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Abstract

We study three-dimensional N = 2 supersymmetric Chern–Simons-matter gauge the-
ories with a one-form symmetry in the A-model formalism on Σg × S1. We explicitly
compute expectation values of topological line operators that implement the one-form
symmetry. This allows us to compute the topologically twisted index on the closed Rie-
mann surface Σg for any real compact gauge group G as long as the ground states are
all bosonic. All computations are carried out in the effective A-model on Σg , whose S1

ground states are the so-called Bethe vacua. We discuss how the 3d one-form symmetry
acts on the Bethe vacua, and also how its ’t Hooft anomaly constrains the vacuum struc-
ture. In the special case of the SU(N)K N = 2 Chern–Simons theory, we obtain results
for the (SU(N)/Zr )θK N = 2 Chern–Simons theories, for all non-anomalous Zr ⊆ ZN
subgroups of the centre of the gauge group, and with a Zr θ -angle turned on. In the
special cases with N even,

N
r odd and

K
r even, we find a mixed ’t Hooft anomaly between

gravity and the Z(1)r one-form symmetry of the SU(N)K theory, and the infrared 3d TQFT
after gauging is spin. In all cases, we count the Bethe states and the higher-genus states
in terms of refinements of Jordan’s totient function. This counting gives us the twisted
indices if and only if the infrared 3d TQFT is bosonic. Our results lead to precise con-
jectures about integrality of indices, which appear to have a strong number-theoretic
flavour. Note: this paper directly builds upon unpublished notes by Brian Willett from
2020.
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1 Introduction

Three-dimensional N = 2 supersymmetric gauge theories are free theories in the ultraviolet
(UV) but flow to strong coupling in the infrared (IR). Over the past 15 years, a huge amount of
non-perturbative results were obtained for such 3d theories that also have a U(1)R R-symmetry,
using powerful supersymmetric localisation techniques, starting with the exact computations
of the S2 × S1 (so-called) superconformal index [1, 2] and of the three-sphere partition func-
tion [3,4] – see e.g. [5–7] for reviews.
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Almost all of these 3d N = 2 supersymmetric partition functions can be understood in
the framework of the 3d A-model, which allows us to evaluate supersymmetric path integrals
on any Seifert 3-manifold M3 [7–9]. The 3d A-model is a two-dimensional cohomological
topological field theory (Coh-TQFT) obtained as the topological A-twist of the 2d N = (2, 2)
supersymmetric effective field theory description of the 3d N = 2 gauge theory compactified
on a circle. In the simplest instance, the 3d A-model computes the twisted index on a genus-g
Riemann surface, Σg [10–13]:

ZΣg×S1 = TrΣg

�

(−1)F yQF
�

=
∑

û∈SBE

H(û,ν)g−1 . (1)

Here the trace in the first equality is over the supersymmetric ground states on Σg with a
topological twist, where (−1)F is the fermion number and y = e2πiν denote fugacities for
some flavour charges QF . The second equality of (1) computes this twisted flavoured index
as a sum over the so-called Bethe vacua {û}. These are the ground states of the 3d theory
compactified on T2. More generally, for any Seifert-fibered three-manifold M3, there exists a
similar formula for the supersymmetric partition function [9]. Let

HS1
∼= SpanC{|û〉} , (2)

denote the Hilbert space of A-model ground states, spanned by the Bethe vacua, where the
states |û〉 are orthonormal. We then have:

ZM3
= TrHS1

�

Hg−1GM3

�

=
∑

û∈SBE

〈û|Hg−1GM3
|û〉=

∑

û∈SBE

H(û,ν)g−1 GM3
(û,ν) . (3)

Here, H and GM3
are called the handle-gluing operator and the Seifert fibering operator, re-

spectively. They are both diagonalised by the Bethe vacua (with O(û) denoting the eigenvalue
of O). The fibering operator GM3

induces a non-trivial fibration of S1 over Σg [8,9].
While this 3d A-model formalism is very powerful, it was originally developed under the

assumption that the gauge group eG be a product of simply-connected and of unitary compact
gauge groups – that is, the compact Lie group eG is such that π1(eG) is a free abelian group. In
this paper, we are interested in more general cases with a gauge group of the form:

G = eG/eΓ , eΓ ⊆ Z(eG) , (4)

where the discrete abelian group eΓ is a subgroup of the centre of eG. This group is also a
subgroup of the one-form symmetry group Γ (1)3d of the eG gauge theory:

Γ
(1)
3d
∼= Γ , eΓ ⊆ Γ , (5)

which is the group under which Wilson lines can be charged [14, 15]. Supersymmetric ob-
servables in the gauge theory with gauge group G can be obtained from the original eG gauge
theory by gauging a non-anomalous subgroup eΓ of the one-form symmetry [16]. Schematically,
this corresponds to summing over all background gauge fields B for the one-form symmetry
eΓ
(1)
3d
∼= eΓ , namely:

ZM3

�

T /eΓ (1)3d

�

=
∑

B

ZM3
[T ](B) . (6)

Here, ZM3
[T ](B) denotes the path integral of the original eG gauge theory, T , in the presence

of a background gauge field B ∈ H2(M3,eΓ ).
Turning on a background gauge field B for Γ (1)3d is equivalent to inserting a web of topo-

logical line operators Uγ [16]. In this paper, we discuss such insertions in the 3d A-model
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formalism. More generally, we discuss the action of the one-form symmetry on the Bethe
vacua. In particular, we explain how ’t Hooft anomalies for the one-form symmetry Γ (1)3d use-
fully constrain the structure of the Bethe vacua. We then discuss the gauging of non-anomalous
subgroups of Γ (1)3d as explicitly as possible.

The core ideas explored in this work were first discussed by Brian Willett in unpublished
notes [17]; they were also briefly explained in [18]. The gauging of non-anomalous one-form
and zero-form symmetries in 2d TQFTs was also discussed in detail by Gukov, Pei, Reid and
Shehper [19], and we will recover many of their results. In this paper, we give a detailed
account of the physics of 3d N = 2 supersymmetric gauge theories with one-form symmetries
when compactified on S1, including the dynamical consequences of ’t Hooft anomalies. We
then study topologically-twisted supersymmetric indices for 3d N = 2 gauge theories with
general gauge groups G. For concreteness, after discussing the formalism in general terms,
our main computations will focus on the case of theories with eG = SU(N) and a ZN one-
form symmetry. As we will see, the story can become particularly intricate depending on the
arithmetic properties of N – here, N prime will be the easy case, but for general N a number
of interesting phenomena will arise, including a subtle 3d modular anomaly.

We plan to discuss further aspects of generalised symmetries of 3d N = 2 supersymmetric
field theories, including a more thorough discussion of supersymmetric partition functions for
general Seifert three-manifolds, as well as what happens in the presence of fermionic Bethe
states, in future works [20, 21]. The present work is also related in various ways to many
recent papers on 3d field theory, including e.g. [22–33].

1.1 Warm-up example: The SU(2)K supersymmetric Chern–Simons theory

Before discussing our general result, let us first discuss the example of the 3d N = 2 supersym-
metric Chern–Simons (CS) theory SU(2)K . Gauging the Z2 one-form symmetry, one obtains
the SO(3)K CS theory. This is an interesting example which already involves many of the
intricacies of the general SU(N)K case to be discussed below.

Upon integrating out the gauginos in the vector multiplet, the N = 2 SU(2)K CS theory is
equivalent to the bosonic CS theory SU(2)k with k = K−2. The theory has K−1 Bethe vacua,
corresponding to the allowable solutions to the Bethe equations:

Π(u)≡ x2K = 1 , x ≡ e2πiu , u→ u+ 1 . (7)

Here, u is the 2d Coulomb branch parameter, with the Z2 Weyl group acting as u→−u. The
operator Π is called the gauge flux operator, and it is given in terms of the effective twisted
superpotential W of the A-model:

Π(u) = exp
�

2πi
∂W
∂ u

�

, W = Ku2 . (8)

The Bethe vacua corresponds to pairs of solutions ±ûl related by the Weyl symmetry, with:

ûl =
l

2K
, l = 1, . . . , K − 1 . (9)

The handle-gluing operator of this theory reads:

H(u) = K

2sin2(2πu)
, (10)

and therefore the Σg twisted index (1) is given by:

ZΣg×S1[SU(2)K]≡ 〈1〉Σg
=

K−1
∑

l=1

�√

√ 2
K

sin
�

πl
K

�

�2−2g

. (11)
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Setting K = k + 2, this is the well-known Verlinde formula for the pure CS theory SU(2)k –
equivalently, it gives the number of conformal blocks of the SU(2)k WZW model [34] (see
also [35–39] and references therein).

Higher-form symmetries and their anomalies The 1-form symmetry Γ (1)3d = Z2 of the 3d

CS theory is realised as Z(1)2 ⊕ Z
(0)
2 in the 2d description. Let us now explain how these two

symmetries are manifested in the A-model. First of all, the non-trivial charge operator for Z(1)2
is a local topological operator. As we will explain later on, it is given by a square root of the
gauge flux operator, which we thus denote as:

Π
1
2 (u) = −xK . (12)

Here, the sign of the square root is chosen to match known results. Inserting this operator on
Σg , we obtain:

〈Π
1
2 〉Σg

=
K−1
∑

l=1

(−1)l+1

�√

√ 2
K

sin
�

πl
K

�

�2−2g

. (13)

Note that this vanishes if K is odd. In particular, the insertion on the torus gives us:

〈Π
1
2 〉T2 =

¨

1 , for K even,

0 , for K odd.
(14)

Let T denote the A-model for this theory. The gauging of Z(1)2 consists simply of summing over
insertions of the flux operator:

ZΣg

�

SU(2)K/Z
(1)
2

�

=
1
2

�

〈1〉Σg
+ 〈Π

1
2 〉Σg

�

=
⌊ K−2

2 ⌋
∑

j=0

�√

√ 2
K

sin
�

π(2 j + 1)
K

�

�2−2g

. (15)

When gauging, we have the freedom of introducing a coupling of the Z(1)2 gauge field B to a
background gauge field θ for the so-called quantum (−1)-form symmetry, as we will review;
here we chose θ = 0 for simplicity of presentation.

The zero-form symmetry Z(0)2 is generated by topological line operators Uγ, for γ ∈ Z(0)2 . To
study the action of the 0-form symmetry on HS1 , we first consider the A-model on a cylinder.
We thus have a single generator Uγ(C) wrapping the cylinder, with the fusion U2 = 1, and we
find that:

U(C)|ûl〉= |ûK−l〉 . (16)

Note that U(C) has a single fixed point, |û K
2
〉, if and only if K is even. The SU(2)K 3d N = 2

CS theory has a ’t Hooft anomaly K
2 (mod 1) for Γ (1)3d = Z2 – that is, the Z2 one-form symmetry

is anomalous if K is odd [16]. In the 3d A-model, this manifests itself as a mixed Z(1)2 -Z(0)2
anomaly. The topological operators acting on HS1 satisfy the twisted commutation relation:

U(C)Π 1
2 = (−1)KΠ

1
2 U(C) , (17)

which follows from (16) and the fact that Π
1
2 |û〉= (−1)l+1|û〉.

Let us now set g = 1, with the C being one generator of H1(T2,Z) ∼= Z2 and eC denoting
the other generator (the Euclidean time direction). Inserting a topological line along C, we
find:

〈U(C)〉T2 =
K−1
∑

l=1

〈ûl |U(C)|ûl〉=
K−1
∑

l=1

〈ûl |ûK−l〉=

¨

1 , if K is even,

0 , if K is odd.
(18)
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Finally, the insertion of a topological line operator along eC ⊂ T2 corresponds to a trace over the
non-trivial twisted-sector Hilbert space, which arises from the Bethe vacuum û K

2
that preserves

Z(0)2 – such a twisted sector only exists for K even. We can compute:

〈U(eC)〉T2 = 〈U(C)〉T2 = 〈Π
1
2 〉T2 . (19)

The first equality is expected from modular invariance in 2d. Moreover, the second equality is
also a consequence of modular invariance for the 3d Chern–Simons theory on T3, and it is one
way to fix the sign in (12). Similarly, if we insert both the Z(1)2 operator Π

1
2 and Z(0)2 operator

U(C) on T2, we find:

〈Π
1
2U(C)〉T2 =

∑

l

Π
1
2 (ûl)〈ûl |ûl +

1
2〉=

¨

(−1)
K−2

2 , if K is even,

0 , if K is odd.
(20)

Note that this vanishes if and only if the theory is anomalous, which is the expected result
given the commutator (17). Finally, we note that:

〈Π
1
2U(C)〉T2 = (−1)

K−2
2 〈U(C)〉T2 , (21)

for K even. From the point of view of the 3d CS theory on T3, we would naively have expected
that relation to hold with a trivial sign, but this only happens if K

2 is odd. For K
2 even, we have

a sort of modular anomaly on T3, which is a consequence of a mixed anomaly between the 3d
one-form symmetry and gravity. We will discuss this subtle and important point in section 3.2,
in the context of the SU(N)K N = 2 CS theory.

The SO(3)K T2 partition function Let us now assume that K is even, so that we can gauge
both Z(1)2 and Z(0)2 . Let us first consider Σg = T2. Naively, this should give us the Witten index
of the SO(3)K N = 2 supersymmetric CS theory. The gauging corresponds to inserting all
possible topological operators for Z(1)2 ×Z

(0)
2 on T2. We thus find:

ZT2 [SO(3)K] =
1
4

∑

n,n′,n′′∈Z2

D

U(C)nU(eC)n′Π n′′
2

E

T2

=
1
4

�

K − 1+ 3+ 1+ 3(−1)
K−2

2

�

=

¨

K
4 +

3
2 , for K

2 odd,
K
4 , for K

2 even.
(22)

It is illuminating to compare this result to the non-supersymmetric SO(3)k CS theory (with
k = K − 2). The above result should give us the number of states of the SO(3)k theory on T2,
which then reads:

ZT3 [N = 0 SO(3)k] =

¨

k
4 + 2 , for k

2 even,
k
4 +

1
2 , for k

2 odd.
(23)

We have a bosonic 3d TQFT for k ∈ 4Z, while SO(3)k with k+ 2 ∈ 4Z is a spin-TQFT [40]. In
either case, one can check that (23) corresponds to the number of SO(3)k Wilson lines. The 3d
one-form gauging SU(2)k→ SO(3)k = SU(2)k/Z2 can be performed directly as follows. There
are k + 1 SU(2)k Wilson lines, or anyons, for the SU(2) representations of spin j = 0, . . . , k

2 ,
namely:

N = 0 SU(2)k : {Wj}=
¦

1 , W1
2

, W1 , . . . , Wk
2

©

, (24)

with the fusion rules [41]:

Wj1Wj2 =
min( j1+ j2,k− j1− j2)

∑

j=| j1− j2|

Wj . (25)
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The lines (24) include exactly two abelian anyons, 1 and a ≡ Wk
2
, with fusion a2 = 1, which

are therefore the Z(1)2 topological lines in 3d. We have:
�

Z(1)2

�

3d
: Wj → (−1)2 jWj , aWj =Wk

2− j , (26)

for the action of a on Wj by linking and for the fusion, respectively. The gauging of (Z(1)2 )3d

consists of three steps [42]. First, we discard all lines which are not invariant under (Z(1)2 )3d,
leaving us with {Wj}, j ∈ Z. Secondly, we identify the lines W and aW . Thirdly, any line that
is a fixed point of the fusion with a gives rise to two distinct lines in the gauged theory. The
fixed-point line is Wk

4
, and thus only survives the first step of gauging for k

2 even. We thus find
the SO(3)k lines:

N = 0 SO(3)k :

(
¦

1 , W1 , W2 , . . . , Wk
4−1 , Wk

4 ;(1) , Wk
4 ;(2)

©

, for k
2 even,

¦

1 , W1 , W2 , . . . , Wk
4−

1
2

©

, for k
2 odd.

(27)

This precisely reproduces (23). It is important to note, however, that the above result is the
correct Witten index of the SO(3)K N = 2 supersymmetric theory if and only if K

2 is odd (hence
if k

2 is even), so that the ‘modular anomaly’ in (21) disappears. When K
2 is even, the infrared

3d TQFT SO(3)k is actually a spin-TQFT because the abelian anyon has spin h[a] = 1
2 , and

additional care must be taken in interpreting our result. In that case, we should have explicitly
chosen a spin structure on Σg and the index will depend on that choice. One can show that
the true Witten index of SO(3)K for K

2 even and in the RR sector on T2 is equal to K
4 −2 [43];

the extension of the A-model formalism to include this case will be discussed elsewhere [21].

The higher-genus twisted index for SO(3)K We can generalise the computation (22) to
obtain the SO(3)K twisted index for any Σg , for K even. First, we find that the insertion of the

non-trivial Z(0)2 line along any generator Ci of H1(Σg ,Z)∼= Z2g gives us:

〈U(Ci)〉Σg×S1 =
K−1
∑

l=1

〈ûl |U(Ci)Hg−1|ûl〉=H
�

û K
2

�g−1
=
�

K
2

�g−1

. (28)

Moreover, the insertion of any non-trivial set of Z(0)2 lines on Σg is equal to (28), due to invari-
ance under large diffeomorphism. We similarly find that:

〈U(Ci)Π
1
2 〉Σg×S1 = (−1)

K−2
2

�

K
2

�g−1

. (29)

The Σg × S1 partition function for SO(3)K is obtained as:

ZΣg
[SO(3)K] =

1
22g

∑

n′∈Z2

∑

(ni)∈Z
2g
2

®

Π
n′
2

2g
∏

i=1

U(Ci)
ni

¸

Σg×S1

, (30)

which gives us:

ZΣg
[SO(3)K] =

K g−1

23g−1



2

K
2 −1
∑

j=0

�

sin
�

π(2 j + 1)
K

��2−2g

+
�

22g − 1
�

�

1+ (−1)
K−2

2

�



 . (31)

This matches known results. In the case where K
2 is odd, so that k = K − 2 ∈ 4Z, (30)

is in perfect agreement with the number of conformal blocks for the SO(3)k WZW model –
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see e.g. [44] for a mathematical derivation. In the spin-TQFT case, k+ 2 ∈ 4Z, our result can
also be recovered from the corresponding fermionic WZW model, but the full story is much
more subtle [43], as already mentioned. As a special case, we note that WZW[SO(3)2] is a free
CFT [40] (equivalent to three Majorana fermions), which explains why we find ZΣg×S1 = 1 for
any g when setting K = 4 in (31); however, the true (RR-sector) Witten index would be equal
to −1 in this case [21].

1.2 Results for general G and for the SU(N)K gauge theory

In the rest of this introduction, we summarise the main results of this paper, essentially in the
order in which they will be presented.

One-form symmetries in the 3d A-model Given a 3d N = 2 gauge theory with gauge group
eG compactified on S1, as discussed above, its one-form symmetry Γ (1)3d descends to both a one-
form symmetry and a zero-form symmetry in 2d, denoted by Γ (1) and Γ (0), respectively. Thus,
we must first understand how these two distinct symmetries act on the A-model Hilbert space.
For any 2d TQFT, this question was recently addressed in [19]. The one-form symmetry Γ (1)

acts on the ground states by a phase, and the zero-form symmetry Γ (0) acts by permutation.
Indeed, we have [17,18]:

Γ (1) : |û〉 −→ Π(û)γ|û〉 , Γ (0) : |û〉 −→ |û+ γ〉 , (32)

where γ ∈ Γ is a group element. Here Π(û)γ ∈ Hom(Γ (1), U(1)) is a phase, and |û+γ〉 denotes
the new vacuum under the action of γ ∈ Γ (0). We will explain these transformations and their
consequences in much detail throughout this work.

Focusing on M3 = Σ×S1, the 0-form symmetry Γ (0) alongΣ is implemented by topological
lines, while the 1-form symmetry Γ (1) is implemented by the topological point operators that
arise from the 3d topological lines wrapping S1. The Bethe vacua diagonalise the Γ (1) topologi-
cal operatorsΠγ, as shown in (32), while the 0-form symmetry Γ (0) is (partially) spontaneously
broken in most 2d vacua. In particular, the Bethe vacua organise themselves into orbits of Γ (0).

’t Hooft anomalies The three-dimensional one-form symmetry can be anomalous, as the
topological lines can themselves be charged under Γ (1)3d . This results in a mixed Γ (1)-Γ (0)

anomaly in the A-model on Σ. This ’t Hooft anomaly implies general constraints on the struc-
ture of the orbits of Bethe vacua under the action of Γ (0). For instance, some Bethe vacua can
be fixed under the whole of Γ (0) if and only if the anomaly vanishes. This follows from the fact
that Γ (1) cannot be spontaneously broken in the 2d vacuum [16], and thus the mixed anomaly
must be matched by distinct 2d symmetry-protected topological (SPT) phases for Γ (1) in the
A-model description.

We will also see that the 3d ’t Hooft anomaly is entirely determined by the bare Chern–
Simons levels K of the UV gauge theory. We further comment on the structure of the (d + 1)-
dimensional anomaly theory, in both the d = 3 and d = 2 descriptions, in appendix C.

In the explicit eG = SU(N)K example at the core of this paper, a key role will also be played
by a mixed ’t Hooft anomaly between gravity and the 1-form symmetry in 3d. Such an anomaly
can appear in more general gauge theories, and can change the interpretation of our results
significantly. The general results of this paper, as presented in section 2, are thus obtained
assuming that this gravitational anomaly vanishes – that happens if the 3d topological line that
generates Γ (1)3d has trivial braiding with the transparent line ψ that captures the dependence
on the spin structure of the 3-manifold. The more general case will be discussed in future
work [21].
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Background gauge fields The partition function of the eG gauge theory on Σg × S1 can be
found by inserting powers of the handle-gluing operator H on Σg = T2 [10]. We wish to com-
pute the topologically twisted index in the presence of topological operators for the discrete
symmetry Γ , which is equivalent to turning on some background gauge fields for Γ (1) × Γ (0).
Schematically, we have:

ZΣg×S1(B, C) =
¬

Πγ
(1)Uγ(0)

¶

Σg
. (33)

Here, B ∈ H2(Σg , Γ (1)) and C ∈ H1(Σg , Γ (0)) are the background gauge fields, while Πγ
(1)

for

γ(1) ∈ Γ (1) and Uγ(0) for γ(0) ∈ Γ (0) denote the point and line operators, respectively, corre-
sponding to the background gauge fields. We explicitly evaluate (33) using the 2d TQFT point
of view. This simply corresponds to using the pair-of-pants decomposition of the Riemann sur-
face with appropriate lines inserted. This prescription gives unambiguous results for insertions
of the Γ (0) lines. The insertion of the Γ (1) operator is slightly ambiguous, as the flux operator
Πγ

(1)
is only defined up a certain root of unity. In all examples we will consider, we will be able

to fix this ambiguity by demanding 3d modularity for the expectations values of elementary
topological lines at g = 1, namely on M3 = T3.

Discrete gauging Gauging the zero-form and one-form symmetries corresponds to summing
over all possible background gauge fields [16]. Note that, in the A-model description, we can
gauge Γ (1) and Γ (0) separately. We also keep track of the background gauge fields for the dual
(−1)-form and 0-form symmetries, respectively. We are careful to fix the overall normalisation
of the partition functions for the gauged theories in order to preserve the 2d Hilbert-space
interpretation in the gauged theories.

The Γ (1) symmetry induces a so-called decomposition [45,46] of the A-model into discon-
nected sectors, also called ‘universes’, and the gauging of the 1-form symmetry projects us
onto one particular sector. These sectors are indexed by θ -angles which are the background
gauge fields for the dual (−1)-form symmetry. The gauging of the Γ (0) symmetry on Σg is a
standard orbifolding procedure familiar from string theory: in canonical quantisation on T2,
we identify the states related by Γ (0) while also adding in the twisted sectors states induced
by non-trivial stabiliser subgroups. Overall, our general analysis closely follows previous dis-
cussions obtained in the 2d TQFT framework [17,19]; the main improvement in our analysis
is that we carefully study the Hilbert spaces spanned by the Bethe states before and after the
gauging, and that we elucidate how ’t Hooft anomalies constrain the structure of 2d ground
states. We also keep track of all the dual symmetries that arise upon gauging.

Symmetries of the N = 2 SU(N)K CS theory We apply the general descriptions of the
higher-form symmetries of the 3d A-model to the pure N = 2 supersymmetric CS theory with
gauge group SU(N) at CS level K . We study this theory in depth in section 3. In this example,
we can compare the results obtained using our formalism to many previous results in the
literature, and we find perfect agreement.

The Bethe equations for SU(N)K have
�K−1

N−1

�

solutions, which gives us the Witten index

IW[SU(N)K] [47]. This 3d CS theory has a Z(1)N one-form symmetry, the centre symmetry, with

a ’t Hooft anomaly given by K modulo N . The 3d 1-form symmetry descends to Γ (1) = Z(1)N and

Γ (0) = Z(0)N in the A-model. While the Z(1)N symmetry acts on the Hilbert space by N -th roots

of unity, the Z(0)N symmetry organises the Bethe vacua into orbits whose lengths are divisors of
N . There exists a unique fixed point if and only if the t’ Hooft anomaly vanishes.

The gauging pattern of the ZN centre symmetry is determined by the subgroups of ZN ,
which are labelled by the divisors d of N . For instance, for N a prime number and with
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K ∈ NZ, so that the non-anomalous ZN has no non-trivial subgroups, we easily determine the
3d Witten index of the fully gauged theory PSU(N)K ≡ SU(N)K/ZN to be:

IW [PSU(N)K] =
1

N2

��

K − 1
N − 1

�

− 1+ N3
�

. (34)

This index is always an integer, since it can be written as a trace over the PSU(N)K Hilbert
space on T2, and we can prove this fact using number-theoretic identities. We find a much
richer structure for general values of N , since we can consider the discrete gauging of any non-
anomalous subgroup Zr ⊂ ZN . We study in detail the insertion of all topological operators on
Σg × S1, for all values of N and K .

SU(N)K at genus 1 The Witten index for the gauged theory can be obtained by enumerating
the fixed points under all non-anomalous subgroups Zd ⊆ ZN . Three-dimensional modularity
implies many relations amongst the expectation values of topological lines inserted on 1-cycles
of T3. These relations can be affected by a 3d modular anomaly, which we determine explicitly.
This anomaly is a sign that only depends on the arithmetic properties of N , K and d, we
discuss its the relation to spin structures, quantisation conditions of WZW models and mixed
1-form/gravity anomalies. For instance, it allows us to determine explicitly the number of
Bethe states for any N and for K ∈ NZ, as a sum over divisors of N :

IW [PSU(N)K] =
1

N2

∑

d|N

J N ,K
3 (d)

� K
d − 1
N
d − 1

�

. (35)

Here, J N ,K
3 is a refinement of Jordan’s totient function J3 which takes into account the 3d

‘modular anomaly’.1 When that ‘modular anomaly’ vanishes, J N ,K
3 = J3 and then (35) is the

proper Witten index of the PSU(N)K theory, while in the presence of the modular anomaly
(that is, when the infrared PSU(N)k pure CS theory, with k = K−N , is a spin-TQFT) the actual
Witten index needs to be computed more carefully [21].

A generalisation to the discrete gauging of a non-anomalous subgroup Zr ⊂ ZN is straight-
forward, by truncating the sum (35) to the corresponding divisors. This thus computes the
Witten index of the 3d N = 2 CS theories for all groups SU(N)/Zr whose simply-connected
cover is SU(N), at least when the infrared TQFT is bosonic. It can be checked that the index
IW[SU(N)K/Zr] is indeed an integer, as expected. Including a θ -angle for Γ (−1) ∼= Zr , which
corresponds to an holonomy for the dual Γ (0)3d

∼= Zr discrete symmetry in 3d, provides an inter-
esting refinement [15, 16, 48, 49], and probes additional arithmetic properties of the integer
N . We find that this modifies (35) by a further generalisation of Jordan’s totient.

SU(N)K at genus g Riemann surfaces of arbitrary genus g admit 2g elementary topological
operators associated with the zero-form symmetry Γ (0) ∼= ZN . By inserting the handle-gluing
operator H, we find that the genus-g partition function for K ∈ NZ can be written as:

ZΣg×S1

�

PSU(N)θs
K

�

=
1

N2g−1

∑

d|N

J2g(d)
∑

û∈S(
N
d γ0)

BE ∩Sϑs
BE

H(û)g−1 , (36)

where γ0 is a generator of ZN , S(γ)BE is the set of Bethe vacua fixed under the action of γ ∈ ZN ,

and Sϑs
BE is the set of Bethe vacua that span the smaller ‘universe’ indexed by the θ -angle θs.

1The Jordan’s totient function itself is a generalisation of the more familiar Euler totientϕ, also known as Euler’s
ϕ function. The functions Jk (for some integer k) can be understood as enumeration functions of interactions of k
instances of ZN groups, similar to how ϕ(d) counts the number of generators of Zd .
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The genus-g Jordan totient J2g has previously appeared in the study of Verlinde bundles over
curves [36,50–53]. Our result (36) generalises various partial results in the literature [19,36,
50,54].

Comparison with abelian anyon condensation In the SU(2)K warm-up example of sec-
tion 1.1, it was demonstrated that the one-form gauging can be performed directly in three
dimensions using the 3d TQFT approach, and that the result on T3 agrees with the SO(3)K T3

index obtained by gauging both zero-form and one-form symmetries in 2d. In section 4.1, we
revisit the calculation of the PSU(N)K Witten index from one-form gauging in the 3d TQFT de-
scription, also known as abelian anyon condensation. The SU(N)K N = 2 supersymmetric CS
theory has a spectrum of Wilson lines Wλ indexed by Young tableaux λ. We discuss their fusion
rules and identify the abelian anyons (i.e. ZN topological lines), which allows us to implement
the three-step gauging procedure discussed in [42]. For N prime, one can understand each
step as a simple modification of the SU(N)K index, and one recovers (34) as a result. For arbi-
trary values of N , the fusion with the abelian anyons furnishes a group action on the SU(N)K
Wilson lines, and the 3d gauging partitions them into orbits. We express the PSU(N)K index as
a sum over those orbits, and find precise numerical agreement with (35) for small values of N
and K .2 This also clarifies the reason why we have a mixed gravitational/one-form symmetry
anomaly in some cases, precisely when the condensing anyon is fermionic instead of bosonic.
An explicit treatment of anyon condensation in that ‘spin-TQFT’ case appeared in [42,43,55],
and we will explore this further in the 3d A-model language in future work [21].

Including matter While we focussed on the pure SU(N)K CS theories in this work, the
inclusion of chiral multiplets is straightforward. In general, the one-form symmetry of the eG
theory is the discrete subgroup of the centre of eG that is preserved by the matter content. In
section 5, we briefly study U(1)k theories with matter, as well as the SU(N)k Chern–Simons
theory with adjoint matter. Models with an adjoint chiral multiplet are of particular interest
since they provide equivariant generalisations of the Verlinde formula [19, 56], as has been
studied in the past from various perspectives – see e.g. [10,12,13,56–60].

This paper is organised as follows. In section 2, we present the general results on one-form
symmetries of 3d N = 2 supersymmetric gauge theories on Σg × S1. In sections 3 and 4,
we study in much detail the 3d N = 2 SU(N)K Chern–Simons theory. In section 5, we briefly
discuss U(1) and SU(N)N = 2 gauge theories with matter. Section 6 presents our conclusions
and outlook. Some useful review material and the more technical computations are relegated
to several appendices.

2 One-form symmetries in the 3d A-model

Consider a 3d N = 2 supersymmetric field theory with a discrete one-form symmetry Γ (1)3d . In
this work, we will specifically study 3d N = 2 gauge theories, and the one-form symmetry will
be (part of) the centre symmetry for some gauge group G. For instance, a gauge theory with
gauge group SU(N) and matter fields transforming in the adjoint representation will have a
one-form symmetry Γ (1)3d = ZN .

2The exact equality between the results obtained using the two distinct methods is left as a conjecture.
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2.1 Discrete symmetries in the 2d description

The 3d A-model (in the terminology of [8]) is a two-dimensional topologically-twisted
N = (2,2) supersymmetric field theory that captures all the information about the twisted
chiral ring R3d of the 3d N = 2 theory compactified on a circle, S1

A, including twisted
indices [10–12], correlation functions of half-BPS lines wrapping S1

A [13, 61], and supersym-
metric partition functions on Seifert 3-manifolds [7,9,62,63].

Let us start by explaining how the 3d one-form symmetry manifests itself in the two-
dimensional description. We start with the 3d theory on Σ× S1

A, with the topological A-twist
along a two-manifold Σ. We will mostly consider Σ = Σg , a compact closed Riemann surface
of genus g. Here, translation along the circle S1

A is part of the 3d A-model supersymmetry
algebra, and the corresponding momentum is the Kaluza-Klein (KK) charge [8]. In the 2d
description on Σ, it manifests itself as a U(1)KK symmetry. In three dimensions, the operators
charged under Γ (1)3d are line operators, which are acted on by topological line operators [16].3

The 3d one-form symmetry Γ (1)3d
∼= Γ , for Γ a finite abelian group, manifests itself as two distinct

symmetries in 2d, namely a one-form and a zero-form symmetry:

Γ
(1)
3d −→ Γ (1) ∼= Γ , Γ (0) ∼= Γ . (37)

Here, the abelian zero-form symmetry Γ (0) action is generated by topological lines with support
on one-cycles C ⊂ Σ, which act on local operators on Σ. These 2d local operators correspond
to the 3d lines wrapping S1

A. We will be particularly interested in such operators that also
commute with the A-model supercharge – these are the twisted chiral operatorsL ∈R3d. The
2d one-form symmetry Γ (1), on the other hand, is generated by topological point operators that
arise as the 3d topological lines wrapping S1

A. We shall denote the topological line operators
that implement Γ (0) by:

Uγ(C) , (38)

and the topological point operators that implement Γ (1) by:

Πγ(p)≡ Uγ(S1
A) , (39)

for every γ ∈ Γ . These topological operators are depicted in figure 1. The support of Πγ at a
point p ∈ Σ will be kept implicit in the following.

2.1.1 Hilbert spaces and Bethe vacua for G = eG

In the A-model description, we are mainly concerned with the supersymmetric ground states
of the 2d N = (2, 2) effective field theory. These are indexed by the so-called Bethe vacua,
û, which should be viewed as states in a (cohomological) 2d topological quantum field theory
(TQFT) that assigns the (ground-state) Hilbert space HS1 to the spatial circle:

HS1
∼= SpanC

¦

|û〉
�

�

� û ∈ SBE

©

. (40)

In order to discuss the Bethe vacua more explicitly, let us focus on a 3d A-model that arises
from a 3d N = 2 gauge theory with compact gauge group G. For now, let us assume that the
fundamental group of G = eG is a free abelian group:

π1(eG)∼= ZnT , (41)

3Hence, the invertible topological lines that implement the one-form symmetry are a subset of the set of all line
operators of the 3d theory, and symmetry operators can themselves be charged, as we will review.
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×

Uγ(S1
A)

(a)

×

Uγ(C)

(b)

Figure 1: Depiction of the Γ (1) and Γ (0) symmetry operators Uγ(S1
A)≡ Π

γ and Uγ(C),
respectively, onΣ×S1

A. Here, Uγ(S1
A)wraps the S1

A factor in the 3d geometry, depicted
here by a small circle, and it is thus a local operator on Σ. The topological line Uγ(C)
is supported on a cycle C onΣ, in general. HereΣ is the cylinder, which is the relevant
configuration to discuss the Hilbert space HS1 of the A-model.

for some non-negative integer nT . More concretely, eG is a product of simply-connected groups
and of U(N) factors, so that each U(N) factor contributes a Z factor in (41), and nT is the
number of topological u(1) symmetries of the 3d gauge theory. Then the Bethe vacua are
essentially given by the critical point of some effective twisted superpotential W(u) in some
Coulomb-branch description, where u denote 2d scalars in abelianised vector multiplets. We
are interested in the one-form symmetry of this 3d gauge theory, which is an ordinary centre
symmetry:

Γ ⊆ Z(eG) . (42)

Namely, Γ is the maximal subgroup of the centre of eG which is preserved by the chiral multiplets
and by the CS interactions.

The basic construction of the 3d A-model with a gauge group eG is summarised in ap-
pendix A, which also spells out our conventions in more details. For our present purpose, let
us note that:4

u ∈ tC , m ∈ ΛeGmw ⊂ t . (43)

Namely, the Coulomb-branch scalar u is valued in the complexified Cartan algebra of eG, tC,
and the magnetic fluxes m are valued in the magnetic weight lattice of eG, which is a discrete
sublattice of the Lie algebra. Large gauge transformations along S1

A lead to the identifications:

u∼ u+m , ∀m ∈ ΛeGmw , (44)

hence the classical Coulomb branch is given by tC/Λ
eG
mw
∼= (C∗)rank(eG). We pick a basis {ea} of t

such that u= uaea and ua ∼ ua + na, na ∈ Z, under any large gauge transformation (44). The
gauge flux operators are defined in terms of the effective twisted superpotential of the gauge
theory on R2 × S1:

Πa(u,ν)≡ exp
�

2πi
∂W(u,ν)
∂ ua

�

, a = 1 , . . . , rank(eG) , (45)

with our conventions for ua as outlined above and in appendix A. Then, the Bethe vacua
correspond to elements of the set of allowable Bethe solutions:

SBE ≡
n

û ∈ t/Λ
eG
mw,

�

�

� Πa(û,ν) = 1 ,∀a and w · û ̸= û ,∀w ∈W
eG

o

/W
eG , (46)

4See appendix B for a definition of the relevant lattices.
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where W
eG is the Weyl group of eG. Here, recall that we need to exclude putative solutions to the

Bethe equations, {Πa = 1 ,∀a}, which are not acted on freely by W
eG . These Bethe equations

can be written more covariantly as:

Π(u,ν)m ≡ exp
�

2πim
∂W
∂ u

�

= 1 , ∀m ∈ ΛeGmw . (47)

We denote the Bethe vacua by û, corresponding to the allowed solutions to the Bethe equations
modulo the action of the Weyl group.

Let us now discuss how the symmetries (37) are realised in the A-model description.

Action of Γ (1) on HS1 The Bethe vacua diagonalise the topological operator Uγ(S1
A) defined

in (39). Indeed, the insertion of the 3d topological line along S1
A is equivalent to the insertion of

a background flux γ along Σ – that is, a non-trivial background gauge field for Γ (1) corresponds
to a non-trivial eG/Γ bundle over Σ which cannot be lifted to a eG bundle. In the A-model
description, this operator is given explicitly by a flux operator:

Π(u,ν)γ ≡ exp
�

2πiγ
∂W
∂ u

�

, γ ∈ ΛeG/Γmw ⊆ Λ
g
mw , (48)

where γ corresponds to a magnetic flux valued in the larger GNO lattice ΛeG/Γmw , with:

Λ
eG/Γ
mw ⊃ Λ

eG
mw , Γ ∼= ΛeG/Γmw /Λ

eG
mw . (49)

See also appendix B for a definition of these lattices. On Bethe vacua, the Bethe equations (47)
ensure that:

Π(û)γ+m = Π(û)γ , ∀m ∈ ΛeGmw . (50)

The one-form symmetry operators then act on Bethe vacua as:

Πγ|û〉= Π(û)γ|û〉 , Π(û)γ ∈ C∗ , (51)

at fixed flavour parameters, for γ ∈ Γ (1). In fact, since we also know that, due to the Bethe
equations, Π(û)γn = 1 for some positive integer n≤ |Γ |, the one-form symmetry acts on Bethe
vacua by multiplication by a root of unity. This is in agreement with the general discussion of
2d TQFTs in [19].

It is important to note that the definition for Πγ given in (48) is ambiguous, because the
twisted superpotential suffers from the ambiguity [8]:

W →W +ρ(u) , ρ ∈ ΛeGw . (52)

Any such linear shift corresponds to multiplying the flux operator (48) by a phase:

Πγ→ χρ(γ)Πγ , χρ ≡ e2πiρ ∈ Γ̂ (1) , (53)

where Γ̂ (1) denotes the Pontryagin dual:

Γ̂ (1) ≡ Hom(Γ (1), U(1)) . (54)

We will discuss how to fix this ambiguity in section 2.2.
The action of the 1-form symmetry splits the Hilbert space into sectors:

HS1 =
⊕

χ∈Γ̂ (1)
HχS1 , HχS1 ≡ SpanC

¦

|û〉
�

�

� û ∈ SχBE

©

, (55)

14

https://scipost.org
https://scipost.org/SciPostPhys.18.2.066


SciPost Phys. 18, 066 (2025)

where each sector corresponds to the Bethe vacua that return a specific phase χ(γ) for Πγ

in (51). More precisely, for each χ ∈ Γ̂ (1), we define:

SχBE ≡
¦

û ∈ SBE

�

�

� Π(û,ν)γ = χ(γ) , ∀γ ∈ Γ (1)
©

, (56)

and we then have that SBE = ⊕χSχBE. This decomposition of the Bethe vacua will be useful
below. Let us also note that the existence of a 1-form symmetry in a 2d QFT always implies a
so-called decomposition [45,46] of the theory into disjoint sectors.

Action of Γ (0) on HS1 Let Uγ(C) be a topological line operator wrapping the cylinder, as
shown in figure 1. To understand its action on the Bethe vacua, recall that xa ≡ e2πiua can
be seen as complexified holonomies of a maximal torus

∏

a U(1)a ⊂ eG along S1
A, and that any

Wilson loop in the representation R of eG is represented in the A-model by:

WR =
∑

ρ∈R
e2πiρ(u) . (57)

Then, the insertion of Uγ(C) acts on Wilson loops wrapping S1
A as the 3d centre symmetry,

which precisely shifts u to u+ γ, for γ ∈ ΛeG/Γmw – this only depends on γ ∈ Γ because of (44).
The action:

Uγ(C) : tC→ tC : u 7→ u+ γ , (58)

is a symmetry of the Bethe equations for any γ ∈ Γ (0), by assumption (since Γ is precisely the
subgroup of Z(eG) that is preserved by the matter content and by the CS levels). Hence we
have:

Uγ(C)|û〉= |û+ γ〉 . (59)

Therefore, the one-form symmetry element γ ∈ Γ (0) acts as a permutation of the Bethe vacua,
as expected on general grounds [19].

Twisted sector Hilbert spaces H(δ)
S1 The twisted sector for any δ ∈ Γ (0) corresponds to

adding a topological line along the time direction on the cylinder Σ ∼= Rτ × S1. The twisted-
sector ground states are Bethe vacua which satisfy the additional twist condition:

u+δ = w · u , (60)

for some w ∈W
eG . These states, denoted by |û;δ〉, form a basis for the twisted Hilbert space:

H(δ)S1
∼= SpanC

¦

|û;δ〉
�

�

� û ∈ SBE , û+δ ∼ û
©

. (61)

Of course, we have H(0)S1 =HS1 for δ = 0 the zero element. For future reference, let us define
the set of Bethe solutions that enter in (61) as:

S(γ)BE ≡
¦

û ∈ SBE

�

�

� û+ γ∼ û
©

, γ ∈ Γ (0) , (62)

where û ∼ û′ means that the respective Weyl-group orbits of the solutions û and û′ are equal.
Note that (62) should not to be confused with (56).

The discrete group Γ (0) acts on the set of all Bethe vacua, SBE, as in (59). Let Orb(û) ⊆ SBE
denote the orbit of the vacuum û under the action of Γ (0), and let Stab(û) ⊆ Γ (0) denote the
stabiliser of û by Γ (0). The orbit-stabiliser theorem gives us the cardinality of Stab(û):

|Stab(û)|=

�

�Γ (0)
�

�

|Orb(û)|
, (63)
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δ

γ

eiS(γ,δ)

(a) Intersection of two Γ (0) lines.

δ

γ
γδ

b2(δ, γ)−1

b2(γ, δ)

(b) Resolution into trivalent vertices.

Figure 2: The 2d SPT phase arising from the intersection of the topological lines Uγ
and Uδ on the cylinder, see (66). The phase is obtained by resolving the intersection
into two trivalent junctions, where we assign the phase b2(γ,δ) to each junction
(with some customary orientation). That b2 is a group cohomology class follows
from the associativity of fusion and from gauge invariance.

which is the number of twisted sectors in which û appears:

|û;δ〉 ∈H(δ)S1 , ∀δ ∈ Stab(û) . (64)

Finally, let us discuss the action of Γ (0) on the twisted sector H(δ)S1 . In general, the action of
Uγ(C) on the twisted-sector states may take the form:

Uγ(C)|û;δ〉= eiSSPT(γ,δ) |û+ γ;δ〉 , (65)

where SSPT is a 2d SPT phase for Γ (0) (see e.g. [64,65] for recent discussions). More concretely,
the phase this introduces in (65) is given in terms of a U(1)-valued group 2-cocycle b2, as
follows:

eiSSPT(γ,δ) =
b2(γ,δ)
b2(δ,γ)

, [b2] ∈ H2
�

Γ (0), U(1)
�

. (66)

In the two-dimensional description, this phase arises because of the intersection of the topolog-
ical lines Uγ and Uδ on the cylinder, as shown in figure 2; see e.g. [66] for a recent discussion.
Note that, in the 3d description wherein these lines arise as topological operators for a 3d
one-form symmetry, they could be separated along S1

A. In this work, we will only consider
examples where the phase (66) is necessarily trivial, eiSSPT = 1; indeed, we will briefly focus
on Γ = ZN , in which case H2(ZN , U(1)) ∼= 1 (see also [67]). We hope to discuss cases where
this 2d SPT phase can be non-trivial in future work.

2.1.2 ’t Hooft anomalies and vacuum structure

The one-form symmetry Γ (1)3d of the 3d theory can have a non-trivial ’t Hooft anomaly captured
by a four-dimensional anomaly theory:

Sanom
4d [B] = 2π

∫

M4

Pa(B) , (67)

where Pa(B) is an anomaly-dependent modification of the Pontryagin square P(B) of the one-
form background gauge field in 3d extended onto the four-manifold M4 with boundary Σ×S1,
B ∈ H2(M4, Γ ). The construction of P(B) is reviewed in appendix C. More concretely, we
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pick a set of generator for Γ such that Γ ∼=
⊕

i ZNi
and B decomposes as B =

∑

i Bi with
Bi ∈ H2(M4,Zi), in which case the anomaly theory (67) takes the concrete form [42]:

Sanom
4d [B] = 2π

∑

i

aii

2Ni

∫

M4

P(Bi) + 2π
∑

i< j

ai j

gcd(Ni , N j)

∫

M4

Bi ∪ B j , (68)

where the anomaly is captured by the symmetric matrix ai j with integer coefficients:

ai j ∈ Zgcd(Ni ,N j) . (69)

Such an anomaly arises because some of the topological lines can themselves be charged under
Γ
(1)
3d [16]. Note also that we consider the 3d N = 2 theory on 3-manifolds with an explicit

choice of spin structure, which then extends to a choice of spin structure on M4 – this is
important for (68) to be well-defined with the periodicities (69) [42]. In the two-dimensional
description on Σ, the ’t Hooft anomaly is realised as a mixed anomaly between Γ (1) and Γ (0),
corresponding to the 3d anomaly theory on the three-manifold M3 with boundary Σ:

Sanom
3d [B, C] = 2π

∑

i, j

ai j

gcd(Ni , N j)

∫

M3

Ci ∪ B j , (70)

where now C ∈ H1(M3, Γ ), B ∈ H2(M3, Γ ), and we have expanded C =
∑

i Ci and B =
∑

i Bi
as above. In appendix C, we obtain this mixed ’t Hooft anomaly by considering the continuum
version of the anomaly theory [42,68] and dimensionally reducing along S1 on M4 =M3×S1,
with ∂M3 = Σg .

In two space-time dimensions, the one-form symmetry Γ (1) can never be spontaneously
broken [16], and it is therefore preserved in each vacuum. On the other hand, the zero-form
symmetry Γ (0) in the vacuum û is spontaneously broken to the subgroup Stab(û) ⊆ Γ (0). The
’t Hooft anomaly must be matched by the 2d low-energy description, which constrains the
structure of the Γ (0)-orbits of Bethe vacua – we will discuss this momentarily.

The mixed anomaly (70) arises because the one-form symmetry operators Πγ(1) can be
charged under Γ (0), and vice versa. (In the 3d description, two topological lines that implement
Γ
(1)
3d can link non-trivially.) At the level of the Hilbert space HS1 , the Γ (0) and Γ (1) charge

operators need not commute. Instead, we have a projective representation of Γ (0) × Γ (1) on
HS1 , with the twisted commutation relations:

Πγ(1)Uγ(0) = e2πiA(γ(0),γ(1))Uγ(0)Πγ(1) , (71)

determined by the anomaly:
A : Γ (0) × Γ (1)→ R/Z . (72)

Given a choice of generators γ(0),i and γ(1), j for Γ (0) ∼=
⊕

i Z
(0)
Ni

and of Γ (1) ∼=
⊕

j Z
( j)
N j

, respec-
tively, we can expand any group element as:

γ(0) =
∑

i

niγ(0),i , γ(1) =
∑

j

m jγ(1), j , (73)

for ni , mi ∈ ZNi
. Then the anomaly (72) is related to the coefficients ai j appearing in the 3d

anomaly theory (70) according to:

A(γ(0),γ(1)) =
∑

i, j

nim jai j

gcd(Ni , N j)
mod 1 . (74)
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For a given 3d N = 2 gauge theory, this anomaly is easily computed using the A-model de-
scription. Indeed, from (51) and (59), we find:5

[Πγ(1) ,Uγ(0)]|û〉= Π(û)
γ(1)

Π(û)γ(1)
|û〉= e2πiA(γ(0),γ(1)) |û〉 , (75)

and therefore:

A(γ(0),γ(1)) = γ(1)
�

∂W(u+ γ(0))
∂ u

−
∂W(u)
∂ u

�

mod 1 , (76)

which in turn is independent of u and only depends on the bare CS levels of the UV theory. We
will discuss this point further in section 5.2, based on the explicit form of the effective twisted
superpotential which we review in appendix A.

Given the anomaly (72), we may also define a homomorphism φA from Γ (0) to the Pon-
tryagin dual (54) of Γ (1), given by:

φA : Γ (0)→ Γ̂ (1) : γ 7→ e2πiA(γ,−) . (77)

Now, consider coupling the A-model to background gauge fields (C , B) for Γ (0)× Γ (1), which is
equivalent to inserting the topological symmetry operators on Σ. The action of Γ (0) on the 2d
vacua comes with a gauge transformation C → C + δλ, which generates the anomalous term
λa
∫

Σ
B, schematically. This anomaly can only be matched if distinct vacua in a given Γ (0) orbit

are stacked with distinct SPT phases for Γ (1). Fixing some vacuum û to have the trivial phase,
the other vacua û+ γ in Orb(û) will have the SPT phases:

eiS(γ)SPT(B) = φA(γ) . (78)

Note that which vacua is set to be the trivial SPT phase is immaterial, because we can always
shift all vacua by a common SPT phase by adding the corresponding counterterm in the UV.
Thus, we explicitly see how the anomaly constrains the vacuum structure.

The homomorphism φA defines a subgroup kerφA ≤ Γ (0). The associated quotient group:

Ξ(0) ≡ Γ (0)/kerφA , (79)

labels the distinct SPT phases. In general, Γ (0) is a direct sum of cyclic groups, and the distinct
SPT phases may not correspond to distinct Bethe vacua in each orbit, which is due to the
mixing of the various cyclic subgroups of Γ (0). Nevertheless, we can classify all possible orbits.
Let û be a vacuum with trivial SPT phase, and let γ ∈ Γ (0) be in the stabiliser group Stab(û),
which means in particular that û+ γ ∼ û. The vacuum û+ γ has a SPT phase (78), but since
we started with a vacuum û that has a trivial phase, so does û+ γ. Therefore, φA(γ) = 1 and
thus γ ∈ kerφA. This argument is valid for any element γ ∈ Stab(û), and thus every stabiliser
of a given Bethe vacuum û is a subgroup of the kernel:

Stab(û)≤ kerφA . (80)

This restricts the allowed orbit dimensions according to the orbit-stabiliser theorem (63).
Given a subgroup H ≤ kerφA, there is a corresponding orbit of length Γ (0)/|H|. Note that
any such orbit dimension is an integer multiple of |Ξ(0)|.

The extremal cases are the non-anomalous and the maximally anomalous case. The latter
case corresponds to kerφA = 0, so that Stab(û) is trivial for every vacuum û. Hence all
orbits must have maximal dimension |Γ (0)|. At the other extreme, if the anomaly A vanishes

5Here [a, b] denotes the multiplicative commutator, [a, b] = a−1 b−1ab.
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identically, then kerφA = Γ (0), and Stab(û) can be any of the subgroups of Γ (0). For the trivial
stabiliser, this results in orbits of length |Γ (0)|. Meanwhile, for Stab(û) = Γ (0) we find orbits of
length 1 – these are of course the fixed points under Γ (0), which can only occur in a theory with
trivial ’t Hooft anomaly. The generic case occurs when the full Γ (0) is anomalous but contains
some non-anomalous subgroups.6 Since kerφA is a subgroup of Γ (0), the allowed orbits are
therefore those associated with the non-anomalous stabilisers.

For concreteness, let us consider the parameterisation Γ ∼=
⊕

i ZNi
as above. Then we have

the SPT phases:

S(γ)SPT(Bγ(1)) = 2π

 

∑

i, j

niA i jm j mod 1

!

, A i j ≡
ai j

gcd(Ni , N j)
, (81)

for γ =
∑

i niγ(0),i ∈ Γ (0) and a background gauge field Bγ(1) corresponding to

γ(1) =
∑

j m jγ(1), j ∈ Γ (1). Thus we have:

kerφA ∼=

¨

γ=
∑

i

niγ(0),i

�

�

�

�

∑

i

niA i j ∈ Z

«

. (82)

This allows for explicit computations in any given example.

The case Γ = ZN Let us further discuss the special case of a cyclic group, Γ = ZN , on which
we shall focus in the following sections. Denoting by the integers n ∈ Z(0)N and m ∈ Z(1)N the
elements γ(0) and γ(1), respectively, we have the anomaly:

A(γ(0),γ(1)) =
anm

N
mod 1 , a ∈ ZN , (83)

determined by the integer a (mod N). We also have the Γ (1) SPT phases:

eiS(n)SPT(B) = φA(n) = e2πi an
N

∫

Σ
B = e2πi anm

N , (84)

for B corresponding to m ∈ Z(1)N . We then find that kerφA ∼= Zgcd(a,N) and therefore:

Ξ(0) ∼= Zd(a,N) , d(a, N)≡
N

gcd(a, N)
. (85)

The Z(0)N -orbits spanned by the Bethe vacua therefore have dimensions that are integer multi-
ples of d(a, N). Due to (80), the orders of the stabilisers and hence the orbits will be divisors
of N . In the non-anomalous case, the orbit dimensions can be any divisor of N , while in the
maximally anomalous case all orbits are of length N . We will discuss this more in detail in
section 3.

2.2 Background gauge fields and expectation values of topological operators

Recall that the partition function of the eG gauge theory T on Σg × S1 corresponds to the
insertion of the handle-gluing operator H in the A-model, so that:

Z [T ]
Σg×S1 = 〈1〉Σg

=
∑

û∈SBE

〈û|Hg−1|û〉=
∑

û∈SBE

H(û)g−1 . (86)

We are interested in computing the insertion of topological operators for Γ (1) × Γ (0) on Σg .
This is equivalent to turning on background gauge fields for these discrete symmetries.

6That is, non-anomalous subgroups eΓ (0) ⊂ Γ (0) with respect to Γ (1), i.e. such that the mixed ’t Hooft anomaly
for eΓ (0)-Γ (1) vanishes. We could more generally consider non-anomalous subgroups eΓ (p) ⊂ Γ (p), p = 0,1 (with eΓ (0)

and eΓ (1) not necessarily isomorphic), such that their mixed anomaly vanishes, by an obvious generalisation of the
discussion above.
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Insertion of the 1-form symmetry operators Let us first consider the insertion of the local
operator Πγ on Σg . We simply have:

〈Πγ〉Σg
=
∑

û∈SBE

〈û|ΠγHg−1|û〉=
∑

û∈SBE

Π(û)γH(û)g−1 . (87)

Using the decomposition (55)-(56), we can write this as:

〈Πγ〉Σg
=
∑

χ∈Γ̂ (1)
χ(γ)

∑

û∈SχBE

H(û)g−1 . (88)

This insertion is equivalent to turning on a background gauge field Bγ,

Z [T ]
Σg×S1(Bγ) = 〈Πγ〉Σg

, Bγ ∈ H2(Σg , Γ (1)) , (89)

with:
∫

Σg

Bγ = γ . (90)

For later purpose, it will be useful to define the discrete θ -angle and its pairing to Bγ:

ϑ(γ)≡ e−i(θ ,Bγ) , (θ , Bγ)≡ θ
∫

Σg

Bγ , ϑ ∈ Γ̂ (1) . (91)

Here, θ is the background gauge field for a (−1)-form symmetry, which will appear as a dual
symmetry once we gauge Γ (0), and (θ , B) is the canonical pairing on Σg . For instance, for
Γ (1) = ZN , we have θ ∈ 2π

N ZN .

Insertion of the 0-form symmetry operators Next, we consider the insertion of 0-form
symmetry operators along the Riemann surface Σg . These topological line operators can wrap
any of the generators of H1(Σg ,Z) ∼= Z2g , which we denote by C i (i = 1, · · · , 2g). Thus, an
insertion is specified by a Γ (0)-valued 1-cycle γ corresponding to:

[γ] =
2g
∑

i=1

γi [Ci] ∈ H1(Σg , Γ (0)) , (92)

which is determined by the 2g group elements γi ∈ Γ (0). We will also use the notation
γ= (γi) ∈ Γ 2g , by a slight abuse of notation. We will then denote the topological operator as:

Uγ ≡
2g
∏

i=1

Uγi (Ci) . (93)

This insertion is equivalent to turning on a background gauge field Cγ for Γ (0), with:

[Cγ]≡ PD[γ] ∈ H1(Σg , Γ (0)) . (94)

Here PD[γ] denotes the cohomology class Poincaré dual to (92). For future reference, let
us also choose a symplectic basis of a- and b-cycles as shown in figure 3, with the standard
intersection pairing:

[ak] , [bl] ∈ H1(Σg ,Z) , k, l = 1, . . . , g , [ak] · [bl] = −[bl] · [ak] = δkl , (95)

and [ak] · [al] = [bk] · [bl] = 0. In this basis, we have γ≡ (γa,k,γb,l).
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b1 b2 b3

a1 a2 a3

×

S1
A

Figure 3: a- and b-cycles on the Riemann surface Σg , here depicted for genus g = 3.

=
∑

û

⟨û|H− 1
2

=
∑

û

H− 1
2 |û⟩

=
∑

û

|û⟩⟨û|

=
∑

û

H 1
2 |û⟩⟨û|⟨û|

Figure 4: Operators in 2d TQFT corresponding to the cap, cylinder, and pair of pants.
We can think as H 1

2 as a formal square root of the handle-gluing operator H, keeping
in mind that we always obtain integer powers of H when computing observables on
a closed Σ.

As reviewed in appendix A, the 3d A-model is a 2d TQFT. From this perspective, the twisted
index (86) can be computed by basic surgery operations on the Riemann surface. The three
basic ingredients are the cap, the cylinder and the pair of pants, to which the TQFT functor
assigns states as summarised in figure 4. In the eG theory with the Γ (0) symmetry, this TQFT
prescription can be extended to compute the correlation functions of the topological line op-
erators (93). The modified dictionary is shown in figure 5.

Let us first consider the case g = 1, the torus, with the notation a1 = C and b1 = eC.
Here C is considered as the spatial direction and eC is the Euclidean time direction. Setting
γ= (γa,1,γb,1) = (γ,δ), we have the general insertion:

Z [T ]T2×S1(Cγ) =



Uγ(C) Uδ(eC)
�

T2 , (96)

which is of the form considered in figure 2a. We thus have the trace over the δ-twisted sector:

Z [T ]T2×S1(Cγ) =
∑

û∈S(δ)BE

〈û;δ|Uγ(C)|û;δ〉=
∑

û∈S(δ)BE

〈û;δ|û+ γ;δ〉=
∑

û∈S(γ,δ)
BE

1=
�

�

�S(γ,δ)
BE

�

�

� , (97)

with S(δ)BE defined as in (62), and we also defined S(γ,δ)
BE ≡ S(γ)BE ∩ S

(δ)
BE . This result is modular

invariant, as expected for a 2d TQFT on Σg .
The generalisation to any Σg with the operator (93) inserted can be derived using the

2d TQFT perspective sketched above [17, 19]. Following the decomposition of the Riemann
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δ =
∑

û

H 1
2 |û⟩⟨û; δ|⟨û; δ|

δ
=

∑

û

|û; δ⟩⟨û; δ|
γ

=
∑

û

|û⟩⟨û| Uγ

Figure 5: Operators in the TQFT corresponding to the cylinder and pair of pants
with topological lines inserted. We could also consider the insertion of a line at the
boundary of a cap, but this is topologically trivial; in this formalism, this follows from
the fact that H(û+ γ) =H(û), so that formally

∑

û H−
1
2Uγ|û〉=

∑

û H−
1
2 |û〉.

γ

=

γ

δ

δ

Figure 6: Decomposition of a handle-gluing operator with Uγ operator inserted.

surface Σg with the insertions of Γ (0) symmetry operators as shown in figure 6, we find:

Z [T ]
Σg×S1(Cγ) = 〈Uγ〉Σg

=
∑

û∈S(γ)BE

H(û)g−1 . (98)

Here, for any set (γi) of n elements of Γ (0), we define the set of Bethe vacua
S(γ1,··· ,γn)

BE ≡
⋂n

i=1 S
(γi)
BE . Equivalently, let us denote by H(0)γ ⊆ Γ (0) the smallest subgroup

of Γ (0) that contains the γi ’s – it is the smallest subgroup such that [γ] ∈ H1(Σg , Hγ). Then,
we can define:

S(γ)BE ≡ {û ∈ SBE | û+ γ(0) ∼ û , ∀γ(0) ∈ H(0)γ }
∼= S(γ1,··· ,γ2g )

BE . (99)

Note that the expression (98) is invariant under large diffeomorphisms of Σg , which act as
Sp(2g,Z) transformations of γ = (γa,k,γb,l). Moreover, it is important to note that the corre-
lator (98) only depends on the subgroup H(0) ⊆ Γ (0) and not on the specific insertion, namely:

〈Uγ1〉Σg
= 〈Uγ2〉Σg

, if H(0)γ1
= H(0)γ2

, (100)

sinceS(γ1)
BE = S(γ2)

BE in this case. In section 3, we will discuss these subgroups H(0)γ more explicitly

in the case of Γ (0) ∼= ZN a cyclic group.

Mixed correlators Finally, we may consider the simultaneous insertion of Γ (1) and Γ (0) back-
ground gauge fields, which gives us:

Z [T ]
Σg×S1(Bγ(1) , Cγ(0)) =

¬

Πγ
(1)Uγ(0)

¶

Σg
=

∑

û∈S(γ(0))BE

Π(û)γ
(1)H(û)g−1 . (101)
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Such mixed correlation functions necessarily vanish when the anomaly is non-trivial:
¬

Πγ
(1)Uγ(0)

¶

Σg
= 0 , if e2πiA(γ(0),γ(1)) ̸= 1 . (102)

The expression (101) can also be written as:
¬

Πγ
(1)Uγ(0)

¶

Σg
=
∑

χ∈Γ̂ (1)
χ(γ(1))

∑

û∈SχBE∩S
(γ(0))
BE

H(û)g−1 , (103)

similarly to (88).

3d modularity Correlation functions on Σg × S1 are not completely fixed by the above pre-
scription, due to the ambiguity Πγ → χρ(γ)Πγ of the gauge flux operator from linear shifts
of the twisted superpotential (53). A practical way to resolve this ambiguity is to demand
modularity when inserting 3d lines on the three-torus. As before, for g = 1 we can choose
C to be the spatial direction on T2, and compare the correlator 〈χρ(γ)Πγ〉T2 with 〈Uγ(C)〉T2 .
The ambiguity χρ(γ) of the flux operator can be fixed by identifying those correlators (88)
and (97),

χρ(γ)
∑

χ∈Γ̂ (1)
χ(γ)|SχBE|= |S

(γ)
BE | , ∀γ ∈ Γ . (104)

Note that the RHS is a positive integer. If a solution χρ ∈ Γ̂ (1) exists, then it fixes a normalisa-
tion of the gauge flux operator for a given theory.

On physical grounds, we expect that a solution to (104) exist. Mathematically, the exis-
tence of a solution to (104) is not clear at all. As we show in section 3 for the case of the
SU(N)K N = 2 CS theory, the positive integers |S(γ)BE | depend intricately on the elements γ,
and merely solving the equation for a generator γ0 of Γ – if one exists – may not be enough to
determine χρ.7 In section 3, we study in some detail the 3d modularity for the N = 2 SU(N)K
CS theory, and we find that a normalisation χρ exists for all values of N and K . We also en-
counter an interesting modular anomaly in this case; this will be discussed in section 3.2. This
kind of ‘modular anomaly’ arises whenever the 3d topological lines for Γ (1)3d have non-trivial
braiding with the transparent line ψ that couples the spin structure of M3 = Σg × S1 [21].

2.3 Gauging the 1-form symmetry Γ (1)

Let us now gauge the Γ (1) symmetry – such a symmetry is always non-anomalous in 2d. This
simply corresponds to summing over background gauge fields, as follows:

Z [T /Γ
(1)]

Σg×S1 (θ ) =
1
|Γ |

∑

B∈H2(Σg ,Γ (1))

ei(θ ,B)Z [T ]
Σg×S1(B) . (105)

Here, we weighted the contributions with the θ -angle for the dual (−1)-form symmetry, as
discussed in (91). This gives us:

Z [T /Γ
(1)]

Σg×S1 (θ ) =
1
|Γ |

∑

γ∈Γ (1)
ϑ̄(γ) 〈Πγ〉Σg

, (106)

7On the other hand, we may constrain the set of possible solutions somewhat, as follows. The exponent of the
finite abelian group Γ ∼=

⊕

i ZNi
, denoted by exp(Γ ), is the least common multiple of the orders of all elements of

the group. We then have exp(Γ )γ= 0 for any γ ∈ Γ . Since χρ is a group homomorphism, this forces χρ(γ)exp(Γ ) = 1
and thus χρ is necessarily an exp(Γ )-th root of unity.
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where ϑ̄ denotes the complex conjugate of ϑ. Plugging in (88) and using the orthogonality of
the characters,8 we find that:

Z [T /Γ
(1)]

Σg×S1 (θ ) =
∑

û∈Sχ=ϑBE

H(û)g−1 = TrHϑ

S1
(Hg−1) . (107)

That is, gauging the one-form symmetry ‘undoes decomposition’ by projecting us onto a given
χ = ϑ sector [69]. The process is completely reversible, since gauging the Γ (−1) symmetry
simply corresponds to summing over all possible θ -angles:

Z [T ]
Σg×S1(B) =

∑

θ

e−i(θ ,B) Z [T /Γ
(1)]

Σg×S1 (θ ) . (108)

It is worth commenting on the overall normalisation of the sum in (105) and in (108), respec-
tively. Here we sum over all insertions with the overall normalisation 1/|Γ | when gauging Γ (1),
and therefore we have a unit normalisation in (108) when gauging Γ (−1). This prescription is
such that the result (107) for the gauged theory has a standard Hilbert space interpretation – it
is simply given as a trace over the Hilbert space Hχ=ϑS1 defined in (55), with the local operator
H being unaffected by the 1-form gauging.9

Note also that, in the gauged theory, the ambiguity (53) in defining the gauge flux op-
erator Πγ is equivalent to a redefinition of angle θ according to θ → θ + 2πρ (that is,
ϑ̄(γ) → χρ(γ)ϑ̄(γ)), which is simply a relabelling of the distinct universes in the decompo-
sition (55).

2.4 Gauging the 0-form symmetry Γ (0)

The discrete symmetry Γ (0) is non-anomalous in the 3d A-model for eG. Thus it can be gauged
by summing over all Γ (0) gauge fields on Σg :

Z [T /Γ
(0)]

Σg×S1 (C
D) =

1
|Γ |2g−1

∑

C∈H1(Σg ,Γ (0))

e2πi(C D ,C)Z [T ]
Σg×S1(C) . (109)

Note the normalisation constant in front, which differs from the ‘symmetric’ normalisation
used in [19]. Here, C D is a background gauge field for the dual 0-form symmetry, Γ (0)D

∼= Γ ,
which non-trivially permutes the twisted sectors. (This is sometimes known as the ‘quantum
symmetry.’) We also defined the pairing:

(C D, C) =

∫

Σg

C D ∪ C . (110)

In the gauged theory, the topological line operator for γD ∈ H1(Σg , Γ (0)D ) can be written as:

UγD
D (C) = ei

∫

C C , [C D
γD
] = PD[γD] , (111)

where C is the dynamical gauge field for Γ (0). Note that we can view UγD
D as a character:

UγD
D ∈ Hom(H1(Σg , Γ (0)), U(1)) , UγD

D (γ)≡ e2πi(C D
γD

, Cγ) . (112)

8Namely, for any Γ a discrete abelian group, and ϑ,χ ∈ Γ̂ , we have that
∑

γ∈Γ ϑ̄(γ)χ(γ) = |Γ |δϑ,χ .
9Any other consistent normalisation, such as the one used in [19], would differ from ours by a factor of the form

αg−1, corresponding to a rescaling of the handle-gluing operator (which is equivalent to adding a supersymmetry-
preserving counterterm∝

∫

Σ
R – see e.g. [70]).
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The partition function (109) can thus be written as:

Z [T /Γ
(0)]

Σg×S1 (γD) =
1

|Γ |2g−1

∑

[γ]∈H1(Σg ,Γ (0))

UγD
D (γ) Z

[T ]
Σg×S1(γ) . (113)

Conversely, we have:

Z [T ]
Σg×S1(γ) =

1
|Γ |

∑

[γD]∈H1(Σg ,Γ (0)D )

e2πi(Cγ, C D
γD
) Z [T /Γ

(0)]
Σg×S1 (γD) , (114)

wherein gauging the dual 0-form symmetry gives us back the theory we started with. The
partition function (113) can be written as a trace over the gauged Hilbert space [19]. The
Hilbert space of the 2d theory T /Γ (0) takes the form:

H[T /Γ
(0)]

S1
∼= SpanC

n

|ω̂; sω̂〉
�

�

� ω̂ ∈ SBE/Γ
(0) , sω̂ = 1, . . . , |Stab(ω̂)|

o

, (115)

where ω̂≡ Orb(û) denote the distinct Γ (0)-orbits of Bethe vacua of the eG gauge theory, and sω̂
indexes the twisted sectors. If we first consider CD = 0, for definiteness:

Z [T /Γ
(0)]

Σg×S1 ≡
1

|Γ |2g−1

∑

[γ]∈H1(Σg ,Γ (0))

〈Uγ〉Σg
, (116)

we find that:

Z [T /Γ
(0)]

Σg×S1 =
∑

ω̂∈SBE/Γ (0)

|Stab(ω̂)|
�

|Stab(ω̂)|2

|Γ |2
H(ω̂)

�g−1

, (117)

where we used the notation:

H(ω̂)≡H(û) , ∀û ∈ ω̂ , (118)

which is well defined since H(û+ γ) = H(û), ∀γ ∈ Γ (0). Indeed, starting with the expression
for the partition function of the gauged theory (116), we have:

Z [T /Γ
(0)]

Σg×S1 =
1

|Γ |2g−1

∑

[γ]∈H1(Σg ,Γ (0))

∑

û∈S(γ)BE

H(û)g−1

=
1

|Γ |2g−1

∑

(û,γ)∈SBE×Γ 2g

û∈S(γ)BE

H(û)g−1

=
1

|Γ |2g−1

∑

û∈SBE

∑

γ∈Stab(û)2g

H(û)g−1

=
1

|Γ |2g−1

∑

ω̂∈SBE/Γ (0)

H(ω̂)g−1|ω̂| |Stab(ω̂)|2g , (119)

where in the third equality we exchanged the order of the two sums. Moreover, in the last
step we used (118) and |Stab(ω̂)| ≡ |Stab(û)|,∀û ∈ ω̂. Then, using the stabiliser-orbit theo-
rem (63), the final expression above simplifies to (117).

Note that we chose the overall normalisation in (109) such that the expression (117) can
be interpreted as a trace over the Hilbert space (115) of the Γ (0)-gauged theory, including all
twisted-sector states. Note also that, for g = 0, this implies that we have:

Z [T /Γ
(0)]

S2×S1 = |Γ |Z [T ]S2×S1 . (120)
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T
[
Γ(0),Γ(1)

]

T
[
Γ̂(0),Γ(1)

]
T
[
Γ(0), Γ̂(−1)

]

T
[
Γ̂(0), Γ̂(−1)

]

/Γ(0) /Γ(1)

/Γ(1) /Γ(0)

Figure 7: Gaugings of 0-form and 1-form symmetries of a 2d theory T . In the absence
of a ’t Hooft anomaly, the diagram commutes. If Γ (1)3d is anomalous, the bottom theory
does not exist and the diagram truncates.

More generally, if we turn on a background gauge field for Γ (0)D as in (113), a similar compu-
tation gives us:

Z [T /Γ
(0)]

Σg×S1 (γD) =
∑

ω̂∈SBE/Γ (0)

|Stab(ω̂)|−1
�H(ω̂)
|Γ |2

�g−1
∑

γ∈Stab(ω̂)2g

UγD
D (γ) . (121)

In the special case γD = 0 (so that UγD
D (γ) = 1), this reduces to (117).

2.5 Topologically twisted index for the gauge group eG/Γ

Finally, we can combine the above results to gauge the full Γ (1)3d in the A-model description, as-
suming the symmetry is non-anomalous. We can then gauge the symmetries in whichever or-
der, as indicated in figure 7. The general formula for the 3d theory with gauge group G = eG/Γ
on Σg × S1 is obtained by summing over all insertions of topological operators for Γ (1)3d :

ZT /Γ (1)3d (θ , C D) =
1
|Γ |2g

∑

δ∈Γ (1)

∑

[γ]∈H1(Σg ,Γ (0))

ei(θ ,Bδ)e2πi(C D ,Cγ)



Πδ Uγ
�

Σg
. (122)

Conceptually, it is simplest to consider gauging the symmetries one after the other. For in-
stance, consider gauging Γ (0) first. The intermediate 2d theory on the left-hand corner of
figure 7 still has a Γ (1) symmetry, and it therefore enjoys decomposition. The subsequent gaug-
ing of Γ (1) is then a projection on a particular universe. If we first gauge Γ (1) instead, we first
project onto one universe and then consider the Γ (0) gauging inside that universe. Either way,
we end up considering the Bethe vacua determined by the ϑ-twisted Bethe equations (56),
which we can suggestively rewrite as:

SϑBE ≡
n

û ∈ t/Λ
eG
mw

�

�

� Πγ(û) = ϑ(γ) ,∀γ ∈ ΛeG/Γmw and w · û ̸= û ,∀w ∈W
eG

o

/W
eG . (123)

Note that ϑ(γ) = 1 for any γ ∈ ΛeGmw ⊂ Λ
eG/Γ
mw . We then find:

Z
T /Γ (1)3d
Σg×S1 (θ , C D

γD
) =

∑

ω̂∈SϑBE/Γ
(0)

|Stab(ω̂)|−1
�H(ω̂)
|Γ |2

�g−1
∑

γ∈Stab(ω̂)2g

UγD
D (γ) . (124)
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Finally, let us consider the special case θ = γD = 0. The twisted index for the G = eG/Γ gauge
theory then takes the simple form:

Z
T /Γ (1)3d
Σg×S1 = TrH[eG/Γ ]

S1

�

Hg−1
G

�

, (125)

where the trace is over the Hilbert space of the A-model for the G = eG/Γ gauge theory:

H[eG/Γ ]S1
∼= SpanC

¦

|ω̂; sω̂〉
�

�

� ω̂ ∈ Sϑ=1
BE /Γ (0) , sω̂ = 1, . . . , |Stab(ω̂)|

©

. (126)

Here, we have introduced the handle-gluing operator HG , which acts on the Bethe vacua of
the G gauge theory as:

HG|ω̂; sω̂〉=
H(ω̂)
|ω̂|2

|ω̂; sω̂〉 , (127)

where H =H
eG is the ordinary handle-gluing operator of the eG gauge theory, and we used the

notation (118).
This completes our general discussion of the topologically twisted index for 3d N = 2

supersymmetric gauge theories with a general gauge group G and a U(1)R symmetry. The
same caveats that held for eG apply here [8] – in particular, we implicitly assumed that the
set of Bethe vacua is discrete. Another important caveat, which was not explicitly stated in
previous literature, is that our approach in this section gives the correct result for the twisted
indices if and only if the 3d topological lines that we insert to gauge Γ (1)3d are all bosonic (that
is, they have trivial braiding with the ‘spin-structure’ transparent line ψ). This ensures that,
starting from a 3d eG gauge theory where all the Bethe vacua are bosonic, the set of Bethe
vacua in the G = eG/Γ theory are also all bosonic. The treatment of fermionic Bethe vacua will
be addressed in future work [21].

Finally, we note that it would be straightforward to generalise our discussion to ‘non-
Lagrangian’ 3d N = 2 field theories with one-form symmetries for which the A-model for-
malism is available. For the T[M3] theories of the 3d/3d correspondence [71–73], the com-
putation of Σ= T2 was first discussed in [18].

3 The 3d N = 2 SU(N)K Chern–Simons theory

In the rest of this paper, we mainly set eG = SU(N). This is a simply-connected gauge group
with centre Z(SU(N)) = ZN , and we can thus study all the possible quotients SU(N)/Zr ,
where r is a divisor of N . This gives us a rich structure of gauge theories obtained by discrete
gauging of subgroups, which depends crucially on the arithmetic properties of the integer N
– see e.g. [15,16,74] for closely related discussions.

In this section, we specifically study the N = 2 supersymmetric Chern–Simons theory
SU(N)K (with supersymmetric CS level K ≥ N). Upon integrating out the gauginos, this is
equivalent to the bosonic CS theory SU(N)k with k = K − N ≥ 0. Since many explicit results
are available for this 3d TQFT, this serves as a useful testing ground for the general formalism
of the previous section. We also obtain some seemingly new results.

3.1 The A-model for the SU(N)K theory and its higher-form symmetries

The SU(N)K CS theory has a one-form symmetry Γ (1)3d = ZN , which descends to the higher-form

symmetry Z(0)N ⊕Z
(1)
N in the 2d description. In this subsection, we give an explicit parametrisa-

tion of the Bethe vacua for this theory and we study how the higher-form symmetries act on
them.
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Effective twisted superpotential and dilaton Although SU(N) = N has rank N − 1, it is
convenient to use a slightly redundant description with N variables ua, a = 1, · · · , N , together
with the tracelessness condition:

N
∑

a=1

ua = 0 . (128)

The effective twisted superpotential is given by:

W(u) = K
2

N
∑

a=1

u2
a + u0

N
∑

a=1

ua , (129)

where u0 is a Lagrange multiplier for the constraint (128). The effective dilaton potential is
given by:

e2πiΩ(u) = −
N
∏

a,b=1
a ̸=b

�

1−
xa

xb

�−1

. (130)

Here, for later convenience, we turned on an effective CS level KRR ∈ 2Z+1 for the R-symmetry
U(1)R. We also use the notation xa ≡ e2πiua and q ≡ e2πiu0 .

Parametrising the Bethe vacua The Bethe equations that follow from the effective twisted
superpotential (129) are:

Πa(u)≡ qxK
a = 1 , a = 1, . . . , N , Π0(u)≡

N
∏

a=1

xa = 1 . (131)

By taking the product of the N flux operators Πa, we see that q must be an N -th root of unity:

q̂ = e2πi ℓN , ℓ ∈ ZN . (132)

Substituting q = q̂ into Πa, one finds the Bethe vacuum solutions:

ûa =
�

la
K
−
ℓ

KN

�

mod1 , a = 1, . . . , N , (133)

for la ∈ ZK , and with the tracelessness constraint:

N
∑

a=1

la − ℓ ∈ KZ . (134)

We index the Bethe vacua by the (N + 1)-tuples l defined as:

l = (l1, . . . , lN ;ℓ) , ûl ≡ ûaea . (135)

The Weyl symmetry W
eG = SN permutes the ua variables, and we can therefore choose the

ordered N -tuples {l1, . . . , lN} ⊂ {0,1 . . . , K − 1} by fixing a gauge. That is, we must have
la > lb if a > b. Before imposing the condition (134), there are thus N

�K
N

�

possibilities for l.
Evaluating the trace

∑N
a=1 la − ℓ (mod K) partitions this set of tuples into K sets of equal size.

Selecting the traceless tuples thus gives us the total number of Bethe vacua, which reproduces
the well-known Witten index [47,75]:

IW[SU(N)K]≡ ZT3[SU(N)K] =
N
K

�

K
N

�

=
�

K − 1
N − 1

�

. (136)
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In summary, the Bethe vacua ûl ∈ SBE are in one-to-one correspondence with the elements l
in the indexing set:

JN ,K ≡

¨

(l1, . . . , lN ;ℓ) ∈ ZN
K ⊕ZN ,

�

�

�0≤ l1 < . . .< lN ≤ K ,
N
∑

a=1

la − ℓ ∈ KZ

«

, (137)

with ûl given in (133). An equivalent determination of this set is obtained by first looking at

the
�K

N

�

ordered sets (l1, · · · , lN ) ∈ ZN
K , defining ℓ≡

∑N
a=1 la mod K , and retaining the resulting

sets l if and only if ℓ < N .10

Handle-gluing operator and the twisted index The twisted index can be computed as
in (86). Using the parametrisation (137) for the Bethe vacua, the handle-gluing operator
evaluated on-shell gives us:

H(ûl) = N
�

K
2N

�N−1 ∏

1≤a<b≤N

sin−2
�

π(la − lb)
K

�

, (138)

and the topologically twisted index of the SU(N)K theory is then given by:

ZΣg×S1[SU(N)K] = N g−1
�

K
2N

�(g−1)(N−1) ∑

l∈JN ,K

∏

1≤a<b≤N

�

sin
π(la − lb)

K

�2−2g

, (139)

where the sum is over the elements of the set (137). This is the well-known Verlinde formula
for the SU(N)k bosonic CS theory with k = K − N [34,37].

Let us consider a few explicit examples. For K = N and K = N + 1, the Verlinde formula
simplifies to:

ZΣg×S1[SU(N)N ] = 1 , ZΣg×S1[SU(N)N+1] = N g , (140)

This is can be easily understood from the level/rank duality SU(N)K ↔ U(K − N)−K ,−N
(see e.g. [76, 77]). With some more effort, a few more complicated examples can be eval-
uated explicitly as a function of g. For instance, we find:

ZΣg×S1[SU(3)6] =
1
12
(3 · 4g + 8 · 9g + 36g) , (141)

ZΣg×S1[SU(4)6] = 6g−1 (4g + 2) + 23g−1 . (142)

Note that these are integers for any g, and that they give 1 at g = 0, as expected for any
3d TQFT. See [38,78,79] for comments on closed-form summations of trigonometric sums of
these kinds.

3.1.1 Two-dimensional 1-form symmetry, gauging and decomposition

In the A-model description, we have a two-dimensional one-form symmetry whose topological
operator is the flux operator that inserts some magnetic flux γ along Σ, corresponding to a
PSU(N)≡ SU(N)/ZN bundle that cannot be lifted to an SU(N) bundle:

γ ∈ ΛPSU(N)
mw /ΛSU(N)

mw
∼= ZN . (143)

10As an example, consider the SU(3)6 N = 2 theory, which has 10 vacua. Using the presentation (137), we can
list them as:

(0,1, 5;0) , (1,2, 3;0) , (3, 4,5;0) , (0,2, 5;1) , (1, 2,4; 1) ,

(0,3, 4;1) , (0, 3,5; 2) , (1, 2,5;2) , (1,3, 4;2) , (0, 2,4; 0) .
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In our parameterisation of u ∈ t ⊂ su(N) with u = uaea as above, the generator γ0 of ZN
in (143) can be chosen to be:11

γ0 = γ0,aea , γ0,a = −
1
N
+δa,1 , a = 1, . . . , N . (144)

We then write the elements (143) as γ = nγ0 for n ∈ ZN an integer modulo N . The corre-
sponding Z(1)N operators are Πγ ≡ Uγ(S1

A) with:

Πγ0(u)≡
N
∏

a=1

Π
γ0,a
a (u) . (145)

On-shell, this evaluates to:

Πγ0(ul) = (−1)N−1q̂−1 = (−1)N−1e−
2πiℓ

N , (146)

where we have fixed the overall phase by hand for future convenience, as we will discuss
momentarily. Hence Z(1)N acts on the Bethe vacua as:

Πmγ0 |ûl〉= (−1)m(N−1)e−2πi mℓ
N |ûl〉 , m= 0,1, . . . , N − 1 , (147)

where recall that ℓ=
∑

a la mod K . We can then directly evaluate the expectation value of this
flux operator on Σg :

〈Πmγ0〉Σg
= N g−1

�

K
2N

�(g−1)(N−1) ∑

l∈JN ,K

(−1)m(N−1)e−2πi mℓ
N

∏

1≤a<b≤N

�

sin
π(la − lb)

K

�2−2g

.

(148)
For g = 1, we find the following explicit evaluation formula:

〈Πmγ0〉T2 =
∑

l∈JN ,K

(−1)m(N−1)e−2πi mℓ
N

= δK mod d,0

� K
d − 1
N
d − 1

�

, with d ≡
N

gcd(m, N)
. (149)

This is an ‘experimental’ result that follows from the physical expectation of modularity on T3,
as we will explain below.12 In particular, (149) is always a non-negative integer.

Gauging of Z(1)N To gauge Z(1)N in the A-model description, we simply sum over the insertions
(148) for all possible values of m, as in (105):

ZΣg×S1

�

SU(N)K/Z
(1)
N

�

(θs) =
1
N

N−1
∑

m=0

ei(θs ,mγ0) 〈Πmγ0〉Σg
. (150)

The discrete θ -angle for the dual (−1)-form symmetry takes values:

θs ≡ 2π
s
N

, s = 0, . . . , N − 1 , (151)

11The shift by the integer δa,1 is such that
∑N

a=1 γ0,a = 0. Note also that m ∈ ΛSU(N)
mw is similarly defined as

m= maea with ma ∈ Z and
∑N

a=1 ma = 0.
12We checked this identity on a computer for a large number of values of N and K . We leave finding a mathe-

matical proof as a challenge for the interested reader.
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so that (θs, mγ0) = 2π sm
N in (150). Let us define the geometric series:

∆N
ℓ (s)≡

1
N

N−1
∑

m=0

(−1)m(N−1)e2πim s−ℓ
N =

¨

δs−ℓ+ N
2 mod N ,0 , if N is even,

δs−ℓ mod N ,0 , if N is odd.
(152)

We then have:

ZΣg×S1

�

SU(N)K/Z
(1)
N

�

(θs) = N g−1
�

K
2N

�(g−1)(N−1)

×
∑

l∈JN ,K

∆N
ℓ (s)

∏

1≤a<b≤N

�

sin
π(la − lb)

K

�2−2g

. (153)

This result is in agreement with (107) and with the decomposition SBE
∼=
⊕

s Sϑs
BE induced by

the 1-form symmetry on the Bethe vacua of the SU(N)K theory, with:

ûl ∈ Sϑs
BE ←→ l ∈ J s

N ,K ≡
n

l ∈ JN ,K

�

�

� (−1)N−1e2πi ℓN = e2πi s
N

o

, (154)

and thus (153) is simply a sum over the Bethe vacua û ∈ Sϑs
BE indexed by J s

N ,K :

ZΣg×S1

�

SU(N)K/Z
(1)
N

�

(θs) =
∑

û∈Sϑs
BE

H(û)g−1 . (155)

We thus see that the 2d universes indexed by θs are equivalently indexed by ℓ, as:

ℓ=

¨

s+ N
2 mod N , if N is even,

s , if N is odd.
(156)

For N = 2 and s = 0, (153) of course reproduces (15). In the special case g = 1, we have:

ZT3

�

SU(N)K/Z
(1)
N

�

(θs) =
�

�

�J s
N ,K

�

�

� . (157)

Interestingly, ‘experimentally’ we find that, if N is odd and prime, then |J s
N ,K | is given by:

�

�

�J s
N ,K

�

�

�=
1
N

�

K − 1
N − 1

�

+δK mod N ,0

�

δs,0 −
1
N

�

, (158)

which is always an integer. We will derive this below using 3d modularity. Of course, we see
that

∑N−1
s=0 |J s

N ,K |= |JN ,K |.

Gauging of a subgroup Z(1)r For later purpose, we can also consider the gauging of a sub-
group Z(1)r ⊆ Z

(1)
N , for r any divisor of N and K:

ZΣg×S1

�

SU(N)K/Z(1)r

�

(θ (Zr )
s ) =

1
r

r−1
∑

m=0

e2πi ms
r

¬

Πm N
r γ0
¶

Σg
, (159)

where θ (Zr )
s = 2π s

r with s ∈ Zr . Note the normalisation of the sum in (159). The sum over m
generalises (152) to:

∆
N ,r
ℓ
(s)≡

1
r

r−1
∑

m=0

(−1)m
N
r (N−1)e2πim s−ℓ

s

=

¨

δs−ℓ− N(N−1)
2 mod r,0 , if N is even and N

r is odd,

δs−ℓ mod r,0 , otherwise.
(160)
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Hence, the sum (159) over the Z(1)r topological operators projects us onto universes indexed

by θ (Zr )
s , and (160) tells us that we can equivalently parameterise these universes by ℓ mod r,

with the exact relation being:

s =

¨

ℓ+ N(N−1)
2 mod r , if N is even and N

r is odd,

ℓmod r , otherwise.
(161)

We then have:
ZΣg×S1

�

SU(N)K/Z(1)r

�

(θ (Zr )
s ) =

∑

û∈Sϑ
(Zr )
s

BE

H(û)g−1 , (162)

where we defined:

ûl ∈ Sϑ
(Zr )
s

BE ←→ l ∈ J s,r
N ,K ≡

n

l ∈ JN ,K

�

�

� (−1)
N
r (N−1)e2πi ℓr = e2πi s

r

o

. (163)

This obviously generalises (155). Note that, for a divisor r < N , the ‘universes’ Sϑ
(Zr )
s

BE permuted

by the dual (−1)-form symmetry Z(−1)
r are generally larger than the universes Sϑ

(ZN )
s

BE = Sϑs
BE

permuted by Z(−1)
N .

3.1.2 Two-dimensional 0-form symmetry and orbits of Bethe vacua

Let us now consider the action of the 0-form symmetry Z(0)N on the Bethe vacua. On the
cylinder, the Uγ operator acts as:

Uγ|ûl〉= |ûl + γ〉 . (164)

Given the choice of generator γ0 in (144), we see that, for n ∈ ZN :

ûl,a→ ûl ′,a = (ûl + nγ0)a =
1

NK
(N la − ℓ− nK)mod1 , (165)

where ûl = (ûl,a) is defined up to permutations of the ua ’s. The corresponding action l → l ′

on the labels l = (la;ℓ) reads:

ℓ→ ℓ′ = (ℓ+ nK)mod N , la→ l ′a = la −
nK + ℓ− ℓ′

N
mod K . (166)

Note that ℓ is preserved by the action of Z(0)N if and only if K ∈ NZ. Since ℓ indexes the

decomposition of the Hilbert space induced by Z(1)N , as in (156), this means that the action of

Z(0)N generally does not preserve decomposition.13 This is a manifestation of the mixed ’t Hooft

anomaly between Z(1)N and Z(0)N , as we will explain momentarily.

13As an aside, note that Z(0)N acts by permutation on the Bethe vacua, hence there exists a homomorphism:

ϕ : Z(0)N −→ S(K−1
N−1) : γ 7→ ϕγ .

For the generator γ0, the permutation ϕγ0
is implicitly given by the action (165). It can sometimes be instructive

to study the permutation ϕγ0
in cycle notation. As an example, consider the permutation of the Bethe vacua for

N = 3 and K = 6,
SU(3)6 : ϕγ0

= (1 23)(4 56)(7 89)(10) ,

where the vacua are as in footnote 10. There are three cycles of length 3, while there is a unique fixed point in
this case – this is the vacuum l = (0, 2,4; 0).
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Let C denote a basis element of H1(Σg ,Z)∼= Z2g , and let us wrap a single topological line
of charge γ= nγ0 along C. Its expectation value is given by (98), namely:

〈Uγ(C)〉Σg
=
∑

û∈S(γ)BE

H(û)g−1 , (167)

where S(γ)BE denotes the subset of the Bethe vacua that are fixed under the action of γ ∈ Z(0)N .
In particular, for g = 1 this counts the number of fixed points:

〈Uγ(C)〉T2 =
�

�

�S(γ)BE

�

�

� . (168)

By modularity on T3, we expect that:

〈Πγ〉T2 = 〈Uγ(C)〉T2 , (169)

where 〈Πγ〉T2 is given in (149). Indeed, this is simply the constraint (104) described in sec-
tion 2.2.

We will now calculate (168) explicitly, for any γ = nγ0 and any value of N and K . As
previously alluded to, the flavour of the discussion of fixed points and orbits depends crucially
on the subgroup structure of the zero-form symmetry Z(0)N . The simplest case is where N is a
prime number. Then, ZN has the special property that every element except the trivial element
generates the full group. As a consequence, ZN has N − 1 generators, and the result of the
fixed point counting will be independent on the choice of non-zero element γ ∈ Z(0)N . This is

in strong contrast to the case where N has divisors, in which case elements γ ∈ Z(0)N can lie in
proper subgroups of ZN , which are labelled by the divisors of N .

Fixed points for N a prime integer Let us first consider the case where N is a prime number.
Since there are no nontrivial subgroups of ZN , there are only two different cases depending
on the CS level K . If K is a multiple of N , the theory is non-anomalous, while if K is not a
multiple of N then the theory is maximally anomalous. In section 2.1.2, we described how the
mixed anomaly constrains the orbit structure. In the maximally anomalous case, all orbits are
of ‘maximal’ length N . As a consequence, there cannot be any fixed points. If K is a multiple
of N on the other hand, the orbit lengths are all divisors of N – in our case where N is prime,
these are just 1 and N itself.

We can easily find all fixed points. Assume that the generator γ0 leaves invariant a partic-
ular Bethe vacuum, û= û+ γ. By Weyl transformations of the associated tuples (l1, . . . , lN ;ℓ),
(165) implies that the values (l1, . . . , lN ) can at most be permuted, while ℓ has to be invariant.
From (166) it is clear that ℓ is preserved if and only if K ∈ NZ. Thus, this is a necessary con-
dition to have a fixed point. Moreover, the fixed points satisfy (la)∼ (la +κ), with κ≡ K

N ∈ Z.
The equivalence above is up to permutation. Any solution must consequently take the form:

(la;ℓ) =
�

s, s+κ, s+ 2κ, . . . , s+ (N − 1)κ; Ns+κ
N(N − 1)

2
mod κN

�

, (170)

for an integer s such that 0 ≤ s < κ, and with the constraint that ℓ < N . For N odd, we see
that there is a unique solution with s = 0, since the constraint on ℓ reads ℓ = Ns < N , and
thus ℓ = 0. In appendix D.1, we prove the existence and uniqueness of the fixed point under
the generator γ0 ∈ ZN for all integers N , with K a multiple of N .

Returning to the case N ≥ 3 prime, every nontrivial element γ ̸= 0 is a generator, and thus
we have shown:

〈Uγ(C)〉T2 = δK mod N ,0 , (171)
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for all γ ∈ ZN \ {0}. For the identity, we trivially have U0(C) = 1 and thus
〈U0(C)〉T2 = IW[SU(N)K].

In order to determine the expectation value 〈Uγ(C)〉Σg
for arbitrary genus, we need to

evaluate the handle-gluing operator (138) at the fixed point. This is done by combining (167)
with (D.5), such that:14

H(ûfixed) = N
�

K
2N

�N−1 ∏

1≤a<b≤N

sin−2
�

π(a− b)
N

�

=
�

K
N

�(N−1)
, (172)

which is an integer by the assumption that N |K . Since ûfixed is fixed under the generator γ0 of
ZN , it is also fixed under the action of Unγ0 for n= 1, 2, . . . , N − 1. Therefore, we have

〈Unγ0(C)〉Σg
=H(ûfixed)

g−1 =
�

K
N

�(g−1)(N−1)
, (173)

for all n= 1, . . . , N − 1, while for n= 0 it is simply 〈1〉Σg
.

Fixed points for general N For each divisor d of N , we have a cyclic subgroup Zd of ZN . If
the SU(N)K theory is non-anomalous, we can discretely gauge the full centre ZN , or indeed
any of its subgroups Zd . If the SU(N)K theory is anomalous, there can still be a non-anomalous
subgroup Zd that we can discretely gauge – we will spell it out more explicitly in section 3.1.3
below. Especially including background fields for the higher form symmetries, this picture has
been shown in other contexts to lead to a rich web of theories related by gaugings of discrete
symmetries [15,80].

It is easy to see that the order of the group generated by γ = nγ0 is the smallest integer d
such that N |dn, which is given by d = N

gcd(n,N) . Therefore:

〈nγ0〉 ∼= Zd(n) , d(n)≡ N
gcd(n,N) , (174)

which gives an explicit relation between the integers n and divisors d of N . See figure 8 for
an explicit example.

Before studying the orbits in general, let us first count the number of fixed points under
the subgroup 〈nγ0〉 – that is, the orbits of length 1. Clearly, this number can only depend on
the divisor d(n) (174). For N prime, the only divisors are d = 1 and d = N , which gives the
previous result (171). When N has a nontrivial divisor d ̸∈ {1, N}, then there can be multiple
fixed points under a Zd subgroup, as long as the CS level K is a multiple of d as well. In
appendix D.2, we prove that the number of fixed points under the action of a Zd subgroup is
given by the simple formula:15

〈Unγ0(C)〉T2 =
� K

d(n) − 1
N

d(n) − 1

�

δK mod d(n),0 . (175)

14In the second equation, we use the identity
∏

1≤a<b≤N

sin2
�

π(a− b)
N

�

= (21−N N)N ,

which in fact holds for any N . To prove this, note that:

∏

1≤a<b≤N

sin2
�

π(a− b)
N

�

=
N−1
∏

d=1

sin
�

πd
N

�2(N−d)

.

Using sin(π− θ ) = sin(θ ), we can rearrange the factors, such that it gives N products of
∏N−1

d=1 sin
�

πd
N

�

= 21−N N ,
which is a standard identity.

15This number is simply the Witten index (136) of the SU( N
d ) K

d
theory, but this appears to be a coincidence, i.e.

there does not seem to be any deeper meaning to this fact.
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Z1

Z12

Z6
Z4Z3

Z12

Z2

Z12

Z3 Z4
Z6

Z12

Figure 8: The full list of subgroups of the cyclic group Z12 is Z1, Z2, Z3, Z4, Z6
and Z12. They are generated by elements n ∈ Z12 as visualised on this clock – for
instance, n= 3 generates Z4 ⊂ Z12.

Inserting the explicit n-dependence from (174), the number of fixed points (175) reads:

〈Unγ0(C)〉T2 =
� K

N gcd(n, N)− 1

gcd(n, N)− 1

�

δK mod N
gcd(n,N) ,0

. (176)

Note that when n = 1, then N
gcd(n,N) = N , such that the expression (176) is zero unless N |K ,

for which the binomial coefficient evaluates to 1, giving back (171) which holds for any value
of N if γ = γ0. Moreover, if N is prime and n = 1, . . . , N − 1 is arbitrary, then N

gcd(n,N) = N ,
while gcd(n, N) = 1 such that we arrive at (171) again, in agreement with the fact that nγ0 is a
generator of ZN . Finally, (176) is valid as well for n= 0, for which we get the trivial subgroup
〈0γ0〉 ∼= Z1. All Bethe vacua are fixed under the trivial subgroup, and we get back the SU(N)K
Witten index (136).

The result (175) now allows us to perform an exact test of the 3d modularity expecta-
tion (169). Indeed, the insertions of Uγ(C) (175) and Πγ (149) on T2 agree precisely for all
γ, as expected. This is due to the convention of the gauge flux operator (146), where the
overall sign (−1)N−1 has been inserted to eliminate any relative minus signs. Thus, assuming
3d modularity, we have now established (149) as well.

Orbit structure As outlined in section 2.2, the orbit structure under ZN is constrained by
the mixed ’t Hooft anomaly A. In particular, any anomaly-free subgroup Zd admits an orbit
of dimension N/d. However, this does not answer the questions of how many orbits exist or,
more specifically, of how many orbits of dimension N/d exist.

The first question can be answered using the Cauchy–Frobenius lemma.16 It asserts that
the total number of orbits, |SBE/Z

(0)
N |, is given by the sum over γ ∈ Z(0)N of the fixed points

under the γ-action, divided by the order of the group.17 Since the number of fixed points are
simply given by the expectation values of the Uγ(C) operator on the two-torus, we have

�

�

�SBE/Z
(0)
N

�

�

�=
1
N

∑

γ∈Z(0)N

〈Uγ(C)〉T2 . (178)

16This lemma is also known as the orbit-counting theorem, or the lemma that is not Burnside’s [81].
17Recall the lemma: Let G be a finite group that acts on a set X . The lemma asserts that |X/G| = 1

|G|

∑

g∈G |X
g |,

where X g are the g-fixed points in X . The proof goes as follows: write
∑

g∈G |X
g | =

∑

x∈X |Gx |, where |Gx | ⊂ G is
the stabiliser subgroup of x ∈ X . This identity simply re-expresses the sum over all (g, x) ∈ G × X with g · x = x .
Using the orbit-stabiliser theorem |Gx |= |G|/|G · x |, we write this as a sum over orbits G · x . Finally, every element
x in a given orbit has the same orbit length,

∑

g∈G

|X g |=
∑

x∈X

|Gx |= |G|
∑

x∈X

1
|G · x |

= |G|
∑

A∈X/G

∑

x∈A

1
|A|
= |G||X/G| . (177)
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Sums of these kinds occur when gauging the 0-form symmetry – of course, on T2 we essentially
need two such insertions, which we will discuss in detail below. Amusingly, by 3d modularity,
the sum (178) is also equal to the sum over 〈Πγ〉, namely the gauging of Z(1)N given by (157)

with s = 0, so that the total number of Z(0)N orbits is also the number
�

�

�Sϑs=0
BE

�

�

� of ground states

in the θs = 0 universe of the decomposition imposed by Z(1)N :
�

�

�SBE/Z
(0)
N

�

�

�=
�

�

�J s=0
N ,K

�

�

� . (179)

Labelling the group elements by γ = nγ0, the sum (178) can be written as a sum over
n. For an arbitrary integer N , due to (175), some terms inside the sum can be identical for
different values of n – this occurs for any two integers n, n′ related by d(n) = d(n′). Indeed,
the sum over the full ZN group collapses to a sum over the divisors d of N and K only. We are
thus interested in the distribution of subgroups generated by all elements of ZN . The number
of elements of ZN generating a Zd subgroup for given d is given by Euler’s totient function
ϕ(d). It counts the positive integers up to a given integer d that are relatively prime to d.18

Clearly, ϕ(1) = 1, and ϕ(d) = d − 1 if d is prime. The identity:
∑

d|n

ϕ(d) = n , (180)

due to Gauss, partitions any integer n ∈ N into the Euler totients of its positive divisors d. We
list some useful properties of ϕ in appendix E.2. This allows us to simplify the sum over n as
a sum over divisors d of N and K ,

N−1
∑

n=0

〈Unγ0(C)〉T2 =
∑

d|gcd(N ,K)

ϕ(d)
� K

d − 1
N
d − 1

�

. (181)

As a consistency check, let N be prime and N |K . Then the only divisors are d = 1 and d = N ,
and using ϕ(N) = N − 1 we obtain 〈1〉T2 + N − 1, which agrees with (171) since there are
N − 1 non-identity elements in ZN . Assuming again the 3d modularity relation (169), (181)
gives us furthermore the result (158) for the 1-form symmetry gauging in the case where N is
prime.

The expression (181) is always a multiple of N . This is not clear from the sum itself, and
generally no summand inside the sum (181) is divisible by N . Rather, the divisibility is a
consequence of the Cauchy–Frobenius lemma (178):

�

�

�SBE/Z
(0)
N

�

�

�=
1
N

∑

d|gcd(N ,K)

ϕ(d)
� K

d − 1
N
d − 1

�

. (182)

Note that this formula holds for any value of N and K . For instance, in the maximally anoma-
lous case where K and N do not share any divisors other than d = 1, we demonstrated above
that all orbits are of length N . This is consistent with (182), which implies that there are
|SBE|/N orbits of equal length, which must therefore be of length N .19

18In other words, it is the number of integers k in the range 1 ≤ k ≤ d for which the greatest common divisor
gcd(d, k) is equal to 1.

19The integer-valued number-theoretic function (182) is well-known in the combinatorics literature: The right-
hand-side of (182) is known as the number of cycles of Bulgarian solitaire [82, 83], and it is also the number of
necklaces of type K , with N 0’s and K − N 1’s [84]. See also the OEIS sequence A047996.
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The Cauchy–Frobenius formula does not tell us directly how many orbits of a given di-
mension exist, beyond the total number of orbits given by (182). Indeed, we can imagine
partitioning the orbits {ω̂ ∈ SBE/Z

(0)
N } into all orbits of the same length, or equivalently, into

all orbits with fixed stabiliser. Since the stabiliser orders – or equivalently the orbit lengths –
are all divisors of N , this suggests that we can rewrite (182) into a sum over orbits of length d.
We will explain below that this is not a simple rearrangement of the sum – that is, the numbers
of orbits of fixed lengths cannot, in general, be expressed in terms of simple binomial factors.

Insertion of zero-form symmetry operators Let us now consider the insertion of arbitrary
line operators for the zero-form symmetry, as set up in section 2.2. Consider first the case
g = 1, which has a spatial direction C and a Euclidean time direction C̃. According to (97), the
general insertion of Uγ(C) Uγ′(eC) on T2 counts the number of fixed points under both γ and
γ′. This amounts to solving a slightly modified counting problem: if some Bethe vacuum û is
fixed under γ ∈ ZN , it is consequently also fixed under nγ, for any n. Thus if n′ is a multiple
of n, then the fixed points under both nγ0 and n′γ0 are simply the ones fixed under nγ0 (and
vice versa). But even if neither n or n′ is a multiple of the other, they can still be embedded
into a larger subgroup of ZN .20

To make this precise, consider two group elements nγ0 and n′γ0, labelled by
n, n′ = 1, . . . , N − 1. Then 〈nγ0〉 and 〈n′γ0〉 generate subgroups of order N

gcd(n,N) and N
gcd(n′,N) .

Both of these groups sit in the larger group 〈gcd(n, n′)γ0〉 inside ZN , in the sense that the latter
contains both elements nγ0 and n′γ0. The subgroup 〈gcd(n, n′)γ0〉 = H(0)(nγ,n′γ) is precisely the
one described above equation (99). Therefore, the vacua that are fixed under both nγ0 and
n′γ0 are exactly those fixed by gcd(n, n′)γ0, hence we have:

〈Unγ0(C) Un′γ0(eC)〉T2 = 〈Ugcd(n,n′)γ0(C)〉T2 . (183)

We can alternatively understand this identity from the geometry of the two-torus inside
T3 = T2 × S1. We can associate to the operator Unγ0(C) Un′γ0(eC) the cycle nC + n′C̃ in the
first homology H1(T2,Z). The mapping class group of T2 allows us to simplify this cycle to
gcd(n, n′)C, which is again associated to the operator Ugcd(n,n′)γ0(C).

Using (176), we can make (183) completely explicit. Since the gcd is associative, it follows
that:

〈Unγ0(C) Un′γ0(eC)〉T2 =
� K

N gcd(n, n′, N)− 1

gcd(n, n′, N)− 1

�

δK mod N
gcd(n,n′ ,N) ,0

. (184)

The insertion of an arbitrary topological line for Z(0)N on Σg follows analogously. When

inserting the generic topological operator Uγ (93), we sum over the fixed points S(γ)BE , where
γ = (γi) ∈ Z

2g
N . For g > 1, the insertion furthermore involves the evaluation of the handle-

gluing operator H on the fixed points, as in (98). Unlike in the case where there is only
one fixed point and we were able to evaluate (172), we do not have such a simple formula
available in the case of multiple fixed points. Indeed, we do not expect such a simple formula
for arbitrary γ – after all, even for γ the trivial element, 〈Uγ=0〉Σg

= 〈1〉Σg
is given by the

Verlinde formula (139), for which no ‘simpler’ algebraic expression is known.

20As an example, consider N = 12, where the subgroups are depicted in figure 8. Then n= 4 and n′ = 6 generate
a Z3 and Z2 subgroup of Z12, respectively. However, even though the orders of the subgroups are coprime, they
both sit in a Zlcm(2,3) = Z6 subgroup of Z12, generated of course by 2γ0. The fixed points under both 4γ0 and 6γ0

thus include the fixed points under 2γ0. But these are in fact all fixed points that are shared by 4γ0 and 6γ0. This
is because the group generated by 4γ0 and 6γ0 necessarily contains 2γ0, and thus if û is fixed by both 4γ0 and 6γ0,
then it is also fixed by 2γ0.
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3.1.3 ’t Hooft anomaly and the allowed (SU(N)/Zr )K CS theories

The ’t Hooft anomaly (76) can be computed from the twisted superpotential (129). It reads:

A(γ(0),γ(1)) = γ(1)Kγ(0) mod 1=
(N − 1)K

N
nm mod 1 , (185)

hence the anomaly coefficient that enters in (83) is a = −K mod N . Here we parameterise
Z(1)N ⊕Z

(0)
N by the two integers m, n ∈ ZN , with γ(1) = mγ0 and γ(0) = nγ0. We thus have the

anomalous commutator:
Πmγ0Unγ0 = e−2πimn K

N Umγ0Πnγ0 . (186)

This directly implies that certain mixed correlation functions must vanish:

mn
K
N
̸∈ Z =⇒ 〈Πmγ0Unγ0(C)〉Σg

= 0 . (187)

Note that having an anomalous commutator is a sufficient condition for the correlator to van-
ish, but not a necessary one. In fact, 3d modularity implies that the mixed correlator in (187)
vanishes if and only if d = N/gcd(m, n, N) is not a divisor of K , that is, if gcd(m, n, N)K/N is
not an integer – this will be discussed in subsection 3.2 below.

It is interesting to look for subsets of topological operators that are mutually commuting,
so that the corresponding symmetries can be gauged. These correspond to n, m such that:

mn
K
N
∈ Z ⇔ mn ∈

N
gcd(N , K)

Z . (188)

As discussed above (see (174) in particular), each element n ∈ ZN generates a sub-
group Zd(n,N) ⊆ ZN . Then, one finds that the possible non-anomalous subgroups

Z(1)d ⊕Z
(0)
d ′ ⊆ Z

(1)
N ⊕Z

(0)
N are:

n

Z(1)d ⊕Z
(0)
d ′

�

�

� d, d ′|N and dd ′ ∈ gcd(N , K)N Z
o

. (189)

We are particularly interested in the case d = d ′ ≡ r, so that Zr can be interpreted as a
one-form symmetry in 3d. These are the subgroups:

n

(Z(1)r )3d ⊆ (Z
(1)
N )3d

�

�

� r|N and r2 ∈ gcd(N , K)N Z
o

, (190)

which simply correspond to a particular subset of divisors of N . Note that having a non-
anomalous (Z(1)r )3d is equivalent to the existence of the corresponding Chern–Simons theory
on spin three-manifolds:

KN
r2
∈ Z ⇔ 3d N = 2 CS (SU(N)/Zr)K exists. (191)

See e.g. [31,48] for recent discussions of this condition.

3.2 Mixed correlators and a modular anomaly on T 3

It is interesting to compute the action the Z(1)N operators on Bethe states fixed by (part of) Z(0)N .

In the simplest case, consider the case where û(ZN ) is fixed by the full Z(0)N . Such vacua only
occur in the non-anomalous case, κ≡ K

N ∈ Z, and the calculation (D.2) in Appendix D.1 shows
that:

Πγ0 |û(ZN )〉= (−1)(N−1)(κ−1) |û(ZN )〉 . (192)
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This directly implies that:

〈Πγ0Uγ0(C)〉T2 =
∑

û∈S(γ0)
BE

〈û|Πγ0 |û〉= 〈û(ZN )|Πγ0 |û(ZN )〉= (−1)(N−1)(κ−1) . (193)

Hence we have:
〈Πγ0Uγ0(C)〉T2 = (−1)(N−1)(κ−1) 〈Uγ0(C)〉T2 . (194)

On T3, we should be able to map the 1-cycle C + [S1
A] to the 1-cycle C at no cost by a 3d

modular transformation, hence the non-trivial sign when N and κ are both even is interpreted
as a non-trivial 3d modular anomaly. (Note that the simplest instance of this anomaly is for
N = 2 and K ∈ 4Z, as discussed already in (20) in section 1.1.)

More generally, we may consider the action ofΠmγ0 on the Bethe states fixed by Z(0)d ⊆ Z
(0)
N :

Πmγ0 |û(Zd )〉= (−1)m(N−1)e−2πim ℓ
N |û(Zd )〉 . (195)

Here, the action is generally by a N -th root of unity, and different states is the same orbit ω̂
with Stab(ω̂) = Zd can have different values of ℓ (they differ by integer multiples of K mod
N , as implied by (166)). The explicit computation of mixed correlations functions on T3 is
therefore more involved. We find:




Πmγ0Unγ0(C)
�

T2 = (−1)mn( K
N +1)(N−1)




Ugcd(m,n)γ0(C)
�

T2 , (196)

which naturally generalises (194). Here the correlators on both sides vanish whenever
mn

� K
N + 1

�

/∈ Z, which can be shown to follow from (184). For the non-zero correlators,
we find the non-trivial sign in (196) – this give us the general form of the 3d modular anomaly
on T3.

This anomaly should be understood as a 3d mixed anomaly between gravity (the 3d
Lorentz group) and the one-form symmetry (Z(1)N )3d, or more generally between gravity and
a non-anomalous subgroup (Z(1)r )3d for r|N . The corresponding four-dimensional anomaly
theory takes the form [42]:

Sgrav anomaly = 2πh

∫

M4

w2(M4)∪ B(r) , h≡
(K − N)N(r − 1)

2r2
mod 1 , (197)

where w2(M4) ∈ H2(M4,Z2) is the second Stiefel–Whitney class of the 4-manifold and B(r)

is the (Z(1)r )3d background gauge field. This is a Z2-valued anomaly: for (Z(1)r )3d a non-
anomalous subgroup, the anomaly coefficient h in (197) takes the values h = 0 or 1

2 , as one
can readily check e.g. using the property (191) that KN

r2 ∈ Z. In fact, one can check that:

h=

¨

1
2 , if N is even, N

r is odd and K
r is even,

0 , otherwise.
(198)

Indeed, we have h= 1
2 if and only if the sign appearing in (196) is non-trivial.21 Physically, this

anomaly is best understood by considering the spin of the topological lines in the underlying
bosonic 3d TQFT [42], which is the N = 0 SU(N)k CS theory with k = K − N . As we will
discuss further in section 4.1, the ZN one-form symmetry is generated by a particular Wilson
line in 3d, the abelian anyon denoted by a ∼= Uγ0 that satisfies aN = 1 under fusion. Given
the (Z(1)N )3d ’t Hooft anomaly a = −K mod N , one can show that the 3d spin of the invertible
symmetry line an ∼= Unγ0 is given by:

h[an] =
(K − N)n(N − n)

2N
mod 1 . (199)

21This is explained in detail in appendix D.3.
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The line an generates the subgroup (Z(1)r )3d with r = N/n, assuming gcd(N , n) = n without
loss of generality. Hence we have:

h[an] =
(K − N)N(r − 1)

2r2
mod 1 . (200)

This satisfies h[an] ∈ 1
2Z if and only (Z(1)r )3d is non-anomalous. Furthermore, we directly

notice that h[an] exactly reproduces the gravity-(Z(1)r )3d anomaly coefficient h in (197), not
coincidentally, hence the generating line an has half-integer spin depending on the properties
of N , K

r and N
r exactly as in (198).

The generating line an being non-anyonic (that is, having h ∈ 1
2Z) is necessary for having

a consistent gauging of the 3d TQFT. While the underlying N = 0 CS theory SU(N)K−N is
a bosonic TQFT, the CS theory (SU(N)/Zr)K−N that results from the Zr one-form gauging is
actually a spin-TQFT if and only if h= 1

2 , as explained in [42]. The fact that gauging a one-form
symmetry in a bosonic TQFT results in a spin-TQFT is the most physical way to understand
the existence of the mixed anomaly (197) – see e.g. [42,85]. Thus, we also find the condition
for the bosonic CS theory after gauging to be fermionic – that is, a spin-TQFT:

N = 0 (SU(N)/Zr)K−N is a spin-TQFT ⇔ N even,
N
r

odd and
K
r

even. (201)

Correspondingly, the 2d WZW[Gk=K−N ]models for G = SU(N)/Zr are fermionic CFTs in those
cases. For r = N , this is the well-known statement that the N = 0 PSU(N)k=K−N CS theory is
a spin-TQFT if only if N is even and k

N is odd [40]. The result (201) is also in agreement
with the literature on 2d (bosonic) WZW[G] for G non-simply-connected [40, 41, 86–88].
When h[a] = 1

2 , we should actually replace an by ean = anψ, where ψ is the transparent
line that couples to the spin structure of the 3-manifold. Then h[ean] = 0 and we can proceed
with anyon condensation as in the bosonic case [42]. In this sense, we can always trivialise
the Z2 anomaly (197) because the ψ line always exists in our supersymmetric field theories.
Nonetheless, the interpretation in terms of Bethe vacua is non-trivial, as we start with Bethe
vacua that are all bosonic and build Bethe states in the G = eG/Γ theory that can be fermionic,
thus affecting the supersymmetric index counting, sometimes in intricate ways [21]. In this
paper, we have only counted the Bethe states irrespective of their eigenvalue under (−1)F,
which does not give us an index in general. When this ‘modular anomaly’ vanishes, however,
all Bethe states are bosonic and thus the naive sum over the Bethe states of the G theory does
give us the correct twisted index.

3.3 The PSU(N)K twisted index for N prime

In this subsection, we study the case of N an odd prime number.22 For N prime, ZN has no
non-trivial subgroup and every non-zero element n ∈ ZN is a generator. Then, as explained
above, there is a single fixed point if a ≡ −K mod N = 0 for every γ= nγ0, and no fixed point
if a ̸= 0. Indeed, this follows from our general discussion of the Γ (0) orbits of Bethe vacua
in section 2.1.2. For N prime, we either have no ’t Hooft anomaly (a = 0) or the maximal
anomaly (a ̸= 0); in the former case, we have a unique orbit of dimension 1 and all the other
orbits are of dimension N , while in the latter case all orbits must be of dimension N . This
directly implies that the Witten index of the Z(0)N -gauged A-model is given by:

ZT3

�

SU(N)K/Z
(0)
N

�

=
1
N

�

K − 1
N − 1

�

+δa,0

�

−
1
N
+ N

�

, (202)

22The case of an even prime number, N = 2, was discussed in the introduction. It involves additional subtleties
common to all even N , which we will address in the next subsections.
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where we are just counting the number of ground states as in (115), including the twisted
sectors. Indeed, for a = 0 we have (

�K−1
N−1

�

− 1)/N maximal orbits plus N twisted sectors from
the length-1 orbit, while for a ̸= 0 we only have

�K−1
N−1

�

/N maximal orbits.

Let us now gauge the Z(1)N and Z(0)N separately, before combining the two if a = 0. The

gauging of Z(1)N was already discussed in subsection 3.1.1. In particular, the Witten index of

the Z(1)N -gauged A-model for N ≥ 3 prime is given in (158). If we only gauge Z(0)N instead, we
have:

ZΣg×S1

�

SU(N)K/Z
(0)
N

�

=
1

N2g−1

�

〈1〉Σg
+ (N2g − 1)〈Uγ0(C)〉Σg

�

, (203)

where C is any basis element of H1(Σg ,Z). Here, we used the fact that, for N prime, any
insertion of the form (93) is equivalent to inserting Uγ0(C) because ZN has no non-trivial
subgroups. Note that we will not keep track of the dual 1-form symmetry in what follows –
that is, we choose C D = 0 in the notation of section 2.4. For g = 1, we directly see that (203)
reproduces (202).

The Witten index of the PSU(N)K theory (N prime) For K ∈ NZ, the 3d 1-form symmetry
is non-anomalous and we can gauge it fully. We can thus compute the full partition function
on Σg × S1 of the resulting PSU(N)K theory, including the dependence on θs, as:

ZΣg×S1

�

PSU(N)θs
K

�

=
1

N2g

N−1
∑

m=0

e2πi sm
N

�

〈Πmγ0〉Σg
+ (N2g − 1)〈Πmγ0Uγ0(C)〉Σg

�

. (204)

In particular, setting g = 1, we find the Witten index of the PSU(N)K N = 2 CS theory with
θs turned on:

IW

�

PSU(N)θs
K

�

=
1

N2

��

K − 1
N − 1

�

− 1
�

+δ0,sN . (205)

It is a non-trivial mathematical fact that (205) defines an integer for any prime number N and
K ∈ NZ. Let us define the rational number MN ,K through the decomposition:

�

K − 1
N − 1

�

= 1+MN ,K N2 . (206)

For N ≥ 3 prime, the numbers MN ,2N are integers called Babbage quotients [89], while 1
N MN ,2N

for N ≥ 5 prime are integers known as Wolstenholme quotients [90]. Crucially, if N ≥ 3 is
prime and N |K , then MN ,K is an integer. This is a consequence of Glaisher’s theorem [91],
which we discuss in some detail in appendix E.1 (see in particular Proposition 1). From (206),
we therefore have that:

IW

�

PSU(N)θs
K

�

= MN ,K + Nδs,0 , (207)

is the Witten index of the pure PSU(N)K CS theory with theta angle θs. This gives the seem-
ingly arbitrarily defined integer MN ,K a physical meaning as the Witten index of the PSU(N)θs

K
theory with θs ̸= 0.

The higher-genus twisted index of the PSU(N)K theory (N prime) For any g, the twisted
index (204) can be written as:

ZΣg×S1

�

PSU(N)θs
K

�

=
1

N2g−1





∑

û∈Sϑs
BE

H(û)g−1 + (N2g − 1)
∑

û∈Sϑs
BE∩S

(γ0)
BE

H(û)g−1





=
1

N2g−1





∑

l∈J s
N ,K

H(ûl)
g−1 + (N2g − 1)δs,0

�

K
N

�(g−1)(N−1)


 , (208)
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where the set of Bethe vacua in the universe set by θs was defined in (154), and in the second
line we used (172) and the fact that the unique Z(0)N fixed point lives in the θs = 0 sector. One
easily checks that setting g = 1 in (208), together with (158), reproduces (205).

Explicit examples For N prime and any g, we find:

ZΣg×S1

�

PSU(N)0N
�

= N . (209)

With some effort, we can work out some closed-form formulas as a function of g in some
special instances. Two such examples are:

ZΣg×S1

�

PSU(3)06
�

= 4g , (210)

ZΣg×S1

�

PSU(5)010

�

=
1

400

�

�

9+ 4
p

5
�

4−6g5−5g
�p

5− 1
�4g�

3 205g
�p

5− 5
�2g

+ 2
�

5−
p

5
�7g�

5+
p

5
�5g�

+ 5
�

9− 4
p

5
��

1+
p

5
�4g

×
�

1
2

�

5+
p

5
�

�2g

+ 32 5g+1 + 75 24g+1
�

. (211)

Amazingly, the latter expression is an integer. For g = 0, 1, 2, 3, 4, 5, . . . , we have:

ZΣg×S1

�

PSU(5)010

�

= 1, 10, 1546, 2062386, 2958360826, 4246815114466, . . . (212)

More generally, we checked numerically, in many cases, that the formula (208) always returns
an integer, as expected physically.

3.4 Gauging the 3d one-form symmetry on T 3

Let us now compute the Witten index – that is, the T3 partition function – for the 3d
(SU(N)/Zr)K N = 2 Chern–Simons theories, for any N and r. We do this by gauging a
non-anomalous Z(1)r ⊕Z

(0)
r symmetry in the A-model on T2.

Gauging Z(0)N on T2 We first consider gauging only Z(0)N , which corresponds to summing over
all insertions on T2. Using (184), we have:

ZT3

�

SU(N)K/Z
(0)
N

�

=
1
N

∑

n,n′∈ZN

〈Unγ0(C) Un′γ0(eC)〉T2

=
1
N

∑

n,n′∈ZN

� K
N gcd(n, n′, N)− 1

gcd(n, n′, N)− 1

�

δK mod N
gcd(n,n′ ,N) ,0

, (213)

This can be written more elegantly. Similarly to the single sum (181), the double sum in (213)
can be reorganised as a sum over the divisors d of N . Thus, for each divisor d, we need to count
the pairs (n, n′) ∈ Z2

N such that gcd(n, n′)γ0 generates Zd ⊆ Z
(0)
N . This number is determined

by Jordan’s totient function Jk(d) (which we review below) for k = 2, so that:

ZT3

�

SU(N)K/Z
(0)
N

�

=
1
N

∑

d|gcd(N ,K)

J2(d)
� K

d − 1
N
d − 1

�

. (214)

For N prime, in particular, we have J2(N) = N2 − 1 and J2(1) = 1, and then one can easily
check that (214) reproduces (202). We also checked ‘experimentally’ that (214) returns an
integer for any N .23 This provides an important consistency check of our overall normalisation,
consistent with the discussion of section 2.4. Indeed, (214) should be integer because it is the
2d Witten index of the orbifolded A-model.

23We checked this statement numerically for N , K ≤ 4000. A mathematical proof would be nice to have.
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Basics of Jordan’s totient function Let us briefly review Jordan’s totient function Jk(d) for
general k, as it will be useful below. Given two positive integers k and d, Jk(d) equals the
number of k-tuples of positive integers (ni)ki=1 that are less or equal to d and such that the
k+ 1 integers (n1, · · · , nk, d) are coprime. It can be explicitly computed as:

Jk(d) = dk
∏

p|d

�

1−
1
pk

�

, (215)

where p ranges through all prime divisors of d. Note that this obviously generalises Euler’s
totient function ϕ(d) = J1(d). The Jordan’s totient function allows us to decompose the k-
power of any integer N into the divisors of N :

∑

d|N

Jk(d) = N k . (216)

Note also that Jk(1) = 1 and that, for any prime number p, we have Jk(p) = pk − 1. We list
further relevant properties of Jk(d) in appendix E.2.

Jordan’s totient function J2(d) has appeared sporadically in the physics literature, for in-
stance in the context of cyclic group orbifolds in monstrous moonshine [92, 93], and in the
enumeration of the allowed electric-magnetic charge lattices in 4d N = 4 SYM with gauge
algebra su(N) [94]. More relevantly to the present context, this function has appeared in the
mathematical literature on dimensions of Verlinde bundles over curves [36,50–53].

The (naive) Witten index for PSU(N)K for any N and θs = 0 Assuming for now that
a = −K mod N = 0, we can gauge the full Z(1)N ⊕ Z

(0)
N to obtain the 3d Witten index of the

PSU(N)K N = 2 CS theory. This amounts to summing the topological lines over all three
generators of H1(T3,Z)∼= Z3:

IW[PSU(N)0K] = ZT3

�

PSU(N)0K
�

=
1

N2

∑

m,n,n′∈ZN

〈Πmγ0Unγ0(C) Un′γ0(eC)〉T2 . (217)

Whenever we have the full 3d modularity, with the trivial sign in (196), it is clear from the
above discussions that we can massage the sum (217) into a sum similar to (214), with J2
replaced with J3 – see the definition of Jk above (215). The modular anomaly (196) spoils
this naive expectation, however. In fact, one can easily check that this naive expectation would
lead to non-integer results for the index in examples where the T3 anomaly is non-trivial – thus,
the subtle sign in (196) is absolutely crucial to obtain sensible physical results.

Given (196) together with the T2 modularity (183), we have:

〈Πmγ0Unγ0(C)Un′γ0(eC)〉T2 = (−1)m gcd(n,n′)( K
N +1)(N−1)〈Ugcd(m,n,n′)γ0(C)〉T2 . (218)

Now we need to count the triples (m, n, n′) so that gcd(m, n, n′)γ0 generates Zd with some spe-
cific signs. For each divisor d|N , we can partition Jordan’s totient function as J3(d) = n++n−,
where the contributions n± are those that come with the ± signs. Due to the specific partially
symmetric form of the sign in (218), the number of positive and negative terms are related
as 3n+ = 4n− for any divisor d giving rise to a minus sign. We are then interested in the
number n+−n− =

1
7 J3(d) after the cancellation. This suggests to use the following refinement

of Jordan’s totient J3(d), which depends on specific arithmetic properties of K and N :

J N ,K
3 (d)≡

¨

1
7 J3(d) , for N even, N

d odd, K
d even,

J3(d) , otherwise.
(219)
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Then we have that, for all N and all K:

∑

m,n,n′∈ZN

〈Πmγ0Unγ0(C) Un′γ0(eC)〉T2 =
∑

d|gcd(N ,K)

J N ,K
3 (d)

� K
d − 1
N
d − 1

�

. (220)

Let us comment briefly on the non-trivial denominator in the definition (219). First of all,
since J N ,K

3 (d) = 1
7 J3(d) only if N is even and N

d is odd, this value only occurs if d is even. In
that case, one can show that 7|J3(d) for all even integers d.24 This number has a rather natural
interpretation as J3(2) = 7.25 Thus we have that J N ,K

3 : N→ N is a well-defined integral map
for all values of N and all K .

Coming back to the case K |N , we have thus written the PSU(N)K T2 index as:

IW

�

PSU(N)0K
�

=
1

N2

∑

d|N

J N ,K
3 (d)

� K
d − 1
N
d − 1

�

. (221)

We list this index for small allowed values of N and K in table 1. Since the full symmetry
(Z(1)N )3d is non-anomalous, the resulting PSU(N)K theory exists and the index should be a
non-negative integer.26 We conjecture this is the case, namely that:

IW

�

PSU(N)0K
�

∈ N , (222)

for any N |K .27 As a small consistency check for the formula (221), consider the case where
N ≥ 3 is prime and N |K . Then there are only two terms in the sum, d = 1 and d = N , and
using J3(p) = p3 − 1 for p prime (see appendix E.2) we precisely reproduce (205) for s = 0.
Another small check of (221) is that, for N = 2, it precisely reproduces (22).28

As already mentioned, the naive index (222) is actually a supersymmetric index only when
the ‘modular anomaly’ vanishes and the corresponding N = 0 CS theory PSU(N)k=K−N is
bosonic (that is, if (N − 1)k/N is even).

The (naive) Witten index for (SU(N)/Zr )K Given the above discussion, it is now straight-
forward to consider gauging a non-anomalous subgroup Zr ⊂ (Z

(1)
N )3d on T3. As described in

subsection 3.1.3, we can find a non-anomalous subgroup as long as N and K have a common
divisor. These common divisors are precisely labelled as the summation index in (220). This
suggests that the ‘maximal’ non-anomalous subgroup we can gauge is Zgcd(N ,K).

Summing over the topological lines on T3 for the maximal non-anomalous subgroup
Zgcd(N ,K) ⊆ ZN also involves a sum over all non-anomalous subgroups contained in ZN . These
are precisely the groups Zd with d|gcd(N , K). The result for the torus partition function of
the (SU(N)/Zgcd(N ,K))K theory then takes a very similar form as before, with normalisation
factor |Γ |2 adjusted to the cardinality of the group we sum over:

IW

�

(SU(N)/Zgcd(N ,K))
0
K

�

=
1

gcd(N , K)2
∑

d|gcd(N ,K)

J N ,K
3 (d)

� K
d − 1
N
d − 1

�

. (223)

24We leave this as an exercise to the enthusiastic reader. See also appendix E.2 for more divisibility properties.
25Recall that Jk(p) = pk−1 for p prime and k ∈ N. Jordan’s totient is a multiplicative function, see (E.11). Thus

in particular if d is even and d
2 is odd, then 1

7 J3(d) = J3(
d
2 ). Clearly this is not the case for all values d of which

J N ,K
3 (d) is evaluated in (220): For instance, d = 4 is an even divisor of N = 12 such that N

d is odd, but d
2 is even

as well. Therefore, J N ,K
3 (d) does not have a simple interpretation as being either J3(d) or J3(

d
2 ).

26This Witten index cannot be negative because it is also counting the lines in a 3d TQFT. See the discussion in
section 4.1.

27We have checked this numerically for N ≤ K ≤ 100000.
28The function (221) seems to be relatively unexplored in the literature. For K = 3N , IW[PSU(N)03N ] is the

integer sequence A244036 and it appears in the study of chiral algebras [95, Section 3.1.2].
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Table 1: The (naive) Witten index IW

�

PSU(N)0κN

�

, evaluated from (221), for small
values of N and κ ≡ K

N ∈ Z. The cases when the naive index is not a Witten index
(when both N and κ are even) are shown in red.

κ\N 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

2 1 4 4 10 16 42 108 312 930

3 3 6 16 45 186 798 3860 19305 100235

4 2 9 32 160 942 6048 41144 290592 2119200

5 4 13 68 430 3328 27454 240448 2188095 20545320

6 3 18 116 955 9030 91770 982884 10942308 125656965

7 5 24 192 1860 20868 250446 3171084 41742027 566724020

8 4 31 288 3295 42628 591633 8645360 131347320 2058115980

9 6 39 420 5435 79794 1254589 20780280 357870942 6356282290

10 5 48 580 8480 139092 2446486 45294044 871916841 17310311600

More generally, let us consider the discrete gauging of any non-anomalous subgroup Zr , where
r is a divisor of gcd(N , K). Then the sum over the Zr topological lines involves a sum over all
divisors d of r. Accordingly, the Witten index reads:

IW

�

(SU(N)/Zr)
0
K

�

=
1
r2

∑

d|r

J N ,K
3 (d)

� K
d − 1
N
d − 1

�

. (224)

We again conjecture that this is an integer, as we also checked numerically for a large set
of values of N , K and r. Let us note that the normalisation 1/r2 in (224) is the ‘maximal’
allowed, i.e. 2 is the largest exponent of the order of the gauged subgroup that leads to an
integral index. We emphasise that this is a rather strong consistency check – in general, none of
the summands in (224) are integers, and only the whole sum has the right divisibility property.
Note also that the sum (224) automatically ‘skips’ the would-be contribution from anomalous
subgroups of ZN . Finally, we extend the conjecture (222) to the general case, as:

r|gcd(N , K) ⇒ IW

�

(SU(N)/Zr)
0
K

�

∈ N . (225)

A mathematical proof of this ‘physical fact’ would be extremely interesting.29

In summary, the expression (224) gives the (naive) Witten index for all possible 3d N = 2
Chern–Simons theories with gauge algebra su(N), which are indexed by N , K and r such that
NK/r2 ∈ Z as discussed above (191). At fixed N and K , the allowed integers r run over the
divisors of gcd(N , K).

The (naive) Witten index with a non-trivial θ -angle The (SU(N)/Zr)K theory has a non-
trivial (Z(0)r )3d 0-form symmetry, whose quantum numbers are the Zr -valued ‘Stiefel–Whitney’
classes that indicate whether a SU(N)/Zr principal bundle can be lifted to an SU(N) bundle
– see e.g. [14, 15]. We can keep track of this symmetry in the Witten index by introducing
a discrete fugacity for it. In the A-model formalism, this is precisely the θs index introduced

29A curiosity for N prime concerns the fact that IW[PSU(N)0K] for N |K is divisible again by N , but only for N ≥ 5.
This is a consequence of Proposition 2 in Appendix E.1, which refines Proposition 1 by excluding the case N = 3.
For this case, the integers MN ,K defined in (206) are divisible again by N .
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above, which at the same time serves as a background gauge field for the dual (−1)-form
symmetry.

Let us first consider the PSU(N)K theory with N |K . Then, the sum over topological lines
in (217) generalises to:

IW

�

PSU(N)θs
K

�

= ZT3

�

PSU(N)θs
K

�

=
1

N2

∑

m,n,n′∈ZN

e2πi ms
N 〈Πmγ0Unγ0(C) Un′γ0(eC)〉T2 , (226)

with s ∈ ZN . The oscillating phase makes the counting problem more involved. It turns
out to probe additional arithmetic features of the theory such as the divisibility of N by square
numbers: if N is square-free, all theories are in the same gauge ‘orbit’.30 If N is not square-free,
then ZN is not a product of cyclic groups and there can be disjoint gauge orbits. Furthermore,
these cases can feature mixed anomalies between gauged and residual symmetries [15,16].

The sum (226) is most strategically analysed in three steps: N square-free, N arbitrary but
with K such that the gravitational anomaly (197) vanishes for all r|N , and finally the generic
case with both N and K arbitary. The even simpler case where N is prime is discussed in the
previous section, where the theta angle θs enters the result (205) depending only on whether s
is divisible by N or not. In general, the nontrivial phases e2πi ms

N affect crucially the counting of
signs that were important in the definition of the symbol J3 (219). Consequently, for generic
values of N , we are looking for a generalisation of the symbol J3 depending on the value s
interacting with the mixed anomaly signs (218) in the geometric sums. It is rather elaborate to
work out the explicit s-dependence of (226), and we discuss these subtleties for general N and
K in appendix D.4. At the moment, we are only able to obtain a general result for the second
step, that is, for any N such that the gravitational anomaly (197) vanishes for all divisors r of
N . A practical way to guarantee this is to choose K to be a square-free integer: if for some
divisor r, N is even, N

r is odd and K
r is even, then r is automatically even and thus K is divisible

by 4 = 22 and hence not square-free. This condition is not an ‘if and only if’ statement – for
instance, SU(4)12 has subgroups Zr with r = 1,2, 4, but all (SU(4)/Zr)12−4 CS theories are
bosonic (see (201)), while K = 12 is not square-free.

In order to state the result here, let us define for any integer d the radical rad(d) as the
product of the distinct prime numbers dividing d.31 Then we refine Jordan’s totient Jk(d)
as [50]:32

Jk(d, s)≡ dkδs mod d
rad(d) ,0

∏

p|d

�

δs mod ped (p),0 −
1
pk

�

, (227)

where, for any prime divisor p of d, ed(p) is the maximal exponent of which p appears in
the prime factor decomposition of d.33 By setting s = 0, we obtain back the ordinary Jordan
totient (215). The number-theoretic interpretation is that Jk(d, s) is the contribution of the
partition of N k times the Kronecker delta δs mod N ,0 into a sum over divisors d of any integer
N :

∑

d|N

Jk(d, s) = N kδs mod N ,0 , (228)

generalising (216). It occurs due to the convoluted geometric series appearing in the sum
over m in (226). This function is suitable to calculate (226) for any value of N , as long as the
gravitational anomaly (197) vanishes for all r|N – in particular, for K a square-free integer. In
this case, we find:

IW

�

PSU(N)θs
K

�

=
1

N2

∑

d|N

J3(d, s)
� K

d − 1
N
d − 1

�

. (229)

30Square-free means that no prime factor appears more than once in the prime factor decomposition.
31The radical is also known as largest square-free factor or square-free kernel.
32This refined Jordan’s totient was defined in [50], where the notations are related as J2g(d, s) =

�

s
d

	

g
.

33That is, we can write d =
∏

p|d ped (p).
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Let us provide some evidence to this result. When N is prime and K divisible by N , then
the sum collapses to the divisors d = 1 and d = N . We have J3(N , s) = N3δs mod N ,0 − 1,
while J3(1, s) = 1. Combining both contributions exactly reproduces the previous result (205).
Another check is the case N = 2 where we require that K ∈ 2Z is square-free and a multiple of
2, that is, K ∈ 2+ 4Z. In that case, we calculate IW[SO(3)θs

K ] =
�

K − 2+ 8δs mod 2,0

�

/4 from
(229), which matches precisely with the N = 2 calculation (22).

This formula (229) does not hold for generic values of K . As we discuss briefly in ap-
pendix D.4, when K is not square-free for instance, we obtain alternating geometric series
rather than geometric series, which shifts s inside the δ-symbols (227) – a similar modifica-
tion is necessary when summing over the gauge flux operators, see (152). We expect that, in
the case of arbitrary N and K , there exists a modification of (227) taking care of these special
cases, which we will leave as a problem for future work.

The discrete gauging of a proper non-anomalous subgroup proceeds as explained above in
the case θs = 0. If the SU(N)K theory has a non-anomalous subgroup Zr , then we truncate
the sum (229) at d = r, that is, we only sum over divisors of r. At the same time, the correct
normalisation is r−2 rather than N−2, corresponding to the order of the Zr group we discretely
gauge, and we have:

IW

�

(SU(N)/Zr)
θs
K

�

=
1
r2

∑

d|r

J3(d, s)
� K

d − 1
N
d − 1

�

. (230)

in the cases without modular anomaly. This is a proper Witten index in those cases.

3.5 Gauging the 3d one-form symmetry on Σg × S1

As a final application of our detailed study of the 3d A-model for the SU(N)K theory and
of its higher-form symmetries, let us consider the gauging of the 3d one-form symmetry for
the theory on Σg × S1. This gives us the topologically twisted index on Σg for any allowed
(SU(N)/Zr)K N = 2 Chern–Simons theory. The twisted index is obtained by basic surgery
operations on the Riemann surface, which for g > 1 includes the insertion of the handle-
gluing operator H. In contrast to the case where N is prime discussed above, in general there
are several fixed points, which makes the evaluation more intricate.

Gauging the 2d 0-form symmetry Let us first consider the gauging of the non-anomalous
0-form symmetry Z(0)N for arbitrary genus g, following the discussion in section 2.4. Recall that
we label the 2g cycles on Σg by Ci and associate to them the topological operators Uγi (Ci),
whose product (93) we denote by Uγ. Let us further label the ZN elements by γi = niγ0, and
collect n = (n1, . . . , n2g). As described in (98), the insertion of Uγ on the surface Σg amounts
to summing over the Bethe vacua fixed by all elements γ simultaneously, which using our
analysis for SU(N)K can be written as:

〈Uγ〉Σg
=

∑

û∈S(gcd(n)γ0)
BE

H(û)g−1 . (231)

Then we gauge the discrete 0-form symmetry ZN by summing over all inserted lines:

ZΣg×S1

�

SU(N)K/Z
(0)
N

�

=
1

N2g−1

∑

n∈Z2g
N

∑

û∈S(gcd(n)γ0)
BE

H(û)g−1 , (232)

with the normalisation (116) as before. Of course, this double sum can be drastically sim-
plified by realising that the second sum depends only on the value of gcd(n). Similarly to
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the genus 1 analysis above, we can enumerate the N2g numbers n with fixed gcd by the sum
N2g =

∑

d|N J2g(d) (see (216)). Then the sum over the 2g cycles collapses to a sum over
divisors d of N . Note that gcd(n)γ0 generates the same subgroup as gcd(n, N)γ0, which due
to (174) is Zd with d = N/gcd(n, N). Thus, for each divisor d, the set of fixed vacua is simply

S(
N
d γ0)

BE , which one may also denote by SZd
BE . We therefore obtain:

ZΣg×S1

�

SU(N)K/Z
(0)
N

�

=
1

N2g−1

∑

d|N

J2g(d)
∑

û∈SZd
BE

H(û)g−1 . (233)

We checked for small values of g, N and K that (233) leads to integer partition functions, with
precisely this normalisation.34

Gauging the 2d 1-form symmetry The gauging of the 2d 1-form symmetry Z(1)N has been
discussed in the general case in 3.1.1. While for g = 1 the insertion of a single line in T3 enjoys
full 3d modularity and we were able to relate the 1-form gauging to an enumeration of fixed
points, for higher genus this is not possible. Instead, it is still the case that gauging Z(1)N with
a fixed θs projects us onto one of the disjoint universes of decomposition, giving us (155).

Gauging the full 3d 1-form symmetry The full 3d 1-form symmetry can be gauged by sum-
ming over all insertions Πδ Uγ on Σg × S1, as described in section 2.5. This amounts to com-
bining the expressions (233) with (155) in a suitable way: Since the insertion of the 0-form
operators Uγ project onto the fixed points, we may simply evaluate the sum over the gauge
flux operators Πδ on those fixed points. This immediately gives the Σg twisted index:

ZΣg×S1

�

PSU(N)θs
K

�

=
1

N2g−1

∑

d|N

J2g(d)
∑

û∈Sϑs ,Zd
BE

H(û)g−1 , (234)

where the second sum is over the Bethe vacua in the universe set by θs which are invariant
under the action of Zd :

Sϑs ,Zd
BE ≡ Sϑs

BE ∩S
Zd
BE . (235)

By direct computation, we checked that this formula returns an integer for small values of the
parameters. The expression (234) generalises known expressions in the mathematical litera-
ture, where Verlinde dimensions for PSU(N)K with N odd were already written in terms of the
genus-g generalisation of Jordan’s totient [50]. In the mathematical setup, Jordan’s totient
J2g(d) has a geometric meaning as the number of elements of order d in the Jacobian variety
J(Σg) associated with the Riemann surface [50].35 Finally, the result (234) appears to agree
with some explicit results of [19] as expected, as well as with the mathematical framework for
non-simply connected groups [36,54]. To the best of our knowledge, the result (234) has not
been obtained before in the mathematical literature for N and K/N both even, essentially due
to the difficulties related to the gravity-(Z(1)N )3d anomaly discussed in section 3.2. It would be
interesting to give a firm mathematical footing to the formula (234) in this case.

It is rather difficult to obtain more explicit (i.e. more efficiently computable) results for
genus-g twisted indices for all values of g. One simple result is:

ZΣg×S1

�

PSU(N)0N
�

= N , (236)

34One may check as well that this the ‘maximal’ normalisation, meaning that if we divide by N another time (i.e.
N 2g in the denominator) we do note get integers, in general.

35This Jacobian is the variety that carries the Verlinde bundles.
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generalising (209) to non-prime N . One can further check that, for g = 1 and s = 0, the result
(234) is compatible with (221). This identification expresses J3(d) as a combination of N ,
J2(d) and the Kronecker-delta ∆N

ℓ(û) over the fixed Bethe vacua, as:

NJ2(d)
�

�

�Sϑs=0,Zd
BE

�

�

�= J3(d)
�

�

�SZd
BE

�

�

� . (237)

This relation characterises the distribution of values ℓ(û) among the vacua û fixed under a Zd
subgroup. We checked it explicitly in examples for small values of N and K , but we leave a
proof for future work. Another check is the comparison to N ≥ 3 prime and N |K . In that case,
the only divisors are d = 1 and d = N . Using J2g(N) = N2g−1 and (172), a simple calculation
derives the previous result (208) from (234).

The Σg twisted index for (SU(N)/Zr )K As anticipated from the presentation (234) of the
PSU(N)K twisted index, it is straightforward to consider gauging only a subgroup Zr rather
than the full ZN , and we can also gauge any non-anomalous (Z(1)r )3d even if (Z(1)N )3d has a ’t
Hooft anomaly. The twisted index of the (SU(N)/Zr)K theory is simply obtained by summing
only over the topological lines operators for the Zr subgroup. Following the logic from the
previous subsection, we simply restrict the divisor sum to divisors of r only:

ZΣg×S1

�

(SU(N)/Zr)
θs
K

�

=
1

r2g−1

∑

d|r

J2g(d)
∑

û∈SZd
BE

∆
N ,r
ℓ
(s)H(û)g−1

=
1

r2g−1

∑

d|r

J2g(d)
∑

û∈Sϑ
(Zr )
s ,Zd

BE

H(û)g−1 , (238)

where ∆N ,r
ℓ
(s) as defined in (160), and Sϑ

(Zr )
s ,Zd

BE ≡ SZd
BE ∩ S

ϑ
(Zr )
s

BE similarly to (235). This final
result includes as special cases all previous results – the PSU(N)K Witten index (221) and
more generally the (SU(N)/Zr)K Witten index (224), as well as the Σg twisted index (208)
for PSU(N)K with N prime.

4 Further aspects of the 3d N = 2 SU(N)K CS theory

In this section, we study some further aspects of the N = 2 supersymmetric SU(N)K Chern–
Simons theory, which provides us with interesting consistency checks of our results above. In
section 4.1, we study the gauging of the 3d 1-form symmetry using the fusion rules of the
associated 3d TQFT, and find a precise (and non-trivial) agreement with our A-model result
for the Witten index. In section 4.2, we brielfy comment on the level/rank duality for the
N = 2 SU(N)K Chern–Simons theory, and on how the higher-form symmetries should match
across the duality.

4.1 Gauging the 1-form symmetry in the 3d TQFT

Extending our discussion of the SU(2) example from section 1.1 in the introduction, we can
check some of our results for the SU(N)K theory using the purely 3d description of the under-
lying 3d TQFT. Indeed, we can consider gauging the 1-form symmetry (Z(1)N )3d by the conden-
sation of the abelian anyons for ZN . Here we follow closely the approach of [42].

Let us first review the fusion rules of the Wilson lines in the SU(N)K CS theory, which are
the same as the fusion rules of chiral primaries in the corresponding 2d WZW model – see
e.g. [41, 96–102]. They are best expressed in terms of Young diagrams. First, recall that the
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SU(N)K N = 2 supersymmetric CS theory has a spectrum of Wilson lines Wλ indexed by the
Young tableaux:

λ= [λ1, . . . ,λN−1] , λi ≤ K − N , ∀i . (239)

The generator of the 3d ZN one-form symmetry is simply:

a = [K − N , 0, . . . , 0] , (240)

where we used the obvious notation Wλ = λ. Linking any line with a, we pick up a phase:

Wλ→ e
2πin(λ)

N Wλ , n(λ)≡
N−1
∑

i=1

λi mod N , (241)

where n(λ) is the N -ality of the representation (the number of boxes in the Young tableau mod
N). The fusion of any Wilson line with the abelian anyon a is easily found to be:

a× [λ1,λ2, . . . ,λN−1] = [K − N −λN−1,λ1 −λN−1,λ2 −λN−1, . . . ,λN−2 −λN−1] . (242)

It corresponds to adding the row a on top of the Young tableau λ, and subsequently removing
λN−1 columns on the left. As an example, consider the fusion of a Wilson line in the SU(5)10
theory:

× = = . (243)

Given these rules, we can carry out the three-step gauging procedure [42] at the level of the
3d line spectrum. Before studying the case where N is prime (and then for N arbitrary), let us
demonstrate this procedure in a simple example.

Example: SU(3)6 The SU(3)6 theory has 10 lines:

λ= [0,0], [1,0], [2,0], [3, 0], [1,1], [2,1], [2, 2], [3, 1], [3,2], [3,3] . (244)

Out of these, we have the Z3 lines:

[0,0] = 1 , [3, 0] = a , [3, 3] = a2 . (245)

Keeping only the Z3-neutral lines (under linking), we are left with the four lines:

1 , a , Wadj ≡ [2, 1] , a2 . (246)

Next, we should identify lines related by the fusion (242). Note that aWadj =Wadj, so it is left
invariant under fusion as well. We then discard the non-trivial Z3 lines, but we need to keep
three copies of Wadj. We then find the PSU(3)6 lines:

1 , Wadj,1 , Wadj,2 , Wadj,3 . (247)

This is a total of four lines, which of course agrees with our A-model computation (see e.g. ta-
ble 1).
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N prime Consider now the case where N is an arbitrary prime number, and K a multiple of
N . Out of the

�K−1
N−1

�

Young tableaux λ, as the first step we keep only the ZN -neutral lines, that
is, the ones with n(λ) ≡ 0 mod N . In order to enumerate them, we use again the decompo-
sition (206) of the SU(N)K index into the sum of 1 and MN ,K N2. In the 3d prescription, the
1 has an important meaning: It is the unique neutral Wilson line which is left invariant under
fusion with the abelian anyon. We can find a general form for this invariant Wilson line:

λinv =
� K

N − 1
�

[N − 1, N − 2, . . . , 2, 1] , (248)

where the prefactor multiplies all number of boxes. It is clear that the fusion (242) with
a (240) leaves it invariant: The Young tableau a has K

N − 1 boxes more than the first row of
λinv, whose last row has K

N − 1 boxes as well. Removing K
N − 1 columns on the left results in

the same Young diagram λinv.
The N -ality of (248) is n(λinv) =

� K
N − 1

� N−1
2 N , which is divisible by N since N ≥ 3 is

prime and thus odd. Using (Captain) hook’s formula, we find that it has dimension:

dimλinv =
�

K
N

�K−N

, (249)

and that it is self-dual, and thus a real representation of SU(N) (see e.g. [103]).36 For instance,
the invariant Wilson line for SU(5)15 is:

(250)

This allows us to correctly enumerate the remaining lines in each step of the 3d gauging pro-
cedure [42]. In step 1, we discard the lines that are not neutral under ZN . The line λinv is
neutral, while from the other MN ,K N2 lines only every N -th line is neutral. This gives us:

Step 1: 1+MN ,K N2 −→ 1+MN ,K N , (251)

for the number of invariant lines. In step 2, we identify all lines W and aW obtained by fusing
with a. While Wλinv

is invariant, this partitions the remaining MN ,K N lines into MN ,K orbits
under the a-fusion of orbit length N each. It is clear that this has to be the case, since the
fusion with the abelian anyon constitutes a group action of ZN on the collection of Wilson
lines, and, since ZN has no subgroups, there cannot be shorter orbits. This leaves us with:

Step 2: 1+MN ,K N −→ 1+MN ,K , (252)

for the number of lines. Finally, at step 3, for the fixed point Wλinv
under the fusion we create

N copies. We thus obtain:

Step 3: 1+MN ,K −→ N +MN ,K , (253)

for the number of Wilson lines, precisely agreeing with the earlier result (207) for the PSU(N)K
Witten index with vanishing theta angle.

36This representation is the adjoint only for N = 3 at level K = 6.
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General N When N is not prime, the only modification to the gauging procedure is the third
step. Note that when N is prime, then an is a generator of the 3d 1-form symmetry for any
positive integer n with n (mod N) ̸= 0. If N has a divisor d, then an can generate a proper
Zd subgroup of ZN for specific values of n. Consequently, if n is the smallest divisor of N such
that a line W is invariant under the fusion with an, then we generate N/n copies of W in the
third step [42].

The gauging procedure then proceeds almost as before. We start with the spectrum {Wλ} of
Wilson lines (239). Discarding the lines that are not invariant under the ZN 1-form symmetry
leaves us with a smaller set {Wλ}ZN = {Wλ : n(λ)≡ 0 mod N}. The fusion with a furnishes a
partition into orbits:

{Wλ}ZN =
⋃

λ′
Orb(Wλ′) . (254)

Since a constitutes a ZN group action, the lengths |Orb(Wλ′)| of the orbits are divisors
of N . Any line in an orbit Orb(Wλ′) is then invariant under the fusion with am, where
m = |Orb(Wλ′)|. Consequently, for each orbit Orb(Wλ′) we keep N/|Orb(Wλ′)| copies. This
gives us the PSU(N)K spectrum of lines:

{Wλ}/Z
(1)
N =

⋃

λ′

N/|Orb(Wλ′ )|
⋃

j=1

Wλ′, j , (255)

from which we easily calculate

IW [PSU(N)K] =
∑

λ′

N
|Orb(Wλ′)|

. (256)

This matches with the case N prime, where there is one orbit of length 1 and MN ,K orbits
of length N , giving back (253). For given arbitrary values of N and K , it is straightforward
to implement the fusion (242) on a computer, and we find that (256) agrees precisely with
the general-N result (221) for all N ≤ K ≤ 19. This provides us with another consistency
check of our 3d A-model calculations. Since (256) does not explicitly take into account the
T3 modular anomaly discussed in section 3.2, the above 3d calculation provides us with some
independent evidence for the correctness of the analysis that lead to the general formula (221).
As mentioned in the previous section, the quantity (256) is only a ‘naive’ Witten index, but it
gives the correct Witten index whenever the PSU(N)k=K−N pure CS theory is bosonic. When
it is a spin-TQFT instead, the naive index still correctly counts the lines (in some sector to be
specified), but it is not a supersymmetric index [21].

4.2 Comments on level/rank duality

It is also instructive to consider level/rank duality for our 3d N = 2 supersymmetric CS the-
ory [76,77,104–106]:

SU(N)K ←→ U(K − N)−K ,−N . (257)

The underlying 3d field theory has a Z(1)N 1-form symmetry, but it is realised differently on
either side – for instance, the fundamental Wilson line of SU(N) maps to a Wilson line in the
determinant representation of U(K−N). These lines generate the 3d 1-form symmetry in each
description. In the following, we make some preliminary comments on the duality (257) from
the perspective of their respective 3d A-models. We comment on the matching of Bethe vacua
between the two sides, but unfortunately we did not find an explicit duality map between the
two descriptions; this is left as a challenge for future work.
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Bethe vacua Let us look at the vacua of the U(K − N)−K ,−N theory, assuming K > N > 0.
The Bethe equations read:

q (−xa)
−K det x = 1 , a = 1, . . . , K − N , (258)

and here q = e2πiτ is the complexified FI term for the U(K−N) gauge group. The level/rank du-
ality (257) is a little bit subtle (in particular due to U(K−N)−K ,−N being spin if N is odd [76]),
and here we should really set q = 1. So, for simplicity, let us just assume the Bethe equations
are:37

xK
a = det x , ∀a . (259)

We can parameterise the solutions as:

ûa =
ja

KN
, ( ja) ⊂ {0,1, . . . , KN − 1} , (260)

where ( ja) is an ordered subset which satisfies the conditions (259), namely:

K−N
∑

b=1

jb ≡ K ja mod KN , (261)

for all a = 1, . . . , K−N . As an example, consider K = 4 and N = 2. Then the U(2)−4,−2 theory
has 3 vacua with:

( ja) = {(2,6) , (1, 3) , (5, 7)} . (262)

Of course, this matches the expected number of vacua of SU(2)4. It turns out that the first
vacuum is the one fixed under the action of Z(0)2 , as we will discuss below.

Witten index Let us count the Bethe vacua, i.e. solutions to (261), more systematically.
Given any tuple ( j1, . . . , jK−N ), denote their sum by σ =

∑K−N
a=1 ja. Then from (261) we have

that σ is divisible by K . That is, we can write σ = kK with some integer k. From (261), we
find that k ≡ ja mod N for each a = 1, . . . , K − N . This in particular implies that the values
of la differ by multiples of N . Therefore, for any given K −N -tuple ( ja), we can find a unique
number k̃ = 0, . . . , N−1 such that ja ≡ k̃ mod N for all a, where k̃ is simply k reduced modulo
N .

Given any solution ( ja)with a particular value of k̃, we can always construct a new solution
( j′a) whose value is k̃ + 1. This implies in particular that, for each value of k̃, there are the
same number of solutions to (261). Since there are N possible values of k̃, let us therefore
study the case where k̃ = 0.

For k̃ = 0, we are then looking at tuples ( ja) such that ja ≡ 0 mod N . Since the do-
main for the solutions is ja = 0, . . . , KN − 1, this restricts the solution space to the values
ja = 0, N , 2N , . . . , (K − 1)N . These are K numbers, and we are selecting K − N numbers from
those K numbers, for which there are

� K
K−N

�

possibilities. These candidate solutions are solu-
tions of (261) if σ ≡ 0 mod KN . Since each ja is divisible by N , it follows that only every K-th
tuple satisfies this condition. Hence, the number solutions to the Bethe equations with k̃ = 0
is 1

K

� K
K−N

�

. Since we have N set of solutions of equal size for every ek, as explained above, the
total value for the Witten index is:

IW

�

U(K − N)−K ,−N

�

=
N
K

�

K
K − N

�

=
�

K − 1
N − 1

�

. (263)

As anticipated, this matches precisely with the Witten index (136) of the SU(N)K theory.

37That is, we assume K even for simplicity. We can of course keep track of the signs for K odd, but for our
purposes here this will be immaterial.
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This result suggests ideas to find an explicit isomorphism between the Bethe equations
of the SU(N)K theory and that of the U(K − N)−K ,−N theory. From (263) we see that the
level/rank duality can be naturally formulated as complements of a set [7–9, 107]: while
in the SU(N)K theory we consider selecting N elements from a set with K elements, in the
U(K − N) theory it is natural to select rather K − N elements. These subsets are precisely
complements of each other. It is still non-trivial to find the set { ja} labelling a vacuum of the
U(K−N)−K ,−N theory that corresponds to a specific l = (la;ℓ) in the SU(N)K theory. We leave
this important question as a challenge for future work.

0-form and 1-form symmetry The action of Z(0)N on the Bethe vacua simply corresponds to

x̂a 7→ e
2πi
N x̂a, or ûa→ ûa +

1
N for all a. In other words, this acts as

û 7→ û+ γ : ja 7→ ja + K mod KN , (264)

up to a permutation of the ja ’s, which is the Weyl symmetry SK−N . By the level-rank duality
(257), this 0-form action is supposed to be reflected in the SU(N)K theory with the same N
and K . Indeed, from (133) and (166), this Z(0)N symmetry acts on the SU(N) on-shell variables

x̂a as x̂a 7→ e
2πi
N x̂a as well.

The generator of the 1-form symmetry Z(1)N in the A-model for the U(K − N)−K ,−N theory
is the flux operator:

Πγ0 = (det x)−1 . (265)

Comparing with the action of the 1-form symmetry operator (146) in the SU(N)K theory, we
find the relation:

1
K

∑

b

jb = ℓ+ K mod N . (266)

Here, ℓ is defined for each SU(N)K Bethe vacuum as in (134), and it is essentially
∑

a la. From
(261), it is clear that

∑

b jb is divisible by K , and hence the left-hand-side is indeed an integer.
In some cases, (266) gives a unique relation between the SU(N)K vacua and the U(K−N)−K ,−N
vacua.

IR duality Any infrared IR duality between two 3d N = 2 theories T and T ′ induces an
isomorphism between the ground-state Hilbert spaces:

D : HS1[T ] −→HS1[T ′] , (267)

which is a unitary transformation that commutes with all symmetry actions, including higher-
form symmetries:

D†UT D = UT . (268)

Here, UT represents the symmetry operators Uγ and Πγ in the A-model for the theory T , for
some symmetry group Γ . Then, a particular consequence of the duality is that all correlation
functions of the symmetry operators necessarily agree, and therefore the allowed gauging
operations for discrete symmetries will always give rise to dual theories T /Γ and T ′/Γ . For
the level/rank duality at hand, we hope to construct the explicit isomorphism (267) in later
work.

5 Including matter: U(1) and SU(N) theories

So far, we have been discussing higher-form symmetries for pure (S)U(N) gauge theories. In
this section, we couple the 3d vector multiplets to matter in chiral multiplets. These theo-
ries retain a one-form symmetry Γ if the matter fields preserve some subgroup of the centre
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symmetry of the pure gauge theory:
Γ ⊆ Z(eG) . (269)

We will first consider the very simple case of an abelian gauge theory with matter fields of non-
minimal electric charge. Next, for definiteness, we will consider the SU(N)k Chern–Simons-
matter theory with nadj chiral multiplets in the adjoint representation. We will only provide
preliminary comments. More explicit computations of twisted indices for these theories could
be performed e.g. using the computational algebraic geometric methods discussed in [108].
This is left as another challenge for future work.

5.1 U(1)k with matter

Consider a U(1)k vector multiplet coupled to chiral multiplets Φi with electric charge Q i ∈ Z.
The UV effective CS level k is related to the bare CS level K ∈ Z as:

K = k+
1
2

∑

i

Q2
i . (270)

Let us also denote by Q i = (Q i+ ,Q i−) the positive and negative charges, respectively. The
effective twisted superpotential reads:

W(u,ν) = τu+
K
2
(u2 + u) +

1
(2πi)2

∑

i

Li2
�

e2πiQ iu yi

�

, (271)

where τ is the complexified FI parameter and yi are flavour fugacities. We thus have the Bethe
equation:

Π(u,ν)≡ q(−x)K
∏

i

�

1
1− xQ i yi

�Q i

= 1 , (272)

with q = e2πiτ. The Witten index of this theory is simply [109]:

IW = |SBE|=max

 

|K |+
∑

i−ε

Q2
i−ε

,
∑

iε

Q2
iε

!

, ε≡ sign(K) . (273)

This theory has a one-form symmetry:

Γ
(1)
3d
∼= ZM , M ≡ gcd(K ,Q i) . (274)

This act on the u variable as:

u 7→ u+ γ0 , γ0 ≡
1
M

. (275)

Indeed, the gauge flux operator Π is invariant under such a shift, and it admits a M -th root:

Πγ0 ≡ Π
1
M . (276)

It is also easy to check that the one-form symmetry has a ’t Hooft anomaly:

A
�

γ(0),γ(1)
�

= nm
K

M2
, i.e. a=

K
M

mod M , (277)

where we have γ(1) = mγ0 and γ(0) = nγ0.

Whatever the anomaly, the orbit structure of the Bethe vacua under Z(0)M is trivial, as all or-

bits are of dimension M . Indeed, we can solve the Bethe equation (272) by writing x = e
2πiℓ

M z
1
M

and solve for z. Then, for each solution z = ẑ, we will have M Bethe roots:

x̂ℓ(ẑ) = e
2πiℓ

M ẑ , ℓ ∈ ZM , (278)
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which are permuted by Z(0)M :

Unγ0 : |ûℓ + nγ0〉 7→ |ûℓ+n〉 . (279)

Moreover, all insertions of topological lines are trivial:

〈Unγ0(C)〉Σg
= δn,0〈1〉Σg

, 〈Πmγ0〉Σg
= δm,0〈1〉Σg

, (280)

as one can readily check. If K = 0 mod M the ’t Hooft anomaly vanishes, and we can then
gauge the full (Z(1)M )3d, yet due to (280) this has only the trivial effect of dividing the twisted
index by M2g . The interpretation is simply that, in the absence of the anomaly, we can rescale
the vector multiplet by 1/M , which leads to a U(1) theory with minimal charges Q i/M .

The pure U(1)K theory In the special case of the pure U(1)N = 2 CS theory without matter,
we have M = K . Thus we have the Bethe equation and Bethe roots:

Π(u) = q(−x)K , ûℓ =
ℓ−τ

K
+

1
2

mod 1 , ℓ ∈ ZK , (281)

where the K vacua are permuted by Z(0)K . The handle-gluing operator is H = K , and hence
ZΣg×S1 = K g for this theory. The anomaly is a = 1 mod K and it is maximal, in the sense of

section 2.1.2. Nonetheless, we can still gauge a subgroup Zr ⊂ ZK in 3d if r2|K . In such a case,
since all non-trivial insertions of symmetry operators vanish, the Z(1)r ⊕ Z

(0)
r gauging trivially

gives:

ZΣg×S1

�

U(1)K/(Z
(1)
M )3d

�

=
1
r2

ZΣg×S1[U(1)K] =
�

K
r2

�g

. (282)

This is interpreted as a rescaling of the vector multiplet by 1/r, which gives us a well-defined
U(1) K

r2
CS theory precisely if r2|K .

5.2 SU(N)k with adjoint matter

Let us discuss some general aspects of the SU(N)k N = 2 CS theory coupled with nadj chiral
multiplets in the adjoint representation of the gauge group. For nadj = 1, this theory allows
one to compute the so-called equivariant Verlinde formula [56] for eG = SU(N), which was
extended to G = eG/Γ in [19].

Here, the integer k is the UV effective CS level. In our conventions (see e.g. [7]), it is
related to the bare CS level K that appear in the twisted superpotential as:

K = k+ nadjN . (283)

The effective twisted superpotential of this theory is given by:

W(u,ν) =
K
2

N
∑

a=1

u2
a + u0

N
∑

a=1

ua +
1

(2πi)2

nadj
∑

i=1

N
∑

a,b=1
a ̸=b

Li2
�

e2πi(ua−ub) yi

�

, (284)

where the first two contributions are the same as in (129), including the Lagrange multiplier
u0 that imposes tracelessness, while the dilogarithms are the contributions from the adjoint
chiral multiplets, with νi their twisted masses and yi ≡ e2πiνi . Then, the Bethe equations read:

Πa(u,ν)≡ qxk
a

nadj
∏

i=1

N
∏

b=1
b ̸=a

xa − yi xb

xb − yi xa
= 1 , a = 1, . . . , N ,

Π0(u,ν)≡
N
∏

a=1

xa = 1 ,

(285)

where we defined q = e2πiu0 exactly as in section 3.1.
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Eigenvalues of the A-operators Since the adjoint matter multiplets are not charged under
the centre ZN ⊂ SU(N), we retain the full 3d 1-form symmetry (Z(1)N )3d. Using the explicit
form of the effective twisted superpotential provided above, we can explicitly compute the
eigenvalues of the Πγ operator (48) (which is diagonalised by the Bethe vacua):

Πγ0(û) = x̂k
1

nadj
∏

i=1

N
∏

b=2

x̂1 − yi x̂b

x̂b − yi x̂1
= q̂−1 , (286)

where γ0 is the generator of Z(1)N defined in (144) and q̂ denotes the on-shell value of q, as
we used the equations (285). Note that, in general, one might want to add an overall phase
to (286), as discussed in the previous sections.

The anomaly factor The fact that the adjoint matter is not charged under the (Z(1)N )3d sym-
metry directly implies that:

Wadj(u+ γ0) =Wadj(u) , (287)

as one can readily check. The same argument would apply to any gauge theory with matter
preserving some 1-form symmetry. Hence, we see that the ’t Hooft anomaly factor (76) only
receives contributions only from the bare CS terms. We thus find that the ’t Hooft anomaly is:

a= −K modN = −k modN , (288)

where we use the relation (283). Hence the general constraints on orbit structures that follow
from the presence of a ’t Hooft anomaly are exactly the same as for the pure N = 2 CS theory.

In principle, it is now straightforward to apply the formalism of section 2 to this theory. In
practice, explicit computations remain challenging. We hope to come back to this problem in
future works.

6 Conclusion and outlook

Three-dimensional N = 2 supersymmetric gauge theories with a U(1)R R-symmetry allow for
the computation of many exact observables, but previous methods on half-BPS three-manifolds
M3 with non-trivial first homology were restricted to gauge groups eG whose fundamental
group π1(G) is a free abelian group. In this work, we lifted this restriction in the case of
M3 = Σg × S1, wherein the supersymmetric partition computes the topologically twisted
index [10–13].

We developed a systematic formalism to compute the twisted index ZΣg×S1 by gauging a

one-form symmetry (Γ (1))3d
∼= Γ of the 3d gauge theory. We performed this gauging in the 3d

A-model formalism on Σg , hereby gauging the two distinct discrete higher-form symmetries
Γ (1) and Γ (0) in the 2d TQFT description:

ZΣg×S1

�

T /(Γ (1))3d

�

=
1
|Γ |2g

∑

B∈H2(Σg ,Γ )

∑

C∈H1(Σg ,Γ )

ZΣg×S1[T ](B, C) . (289)

This gauging was be done very explicitly, building directly on earlier insights [17–19]. In
particular, we refined the results of [19] and connected them to the 2d Hilbert-space approach
in the A-model. As an intermediate step, we carefully studied the correlation functions of
topological point and line operators that implement the symmetries in the A-model:

ZΣg×S1[T ](B, C)∼= 〈Πγ(pt)Uδ(C)〉Σg
, γ ∈ Γ (1) , δ ∈ Γ (1) . (290)
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We also studied the ’t Hooft anomalies that can affect these symmetries, and showed how they
usefully constrain the structure of the 2d ground states (also known as Bethe vacua).

The core of this paper was the study of the SU(N)K N = 2 Chern–Simons theory with
a ZN symmetry, for any N , and of all the (SU(N)/Zr)K N = 2 CS theories that one can ob-
tain by discrete gauging. Our analysis leads to very explicit formulas for the twisted indices,
and especially for the Witten index (at g = 1), which we can write down in terms of simple
number-theoretic functions for any N , r and K . While our results match with many previ-
ous results in special cases (see e.g. [36, 44, 50, 54] in the mathematical literature), our most
general formulas appear to be new results. In particular, we noticed and exploited a subtle
gravitational-(Γ (1))3d mixed anomaly of the SU(N)K theory for N even, whose treatment is
crucial in order to obtain the correct results for any r|N . As already emphasised in the intro-
duction, this mixed anomaly is already present for SU(2)K with K/2 even, and it is always
related to the corresponding (SU(N)/Zr)k=K−N N = 0 CS theory being a spin-TQFT instead
of a bosonic 3d TQFT. Unfortunately, the presence of the gravitational mixed anomaly actually
means that our naive index computation in this case does not capture the full story. This will
be explained and expanded on in future work [20,21].

Outlook Many different research directions could be followed to extend the results of this
paper. Let us briefly enumerate the most salient ones:

• Using the formalism of this paper, one can compute twisted indices for any N = 2 gauge
theory with a real compact gauge group G, modulo the caveats already mentioned.38

To do this as explicitly as possible, one should further develop powerful computational
algebraic methods, as was recently done for unitary gauge groups [108] – in that lan-
guage, Γ (0) and Γ (1) correspond to a non-trivial action and to a grading, respectively,
on the Bethe ideal defined by the Bethe equations. It is then conceivable that a more
algebraic approach to the computation of the correlators (290) is possible.

• One low-hanging fruit might be the explicit computation of Witten indices for general
gauge groups with general (Γ (1))3d a finitely-generated abelian group, possibly with mat-
ter, given the result for G = eG. For non-cyclic groups Γ (1)3d , we expect an analogous result
as for the eG = SU(N) case of this paper, with the enumerating functions being appro-
priate totient functions for finite abelian groups (see e.g. [110]).

• While we focussed on one-form symmetries of 3d N = 2 theories, such field theories can
admit even more interesting generalised symmetries, including non-invertible symme-
tries. This will be particularly important to explore when studying SO(N) gauge theories,
where we would need to study the gauging of both 1-form and 0-form symmetries in 3d,
corresponding to rich combinations of 1-, 0- and (−1)-form symmetries in the A-model.
See e.g. [34,48,80,105,111–116] for relevant studies.

• The approach of this paper can be extended to compute more general partition functions
for G = eG/Γ , by inserting Seifert-fibering operators on Σg to obtain ZM3

for any Seifert
3-manifold M3 [7,9,117] – this will be discussed in [20].

• The A-model approach is also applicable to 4d N = 1 supersymmetric field theories
compactified on T2 [10, 107, 118, 119], and it will be very interesting to study higher-
form symmetries in that context. We expect ’t Hooft anomalies and their consequences
to be particularly intricate in this case.

38That is, with the usual assumptions for the 3d A-model to exist, including the existence of an R-symmetry, and
also assuming the Bethe states of the G theory are all bosonic.
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Other interesting questions include the study of higher-form symmetries for the T[M3] theory
of the 3d/3d correspondence [18, 71–73], and the application of the 2d perspective to other
3d TQFTs (whether or not the UV completion is supersymmetric), for instance the theories
of [28, 120, 121] and of [122]. Finally, our explicit expressions for the (SU(N)/Zr)K indices
seem amenable to large-N studies, which could be very interesting to explore, for instance, in
connection to supersymmetric black holes in holography [123].
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A 3d A-model for eG: A lightning review

In this appendix, we review some aspects of the 3d A-model for 3d N = 2 Chern–Simons-
matter gauge theory T

eG with a gauge group eG, a product of simply connected compact Lie
groups and of unitary gauge groups. We refer to [7, 8] for further background and explana-
tions, as well as to [108] for a recent review in the case of unitary gauge groups.

A.1 The Coulomb branch parameters

The main player in this discussion is the 3d classical Coulomb branch parameter, which we
denote by u. To define this variable, we put our 3d theory on R2×S1

β
. Effectively, this gives us

a 2d N = (2,2) theory with an infinite number of massive Kaluza-Klein (KK) modes that carry
momentum along the compactified dimension S1

β
with radius β . In the 2dN = (2,2) language,

the vector multiplet is repackaged into a twisted chiral multiplet whose lowest component is
a complex scalar u. This dimensionless scalar is defined by combining the real scalar σ with
the 3d gauge field along the S1-direction, A3:

u= β(iσ+ A3) ∈ t/Λ
eG
mw . (A.1)

Here, t is the Cartan subalgebra of G̃, and ΛeGmw is the magnetic weight lattice. We refer to
appendix B for a brief review of the relevant electric and magnetic weight lattices for general
gauge groups. Choosing {ea}rk eGa=1 to be an integral basis for the magnetic weight lattice ΛeGmw,
we can expand u as follows:

u= uaea , (A.2)

where the sum over the index a = 1, · · · , rank(eG) is assumed. This basis is integral in the sense
that we have:

ρ(u) = ρaua , ρa ≡ ρ(ea) ∈ Z , (A.3)
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for any electric weight ρ ∈ ΛeGw. Under large gauge transformations, the Coulomb branch
parameters ua transform as:

ua ∼ ua + na , na ∈ Z . (A.4)

Therefore, it is sometimes useful to introduce the single-valued parameters:

xa ≡ e2πiua , a = 1, . . . , rk eG . (A.5)

One can play a similar game for any flavour symmetry group GF that might be present in the
theory. In this case, we consider a 3d N = 2 vector multiplet with real scalar mF and gauge
field AF, and we define the 2d twisted masses:

ν≡ β(imF + AF
3) ∈ tF/ΛGF

mw . (A.6)

As in the case of the gauge group eG, we can pick an integral basis {eαF }
rk GF
α=1 for the flavour

magnetic weight lattice ΛGF
mw, so that:

ν= ναeαF , (A.7)

where α= 1, . . . , rank(GF) runs over a maximal torus of the flavour group.

A.2 The effective twisted superpotential and the effective dilaton

The 2d N = (2,2) low energy effective description on Σ is controlled by the so-called effective
twisted superpotential W(u,ν) and by the effective dilaton Ω(u,ν), which one obtains upon
integrating out the massive charged chiral multiplets on Σ× S1 [10].

Effective twisted superpotential The twisted superpotential receives contributions from the
CS action and from the 3d N = 2 chiral multiplets. It has the following general form:

W(u,ν) =Wmatter(u,ν) +WCS(u,ν) . (A.8)

The matter contribution reads:

Wmatter(u,ν)≡
1

(2πi)2
∑

(ρ,ρF)∈R×RF

Li2
�

e2πi(ρ(u)+ρF(ν))
�

, (A.9)

where R ×RF is the gauge and flavour representation of the 3d N = 2 chiral multiplets Φ
under eG×GF, and (ρ,ρF) ∈ ΛeGmw×Λ

GF
mw are the corresponding weights. The CS contributions

are schematically given by:

WCS(u) =
1
2

∑

a,b

Kab (uaub +δabua) , (A.10)

where Kab denote the effective UV CS levels associated with the gauge group eG in the so-
called U(1)− 1

2
quantization [7].39 The expression (A.10) is the contribution from the gauge

CS terms, but the flavour CS levels [124] contribute similarly.

39For a recent review, see also section 2.2 of [108].
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Effective dilaton This effective dilaton is a holomorphic function that couples u to the cur-
vature of Σ [10,70]. For our gauge theory, it reads:

Ω(u,ν) = ΩCS(u,ν) +Ωmatter(u,ν) +ΩW-boson(u) . (A.11)

The CS contribution involves (mixed) CS levels for the U(1)R symmetry [8]:

ΩCS(u,ν) = KRG

rk(eG)
∑

a=1

ua +
rk(GF)
∑

α=1

KRανα +
1
2

KRR . (A.12)

The matter contribution reads:

Ωmatter(u,ν) = −
1

2πi

∑

(ρ,ρF)∈R×RF

(rρF − 1) log
�

1− e2πi(ρ(u)+ρF(ν))
�

, (A.13)

where rρF denote the R-charges of the chiral multiplets. Finally, the W-bosons contribute to
the effective dilaton potential as:

ΩW-bosons(u) = −
1

2πi

∑

α∈∆
log

�

1− e2πiα(u)
�

, (A.14)

where the sum is over the roots of the gauge group eG.

A.3 The 3d topologically twisted index

The topologically twisted index for a 3d N = 2 gauge theory with gauge group eG can be
computed as a trace over certain operators in the 3d A-model [10, 13]. All these operators
O are given ‘off-shell’ as function O(u) of the gauge and flavour parameters u and ν. They
diagonalise the Bethe vacua, and their ‘on-shell’ values at solutions of the Bethe equations are
denoted by O(û):

O|u〉=O(û)|u〉 . (A.15)

The Bethe equations themselves are written in terms of the gauge flux operators:

Πa(u,ν) = exp
�

2πi
∂W(u,ν)
∂ ua

�

, a = 1, . . . , rk eG . (A.16)

By definition, the gauge flux operators are trivial on-shell, Πa(û) = 1. The set of Bethe vacua
is defined as in (46), namely:

SBE ≡
¦

û ∈ t/Λ
eG
mw : Πa(û,ν) = 1 ,∀a and w · û ̸= û ,∀w ∈W

eG

©

/W
eG . (A.17)

Here we need to exclude putative solutions that have a non-trivial stabiliser for the action of
the Weyl group W

eG , and we then identify all solutions related by the Weyl symmetry. Given a
non-trivial flavour symmetry group GF,40 we similarly define the flavour flux operator:

ΠF, α(u,ν) = exp
�

2πi
∂W(u,ν)
∂ να

�

, α= 1, . . . , rk GF . (A.18)

Finally, the most important operator is the handle-gluing operator H
eG(u,ν) which is given:

H
eG(u,ν) = exp (2πiΩ(u,ν)) det

1≤a,b≤rk eG

�

∂ 2W(u,ν)
∂ ua∂ ub

�

, (A.19)

We simply denote it by H whenever it is clear that we are talking about the eG theory. The
insertion of this operator on Σ has the effect of adding a handle, thus increasing the genus of
the Riemann surface [10].

40Or rather a flavour symmetry algebra; we may assume that the fundamental group of GF is a free abelian group
for our purposes here.
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The 3d flavoured twisted index from the A-model The 3d flavoured twisted index is the
Witten index defined as a trace over the Hilbert space of the theory compactified on Σg with
a topological A-twist and with fugacities yα ≡ e2πiνα and background magnetic fluxes mF for
the flavour symmetry:

ZΣg×S1 = TrHΣg ;mF

 

(−1)F
rk GF
∏

α=1

y
QF
α

α

!

. (A.20)

It can be computed in the A-model formalism as a trace over HS1 , the ground-state Hilbert
space spanned by the Bethe vacua:

ZΣg×S1 = TrHS1

�

Hg−1Π
mF
F

�

. (A.21)

For the eG gauge theory, this 2d TQFT formula takes the explicit form [13]:

ZΣg×S1[eG](ν)mF
=
∑

û∈SBE

Hg−1
eG
(û,ν)Π(û,ν)mΠF(û,ν)mF , (A.22)

where we evaluate (A.18) and (A.19) at the Bethe vacua. Note that we use the shorthand
notation ΠmF ≡

∏

αΠ
mF,α
α .

The formula (A.21) holds for any 3d A-model, and in particular for any 3d N = 2 gauge
theory with any choice of (compact, real) gauge group G. In the main text, we effectively com-
pute HG for G = eG/Γ if Γ is non-anomalous. We can further develop the 2d TQFT perspective
by assigning Hilbert-space operations to basic two-dimensional cobordisms, as discussed in
figure 4 in the main text.

B Lattices associated with Lie groups

In this appendix, we review some basic facts about Lie groups. In particular, starting from any
(simple) Lie group G, one can build six generally distinct lattices which are important in the
representation theory of G. See [14,125,126] for a more comprehensive treatment.

First, for any lattice L ⊆ Rn, the dual lattice L∗ is defined as:

L∗ = { f ∈ (span(L))∗ | f (x) ∈ Z , ∀x ∈ L} . (B.1)

It holds that (L∗)∗ = L. Without too much loss of generally, let us assume that the Lie alge-
bra g = Lie(G) of G is simple and compact.41 Then, the complexification gC of g admits a
decomposition:

gC = tC ⊕
⊕

α∈Φ
Vα , (B.2)

where t is the Cartan subalgebra, i.e. the maximal abelian subalgebra of g.42 The set Φ ⊆ t∗

are the set of roots, and Vα ⊆ gC are the root spaces. The Cartan subalgebra tC ∋ H acts on
the root spaces Vα ∋ Xα as:

[H, Xα] = α(H)Xα . (B.3)

We can always “diagonalise” the Vα. For Eα ∈ Vα, there is an Hα ∈ t for each α ∈ Φ such that:

[Eα, E−α] = Hα , [Hα, E±α] = ±2E±α . (B.4)

41Once we complexify the Lie algebra, it does not make sense to talk about whether the Lie algebra is compact
or not. We can still use the fact that every complex semi-simple Lie algebra always possesses a real form that is
compact.

42It is customary to be a bit careless about whether by g one actually means gC.
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The Eα are called root vectors and the Hα are the coroot vectors. They have a natural pairing:
for any α,β ∈ Φ, α(Hβ) ∈ Z. The coroots span the Cartan subalgebra tC over C.

The roots span a lattice called the root lattice Λr ⊆ t∗ of g, while the coroots span the
coroot lattice Λcr ⊆ t. The root system typically has a large isometry group, which is called the
Weyl group W of g. The weight lattice Λw = Λ∗cr is defined as the dual of the coroot lattice. It
contains the root lattice Λr as a sublattice. The quotient

Λw/Λr
∼= Z(eG) , (B.5)

is isomorphic (as an abelian group) to the centre of eG, which is the unique simply connected
compact Lie group with Lie(G) = Lie(eG) = g. Furthermore, the magnetic weight lattice of g,
Λmw = Λ∗r , is defined as the dual of the root lattice. It contains the coroot lattice as sublattice,
and their quotient is again isomorphic to Z(eG).

The four lattices Λr, Λw, Λmw and Λcr depend only on the Lie algebra g and not on the
global form of the Lie group G. In order to construct representations for G rather than for g,
one must study the exponential map exp : g→ G, H 7→ e2πiH . A fundamental theorem states
that, if G is connected and compact, the exponential map is surjective, i.e. exp(g) = G. By
restricting the exponential map to the Cartan subalgebra, we can construct two new lattices
which depend on the global form of G. Firstly, we have the lattice:

ΛG
mw ≡ kerexp |t = {H ∈ t | e2πiH = 1} , (B.6)

which we call the magnetic weight lattice of G. This is the lattice of GNO-quantised magnetic
fluxes for G [127]. The dual lattice ΛG

w ≡ (Λ
G
mw)

∗ is the weight lattice of the group G. This is a
sublattice of Λw which always contains Λr. In summary, we have:

t∗ : Λr

Z(G)
⊆ ΛG

w

π1(G)
⊆ Λw

t : Λmw

Z(G)
⊇ ΛG

mw

π1(G)
⊇ Λcr

∗ ∗ ∗
(B.7)

The groups Z(G) and π1(G) above the inclusions denote the groups that the respective quo-

tients are isomorphic to, i.e.. B
G
⊇ A means that B/A∼= G.

For the purpose of gauging higher-form symmetries, it is useful to further refine these
sequences of sublattices. Let Γ ⊆ Z(G) be a subgroup of the centre of G. Then there exists a
magnetic weight lattice ΛG/Γ

mw such that:

Γ ∼= ΛG/Γ
mw /Λ

G
mw . (B.8)

Its dual lattice ΛG/Γ
w in t∗ is a sublattice of ΛG

w, with the quotient again being isomorphic to Γ .
The other quotient is isomorphic to Z(G)/Γ , which is well-defined since Z(G) is abelian and
thus Γ ◁ Z(G) is normal in Z(G). We illustrate this in the following diagram:

t∗ : Λr

Z(G)/Γ
⊆ ΛG/Γ

w

Γ
⊆ ΛG

w

t : Λmw

Z(G)/Γ
⊇ ΛG/Γ

mw

Γ
⊇ ΛG

mw

∗ ∗ ∗
(B.9)

Obviously, as suggested by the notation, ΛG/Γ
w is the weight lattice for the group G/Γ .
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C Mixed ’t Hooft anomaly from dimensional reduction

In this appendix, we further discuss the 4d anomaly theory (67) associated with the 3d 1-
form symmetry Γ (1)3d

∼= Γ . We reduce the theory along S1 and show how the ’t Hooft anomaly
reduces to a mixed ’t Hooft anomaly between the 2d 0-form and 1-form symmetries Γ (0) and
Γ (1). We refer to [114, 128] for recent physics discussions and to [129, 130] for the original
mathematical background.

Associated with Γ , there exists a unique abelian group Â(Γ ), such that for any abelian
group Γ ′ there exists a quadratic function γ : Γ → Â(Γ ) that satisfies q = q̃◦γ for any quadratic
function q : Γ → Γ ′ and some q̃ ∈ Hom(Â(Γ ), Γ ′) uniquely determined by q.43 Let us choose
an explicit set of generators of Γ such that Γ ∼=

⊕

i ZNi
. Then, the associated abelian group is

given by:
Â(Γ ) =

⊕

i

Â(ZNi
)⊕

⊕

i< j

ZNi
⊕ZN j

, (C.1)

with:

Â(ZNi
) =

¨

ZNi
, if Ni ∈ 2Z+ 1 ,

Z2Ni
, if Ni ∈ 2Z .

(C.2)

The map Γ → Â(Γ ) is also known as the universal quadratic functor.

Pontryagin square and anomaly theory The 4d anomaly theory (67) is defined in terms of
the Pontryagin square:

P : H2(M4, Γ )→ H4(M4, Â(Γ )) . (C.3)

The 4d topological action is essentially a multiple of P(B4d), with B4d ∈ H2(M4, Γ ) being a
background gauge field for the 3d 1-form symmetry Γ extended into the 4d bulk. The explicit
form of the Pontryagin square depends on Γ . For example, for Γ = ZN and assuming that
H1(M4,Z) is torsion-free, as will be the case for us:

P(B4d) =

¨

B4d ∪ B4d , N ∈ 2Z+ 1 ,
eB4d ∪ eB4d mod 2N , N ∈ 2Z ,

(C.4)

where eB4d ∈ H2(M4,Z) is an integral uplift of B4d. In the more general case Γ =
⊕

i ZNi
, we

decompose the gauge field as B4d =
∑

i Bi with Bi ∈ H2(M4,ZNi
). Then, the Pontryagin square

can be expanded accordingly:

P(B4d) =
∑

i

P(Bi) + 2
∑

i< j

Bi ∪ B j . (C.5)

The four-dimensional anomaly action for Γ (1)3d is given by the natural generalisation of P(B4d)
given in (68).

Continuum formulation of the 4d anomaly theory and circle reduction Let us consider
the continuum form of the anomaly theory (68). It reads [42,68]:

Sanom
4d =

∫

M4

∑

i, j

ai jNiN j

4πgcd(Ni , N j)
Bi ∧ B j +

∑

i

Ni

2π
Bi ∧ dAi , (C.6)

43A map q : Γ → Γ ′ is said to be a quadratic function iff q(γ) = q(−γ) and 〈γ,eγ〉q ≡ q(γ + eγ) − q(γ) − q(eγ) is
bilinear.
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where Bi ∈ H2(M4, U(1)(1)) and Ai ∈ H1(M4, U(1)(0)). The integers ai j satisfy the periodicity
conditions ai j ∼ ai j+gcd(Ni , N j) on spin four-manifolds.44 The topological action (C.6) enjoys
a gauge symmetry under which the gauge fields Bi and Ai transform as

Bi 7→ Bi − dλi , Ai 7→ Ai +
∑

j

ai jN j

gcd(Ni , N j)
λ j . (C.7)

Given the continuum formulation, it is easy to consider the dimensional reduction of the
anomaly theory on a circle. That is, we consider M4 =M3 × S1 with ∂M3 = Σg . The gauge
fields Bi and Ai can be decomposed as:

Bi → Bi +ηi ∧ Ci , Ai → Ai +ηiφi , (C.8)

where ηi ∈ H1(S1,Z), Bi ∈ H2(M3, U(1)), Ci ∈ H1(M3, U(1)), and φi ∈ H0(M3, U(1)). Here
Bi and Ci are the continuum versions of the 3d fields B and C for the anomaly theory of the
two-dimensional theory on Σ. Plugging this back into (C.6) and dimensionally reducing, we
find that the 3d anomaly theory is given by:

Sanom
3d =

∫

M3

∑

i, j

ai jNiN j

4πgcd(Ni , N j)
(Ci ∧ B j + Bi ∧ C j) +

∑

i

Ni

2π
(Ci ∧ dAi + Bi ∧ dφi) . (C.9)

This is the continuum version of the mixed ’t Hooft anomaly (70) between Γ (1) and Γ (0) dis-
cussed in the main text.

D Proofs for SU(N)K CS theory

In this appendix, we discuss proofs and extended derivations of various results we use in
section 3 for calculating expectation values of topological operators in the SU(N)K theory, for
the discrete gauging procedure. In section D.1, we find the fixed points under the action of the
full ZN 0-form symmetry, in the absence of an anomaly. In section D.2, we extend this analysis
to the subgroups of ZN , which covers all possible anomalies for SU(N)K . Section D.3 discusses
the sum over the mixed correlators by carefully studying the mixed gravitational anomaly. In
section D.4, we extend Jordan’s totient function to accommodate a θ -angle for the gauged
1-form symmetry.

D.1 Fixed points under the full group

In this section, we complete the proof that there is a unique fixed point under the zero-form
symmetry Z(0)N in the SU(N)K theory, for any N , whenever K a multiple of N . In section 3,
we have shown this for N odd. Let us now consider the case N even. In (170), we found the
general expression for the fixed point

(la;ℓ) =
�

s, s+ κ, s+ 2κ, . . . , s+ (N − 1)κ; Ns+ κ
N(N − 1)

2
mod κN

�

, (D.1)

where κ= K
N ∈ Z. As discussed in section 3, for N odd the fixed point has ℓ= 0.

44It is worth noting that, on general four-manifolds, the 4d TQFT (C.6) would have the periodicities aii ∼ aii+2Ni

(and ai j ∼ ai j + gcd(Ni , N j) for i ̸= j), and would only be well-defined if aii Ni were even [42]. We consider spin
manifolds only because we are studying supersymmetric field theories, in which case the anomalies coefficients ai j

are indeed valued in Zgcd(Ni ,N j ) for every i, j.
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Existence and uniqueness Let us now prove that the fixed point (D.1) is unique also if N
is even. First, we prove that s = ⌈κ2 ⌉ gives a fixed point, and then we show that it is unique.

Consider ℓ = Ns + κN(N−1)
2 mod κN for κ even. With s = κ

2 we have ℓ = κ
2 N2, which is ≡ 0

mod κN , since N is even and thus ℓ= N
2 κN ≡ 0 mod κN . For κ odd, on the other hand, with

s = κ+1
2 we have ℓ = N

2 +
κ
2 N2, where the second term is equivalent to 0 modulo κN , for the

same reason as above. Since N
2 ∈ N and is < N , we thus have ℓ = N

2 in this case. We can
summarise all cases as follows:

e−2πi ℓN = (−1)κ(N−1) . (D.2)

We have shown that for both κ even and odd, s = ⌈κ2 ⌉ in (170) gives a fixed point. In order
to show uniqueness, we add to s an integer b in a valid range and show that it vanishes.
For κ even, consider therefore s = κ

2 + b with b ∈ Z, which since 0 ≤ s < κ is between
−κ2 ≤ b < κ

2 . For this value of s, we find ℓ = N b. Since |b| ≤ κ
2 < κ, the remainder of ℓ is N b

mod Nκ= N b. We now impose ℓ < N , from which it is clear that b = 0. Similarly if κ is odd,
then for s = κ+1

2 + b we find ℓ= N b mod Nκ≡ N b < N and thus b = 0.

Fixed Bethe vacua We have proven the existence and uniqueness of the fixed point (170)
for all N and all multiples K of N . In fact, the fixed Bethe vacuum is independent of the value
of K and takes a simple form: if N is odd, then la = (a− 1)κ and ℓ= 0. Thus if we denote by
ûfixed,a the components of the fixed point solution ûfixed, we find

ûfixed,a =
1
N
(a− 1) , N odd. (D.3)

When N is even, we need to distinguish the two cases κ even and odd. If κ is even, then
la = κ(a−

1
2), while ℓ = 0. Therefore, we find ûfixed,a =

1
N (a−

1
2). If κ is odd rather, we have

la =
1
2 +κ(a−

1
2), while ℓ= N

2 , such that

ûfixed,a =
1
N

�

a−
1
2

�

, N even, (D.4)

which is precisely the same as for κ even. Since the index a runs from 1, . . . , N , we find that
2Nûfixed is the list of even numbers 0, . . . , 2N − 2 if N is odd, and it is the list of odd numbers
1, . . . , 2N − 1 if N is even. Note that for both cases N even and odd, we have that

la − lb = (a− b)κ . (D.5)

This identity is important when evaluating the handle-gluing operator (138) on the fixed point,
which we use in (173).

D.2 Fixed points under subgroups

When N is prime, every nontrivial element of ZN is a generator of the full group, and the result
in the previous subsection applies to any γ ̸= 0. If N has nontrivial divisors instead, particular
elements of ZN can generate proper subgroups, as discussed in detail in section 3.1.2.

Enumeration of fixed points Let us now study the fixed points under a general subgroup
Zd of ZN , where of course d is a divisor of N and K . Above, we proved that under the action
of the ZN subgroup there is precisely one fixed point. From the shift (166) of a Bethe vacuum
under the generator γ0, we find that ℓ → ℓ and la → la +

K
N mod K . Applying this map n

times, the action under nγ0 is therefore la → la + n K
N mod K . Since the la ∈ {0, . . . , K}, and

we are free to reorder the la ’s, this means that two particular values of la are related by an
action of nγ0 if they differ by gcd(n, N) K

N . On the other hand, all fixed points under nγ0 are
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fixed points under the subgroup 〈nγ0〉 ∼= Zd , where d = N/gcd(n, N). This shows that the
fixed points under any Zd subgroup have la values whose differences are multiples of K

d . This
generalises the result (170), where d = N for the generator 〈γ0〉 ∼= ZN , and we found that the
values of la differed by K

N .
The above analysis proves that we can decompose any fixed point (l1, . . . , lN ;ℓ) under

the action of a Zd subgroup into d orbits of tuples (l̃1, . . . , l̃ N
d
), which is determined from

(l1, . . . , lN ;ℓ) by collapsing the whole list modulo K
d (i.e. l̃a ∈ Z K

d
), and adding the orbits45

(l1, . . . , lN ) =
d−1
⋃

j=0

�

l̃1 + j K
d , . . . , l̃ N

d
+ j K

d

�

. (D.6)

This allows us to count the number of fixed points under a Zd subgroup. Since the d full
orbits do not have any degrees of freedom, we merely need to enumerate the set of integers

(l̃1, . . . , l̃ N
d
) where each l̃a ∈ Z K

d
. This number is simply

�
K
d
N
d

�

. Since the ‘last’ value ℓ is not

affected by the Zd action, we have N initial possibilities for it. As discussed in section 3.1, only
every K-th candidate tuple satisfies the traclessness condition, which leaves us with

N
K

� K
d
N
d

�

=
� K

d − 1
N
d − 1

�

, (D.7)

fixed points. This concludes our counting exercise on fixed points, which we use in (175).

D.3 Sum over mixed correlators

In section 3.4, we consider the gauging of the 0-form symmetry on T2. Due to the partic-
ular structure (183) of the fixed points, this amount to summing 〈Ugcd(m,n)γ0(C)

�

T2 over all
m, n ∈ ZN , and results in a counting exercise of mutual fixed points. In order to study the full
3d one-form gauging, we need to consider mixed correlators such as




Πmγ0Unγ0(C)
�

T2 = (−1)mn( K
N +1)(N−1)




Ugcd(m,n)γ0(C)
�

T2 , (D.8)

which we studied in section 3.2, or the ‘maximal’ insertion 〈Πmγ0Unγ0(C) Un′γ0(eC)〉T2 . Due to
the modular anomaly on T3, the sign (D.8) makes the sum more elaborate. Before deriving
the sum over the maximal insertions required in section 3.4, let us consider the simpler sum
over the smaller mixed correlators (D.8) first.

As explained in the main text, when N is odd, the relative sign is equal to one, and the
summation proceeds as in (214). Let us thus consider the case N even in the following.

Case 1: No relative sign There are various cases that we can study, in order to find a general
formula for the sum overZN . Clearly, it depends on the value of K

N for which n, m the sign (D.8)
is +1 or −1. For instance, if N |K we can have the cases where K

N +1 is even or odd. If it is even,
then there is no relative sign between the two correlators, and we can proceed in summing
over them as described above,

N |K and
K
N

odd:
N−1
∑

m,n=0

〈Πmγ0Unγ0(C)
�

T2 =
∑

d|gcd(N ,K)

J2(d)
� K

d − 1
N
d − 1

�

. (D.9)

45We abuse notation by using ∪ as the concatenation of tuples.
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Case 2: Alternating sign Let us thus consider the next simplest case, where N |K but K
N + 1

is odd. In that case, the relative sign is merely (−1)mn. We can now attempt to enumerate the
contributions from all the m, n with these alternating signs. Rather than partitioning N2 into
the divisors of N , we first partition the N2 tuples (m, n) into two sets where (−1)mn is +1 and
−1. Since (−1)mn = 1 if either m or n or both are even, while (−1)mn = −1 only if both m, n
are odd, this gives a partition of the sort

N−1
∑

m,n=0

(−1)mn = 3
�

N
2

�2

−
�

N
2

�2

=
N2

2
. (D.10)

Indeed, if N is even, then there are N
2 even and N

2 odd numbers in the set {0, . . . , N −1}. This
counting exercise allows us to find a general rule for which divisors d of N have contributions
from both signs. Collapsing the sum over the (m, n) to a sum over divisors d, we identify
d gcd(m, n, N) = N . The sign (−1)mn is a minus sign if and only if both m, n are odd. Here it
becomes apparent that the condition becomes dependent on the nature of N : if N has no odd
divisors (i.e. it is 2n), then this gcd is always equal to 1. In general, with gcd(m, n, N) for m, n
odd we can probe in this way all odd divisors of N . Thus the sum is alternating precisely if N

d
is odd. For any such odd d|N we count now the number of values of (−1)mn〈Ugcd(m,n)γ0

(B)〉T2

with plus and minus signs. Using a similar analysis as above (D.10), one can show that for
any fixed odd value of N

d , there are twice as many + signs as − signs, schematically n+ = 2n−.
Since Jordan’s totient J2 = n+ + n− enumerates those regardless of signs, we find that the
difference is n+ − n− =

1
3 J2. On the other hand if N

d is even, then gcd(m, n, N) must be even,
in which case (−1)mn = 1. We have thus shown

N |K and
K
N

even:
N−1
∑

m,n=0

〈Πmγ0Unγ0(C)
�

T2 =
∑

d|gcd(N ,K)

eJ N
2 (d)

� K
d − 1
N
d − 1

�

, (D.11)

where we temporarily introduce the symbol

eJ N
2 (d) =

¨

1
3 J2(d) ,

N
d odd,

J2(d) ,
N
d even,

(D.12)

which we will generalise below.

Case 3: N even The case remains where N ∤ K . Of course, for most integers m and n, the
values 〈Πmγ0Unγ0(C)

�

T2 vanish due to the mixed anomaly (187). As shown above, in this
situation K

N is not necessarily an integer, however for all m and n such that the correlator does
not vanish, mnK

N is an integer, and the phase in (D.8) is merely a sign.
Let us study this sign in detail. We focus on the case where the sign is a −, that is,

mn( K
N + 1) is odd. The tricky part is to identify all those m, n ∈ {0, . . . , N − 1} for which

above combination is odd. This is however not necessary, since as we showed above, it de-
pends only on the fixed value of gcd(m, n, N) if such correlators are alternating. Since we
translate d = N/gcd(m, n, N) to divisors d of N , we can pick the representatives m = n = N

d
for any d|N . This number can be either odd or even. Indeed, gcd(N

d , N
d , N) = N

d , since of
course N

d is a divisor of N . For these representatives, we can study the parity of

mn
�

K
N
+ 1

�

=
N
d

�

K
d
+

N
d

�

. (D.13)

If N
d is even, then this number is even and does not give rise to a sign. If N

d is odd, then this
number if odd only if K

d is even.
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We have shown that the contribution from a given pair (m, n) can be odd only if N
d is odd

and at the same time K
d is even. This allows us to generalise (D.12) to arbitrary K ,

eJ N ,K
2 (d) =

¨

1
3 J2(d) ,

N
d odd and K

d even,

J2(d) , otherwise.
(D.14)

From this we find

N even:
N−1
∑

m,n=0

〈Πmγ0Unγ0(C)
�

T2 =
∑

d|gcd(N ,K)

eJ N ,K
2 (d)

� K
d − 1
N
d − 1

�

, (D.15)

which holds for N even but arbitary K . Let us confirm that it is compatible with the above
cases where N |K . In either cases N

d even/odd, there exists only a sign issue if N
d is odd. Let

now K
N be odd, then K

d is an odd multiple of the odd number N
d , which means that K

N is odd.
In that case eJ N ,K

2 (d) = J2(d), and we derive (D.9). Let now K
N be even, then K

d is an even
multiple of the odd number N

d and therefore even. In that case eJ N ,K
2 (d) = eJ N

2 (d) just returns
to the temporary definition (D.12), and indeed we rederive (D.11).

Arbitrary N and K Let us now combine all cases, with N and K arbitrary integers. From
(D.8) and (214) it is clear that for N odd the correct enumeration is J2(d) for all divisors d of
both N and K . This means we can slightly modify eJ N ,K

2 (d) to include all cases,

J N ,K
2 (d) =

¨

1
3 J2(d) , N even, N

d odd, K
d even,

J2(d) , otherwise.
(D.16)

After all this numerical gymnastics, we arrive at the general expression:

N , K ∈ N :
N−1
∑

m,n=0

〈Πmγ0Unγ0(C)
�

T2 =
∑

d|gcd(N ,K)

J N ,K
2 (d)

� K
d − 1
N
d − 1

�

. (D.17)

One important check concerns the divisibility of J2(d) by 3. Since J N ,K
2 (d) = 1

3 J2(d) only
if N is even and N

d odd, this case only occurs if d is even. We can show that J2(d) for d
even is always divisible by 3: For this, let d = 2m. If m is odd, then we can show using the
definition (215) that J2(2m) = 3J2(m). Similarly if m is even, then J2(2m) = 4J2(m). Thus
if 2m contains an odd divisor, we can apply this recursion and find a divisor 3|J2(2m). If 2m
does not contain any odd divisors, we have 2m= 2n, for which J2(2n) = 3× 22n−2 ∈ 3N, such
that 3|J2(2m) as well. We have thus shown that for any even integer d, J2(d) is divisible by 3,
and J N ,K

2 : N→ N is a well-defined integral map for all integers N and K .

Other mixed correlators On T3, there is only one other mixed correlator, which is the maxi-
mal insertion 〈Πmγ0Unγ0(C)Un′γ0(eC)〉T2 . Due to (218), the sum over m, n, n′ ∈ ZN only slightly
generalises the summation exercise above. Clearly, the phase is a ± sign at most, and the
counting of the number n± of ± contributions proceeds by relating 3n+ = 4n− for any divisor
d giving rise to minus signs. Then n+ + n− = J3(d), while we are interested in the number
n+ − n− =

1
7 J3(d) after the cancellation of the minus signs. This justifies the definition J N ,K

3
in (219) and proves (220) for all values of N and K .
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D.4 Theta angle for general N

In this section, we elaborate on the calculation of the Witten index of the PSU(N)θs
K theory

with angle θs, as defined in (226). More generally, for any value of N and K we aim to evaluate
∑

m,n,n′∈ZN

e2πi ms
N 〈Πmγ0Unγ0(C) Un′γ0(eC)〉T2 , (D.18)

regardless of the precise form of the mixed anomaly. This sum is rather involved to evaluate
explicitly, since the phases for nontrivial theta angle interfere with the enumeration of signs
originating from the gravitational anomaly (218). For vanishing theta angle, this resulted in
the refinement (219) of Jordan’s totient function, as discussed in the previous subsection.

In section 3.4, we argue that the sum (D.18) should be analysed in three steps of increas-
ing difficulty, which is due to the two distinct intricacies: The θ -angle probes the theory in
a different fashion depending on whether N is square-free or not [15, 16].46 The second ob-
struction is the gravitational anomaly discussed in section 3.2, which we can omit if K rather
than N is square-free. Let us thus study these three steps in detail.

Both N and K square-free First, let us assume that both N and K are square-free, that is,
no prime factor appears more than once in their prime factor decomposition. This assumption
simplifies the discussion for the following reason. Summing over exponentials as in (D.18)
gives rise to sums of geometric series of the form

d−1
∑

n=0

e2πi ns
d = d δs mod d,0 , (D.19)

where d is any divisor of N . Evaluating the triple sum (226) involves products of several such
geometric-type series, which are difficult to bring to a simple form. However, we can express

δs mod d,0 =
∏

p|d

δs mod p,0 , (D.20)

as a product over all prime divisors p of d, if and only if every divisor d is square-free – that
is, if N is square-free. This is clearly not the case if N is not square-free, for instance δs mod 4,0
can not be written as a product over prime divisors of 4.47 We will return to this point below.

These elaborations lead us to a conjecture on the general form of the Witten index of the
PSU(N)K theory with arbitrary theta angle. For this, we need to introduce an integer-valued
‘square-free’ refinement of Jordan’s totient function,

J sf
k (d, s)≡ dk

∏

p|d

�

δs mod p,0 −
1
pk

�

, (D.21)

where the product is again over prime divisors of d. Clearly, J sf
k (d, 0) = Jk(d) is the ordinary

Jordan totient. Using (D.20), one can show that
∑

d|N

J sf
k (d, s) = N kδs mod N ,0 , (D.22)

46Recall that the property of a number to be square-free is important in the study of S-duality orbits of N = 4
SYM with gauge algebra su(N) [15]. If N is square-free, then there is a single orbit relating the SU(N)/Zp theories
with p|N .

47If d is not square-free, the lhs of (D.20) would be replaced by δm mod rad(d), where the radical rad(d) is the
product of the distinct prime numbers dividing d.

70

https://scipost.org
https://scipost.org/SciPostPhys.18.2.066


SciPost Phys. 18, 066 (2025)

for all k ∈ N and all square-free integers N , generalising the relation (216). Then we find for
both N and K square-free:

∑

m,n,n′∈ZN

e2πi ms
N 〈Πmγ0Unγ0(C) Un′γ0(eC)〉T2 =

∑

d|gcd(N ,K)

J sf
3 (d, s)

� K
d − 1
N
d − 1

�

. (D.23)

Arbitrary N and square-free K We can generalise these results to arbitrary N with square-
free K . As describe above, the result will hold more generally for all values of N and K such
that the conditions (201) are false for all divisors r|gcd(N , K). For this, we define for any
integer d the radical rad(d) as the product of the distinct prime numbers dividing d. Then we
refine (D.21) as [50,52,53,131]

Jk(d, s)≡ dkδs mod d
rad(d) ,0

∏

p|d

�

δs mod ped (p),0 −
1
pk

�

, (D.24)

where for any prime divisor p of d, ed(p) is the maximal exponent of which p appears in the
prime factor decomposition of d, that is, we can write d =

∏

p|d ped (p). The number-theoretic

interpretation is that Jk(d, s) is the contribution of the partition of N k into a sum over divisors
d of any integer N ,

∑

d|N

Jk(d, s) = N kδs mod N ,0 , (D.25)

generalising (D.22) to arbitrary integers N . Then for any value of N and any square-free
integer K we find

∑

m,n,n′∈ZN

e2πi ms
N 〈Πmγ0Unγ0(C) Un′γ0(eC)〉T2 =

∑

d|gcd(N ,K)

J3(d, s)
� K

d − 1
N
d − 1

�

. (D.26)

Arbitrary N and K Finally, let us comment on the case where both N and K are arbitrary.
In these cases, rather than the geometric series (D.19), we get alternating geometric series of
the form

d even:
d−1
∑

n=0

(−1)ne2πi ns
d = d δs− d

2 mod d,0 . (D.27)

Indeed, consider the example of N = 4 and K = 8, such that N has a divisor d = 4 with
N/d odd and K/d = 2 even. By direct calculation of the sum (D.18), we indeed get a term
δs−2 mod 4,0,

42IW

�

PSU(4)θs
8

�

= 32+ 40δs−2 mod 4,0 + 24δs mod 2,0 + 8δs mod 4,0 . (D.28)

A yet simpler example is N = 2 with K = 4. Here,

4IW

�

SO(3)θs
4

�

= 3+δs mod 2,0 + 5δs−1 mod 2,0 , (D.29)

while J3(3, s) = 8δs mod 2,0 − 1. We leave it for future work to find a suitable modification of
(D.24) that works for all integers N and K and generalises (D.26).

E Number theory tidbits

In this appendix, we collect some number theoretic identities that are used in the body of the
paper, and we review properties of the classical Jordan totient function.
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E.1 Glaisher’s theorem

Following section 3.3 and in particular (206), want to prove that there exists an integer MN ,K ,
such that

�

K − 1
N − 1

�

= 1+MN ,K N2 , (E.1)

assuming that N ≥ 3 is prime and N |K . Let us bring this to a slightly more standard form:

Proposition 1. Let p ≥ 3 be a prime and n ∈ N an integer. Then
�

np− 1
p− 1

�

≡ 1 mod p2 . (E.2)

The proof follows directly from the following

Lemma 1 (Lemma 19 of [132]). Let p be prime and k, n ∈ N. Then

�

npl

kpl

�

≡
�

npl−1

kpl−1

�

mod p3l−1 . (E.3)

Proof. Let us prove Proposition 1. Set k = l = 1 in Lemma 1. Thus
�np

p

�

≡ n mod p2. But
�np

p

�

= n
�np−1

p−1

�

, and the claim follows.

Similar statements are known in the literature (see e.g. [133]). Corollaries of Lemma 1 are
Wolstenholme’s theorem [90] and Babbage’s theorem [89], while Proposition 1 is somewhat
inconsistently called Glaisher’s theorem, being consequences of Glaisher’s congruence [91,
134]. See [135] for an excellent review. Let us also note also that excluding further the prime
p = 3, we can divide by another factor of p:

Proposition 2. For any prime p ≥ 5 and any integer n, we have
�

np− 1
p− 1

�

≡ 1 mod p3 . (E.4)

E.2 Totient functions

Totient functions are arithmetic functions which are associated with divisors of a given integer.
In this appendix, we list important definitions and properties that are used in the body of the
paper, and refer the reader to [136–140] for comprehensive treatments.

Euler’s totient The simplest example of a totient function is Euler’s totient ϕ, which counts
the positive integers up to a given integer n that are relatively prime to n. In other words, ϕ(n)
is the number of integers k in the range k = 1, . . . , n for which the greatest common divisor
gcd(n, k) is equal to 1. The integers k of this form are sometimes referred to as totatives of n,
giving the function its name. Clearly, ϕ(1) = 1 and ϕ(p) = p− 1 for prime numbers p.

An important property is that every integer n can be partitioned into the Euler totients of
its divisors,

∑

d|n

ϕ(d) = n . (E.5)

This identity is tightly linked to cyclic groups: For any integer d, ϕ(d) is the number of pos-
sible generators of the cyclic group Zd . Indeed, if Zd is generated by some element g with
gd = 1, then gk is another generator if and only if k is coprime to d. Since every element of
Zn generates a cyclic subgroup, and all subgroups Zd ⊂ Zn are generated by precisely ϕ(d)
elements of Zn, the above formula holds.
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The Euler totient can be calculated in several ways. Euler’s product formula states that

ϕ(n) = n
∏

p|n

�

1−
1
p

�

, (E.6)

where the product is over all prime numbers p dividing n.

Jordan’s totient A generalisation of Euler’s totient function is Jordan’s totient function, de-
noted by Jk(n).48 For both k and n positive integers, Jk(n) equals the number of k-tuples of
positive integers that are less than or equal to n and that together with n form a coprime set
of k+ 1 integers,

Jk(n) = |{(m1, . . . , mk) ∈ N |1≤ mi ≤ n, gcd(m1, . . . , mk, n) = 1}| . (E.7)

The function Jk has a group-theoretical interpretation as well. Indeed, Jk(n) counts the num-
ber of sequences (g1, . . . , gk) of elements in Zn such that, if Gi is the subgroup generated by
{g1, . . . , gi}, then we have the subgroup sequence

{0} ≤ G1 ≤ G2 ≤ . . .≤ Gk = Zn . (E.8)

By an inclusion–exclusion principle it can be shown that Jordan’s totient function equals

Jk(n) = nk
∏

p|n

�

1−
1
pk

�

, (E.9)

where p again ranges through all prime divisors of n. Clearly, Jordan’s totient function is a
generalisation of ϕ, since ϕ = J1. An important property is

∑

d|n

Jk(d) = nk . (E.10)

For any p prime, we have Jk(p) = pk−1. Clearly, Jk(1) = 1. Jordan’s totient is a multiplicative
function, meaning that whenever m and n are coprime (that is, gcd(m, n) = 1), then

Jk(m)Jk(n) = Jk(mn) . (E.11)

Furthermore, we have Gegenbauer’s identity

Jk+l(n) =
∑

d|n

d l Jk(d) Jl(
n
d ) , (E.12)

for n, k, l ∈ N [140]. This gives a relation between J3 and J1 = ϕ,

J3(n) =
∑

d|n

d J2(d)ϕ(
n
d ) . (E.13)

Jordan’s totient function has various interesting divisibility properties. For instance, it is
straightforward to prove that for even integers 2n, we have

2k − 1
�

� Jk(2n) , (E.14)

for all k, n ∈ N. Finally, we note that there are various other generalisations of Euler’s totient
ϕ. One interesting generalisation of Jordan’s totient Jk is the extension to general finite groups
[110].

48Another notation used in the literature is ϕk(n).
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[78] D. Cvijović and H. M. Srivastava, Closed-form summations of Dowker’s and related
trigonometric sums, J. Phys. A: Math. Theor. 45, 374015 (2012), doi:10.1088/1751-
8113/45/37/374015.

[79] C. M. da Fonseca, M. L. Glasser and V. Kowalenko, Basic trigonometric power sums with
applications, Ramanujan J. 42, 401 (2017), doi:10.1007/s11139-016-9778-0.

[80] Y. Tachikawa, On gauging finite subgroups, SciPost Phys. 8, 015 (2020),
doi:10.21468/SciPostPhys.8.1.015.

[81] P. M. Neumann, A lemma that is not Burnside’s, Math. Sci 4, 133 (1979).

[82] J. Brandt, Cycles of partitions, Proc. Am. Math. Soc. 85, 483 (1982),
doi:10.1090/S0002-9939-1982-0656129-5.

[83] E. Akin and M. Davis, Bulgarian solitaire, Am. Math. Mon. 92, 237 (1985),
doi:10.2307/2323643.

[84] N. J. A. Sloane, A note on modular partitions and necklaces, Rutgers University, Highland
Park, USA (2014), http://neilsloane.com/doc/A241926.pdf.

[85] C. Córdova and T. Dumitrescu, Candidate phases for SU(2) adjoint QCD4 with two
flavors from N = 2 supersymmetric Yang-Mills theory, SciPost Phys. 16, 139 (2024),
doi:10.21468/SciPostPhys.16.5.139.

[86] G. Felder, K. Gawedzki and A. Kupiainen, Spectra of Wess-Zumino-Witten mod-
els with arbitrary simple groups, Commun. Math. Phys. 117, 127 (1988),
doi:10.1007/BF01228414.

78

https://scipost.org
https://scipost.org/SciPostPhys.18.2.066
https://doi.org/10.1142/S0217751X19502336
https://doi.org/10.1007/JHEP07(2014)075
https://doi.org/10.1007/s00220-013-1863-2
https://doi.org/10.1007/JHEP07(2017)071
https://doi.org/10.1142/S0218216520400039
https://doi.org/10.1007/JHEP03(2021)006
https://doi.org/10.1142/9789812793850_0013
https://doi.org/10.1007/JHEP09(2016)095
https://doi.org/10.21468/SciPostPhys.15.3.085
https://doi.org/10.1088/1751-8113/45/37/374015
https://doi.org/10.1088/1751-8113/45/37/374015
https://doi.org/10.1007/s11139-016-9778-0
https://doi.org/10.21468/SciPostPhys.8.1.015
https://doi.org/10.1090/S0002-9939-1982-0656129-5
https://doi.org/10.2307/2323643
http://neilsloane.com/doc/A241926.pdf
https://doi.org/10.21468/SciPostPhys.16.5.139
https://doi.org/10.1007/BF01228414


SciPost Phys. 18, 066 (2025)

[87] T. Numasawa and S. Yamaguch, Mixed global anomalies and boundary conformal field
theories, J. High Energy Phys. 11, 202 (2018), doi:10.1007/JHEP11(2018)202.

[88] L. Alvarez-Gaumé, G. Moore and C. Vafa, Theta functions, modular invariance, and
strings, Commun. Math. Phys. 106, 1 (1986), doi:10.1007/BF01210925.

[89] C. Babbage, Demonstration of a theorem relating to prime numbers, T. & A. Constable,
Edinburgh, UK (1819).

[90] J. Wolstenholme, On certain properties of prime numbers, Q. J. Pure Appl. Math. 5, 35
(1862).

[91] J. W. Glaisher, Congruences relating to the sums of products of the first n numbers and to
other sums of products, Q. J. Math. 31, 1 (1900).

[92] Y.-H. Lin, Topological modularity of monstrous moonshine, Ann. Henri Poincaré 25, 2427
(2024), doi:10.1007/s00023-023-01352-8.

[93] J. Albert, J. Kaidi and Y.-H. Lin, Topological modularity of supermoonshine, Prog. Theor.
Exp. Phys. 033B06 (2023), doi:10.1093/ptep/ptad034.

[94] V. Bashmakov, M. Del Zotto, A. Hasan and J. Kaidi, Non-invertible symmetries of class S
theories, J. High Energy Phys. 05, 225 (2023), doi:10.1007/JHEP05(2023)225.

[95] M. Isachenkov, I. Kirsch and V. Schomerus, Chiral primaries in strange metals, Nucl.
Phys. B 885, 679 (2014), doi:10.1016/j.nuclphysb.2014.06.004.

[96] C. J. Cummins and R. C. King, WZW fusion rules for the classical Lie algebras, Can. J.
Phys. 72, 342 (1994), doi:10.1139/p94-050.

[97] C. J. Cummins, su(n) and sp(2n) WZW fusion rules, J. Phys. A: Math. Gen. 24, 391
(1991), doi:10.1088/0305-4470/24/2/012.

[98] C. J. Cummins, P. Mathieu and M. A. Walton, Generating functions for WZNW fusion
rules, Phys. Lett. B 254, 386 (1991), doi:10.1016/0370-2693(91)91173-S.

[99] F. M. Goodman and H. Wenzl, Littlewood-Richardson coefficients for Hecke algebras at
roots of unity, Adv. Math. 82, 244 (1990), doi:10.1016/0001-8708(90)90090-A.

[100] L. Bégin, P. Mathieu and M. A. Walton, Òsu (3)k fusion coefficients, Mod. Phys. Lett. A 07,
3255 (1992), doi:10.1142/S0217732392002640.

[101] J. Fuchs, Fusion rules in conformal field theory, Fortschr. Phys. 42, 1 (1994),
doi:10.1002/prop.2190420102.

[102] P. Di Francesco, P. Mathieu and D. Sénéchal, Conformal field theory, Springer, New York,
USA, ISBN 9781461274759 (1997), doi:10.1007/978-1-4612-2256-9.

[103] S. Peluse, Irreducible representations of SU(n) with prime power degree, Sémin. Lothar.
Comb. 71 (2014).

[104] O. Aharony, Baryons, monopoles and dualities in Chern-Simons-matter theories, J. High
Energy Phys. 02, 093 (2016), doi:10.1007/JHEP02(2016)093.

[105] O. Aharony, F. Benini, P.-S. Hsin and N. Seiberg, Chern-Simons-matter duali-
ties with SO and USp gauge groups, J. High Energy Phys. 02, 072 (2017),
doi:10.1007/JHEP02(2017)072.

79

https://scipost.org
https://scipost.org/SciPostPhys.18.2.066
https://doi.org/10.1007/JHEP11(2018)202
https://doi.org/10.1007/BF01210925
https://doi.org/10.1007/s00023-023-01352-8
https://doi.org/10.1093/ptep/ptad034
https://doi.org/10.1007/JHEP05(2023)225
https://doi.org/10.1016/j.nuclphysb.2014.06.004
https://doi.org/10.1139/p94-050
https://doi.org/10.1088/0305-4470/24/2/012
https://doi.org/10.1016/0370-2693(91)91173-S
https://doi.org/10.1016/0001-8708(90)90090-A
https://doi.org/10.1142/S0217732392002640
https://doi.org/10.1002/prop.2190420102
https://doi.org/10.1007/978-1-4612-2256-9
https://doi.org/10.1007/JHEP02(2016)093
https://doi.org/10.1007/JHEP02(2017)072


SciPost Phys. 18, 066 (2025)

[106] F. Benini, P.-S. Hsin and N. Seiberg, Comments on global symmetries, anomalies, and du-
ality in (2+1)d, J. High Energy Phys. 04, 135 (2017), doi:10.1007/JHEP04(2017)135.

[107] C. Closset, H. Kim and B. Willett, N = 1 supersymmetric indices and the four-dimensional
A-model, J. High Energy Phys. 08, 090 (2017), doi:10.1007/JHEP08(2017)090.

[108] C. Closset and O. Khlaif, Twisted indices, Bethe ideals and 3d N = 2 infrared dualities, J.
High Energy Phys. 05, 148 (2023), doi:10.1007/JHEP05(2023)148.

[109] K. Intriligator and N. Seiberg, Aspects of 3d N = 2 Chern-Simons-matter theories, J. High
Energy Phys. 07, 079 (2013), doi:10.1007/JHEP07(2013)079.

[110] P. Hall, The Eulerian functions of a group, Q. J. Math. os-7, 134 (1936),
doi:10.1093/qmath/os-7.1.134.

[111] A. Kapustin, Seiberg-like duality in three dimensions for orthogonal gauge groups, (arXiv
preprint) doi:10.48550/arXiv.1104.0466.

[112] N. Mekareeya and M. Sacchi, Mixed anomalies, two-groups, non-invertible sym-
metries, and 3d superconformal indices, J. High Energy Phys. 01, 115 (2023),
doi:10.1007/JHEP01(2023)115.

[113] T.-C. Huang, Y.-H. Lin and S. Seifnashri, Construction of two-dimensional topological
field theories with non-invertible symmetries, J. High Energy Phys. 12, 028 (2021),
doi:10.1007/JHEP12(2021)028.

[114] F. Benini, C. Córdova and P.-S. Hsin, On 2-group global symmetries and their anomalies,
J. High Energy Phys. 03, 118 (2019), doi:10.1007/JHEP03(2019)118.

[115] C. Córdova, P.-S. Hsin and N. Seiberg, Global symmetries, counterterms, and duality in
Chern-Simons matter theories with orthogonal gauge groups, SciPost Phys. 4, 021 (2018),
doi:10.21468/SciPostPhys.4.4.021.

[116] D. G. Delmastro, J. Gomis, P.-S. Hsin and Z. Komargodski, Anomalies and symmetry
fractionalization, SciPost Phys. 15, 079 (2023), doi:10.21468/SciPostPhys.15.3.079.

[117] C. Closset, T. T. Dumitrescu, G. Festuccia and Z. Komargodski, Supersymmet-
ric field theories on three-manifolds, J. High Energy Phys. 05, 017 (2013),
doi:10.1007/JHEP05(2013)017.

[118] C. Closset, T. T. Dumitrescu, G. Festuccia and Z. Komargodski, The geome-
try of supersymmetric partition functions, J. High Energy Phys. 01, 124 (2014),
doi:10.1007/JHEP01(2014)124.

[119] C. Closset, L. Di Pietro and H. Kim, ’t Hooft anomalies and the holomorphy
of supersymmetric partition functions, J. High Energy Phys. 08, 035 (2019),
doi:10.1007/JHEP08(2019)035.

[120] D. Gang and M. Yamazaki, Three-dimensional gauge theories with supersymmetry en-
hancement, Phys. Rev. D 98, 121701 (2018), doi:10.1103/PhysRevD.98.121701.

[121] D. Gang, S. Kim, K. Lee, M. Shim and M. Yamazaki, Non-unitary TQFTs from 3D N = 4
rank 0 SCFTs, J. High Energy Phys. 08, 158 (2021), doi:10.1007/JHEP08(2021)158.

[122] F. Bonetti, S. Schäfer-Nameki and J. Wu, MTC[M3, G]: 3d topological order labeled by
Seifert manifolds, (arXiv preprint) doi:10.48550/arXiv.2403.03973.

80

https://scipost.org
https://scipost.org/SciPostPhys.18.2.066
https://doi.org/10.1007/JHEP04(2017)135
https://doi.org/10.1007/JHEP08(2017)090
https://doi.org/10.1007/JHEP05(2023)148
https://doi.org/10.1007/JHEP07(2013)079
https://doi.org/10.1093/qmath/os-7.1.134
https://doi.org/10.48550/arXiv.1104.0466
https://doi.org/10.1007/JHEP01(2023)115
https://doi.org/10.1007/JHEP12(2021)028
https://doi.org/10.1007/JHEP03(2019)118
https://doi.org/10.21468/SciPostPhys.4.4.021
https://doi.org/10.21468/SciPostPhys.15.3.079
https://doi.org/10.1007/JHEP05(2013)017
https://doi.org/10.1007/JHEP01(2014)124
https://doi.org/10.1007/JHEP08(2019)035
https://doi.org/10.1103/PhysRevD.98.121701
https://doi.org/10.1007/JHEP08(2021)158
https://doi.org/10.48550/arXiv.2403.03973


SciPost Phys. 18, 066 (2025)

[123] F. Benini, K. Hristov and A. Zaffaroni, Exact microstate counting for dyonic black holes in
AdS4, Phys. Lett. B 771, 462 (2017), doi:10.1016/j.physletb.2017.05.076.

[124] C. Closset, T. T. Dumitrescu, G. Festuccia, Z. Komargodski and N. Seiberg, Comments on
Chern-Simons contact terms in three dimensions, J. High Energy Phys. 09, 091 (2012),
doi:10.1007/JHEP09(2012)091.

[125] J. E. Humphreys, Introduction to Lie algebras and representation theory, Springer, New
York, USA, ISBN 9780387900520 (1972), doi:10.1007/978-1-4612-6398-2.

[126] W. Fulton and J. Harris, Representation theory, Springer, New York, USA, ISBN
9783540005391 (2004), doi:10.1007/978-1-4612-0979-9.

[127] P. Goddard, J. Nuyts and D. Olive, Gauge theories and magnetic charge, Nucl. Phys. B
125, 1 (1977), doi:10.1016/0550-3213(77)90221-8.

[128] A. Kapustin and R. Thorngren, Topological field theory on a lattice, dis-
crete theta-angles and confinement, Adv. Theor. Math. Phys. 18, 1233 (2014),
doi:10.4310/ATMP.2014.v18.n5.a4.

[129] J. H. C. Whitehead, On simply connected, 4-dimensional polyhedra, Comment. Math.
Helv. 22, 48 (1949), doi:10.1007/bf02568048.

[130] W. Browder and E. Thomas, Axioms for the generalized Pontryagin cohomology opera-
tions, Q. J. Math. 13, 55 (1962), doi:10.1093/qmath/13.1.55.

[131] D. Oprea, Bundles of generalized theta functions over Abelian surfaces, Kyoto J. Math. 59,
125 (2019), doi:10.1215/21562261-2018-0004.

[132] D. B. Grünberg, Integrality of open instantons numbers, J. Geom. Phys. 52, 284 (2004),
doi:10.1016/j.geomphys.2004.03.004.

[133] D. Yaqubi and M. Mirzavaziri, Some divisibility properties of binomial coefficients, J. Num-
ber Theory 183, 428 (2018), doi:10.1016/j.jnt.2017.08.005.

[134] J. Glaisher, On the residues of the sums of products of the first p − 1 numbers, and their
powers, to modulus p2 or p3, Q. J. Math. 31, 321 (1900).

[135] R. Mestrovic, Wolstenholme’s theorem: Its generalizations and extensions in the last hun-
dred and fifty years (1862–2012), (arXiv preprint) doi:10.48550/arXiv.1111.3057.

[136] J. Sándor and B. Crstici, Handbook of number theory II, Springer, Dordrecht, Nether-
lands, ISBN 9781402025464 (2004), doi:10.1007/1-4020-2547-5.

[137] P. J. McCarthy, Introduction to arithmetical functions, Springer, New York, USA, ISBN
9780387962627 (1986), doi:10.1007/978-1-4613-8620-9.

[138] J. Schulte, Über die Jordansche Verallgemeinerung der Eulerschen Funktion, Results Math.
36, 354 (1999), doi:10.1007/BF03322122.

[139] J. Freed-Brown, M. Holden, M. E. Orrison and M. Vrable, Cyclotomic polynomials, sym-
metric polynomials, and a generalization of Euler’s totient function, Math. Mag. 85, 44
(2012), doi:10.4169/math.mag.85.1.44.

[140] L. E. Dickson, History of the theory of numbers. Vol. I: Divisibility and primality, Dover
Publications, Mineola, USA, ISBN 9780486442327 (2005).

81

https://scipost.org
https://scipost.org/SciPostPhys.18.2.066
https://doi.org/10.1016/j.physletb.2017.05.076
https://doi.org/10.1007/JHEP09(2012)091
https://doi.org/10.1007/978-1-4612-6398-2
https://doi.org/10.1007/978-1-4612-0979-9
https://doi.org/10.1016/0550-3213(77)90221-8
https://doi.org/10.4310/ATMP.2014.v18.n5.a4
https://doi.org/10.1007/bf02568048
https://doi.org/10.1093/qmath/13.1.55
https://doi.org/10.1215/21562261-2018-0004
https://doi.org/10.1016/j.geomphys.2004.03.004
https://doi.org/10.1016/j.jnt.2017.08.005
https://doi.org/10.48550/arXiv.1111.3057
https://doi.org/10.1007/1-4020-2547-5
https://doi.org/10.1007/978-1-4613-8620-9
https://doi.org/10.1007/BF03322122
https://doi.org/10.4169/math.mag.85.1.44

	Introduction
	Warm-up example: The SU(2)K supersymmetric Chern–Simons theory
	Results for general G and for the SU(N)K gauge theory

	One-form symmetries in the 3d A-model
	Discrete symmetries in the 2d description
	Hilbert spaces and Bethe vacua for G=G
	't Hooft anomalies and vacuum structure

	Background gauge fields and expectation values of topological operators
	Gauging the 1-form symmetry Gamma1
	Gauging the 0-form symmetry Gamma0
	Topologically twisted index for the gauge group G/Gamma

	The 3d N=2 SU(N)K Chern–Simons theory
	The A-model for the SU(N)K theory and its higher-form symmetries
	Two-dimensional 1-form symmetry, gauging and decomposition
	Two-dimensional 0-form symmetry and orbits of Bethe vacua
	't Hooft anomaly and the allowed SUNZdK CS theories

	Mixed correlators and a modular anomaly on T3
	The PSUNK twisted index for N prime
	Gauging the 3d one-form symmetry on T3
	Gauging the 3d one-form symmetry on SigmagS1

	Further aspects of the 3d Neq2 SU(N)K CS theory
	Gauging the 1-form symmetry in the 3d TQFT
	Comments on level/rank duality

	Including matter: U(1) and SU(Nc) theories
	U(1)k with matter
	SU(N)k with adjoint matter

	Conclusion and outlook
	3d A-model for G: A lightning review
	The Coulomb branch parameters
	The effective twisted superpotential and the effective dilaton
	The 3d topologically twisted index

	Lattices associated with Lie groups
	Mixed 't Hooft anomaly from dimensional reduction
	Proofs for SU(Nc)K CS theory
	Fixed points under the full group
	Fixed points under subgroups
	Sum over mixed correlators
	Theta angle for general Nc

	Number theory tidbits
	Glaisher's theorem
	Totient functions

	References

