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Abstract

Despite many reports of valley-related phenomena in graphene and its multilayers, cur-
rent transport experiments cannot probe valley phenomena without the application of
external fields. Here we propose a gate-defined valley splitter as a direct transport probe
for valley phenomenon in graphene multilayers. First, we show how the device works,
its magnetotransport response, and its robustness against fabrication errors. Secondly,
we present two applications for valley splitters: (i) resonant tunneling of quantum dots
probed by a valley splitter shows the valley polarization of dot levels; (ii) a combination
of two valley splitters resolves the nature of order parameters in mesoscopic samples.
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1 Introduction

The recent advances in the fabrication of graphene multilayer devices, particularly boron ni-
tride encapsulation [1, 2] and the use of graphite back gates [3–5], improved the mobility
and suppressed intervalley scattering of bulk samples. Due to valley conservation in this new
generation of clean bulk graphene samples, many experimental works observed valley order
arising from spontaneous SU(4) spin-valley symmetry breaking [6–11]. In addition, the out-of-
plane displacement field opens a gap in graphene multilayers [12–15], and therefore allows
to fabricate gate-defined nanodevices [4, 16–18]. The smooth potential of electrostatically-
defined devices avoids intervalley scattering caused by reflection at atomically-sharp edges.
As a consequence, valley-dependent phenomena were also observed in nanostructures, such
as the injection of valley-polarized states in quantum point contacts [17, 19–22], and valley-
polarized in states quantum dots [4,5] with long lifetimes [23,24].

The recent experiments in graphene multilayer devices observe various symmetry-broken
phases that suggest the presence of valley structure, such as nematic superconductivity [9],
isospin ferromagnetism [10], and correlated insulators [11]. However, current transport ex-
periments cannot resolve the valley structure of the order parameter. For example, quantum
oscillation experiments cannot distinguish between valley polarized and intervalley coherent
(IVC) orders. In nanodevices, experiments probing valley-related phenomena rely on break-
ing valley symmetry and therefore these probes are invasive and indirect. For example, valley
polarization of states injected from quantum point contacts was probed with electron col-
limation [22] and via valley-Zeeman splitting in quantum dots [25, 26]. Finally, transport
signatures of valley polarization using Andreev reflection [27–30] are still limited by device
quality [31–33]. Thus, the only direct probes of valley phenomena are via microscopy tech-
niques [11,20,34,35].

In this manuscript, we propose the use of electrically defined valley splitters in bilayer
graphene as a magnetic field-free transport probe for valley phenomena. Although the in-
gredients of this device were previously explored both theoretically [36–39] and experimen-
tally [40–46], previous works focused on the generation of valley-polarized currents rather
than its use as an experimental probe of valley polarization. We demonstrate the use of valley
splitters in two case uses: (i) a tool for measuring valley polarization of confined states via
resonant tunneling, and (ii) a probe of valley-dependent order parameters. We also evaluate
the robustness of the splitter’s efficiency against fabrication imperfections, show the require-
ments for the alignment of splitting gates, and suggest changes in the device layout to further
relax the conditions.

2 Device

We propose a bilayer graphene gate-defined device depicted in Fig. 1(a), that splits states ac-
cording to their valley polarization. The devices consist of three one-dimensional channels
confined by gapped regions due to a non-zero displacement field D(r) as shown in Fig. 1(b).
The injection channel is confined by a region with D > 0 and injects valley-symmetric states.
The collecting arms are valley-helical channels surrounded by regions with opposite displace-
ment field [36,37,40]. Because of the opposite sign of the displacement field, one arm collects
states at valley K and the other arm collects states at the opposite valley K ′. We propose the
device layout from Fig. 1(a) to achieve the required displacement field profile. The control of
the four gates provides independent control of the layer imbalance U ∝ D and the chemical
potential µ.
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Figure 1: Tight-binding simulations of a valley splitter. (a) Proposed multilayered
gate layout and resulting displacement field in bilayer graphene. (b) Valley expecta-
tion value of the scattering wave functions. The injecting states are superpositions of
states at both valleys. As they arrive at the helical edge channels, each flavor leaves
through one of the collector arms. The difference between transmissions from up-
per and lower leads is proportional to the valley polarization of the injected modes.
(c) Band structure of the injecting one-dimensional channel. The presence of inver-
sion and time-reversal symmetry results in a valley-symmetric band structure. Band
structure of the (d) left and (e) right collecting channels. The highlighted bands are
valley-helical, resulting in the splitting effect as injected modes encounter the col-
lecting arms.

To demonstrate the transport properties of the valley splitter, we perform numerical simu-
lations using Kwant [47]. We implement the Slonczewski-Weiss-McClure parametrization [48–
51] (see Fig.6 (a) for details) and using tight-binding parameters obtained via infrared spec-
troscopy [52]:

H =
∑

n

ψ†
n [U(rn)sign(rn · ẑ)−µ(rn) + gµBBσz]ψn +

∑

{n,m}∈Si

γie
iφnmψ†

nψm , (1)

whereψn = (cn↑, cn↓)T , cn,σ is an annihilation operator of an electron with spinσ at the atomic
site n. The matrices σi are Pauli matrices that act on spin degrees of freedom. Here µ(r)
and U(r) are the position-dependent chemical potential and layer imbalance. To exclude the
effects of edge states, we add an staggered potential at the device’s boundary. Furthermore,
g ≈ 2 is the g-factor in bilayer graphene, µB is the Bohr magneton, and B is the out-of-
plane magnetic field. Due to the magnetic field B, the hoppings between sites n and m are
corrected by a Peierls phase φnm. The hopping energies are set according to Ref. [51]: each
hopping energy γi corresponds to a set Si of hopping vectors between the site pairs (n, m). The
electrostatic potential set by µ(r) and U(r) has a screening length of 60nm [53,54].1 To reduce

1To avoid the complexity of electrostatic simulations, we pass a gaussian filter with σ = 30nm to step-functions
that define the electrostatic potential according to the layout shown in Fig. 1(a).
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Figure 2: Magnetotransport simulations with a valley splitter. (a, c) Band structure
of the injecting arms at finite orbital field B which lifts the valley degeneracy. As a
consequence, the number of propagating modes per valley changes. (b) Transmission
difference between the two helical collecting arms. A finite difference indicates the
valley polarization of the injected modes. The transmission changes in integer steps,
proportionally to the net number of propagating modes per valley.

the computational cost of the calculations, we rescale the in-plane lattice constant to ã = sa
by a factor s = 16 and fix the hoppings accordingly to preserve the low-energy dispersion. The
scaled model and its validity is discussed in the Appendix A.

We show the tight-binding simulation for the valley splitter device in Fig. 1. In all simu-
lations in this manuscript, we set the distance of 100 nm between split gates in the injecting
channel. The layer imbalance away from the one-dimensional channels is fixed at U = ±100
meV. States are injected in the device through the narrow channel at the bottom of Fig. 1(b).
The bandstrcuture in this channel is shown in Fig. 1(c), which is valley symmetric and there-
fore allows equal injection of states in both valleys. As states propagate, they encounter two
arms at the top of Fig. 1(b). Because of the displacement field configuration, the arms have
opposite valley helicity, as shown in the bandstructure plots of Figs. 1(d, e). The scattering
wavefunctionsψ are spatially split according to their valley polarization, shown by their valley
expectation value 〈ψ|V |ψ〉 in Fig. 1(b).2 The smooth electrostatic potential ensures adiabatic
propagation of wavefunctions and prevents both backscattering and valley mixing. As a result,
each injected mode is perfectly transferred to the lead with the matching valley helicity.

The valley splitter directly probes the valley polarization of the injected current. We define
the net valley polarization of a set of modes Φi as

V =

∑

i〈Φi|V |Φi〉
∑

i〈Φi|Φi〉
. (2)

Moreover, defining the transmission to arms that collect states in the valley K and K ′ as TK
and TK ′ and assuming a splitter with perfect efficiency and adiabatic,

Tα =
∑

i

〈Φi|Pα|Φi〉 , (3)

2The valley operator V is defined as a sublattice-dependent Haldane coupling [32,55,56].
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where Pα is the projector for the valley α. Thus,

TV =
TK − TK ′

TK + TK ′
≡ V , (4)

as long as the collecting arms are not saturated, i.e. Tα is smaller than the number of valley-
helical channels (2 for bilayer graphene).

We demonstrate the valley-splitter opearation simulating a magnetotransport experiment.
Because an orbital field B lifts the valley degeneracy [25, 26, 57–59], we observe a field de-
pendence of the valley transmission. We show the bandstructure of the injection channel in
Figs. 2(a, c), and the resulting valley transmission TV in Fig. 2(b). The imbalance in the num-
ber of modes per valley nα in the injector results in TV = (nK − nK ′)/(nK + nK ′). We show the
break of valley degeneracy at the injector in Fig. 2(a) at B < 0 and Fig. 2(b) at B > 0. The
number of modes per valley at the Fermi level in the helical channels does not change with the
magnetic field. Therefore, the difference in transmission between the two arms is proportional
to the valley polarization of the injected modes, as demonstrated in Fig. 2 (b). It is important
to notice that the equivalence between TV and V does not require valley conservation, and we
explore the generality of our result in Sec. 3.

Because one of the main fabrication challenges is the alignment between gates, we sim-
ulate the effects of misalignments on the valley helical collecting channels in Fig. 3. A gate
misalignment δx changes the chemical potential of the helical channels in Fig. 3(a). As a
consequence, we observe a shift of the bulk bandstructure, as shown in Fig. 3(b). This shift
reduces the helical gap, thus reducing the operational window of the valley splitter. We de-
fine the helical gap as the smallest energy window between bulk bands and the Fermi energy
Egap, indicated in Fig 3(b). Whenever Egap > 0, the valley helical states are outside cross the
Fermi energy, and the valley splitter efficiency is suppressed. In Fig 3(c,d) we show the de-
pendence of gap as a function of the displacement field U and the screenng length χ. Based on
Fig. 3(c), we expect the valley splitter to tolerate misalignments of 20− 30nm, with a higher
tolerance for smaller displacement fields. In addition, the tolerance to misalignments is sen-
sitive to screening length χ: Egap increases with the screening length as shown in Fig. 3(d).
It is possible to increase tolerance against gate misalignment with additional gates to control
to compensate for the local modulation of the chemical potential, as recently shown experi-
mentally [45]. Alternatively, a recent work has shown how to fabricate misalignment-robust
helical channels [46]. We confirm through numerical simulations that the valley splitter is
insensitive to the angle between its arms, as discussed in the Appendix B.

3 Applications

3.1 Resonant tunneling

An immediate application of a valley splitter is to probe the valley polarization of quantum
dot levels. We illustrate the operation of the device with numerical simulations of resonant
tunnelling through a quantum dot connected to a valley splitter as shown in Fig. 4 (a). To
define the quantum dot, we add two additional layer imbalance tdot regions that provide con-
finement and also control the tunnelling rate. For comparison, we show in Fig. 4(b) the
spectrum and corresponding valley polarization of states in an isolated dot as a function of
the magnetic field. Previous experiments in resonant tunneling observe the valley-degeneracy
breaking as a function of magnetic field, but cannot resolve the valley polarization of quantum
dot states [23,25,26,60]. In Fig. 4 (c), we show that connecting the quantum dot to a valley
splitter provides full resolution of valley polarization in the quantum dots. Although we only
show data for pristine quantum dots, our setup allows probing valley mixing (see Sec. 3.2),
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Figure 3: Misalignment effects on the valley helical channel. (a) Example electro-
static potential used in the layers. The solid lines show the potential in each layer.
The dashed line shows the average potential, which corresponds to a local modula-
tion of the chemical potential. (b) The band structure of the valley helical channel at
δx = 10 nm and U = 50 meV. Because of the misalignment δx and the correspond-
ing modulation of the chemical potential, non-helical bands approach the Fermi en-
ergy. (c) The bandwidth of the valley helical states as a function of misalignment δx
and layer imbalance U . (d) The bandwidth of the valley helical states as a function
of δx and screening length χ with U = 50meV. Plots (a, c, d) use χ = 60nm.

which is relevant for driving recent qubit proposals [61]. The small mismatch between the
transport experiment and the energy levels of a dot is due to the weak coupling between the
dot levels and the leads.

3.2 Probing valley-dependent order parameter

Recent experiments showed a variety of electriaccly-tunable symmetry-broken phases in BLG,
including valley-ordered phases [6]. We propose the setup shown in Fig. 5 (a) as an exper-
imental probe of valley order found in these experiments. The setup consists of a cavity in
a valley-symmetry broken phase connected to two valley splitters: one that injects valley-
polarized current, and the other probes the valley polarization. As polarized electrons travel
through the cavity, their valley isospin rotates according to the order parameter. The current
at the collecting valley splitter directly relates to the rotation electrons undergo in the cavity.

As an example, we demonstrate its use by probing a mesoscopic cavity with intervalley
coherent (IVC) order parameter. In other words, we add to the cavity an order parameter
that coherently couples the two valleys [62–64]. As an example of this device operation, we
demonstrate its use by probing a mesoscopic cavity with intervalley coherent (IVC) order pa-
rameter. In other words, we add to the cavity an order parameter that coherent couples the
two valleys [62–64]. Currently, probes of IVC rely on local probes [11,35,65,66]. Thus, prob-
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Figure 4: Resonant tunnelling through a valley-polarized quantum dot. (a) De-
vice schematics showing the gate layout and electrostatic potential of a quantum
dot connected to the valley splitter. (b) The energy levels of an isolated quantum
dot as a function of an out-of-plane magnetic field. The colour indicates the valley-
polarisation of the states. (c) TV across a quantum dot as a function of an out-of-plane
magnetic field and chemical potential µdot.

ing IVC is impossible in double-gated devices. On the other hand, transport probes such as
quantum oscillations cannot distinguish an intervalley coherent (states at the equator of the
valley Bloch sphere) from a valley polarized (states at the poles of the valley Bloch sphere).
Moreover, transport probes such as quantum oscillations cannot distinguish a intervalley co-
herent (states at the equator of the valley Bloch sphere) from a valley polarized (states at the
poles of the valley Bloch sphere).

We add an IVC order parameter as a Kekulé onsite modulation within the cavity [11,67]:

HIVC =∆IVC

∑

m

∑

n∈{A2,B1}

cos
�

ηm · rn

�

, (5)

where ηm = ∆K(cos(2mπ/3), sin(2mπ/3)), and ∆K is the momentum separation between
valleys. The modulation only acts on the sublattices A2 and B1 (see Fig. 6(a)) since these sites
set the low-energy manifold [51,67]. We show in Fig. 5(b) the valance bands bulk region with
Kekulé modulation. The modulation mixes valleys and results in avoided crossings in the band
structure. In Fig. 5 we show the k-space valley texture of a hole pocket in Fig. 5(c), consistent
with previous works [10,63,67].

We show the effects of the IVC cavity on the valley splitter’s transmission signal TV in the
upper panel of Fig. 5(d). In the absence of intervalley coherence, ∆IVC = 0, the quasiparticles
collected by the splitter transmit only to the arm with the same valley polarization as the in-
jected state, thus TV = Vinjection. As ∆IVC increases, we observe that TV fluctuates due to the
valley-dependent dynamical phase accumulated by the quasiparticles in the cavity. Further-
more averaging over the cavity’s chemical potential µcavity (Fig. 5(e)) we observe a monotonic
increase of transmission to the channel with opposite valley helicity. Therefore, we conclude
that TV ̸= Vinjection indicates valley mixing in the cavity.

At zero temperature, our scheme cannot distinguish between intervalley coherence (caused
by a spontaneous symmetry breaking) and intervalley scattering (caused by short-range disor-
der). Therefore, we rely on temperature dependence to distinguish between the two. Above
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Figure 5: A cavity with IVC probed by a double valley splitter setup. (a) Gate layout
and displacement field in a cavity connected to two valley splitters. (b) Band struc-
ture of the hole bands in bulk bilayer graphene with IVC. (c) Valley texture of the
hole pocket for a Fermi energy indicated by the dashed line in panel (b). (d) Valley
splitter’s transmission signal TV as a function of the cavity’s chemical potential and
magnitude of the IVC order parameter. (e) Average and standard deviation of TV
over the range of µcavity shown in panel (d).

the critical temperature of the IVC phase, the cavity loses its valley polarization whereas short-
range scattering remains. Thus the absence of valley mixing above the critical temperature
would rule out intervalley scattering. Alternatively, it is possible to control phase transitions
electrostatically [6]. Thus, controlling the correlated phases in the cavity also allows us to ver-
ify the amount of valley mixing in different phases and check for the presence of intervalley
scattering. These two checks allow us to unambiguously detect IVC orders.

4 Conclusion

We proposed a gate-defined valley splitter as a transport probe of valley phenomena in
graphene multilayers. Our layout tolerates gate misalignments ≲ 30nm, and we suggest di-
rections for engineering the device layout to relax the misalignment threshold even further.
Moreover, we proposed two applications of valley splitters relevant to recent experimental
progress in the field. Due to the correspondence between valley polarization and normalized
net transmission through the valley splitter arms, we show that resonant tunnelling in gate-
defined quantum dot probes directly the polarization of the dot levels. Moreover, we show
that a combination of two valley splitters – one to inject valley-polarized states and the other
to probe valley polarization – allows us to distinguish between valley-polarized and intervalley
coherent order parameters in mesoscopic cavities.
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Figure 6: (a) Tight-binding model following the Slonczewski-Weiss-McClure
parametrization. The scaling of the lattice constant a 7→ ã = sa follows a correc-
tion γi 7→ γ̃i = γi/s of the hoppings with in-plane component. Band structure of a
normal quantum point contact (a) and bulk bilayer graphene (b) around the K point
for different scaling factors s. We show a range of E −µ used in our transport calcu-
lation. The quantum point contact in panel (b) has the same parameters as Fig. 1(a).
We add a layer imbalance the bulk calculations shown in (c) of U = 5 meV to match
the gap of the point contact for comparison.

Acknowledgments

The authors acknowledge the inputs of Anton Akhmerov, Johanna Zijderveld, Timo Hyart and
Jose Lado, Josep Ingla-Aynés, Luca Banszerus, Valla Fatemi and Andrea Young for useful dis-
cussions on theoretical and experimental considerations. We thank Anton Akhmerov, Johanna
Zijderveld, and Isidora Araya Day for feedback on the manuscript.

Author contributions J.T. proposed to investigate gate-defined valley splitters. A.M. and
J.T. proposed possible applications. All authors conceived the layout of the devices, performed
numerical simulations and prepared the manuscript. A.M. supervised the project.

Funding information The project received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation program grant
agreement No. 828948 (AndQC).

Data availablity All code used in the manuscript is available on Zenodo [68].

A Scaled model in a honeycomb structure

The simulation of micrometer-sized devices is computationally demanding. Thus, we rescale
the Slonczewski-Weiss-McClure tight-binding model illustrated in Fig. 6(a) following a proce-
dure inspired by Ref. [69]. While other discretization schemes have been proposed for Bernal
bilayer graphene [70], our procedure preserves the lattice structure and trigonal warping ef-
fects. The goal of our rescaling scheme is to preserve the low-energy Hamiltonian. Thus, all
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Figure 7: Reflection (a) and transmission (b) probabilities of injected modes as a
function of the arm angle θ when the injected modes come from the lower QPC
(see Fig. 1 (c)). The transmission to the left and right leads, namely TK and TK ′ is
symmetric. The inset shows the angle θ between the helical channels.

hoppings with in-plane components are rescaled as γi 7→ γi/s whereas the only purely out-of-
plane hopping γ1 is kept as is.

We verify that our scaling scheme preserves the low-energy dispersion comparing the
dispersion of a quantum point contact (Fig. 6(b)) and the bulk dispersion (Fig. 6(b)) for
different scaling factors s. In our transport simulations, we choose s = 16, resulting in
ã = 16a ≈ 2.3nm. Although we choose s considerably larger than similar works, our choice
is well-justified by a simple comparison between length scales, similar to the description in
Ref. [69]. The magnetic length lB =

p

ħh/eB ≈ 25 nm, the screening length is 60 nm, and
the Fermi wavelength is comparable to the width of the narrow channel of 150 nm. Thus ã
is the smaller length scale in our simulations by at least an order of magnitude. Previous
works kept values of s to explore a high-magnetic field regime with B ∼ 10 T, leading to
lB ∼ 10 nm [69,70].

B Robustness to the splitter angle

The propagation of helical edge states along the domain wall where the displacement field
changes sign is topologically protected. Thus, the transmission of helical edge states is inde-
pendent of the underlying lattice orientation. As a consequence, the device has perfect helical
transmission regardless of the angle between the helical channels. In Fig. 7, we show the trans-
mission (panel (a)) and reflection (panel (b)) probabilities of injected modes as a function of
the arm angle θ (indicated as an inset in panel Fig. 7(a)). We observe that in the operational
range (TK = TK ′ = 2) the transmission and reflection are insensitive to θ . The operational
range corresponds to the lowest band of the injecting channel. For higher bands the transmis-
sion and reflection probabilities are not perfect, but the valley polarization is still preserved.
Furthermore, the reflection probability peaks at the bottom of the band because the velocities
of injecting modes vanish.
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