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Abstract

Interference upon free expansion gives access to the relative phase between two interfer-
ing matter waves. Such measurements can be used to reconstruct the spatially-resolved
relative phase, which is a key observable in many quantum simulations of quantum field
theory and non-equilibrium experiments. However, in 1D systems, longitudinal dynam-
ics is typically ignored in the analysis of experimental data. In our work, we give a
detailed account of various effects and corrections that occur in finite temperatures due
to longitudinal expansion. We provide an analytical formula showing a correction to
the readout of the relative phase due to longitudinal expansion and mixing with the
common phase. Furthermore, we numerically assess the error propagation to the esti-
mation of the gases’ physical quantities such as correlation functions and temperature.
We also incorporate systematic errors arising from experimental imaging devices. Our
work characterizes the reliability and robustness of interferometric measurements, di-
recting us to the improvement of existing phase extraction methods necessary to observe
new physical phenomena in cold-atomic quantum simulators.
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1 Introduction

Matter-wave interference highlights the quantum nature of matter, while simultaneously en-
abling ultra-precise sensors for metrology and providing a sensitive probe into the intricate
many-body physics of ultracold quantum gases and quantum simulators [1–4]. A key tech-
nique for the latter is time-of-flight (TOF) measurements, where the quantum gas expands
upon being released from the trap. If two such expanded clouds overlap, they form a matter-
wave interference pattern that reveals the relative phase between the trapped clouds. If the
expansion preserves local information, properties connected to the local relative phase in the
original samples can be extracted.

This rationale has been extensively applied, particularly in 1D cold-atomic quantum field
simulators, to investigate quench dynamics [5–8], pre-thermalization [9–12], area-law scal-
ing of mutual information [13], and quantum thermodynamics [14, 15]. These applications
leverage the statistical properties of local relative phases to deduce key physical quantities of
the gas, such as temperature [16,17], relaxation time scales [8,18], the nature of excitations
via full distribution functions [12,19], and the quantum field theory description through cor-
relation functions [20,21]. In all of these investigations, measuring interference patterns after
time-of-flight and then inferring the local relative phase fluctuation is an essential tool.

In this work, we perform a focused study on the TOF measurement of two parallel 1D Bose
gases, going beyond the initial idealized reasoning in Refs. [22–24]. We systematically address
various physical processes that can modify the interference patterns and thereby the extraction
of the local relative phase. We assess the accuracy of the decoding, i.e. the inference of the
relative phase in the trapped clouds from the observed interference patterns. A detailed and
systematic analysis of the various effects influencing TOF measurement becomes indispensable
when pushing further the analysis of low-dimensional many-body quantum systems and the
quantum field simulators they enable.

To reliably extract the relative phase, we need an accurate understanding of the measure-
ment dynamics. If the trap is switched off rapidly, the initial tight confinement in transverse
directions leads to rapidly expanding density, which allows one to neglect the effect of inter-
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a Modelling assumptions   ρ⊥TOF ρTOF

ψ̂1,2 ∼ ψ1,2

✓

σ0(z) ≈ σ0
✓ ✓

ω⊥t ≫ 1
d ≪ σt

✓
✓ ✓

δn1,2 → 0
✓

b

✓
✓

n1(z) = n2(z) = n0(z) ∼ ✓

✓

̂x

̂z

̂y

TOF

ρTOF

∼

G(z − z′ , t) → δ(z − z′ )
✓ ✓as(t > 0) → 0

∼

Figure 1: (a) The setup schematics for relative phase measurement of parallel quasi-
one dimensional Bose gases after time-of-flight (TOF) adapted from Ref. [11] (b)
Comparison table for the assumptions used to derive different models for TOF density
[Eqs. (4)-(5)]. The ∼ symbol means that the assumption can be relaxed in general.

actions during the expansion. Consequently, the dynamics is well approximated by a quench
into free evolution [16, 24]. For 1D systems, such free expansion can be divided into expan-
sion in the transversal directions (perpendicular to the length of the gas) and longitudinal
direction (along the length of the gas). Although previous studies [22, 23] often neglect lon-
gitudinal expansion, recent theoretical works have started to address its significance [24]. In
particular, they unveil new phenomena affecting the formation of interference patterns such
as density ripples [16] and mixing with common (symmetric) phases [24]. A natural question
then arises: how do these factors influence the relative phase extraction and the determination
of the gases’ physical properties? To the best of our knowledge, no systematic answer has been
offered in the literature. This paper therefore aims to comprehensively address this question.

The paper is structured as follows: after this brief introduction, we summarize the devel-
opments in modelling TOF measurement dynamics for parallel 1D systems in Sec. 2. Then, in
Sec. 3, we develop a perturbative theory for incorporating longitudinal dynamics and derive
analytical expressions for the systematic readout errors in the extracted relative phase. Secs. 4-
5 provide numerical analyses to assess the influence of the readout errors on the estimation of
the various physical quantities of the gases, accounting for modelling errors (Sec. 4) and the
effects of the experimental imaging system (Sec. 5). We conclude with a brief discussion and
outlook in Sec. 6.

2 Free expansion dynamics of parallel 1D Bose gases

We consider a pair of parallel one-dimensional Bosonic gases of length L extending along the z-
axis (longitudinal axis) and separated by a distance d along one of the transversal axes, e.g. the
x-axis [Fig. 1a]. Let ψ̂ j(z) be the Bosonic field operator with subscripts j = 1, 2 indexing each

gas. This operator can be decomposed as ψ̂ j(z) = eiφ̂ j(z)
Æ

n̂ j(z)with n̂ j(z) and φ̂ j(z) being the
density and phase operators. In this paper, we will use the semi-classical approximation [25]
by replacing ψ̂ j(z) with a scalar field ψ j(z) = eiφ j(z)

Æ

n j(z) +δn j(z) where n j(z) is the mean
density, and δn j(z),φ j(z) are density and phase fluctuations respectively. The objective of 1D
Bose gases interferometry is to measure the relative phase fluctuation φ−(z) = φ2(z)−φ1(z).
This can be achieved through TOF scheme, whereby the atomic cloud is imaged after being
released and expanded for some time t. The image encodes information about the in-situ
phase fluctuations in the resulting density interference patterns measured in experiments.
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In the following, we assume the system to be initially in the quasi-1D regime, i.e. only
occupying the Gaussian transverse ground state wavefunction [22,26,27]

Ψ j(x , y, z, 0) =
1
q

πσ2
0(z)

exp

�

−
(x ± d/2)2 + y2

2σ0(z)2

�

ψ j(z) , (1)

where the right and left wells are assumed to be symmetric with respect to the origin. The
Gaussian width σ2

0(z) = σ
2
0

Æ

1+ 2asn j(z) depends on the scattering length as, the mean den-
sity n j(z), and the single-particle ground state width σ0 =

p

ħh/(mω⊥) given by the atomic
mass m and the transverse harmonic confinement frequency ω⊥. For the moment, we will ig-
nore the radial broadening due to atomic repulsion such that the width σ0(z)≡ σ0 is uniform
along the condensate. We briefly discuss the effect of scattering in Sec. 6 and Appendix E.

We model TOF expansion as a ballistic expansion, without any external potential nor any
interaction (i.e. as(t > 0) = 0). The latter is justified due to the fast decrease of interaction
energy as a result of the rapid expansion of the gas in the tightly confined transverse direc-
tions characterized by ω⊥. Thus, for t > 0 the system is effectively governed by free particle
dynamics [16,24]

Ψ j(r⃗, z, t) =

∫

d2 r⃗ ′ dz′ G(r⃗ − r⃗ ′, t)G(z − z′, t) Ψ j(r⃗
′, z′, 0) , (2)

where r⃗ is a short-hand notation for the position vector in the transverse plane and
G(ξ, t) =
p

m/(2πiħht)e−mξ2/2iħht is the free, single-particle Green’s function. We also note
that recent work [28, 29] have developed fast and efficient methods to numerically evaluate
Eq. (2). In our analytical contributions, we make use of additional approximations to obtain
a simplified analytical form of the time evolution. Thus, our results are complementary to
that of Refs. [28,29], while paving the way for a further systematic understanding of the TOF
scheme.

As the gases expand, they start to overlap and coherently interfere. We are interested in
the density image of the atomic cloud after interference as seen from the vertical direction
(y-axis), i.e.

ρTOF(x , z, t) =

∫

d y |Ψ1(r⃗, z, t) +Ψ2(r⃗, z, t)|2 . (3)

After substituting the time-evolved fields from Eq. (2) and applying the assumptions listed in
Fig. 1b, one arrives at a simplified formula for the expanded density [22,23]

ρ⊥TOF(x , z, t) = A(z, t)e−x2/σ2
t

�

1+ C(z) cos
�

kx +φ−(z)
�

�

, (4)

where σt = σ0

q

1+ω2
⊥ t2 is the expanded Gaussian width, k(t) = d/(σ2

0ω⊥ t) = md/(ħht) is
inverse fringe spacing, and A(z, t) and C(z) are interference peaks amplitudes and contrasts
respectively. In experiments, the relative phase φ−(z) is obtained by fitting the interference
image to Eq. (4), and so we refer to Eq. (4) as the ‘transversal fit formula’. The superscript
⊥ means we have ignored longitudinal dynamics by substituting G(z − z′, t) ≈ δ(z − z′) in
Eq. (2). In addition, the formula also assumesω⊥ t ≫ 1 and d ≪ σt such that the overlapping
transverse Gaussian can be approximated as a single Gaussian centred at the origin. Although
they can be relaxed, here we consider identical mean density n1(z) = n2(z) = n0(z) and ignore
density fluctuation δn1,2≪ n0.

This work explores the impact of longitudinal expansion on the accuracy of relative phase
extraction. In other words, we go beyond Eq. (4) by including longitudinal dynamics in our
analysis, where the final density after expansion and interference is written as [24]

ρTOF(x , z, t) = Ae−x2/σ2
t

�

�

�

�

�

∫ L/2

−L/2
dz′ G(z − z′, t)
Æ

n0(z′)e
iφ+(z′)/2 cos
�

kx +φ−(z′)
2

�

�

�

�

�

�

2

, (5)
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Figure 2: Comparison between three different TOF expansion models: (a) ρ⊥TOF,
(b) ρTOF with φ+(z) = 0, and (c) ρTOF with φ+(z) ̸= 0. Panels d - f show the
respective TOF longitudinal density nTOF =

∫

ρTOF d x . The mean insitu density
n0(z) is set to follow the Thomas-Fermi approximation in harmonic potential (inverse
parabola) with peak density 75 µm−1. The other parameter values are t = 15 ms,
ω⊥ = 2π × 2 kHz, L = 100 µm, d = 3 µm, and m is the mass of 87Rb. These
parameters are fixed throughout the paper unless stated otherwise.

where φ+(z) := φ1(z) + φ2(z) is the common (symmetric) phase, typically unmeasured in
experiments. We provide a detailed derivation of Eq. (5) in Appendix A and we show how
to recover Eq. (4) from Eq. (5) in Appendix B. The mixing with common degrees of freedom
in Eq. (5) is a new phenomenon neglected in Eq. (4). Meanwhile, longitudinal expansion
manifests itself through the Green’s function kernel which allows local correlation between
density at z and z′ ̸= z. We refer to Eq. (5) as the ‘full expansion formula’. Unlike the transversal
fit formula, the integral form and the dependence on the common phase make it difficult to
use the full expansion formula as a fit function.

We conclude our description of these models by illustrating their differences in Fig. 2a-c,
showing a comparison between interference patterns of identical phase profiles computed with
different expansion models. Their differences are visible through the longitudinal variation of
the central peaks. They can also be seen more clearly by numerically evaluating longitudinal
density nTOF(z, t) =

∫

d x ρTOF(x , z, t), which is directly measurable in experiments by imaging
the atoms along the x-axis [16, 17, 22]. The result is shown in Figs. 2d-e with the transverse
fit formula showing no density ripples [Fig. 2d], i.e. nTOF(z) = n0(z), in contrast with the full
formula [Figs. 2e-f].

The density ripples imply the presence of systematic longitudinal correlations in the inter-
ference pattern induced by free expansion, which is neglected in the transversal expansion
model. Since we read out the relative phase from the interference pattern, it is natural to ask
whether this density correlation will cause a systematic correlation in the readout phase as
well, leading to a systematic error between true insitu phase and the readout phase. This error
is indeed numerically reported in Ref. [24] but with no systematic characterization of their
behaviour. We will discuss this in the next section.
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Figure 3: Simple model illustrating the different contributions of relative and
common phase on the measured interference patterns in time-of-flight. (a) In-
put relative (solid black line) and common (dashed black line) phase profiles
φ−(z) = π cos(4πz/L) and φ+(z) = π cos(6πz/L) together with the extracted phase
profiles φ(out)

− (z) with t = 7 ms (blue circles) and t = 15 ms (red crosses). (b) Phase
shift induced by longitudinal expansion ∆φ−(z, t) = φ−(z) − φ

(out)
− (z). The solid

lines are analytical curves calculated with Eq. (9). Panels c-d are repetition of a-b
with φ+(z) = 0. The initial mean density profile is the same as in Fig. 2 (inverse
parabola).

3 Readout phase error due to longitudinal expansion

In experimental analysis, longitudinal dynamics are often ignored, and Eq. (4) is used to read
out the relative phase from the density interference pattern. If we relax this assumption, the
expression for the final density is given by Eq. (5), which is considerably more complicated
and difficult to use as a fitting function. Our aim in this section is to assess the modelling error
that may arise from ignoring longitudinal expansion. We do this by treating the integral in Eq.
(5) perturbatively.

We start by defining an integrand function,

I(x , z′, t)≡
Æ

n0(z′)e
iφ+(z′)/2 cos
�

kx +φ−(z′)
2

�

, (6)

so that the integral in Eq. (5) can be written as
∫ L/2
−L/2 dz′ G(z − z′, t)I(x , z′, t). Similar to the

stationary phase approximation, the integrand’s dominant contribution will come from z′ ≈ z.
We may then perform asymptotic expansion of the integral around that point in analogy to
Laplace’s method [30], i.e. we perform Taylor expansion of I(x , z′, t) centred around z.

We show in Appendix C that Eq. (5) can always be expressed in the following form

ρTOF(x , z, t)≈ A′(z, t)e−x2/σ2(t)
�

1+ C ′(z, t) cos (kx +φ−(z)−∆φ−(z, t))
�

, (7)

where A′(z, t), C ′(z, t) now include corrections from longitudinal expansion. The form of Eq.
(7) is expected from Eq. (3). However, using our integrand expansion technique, we are

6
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able to express the fit parameters in terms of in-situ field variables. In particular, we find that
longitudinal expansion introduces a systematic phase shift ∆φ−(z, t) into the readout phase,
so that

φ
(out)
− (z, t) = φ−(z)−∆φ−(z, t) . (8)

For gases with slowly-varying mean densities, the dominant corrections for the phase∆φ−(z, t)
are expressed in terms of scaled derivatives of the phases

∆φ−(z, t)≈ (∂ηφ−)(∂ηφ+)−
1
2
(∂ 2
ηφ−)(∂ηφ−)

2 +O(∂ 4
η ) , (9)

where derivatives are taken with respect to a scaled coordinate η= z/ℓt with ℓt =
p

ħht/(2m)
being the length scale of longitudinal expansion. In the standard Bogoliubov theory for 1D
gas [31], the scaled derivative of the phase with respect to a finite lattice length is considered
a small parameter. Similarly, our formula is expanded with respect to small parameters ∂ηφ±
with ℓt being analogous to lattice length. Consequently, our formula is only valid to describe
fluctuations with momenta q < ℓ−1

t . The corrections to Eq. (9) are of order four or higher in
scaled phase derivatives. We note that the form in Eq. (9) already uses a linearization of an
arctan function. When considering modes close to q ∼ ℓ−1

t , one might need to adopt the full
analytical form derived in Appendix C.

Equations (7)-(9) are the main analytical results of this paper. They can be useful to assess
the reliability of the existing phase readout protocol. For example, Eq. (9) shows that the
readout error grows with a longer expansion time. This is intuitive since a longer longitudinal
expansion time would lead to a more systematic longitudinal correlation spread along the gas.
Moreover, Eq. (9) clearly shows a dominant phase shift correction due to mixing with the
common phase, which was previously unnoticed. We also find a higher-order correction term
that depends only on the derivatives of the relative phase, signifying a systematic error purely
due to the presence of longitudinal Green’s function.

We compare our analytical prediction with numerical data by encoding smooth phase pro-
files, e.g. φ−(z) = π cos(4πz/L) and φ+(z) = π cos(6πz/L), into density interference pattern
computed with the full expansion formula and then decode the relative phase with the trans-
verse fit formula. We find agreement between numerical data and our analytical prediction
up to finite size effects near the boundary [Fig. 3]. We also examined various other smooth
profiles and obtained similar results. Note that the numerical data does not assume uniform
density and yet Eq. (9) fits the data quite well, demonstrating the usefulness of our formula
in realistic scenarios where mean density varies sufficiently slowly.

4 Reconstruction of physical quantities

Ultimately, we are interested in reconstructing physical quantities associated with the gases’
initial state, which we assume to be given by a thermal state of the sine-Gordon Hamilto-
nian [32]

H = HT LL(δn+,φ+) +HT LL(δn−,φ−)− 2ħhJn0

∫

dz cosφ−(z) , (10)

where HT LL is the Tomonaga-Luttinger liquid Hamiltonian [33] in terms of the symmetric and
antisymmetric density fields δn± = δn1(z)±δn2(z) and phase fields φ±(z) = φ1(z)±φ2(z)

HT LL(δn±,φ±) =

∫

dz

�

ħh2n0(z)
4m

(∂zφ±(z))
2 + g1D (δn±(z))

2

�

, (11)

7

https://scipost.org
https://scipost.org/SciPostPhys.18.2.065


SciPost Phys. 18, 065 (2025)

Many-body state
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{ϕ(in)− (z), ϕ(in)

+ (z)}
Output Phase 

Data

ρTOF(x, z, t) → ϕ(out)− (z)

Input Physical 
Quantities

Output Physical 
Quantities

Trans. Model Full Model
ρTOF(x, z, t)ρ⊥TOF(x, z, t)

ϕ+(z) = 0 ϕ+(z) = ϕ(in)
+ (z)

ϕ(in)± (z) → ρTOF(x, z, t)

Im
ag

e 
 P

ro
ce

ss
in

g

{ϕ(out)− (z)}

O ({ϕ(in)− (z)}) O ({ϕ(out)− (z)})

Figure 4: The simulation workflow is divided into four stages, separated by the dotted
lines. The first stage (green boxes) represents the input to the simulation, obtained
by sampling relative and common phase profiles from an input state. The next stage
(blue boxes) represents TOF encoding implemented with three different models. The
last stage (red boxes) represents decoding where relative phases and physical quan-
tities are inferred by fitting with the transverse fit formula (4). The additional image
processing stage between the encoding and decoding process simulates experimental
imaging effects. We will momentarily ignore this in Sec. 4 and revisit it in Sec. 5.
The goal of the simulation is to compare the input and output physical quantities.

with g1D being the interatomic repulsion strength in the 1D regime [27]. While the common
mode is determined by this Gaussian theory, the non-Gaussianity of the relative degrees of free-
dom can be experimentally tuned via the single particle tunnelling strength J , giving rise to the
sine-Gordon model. The relevance of the cosine potential can be characterized by χ = λT/lJ
which is directly related to the experimentally accessible coherence factor 〈cos(φ−)〉. The
thermal coherence length λT = ħh2n1D/(mkB T ) for uniform gas n0(z) = n1D and phase locking
length lJ =

1
2

p

ħh/mJ determine the randomization and restoration of the phase due to tem-
perature and tunnel coupling respectively. In thermal equilibrium phase, correlation functions
for various χ (implemented by varying the tunnel coupling strength J) have been experimen-
tally computed up to the 10th order [20] and found in agreement with the predictions of the
sine-Gordon model.

In this section, we assess the reliability of TOF measurement for such a task, especially in
the light of possible error propagation from∆φ−(z, t). We begin with investigating the recon-
struction of physical quantities associated with uncoupled Luttinger liquid (J = 0) in thermal
equilibrium in Subsecs. 4.1-4.4. We then discuss the TOF reconstruction of second-order and
fourth-order correlations of the coupled sine-Gordon theory in the Gaussian (q = 0.5) and
non-Gaussian regime (q = 3) in Subsec. 4.5. From here onwards, we mainly resort to numer-
ical simulation, where our workflow is summarized in Fig. 4. The code used to perform the
simulation is available in Ref. [34].

• Independent sampling of relative and common phase profiles. We sample many in-
stances of {φ(in)∓ (z)} from a many body state. In our case, the many body state would ei-
ther be a thermal Gaussian state or a non-Gaussian sine-Gordon state. The phase profiles
corresponding to thermal Gaussian state are sampled from a multivariate normal distri-
bution following a thermal covariance matrix [35], with small tunnelling J = 0.1 Hz to
renormalize the zero modes. Meanwhile, the non-Gaussian phase profiles are sampled
by a stochastic process described by an Itô equation [36,37].

The sampled phase profiles are the input to our simulation. Using these inputs, the
ground-truth physical quantities O

�¦

φ
(in)
− (z)
©�

can be computed. Although it may con-
tain statistical fluctuations, given sufficiently many samples of the phase profiles, the
computed quantities O should closely match their theoretical values.
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• Simulation of the TOF encoding of phases into density interference patterns. Given
the phase profiles, we simulate TOF by computing density after TOF (ρTOF) using Eq.
(5) with varying expansion time t. To control for the influence of common phases, we
perform the simulation twice for every t, once with zero common phase (φ+(z) = 0)
and the second time with the sampled common phase (φ+(z) = φ

(in)
+ (z)). In addition,

we simulate the transverse expansion model to control for numerical error in the relative
phase decoding process (explained below).

• Decoding the relative phase from interference patterns. With the obtained ρTOF, we
use Eq. (4) as a fitting function to extract φ−(z). To do so, we solve a constrained opti-
mizationφ(out)

− (z) ∈ [−2π, 2π] problem using the interior-point algorithm. We initialize
the optimizer by feeding a linear function φ(0)

− (z) = −kxmax where xmax is the transver-
sal peak position at fixed z [Appendix D]. Due to phase multiplicity over a 2π period, we
sometimes observe phase jumps (discontinuity) in the optimization output. We elimi-
nate the discontinuity by applying a phase unwrapping protocol: adding a multiple of 2π
to the phase whenever detecting a jump larger than π until discontinuity is eliminated.
However, this protocol is inaccurate for highly fluctuating profiles in finite resolution,
which puts a limit on the temperatures for which our method performs reliably.

After obtaining all the decoded phases data {φ(out)
− (z)}, we compute the inferred physical

quantities O({φ(out)
− (z)}) and compare them to the input O({φ(in)− (z)}) in different scenarios.

Note that in Fig. 4, there is an additional image processing stage between the encoding and
decoding process. This is the stage where the initial interference pattern gets modified due to
the experimental setup and limitations of the imaging devices. We will momentarily ignore
this stage and revisit it in Sec. 5.

4.1 Vertex correlation function

We first consider the reconstruction of vertex correlation function

Cφ(z, z′) =



cos
�

φ−(z)−φ−(z′)
��

, (12)

where 〈.〉 denotes average over realizations. This quantity can be evaluated analytically [33]
for Gaussian theory with quadratic Hamiltonian. For uniform 1D Bose gases in thermal equi-
librium, we expect exponential decay of correlation with a length scale of thermal coherence
length λT− = ħh

2n0/(mkB T−)with T− being the temperature of the relative phase. This quantity
is also useful for probing out-of-equilibrium experiments, e.g. observing light cone emergence
of thermal correlation [10] and recurrences [6] in parallel 1D Bose gases.

Here, we only consider a middle cut Cφ(z, 0). The comparisons between input and recon-
structed Cφ(z, 0) for different parameters are shown in Fig. 5. We find that the reconstruction
of phase correlation function Cφ is robust against systematic phase shift due to longitudinal
dynamics during TOF, i.e. ∆φ− does not influence the reconstruction of Cφ . This is intuitive
since Cφ mostly depends on the low mode and long wavelength fluctuations which have small
derivatives and thus do not get significantly influenced by ∆φ−.

4.2 Full distribution function

Shot-to-shot variations of the interference between two parallel 1D Bose quasicondensates
can reveal signatures of quantum fluctuation [19, 38]. A key question is how much of the
observed fluctuations and their correlations are fundamentally quantum, especially in systems
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Figure 5: The input (dashed black line) and output vertex correlation function
Cφ(z, 0) for T− = 25 nK (a-b) and T− = 75 nK (c - d) reconstructed with 500 TOF
simulations. The first (a, c) and second (b, d) columns are reconstructed with 7 ms
and 15 ms, respectively. The blue crosses (red circles) are data from TOF simulation
with φ+(z) ̸= 0 (φ+(z) = 0) sampled from the same thermal distribution as the rel-
ative phase (T+ = T−).

with finite temperatures. Here, we will probe the full distribution function of the interference
contrast P(ξ) defined by

ξ(l) =

�

�

�

∫ l/2
−l/2 eiφ−(z) dz
�

�

�

2


�

�

�

∫ l/2
−l/2 eiφ−(z) dz
�

�

�

2· , (13)

with l being a variable distance from 0 to L. In our case, we are probing the effect of time-of-
flight on the reconstruction of P(ξ) in equilibrium. In out-of-equilibrium, the full distribution
function P(ξ) has also been used to study pre-thermalization dynamics after coherent splitting
[9,11,12].

We compare the input and reconstructed (output) full distribution function P(ξ) for three
different length scales l in Fig. 6. We find that except for a minor reduction in the high-contrast
probability, the qualitative features of the input and output distribution almost coincide. The
suppression of the high-contrast probability implies that, as expansion time becomes longer,
the medium contrast becomes over-represented and so it could slightly modify the skewness
of the underlying distribution. We believe this is due to additional fluctuation coming from the
systematic phase shift ∆φ−(z, t) which grows with expansion time. Furthermore, by compar-
ing the first and second rows in Fig. 6, we show that the common phase does not significantly
influence the full distribution function. Overall, we observe the same qualitative transition for
different l as reported in Refs. [19, 38]. Thus, longitudinal expansion and common phase do
not play significant roles here and the existing phase readout protocol can faithfully reproduce
the full distribution function P(ξ).
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Figure 6: Full distribution function P(ξ) computed with 1000 phase profiles sampled
from a thermal state with T± = 75 nK. The top (bottom) row a-c (d-f) corresponds
to the case where φ+(z) = 0 (φ+(z) ̸= 0). The length scales are l = 9.8 µm (a,d),
l = 25.5 µm (b,e), and l = 49 µm (c,f). The blue histogram is the input, red (yellow)
histogram is the reconstructed distribution from 7 ms (15 ms) full expansion.

4.3 Velocity-velocity correlation

The spatial derivative of phase has a physical meaning as a velocity field u±(z) = (ħh/m)∂zφ±(z)
in the hydrodynamics description of a superfluid. Here, we specifically look at the correlation
in the relative velocities

Cu(z, z′) = 〈∂zφ−(z)∂z′φ−(z
′)〉 − 〈∂zφ−(z)〉 〈∂z′φ−(z

′)〉 . (14)

If the relative velocities of the atoms at z and z′ are independent, then Cu(z, z′) vanishes.
Any non-zero values (discounting statistical fluctuation) for this quantity reflect a correlation
in the relative velocities, i.e. if Cu(z, z′) > 0 the relative velocities of the atoms at z and z′

tend to align whereas if Cu(z, z′) < 0 they tend to be opposite. Recently, the velocity-velocity
correlation has been measured in experiments to observe curved light cones in a cold-atomic
quantum field simulator [7]. We compare the input and output velocity correlation in Fig.
7. The in situ velocity correlation C (in)u (z, z′) for a thermal state is not completely diagonal.
Instead, it has a weak and short-distance anti-correlation as shown by Fig. 7a.

Interestingly, we observe spatial propagation of the initial anti-correlation in the TOF model
with longitudinal expansion shown in Figs. 7c-d and Figs. 7e-f, which does not appear in the
control simulation with only transversal expansion [Fig. 7b]. We observe the length scale for
this correlation (the span of the off-diagonal) increases with a longer expansion time. Such
propagation of correlation can be physically understood in a quasi-particle picture, where
neighbouring quasi-particles with initial opposite velocity correlation will move further away
from each other as the gas expands longitudinally. We also observe alternating patterns of pos-
itive and negative correlation which indicates momentum interference in the longitudinal di-
rection [Fig. 7e]. However, this long-distance correlation and anti-correlation are randomized
when common phases are involved and only the propagation of the primary anti-correlation
persists [Fig. 7f].

This propagation is similar to what has been observed experimentally in the context of a
quench from an interacting to non-interacting pair of Luttinger liquids [7]. The difference here
is that we report the propagation of velocity correlation due to quenching into a free Hamilto-
nian induced by the TOF measurement protocol. To observe this, one must resolve fluctuations
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Figure 7: Velocity-velocity correlation Cu(z, z′) calculated from (a) input phase pro-
files and (b) extracted profiles with 7 ms transversal expansion (c) 7 ms full expan-
sion with φ+(z) = 0 and (d) φ+(z) ̸= 0. Panels (e)-(f) are the same as (c)-(d) except
for t = 15 ms. Panel (a) is generated with 104 phase profiles whereas panels (b)-(f)
are generated with 500 TOF simulation. The upper bound of the color bar has been
adjusted to low values to accentuate structures in the off-diagonals. The input phase
profiles are sampled from a thermal distribution with temperatures T± = 75 nK.

with a length scale comparable to the length scale of TOF dynamics ℓt =
p

ħht/(2m)≈ 2.3 µm
for t = 15 ms. Thus, this effect might not be captured by present experiments (see Sec. 5)
and by our perturbative treatment in Eq. (9). Nevertheless, our numerical results point to
the necessity of calibrating the results of dynamical propagation of velocity-velocity correla-
tion such as in Ref. [7] to the measurement background in future experiments with enhanced
resolution.

4.4 Mean Fourier spectrum & temperature

The mean Fourier spectrum 〈|Φq|2〉whereΦq = (1/
p

L)
∫ L/2
−L/2 e−iqzφ−(z) dz is another relevant

physical quantity of the gases. Similar to the vertex correlation function (Subsec. 4.4), it also
encodes information about temperature in equilibrium

〈|Φq|2〉=
mkB T−
ħh2q2n0

=
αT−

q2
, (15)

where αT− = 1/λT− = mkB T−/(ħh2n0) is inverse thermal coherence length. The mean Fourier
spectrum 〈|Φq|2〉 is relevant in quadrature tomography technique for extracting relative density
fluctuation information from the relative phase data [35], which is then used to probe the
covariance matrix of the system in and out of equilibrium [13, 39]. Here, we compare the
input and output spectrum for a thermal state with a fixed temperature T− = 50 nK. Then, we
vary the temperature and fit 〈|Φq|2〉 according to Eq. (15) to extract αT− . For our simulation,
we will assume the relative and common degrees of freedom are in thermal equilibrium with
respect to each other (T+ = T−).
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Figure 8: Thermal (T− = 50 nK) mean Fourier coefficients 〈|Φq|2〉 computed us-
ing 200 realizations of TOF measurement simulation. In panel a, q = 20π/L
(≈ 0.63 µm−1) is fixed but expansion time is varied. In panel b, k is varied but
expansion times are fixed at different values: t = 7 ms (blue circles), t = 15 ms
(red crosses), and t = 30 ms (green triangles). The black solid lines are the ground
truths computed from the input data. To emphasize the oscillation in the intermedi-
ate mode, we only plot data points with k ≥ 10π/L ≈ 0.31 µm−1. The inset shows
the residue ∆k = 〈|Φ(in)q |

2〉 − 〈|Φ(out)
q |2〉. Panel c shows inverse thermal coherence

length αT− as a function of temperature T−. Panels d-f are the repetition of a-c but
include common phase with temperature T+ = T−.

We start by fixing the momentum to be q = 20π/L and vary the expansion time t. In the
absence of energy transfer from other sectors, the energy in phase quadrature can not exceed
its initial energy, which explains why the output spectrum appears to be upper-bounded by its
in situ values [Figs. 8a,b]. However, for high enough common phase temperature, the in-situ
values do not provide an upper bound anymore because initial common phase fluctuation can
give extra energy to the relative phase [see Eq. (9)]. Note that in our case, energy from in situ
density fluctuation is ignored.

While a perfectly faithful reconstruction of 〈|Φq|2〉 should not depend on expansion time
t, we find a non-trivial oscillation of 〈|Φ(out)

q |2〉 with respect to t attributed to longitudinal

expansion [Figs. 8a,d]. This oscillation is also visible when we plot 〈|Φq|2〉 as a function
of q for different values of expansion time as shown in Figs. 8b,e. To emphasize the os-
cillation in the intermediate mode regime we have omitted the low-momentum population
q < 10π/L. The insets in Figs. 8b,e show the residue between input and output spectrum
∆q = 〈|Φ(in)q |

2〉− 〈|Φ(out)
q |2〉, which qualitatively resembles the evolution of density ripple spec-

trum [16]. As expansion time gets longer, the maximum of the residue ∆(max)
q = maxq(∆q)

grows and its peak location qmax shifts to a lower mode. We note that this effect is due to
dynamics in the high momentum modes which goes beyond the correction in Eq. (9). Indeed,
for t = 15 ms the expansion length scale is ℓt =

p

ħht/(2m) ≈ 2.3 µm giving a momentum
cutoff q ∼ ℓ−1

t ≈ 0.43 µm which is smaller than the typical momenta where this oscillation is
observed.
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We checked numerically that such oscillation originates from a transfer of energy from
the relative phase to relative density fluctuation during the expansion. Note that although we
ignore density fluctuation in situ, it does not prevent density fluctuation from developing as the
cloud expands. Indeed, density ripples displayed in Figs. 2e-f can be considered as the common
density fluctuation of the clouds after TOF. In contrast, the relative density fluctuation, i.e.
δn(tof)
− (z, t) =
∫

d2 r⃗
�

|ψ1(r⃗, z, t)|2 − |ψ2(r⃗, z, t)|2
�

is not directly measurable in experiments,
but can still be computed in simulations. We found opposite oscillatory behaviour between the
spectrum of δn(tof)

− (z, t) and the lost energy in 〈|Φ(out)
q |2〉, suggesting energy transfer between

the two fields.
Finally, we check the impact of this oscillation to the reading of temperature using Eq.

(15). We perform fitting 〈|Φq|2〉 = αT−q
−2 for different values of T− and then plot αT− as a

function of T− shown in Figs. 8c,f. We find that the oscillation due to longitudinal expansion
does not significantly affect the readout of temperatures. However, the additional fluctuation
from common phase does make a difference for medium to long expansion time (t > 15 ms)
and high enough T+ ≥ 60 nK.

4.5 Gaussian and non-Gaussian correlation functions

Equal-time higher-order correlations contain detailed information about the many-body state
and can be directly calculated from the extracted phase profiles after time-of-flight [20, 21].
Computing all correlation functions is tantamount to solving a many-body problem. The N -th
order relative phase correlation function referenced at z = 0 is defined by

G(N)(z) =

® N
∏

i=1

(φ−(zi)−φ−(0))

¸

, (16)

where z = (z1, z2, ..., zN ). In general, the correlation function can be decomposed into the
connected and disconnected part

G(N)(z) = G(N)con (z) + G(N)dis (z) . (17)

The disconnected part can be expressed in terms of lower-order correlations while the con-
nected part contains genuine new information about N -body interactions [20, 21]. The com-
putation of correlation function of order larger than two is analytically difficult, except for
special cases such as non-interacting Gaussian states, where higher-order connected correla-
tions vanish identically for N > 2.

We first compare the second order correlation G(2)(z1, z2) for sine-Gordon Hamiltonian in
Gaussian (χ ≡ λT/lJ = 0.5) and non-Gaussian (χ = 3) regimes. The comparison is shown in
Fig. 9. We observe only small differences between input and output correlation in the small
J Gaussian regime of the sine-Gordon model, implying that TOF can faithfully reconstruct
Gaussian correlation. However, in non-Gaussian regimes, we observe a spread of cross-shaped
strips at the center, which can be interpreted as a correction from higher-order correlation
terms induced by systematic phase shift error.

Next, we compare the input and TOF reconstruction of fourth-order correlation function
G(4)(z1, z2, z3, z4). The connected part G(4)con(z1, z2, z3, z4) strictly vanishes for Gaussian states.
We have checked that in the Gaussian regime of χ = 0.5, the four-point correlation function in-
deed factorizes into the products and sum of contributions coming from the two-point function
(disconnected part), barring some fluctuations due to finite statistics (see Fig. 22 in Appendix
E). Here, we will focus only on the G(4)(z) reconstruction of non-Gaussian states, which con-
tains information about four-body correlation. However, a direct comparison between input
and output correlation functions is not straightforward for higher dimensional data. For vi-
sualization, we fix a cut at two different lengths z3 = −z4 = 5.5 µm and z3 = −z4 = 10 µm.
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Figure 9: Second-order correlation G(2)(z1, z2) for χ ≡ λT/lJ = 0.5 (a - c) and
χ = 3 (d - f). The first column (a, d) shows the input correlation G(2)in (z1, z2), the

second column (b, e) shows TOF reconstruction G(2)(out)(z1, z2) with t = 15 ms and
zero common phase φ+ = 0, and the third column includes the effect of common
phase sampled from a thermal distribution with T+ = 75 nK. The edge data of length
2.5 µm on each end have been omitted to suppress boundary effects.

From Fig. 10, we find that in both cases TOF allows a faithful reconstruction of the connected
correlator. However, the disconnected part appears to be modified by TOF as shown in Fig. 11.
The effect of TOF is especially profound for short distance cut at z3 = −z4 = 5.5 µm (Figs. 11a-
c) where we find correlations which are different from insitu not only quantitatively but also
qualitatively. In this regime, the correlation is dominated by systematical deviations generated
by longitudinal expansion.

We hypothesize that this systematic is due to the movement of the atoms during longitudi-
nal expansion, i.e. the atoms at z insitu already move a distance of ∼ z±ℓt after time-of-flight
which is a physical mechanism behind the systematic phase shift error in Eq. (9). This can also
be seen from Fig. 9 where the cut z3 = −z4 = 5.5 µm is still located in the region dominated
by TOF systematics, i.e. the expanding cross region in the middle of Fig. 9. Consequently, it
introduces an extra positive correlation in the off-diagonal block and a negative correlation in
the diagonal block. When we probe longer distance cut z3 = −z4 = 10 µm, however, the input
and reconstructed correlation appear more similar to each other than the shorter cut, but still
with a slight asymmetry between the diagonal and off-diagonal blocks, and a discrepancy in
the absolute value of the correlation.

Our results highlight the importance of considering measurement systematics from time-
of-flight when looking into higher-order correlation data [20]. Although the connected part
of the correlation appears conserved by TOF, the disconnected part is affected. This may then
distort the overall result, i.e. measure of non-Gaussianity. However, this systematic effect is
dominant in short-length scale of ∼ 5 µm as compared to the typical cut in experiments of
around ∼ 15 µm. A shorter cut is usually not taken in experiments due to the blurring of
imaging systematics, which will be explained in the next section.
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Figure 10: Time-of-flight (TOF) reconstruction of connected fourth-order correla-
tion function G(4)con cut at z3 = −z4 = 5.5 µm (a- c) and z3 = −z4 = 10 µm (d-f) for
χ = λT/lJ = 3. All panels are reconstructed with 2500 realizations of 15 ms TOF
with different expansion models. The first column (a, d) involves only transversal ex-
pansion, the second column (b, e) includes longitudinal expansion but with common
phase kept at zero while the third column (c, f) includes both longitudinal expansion
and common phase sampled from a thermal distribution with T+ = 75 nK. The edge
data of length 2.5 µm on each end have been omitted to suppress boundary effects.
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Figure 11: Time-of-flight (TOF) reconstruction of disconnected fourth-order corre-
lation function G(4)dis cut at z3 = −z4 = 5.5 µm (a-c) and z3 = −z4 = 10 µm (d - f)
for χ = λT/lJ = 3. Each panel corresponds to the same TOF models and parameter
regime as in Fig. 10.
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5 The effects of imaging

In the previous section, we discussed how the systematic error generated during longitudinal
expansion propagates into the measurement of the physical properties of the gas. We find
that TOF reconstruction is robust against the systematic phase shift induced by longitudinal
dynamics for quantities that mostly rely on long wavelengths fluctuations such as vertex corre-
lation function, full distribution function, and second-order correlation function. On the other
hand, for some quantities such as velocity-velocity correlation, mean Fourier coefficients, and
fourth-order correlation functions, the details of fluctuations might matter and so we observe
some qualitative differences between the input and the reconstructed quantity.

To check if our analysis also holds in a realistic experimental setting, it is necessary to
include the effects introduced by the experimental implementation of the imaging. These
include foremost the finite imaging resolution of the imaging optics, the finite pixel size, and
the readout noise of the camera. In an ideal setting, the readout noise is given by the photon
shot noise of the detected light. In a realistic scenario, the readout noise must also include
physical processes that occur during imaging. For example, as the atomic cloud scatters light,
it receives a momentum transfer which can lead to diffusion of the atoms in the imaging plane.
Moreover, in absorption imaging, the incoming light is in the imaging direction, which may
push the image out of focus. In addition, the cloud is also falling under gravity during the
exposure time. All together, they result in a washing out of short-distance patterns and lead
to an effective high-frequency cut-off in the imaging function. For a detailed analysis of short
wavelength (high momentum) physics, this high-frequency cut-off needs to be determined
with exceptional care, mostly from numerical modelling of all the physical effects participating
in the specific implementation of the measurement, see Ref. [22] for a more detailed discussion
of experimental imaging systematics.

In our numerical study, we take into account these effects by processing our TOF density
image with a code that simulates a realistic imaging process, fine-tuned to specific experiments
as in Refs. [17,22], e.g. the pixel size is set to be approximately 2 µm, and the defocusing of
the camera is set to be 32.7 µm which consists of 25 µm recoil and 7.7 µm due to free-falling
during 50 µs exposure time. Prior analysis [22] has shown that the effective result of all the
imaging systematics is to induce an exponential momentum cutoff ∼ exp(−k2σ2

cutoff) where
σcutoff depends on the specifics of the experiments and system parameters. In our simulation,
the cutoff is approximately σcutoff ∼ 2.5 µm.

The comparisons between density images before and after image processing for various
expansion times are shown in Fig. 12. For a very short expansion time (t = 1.5 ms), the fringe
spacing (λ = ht/md ≈ 2.3 µm) is still too small to be resolved by the imaging. By t = 3.5 ms
(λ≈ 5.4 µm), the interference fringe is finally resolved and one can start extracting the phase
reliably, although with a significantly lower contrast as compared to the unprocessed image
(see Fig. 16 in Appendix E). After t = 3.5 ms, the qualitative differences between the density
image mostly appear in the density ripple as one can see by comparing Fig. 12g and Fig. 12h.
After this limit, imaging effects only modifies the Gaussian width of the cloud and introduces
momentum cutoff, thus effectively smoothening short wavelength fluctuations in the extracted
fit parameters (see Fig. 13).

To check the robustness of our analytical systematic phase shift formula (9), we perform the
same numerical experiment as in Sec. 3 where we encode and decode a smooth single-mode
phase profiles with TOF simulation but additionally include image processing to the encoding
step. The result is shown in Fig. 17 of Appendix E. We find that the dominant correction
due to mixing with the common phase is still present even after taking into account imaging
systematics. On the contrary, the higher order correction term that arises purely due to the
Green’s function gets blurred by noise and other imaging systematics. Thus, we expect that
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Figure 12: Time-of-flight density interference image before (a-d) and after (e - h)
taking into account imaging effects. The expansion times are 1.5 ms (a, e), 3.5 ms
(b, f) 7 ms (c, g), and 15 ms (d,h). The input relative and common phase profiles
are identical to that of Fig. 2.
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Figure 13: Comparison between single-shot relative phase extraction with and with-
out imaging effects. Panel a (b) shows density without (with) imaging effects after
15 ms TOF. The extracted relative phase is shown in panel c where blue (red) denotes
the result extracted from TOF density without (with) imaging effects. The black solid
line is the input relative phase and the dashed black line is the common phase. Pan-
els (d-f) show the other fit parameters: amplitude A(z), contrast C(z), and width
σt(z) with the blue (red) color denoting the fit parameters extracted from TOF with-
out (with) imaging effects. This figure demonstrates that imaging only modifies the
Gaussian width of the cloud and smoothens short wavelength fluctuations in the ex-
tracted fit parameters.
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some features of the physical quantities that arise due to the high momentum modes dynamics
will also get blurred after taking into account imaging. This is indeed what we observed in
the numerical simulation for the reconstruction of physical quantities associated with Gaussian
Luttinger liquid theories. For quantities that rely on long wavelength fluctuation such as vertex
correlation function (4.1) and full distribution function (4.2), TOF reconstruction is insensitive
to image processing (Figs. 18-19 in Appendix E). On the other hand, the qualitative effects we
observe in the TOF reconstruction of Fourier spectrum and velocity-velocity correlation due
to the dynamics of high mode get washed out after taking into account imaging effects (Figs.
20 -21 in Appendix E). Lastly, for the fourth-order correlation in the non-Gaussian regime,
we find that the slight asymmetry between the diagonal and off-diagonal plateaus of the cut
disconnected correlation is still present, although much weaker than without imaging effects
(Fig. 14).

6 Summary & discussion

In summary, we derived an analytical expression for systematic phase shift error due to lon-
gitudinal expansion, specifically due to mixing with the common degrees of freedom and the
presence of longitudinal Green’s function. We also assessed the error propagation in the recon-
struction of physical quantities related to the statistics of the relative phase field. We find that
Gaussian observables (vertex correlation function, two-point correlation function, full distribu-
tion function) are well-preserved by time-of-flight. However, for higher moments and observ-
ables sensitive to high-momentum fluctuations, e.g. mean Fourier spectrum, velocity-velocity
correlation, and fourth-order correlation functions, deviations arise due to longitudinal dy-
namics and so they must be taken with great care. In the case of mean Fourier coefficients and
velocity-velocity correlation, the deviations are mostly due to dynamics in the high momen-
tum modes, which lie beyond our perturbative analytical treatment and current experimental
imaging resolution. However, these deviations might still be important to consider in future
experiments with improved resolution. For the fourth-order correlation functions, local devia-
tion persists even after taking into account current experimental imaging resolution. Whether
our perturbative correction formula can be used to correct this deviation and to what extent
this affects the measure of non-Gaussianity [20] will be explored in future work.

To improve on the readout of these 1D quantum simulators one can implement atom optical
elements during the time-of-flight. Implementing a weak cylindrical lens (harmonic potential
along the longitudinal direction applied for a finite time) projects the image to infinity and
will result in transforming the time-of-flight measurement into a measurement of longitudi-
nal momentum [40]. Implementing a stronger cylindrical lens leads to direct imaging of the
longitudinal in-situ coordinate into the imaging plane [41]. The latter will also allow us to
enlarge the image and gain considerable improvement in longitudinal imaging resolution, and
it will solve problems caused by the longitudinal expansion and mixing between common and
relative degrees of freedom caused by the finite temperature of the trapped quantum gas. Both
options will be explored in detail in future work.

The analysis done in this paper is subjected to the validity of the modelling approxima-
tions [see Fig. 1]. One approximation we made was to ignore the broadening due to atomic
repulsion σ2

0(z) = σ
2
0

p

1+ 2asn0(z) ≈ σ2
0. Relaxing this assumption makes it difficult to

obtain an analytical relation between the initial state and the final measured density due to
the non-separability of the initial state. However, assuming that the non-separability is weak,
there exists an ansatz [22] that can phenomenologically capture the most relevant features
of interference image broadened by scattering. The ansatz is to replace all σ0 appearing in
Eq. (4) by the broadened σ0(z). Note that the fringe spacing now also depends on z, i.e.
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Figure 14: Time-of-flight (TOF) reconstruction of fourth-order correlation func-
tion G(4)(z1, z2, z3, z4) of the sine-Gordon model in the non-Gaussian regime
(χ = λT/lJ = 3) taking into account imaging effects. The data is cut at
z3 = −z4 = 11.5 µm for visualization. Panels (a-c) show the full correlation, pan-
els (d - f) show the disconnected part, and panels (g - i) shows the connected part.
The first column (a, d, g) represents the case with only transversal expansion and
imaging, the second column (b, e, h) includes longitudinal expansion and imaging
but with common phase kept at zero and the last column (c, f, i) corresponds to the
case with longitudinal expansion, imaging effects, and common phase sampled from
thermal distribution with T+ = 75 nK. Each panel is reconstructed from 2500 TOF
realizations with 15 ms expansion time. The edge data of length 2.5 µm on each end
have been omitted to suppress boundary effects.

k(z, t) = d/(σ2
0(z)ω⊥ t). Taking longitudinal expansion into account, we can develop a sim-

ilar ansatz to modify Eq. (5). We replace all σ0 with σ0(z′) and propagate it with a Green’s
function. Preliminary numerical simulation with this ansatz has revealed that scattering only
affects the width of the final image, but it does not significantly affect other extracted fit pa-
rameters [Fig. 15 in Appendix E].

Furthermore, throughout this paper, we have ignored the impact of density fluctuations by
assuming δn1,2≪ n0 which might not be accurate in higher temperatures. We will address the
effect of density fluctuation in future work. Moreover, we have assumed that the time-of-flight
expansion is fully ballistic. A more refined modelling would be to include the hydrodynamic
effect at the initial phase of the expansion, where interaction energy still remains in the sys-
tem. Only after interaction energy sufficiently decays, does the system follow fully ballistic
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dynamics. A further direction of work will be to include the final state interaction during the
initial expansion. This will be important when studying systems in the 1D-3D cross-over when
the fast switch-off of interactions can no longer be guaranteed.

In addition to refining the model, another future direction is to extract the common phase
from TOF interference pattern. From this study, we find that information about the common
phase is imprinted on the density ripple. Density ripple has been used for thermometry in
the case of single condensate [16, 17]. However, the significance of density ripple in the two
condensates case has not been explored. Developing a readout method of the common phase
from density ripple could be useful in unlocking the full potential of 1D Bose gas interference
experiments, especially in non-equilibrium. For example, it is known that the higher order
correction to the sine-Gordon model for describing tunnel-coupled 1D Bose gas involves a
coupling between relative and common phase [32,42]. Moreover, density imbalances between
atoms in the two double wells can also couple the relative and common phases, leading to a
double-light cone relaxation [43]. Finally, having access to a common phase might allow us
to simulate spin-charge transport in 1D Bose gases [12]. This work serves as a fundamental
starting point for further research in this direction.

In conclusion, our study underscores two significant findings. Firstly, it provides a com-
prehensive understanding of various systematics sources in local relative phase reconstruction
with time-of-flight measurement. Secondly, it identifies avenues and regimes for enhancing
modelling methods to achieve more accurate reconstructions. In addition, we also observe the
potential for extracting additional information from TOF measurements [44], thus augment-
ing the measurement capabilities of cold atomic quantum simulators. These advancements
may serve to enhance future explorations of the physics of cold atomic systems.
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A Free expansion dynamics

In this Appendix, we will derive the expansion dynamics of the Bosonic fields including both
transversal and longitudinal dynamics, elucidating earlier works by Yuri, Essler, and Schmied-
mayer [24]. Let us consider the 3D time-dependent Gross-Pitaevskii equation with zero po-
tential

iħh
∂Ψ

∂ t
= −
ħh2

2m
∇2Ψ + g|Ψ|2Ψ . (A.1)

Upon free expansion we neglect final state interaction g = 0, so that the equation of motion
is essentially that of free particles. The time evolution is thus given by convolution with a
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Green’s function

Ψ(r⃗, z, t) =

∫

d2 r⃗ ′ dz G(r⃗ − r⃗ ′, t)G(z − z′, t)Ψ(r⃗ ′, z, 0) , (A.2)

where we have separated the transversal r⃗ = (x , y) and longitudinal z components of the
evolution and that G(ξ, t) =

p

m/2πiħht exp(−mξ2/2iħht) is the free, single-particle Green’s
function. Next, we substitute the initial state [Eq. (1) in the main text] and integrate over the
transverse directions, giving us the time-evolved fields

Ψ1,2(x , y, z, t) =
1

q

πσ2
0(1+ iω⊥ t)2

exp

�

−
(x ± d/2)2 + y2

2σ2
0(1+ iω⊥ t)

�

exp

�

im[(x ± d/2)2 + y2]
2ħht

�

×
∫

dz′ G(z − z′, t)
Æ

n0(z′)e
iφ1,2(z′) , (A.3)

assuming ω⊥ t ≫ 1 and explicitly ignoring density fluctuation δn1,2≪ n0.
We are concerned with the density after interference of the two fields as they overlap,

integrated along the vertical direction (y-axis), i.e.

ρTOF(x , z, t) =

∫

d y |Ψ1(r⃗, z, t) +Ψ2(r⃗, z, t)|2 . (A.4)

By substituting Eq. (A.3) to Eq. (A.4), we will obtain a transverse Gaussian envelope of width
σt = σ0

q

1+ω2
⊥ t2. If we wait long enough such that d ≪ σt the transverse Gaussian en-

velopes can be approximated into a single Gaussian centred at the origin. Consequently, the
expression for ρTOF becomes relatively simple

ρTOF(x , z, t) = Ae
− x2

σ2
t

�

�

�

�

�

∫ L/2

−L/2
dz′ G(z − z′, t)
Æ

n0(z′)e
iφ+(z′)/2 cos
�

kx +φ−(z′)
2

�

�

�

�

�

�

2

, (A.5)

with A being a normalization constant, k = md/(ħht) is the inverse fringe spacing,
φ∓(z) = φ2(z)∓φ1(z) are relative (-) and common (+) phases.

B Derivation of the transverse fit formula

We continue to derive the transversal fit formula [Eq. (4) in the main text] including the
effects of mean density imbalance as well as density fluctuations. This section is a restatement
of other similar derivations in the literature [22–24].

We start from the extended version of Eq. (4) in the main text, taking into account density
fluctuations and different mean densities in each well

ρTOF(x , z, t) = Ae−x2/σ2
t

�

�

�

�

∫ L/2

−L/2
dz′G(z′ − z, t)eiφ+(z′)/2

�
Æ

n1(z′) +δn1(z′)e
−iφ−(z′)/2e−ikx/2

+
Æ

n2(z′) +δn2(z′)e
iφ−(z′)/2eikx/2
�

�

�

�

�

2

. (B.1)

Next, we ignore longitudinal dynamics by substituting G(z − z′, t)→ δ(z − z′) and integrate
over z′

ρ⊥TOF(x , z, t) = Ae−x2/σ2
t

�

�

�

�

Æ

n1(z) +δn1(z)e
−i kx+φ−(z)

2 +
Æ

n2(z) +δn2(z)e
i kx+φ−(z)

2

�

�

�

�

2

∼= Ae−x2/σ2
t [n+(z) +δn+(z)] [1+ C(z) cos(kx +φ−(z)] , (B.2)
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where
n+(z) = n1(z) + n2(z) , δn+(z) = δn1(z) +δn2(z) , (B.3)

and interference contrast C(z)

C(z) =
2
p

(n1(z) +δn1(z))(n2(z) +δn2(z))
n+(z) +δn+(z)

. (B.4)

Note that contrast is maximum C(z) = 1 when n1(z) = n2(z) and δn1(z) = δn2(z) = 0. After
absorbing n+(z),δn+(z) into the normalization constant A, we recover Eq. (4) in the main
text.

C Corrections due to longitudinal dynamics

Here, we present a detailed derivation of the new analytical results contained in the main text
[Eqs. (7) - (9)]. We start from the full expansion formula [Eq. (5) in the main text]

ρTOF(x , z, t) = A(x , t)

�

�

�

�

∫ L/2

−L/2
dz′G(z − z′, t)I(x , z′, t)

�

�

�

�

2

, (C.1)

where A(x , t) = A(t)e−x2/σ2
t and

I(x , z′, t) =
Æ

n0(z′)e
iφ+(z′)/2 cos

�

kx +φ−(z′)
2

�

. (C.2)

We treat longitudinal expansion perturbatively by performing Taylor expansion of I(x , z′, t)
around small ∆z = z′ − z

I(x , z′, t) = I(x , z, t) +∆z ∂z I +
∆z2

2
∂ 2

z I +
∆z3

3!
∂ 3

z I +
∆z4

4!
∂ 4

z I +O((∆z)5) . (C.3)

Substituting Eq. (C.3) to the integral in Eq. (C.1), we find that the zeroth order term will give
us the transversal expansion formula with a maximum contrast C = 1

ρ⊥TOF(x , z, t)≈ A(t)e−x2/σ2
t

�

�

�I(x , z, t)

∫ ∞

−∞
G(∆z, t) d(∆z)

�

�

�

2

=
A(t)n0(z)

2
e−x2/σ2

t [1+ cos
�

kx +φ−(z)
�

] . (C.4)

Note that we have ignored boundary effects by extending the integration limit from [−L/2, L/2]
to (−∞,∞). Let us compute the higher-order corrections. The first and third order terms
will vanish (except near boundaries) due to the parity of the integrals. The next non-zero
corrections will come from the second and fourth order terms,

ρTOF(x , z, t)≈ A(x , t)
�

�

�I +
∂ 2

z I

2

∫ ∞

−∞

�

∆z2G(∆z, t)
�

d(∆z)
�

�

�

2
+
∂ 4

z I

4!

∫ ∞

−∞

�

∆z4G(∆z, t)
�

d(∆z)
�

�

�

2

= A(x , t)

�

�

�

�

I + i∂ 2
η I −

1
2
∂ 4
η I

�

�

�

�

2

, (C.5)

with η = z/ℓt is dimensionless coordinate and ℓt =
p

ħht/(2m). Next, we approximate Eq.
(C.5) by including terms up to the fourth order in derivatives of I

ρTOF(x , z, t)≈ ρ⊥TOF(x , z, t) +∆ρ(2) +∆ρ(4) (C.6)

= A(x , t)
�

|I |2 − 2 Im(I∗∂ 2
η I) + |∂ 2

η I |2 −Re(I∗∂ 4
η I)
�

, (C.7)
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with ∆ρ(n) being the n-th order correction terms in scaled derivatives ∂η I . We first focus on
the leading order correction∆ρ(2) = −2A(x , t)Im(I∗∂ 2

η I). To obtain this, we first compute ∂ 2
z I

∂ 2
z I = Γ (z) cos
�

kx +φ−(z)
2

�

−Λ(z) sin
�

kx +φ−(z)
2

�

, (C.8)

where

Γ (z) = ∂ 2
z ψ+ −

ψ+(∂zφ−)2

4
, Λ(z) = ∂zψ+∂zφ− +

ψ+∂
2
z φ−

2
, (C.9)

and ψ+(z) =
p

n0(z)eiφ+(z)/2. For simplicity, we will consider the case n0(z) = n0 = const.
which gives us

∆ρ(2) = −A(x , t)
n0

2
[∂ 2
ηφ+(1+ cos(kx +φ−))− ∂ηφ−∂ηφ+ sin(kx +φ−)] . (C.10)

Combining the above with the expression forρ⊥TOF in Eq. (C.4) and using trigonometric identity
a cos x + b sin x =

p
a2 + b2 cos(x −α) with tanα= b/a we can express ρTOF as

ρTOF(x , z, t)≈ A′(z, t)e−x2/σ2
t [1+ C(z, t) cos(kx +φ−(z)−∆φ

(2)
− (z, t))] , (C.11)

with

A′(z, t) =
A(t)n0

2

�

1− ∂ 2
ηφ+

�

, (C.12)

C(z, t) =
1
�

1− ∂ 2
ηφ+

�

s

�

1− ∂ 2
ηφ+

�2
+
�

∂ηφ−∂ηφ+
�2

, (C.13)

∆φ
(2)
− (z, t) = arctan

�

∂ηφ+∂ηφ−

1− ∂ 2
ηφ+

�

≈ ∂ηφ+∂ηφ− . (C.14)

Eq. (C.14) is the first term of Eq. (9) in the main text. We are also interested in cases where
φ+ = 0. For such cases, the second-order term vanishes and so we turn to the fourth-order
terms

∆ρ(4) = A(x , t)
�

|∂ 2
η I |2 −Re(I∗∂ 4

η I)
�

. (C.15)

We will only calculate this term for uniform gases with zero common phase case so that
I(x , z, t) = pn0 cos((kx +φ−(z))/2) is real. After a straightforward but lengthy calculation,
invoking essentially the same trigonometric trick as before, we obtain subdominant phase shift

∆φ
(4)
− (z, t)≈ −

1
2
(∂ηφ−)

2(∂ 2
ηφ−) . (C.16)

This is the second term of Eq. (9) in the main text.

D Relative phase fitting initialization

In this section, we show the approximate linear relationship between relative phase φ− and
the interference peak’s transversal position xmax for a fixed longitudinal position z. We use this
approximate linear relationship to provide an initial guess for the optimizer used in fitting.

For simplicity, we assume ρTOF to be well approximated by the standard fitting formula
[Eq. (4) in the main text] with C = 1. To find the transversal peak location, we simply solve
∂ ρ⊥TOF/∂ x |x=xmax

= 0, which gives the condition

2x
σ2

t

�

1+ cos
�

kxmax +φ
(0)
−

�

�

+ k sin
�

kxmax +φ
(0)
−

�

= 0 , (D.1)
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where the superscript 0 indicates a ’guess’ value (initial value to feed into the optimizer). Using
the half-angle formula, we obtain

cos

�

kxmax +φ
(0)
−

2

�

�

2x
σ2

t
cos

�

kxmax +φ
(0)
−

2

�

+ k sin

�

kxmax +φ
(0)
−

2

��

= 0 . (D.2)

For non-zero interference, we must have cos([kx +φ(0)− ]/2) ̸= 0 and so to satisfy Eq. (D.2),
the terms inside the parenthesis have to vanish. Finally, we can solve for φ(0)− and the result is

φ
(g)
− = −kxmax + 2arctan

�

−
2ω⊥ t

1+ω2
⊥ t2

xmax

d

�

≈ −
md
ħht

xmax , (D.3)

where in the last approximation we have usedω⊥ t ≫ 1 such that the arctan function changes
very slowly with xmax.

E Supplementary plots
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Figure 15: Single shot relative phase extraction with and without broadening due to
atomic repulsion. Panels a - b show interference pattern without (σ0 = const.) and
with scattering-induced broadening (σ2

0(z) = σ
2
0

p

1+ asn0(z)). Panels c-f show the
extracted fit parameters {φ−, A, C ,σ}without (red) and with interaction broadening.
The black solid (dashed) line in panel c is the input relative (common) phase. From
this figure, we observe that scattering-induced broadening does not significantly im-
pact the extracted fit parameters except the width.
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Figure 16: Single shot relative phase extraction with (red) and without (blue) imag-
ing effects, similar to that of Figure 13 but for a short time-of-flight t = 3.5 ms. The
common phase is denoted by a dashed line in panel c.
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Figure 17: Simulation of analytic systematic phase shift with (red) and without
(blue) imaging effects for 15 ms expansion time, see Fig. 3 for comparison.
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Figure 18: Vertex correlation function Cφ with (red crosses) and without (blue cir-
cles) image processing. Each panel corresponds to the same parameter regime and
number of shots as in Fig. 5 except that the common phase is always sampled from a
thermal state with T+ = T−. The statistics are obtained with the camera defocusing
set to 0 (ignoring recoil and free falling of the cloud during exposure), but we expect
defocusing effect to be small.
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Figure 19: Full distribution function P(ξ) with (red) and without (blue) imaging
effects reconstructed with 5000 TOF simulations. Each panel correspond to the same
parameter regime as Fig. 6 except for a fixed expansion time t = 15 ms. The statistics
are obtained with the camera defocusing set to 0 (ignoring recoil and free falling of
the cloud during exposure), but we expect defocusing effect to be small.
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Figure 20: Velocity-velocity correlation Cu(z, z′) without (a-b) and with (c-d) imag-
ing effects. The first column (a, c) corresponds to the case with φ+(z) = 0 and the
second column (b, d) corresponds to the case with common phase sampled from the
same thermal distribution as the relative phase T+ = T− = 75 nK. The statistics are
obtained with the camera defocusing set to 0 (ignoring recoil and free falling of the
cloud during exposure), but we expect the effect of defocusing to be small. The edge
data of length 5 µm on each end have been omitted to suppress boundary effects.
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Figure 21: TOF reconstruction of mean Fourier coefficients (solid black line) with-
out (blue circles) and with (red crosses) imaging effects computed with 500 TOF
simulations for T− = 75 nK. The solid black line represents the input value(s). In
panels (a)-(b), the mode is fixed at q = 22π/L ≈ 0.69 µm−1 while the expansion
time t is varied. In c-d t is fixed at 15 ms but q is varied. The dashed vertical line
at q ≈ 0.44 µm−1 indicates the point where deviation due to imaging is apparent.
The horizontal dashed-dot line shows the shot-noise fluctuations computed with TOF
simulations of φ−(z) = 0. The first column (a,c) is for the case with φ+(z) = 0, the
second column (b,d) is for the case with common phase sampled from thermal state
with T+ = T−. The statistics are obtained with camera defocusing set to 0 (ignoring
recoil and free falling of the cloud during exposure), but we expect the defocusing
effect to be small.
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Figure 22: time-of-flight (TOF) reconstruction of fourth-order correlation
function G(4)(z1, z2, z3, z4) of the sine-Gordon model in the Gaussian regime
(χ = λT/lJ = 0.5). The data is cut at z3 = −z4 = 15 µm for visualization. Pan-
els (a-c) show the full correlation, panels (d - f) show the disconnected part, and
panels (g - i) shows the connected part. The first column (a, d, g) represents the
case with only transversal expansion, the second column (b, e, h) includes longi-
tudinal expansion but with common phase kept at zero and the last column (c, f,
i) corresponds to the case with longitudinal expansion and common phase sampled
from thermal distribution with T+ = 75 nK. Each panel is reconstructed from 2500
TOF realizations with 15 ms expansion time. The edge data of length 2.5 µm on
each end have been omitted to suppress boundary effects.
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