5(a), and is also known as the 2D
SSH model [30–32]. The sites are connected with hopping parameters t1 and t2 for nearest-
neighbour and next-nearest-neighbour hopping, respectively. The intercell hopping (dashed
lines) is fixed to unity. The lattice vectors are given by a1 = (1, 0) and a2 = (0, 1). Equation 35
has a C4-symmetry, that is:

Ĉ4h(4)1 (kx , ky)Ĉ
−1
4 = h(4)1 (ky ,−kx) , (36)

where Ĉ4 is given by Eq. (30). Figure 5(b) shows the spectrum of h(4)1 (k) for t1 = 1/2
and t2 = 0, which is gapped at 1/4- and 3/4-filling. For this parameter choice, we have
[X (2)1 ] = −1, [M (4)1 ] = 1, [M (4)2 ] = 0, hence χ(4) = (−1,1, 0), which corresponds to
P(4) = e(a1+a2)/2. The spectrum closes its gap for |t1|+|t2|= 1, which occurs simultaneously
at the X and Y point, owing to the C4-symmetry. For finite t2, the system remains gapless till
|t1| = 1 + |t2|. At this point, the system becomes gapped once again with χ(4) = (0,0, 0),
corresponding to P(4) = 0. This behavior, together with the corresponding symmetry indica-
tors χ(4), is depicted in Fig. 5(c). A third primitive generator for C2 is obtained by letting the
hoppings in the x− and y−dirrection be different. In that case, the C4-symmetry in Fig. 5(a)
gets broken into a C2 symmetry given by

Ih(4)1 (kx , ky)I−1 = h(4)1 (−kx ,−ky) , (37)

where I ≡ Ĉ2
4 .

Geometric breathing square-octagon. The second generator for C4 is given by the Bloch-
Hamiltonian

h(4)2 (k) =









0 t1 t2 + eikx t1

t1 0 t1 t2 + eiky

t2 + e−ikx t1 0 t1

t1 t2 + e−iky t1 0









. (38)

The underlying system is obtained by inserting the unit cell of Fig. 5(d) into a lattice to form
the structure shown in Fig. 5(k). The internal structure of the unit cell is rotated with regard to
h(4)1 (k). If the next-nearest-neighbour hopping is set to zero, this lattice represents (breathing)
T-Graphene; otherwise, we call it the square-octagon lattice. The lattice has attracted much
attention recently, with results ranging from topological phases to flat-band superconductivity
[33–35]. The spectrum is gapped for |t1|+ |t2| < 1 at half filling, accompanied with rotation
invariants χ(4) = (1, 1,−1) and P(4) = e(a1 + a2)/2. An example of the spectrum for t1 = 0
and t2 = 1/2 is shown in Fig. 5(e). When |t1| + |t2| = 1, the gap generally closes at the M
point. However, when t1 = 0 (and therefore |t2| = 1), it closes at both the M and Γ points.
Moreover, when t2 = 0 (|t1|= 1), the gap closes over the full XM and YM lines in the Brillouin
zone. For |t2|> 1+ |t1|, a new gap opens at the M point (if |t1|= 0, this gap opens along the
whole XM and YM lines). This gap is trivial and characterized by χ(4) = (0,0, 0), P(4) = 0. For
other parameter choices, the system is gapless, as shown in Fig. 5(f).
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Geometric stacked breathing square-octagon. Finally, the third C4-symmetric generator is
governed by the Hamiltonian

h(4)3 (k) =







0 t1 t2 t1
t1 0 t1 t2
t2 t1 0 t1
t1 t2 t1 0






+









0 0 ei(kx+ky ) 0
0 0 0 e−i(kx−ky )

e−i(kx+ky ) 0 0 0
0 ei(kx−ky ) 0 0









. (39)

The underlying system is obtained by inserting the unit cell of Fig. 5(g) into a lattice to form
the structure in Fig. 5(l). The system has the same internal structure as h(4)1 (k), as can be
seen in Fig. 5(a), but has different intercell hopping. The lattice is formed by overlapping two
breathing square-octagon lattices. The spectrum of h(4)3 (k) [ Fig. 5(h)] is gapped at half filling
for |t1|+ |t2|< 1, characterized by the rotation invariants χ(4) = (2,0, 0). This corresponds to
P(4) = 0. For |t1|+ |t2|= 1, the gap closes at the X and Y points (if t1 = 0, it also closes at the Γ
and M points). For |t2|> 1+|t1|, a trivial gap opens at the Γ and M points with χ(4) = (0,0, 0),
P(4) = 0. For other values of t1 and t2, the system is gapless, as shown in Fig. 5(i).

Latent C4-symmetric structures. The latent C4-symmetric cell in Fig. 3(c) can be inserted
in the three different lattice structures of Fig. 5(j), Fig. 5(k), or Fig. 5(l). This yields systems
with Bloch-Hamiltonians of the form

h(4)L,i (k) = H(4)L +

�

h̃(4)i (k) ;4×9
;9×4 ;9×9

�

. (40)

Here h̃(4)i (k) are the Hamiltonians given in Eq. (35), Eq. (38), and Eq. (39) with all intracell
hoppings set to zero, i.e. only intercell hopping. This is because the second term is only there
to connect the latently symmetric cells on a lattice.

For all h(4)L,i (k), we set t1 = t2 = t0. Consequently, the Hamiltonians have a geometric

C4-symmetry for t3 = 0. For finite values of t3, the geometric C4 symmetry of h(4)L,i (k) gets
broken. Nevertheless, the latent symmetry of the unit cell is inherited, which becomes clear
upon taking the ISR to the red sites

h
(4)
L,i (k) = h(4)i

�

k, t1 = v(4)0 , t2 = v(4)1

�

+ a(4)I , (41)

which commutes with Ĉ4 given in Eq. (30). The parameters a(4), v(4)0 and v(4)1 are polynomials
of a degree larger than 5 [See Appendix B.1]. Consequently, it is not possible to analytically
resolve the gap closing conditions as outlined at the end of Sec. 2. Figure 5(n) shows the
spectrum of h(4)L,1(k) for t0 = t1 = t2 = 1 and t3 = 1/2. The spectrum is gapped at multiple
fillings. For simplicity we consider a single filled band. Figure 5(o) shows the numerically
obtained phase diagram of h(4)L,1(k) for a single filled band for t1 = t2 = t0. The rotation

invariants χ(4) are depicted for the gapped phases. Similarly, the spectrum of h(4)L,2(k) for
t0 = t1 = t2 = −1 and t3 = 0 is shown in Fig. 5(q). The corresponding phase diagram
for 2 filled bands is shown in Fig. 5(r). Finally, Fig. 5(t) shows the spectrum of h(4)L,3(k) for
t0 = t1 = t2 = 1/2 and t3 = 1. The phase diagram shown in Fig. 5(u) is (numerically)
obtained for 3 filled bands. The rotation invariants χ(4) are depicted for the gapped phases.
The topological and trivial phases are represented by the red and blue regions, respectively.
The white regions denote metallic gapless states.

4.3.3 C3-symmetry

For C3-symmetry, we consider two lattice strucures, namely a “breathing kagome” and a
“bearded breathing kagome”.
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Figure 6: (a,c) Unit cells of the geometric C3−symmetric primitive generators h(3)1 (k)
and h(3)2 (k), respectively. Intracell hopping (black line) has a strength of t0, while

intercell hopping (dashed lines) is fixed to 1. (b) Spectrum of h(3)1 (k) and h(3)2 (k)
at t0 = 1/2. (d,e) Phase diagrams of h(3)1 (k) and h(3)2 (k) at 2/3-filling. Rotation
invariants χ(3) are indicated for the gapped phases. (f,g) Lattice structures of the
C3−-symmetric primitive generators. The lattices represent a breathing kagome
and a bearded breathing kagome lattice, respectively. (h,j) Unit cells of the latent
C3−symmetric primitive generators h(3)L,1(k) and h(3)L,2(k), respectively. Values of the
hopping parameters are indicated in Fig. 3(b) and intercell hoppings (dashed lines)
are fixed to 1. (i) Spectrum of h(3)L,1(k) and h(3)L,2(k) for t0 = 0.6. (k,l) Phase diagrams

at filling n = 2 and n = 8 for h(3)L,1 and h(3)L,2, respectively. The rotation invariants χ(3)

are indicated in the different gapped phases.

Geometric C3-symmetric structures. The internal structure of our geometrically C3-
symmetric unit cells are shown in Figs. 6(a) and (c). They consist of 3 sites connected with
an intracell hopping t0 and an intercell hopping fixed to 1. The two lattice structures for C3
symmetry are presented in Figs. 6(f)-(g). Since the resulting systems correspond to different
terminations of the same Kagome lattice, we will treat them together. The Hamiltonian cor-
responding to the unit cell shown in Fig. 6(a) inserted into a lattice to form the structure in
Fig. 6(f) is given by

h(3)1 (k) =





0 t0 + eik·a1 t0 + eik·a2

t0 + e−ik·a1 0 t0 + e−ik·a3

t0 + e−ik·a2 t0 + eik·a3 0



 , (42)
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while the Bloch-Hamiltonian corresponding to the unit cell in Fig. 6(c), which forms the lattice
structure in Fig. 6(g), is given by

h(3)2 (k) =





0 t0 + eik·a2 t0 + e−ik·a3

t0 + e−ik·a2 0 t0 + e−ik·a1

t0 + eik·a3 t0 + eik·a1 0



 . (43)

The lattice vectors are defined through a1 = (1, 0), a2 = (1/2,
p

3/2), and a3 = a1 − a2.
h(3)1 (k) and h(3)2 (k) represent a (bearded) breathing Kagome lattice [36–38] which exhibits a
C3 symmetry of the form

Ĉ3h(3)i (kx , ky)Ĉ
−1
3 = h(3)i (DC3

k) , (44)

with DC3
k=
�

−kx −
p

3ky ,−ky +
p

3kx

�

/2 and

Ĉ3 =





0 0 1
1 0 0
0 1 0



 . (45)

The spectrum for both Hamiltonians is shown in Fig. 6(b) for t0 = 1/2. For |t0| < 1, the
spectrum of h(3)1 (k) [h

(3)
2 (k)] is gapped at 2/3 filling and is described by a topological invariant

χ(3) = (1,0) [χ(3) = (1,−1)] with P(3) = (2e/3)(a1 + a2) [P(3) = (e/3)(a1 + a2)]. At t0 = 1,
the gap closes at K and K′ and opens again in a trivial phase with χ(3) = (0, 0) and P(3) = 0
for t0 > 1. At t0 = −1, the gap closes at Γ and the spectrum remains gapless for t0 < −1. The
phase diagrams of h(3)1 (k) and h(3)2 (k) are shown in Figs. 6(d) and (e), respectively.

Latent C3-symmetric structures. Inserting the latently C3-symmetric unit cell Fig. 3(b) into
a lattice to form the structures in Figs. 6(f) and (g) yields two latent C3-symmetric primitive
generators with Bloch-Hamiltonians

h(3)L,i (k) = H(3)L +

�

h̃(3)i (k) ;3×6
;6×3 ;6×6

�

, (46)

with i = 1, 2. h̃(3)i (k) are the Hamiltonians given in Eq. (42) and Eq. (43) with all intracell
hoppings set to zero, i.e. only intercell hopping (once again, just to connect the larger cells
on a lattice). Figures 6(f) and (g) show lattices corresponding to h(3)L,1 and h(3)L,2, respectively.

Analogous to the non-latent primitive generators for C3 symmetry, h(3)L,1 and h(3)L,2 share the same
spectrum, as depicted in Fig. 6(i).

The ISR of h(3)L,i (k) to the red sites is given by

h
(3)
L,i (k) = h(3)i

�

k, t0 = v(3)0

�

+ a(3)I . (47)

Owing to the simplicity of the parameters v(3)0 (= 5t2
0/E) and a(3) (= 7t2

0/E), it is possible

to analytically derive the phase diagram of this model. In Sec. 4 we showed that h(3)i (k) has a
gap closing at E = 1 for t0 = 1, and at E = 0 for t0 = −1. Therefore, we obtain the energies
E∗1 and E∗2 at which the latent models have a gap closing

E∗1 − a(3)(E∗1) = 1 , and E∗2 − a(3)(E∗2) = 0 . (48)

Solving the above equations yields

E∗1 =
1
2

�

1±
q

1+ 28t2
0

�

, and E∗2 = ±
p

7t0 . (49)
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From Eq. (49), we extract the phase transitions through v(3)0 (E
∗
1) = 1 and v(3)0 (E

∗
2) = −1,

resulting in

t0 = ±
2
p

3
5

,±
p

7
5

. (50)

The gap closing energies correspond to a filling of n = 2 and n = 8 bands out of 9. Using
the above derived constraints, we obtain the phase diagrams depicted in Figs. 6(k) and (l)
for h(3)L,1(k) and h(3)L,2(k), respectively. The rotation invariants χ(3) are shown for the different

phases. The invariants are the same as those obtained for h(3)i (k).

4.3.4 C6-symmetry

For C6-symmetry, we consider two lattice structures, namely, the “breathing ruby lattice”, and
the “Kekulé” structure.

Geometric breathing ruby lattice The Hamiltonian for the first C6-symmetric primitive gen-
erator is given by

h(6)1 (k) =















0 t0 t1 t2 t1 t0
t0 0 t0 t1 t2 t1
t1 t0 0 t0 t1 t2
t2 t1 t0 0 t0 t1
t1 t2 t1 t0 0 t0
t0 t1 t2 t1 t0 0















+

















0 0 e−ik·a2 0 eik·a3 0
0 0 0 eik·a3 0 eik·a1

eik·a2 0 0 0 eik·a1 0
0 e−ik·a3 0 0 0 eik·a2

e−ik·a3 0 e−ik·a1 0 0 0
0 e−ik·a1 0 e−ik·a2 0 0

















. (51)

It is obtained by inserting the unit cell from Fig. 7(a) into a lattice to obtain the structure in
Fig. 7(g). This lattice is a breathing version of a Ruby lattice. The lattice vectors are given by
a1 = (1,0), a2 = (1/2,

p
3/2) and a3 = a1 − a2. h(6)1 (k) exhibits a C6 symmetry given by

Ĉ6h(6)1 (kx , ky)Ĉ
−1
6 = h(6)1 (DC6

k) , (52)

with DC6
k= (kx −

p
3ky ,+

p
3kx + k y)/2 and

Ĉ6 =















0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0















. (53)

First, consider the case t1 = t2 = 0. The spectrum is gapped at 2/3-filling if |t0| < 1. The gap
is characterised by χ(6) = (0,2), which corresponds to P(6) = 0 and Q(6) = e/3. This can be
seen in the spectrum in Fig. 7(b), which is calculated for t0 = 1/2. At t0 = 1, the gap closes at
the Γ point and upon further increase of t0, the spectrum remains gapless. If we only impose
t2 = 0, the phase diagram in Fig. 7(c) is obtained. For values of t0 and t1 in the red region,
the system is in a topological phase with χ(6) = (0, 2). Leaving the topological phase (red) by
increasing t1, the gap closes at the K and K′ points and the spectrum is gapless. Upon further
increasing t1, a trivial gap [χ(6) = (0,0)] reopens at the K and K′ points.

Geometric Kekulé The Hamiltonian for the second C6-symmetric primitive generator is
given by

22

https://scipost.org
https://scipost.org/SciPostPhys.18.2.061


SciPost Phys. 18, 061 (2025)

h(6)2 (k) =















0 t0 t1 t2 t1 t0
t0 0 t0 t1 t2 t1
t1 t0 0 t0 t1 t2
t2 t1 t0 0 t0 t1
t1 t2 t1 t0 0 t0
t0 t1 t2 t1 t0 0















+

















0 0 0 e−ik·a2 0 0
0 0 0 0 eik·a3 0
0 0 0 0 0 eik·a1

eik·a2 0 0 0 0 0
0 e−ik·a3 0 0 0 0
0 0 e−ik·a1 0 0 0

















. (54)

The corresponding system is obtained by using the unit cell of Fig. 7(d) to form the lattice
structure in Fig. 7(h). Note that it has the same unit cell as in the Breathing Ruby Lattice case,
but rotated and with different intercell hopping. The lattice vectors a1, a2, and a3 are the
same as in the breathing ruby lattice case. We note that the different intercell hopping struc-
ture forms a breathing honeycomb or Kekulé lattice [39, 40]. Just as Eq. (51), the primitive
generator Eq. (54) has a C6 symmetry given by Eq. (52). Again, first consider t1 = t2 = 0. The
spectrum is gapped at 1/2-filling for −1/2 < t0 < 1, as shown in Fig. 7(e), where t0 = 1/2.
This gap is characterised by χ(6) = (2, 0), which corresponds to P(6) = 0 and Q(6) = e/2. For
fixed t2 = 0, the phase diagram in Fig. 7(f) is obtained. The system is in its topological phase
[χ(6) = (2,0)] for −1/2 < t0 < 1 and |t1| < (t0 + 2)/3. At t0 = 1 or |t1| = (t0 + 2)/3, the
gap closes at the Γ point. For t0 > 1 and |t1| < |t0|, the gap reopens in a trivial phase with
χ(6) = (0,0).

Latent C6-symmetric structures. The latent primitive generators for C6-symmetry are given by

h(6)L,i (k) = H(6)L +

�

h̃(6)i (k) ;6×13
;13×6 ;13×13

�

. (55)

Here, h̃(6)i (k) are the Hamiltonians given in Eq. (51), Eq. (54) with all intracell hoppings set to
zero, i.e. only intercell hopping (to connect the large unit cells on a lattice). The two systems
corresponding to h(6)L,1(k) and h(6)L,2(k) are obtained by inserting the latently C6-symmetric unit
cell shown in Fig. 3(d) into a lattice structure to form Fig. 7(g) and Fig. 7(h), respectively. The
intercell hopping (dashed) is fixed to 1. The ISR of h(6)L,i (k) is given by

h
(6)
L,i (k) = h(6)i

�

k, t0 = v(6)0 , t1 = v(6)1 , t2 = v(6)2

�

+ a(6)I , (56)

which is symmetric under the action of Ĉ6, i.e. Eq. (52). Since the parameters a(6) and
v(6)i are ratios of large order polynomials in E, it is not possible to analytically obtain the

phase diagrams of h(6)L,i (k). Figure 7(j) [Fig. 7(m)] show the spectrum of h(6)L,1(k) [h
(6)
L,2(k)] for

t0 = t1 = t2 = 1/4. A phase diagram of h(6)L,1(k) for 4 filled bands is shown in Fig. 7(k), reveal-

ing a topological phase characterised by χ(6) = (0, 2) separated by a gapless phase from the
trivial phase χ(6) = (0,0). Moreover, Fig. 7(n) shows a phase diagram of h(6)L,2(k) for 3 filled

bands. Both phase diagrams reveal the presence of the same topological phases as in h(6)i (k).
We once more emphasize that the presence of a hidden (latent) symmetry in the lattices

protects these higher-order topological phases. Since these latent symmetries behave much
like their geometric counterparts, they also give rise to very similar topological phases.

5 Construction of latent HOTIs

We are now finally equipped with all the necessary tools to allow an efficient design of latent
HOTIs.

23

https://scipost.org
https://scipost.org/SciPostPhys.18.2.061


SciPost Phys. 18, 061 (2025)

Figure 7: (a,d) Unit cells of the geometric C6-symmetric primitive generators h(6)1 (k)
and h(6)2 (k). Three C6 preserving hoppings t0 (black), t1 (blue) and t2 (red) are in-

dicated. Intercell hopping (dashed) is fixed to 1. (b,e) Spectra of h(6)1 (k) and h(6)2 (k),
for t0 = 1/2, t1 = t2 = 0. (c,f) Phase diagrams of h(6)1 (k), and h(6)2 (k) in the t0 − t1

plane with t2 = 0. Rotation invariants χ(6) are indicated for gapped phases. (g,h)
Lattice structures of the C6−symmetric primitive generators. The lattices represent
a breathing ruby lattice and a kekulé lattice, respectively. (i,l) Unit cells of the latent
C6-symmetric primitive generators h(6)L,1(k) and h(6)L,2(k). Values of the hopping param-
eters are indicated in Fig. 3(d) and intercell hoppings (dashed lines) are fixed to 1.
(j,m) Spectra of h(6)L,1(k) and h(6)L,2(k), for t0 = 3/4, t1 = 7/8, t2 = 1/8. (k,n) Phase

diagrams of h(6)L,1(k) for n = 4 filled bands and h(6)L,2(k) for n = 3 filled bands, with

t1 = 1/4. Rotation invariants χ(6) are indicated in the gapped phases.

As mentioned above, any HOTI (geometric or latent) must fulfill the following two con-
straints:

• The corner charge Q(n), as given by Eq. (24), is nonzero.

• The dipole moment P(n), as given by Eq. (23), vanishes.

In the following, we will construct latent HOTIs featuring a Cn symmetry. Although there are
many possibilities, for brevity, we only show a single example of C3−, C4−, and C6−symmetry

24

https://scipost.org
https://scipost.org/SciPostPhys.18.2.061


SciPost Phys. 18, 061 (2025)

Figure 8: Latent higher-order topological insulators. (a) Triangular OBC flake of
h(3)L (k) for t0 = 0.2 and g = 0.1 at filling N f = 18Ncells + 2. Each of the corners
shows a quantized excess corner charge of Qcorner = 2e/3. (b) Square OBC flake of
h(4)L,2(k) for t0 = t1 = t2 = 1/2 and t3 = 1 at filling N f = 3Ncells + 2. Each of the
corners shows a quantized excess corner charge of Qcorner = e/2. (c) Hexagonal OBC
flake of h(6)L,1(k) for t0 = t1 = t2 = 1/4 at filling N f = 17Ncells+2. Each of the corners
shows a quantized excess corner charge of Qcorner = e/3.

each. C2−symmetry is left out as constructing a lattice with only two ‘corners’ would cor-
respond to a 1D chain, which is already treated in Ref. [21]. Alternatively, a square latent
C2−symmetric lattice could be considered, which only shows pairwise equal corner charges.

Latent C3-symmetric HOTI The latent C3-symmetric generators h(3)L,i (k) have topological

phases with χ(3) = (0, 2) and χ(3) = (2,0), which corresponds to P(3) = (e/3)(a1 + a2) and
P(3) = (2e/3)(a1 + a2), respectively. For neither of these models the dipole moment vanishes.
In Sec. 4.3 we argued that the generators may be stacked to obtain models with arbitrary
rotational invariant, and, thus arbitrary P(n) and Q(n). By ‘stacking’ h(3)L,1(k) and h(3)L,2(k), we
obtain

h(3)L (k) =

�

h(3)L,1(k) T
T † h(3)L,2(k)

�

, (57)

where T couples the two models without breaking C3-symmetry and without closing the gap.
Here, we choose

T =
�

T ;3×6
;6×3 ;6×6

�

, T =





g 0 g
g g 0
0 g g



 . (58)

From Fig. 6, we observe that both h(3)L,i (k) are topological for t0 = 0.2 at 8 filled

bands. Taking g = 0.1 does not close the gap, such that h(3)L (k) is characterised by
χ(3) = (0, 2) + (2, 0) = (2, 2). This translates to P(3) = 0 and Q(3) = 2e/3. Figure 8(a) shows
a triangular flake with OBC corresponding to h(3)L (k), in which every hexagon represents a
(stacked) unit cell. The colour of the cells represents ρ(xcell)−ρ0 where

ρ(xcell) = e
∑

x∈xcell

N f
∑

i

|ψi(x)|2 , (59)

is the electronic charge density per unit cell and N f is the amount of filled states. ψi(x) is the
wavefunction of the ith energy eigenstate of the electron. ρ0 is the (ionic) background charge
density of the unit cells (ρ0 = e×#filled bands×#cells). In Fig. 8(a), we take a filling of 16
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bands (8 filled bands of each model). There is a clear localisation of excess charge in the three
corners of the flake. Adding up the excess charge within a single sector (indicated in green),
reveals that the corner charge is quantized and equal to Qcorner = 2e/3.

Latent C4-symmetric HOTI As an example of C4-symmetric latent HOTI, we may take
h(4)L,2(k), which in its topological phase [χ(4) = (2,0, 0)] at 3 filled bands has P(4) = 0 and

Q(4) = e/2, i.e., it is not necessary to stack two models. Figure 8(b) shows the charge density
in a square flake with OBC, described by h(4)L,2(k) for t0 = t1 = t2 = 1/2 and t3 = 1. Sum-
ming over a single sector (green) reveals a total corner charge of Qcorner = e/2, predominantly
localized at the corners.

Latent C6-symmetric HOTI Finally, from Eq. (23), it follows that the dipole moment always
vanishes for any C6-symmetric system. Consequently, both primitive generators h(6)L,i (k) will

represent a HOTI in their topological phase. Here, we consider h(6)L,1(k) for t0 = t1 = t2 = 1/4
for 17 filled bands. For these parameters, the system is gapped and characterised by
χ(6) = (0, 2), corresponding to P(6) = 0 and Q(6) = e/3. Figure 8(c) shows a hexagonal flake
of this system, with OBC. It displays corner charges Qcorner = e/3 in each of the six corners of
the flake.

In addition to the charge density distributions of the three examples shown in Fig. 8, we
further present in Fig. 9 the corner modes in each of the lattices that we treated. In Fig. 8, we
displayed the quantized fractional corner charges through the quantity ρ(xcell)−ρ0. We now
show the states themselves. For a Cn-symmetric system, there are n corner states. In Fig. 9,
the size of the blue circles represents the combined amplitude of one set of corner states, i.e.

v(x) =
n
∑

i=1

|ψcorner
i (x)|2 , (60)

where n= 2,3, 4,6 for C2−, C3−, C4−, C6−symmetry, respectively.
A close inspection of the latent C3− and C6−symmetric lattices [Figs. 9(d-g)] leads to the

conclusion that these states do not have a rotation symmetry. Indeed, this can be explained
by the fact that these states are protected by a latent symmetry instead of a conventional
symmetry. Moreover, when only considering the support of the wavefunction on the S sites
(red sites in the insets), the corner states look indeed symmetric. This is verified by the smaller
plot next to Fig. 9(f), which shows the same wavefunction but only on S.

6 Topological robustness

In this section, we further investigate the robustness of the latent higher-order topological
phases compared to their conventional counterparts. As a working example, we choose the
(latent) breathing Kagome lattice. Before including disorder, we show in Figs. 10(a) and 10(b)
show the open boundary spectra of a triangular flake of the geometric and latent breathing
Kagome lattice, respectively. The spectrum is plotted as a function of the intercell hopping
parameter w, which was previously fixed to 1. The vertical red dashed lines indicate the
value of w for which a topological phase transition occurs through a bulk gap closing. The
horizontal green dashed lines indicate the presence of a topological corner mode. Notice that
in Fig. 10(b), the corner states do not lie at zero energy, and can sometimes be hidden by the
bulk-bands.
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Figure 9: Corner states in the latent lattices considered in Figs. 5, 6, and 7. Blue
circles represent the wavefunction amplitude of the corner states as defined through
Eq. (60) while grey circles denote the sites in the unit cell. States are calculated for
parameters: (a) t0 = t1 = t2 = 1, t3 = 0.5, (b) t0 = t1 = t2 = 0.25, t3 = 0, (c)
t0 = t1 = t2 = 0.5, t3 = 1, (d,e) t0 = 0.2, (f,g) t0 = t1 = t2 = 0.25.

27

https://scipost.org
https://scipost.org/SciPostPhys.18.2.061


SciPost Phys. 18, 061 (2025)

Figure 10: Spectra of (a) the geometric and (b) latent kagome model on a triangular
flake geometry as a function of intercell hopping w. Red lines indicate values of w for
which a topological phase transition occurs, while green lines mark the topological
corner states.

6.1 Onsite disorder

The systems considered in this work are protected by latent/geometric symmetries, which
offer weaker protection than spectral symmetries. Consequently, most perturbations break
the (latent) Cn symmetries that protect the crystalline topological phases. If the perturbation
is sufficiently small, the corner modes may persist, although their degeneracy will be lifted by
a small amount. To demonstrate this, we consider random onsite disorder, i.e., a perturbation
Hamiltonian of the form

Hdisorder =
∑

i

Dic
†
i ci , (61)

where the disorder strength Di is sampled from a uniform distribution [−D, D]. Figure 11
shows the spectra and corner-state wavefunctions for an open boundary conditions flake of
the geometric and latent kagome model at different disorder strengths D. The introduction of
onsite disorder immediately lifts the degeneracy of the corner states. However, if the disorder
is sufficiently small, they will still be pinned to the corners. If the disorder strength becomes
large enough, in this case at D ≈ 0.6, the corner states cease to exist, as seen in the right panels
of Figs. 11(a) and 11(b).

6.2 Orientational disorder

The latent lattices allow for a type of disorder exclusive to systems with latent symmetries,
namely, orientational disorder [21]. It is created by taking the latently symmetric unit cells in
a lattice and rotating them by their respective symmetry, as seen in Fig. 12. Since rotating the
unit cell does not affect the isospectral reduction of a lattice, a lattice with orientational disor-
der has the same spectral properties as a lattice with no orientational disorder. Consequently,
the behavior of such a lattice is unperturbed.
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(a)

(b)

Figure 11: Open boundary condition flake of (a) the geometric Kagome model for
t0 = 0.4 and (b) the latent Kagome model for t0 = 0.2, at different disorder strength
D. Insets show the (combined) wavefunction amplitudes of the three corner states
indicated by the blue squares.

Figure 12: Examples of a latently symmetric lattice with (a) latent C4 and (b) latent
C6 symmetry together with examples of orientational disorder.

7 Conclusion

In this paper, we have shown that the existence of non-trivial fractional corner charges in
two dimensional systems does not require the preservation of a Cn-symmetry. Instead, a la-
tent symmetry is sufficient. This may be understood from the behaviour of the latent sym-

metry Ĉn ⊕Q
(n)

at the HSPs Π, which is exactly the same as for a non-latent symmetry, i.e.

[h(Π), Ĉn ⊕ Q
(n)
]− = 0. Owing to this property, any two dimensional system with a latent

symmetry of the form Ĉn⊕Q
(n)

may host non-trivial corner modes and can be characterised in
terms of rotation invariants. In Section 4 we gave examples of primitive generators that have
this property. We showed that for some models, a full analytical treatment is possible, even
though the model had up to 9 bands. This reveals another strength of our method: if, under
an isospectral reduction, a Hamiltonian reduces to an energy-dependent version of a known
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model, then properties of the known model can be used to characterize the full Hamiltonian.
A formal outline of this procedure was given at the end of Section 2.

We have given examples of unit cells that show a latent Cn-symmetry for the four rota-
tion symmetries that tile the two-dimensional space and have provided an outline for how
to construct latent HOTIs based on these. Nevertheless, our work does not restrict itself to
these unit cells. On the contrary, any cell that obeys a latent Cn-symmetry may be used to
construct a latent HOTI. These unit cells were used merely to give three specific examples of a
latent HOTI. We emphasize that these examples do not capture the full range of possible latent
HOTIs. Any two primitive generators based on a unit cell – geometric- or latent symmetric –
can be combined to form a new generator. One could obtain HOTIs that are composed of one
geometric generator and one latent generator. The examples we have provided – namely, the
2D SSH model, a breathing square-octagon lattice, T-Graphene, a breathing kagome lattice,
a breathing ruby lattice, and a Kekulé lattice [30–38, 40] – have all been previously used to
study a variety of phenomena, which is why we believe that our results might therefore be
directly relevant to them.

In addition, we discussed the possibility of a unit cell showing a geometric C3 (C2) sym-
metry while its ISR showed a latent C6 (C4) symmetry, i.e. an effective symmetry doubling.
Consequentially, the corner charges will follow the doubled symmetry. This behaviour can
neatly be explained by performing an ISR.

Moreover, TCIs protected by Cn-symmetry only form a subset of all crystalline topological
phases. Similar methods to those outlined in our work can be applied to systems with different
crystalline symmetries. This leads us to believe that our work opens doors for the latent gen-
eralisation of topological phases protected by other crystalline symmetries. Interesting cases
for future investigations would be latent versions of topological systems lacking translational
symmetry, but still displaying global space-group symmetries. Examples of these are possi-
bly a generalization of a recent work on 1D topological quasicrystalline insulators [41], or a
crystalline generalization of the topological states observed in finite fractals [42].

Finally, it would be interesting to investigate a generalization to third-order topological
insulators in 3D. There is no straightforward 3D generalization of the theory outlined in Ref.
[14]. Still, using the same method to construct the unit cells of this work, one could find a
unit cell that reduces to a latent version of the one found in the pyrochlore lattice [43], which
is known to host a third-order topological phase with quantized fractional charges.
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A Derivation of the Q matrix

Reference [20] gives a derivation for the Q (and therefore also Q) matrix. Here, we will
briefly outline how to construct Q in the specific case of a latent Cn-symmetry. Let H be a real
symmetric matrix with a latent Cn-symmetry, i.e.

�

RS(H, E), Ĉn

�

− = 0 . (A.1)
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Then the eigenstates {|φ〉} of H can be chosen to satisfy

Ĉn |φ〉S = e
2πi
n (p−1) |φ〉S , with p ∈ {1, 2, . . . , n} , OR |φ〉S = 0 , (A.2)

where 0 is a zero vector in the S subspace. We label these states by
�

�φ(p)
�

and
�

�φ(0)
�

, respec-
tively. One can then define the projectors

Pp =
∑

i

�

�

�φ
(p)
i

¶¬

φ
(p)
i

�

�

� , P0 =
∑

i

�

�

�φ
(0)
i

¶¬

φ
(0)
i

�

�

� . (A.3)

From these projectors, Q is defined through

Q = Ĉn ⊕Q = P0 +
n
∑

p=1

e
2πi
n (p−1)Pp . (A.4)

B Hamiltonians and symmetries

B.1 C4

The Hamiltonian for the unit cell in Fig. 3(c) of the main text is given by

H(4)L =











































0 1 0 1 1 0 0 1 1 0 0 1 0
1 0 1 0 1 1 0 0 1 1 0 0 0
0 1 0 1 0 1 1 0 0 1 1 0 0
1 0 1 0 0 0 1 1 0 0 1 1 0
1 1 0 0 0 0 0 0 1 0 0 0 t1 + t3
0 1 1 0 0 0 0 0 0 1 0 0 t2
0 0 1 1 0 0 0 0 0 0 1 0 t1
1 0 0 1 0 0 0 0 0 0 0 1 t2
1 1 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 0 1 0 0 0 0 0 0 0
0 0 1 1 0 0 1 0 0 0 0 0 t3
1 0 0 1 0 0 0 1 0 0 0 0 0
0 0 0 0 t1 + t3 t2 t1 t2 0 0 t3 0 0











































. (B.1)

The symmetry on the level of the full Hamiltonian H(4)L is given by

Q(4) = Ĉ4 ⊕Q
(4)
=







0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0






⊕





























3
4 −1

4
1
4

1
4 −1

4 −
1
4

1
4

1
4 0

1
4

3
4 −1

4
1
4

1
4 −1

4 −
1
4

1
4 0

1
4

1
4

3
4 −1

4
1
4

1
4 −1

4 −
1
4 0

−1
4

1
4

1
4

3
4 −1

4
1
4

1
4 −1

4 0
−1

4 −
1
4

1
4

1
4

3
4 −1

4
1
4

1
4 0

1
4 −1

4 −
1
4

1
4

1
4

3
4 −1

4
1
4 0

1
4

1
4 −1

4 −
1
4

1
4

1
4

3
4 −1

4 0
−1

4
1
4

1
4 −1

4 −
1
4

1
4

1
4

3
4 0

0 0 0 0 0 0 0 0 1





























. (B.2)
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Figure 13: A more complex latent C6−symmetric unit cell. The hopping parameters
are indicated by different colors.

The reduced parameters that enter Fig. 3(g) and Eq. (41) are given by

a(4) =
t2
0

�

4E
�

E2 − t2
0

�

+ t2
1(t0 − 7E) + 2 (t2 − 3t3) t1(E + t0) + t2

2(t0 − 7E) + t2
3(t0 − 7E) + 2t2 t3(E + t0)

�

(t0 − E)
�

E(t0 − E)(E + t0) + 2
�

Et2
1 + t3 t1(E + t0) + E

�

t2
2 + t2

3

��� ,

(B.3)

v(4)0 = −
t0(E + t0)
�

t2
1(−(t0 − 2E)) + t1 (2Et3 − 2t0 t2)− t2

2(t0 − 2E)− t2
3(t0 − 2E) + E(t0 − E)(E + t0)− 2t0 t2 t3

�

(t0 − E)
�

E(t0 − E)(E + t0) + 2
�

Et2
1 + t3 t1(E + t0) + E

�

t2
2 + t2

3

��� ,

(B.4)

v(4)1 =
t2
0 (t1 + t2 + t3) 2(E + t0)

(t0 − E)
�

E(t0 − E)(E + t0) + 2
�

Et2
1 + t3 t1(E + t0) + E

�

t2
2 + t2

3

��� . (B.5)

B.2 C6

The Hamiltonian for the unit cell in Fig. 3(d) of the main text is a simplified version of the one
denoted in Fig. 13. To obtain the former, we set t2 = t3 = t4 = 0 and let t5 → t2. The full
Hamiltonian is given by

H(6)L =



































































0 0 0 0 0 0 0 0 0 0 t0 0 0 0 0 t0 t0 0 0
0 0 0 0 0 0 0 0 0 0 0 t0 0 0 0 0 t0 t0 0
0 0 0 0 0 0 t0 0 0 0 0 0 t0 0 0 0 0 t0 0
0 0 0 0 0 0 0 t0 0 0 0 0 t0 t0 0 0 0 0 0
0 0 0 0 0 0 0 0 t0 0 0 0 0 t0 t0 0 0 0 0
0 0 0 0 0 0 0 0 0 t0 0 0 0 0 t0 t0 0 0 0
0 0 t0 0 0 0 0 t0 0 0 0 t0 0 0 0 0 0 0 t3 + t4 + t5
0 0 0 t0 0 0 t0 0 t0 0 0 0 0 0 0 0 0 0 t3
0 0 0 0 t0 0 0 t0 0 t0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 t0 0 0 t0 0 t0 0 0 0 0 0 0 0 t4
t0 0 0 0 0 0 0 0 0 t0 0 t0 0 0 0 0 0 0 0
0 t0 0 0 0 0 t0 0 0 0 t0 0 0 0 0 0 0 0 t5
0 0 t0 t0 0 0 0 0 0 0 0 0 0 t0 0 0 0 t0 t1
0 0 0 t0 t0 0 0 0 0 0 0 0 t0 0 t0 0 0 0 t2 + t4 + t5
0 0 0 0 t0 t0 0 0 0 0 0 0 0 t0 0 t0 0 0 t1 + t3
t0 0 0 0 0 t0 0 0 0 0 0 0 0 0 t0 0 t0 0 t2 + t5
t0 t0 0 0 0 0 0 0 0 0 0 0 0 0 0 t0 0 t0 t1 + t3 + t4
0 t0 t0 0 0 0 0 0 0 0 0 0 t0 0 0 0 t0 0 t2
0 0 0 0 0 0 t3 + t4 + t5 t3 0 t4 0 t5 t1 t2 + t4 + t5 t1 + t3 t2 + t5 t1 + t3 + t4 t2 0



































































.

(B.6)
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The symmetry on the level of the full Hamiltonian H(6)L is given by

Q(6) = Ĉ6 ⊕Q
(6)
=















0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0















(B.7)

⊕
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.

The reduced parameters that enter Fig. 3(h) and Eq. (56) are of the form

a(4) =
1
∆

9
∑

j=0

α( j)E j , v(4)i =
1
∆

9
∑

j=0

ν
( j)
i E j , ∆=

9
∑

j=0

δ( j)E j . (B.8)

The expressions for α( j), ν( j)i , and δ( j) are lengthy, but easily obtainable; they are not given
here.
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