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Ferromagnets, a new anomaly, instantons,
and (noninvertible) continuous translations
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Abstract

We discuss a large class of classical field theories with continuous translation symme-
try. In the quantum theory, a new anomaly explicitly breaks this translation symmetry
to a discrete symmetry. Furthermore, this discrete translation symmetry is extended by
a d − 2-form global symmetry. All these theories can be described as U(1) gauge theo-
ries where Gauss law states that the system has nonzero charge density. Special cases
of such systems can be phrased as theories with a compact phase space. Examples are
ferromagnets and lattices in the lowest Landau level. In some cases, the broken contin-
uous translation symmetry can be resurrected as a noninvertible symmetry. We clarify
the relation between the discrete translation symmetry of the continuum theory and the
discrete translation symmetry of an underlying lattice model. Our treatment unifies,
clarifies, and extends earlier works on the same subject.
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1 Introduction

It is almost always the case that a lattice theory is described at long distances by a continuum
field theory. Even though the underlying lattice model has only discrete translation symme-
try, the continuum theory is invariant under continuous translations. However, a number of
examples, e.g., the continuum theories of ferromagnets and quantum crystals in the lowest
Landau level1 [5–16] have defied that expectation. As we will discuss, these phenomena are
related to another subtle effect, the breaking of translation symmetry in continuum QED at
finite density [17–19].

The goal of this paper is to present a unified treatment of many continuum quantum field
theories that are classically translation invariant, but due to a new quantum anomaly, the con-
tinuous translations symmetry is explicitly broken to discrete translations. This is the case even
though space is still continuous. Furthermore, these discrete translations do not commute.

All these theories can be described as U(1) gauge theories with a classical Lagrangian
density of the form2

LClassical =
k
V

at +L(0) . (1)

1See, e.g., the textbooks [1–4], for discussion of these and related systems.
2Throughout this note we will study theories in d spatial dimensions. Our notation is that Lorentzian signature

time is denoted by t and Euclidean signature time is denoted by τ. The spatial indices are denoted by i, j, . . . and
spacetime indices are denoted by µ = t, i, j, . . . or µ = τ, i, j, . . .. Also, we will take space to be a d-dimensional
torus Td parameterized by x i ∼ x i + ℓi . Our conventions are such that we contract the spatial indices with δi j .
This means that we do not distinguish between upper and lower spatial indices.
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Here, aµ is the U(1) gauge field and

V =
∏

i

ℓi , (2)

is the total spatial volume. Classically the dimensionless coefficient k is arbitrary, but in the
quantum theory, k has to be an integer.3 L(0) includes kinetic terms and various interaction
terms of all the fields in the problem. These terms are gauge invariant and are manifestly
translation invariant.

The superscript Classical in (1) means that this Lagrangian density can be used to find
the classical equations of motion. Such Lagrangian densities are not always well-defined,
but the equations of motion derived from them are meaningful. In the quantum theory, we
can still have ill-defined Lagrangian density L, but the integrand in the functional integral
exp

�

i
∫

dd xd tL
�

, or its Euclidean version exp
�

−
∫

dd xdτLEucl idean

�

, should be meaningful.
In the course of defining it, one might need to add to LClassical “correction terms” that do not
contribute to the classical equations of motion.4

Classically, all the first term in (1) does is to shift Gauss law by a constant k
V representing

fixed charged density. We will study its effects in the quantum theory. Specifically, the care-
ful definition of this term will involve choosing a reference point in space x i

0, thus explicitly
breaking the naive continuous translation symmetry. More explicitly, under translations,

x i → x i + εi , (3)

the properly defined quantum Lagrangian density L transforms as

L→ L+ εi k
V

fi t ,

fµν = ∂µaν − ∂νaµ .
(4)

We will interpret this phenomenon as analogous to the Adler-Bell-Jackiw chiral anomaly,
except that it is between the U(1) gauge symmetry and the translation symmetry.5

As we will see, instantons, i.e., Euclidean spacetime configurations with nonzero

Qiτ =
1

2π

∫

d x idτ fiτ ∈ Z , (5)

activate this anomaly and break the continuous U(1)d translation symmetry to discrete sub-
group Zd

k . Furthermore, that discrete symmetry is extended by the d−2-form magnetic global
symmetry of the U(1) gauge field [20] and becomes non-Abelian.

Special cases of this result were discussed in [17–19] and others arise in various models
based on a local compact phase space P . (Below, we will review why this is a special case of
(1).) In this context, the fields are local coordinatesφ r on P . The phase space is characterized
by a symplectic structure F(φ)rs = ∂rAs − ∂sAr , where the Liouville form Ar is not globally
well-defined. Then, we study theories based on classical Lagrangian densities of the form

LClassical =
k
V

∑

r

Ar∂tφ
r +L(0) . (6)

3More precisely, we set ħh= 1. Then, the classical limit corresponds to k→∞ with fixed V and fixed 1
kL
(0).

4All our continuum theories are non-renormalizable and should be viewed as effective theories.
5An ’t Hooft anomaly is an obstruction to gauging. The Adler-Bell-Jackiw (ABJ) anomaly arises when we gauge

an anomaly-free symmetry, but due to the underlying ’t Hooft anomaly in the problem, another symmetry is broken.
In the original case, studied by Adler, Bell, and Jackiw, the latter was a chiral symmetry. In our case, it is the
translation symmetry. We will return to ’t Hooft anomalies in Section 6.3.
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The first term is often referred to as a Berry term or as a Wess-Zumino term. Classically, it
adds to the equations of motion of φs the well-defined term k

V

∑

r Fsr∂tφ
r . And as above, L(0)

includes various other terms, all of which are globally well defined.
As in the more general discussion of the U(1) gauge theory (1), in the quantum theory,

(6) should be defined carefully. Again, this will uncover an anomaly, which is activated by
instantons. It breaks the translation symmetry to a discrete subgroup and extends it to a non-
Abelian group.

Many people have studied such Lagrangians in various contexts and have found closely
related facts. In particular, [17] and later [18, 19] have studied QED at finite density, which
is described by a Lagrangian of the form (1) and found the breaking of translation symmetry.
Our discussion will be similar to that of [18, 19]. The authors of [6, 7], followed by [8–10],
and more recently, [13–15] have discussed the problems with translation symmetry of ferro-
magnets described by (6). Finally, in a different physical context, [21] pointed out that further
data is needed to define the exponential of the action of (1) (but did not specify that extra data
in detail). This issue was discussed further in [22].

One might try to study the translation symmetry of the Lagrangian densities (1) and (6)
by following the standard relativistic Noether procedure expressions

Θνµ =

�

∑

r

∂L
∂ (∂νφ r)

∂µφ
r

�

−δνµL ,
∑

ν

∂νΘ
ν
µ = 0 . (7)

Using our non-relativistic notation, they are

Θt t =

�

∑

r

∂L
∂ (∂tφ r)

∂tφ
r

�

−L , Θi t = −
∑

r

∂L
∂ (∂iφ r)

∂tφ
r , ∂tΘt t =

∑

i

∂ iΘi t ,

(8)

Θt j =
∑

r

∂L
∂ (∂tφ r)

∂ jφ
r , Θi j = −

�

∑

r

∂L
∂ (∂iφ r)

∂ jφ
r

�

+δi jL , ∂tΘt j =
∑

i

∂ iΘi j .

However, the first term in (1) or the first term in (6) lead to ill-defined expressions for the
momentum current (Θt j ,Θi j).

Several authors have tried to address this issue with the momentum current and define a
translation operator using various approaches. In the context of (6), one option depends on
picking a reference point in the target space [6]. Another, follows Witten’s description of the
Wess-Zumino term [23] by adding another “bulk” dimension and expressing the operators as
integrals over a larger space [6, 13, 14, 24]. (We will show that this is not always possible.)
Some authors [8, 13] discussed an alternative momentum density current on infinite space.
That current was interpreted in [16] as a dipole current. Finally, the lack of commutativity of
translations in infinite volume was discussed in [12, 16]. In the context of the gauge theory
(1), [18] modified the canonical momentum current to be gauge invariant, but not conserved
and then used it to construct a discrete translation operator. That operator was later shown
[19] to satisfy a noncommutative algebra.

Many of the elements in our discussion have appeared in these papers. But our treatment
will differ from most of them in important ways:

• We will study the more general case (1) and later describe (6) as a special case that
follows from it.

• We will discuss the theory in finite volume V =
∏

i ℓ
i with periodic boundary condi-

tions. The reason is that the infinite volume limit is quite subtle and often singular. For
example, if we want k to be fixed, then the effect of the first term in (1) or (6) becomes
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negligible in the limit. Alternatively, if we want the first term in (1) or (6) to have a
nonzero effect, we should combine V →∞ with k→∞. Then, depending on how we
scale ℓi , the discrete Zk translation symmetry in direction j can become either U(1) (if
ℓ j remains finite), or Z (if ℓ j →∞ with fixed ℓi with i ̸= j), or R (if for at least one
i ̸= j, ℓ j ,ℓi →∞).

• We will view the continuum quantum field theory based on (1) or (6) as an effective
theory whose classical limit has continuous translation symmetry. (The classical theory
is as described in footnote 3.) Only later will we compare our continuum conclusions
with an underlying lattice.

• In order to understand the origin of the translation symmetry breaking, we will focus
on the theory, i.e., the Lagrangian densities (1) or (6), rather than on the details of
momentum operator. This will lead us to conclude that the classical theory has contin-
uous translation symmetry, while the quantum theory does not. In particular, a precise
definition of the quantum theory depends on a choice of a reference point in space x i

0,
thus explicitly breaking the continuous translation symmetry. Then, the analysis of the
translation operator will uncover additional structure.

It has recently been realized that some global symmetries that suffer from an Adler-Bell-
Jackiw anomaly are resurrected as noninvertible symmetries. This was shown in [25, 26] for
internal symmetries in the continuum and in [27,28] for lattice translation. (See [29,30], for
reviews of noninvertible symmetries.) This motivated us to look for a similar phenomenon
for continuum translations. Indeed, we will show that in some cases, the anomalous con-
tinuum translation that was explicitly broken by instantons, is resurrected as a noninvertible
continuous translation symmetry.

This brings us back to the beginning of this introduction. These continuum models are
the IR descriptions of UV lattice models, whose translation symmetry is discrete and Abelian.
We will show that the lattice translation symmetry is an Abelian subgroup of the continuum
non-Abelian discrete translation symmetry.

In Section 2, we will analyze the U(1) gauge theory based on (1). We will define it carefully
and will explore its translation symmetry. In Section 3, we will specialize to models with local
phase space based on (6). We will relate them to the U(1) gauge theories of Section 2 and will
study their properties. In Section 4, we will resurrect the continuous translation symmetries
of some of these continuum models as noninvertible translation symmetries. Section 5 will
discuss the field theories of Section 2 and the special case in Section 3 as they arise from
lattice models. Finally, in Section 6, we will summarize our results and will comment about
extensions of these ideas.

2 Dynamical U(1) gauge theories with background charge

In this section, we present a large class of U(1) gauge theories that demonstrates our main
point. The examples in Section 3 are special cases of these theories.

2.1 Comments about U(1) gauge theory

We study a U(1) gauge theory on a D-dimensional Euclidean torus parameterized by
xµ ∼ xµ + ℓµ and denote the total volume by V =

∏

µ ℓ
µ. (In the applications below, this

torus will be our d-dimensional space or our d + 1 dimensional Euclidean spacetime.) The
gauge field is aµ and the field strength is fµν = ∂µaν − ∂νaµ.

5
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To define it carefully, we choose a local trivialization. We cover the torus with patches
with transition functions between them. For simplicity, we take the overlaps to be along D−1-
dimensional tori with fixed xµ = xµ∗ .

6 The transition functions there are λ(µ).
We would like to study integrals of the gauge fields. See [18] for a related discussion.

First, we consider
∫

d xµaµ (no sum over µ).7 Since aµ depends on the choice of transition
functions, a better expression is

∫

d xµ
�

aµ −λ(µ)δ(xµ − xµ∗ )
�

, where we included a “correction
term” due to the transition function at xµ∗ . To make it fully gauge invariant, we exponentiate
it to find the standard expression for the holonomy around the µ-cycle

Hµ = exp

�

i

∫

d xµ
�

aµ −λ(µ)δ(xµ − xµ∗ )
�

�

. (9)

Let us add another direction labeled by ν ̸= µ and try to study the integral
∫

d xµd xνaµ.
This leads to two issues. First, the transition function λ(ν) shifts aµ at xν∗ by ∂µλ

(ν). Second,
the lift of λ(µ) to real numbers can jump at xν∗ by 2πZ. As a result,

∂

∂ xν∗

∫

d xµd xν
�

aµ −λ(µ)δ(xµ − xµ∗ )
�

= 2πQµν =
∫

d xµd xν fµν . (10)

The integer Qµν is the first Chern-class and we expressed it using the magnetic flux through
the (µ,ν) cycle. One way to avoid this xν∗ dependence is to choose a reference point xν0 and
consider the integral

∫

d xµd xν
�

aµ −λ(µ)δ(xµ − xµ∗ ) + (x
ν
∗ − xν0 ) fµν

�

. (11)

Integrating over the other directions, this becomes
∫

dD x

�

aµ −λ(µ)δ(xµ − xµ∗ ) +
∑

ν

(xν∗ − xν0 ) fµν

�

. (12)

Finally, since λ(µ) are circle-valued, the well-defined objects are

H(1,2,...,D)
µ = exp

�

iℓµ

V

∫

dD x

�

aµ −λ(µ)δ(xµ − xµ∗ ) +
∑

ν

(xν∗ − xν0 ) fµν

��

. (13)

Using this notation, the holonomy in (9) can be denoted as H(µ)µ .
We can phrase all this as follows. The logarithm of the holonomy around xµ (9) is a

circle-valued function of the other coordinates. We would like to integrate it over the other
coordinates. To do that, we choose a local trivialization, i.e., choose xν∗ and let it jump by
2πQµν (with Qµν ∈ Z) when we cross xν∗ . Clearly, the answer depends on xν∗ (10). This
dependence can be removed by adding the correction term in (11), or more generally (12).

To summarize, the expression H(1,2,...,D)
µ in (13) is gauge invariant and is independent of

the choice of local trivialization including the values of x i
∗. However, it depends on our choice

of xµ0 and therefore it is not translation invariant.

6More precisely, the overlaps are these tori times a small segment around xµ∗ .
7One might attempt to add another “bulk” dimension, parameterized by u, filling the circle parameterized by

xµ. Then, extend aµ to the bulk and replace
∫

d xµaµ by
∫

d xµdu fuµ. However, if the gauge field configuration is
such that Qµν =

1
2π

∫

d xµd xν fµν ̸= 0, there is no such smooth extension to the bulk. Indeed, below we will find
interesting effects associated with nonzero Qµν.
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2.2 The Lagrangian

2.2.1 Defining exp(i
∫

dd xLa)

We take space to be a d-dimensional torus x i ∼ x i+ℓi with periodic boundary conditions. The
dynamical fields include the U(1) gauge field aµ and various charged fields. The Lagrangian
density is

LClassical
U(1) = La +L(0) , La =

k
V

at , V = ℓ1ℓ2 · · ·ℓd . (14)

L(0) describes the kinetic terms of the various fields and their interactions. Unlike La, we take
L(0) to be locally gauge invariant. Also, we assume that it is manifestly translation invariant.

The main point is the unusual termLa in (14). Such a term is common in quantum mechan-
ical systems. Here, we will discuss some of its peculiar properties in field theory. Classically,
it represents background charge density k

V such that the equation of motion of at , i.e., Gauss
law, states that the dynamical fields should screen this background charge.

La is gauge invariant, up to a total time derivative. Soon, we will use the discussion in
Section 2.1 to define it carefully. For the time, we note that by compactifying Euclidean time
τ ∼ τ + β and considering gauge transformations that wind around the compact Euclidean
direction, we learn that the coefficient should be quantized

k ∈ Z . (15)

This is consistent with the interpretation of k as the total background U(1) charge.
As we emphasised in the Introduction, an unusual fact about the Lagrangian (14) is that

it depends explicitly on the total volume V . This means that if we are interested in the

V →∞ (16)

limit, we can either take also k→∞ with fixed background charge per unit volume k
V , such

that the coefficient has a nonzero limit, or we can take V →∞ with fixed k and then the first
term vanishes. Instead, we will be interested in the finite V theory.

Since the first term in the Lagrangian is not locally gauge invariant, it should be defined
carefully. We do it by going to compact Euclidean spacetime, τ∼ τ+ β . Then, we can follow
the discussion in Section 2.1 with D = d + 1 and V = Vβ and identify the exponential of the
Euclidean action as Hτ,1,2,...,d

τ of (13).
Going back to Lorentzian signature, we learn that in order to avoid the x i

∗ dependence, we
have to choose a reference point x i

0 and add a term of the Lagrangian density

k
V

at →
k
V

�

at −
∑

i

(x i
∗ − x i

0) fi t

�

. (17)

This added term can be viewed as a sum of θ -terms in the action

1
2π

∑

i

θ i

∫

d td x i fi t =
1

2πV

∫

d tdd x
∑

i

θ iℓi fi t , θ i = 2πk
x i

0 − x i
∗

ℓi
, (18)

or in Euclidean space

1
2π

∑

i

θ i

∫

dτd x i fiτ =
1

2πV

∫

dτdd x
∑

i

θ iℓi fiτ . (19)

From this perspective, the choice of x i
0 can be thought of as a choice of bare θ -terms. However,

it is crucial for us that spatial translations shift the bare θ -terms. It will be important below
that the periodicity of the parameter x i

0 is ℓ
i

k rather than merely ℓi .
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As we emphasized in the Introduction, such added terms to the classical Lagrangian should
not affect the classical equations of motion. Indeed, as always with θ -terms, they do not
contribute the equations of motion.

To summarize, the explicit x i
∗ dependence in the θ -terms, cancels the implicit x i

∗ depen-
dence in the first term. We can think of the dependence on x i

∗ as violation of the gauge
symmetry and the added terms make the theory gauge invariant. The price we pay for that is
that the dependence on x i

0 explicitly breaks the translation symmetry of the problem.

2.2.2 Description in terms of a background gauge field

It is often useful to view every coupling constant in the theory as a background field. Here we
do it for La.

The U(1) gauge theory has a magnetic d−2-form global symmetry [20] with currents and
charges

Jµν =
1

2π
fµν , ∂µJνρ + ∂νJρµ + ∂ρJµν = 0 , Qµν =

∫

d xµd xνJµν ∈ Z . (20)

Its coupling to a background d − 1-form gauge field A is through a Chern-Simons coupling

CS(a, A) =
1

2π

∫

adA (21)

(for d = 1, the magnetic symmetry can be thought of as a “−1-form symmetry” and A is a
compact background scalar [20,31,32]).

We are interested in the theory with a constant, properly-normalized, background “mag-
netic” field

dA=
2πk

V
d x1 ∧ d x2 · · · ∧ d xd . (22)

Using this background in (21), we find k
V at .

As is well known, Chern-Simons terms like (21) need to be defined carefully.8 But even
without doing it, we can quickly derive the breaking of continuous translation symmetry.

We are interested in a specific A, such that its field strength is (22). We denote the com-
ponents of the d − 1-form gauge field using its dual Ai , such that the gauge invariant field
strength is

∑

i

∂iA
i =

2πk
V

. (23)

Next, we choose a local trivialization and a gauge for Ai , e.g.,

A1 =
2πk

V
(x1 − x1

0) , Ai = 0 , for i ̸= 1 , 0≤ x1 < ℓ1 . (24)

In this gauge, we have a discontinuity only at x1 = 0. It is associated with moving from patch
to patch with a transition function for A. That transition function is independent of x1, such
that we can easily explore the translation symmetry of x1. (As we will see, this expression
corresponds to choosing x j

0 = 0 for j ̸= i.)
Regardless of the precise presentation of the Chern-Simons term, its variation under δA is

simple

δCS(a, A) =
1

2π

∫

daδA . (25)

8One way to do it, which we follow in this note, involves adding “correction terms” associated with the choice
of transition functions. This is standard in general gauge theories and in particular in Chern-Simons theories. See
e.g., the physics discussion in [31,33–35], and references therein for the mathematics literature.
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For A of (24), a shift x1→ x1 + ε1 leads to

δA1 =
2πk

V
ε1 , (26)

and hence

δCS(a, A) =
k
V
ε1

∫

dd x f1t . (27)

A similar conclusion appears in the other directions. (It is easier to demonstrate it using other
gauges.)

It is known that despite appearance, the Chern-Simons term (21) depends on the constant
mode of A. In our case, with a background A, we parameterize this mode by the reference
point x i

0. We see that to make our theory based on
∫

dd xat meaningful, we need to specify d
numbers, either the constant mode of A, or x i

0. This leads to explicit breaking of the continuous
translation symmetry.

Let us relate this discussion to the discussion in Section 2.2.1. Unlike (24), we choose a
more symmetric gauge

Ai =
2πk
dV
(x i − x i

0) , 0≤ x i < ℓi . (28)

(We use d both for the number of spatial dimensions and the exterior derivative. We hope this
will not cause confusion.) Using that, the corrected La (17) is

La =
1

2π

∑

i

�

∂iA
iat − dAi(x i

∗) fi t

�

. (29)

Here, the field strength of the background d − 1-form gauge field is
∑

i ∂iA
i = 2πk

V without a
delta function at x i = 0.

Using integration by parts and being careful about the surface terms, (29) can be replaced
by

La =
1

2π

∑

i

�

∂iA
iat − dAi(x i

∗) fi t

�

→
1

2π

∑

i

�

− Ai fi t − (d − 1)Ai(x i
∗) fi t +

2πkℓi

dV
atδ(x

i)
�

→ L′a =
∑

i

 

−
k

dV
(x i − x i

0) fi t +
k

dV
ℓiδ(x i)

 

at −

 

∑

j ̸=i

(x j
∗ − x j

0) f j t

!!!

.

(30)

In the first step, we used the fact that at has a transition function only at x i
∗ and we dropped

a total time derivative. In the second step we used the fact that the integral
∫

d td x i fi t is
independent of x j with j ̸= i.

Comments about (30):

• Unlike our starting Lagrangian density La (29), away from x i = 0, the new Lagrangian
density L′a (30) is locally gauge invariant. However, it depends explicitly on the coordi-
nates x i .

• As a consistency check, the equation of motion of at sets the charge density to k
V at every

point, including x i = 0. This is the same as in (29).

• As another consistency check, consider the x i
∗ dependence. La of (29) was designed such

the theory is independent of x i
∗ – the implicit dependence in the first term is cancelled
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by the explicit dependence in the second term. The same is true for L′a of (30). The
first term is gauge invariant and is independent of x i

∗. The second term is a sum of
terms of the form (12) associated with co-dimension one tori labeled by i, such that it is
also independent of x j

∗. (The prefactor 1
d relative to (12) is compatible with the gauge

symmetry because of the contribution from the d tori.)

• The violation of translation symmetry in (30) is consistent with (27).

2.3 Losing the translation symmetry

2.3.1 Breaking the translation symmetry

Let us discuss the violation of the translation symmetry in more detail.
We have already seen that the translation transformation

x i → x i + εi , (31)

leads to

L→ L+ εi k
V

fi t , (32)

i.e., the translation symmetry is explicitly broken.
We interpret this explicit breaking to mean that the translation symmetry suffers from an

anomaly proportional to fi t . Below, we will discuss the currents of the translation symmetry
and will provide more evidence for this interpretation.

Going to Euclidean space we see that the violation of the translation symmetry is due to
instantons, i.e., configurations with nonzero

Qiτ =
1

2π

∫

dτd x i fiτ ∈ Z . (33)

They contribute to the action 2πk
∑

i
x i

0−x i
∗

ℓi Qiτ and hence they break the continuous transla-
tion symmetry to

x i → x i +
ℓi

k
, (34)

i.e., the U(1) translation symmetry in each direction is broken as

U(1)→ Zk . (35)

We will soon see that the full symmetry group is not simply a product of these discrete factors.
Again, this is similar to how the Adler-Bell-Jackiw anomaly is activated by instantons and

leads to an explicit breaking of the symmetry. Also, it is similar to how D-brane instantons lead
to the K-theory classification of D-brane charges [36]. As in these cases, it is important that
the symmetry breaking (35) is explicit symmetry breaking rather than spontaneous breaking.
It does not lead to a massless Goldstone boson.

2.3.2 The symmetry operators

Here we discuss the symmetry operators that implement these translation symmetries. See
related discussions for d = 1 in [18] and for d = 2 in [19].
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First, we ignore the subtleties associated with gauge invariance. The naive momentum
current, which follows from (8) is not gauge invariant9

Θt j =
k
V

a j +Θ
(0)
t j , Θi j = δi j

k
V

at +Θ
(0)
i j . (37)

The operators Θ(0)t j and Θ(0)i j depend on L(0) and are locally gauge invariant and translation
invariant.

The momentum operator associated with the current (37)

p j =

∫

dd xΘt j =

∫

dd x
�

k
V

a j +Θ
(0)
t j

�

, (38)

is conserved. However, it is not gauge invariant.
We can try to consider the discrete translation operators

exp

�

iℓ j

k
p j

�

= exp

�

i
ℓ j

V

∫

dd x
�

a j +
V
k
Θ
(0)
t j

�

�

. (39)

Again, this expression has to be defined carefully. To do that, we follow the discussion in
Section 2.1 and use (13) with D = d to write the generators

T j = exp

�

iℓ j

V

∫

dd x

�

a j −λ( j)δ(x j − x j
∗) +

∑

i

(x i
∗ − x i

0) f ji

�

+
V
k
Θ
(0)
t j

�

, (T j)k = 1 . (40)

The explicit dependence of the translation generators (40) on x i
0 means that they do not

commute

T i T j = T j T ie
2πi

k Qi j , Qi j =
1

2π

∫

d x id x j fi j =
ℓiℓ j

2πV

∫

dd x fi j . (41)

This lack of commutativity of the translation symmetry is an extension of the discrete
translation group Zd

k by the d − 2-form magnetic symmetry (20). Using our nonrelativistic
notation, its currents and charges are

J j t =
1

2π
f j t , Ji j =

1
2π

fi j ,

∂tJi j = ∂ jJi t − ∂iJ j t , ∂mJi j + ∂ jJmi + ∂iJ jm = 0 ,

Qi j =

∫

d x id x jJi j ∈ Z .

(42)

More precisely, the translation symmetry is extended by a discrete Zk ⊂ U(1) of the magnetic
d − 2-form symmetry. Note that this extension is not central and related to that, it does not
reflect an anomaly.

Physically, the extension (41) has a simple interpretation. As we said above, the term k
V at

in the Lagrangian density means that all the states in the Hilbert space carry U(1) charge k.

9A quick way to see that the gauge noninvariant part of the momentum current has this form for any L(0) is the
following. The term with δi jL in Θi j of (8) leads to δi j

k
V at . Then, the conservation equation ∂tΘt j −

∑

i ∂
iΘi j = 0

means that Θt j should include k
V a j , such that the other terms, which are gauge invariant, can cancel k

V f j t

∂tΘ
(0)
t j −

∑

i

∂ iΘ
(0)
i j =

k
V

f j t . (36)

11

https://scipost.org
https://scipost.org/SciPostPhys.18.2.063


SciPost Phys. 18, 063 (2025)

Therefore, the lack of commutativity in (41) is the standard lack of commutativity of transla-
tions of charged particles in the presence of a magnetic field fi j .

Unlike other situations with background magnetic field, our magnetic field is dynamical.
Therefore, its flux Qi j is an operator rather than a c-number. As a result, the extension in (41)
is not central. Also, when the U(1) gauge field is a classical background, the Hilbert space has
states with various U(1) charges and the lack of commutativity of the translation operators
depends on the charge of the state. In our case, all the states have the same charge k and
therefore we have a uniform expression (41). See also a related discussion in Section 6.2.

Below, we will be interested in various commutative subgroups of our translation symme-
try. Specifically, for every set of integers ki such that k =

∏

i ki , the subgroup

⊗iZki
(43)

of the translation symmetry generated by (T i)
k
ki is not extended by the d − 2-form symmetry.

2.3.3 Gauge invariant currents

As in the discussion in Section 2.2.2, we can try to replace the momentum current (37) and
the momentum operator (38) by other operators that are manifestly gauge invariant, but are
position dependent and perhaps even discontinuous in space. An example in d ≥ 2 is10

Θ′t j =
k

V (d − 1)

∑

m

gm(x
m) f jm +Θ

(0)
t j ,

Θ′i j =
k

V (d − 1)

�

gi(x
i) f j t −δi j

∑

m

gm(x
m) fmt

�

+Θ(0)i j ,

gm(x
m) = xm − xm

0 , for 0≤ xm < ℓm .

(46)

Compare with (28). Clearly, by shifting x i we can remove the explicit x i
0 dependence and have

the discontinuity at x i
0.

The main point about the current (46) is that unlike the current (37), it is a well-defined,
gauge invariant operator.

As we pointed out in footnote 10, the current (46) is not related to (37) by a valid im-
provement transformation. Still we can explore it. First, we note that, as in Section 2.2.2,
integration by parts in space leads to the non-gauge invariant terms in the momentum current
(37). Second, because of the discontinuities in gm(xm), it is not conserved. Using (36), we
find

∂tΘ
′
t j =

∑

i

∂ iΘ′i j +
k

V (d − 1)

∑

i ̸= j

ℓiδ(x i) f j t . (47)

10In standard theories, with well-defined energy-momentum tensor, there is freedom to perform an “improve-
ment transformation.” Using our non-relativistic notation, it is a redefinition

Θ′t j = Θt j +
∑

m

∂ mUmj , Θ′i j = Θi j + ∂t Ui j +
∑

m

∂ mVmi j , Vmi j = −Vim j . (44)

This transformation does not change the fact that the current is conserved, i.e., ∂tΘ
′
t j =

∑

i ∂
iΘ′i j . And with suitable

boundary conditions, the total derivative
∑

m ∂
mUmj in Θ′t j integrates to zero, such that the total momentum is

unchanged.
In our case, Θt j and Θi j of (37) are not good operators. We can try to “improve” them with Umj and Vmi j , which

are also not good operators, such that the improved current (Θ′t j ,Θ
′
i j) is better behaved. Specifically, ignoring the

discontinuities, the expressions (46) are obtained with

Umj =
k

V (d − 1)

�

δmj

�

∑

n

gn(x
n)an

�

− gm(x
m)a j

�

, Vmi j =
k

V (d − 1)

�

δ jm gi(x
i)−δi j gm(x

m)
�

at ,

gm(x
m) = xm − xm

0 , for 0≤ xm < ℓm .

(45)
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The left-hand-side of this equation is finite (no delta function). The explicit delta function in
the right-hand-side cancels a delta function singularities in ∂ iΘ′i j . (Alternatively, we can delete

the points x i = x i
0 and have no delta function. Then, when we integrate ∂ iΘ′i j over the space,

we should take into account a nonzero surface term.)
We conclude that the new current (46) is well-defined. However, it is not conserved.

Similarly, unlike the momentum (38), the new momentum

p′j =

∫

dd xΘ′t j , (48)

is well-defined, but it is not conserved

∂t p
′
j =

k
V (d − 1)

∫

dd x
∑

i ̸= j

ℓiδ(x i) f j t . (49)

In order to quantify the lack of momentum conservation, we go to Euclidean time τ and
find that instantons associated with nonzero

∫

dτd x j f jτ ∈ 2πZ violate p′j . This change in the
momentum is quantized

∆p′j =

∫

dτ∂τp′j =
k

V (d − 1)

∫

dτdd x
∑

i ̸= j

ℓiδ(x i) f jτ ∈
2πk
ℓ j
Z . (50)

Hence, p′j is conserved only modulo 2πk
ℓ j . Therefore, only the discrete Zk translations (40) are

true symmetries of the problem.
We conclude that the current (Θt j ,Θi j) of (37) is conserved, but it is ill-defined, and the

current (Θ′t j ,Θ
′
i j) of (46) is well-defined, but not conserved. This is in accord with our inter-

pretation of this phenomenon as an anomaly. As in the standard ABJ situation, there are two
currents. One of them is conserved, but not gauge invariant, and the other is gauge invariant,
but not conserved.

For all d, including d = 1, with nonzero Θ(0)t j we can find a similar phenomenon by replac-
ing (46) with

Θ′t j = Θ
(0)
t j , Θ′i j = Θ

(0)
i j , ∂tΘ

(0)
t j −

∑

i

∂ iΘ
(0)
i j =

k
V

f j t , (51)

where we used (36). This current is gauge invariant, but it is not conserved [18]. However, in
the models discussed in Section 3, it is common to study the Lagrangian (71), where Θ(0)t j = 0
and then the corresponding momentum operator is trivial.

3 Theories based on a local phase space

3.1 Review of some properties of phase space

3.1.1 General discussion

Here we review some well known properties of symplectic manifolds and phase space. See,
e.g., [37,38] for mathematical review and [39] for a description accessible to physicists.

We consider a compact phase space P with local coordinates φ r . It is characterized by a
closed two-form F (which is usually denoted by ω) with quantized periods

∫

C
F ∈ 2πZ , (52)
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with C a closed two-cycle. Locally, F = dA. F is known as the symplectic structure and A is
known as the Liouville one-form. (It is also known as the tautological one-form, the Poincare
one-form, the canonical one-form, or the symplectic potential.) In terms of our coordinate
system,

F = dA= 1
2

∑

rs

Frsdφ
r ∧ dφs , A=

∑

r

Ar dφ r , Frs = ∂rAs − ∂sAr . (53)

The two-form F is globally well-defined, but the one-form A is not. Using a local trivialization,
as we go from patch to patch, it transforms as

A→A+ dΛ , (54)

where Λ is defined on the overlaps.
It is common to study a circle bundle B over P , known as the pre-quantum bundle or the

Boothby–Wang bundle [40]. The fiber is parameterized locally by ψ∼ψ+ 2π. And as we go
from patch to patch, it transforms as

ψ→ψ−Λ , (55)

with the same Λ as in (54). This means that the one-form

α=A+ dψ , (56)

is globally well-defined and dα = F , i.e., F is exact on B. The total space B is a contact
manifold and the one-form α=A+ dψ is its contact form.

Let us demonstrate this in two well-known examples.

3.1.2 P = T2

T2 is parameterized by

(φ1,φ2)∼ (φ1 + 2π,φ2)∼ (φ1,φ2 + 2π) . (57)

The Liouville one-form and the symplectic structure can be taken to be

A= 1
2π
φ1dφ2 , F = 1

2π
dφ1 ∧ dφ2 . (58)

The transition functions (54) are

(φ1,φ2)→ (φ1 + 2π,φ2) , Λ= φ2 ,

(φ1,φ2)→ (φ1,φ2 + 2π) , Λ= 0 .
(59)

The circle bundle over it B is the Heisenberg manifold. Its coordinates are (φ1,φ2,ψ) and
using (55) they are subject to the identifications

(φ1 + 2π,φ2,ψ)∼ (φ1,φ2,ψ+φ2) ,

(φ1,φ2 + 2π,ψ)∼ (φ1,φ2,ψ) ,

(φ1,φ2,ψ+ 2π)∼ (φ1,φ2,ψ) .

(60)

Finally, the contact form (56) is

α=A+ dψ=
1

2π
φ1dφ2 + dψ . (61)
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3.1.3 P = S2

The sphere can be parameterized by a three-vector nA constrained to satisfy
∑

A(n
A)2 = 1.

Two convenient parameterizations are in terms of stereographic coordinates or spherical co-
ordinates

n1 =
z + z̄

1+ |z|2
= sinϑ cosϕ ,

n2 =
i(z̄ − z)
1+ |z|2

= sinϑ sinϕ ,

n3 =
1− |z|2

1+ |z|2
= cosϑ .

(62)

The standard Liouville one-form and the symplectic structure are

A= i(z̄dz − zdz̄)
2(1+ |z|2)

=
1
2
(cosϑ− 1)dϕ ,

F = dA= − idz ∧ dz̄
(1+ |z|2)2

=
1
2

sinϑdϕ ∧ dϑ .
(63)

The SO(3) isometry of P acts as

z→
az + b

−b̄z + ā
, |a|2 + |b|2 = 1 , (a, b)∼ (−a,−b) . (64)

It transforms the Liouville one-form as

A→A+ dΛ , Λ=
i
2

log
�

a− bz̄

ā− b̄z

�

, (65)

and F is invariant.
In this case, the pre-quantum line bundle B is a three-sphere S3. It can be parameterized

by two complex numbers Z =
�

Z1

Z2

�

constrained to satisfy Z†Z = 1. We express them as

Z =





e−iψ
p

1+|z|2
e−iψzp
1+|z|2



 , (66)

and identify z as the coordinate above by projecting to the base (62)

nA = Z†σAZ , (67)

where σA are the Pauli matrices. The contact form (56) is

α=A+ dψ= iZ†dZ = −idZ†Z . (68)

The SO(3) transformation (64), combined with ψ→ψ−Λ with Λ of (65) acts as

Z =





e−iψ
p

1+|z|2
e−iψzp
1+|z|2



→
�

ā −b̄
b a

�

Z . (69)

This is an SU(2) transformation. The identification (a, b)∼ (−a,−b), which makes it an SO(3)
transformation is present because the transformation with a = −1 and b = 0 acts only on the
fiber, which is parameterized by ψ.
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3.2 Defining a theory on P

Here we study a theory whose target space is P . By analogy with (14), we write

LClassical = LA +L(0)(φ r ,∂µφ
r) , LA =

k
V

∑

r

Ar∂tφ
r , (70)

with L(0) a sum of globally well-defined terms, which are manifestly translation invariant. The
term LA is known as a Berry term or as a Wess-Zumino term. Soon, we will define it in the
quantum theory.

We will be interested in the special case where L(0) is independent of ∂tφ
r ,

LClassical = LA −H(φ r ,∂iφ
r) . (71)

Here, H is the Hamiltonian density. The extension to the more general case (70) is straight-
forward.

A convenient approach to this problem is to embed it in a larger problem based on the
larger space B and remove the additional field ψ, by imposing a gauge symmetry

ψ→ψ+λ . (72)

This is done by adding a dynamical U(1) gauge field aµ, which transforms as

aµ→ aµ + ∂µλ . (73)

We take aµ to be globally well-defined on B.
Now, the Lagrangian can depend also on

fµν = ∂µaν − ∂νaµ , Xµ = ∂µψ− aµ +
∑

r

Ar∂µφ
r . (74)

They are gauge invariant and because of (54) and (55) they are single valued across overlaps
between patches. In addition, as in Section 2, we add the term k

V at . In fact, as we will soon
see, when we do that, we do not need to include LA in (70).

We end up with a Lagrangian on B with a U(1) gauge field aµ and a term k
V at . Therefore,

we can follow the discussion in Section 2.
To relate to the original problem on P , withoutψ and aµ, we arrange the Lagrangian such

that at low energies,
Xµ = 0 . (75)

For example, we can take (75) to be a constraint, which can be imposed by adding a real
Lagrange multiplier field Y µ with the term

∑

µ Y µXµ in the Lagrangian density.
Now, we can set aµ =

∑

r Ar∂µφ
r + ∂µψ (i.e., the pullback to spacetime of the contact

form (56)). At this stage, ψ is the only field transforming under the gauge symmetry (72),
so locally, we can set it to zero. The only places it should be analyzed carefully is in the term
La =

k
V at and in various operators that depend explicitly on aµ.

We end up substituting
aµ→

∑

r

Ar∂µφ
r + ∂µψ , (76)

and therefore, fµν→
∑

rs Frs∂µφ
r∂νφ

s. Locally, this leads to a Lagrangian density of the form
(70) or its special case (71).

Conversely, if we are interested in the theory on P , we start with a Lagrangian density and
operators, which can include

∑

r Ar∂µφ
r . To define them properly, we add the field ψ and

substitute
∑

r

Ar∂µφ
r →

∑

r

Ar∂µφ
r + ∂µψ , (77)
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which affects it only globally. In other words, we add the field ψ and replace the pull-back of
A by the pull-back of the contact form α, which is globally well-defined. Then, we remove ψ
by imposing the U(1) gauge symmetry. We do that by noting that the pull-back of α is a U(1)
gauge field aµ and then we can follow the discussion in Section 2 with all the added terms
that it leads to.

In the following sections, we will demonstrate this procedure explicitly. First, we will do
it in quantum mechanics, i.e., d = 0 and then in field theory. We will use the examples of
T2 in Section 3.1.2 and S2 in Section 3.1.3, because they appear in the condensed matter
applications and they exhibit special new elements.

3.3 Review of quantum mechanics on P

3.3.1 General discussion

Here we analyze the Lagrangian in Section 3.2 in the special case of quantum mechanics, i.e.
d = 0. We write it as

LClassical = k
∑

r

Ar(φ
s)∂tφ

r , k ∈ Z . (78)

For simplicity, we set the Hamiltonian H to zero.
We would like to find the quantum theory based on the classical Lagrangian (78). We can

always do it along the lines of Section 3.2. But in the special case where the phase space P
is simply connected, there is another definition [23]. We take time to be a Euclidean circle
τ∼ τ+β and extend it to a disk with the other direction parameterized by u. Then, we extend
the dynamical variables φ r into D and define the Euclidean action as

SEucl idean = ik

∫

D
dτdu

∑

rs

Frs∂uφ
r∂τφ

s . (79)

k has to be an integer for the integrand in the functional integral e−SEucl idean to be independent
of the extension of φ r into D.

This definition cannot be used when P is not simply connected.11 In that case, configura-
tions in Euclidean time that wind around non-contractible cycles in P cannot be extended into
D. Such configurations can be interpreted as instantons, and related to that, the theory de-
pends on θ -parameters associated with that winding. In this case, we cannot use (79) and we
have to use the procedure in Section 3.2. We will demonstrate it in Section 3.3.2. In Section
3.4, we will see that in higher dimensions, a definition like (79) is never possible.

In preparation for the later sections, we write the commutation relations

[φ r ,φs] =
i
k
F rs ,

∑

s

F rsFsu = δ
r
u . (80)

Note that the phase space coordinates φ r are not good operators because they are not glob-
ally well-defined in the phase space. Still we can use these commutation relations when we
manipulate well-defined operators.

In the next two sections, we will demonstrate this discussion with two well-known exam-
ples, P = T2 and P = S2.

3.3.2 Fuzzy T2

Using the results in Section 3.1.2, the Lagrangian (78) is

LClassical
T2 =

k
2π
φ1∂tφ

2 . (81)

11We thank Edward Witten for an interesting discussion about non-simply-connected P .
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Classically, the system has a global U(1)(1)×U(1)(2) symmetry acting as φ r → φ r +εr and
a Z4 duality symmetry generated by

(φ1,φ2)→ (φ2,−φ1) . (82)

We will soon see what happens to these symmetries in the quantum theory.
The Lagrangian (81) is known to describe a particle moving on a two-dimensional torus

parameterized byφ r ∼ φ r+2π in the lowest Landua level of a constant magnetic field B = k
2π .

In this context, the U(1)(1) × U(1)(2) classical symmetry is the translation symmetry of the
spatial torus and the Z4 duality symmetry (82) is spatial rotation.

Let us start with canonical quantization. We have the commutation relations (80)

[φ1,φ2] = −
2πi

k
. (83)

The operators in the quantum theory correspond to well-defined functions on the phase space.
They are generated by

U1 = eiφ1
, U2 = eiφ2

, (84)

and satisfy
U1U2 = e

2πi
k U2U1 . (85)

Hence, the operators Uk
1 and Uk

2 commute with all the other operators and we can take them
to be the unit operators.12 As a result, the Hilbert space has k states and the operators U1 and
U2 can be represented as clock and shift operators

(U1)I J = δI ,J e
2πi(I−1)

k , (U2)I J = δI ,J+1modk , I , J = 1, . . . , k . (86)

We conclude that U1 and U2 generate a global Z(1)k × Z
(2)
k symmetry. Furthermore,

this global symmetry is realized projectively. Adding the duality symmetry (82), we have
Z(1)k ×Z

(2)
k ⋊Z4. In the representation (86), it is generated by the generalized Walsh–Hadamard

matrix

WI J =
1
p

k
e

2πi(I−1)(1−J)
k , W U1W−1 = U2 , W U2W−1 = U−1

1 . (87)

Let us turn now to the Euclidean path integral description of this theory. In this case, P
is not simply connected and we cannot use the definition (79). We have to use the discussion
in Section (3.2). To make it more concrete, we will use a choice of local trivialization. (For
background material for this discussion, see e.g., [31, 33–35] for presentations for physicists,
and references therein for the mathematics literature.) We cover the Euclidean time circle
τ ∼ τ + β with patches with transition functions between them. In each patch, φ r are real
numbers and the transition functions are in 2πZ.

For example, we can pick a point τ∗ and view φ r as maps from the circle minus the point
τ∗ to real numbers.13 At τ∗, we have transition functions φ r(τ+∗ ) = φ

r(τ−∗ ) − 2πW r
τ with

W r
τ ∈ Z. This corresponds to

∫

dτ∂τφ
r = 2πW r

τ . (88)

Clearly, W r
τ are the winding numbers around the Euclidean time τ and the configurations with

nonzero W r
τ are instantons.

12More generally, they can be taken to be c-number phases. This can be represented by writing in the Lagrangian
1

2π (θ
1∂tφ

1+θ 2∂tφ
2). As we will soon see, the appearance of these θ -parameters is related to the explicit breaking

of U(1)(1) × U(1)(2).
13More precisely, as in footnote 6, we extend the patches beyond τ∗ and use the transition function in the overlap

region.
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Now we can follow the presentation in Section (3.2). Since the fields φ r jump at τ∗ by
2πW r

τ, equation (54) tells us that Λ = W1
τφ

2 and hence, ψ jumps by −W1
τφ

2. Then, the
substitution (77) leads to

SEucl idean T2 = −
ik
2π

∫

dτaτ = −
ik
2π

∫

dτ
�

φ1∂τφ
2 + ∂τψ

�

= −
ik
2π

∫

dτ
�

φ1∂τφ
2 − 2πW1

τφ
2δ(τ−τ∗)

�

.

(89)

Comments:

• The added term with φ2(τ∗) can be written either as φ2(τ+∗ ) or as φ2(τ−∗ ). The differ-
ence between them does not affect e−SEucl idean .

• It is easy to check that e−SEucl idean is independent of the trivialization. In particular, it is
independent of the point τ∗.

• In writing (89), we chose a trivialization of the U(1) gauge field without a transition
function. Therefore, the term with λ(τ) in (9) is not needed.

• The fact that the dependence on the added field ψ drops out of (89) is in accord with
its gauge symmetry.

• e−SEucl idean is invariant under the Z4 duality symmetry (82).

• e−SEucl idean is not invariant under the classical U(1)(1) × U(1)(2) symmetry acting as
φ r → φ r+εr . Such a transformation shifts the Euclidean action by −ik(ε1W2

τ−ε
2W1

τ).
This is the same as shifting the θ -parameters in footnote 12. (Note the similarity to our
discussion of the breaking of translation symmetry in (32).) We see that instantons of
φ1 carry charge +kW1

τ under U(1)(2) and instantons of φ2 carry charge −kW2
τ under

U(1)(1). As a result, only Z(1)k ×Z
(2)
k ⊂ U(1)(1) × U(1)(2) is a global symmetry.

• This breaking of U(1)(1) × U(1)(2) by instantons can also be seen as follows. The equa-
tions of motion following from the Euclidean action (89) state that ∂τφ

r = 0 leading to
vanishing instanton number W r

τ = 0. More generally, with insertion of operators, e.g.,
eiφr

, the equations of motion lead to discontinuities in φ r such that the total winding
numbers W r

τ is correlated with the violation of U(1)(1) × U(1)(2).

• We interpret this breaking of U(1)(1)×U(1)(2)→ Z(1)k ×Z
(2)
k as an ABJ anomaly associated

with instantons.

• Another aspect of the instantons is that the sum over them, i.e., the sum over W r
τ, con-

strains φ r = 2π
k Z, reflecting the Z(1)k ×Z

(2)
k global symmetry.

In conclusion, the fact that P is not simply connected leads to instantons. These instan-
tons break the classical internal U(1)(1)×U(1)(2) symmetry to a discrete subgroup Z(1)k ×Z

(2)
k .

This is similar to our discussion in Section (2.3), where instantons break the translation
symmetry to a discrete subgroup. Unlike the case in Section (2.3), here the breaking
U(1)(1)×U(1)(2)→ Z(1)k ×Z

(2)
k is of a symmetry of the target space, i.e., an internal symmetry,

rather than breaking of a spatial symmetry. We will return to this point in Section 3.4.1.
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3.3.3 Fuzzy S2

This problem is familiar from the study of a particle on a sphere surrounding a magnetic
monopole. Using the results in Section 3.1.3, the Lagrangian (78) is

LClassical
S2 =

ik
2

z̄∂tz − z∂t z̄
1+ |z|2

=
k
2
(cosϑ− 1)∂tϕ . (90)

Let us turn to the quantum theory. Since in this case the phase space is simply connected,
we can define the action using (79), without the need for the more complicated procedure.
Related to that, no “correction terms” are needed.

Then, this Lagrangian describes a single SU(2) representation with spin s = k
2 . The global

symmetry of the system is SO(3) and it is realized projectively for odd k.
It is also worth noting that the Lagrangian (90) is not invariant under the global SO(3)

transformation (64). Instead,

LClassical
S2 =

ik
2

z̄∂tz − z∂t z̄
1+ |z|2

→ LClassical
S2 +

ik
2
∂t log

�

a− bz̄

ā− b̄z

�

. (91)

Demanding that the total time derivative integrates to 2πZ is another way to see the quanti-
zation of k.

Even though it is not necessary here, we would like to comment that in this case, the
procedure of Section 3.2 is quite familiar to physicists and it is known as the C P1 presentation
of the model. We start with B = S3, view it as an S1 bundle over S2 and then gauge the U(1)
that acts along the fiber.

3.4 Field theory on P

3.4.1 General discussion

In this section, we will explore the field theory defined in Section 3.2. We will study the
Lagrangian density (70), and will focus on the special case (71) where L(0) is independent of
∂tφ

r

LClassical =
k
V

�

∑

r

Ar(φ
s)∂tφ

r

�

−H(φ r ,∂iφ
r) , (92)

or its Euclidean version

LClassical
Eucl idean =

�

−
ik
V

�

∑

r

Ar(φ
s)∂τφ

r

�

+H(φ r ,∂iφ
r)

�

. (93)

As in the discussion following (77), in the quantum theory, we need to add to (92) and (93)
appropriate terms to make them well-defined.

In Section 3.3, we mentioned that if the phase space P is not simply connected, we cannot
define the action as in (79) because the fields cannot be extended to the added dimension
parameterized by u. A similar issues arises in the field theory (93) for any phase space P . The
reason is that the phase space of the field theory Pd is the space of maps from our toroidal
space Td to P . (Using this notation, the phase space of the quantum mechanical problem can
be denoted P0.) This space is never simply connected.

To see that Pd is never simply connected, recall that P has a nontrivial two-cycle dual to
the symplectic structure F . Consider a one-parameter family of maps from a spatial cycle j
(the cycle parameterized by x j ∼ x j + ℓ j) to the target space P that wraps the two-cycle in P
dual to F . Clearly, this one-parameter family of maps is not contractible. As a result, Pd is not
simply connected and we cannot use (79).
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Related to that, the Euclidean space functional integral includes instantons. These are
configuration where the two-torus parameterized by τ∼ τ+β and x j ∼ x j + ℓ j is mapped to
the two-cycle mentioned above. The corresponding instanton number is

Qiτ =
1

2π

∫

d x idτ
∑

rs

Frs∂iφ
r∂τφ

s . (94)

In the description of this theory as a U(1) gauge theory in Section 3.2, these instantons
are the gauge theory instantons with nonzero

∫

d x idτ fiτ. From that perspective, they are
the same instantons we discussed around (33) and they have here the same consequences as
there.

First, they are associated with θ -terms (18)

∑

i

θ i

2π

∫

d x id t
∑

rs

Frs∂iφ
r∂τφ

s =
∑

i

θ iℓi

2πV

∫

dd xd t
∑

rs

Frs∂iφ
r∂τφ

s . (95)

Second, they make the definition of the first term in the Lagrangian k
V

∑

r Ar(φs)∂tφ
r

more complicated.
Third, as in (42), for d ≥ 2, they are related to a d − 2-form global symmetry [20]

J j t =
1

2π

∑

rs

Frs∂ jφ
r∂tφ

s , Ji j =
1

2π

∑

rs

Frs∂iφ
r∂ jφ

s ,

∂tJi j = ∂ jJi t − ∂iJ j t , ∂mJi j + ∂ jJmi + ∂iJ jm = 0 ,

Qi j =

∫

d x id x jJi j ∈ Z .

(96)

And most important, they break the U(1)d translation symmetry to Zd
k , which is extended

using the d − 2-form symmetry (96).
So far, we have not used the equations of motion of (92). They are

k
V

∑

r

Fsr∂tφ
r =

∂H
∂ φs
−
∑

i

∂i

�

∂H
∂ (∂iφs)

�

. (97)

As a check, they are globally well-defined. We will now study some of their consequences.
Let us start with the d − 2-form internal symmetry (96), which is valid without using the

equations of motion. Using (97),

J j t =
1

2π

∑

rs

Frs∂ jφ
r∂tφ

s =
∑

i

∂ i
ÒJi j , ÒJi j =

V
2πk

�

δi jH−
∑

s

∂H
∂ (∂iφs)

∂ jφ
s

�

, (98)

i.e., J j t is a total derivative of a globally well-defined operator ÒJi j . This conclusion follows
from the assumption that L(0) in (70) is independent of ∂tφ

r . Note that even though the
d − 2-form symmetry (96) exists only for d ≥ 2, equation (98) is valid also for d = 1. In that
case, it can be thought of as a “−1-form symmetry.”

As a result of (98),
∫

dd xJ j t = 0 , (99)

and the conservation equation (96) can be written as

∂tJi j =
∑

k

�

∂ j∂
k
ÒJki − ∂i∂

k
ÒJk j

�

. (100)
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For d = 2, this becomes ∂tJ12 = ∂1∂2(ÒJ11− ÒJ22)+∂2∂2
ÒJ21−∂1∂1

ÒJ12, which can be interpreted
as the conservation of a dipole current [16].14

Next, we turn to the spacetime symmetries. Since we take H to be time independent, we
have the conserved energy current (8). Using the equations of motion (97),

Θt t =H , Θi t =
∑

r

∂H
∂ (∂iφ r)

∂tφ
r , ∂tΘt t =

∑

i

∂ iΘi t . (101)

Similarly, for the translation symmetry, (8) leads to

Θt j =
k
V

∑

r

Ar∂ jφ
r ,

Θi j =
∑

r

∂H
∂ (∂iφ r)

∂ jφ
r +δi jLClassical = δi j

k
V

∑

r

Ar∂tφ
r −

2πk
V

ÒJi j ,

∂tΘt j =
∑

i

∂ iΘi j ,

(102)

where we used the notation (98). Comparing with (37) and the substitution (77), we see that
Θ
(0)
t j in (37) does not contribute because we took L(0) in (70) to be independent of ∂tφ

r . This

is related to the fact (98) that because of this assumption about L(0), J j t is a spatial derivative
of a well-defined operator ÒJi j . See also [16].

Crucially, unlike the energy current (101), the momentum current (102) is not globally
well-defined. Even its integrated version

∫

dd xΘt j , i.e., the momentum operator is not mean-
ingful. In the context of the model on P = S2, which will be discussed in Section 3.4.3, this
point was first noted in [6] (see also [54–56] for earlier discussion).

Now, we can repeat the discussion in Section 2.3 using the substitution (77). Instead, we
will simply summarize the conclusions.

The translation operators are of the form

T j = exp

�

iℓ j

k

∫

dd xΘt j + . . .

�

= exp

�

iℓ j

V

∫

dd x
∑

r

Ar∂ jφ
r + . . .

�

. (103)

The ellipses remind us that we should add “correction terms” to define these expressions more
carefully. The exponent should be defined in terms of a j as in (77) and then corrected as in
Section 2. We will demonstrate it in examples below.

Then, as in Section 2.3, these translation operators have the following properties:

• T j generate a discrete Zk translation in each direction

(T j)k = 1 . (104)

Instantons, i.e., Euclidean configurations with nonzero Q jτ of (94), explicitly break the
continuous translation symmetry to this discrete subgroup.

• This discrete translation symmetry is extended by a Zk ⊂ U(1) d−2-form symmetry (96)

T i T j = T j T i exp
�

2πi
k

Qi j

�

. (105)

A related non-commutativity of translations in the model based on P = S2 was noted in
the infinite volume theory in [12,16].

14Dipole symmetries have been discussed by many authors including [24, 41–53] and it was pointed in [47,
52, 53], that in compact spaces, they are discrete. This discreteness is closely related to our discrete translation
symmetry.
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• For every set of integers ki such that k =
∏

i ki , the subgroup

⊗iZki
⊂ Zd

k , (106)

generated by (T i)
k
ki is Abelian and is not extended by the d−2-form symmetry. This fact

will be important in Section 5.

• As in Section 2.3.3, for d ≥ 2, we can find another expression for the momentum current

Θ′t j =
2πk

V (d − 1)

∑

m

gm(x
m)J jm ,

Θ′i j =
2πk

V (d − 1)

�

gi(x
i)J j t −δi j

∑

m

gm(x
m)Jmt − (d − 1)ÒJi j

�

,

gm(x
m) = xm − xm

0 , for 0≤ xm < ℓm

(107)

(compare with (46)). Clearly, by shifting xm we can remove the explicit x i
0 dependence

and have the discontinuity at x i
0. It is well-defined in the target space, but it is not

continuous in space. Then, this current is not conserved at its discontinuity. The infinite
volume limit of this current, which does not exhibit the discontinuity, but has bad behav-
ior at infinity was discussed in the context of the model on P = S2 in [8,13,16]. Since
it is in infinite volume, it does not expose the discrete translation symmetry generated
by T j .

Let us summarize these conclusions along the lines of Section 2.1. As in (9), we start by
studying

H(A)µ = exp

�

i

∫

d xµ
�

∑

r

A(φ)r∂µφ r + . . .

��

. (108)

For simply connected P , this can be done by adding a bulk. Otherwise, some correction terms,
represented by the ellipses, are needed.

Then, we would like to integrate the logarithm of H(A)µ over other directions. Since this
logarithm has a 2πZ ambiguity, we view it as real and let it jump at xν∗ . Crucially, the results
depend on xν∗ . To remove this dependence, we choose a reference point xν0 and as in (13), we
write

H(A)(1,2,...,D)
µ = exp

�

iℓµ

V

∫

dD x

�

A(φ)r∂µφ r + . . .+
∑

ν

(xν∗ − xν0 )
∑

rs

Frs∂µφ
r∂νφ

s

��

. (109)

In quantum mechanics, i.e., d = 0, only (108) is needed. For defining the theory for d ≥ 1,
(109) is needed and hence the breaking of the translation symmetry. For defining the discrete
translation operator in d = 1, we can use (108). But for d ≥ 2, we need (109), which leads to
the lack of commutativity of the discrete translation operators.

3.4.2 Fuzzy T2

In this case, the Lagrangian (92) is

LClassical
T2 =

k
2πV

φ1∂tφ
2 −H(φ r ,∂iφ

r) , (110)

and hence

[φ1( x⃗ , t),φ2( y⃗ , t)] = −
2πiV

k
δ(d)( x⃗ − y⃗) . (111)
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Classically, the symmetry of the first term is U(1)(1)×U(1)(2). However, as in the discussion
in Section 3.3.2, the symmetry is actually smaller. Focusing on the zero modes of φ1 and φ2,
the symmetry of this term is only Z(1)k × Z

(2)
k . We will take the Hamiltonian such that it is

invariant underφ r → φ r+2π, i.e., it is well defined, but it can break that Z(1)k ×Z
(2)
k symmetry.

We will return to this point in Section 5.
In addition to the d − 2-form global symmetry (96), this theory also has a U(1) × U(1)

d − 1-form winding symmetries

J r
i =

1
2π
∂iφ

r , J r
t =

1
2π
∂tφ

r , ∂ jJ r
i = ∂iJ r

j , W r
i =

∫

d x iJ r
i ∈ Z . (112)

In fact, these d − 1-form symmetries, imply the d − 2-form symmetry (96)

Ji t = J 1
i J

2
t −J

1
t J

2
i ,

Ji j = J 1
i J

2
j −J

1
j J

2
i ,

Qi j =W1
i W

2
j −W

1
j W

2
i .

(113)

(Such relations between higher-form symmetries are quite standard. See, e.g., [57].) Also,
(98) is still valid and therefore the equations of motion imply that

∫

dd x(J 1
i J

2
t −J

1
t J

2
i ) = 0 . (114)

As always, this operator equation is violated in the presence of other operator insertions.
Finally, the first term in (110) has the Z4 duality symmetry (82). If the Hamiltonian H has

that symmetry, then the full theory is Z4 invariant, i.e., it is self-dual.
Let us define the theory more carefully. The configurations in the Euclidean functional

integral fall into classes labeled by the winding numbers

W r
µ =

1
2π

∫

d xµ∂µφ
r ∈ Z , µ= τ, i . (115)

To define their action, we follow our approach above and choose a local trivialization. This
means that we pick a point xµ∗ and represent the configurations as

φ r = 2πW r
τ

τ

β
+ 2π

∑

i

W r
i

x i

ℓi
+ φ̃ r , x i

∗ ≤ x i < x i
∗ + ℓ

i , τ∗ ≤ τ < τ∗ + β , (116)

with φ̃ r periodic spacetime-dependent real functions (as opposed to circle-valued). Then, we
can follow the discussions around (13) and around (89) and write the Euclidean action

SEucl idean T2 =

∫

dτdd x

�

−
ik

2πV

�

φ1∂τφ
2 − 2πW1

τφ
2δ(τ−τ∗)

+
∑

i

(∂τφ
1∂iφ

2 − ∂τφ2∂iφ
1)(x i

∗ − x i
0)
�

+H
�

. (117)

This corresponds to the Lorentzian Lagrangian density

LT2 =
k

2πV

�

φ1∂tφ
2 +

∑

i

(∂tφ
1∂iφ

2 − ∂tφ
2∂iφ

1)(x i
∗ − x i

0)

�

−H . (118)

Again, the added terms to LClassical
T2 do not affect the equations of motion.
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As in Sections 2.1 and 3.3.2, the τ∗ dependence in (117) is cancelled between the first
and the second term. And as in Section 2.1, the x i

∗ dependence is cancelled by the third
term. Similarly, (118) is independent of x i

∗. However, the final result depends on the chosen
reference point x i

0 and its interpretation is as in the previous sections.15

Once we defined the action, we can write the translation operators. Making the corrected
version of (103) explicit for this case, we have

T j = exp
�

iℓ j

2πV

∫

dd x
�

φ1∂ jφ
2 − 2πW1

j φ
2δ(x j − x j

∗)
�

+2πi
∑

i

(W1
j W

2
i −W

2
j W

1
i )

x i
∗ − x i

0

ℓi

�

. (119)

Again, T j is independent of x i
∗, but it does depend on x i

0.
Interestingly, with the added terms in (117), (118), and (119), these expressions are in-

variant under the Z4 duality symmetry (φ1,φ2)→ (−φ2,φ1) of (82).
Let us discuss the dependence on x i

0. Clearly, the choice x i
0 leads to the same expressions

as x i
0+ℓ

i . More than that, the theory with x i
0 is the same as the theory with x i

0+
ℓi

k , reflecting
the Zd

k translation symmetry
(T i)k = 1 . (120)

However, the operators T j with the choice x i
0 are not the same as with the choice x i

0+
ℓi

k . This
is consistent with the extension of the algebra

T i T j = T j T ie
2πi

k Qi j , Qi j =W1
i W

2
j −W

1
j W

1
i , (121)

which can be checked explicitly using the commutation relations (111).
In conclusion, we saw that in the quantum mechanics problem in Section 3.3.2, instan-

tons, i.e., configurations with nonzero W r
τ, break the global internal symmetry and lead to its

projective representation. Here we see that instantons, i.e., configurations with nonzero Qiτ
break the translation symmetry and extend it.

Finally, let us discuss the internal symmetry that shifts φ r . In the quantum mechanics
problem in Section 3.3.2, we set the Hamiltonian to zero and we had a Z(1)k ×Z

(2)
k symmetry

generated by (84). Now, we consider also a nonzero Hamiltonian density H and it determines
the symmetry. Let us assume that H preserves the full classical U(1)(1) × U(1)(2) symmetry.
Then, it is clear that in the quantum theory we have a Z(1)k ×Z

(2)
k symmetry generated by

Ur = exp

�

i
V

∫

dd xφ r + 2πi
∑

i

W r
i

x i
0 − x i

∗

ℓi

�

= exp

�

i
V

∫

dd x

�

φ r +
∑

i

(x i
0 − x i

∗)∂iφ
r

��

.

(122)

The dependence on x i
∗ and x i

0 arises as in the discussion around (116). The symmetry opera-
tors Ur are independent of x i

∗, but they depend on the reference point x i
0.

With an appropriate phase choice of Ur , we have

Uk
r = 1 , Ur eiφs

(Ur)
−1 = eiφs

e
2πi

k ε
rs

, ε12 = −ε21 = 1 , U1U2 = e
2πi

k U2U1 . (123)

The dependence on x i
0 means that these symmetry operators do not commute with translations

T iUr = Ur T ie
2πi

k W r
i , (124)

and hence, the symmetry algebra of Ur and T i is extended by the winding symmetry.
15Recall, xµ∗ was introduced as a choice of local trivialization. The added terms cancel the dependence on this

choice. Instead, they depend on a chosen reference point x i
0.
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3.4.3 Fuzzy S2

We now use our general prescription in Sections 3.2 and 3.4.1 to lift the quantum mechanics
with P = S2 in Section 3.3.3 to field theory.

Using (63)

A= i(z̄dz − zdz̄)
2(1+ |z|2)

, F = − idz ∧ dz̄
(1+ |z|2)2

, (125)

the quantum mechanics Lagrangian (90) has a clear lift to field theory

LClassical
S2 =

ik
2V

z̄∂tz − z∂t z̄
1+ |z|2

−H(∂iz,∂i z̄) , H = f
∑

i

|∂iz|2

(1+ |z|2)2
, (126)

with some real positive coefficient f . Here H was taken to be the standard SO(3) invariant
term, which is determined by the metric on the S2 target space (ds)2 = dzdz̄

(1+|z|2)2 . This is the
well-known continuum Lagrangian of a ferromagnet (see, e.g., [3,58,59]).

As we said, in quantum field theory, this Lagrangian cannot be defined by extending it to
a bulk as in (79) and the more careful definition in Section 3.4.1 is needed.16 This definition
includes an added term in the Lagrangian density

k
V

∑

irs

(x i
∗ − x i

0)Frs∂tφ
r∂iφ

s = −
ik
V

∑

i

(x i
∗ − x i

0)
∂tz∂i z̄ − ∂iz∂t z̄
(1+ |z|2)2

. (127)

As in all our cases, this term represents explicit breaking of the translation symmetry.
Also, the system has d − 2-form U(1) global symmetry

J j t =
i

2π

∂ jz∂t z̄ − ∂tz∂ j z̄

(1+ |z|2)2
, Ji j =

i
2π

∂iz∂ j z̄ − ∂ jz∂i z̄

(1+ |z|2)2
,

∂tJi j = ∂ jJi t − ∂iJ j t , ∂mJi j + ∂ jJmi + ∂iJ jm = 0 ,

Qi j =

∫

d x id x jJi j ∈ Z ,

(128)

which is known as the Skyrmion symmetry. It extends the Zd
k symmetry as in (105)

T i T j = T j T i exp
�

2πi
k

Qi j

�

. (129)

Finally, let us compare this system with the continuum description of an anti-ferromagnet.
There, the first term in (126) is replaced as17

ik
2V

z̄∂tz − z∂t z̄
1+ |z|2

→
|∂tz|2

(1+ |z|2)2
. (130)

Since the anti-ferromagnet does not have this first-order term, the Lagrangian density is glob-
ally well-defined and the subtleties we have been discussing do not arise. As a result, the
continuous translation symmetry is not violated and it is not extended.

Following the discussion in Section 2.2.2, we can start with the anti-ferromagnet theory
and derive the ferromagnet theory. The system has the d −2-from Skyrmion symmetry (128).
We couple it to a background gauge field with a constant magnetic field, i.e.,

∑

i ∂iA
i = 2πk

V .

This leads to the term ik
2V

z̄∂t z−z∂t z̄
1+|z|2 of the ferromagnetic Lagrangian with all its subtleties.

16As we commented at the end of Section 3.3.3, in this case, the definition using a U(1) gauge theory is familiar
to physicists and is referred to as the C P1 presentation of the model.

17As in (70), we could have included such a term in H of the ferromagnet. But if a single time-derivative term
is present, then this second-order term is of higher order and can be neglected at low-energies.
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Note also that the anti-ferromagnet has a charge-conjugation symmetry C : z → z̄, and a
time-reversal anti-unitary symmetry T , which are absent in the ferromagnet. However, their
combination CT is a time-reversal symmetry of the ferromagnet. Below, we will return to this
fact.

4 Noninvertible continuous translations

In this section, we will imitate the discussion in [25–28] and show that at least in one of
our examples, the one based on T2 (110), the continuous U(1)d translation symmetry of the
classical theory, which was broken in the quantum theory to a discrete group, is resurrected
as a continuous noninvertible translation symmetry.

As mentioned around (113), the relation

Qµν =W1
µW

2
ν −W

2
µW

1
ν (131)

means that the d−2-form symmetry associated with Qµν follows from the d−1-form winding
symmetry associated withW r

µ. This fact allows us to control the instantons using the d−1-form

charges W r
µ and thus eliminate their effects including the breaking of the U(1)d translation

symmetry.
Consider the subspace of the Hilbert space with W r

i = 0 and a projector to this subspace P.
(Such projectors were studied in [60,61].) Instantons do not contribute to matrix elements of
operators with vanishing winding between states in that subspace. Therefore, in such correla-
tion functions, the continuous translation symmetry is not broken. Another way to see that is
that for W r

i = 0 the dependence on x i
0 in (117) vanishes.

As a result, combining the continuous translation operators with the projector P removes
the instantons that broke the symmetry and the symmetry is resurrected, albeit as a noninvert-
ible symmetry. (It is noninvertible because of the presence of the projector P.)

As a check, the projection on W r
i = 0, sets also all the d−2-form charges Qi j to zero. This

removes the extension of the discrete translation (105), which would not have been consistent
with the noninvertible continuous symmetry.

This is very similar to the discussion in [25–28]. In all these cases one starts with a model
with a certain global symmetry G0 and gauges a subgroup of it. This gauging breaks part of
G0 through an Adler-Bell-Jackiw-like anomaly. However, the gauge theory has another global
symmetry H such that this breaking is absent in the H invariant part of the Hilbert space. Then,
a broken symmetry transformation can be combined with a projector P to the H-invariant
states, such that the effect of the anomaly is absent. In our case, the broken symmetry is the
U(1)d translation symmetry and H is the two U(1) d − 1-form winding symmetries.

Clearly, this mechanism does not work when there is no global symmetry H with a projector
P that excludes the instantons.

5 From the lattice to the continuum

In this section, we discuss lattice models whose low-energy approximations are given by the
continuum field theories we studied above. This will give us a better perspective on the discrete
translation symmetry of the continuum model.
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5.1 General discussion

We start with a square lattice in d spatial dimensions with L i sites in direction i and impose
periodic boundary conditions. We denote the total number of sites by

N =
∏

i

L i . (132)

The relation to the continuum models is obtained by introducing a lattice spacing a such that
the physical lengths and the total volume are

ℓi = aL i , V =
∏

i

ℓi = adN . (133)

At every site, we place a quantum mechanical system with a U(1) gauge symmetry with a
Lagrangian term

kUV at , kUV ∈ Z . (134)

For reasons that will soon be clear, we distinguish between the parameter k of the continuum
theories discussed above and this UV value kUV . In a Hamiltonian formulation, this means
that Gauss law constrains the charge at that site to be kUV .18

As in Section 3.3, a special case of this corresponds to a theory with a compact phase space
P at each site and and then (134) is replaced with

kUV

∑

r

Ar∂tφ
r , kUV ∈ Z . (135)

Clearly, (134) and (135) should be defined more carefully.
For concreteness, let us focus on the case (135). We assume that the interaction between

the degrees of freedom at different sites is such that the fields φ r at neighboring sites are near
each other and therefore we can approximate the system by a continuum field theory with
fields φ r . We emphasize that this assumption is not valid in all the phases of the theory.

Then, the low-energy effective Lagrangian density is the same as (92)

LClassical =
k
V

�

∑

r

Ar(φ
s)∂tφ

r

�

−H(φ r ,∂iφ
r) , k = kUVN . (136)

For this description to be valid, H should includes spatial derivative terms, e.g.,

H =
∑

rsi

grs(φ)∂iφ
r∂ iφs + . . . , (137)

with a positive definite metric in field space grs. These terms force the fields φ r to be smooth.
As we discussed in the Introduction and around (16), the continuum Lagrangian density

(136) is unusual because it depends explicitly on the volume V . The lattice construction gives
us another perspective about that.

Given a lattice model, it is common to study two distinct limits:

• The thermodynamic limit corresponds to taking the number of sites to infinity, i.e.,

L i →∞ , with fixed a , kUV . (138)

18If we also discretize Euclidean time, the gauge fields are phases Uµ on the links. Then, (134) leads to a factor
in the integrand of the factional integral that is given by a product over the sites of the lattice

∏

(Uτ)kUV . Clearly,
this term is gauge invariant and does not need “correction terms.” The issues that we have been addressing arise
only in the continuum version of this expression.
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In this limit, the volume V and k diverge

V = ad
∏

i

L i →∞ , k = kUV

∏

i

L i →∞ , (139)

such that coefficient of the first term in the Lagrangian density k
V is finite. The fact that

k diverges is quite singular. For example, in the P = S2 model, it means that the spin of
the ground state is infinite.

• The continuum limit corresponds to taking the lattice spacing to zero

a→ 0 , L i →∞ , with fixed ℓi , kUV . (140)

In this limit, k = kUV
∏

i L i diverges and therefore, also the coefficient k
V of the first

term in the Lagrangian density diverges. Clearly, this limit is even more singular than
the thermodynamic limit.

We see that these two limits are different and both are singular. (A similar difference between
the thermodynamic limit and the continuum limit was discussed in a different context in [62].)

Instead of taking such limits, the continuum theory analyzed in this note corresponds to
taking L i large, but finite and then focusing on the low-energy dynamics. It is captured ap-
proximately by the continuum Lagrangian (136) with finite ℓi (and hence, finite V =

∏

i ℓ
i)

and finite k.
Now, we can relate the translation symmetry of the lattice model with that of the continuum

model. Let T i
UV be the lattice translation operator along direction i by one lattice spacing. In

continuum terms, this is translation by

a=
ℓi

L i
. (141)

Recalling that the continuum translation operator T i translates by ℓi

k , the lattice translation
operator T i

UV is mapped to the continuum operator

T i
UV → (T

i)
k
Li , (142)

such that
(T i

UV )
L i
→ (T i)k = 1 (143)

(we do not write an equal sign because the operator in the left-hand-side is a lattice operator,
which is represented in the continuum theory by the continuum operator in the right-hand-
side).

As a check, the exponent in (142) is an integer

k
L i
= kUV

∏

j ̸=i

L i ∈ Z . (144)

For d = 1, it is kUV , which is an integer of order one. But for d > 1 and large L i , it is a large
integer. This means that while the continuum theory does not have continuous translation
symmetries, the continuum operators T j generate translations by much smaller steps than the
underlying lattice spacing.

The lattice translation symmetry (143) is clearly Abelian

T i
UV T j

UV = T j
UV T i

UV . (145)
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Not only isn’t it extended, in fact, the lattice model does not even have the d−2-form symmetry
associated with Qi j . Interestingly, this is compatible with our picture about the non-Abelian
translation symmetry of the continuum theory (105) because

T i
UV T j

UV → (T
i)

k
Li (T j)

k
L j = (T j)

k
L j (T i)

k
Li exp

�

2πik
L i L j

Qi j

�

= (T j)
k
L j (T i)

k
Li ,

T j
UV T i

UV → (T
j)

k
L j (T i)

k
Li ,

(146)

where we used the fact that k
L i L j is an integer. This point is related to the comment around

(43) about Abelian subgroups of the extended continuum translation symmetry.
In Sections 5.2 and 5.3, we will present additional issues that are specific to our two ex-

amples, T2 and S2 respectively.

5.2 Fuzzy T2

As we reviewed in Section 3.3.2, in this case, the classical Lagrangian at every site has a
U(1)(1) × U(1)(2) global symmetry, but the quantum theory at every site has only a discrete
Z(1)kUV
×Z(2)kUV

symmetry. Given this fact, there are several natural options for the global symmetry
of the Hamiltonian H in (136).

If H preserves the classical U(1)(1) × U(1)(2) symmetry, then we can repeat the discussion
around (122)-(124) and find the symmetry of the continuum theory generated by Ur .

If H preserves only the quantum UV symmetry Z(1)kUV
× Z(2)kUV

, the symmetry operators are

product of the local symmetry operators of (84) over the lattice (Ur)UV =
∏

eiφr
. They corre-

spond to the continuum operators

(Ur)UV =
∏

eiφr
→ exp

�

iN
V

∫

dd xφ r + 2πiN
∑

i

W r
i

x i
0 − x i

∗

ℓi

�

= UN
r . (147)

As a check, (123) and (124) lead to

(UN
r )

kUV = 1 , UN
r eiφs

(UN
r )
−1 = eiφs

e
2πi
kUV

εrs

,

UN
1 UN

2 = e
2πiN
kUV UN

2 UN
1 , (T i)

k
Li UN

r = UN
r (T

i)
k
Li ,

(148)

which are consistent with the lattice symmetry. In particular, this symmetry does not involve
the winding charges W r

i , which are not present on the lattice. Note that the projective phase

e
2πiN
kUV depends on the number of sites N modulo kUV . We will return to this point in Section

6.3.1.

5.3 Fuzzy S2

In this case, the internal symmetry is SO(3) and we study the model in its ferromagnetic phase.
Focusing on the zero modes of the fields, we see that the ground state has spin k

2 =
kUVN

2 .
This is consistent with the underlying lattice model, where all the spins are aligned. This
fact demonstrates the subtleties in the various limits we discussed in the Introduction and in
Sections 2.2 and 5.1. Also, for odd k (which is possible only when both kUV and N are odd),
the global symmetry of the model is realized projectively. We will return to this point in Section
6.3.1.

Of course, this model is extremely well-known and well-studied and it is used to describe
ferromagnets. The novelty here is the careful definition of its continuum low-energy theory
and its symmetries.
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6 Conclusions

6.1 Summary

We have studied U(1) gauge theories with a classical Lagrangian density and classical action
of the form

LClassical
U(1) =

k
V

at + . . . , SClassical
U(1) =

∫

dd xd tLClassical
U(1) . (149)

Many systems of interest, including gauge theories with constant charge density and theories
with a local compact phase space P can be presented in this way.

Surprisingly, except in quantum mechanics, i.e., for d = 0, the action based on (149) is not
meaningful. To make it explicit, we used a trivialization with transition functions at x i

∗ and
(149) turns out to depend on x i

∗. That dependence can be removed by choosing a reference
point x i

0 and shifting (149)

k
V

at →
k
V

�

at −
∑

i

(x i
∗ − x i

0) fi t

�

. (150)

As a result, the quantum theory is not invariant under continuous translations. The classical
U(1) translation symmetry in each direction is explicitly broken

U(1)→ Zk , (151)

with the remaining translation symmetry generated by T i ,

(T i)k = 1 . (152)

We interpreted this breaking as a new anomaly due the dynamical U(1) gauge
field. In particular, U(1) instantons, i.e., Euclidean space configurations with nonzero
Qiτ =

1
2π

∫

d x idτ fiτ ∈ Z, break the translation symmetry.
For d ≥ 2, the unbroken Zd

k translation symmetry is extended by the d − 2-form magnetic
symmetry of the U(1) gauge theory (42)

T i T j = T j T ie
2πi

k Qi j , Qi j =
1

2π

∫

d x id x j fi j =
ℓiℓ j

2πV

∫

dd x fi j . (153)

We then applied this picture to a field theory based on a local phase space P with coor-
dinates φ r , Liouville form A, and symplectic form F = dA. The classical Lagrangian density
and classical action are

LClassical
P =

k
V

∑

r

Ar∂tφ
r + . . . , SClassical

P =

∫

dd xd tLClassical
P . (154)

It is known that when the phase space P is not simply connected, the definition of the quantum
theory is more subtle. We emphasized that the phase space of the field theory in d ≥ 1 spatial
dimensions Pd is never simply connected.

Then, we expressed this theory as a U(1) gauge theory coupled to a theory whose target
space is a circle bundle over P . This allowed us to use the result about the U(1) gauge theory
and to write

k
V

∑

r

Ar∂tφ
r →

k
V

�

∑

r

Ar∂tφ
r −

∑

irs

(x i
∗ − x i

0)Frs∂iφ
r∂tφ

s

�

(155)

(more correction terms are needed in order to define the Euclidean space action).
We conclude that all these systems have several notions of translations:
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• The classical system is invariant under a U(1)d continuous translation symmetry.

• In the quantum theory, the classical U(1)d translation symmetry is explicitly broken to
Zd

k . This symmetry is extended as in (153).

• In some cases, the classical U(1)d translation symmetry can be resurrected as a nonin-
vertible symmetry.

• An underlying lattice model that leads to this continuum theory has an even smaller
translation symmetry ⊗iZL i . Its generators T i

UV correspond to the continuum operators

(T i)
k
Li . This symmetry is not extended as in (153). (For d = 1 and kUV = 1, we have

k = L and the ZL lattice translation symmetry is the same as the Zk translation symmetry
of the continuum theory.)

6.2 Broader perspective

Following the discussion in Section 2.2.2, we can phrase our entire discussion as follows. A
more detailed description of this line of thinking will be presented in [63].

We consider a theory with a global d − 2-form global symmetry

J = 1
2

∑

µν

Jµνd xµ ∧ d xν , dJ = 0 , Q=
∫

J (156)

(for d = 1, this symmetry can be thought of as a −1-form symmetry). We couple it to a
background d − 1-form gauge field A through

∫

J A . (157)

The main subtlety is the precise definition of (157). J is a well-defined operator. But for
topologically nontrivial A some care is needed.

We are interested a background A such that

dA=
2πk

V
d x1 ∧ d x2 · · · ∧ d xd . (158)

Such an A must depends explicitly on the coordinates and have nontrivial transition functions.
As a result, the continuous translation symmetry is explicitly broken and being extended by
Q.

A simple, well-known example of this is a d = 2 system on a torus with an ordinary U(1)
global symmetry coupled to constant background magnetic field. In this case the continuous
translation symmetry is explicitly broken to a discrete symmetry, which is furthermore ex-
tended by Q.19 (Note that in this example, the magnetic field is the background dA. It is not
the magnetic field of the dynamical field da in the examples in Section 2).

In the examples considered in this paper, the breaking of translation symmetry is less ob-
vious for the following reason. In all these examples, the conservation equation dJ = 0 is
topological and does not rely on the classical equations of motion. Therefore, we can write
locally J = dΦ, where Φ is not globally well-defined. Then, we can express (157) as

2πk
V

∫

dd xd tΦt , (159)

which seems translation invariant. Indeed, the corresponding classical theory is translation
invariant. However, as we explained, the proper definition of the local expression (159) shows
that despite appearance, the quantum theory is not translation invariant.

19On a plane, rather than on a torus, the translation symmetry is continuous.
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6.3 ’t Hooft anomalies

We end this note by offering some thoughts about ’t Hooft anomalies in our systems and related
systems. (Recall the distinction between ’t Hooft anomalies and Adler-Bell-Jackiw anomalies,
which we summarized in footnote 5.)

Before we start, we should clarify that even though in spacial cases, it is clear what ’t Hooft
anomaly involving translations means [64], this is not always straightforward. The reason is
that it is not obvious how to couple translations to a background gauge field and therefore we
cannot formulate the anomaly as an obstruction to gauging.

6.3.1 Relation to Lieb-Schultz-Mattis theorem

Our continuum systems have various internal symmetries. The system with a T2 target space
has a discrete symmetry and two U(1) d − 1-form winding symmetries. And the system with
an S2 target space has an SO(3) 0-form symmetry and a U(1) d−2-form Skyrmion symmetry.
And all our U(1) gauge theories have a U(1) d−2-form magnetic symmetry. These symmetries
can have their own ’t Hooft anomalies as well as mixed anomalies with the spatial symmetries.

Even without studying these anomalies, we can resolves a puzzle that was one of our
original motivations for this note.

Consider the lattice models in Section 5 with a quantum mechanical model based on the
compact phase spaceP at every site. It is often the case that these quantum mechanical systems
have a global symmetry G, which acts projectively on the local Hilbert space. For example,
the T2 models have a G = Z(1)kUV

× Z(2)kUV
symmetry, which is realized projectively (except for

kUV = 1). And the S2 models have a G = SO(3) symmetry, which is realized projectively for
odd kUV . We assumed that the full lattice model respects this internal global symmetry G.

Whenever the symmetry G acts projectively on the local Hilbert space, the lattice model has
a mixed ’t Hooft anomaly between lattice translations and the internal symmetry G [64–72].
This anomaly leads to the modern version of the celebrated Lieb-Schultz-Mattis theorem [73,
74].

One aspect of this anomaly is that depending on kUV and the total number of sites N ,
the whole system might be in a projective representation of G. In the T2 model, this happens
when N mod kUV ̸= 0 (see Section 5.2). And in the S2 model, this happens when k = kUVN
is odd (see Section 5.3).

Let us focus on the S2 models (Section 3.4.3). The low-energy continuum field theory in
its antiferromagnet phase does not have the first term in (6). Then, this anomaly is matched in
the continuum using the fact that a new internal ZC2 charge-conjugation symmetry emanates
from lattice translation [64,69] and the lattice anomaly becomes an ordinary ’t Hooft anomaly
between the internal symmetry G = SO(3) of the lattice model and this emanant ZC2 symmetry.
See also [75,76].

As we vary the parameters of the lattice model, we can move to a ferromagnetic phase.20

The lattice symmetry and its ’t Hooft anomalies are unchanged. However, as was emphasized
at the end of Section 3.4.3, no such ZC2 emanant symmetry is present in the ferromagnetic
phase of the same system. How can the anomalies match in that case?

Another aspect of this puzzle is that the Lieb-Schultz-Mattis anomaly depends on whether
kUV is even or odd, i.e., whether the microscopic spins s = kUV

2 are integer or half-integer. In the
anti-ferromagnetic case, this distinction is visible also in the IR continuum theory. However,
this is not the case in the ferromagnetic phase. In that case, it is clear that the continuum
theory depends only on the integer k = kUVN . How does the dependence on kUV appear?

20Since we work in finite volume, the notion of distinct ferromagnetic or anti-ferromagnetic phases is imprecise.
What we mean here is the finite volume system that looks like these phases in the infinite volume limit.
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By now, the answer to this question should be obvious. In a ferromagnet, the translation
symmetry of the continuum theory is discrete, generated by T i . And the lattice translation
generators T i

UV act in the continuum theory as powers of these (142)

T i
UV → (T

i)
k
Li . (160)

Since the continuum theory has no continuous translation symmetry, there is no reason why
the discrete translation symmetry T i does not have anomalies. Indeed, we expect it to be such

that (T i)
k
Li has the same ’t Hooft anomaly with the internal symmetry G as T i

UV has on the
lattice.

Let us demonstrate it in a simple case. For d = 1, the long-distance behavior of the Heisen-
berg model in its anti-ferromagnetic phase is the same as that of the O(3) sigma-model with
θ = πkUV . It is gapless for odd kUV and gapped for even kUV . The lattice anomaly is present
only for odd kUV and then it is matched with the anomaly in the low-energy field theory. In the
ferromagnetic phase, the low-energy theory is gapless and it is described by LS2 for all kUV .
It depends only on the integer k = kUV L. Its Zk translation symmetry is generated by T and
we expect this T to have a mixed ’t Hooft anomaly with the SO(3) symmetry. The underlying
lattice model has a ZL ⊆ Zk translation symmetry, generated by TUV , which corresponds to the
continuum operator T kUV . The fact that TUV has a mixed anomaly with SO(3) only for odd
kUV is matched with the continuum anomaly using the identification TUV → T kUV .

6.3.2 Relation to filling constraints

In our gauge theory systems, the U(1) charge density was constrained locally to be k
V , leading

to our new anomaly. This is to be contrasted with a system with a global U(1) symmetry with
a chemical potential. The microcanonical presentation of this system involves a constraint on
the total U(1) charge. As explained in [64], in this case, there is an ’t Hooft anomaly between
the U(1) global symmetry and translations. This anomaly underlies Oshikawa’s presentation
[74] of Luttinger’s theorems and other filling constraints. It is tempting to suggest that upon
coupling the systems with a global U(1) symmetry to dynamical gauge fields with the coupling
(1), this ’t Hooft anomaly leads to the Adler-Bell-Jackiw-like anomaly we discussed in this note.
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