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Abstract

Full-shell hybrid nanowires (NWs), structures comprising a superconductor shell that
encapsulates a semiconductor (SM) core, have attracted considerable attention in the
search for Majorana zero modes (MZMs). However, the predicted Rashba spin-orbit
coupling (SOC) in the SM is too small to achieve substantial topological minigaps. In
addition, the SM wavefunction spreads all across the section of the nanowire, leading
typically to a finite background of trivial subgap states with which MZMs may coexist.
To overcome both problems, we explore the advantages of utilizing core-shell hole-band
NWs as the SM part of a full-shell hybrid, with an insulating core and an active SM
shell. In particular, we consider InP/GaSb core-shell NWs, which allow to exploit the
unique characteristics of the III-V compound SM valence bands. We demonstrate that
they exhibit a robust hole SOC that emerges from the combination of the intrinsic spin-
orbit interaction of the SM active shell and the confinement effects of the nanostructure,
thus depending mainly on SM and geometrical parameters. In other words, the SOC is
intrinsic and does not rely on red electric fields, which are non-tunable in a full-shell
hybrid geometry. As a result, core-shell SM hole-band NWs are found to be a promising
candidate to explore Majorana physics in full-hell hybrid devices, addressing several
challenges in the field.
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1 Introduction

Hybrid superconductor-semiconductor (SC-SM) heterostructures are probably the most an-
alyzed platform [1] for the creation of one-dimensional (1D) topological superconductiv-
ity [2,3] and the search of Majorana zero modes [4] (MZMs). These exotic quasiparticles offer
immunity to local noise and possess non-trivial braiding statistics [5], making them promising
building-blocks of future fault-tolerant quantum computers [2, 6, 7]. A recently proposed hy-
brid nanowire (NW) design, the so-called full-shell NW [8], alleviates some of the problems
that conventional partial-shell Majorana NWs present [9–13] and that have hindered the cre-
ation of MZMs during the last decade [14]. In full-shell NWs, the SM core is fully surrounded
by a superconducting metallic shell, shielding the NW from disorder created by the electro-
static environment and surface reconstruction of the NW facets exposed to air. Moreover, the
driving mechanism for the topological transition is not a Zeeman field, but an orbital effect
associated with the doubly-connected geometry of the parent SC in the presence of a magnetic
flux [8,15,16]. Thus, full-shell NWs require much smaller magnetic fields to achieve the topo-
logical phase, what prevents the degradation of the parent superconducting state, and operate
with small or zero g-factor.

The full-shell architecture, however, also presents some disadvantages [14, 17, 18]. Most
notably, it is not possible to gate tune the chemical potential inside the core due to the metallic
encapsulation. Furthermore, using microscopic simulations in realistic Al/InAs full-shell wires,
the predicted electron SOC is too small to provide substantial topological protection [19]. In
this case, the Rashba SOC appears due to the radial electric field that is produced by the (un-
controllable) SM conduction-band (CB) bending at the SM-SC interface [20–22]. In addition,
for the parameter regions for which Majorana states are predicted to appear, these zero modes
typically coexist with a number of trivial subgap states that give rise to a dense local density
of states (LDOS) background [16]. These subgap states have been dubbed Caroli–de Gennes–
Matricon (CdGM) analogs [23], and their presence is due to the doubly-connected geometry
of the SC shell and the non-zero winding of the SC pairing phase in the presence of a magnetic
flux. In a recent study [16] that thoroughly examines the phenomenology of Al/InAs full-hell
hybrid NWs, it has been established that MZMs free from CdGM analogs should be possible in
tubular-core NWs, this is, wires where the electron wave function is concentrated in a tube of
a certain thickness close to the SM-SC interface.
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Figure 1: Sketch of the nanostructure. (a) Sketch of the proposed full-shell hybrid
nanowire (NW). This heterostructure is composed of a semiconductor (SM) core-
shell NW made of an insulating core (yellow) and an active SM layer (green). The
NW is fully surrounded by a thin superconductor (SC) shell (grey). (b) Typical band
structure of a bulk III-V compound SM. For some specific materials, like the InP/GaSb
core-shell NWs studied here, the Fermi level (horizontal dashed line) may lie at the
valence bands close to the band edge (LH and HH stands for light and heavy-hole
bands, and CB for conduction band).

In view of these arguments, in this work we make a specific proposal for the hybrid’s
core that could potentially improve the performance of full-shell NWs and thus facilitate the
creation of MZMs with a large topological gap. We propose to use a core-shell insulator-SM
NW, see Fig. 1(a), where the active SM layer is outside, confining the wave function close
to the SC-SM interface by means of an insulating core. This should effectively decrease the
number of GdGM analogs inside the gap once the SC was included, and enable the formation
of topological islands in the phase diagram according to Ref. [16]. Importantly, we make use
of the hole bands of III-V compound SMs to harness the intrinsic spin-orbit coupled nature of
the valence bands (VBs). The SOC of hole bands is typically much larger than that of electrons
which consequently may lead to sizeable topological minigaps.

Our proposal centers around a specific material configuration, core-shell InP/GaSb NWs,
with GaSb acting as the SM shell and InP as the insulating core, see Fig. 1(a). Although
the proposed core-shell structure has not yet been explored experimentally, it seems to be vi-
able.1 Note that in the proposed device the Fermi level is placed at the VBs, close to the band
edge [24, 25], which is convenient for the topological phase when proximitized with the SC.
We first examine the SOC of realistic InP/GaSb NWs for different radii and GaSb thicknesses.
For this purpose, we use a microscopic approach that employs a self-consistent Schrödinger-
Poisson equation within an 8-band k·p Hamiltonian framework. We find substantial values
of SOC, of the order of 20 meV·nm, to be compared to values of 2 − 4 meV·nm reported in
Ref. [19] for similar geometries with InAs. Furthermore, we demonstrate that the SOC does not
rely on external factors like electric fields or strain. We then elucidate the origin and character-
istics of the SOC and provide analytical expressions derived from an effective Luttinger-Kohn
(LK) Hamiltonian model. We find that the SOC in these nanostructures originates from the
combination of the intrinsic properties of the SM active layer and the radial confinement, in
agreement with similar nanodevices [26,27].

1There is a lattice constant mismatch of around 4% between InP and GaSb. While this mismatch is important
for the quality of the interface in planar heterostructures, it is not in vapor-liquid-solid NWs. For these NWs, the
radial growth allows to accommodate different lattice cells, providing typically a sharp, relaxed interface.
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2 System and methods

We start by discussing the requirements that a core-shell NW should have to potentially give
rise to topologically protected MZMs in a full-shell hybrid geometry. We look for a core-shell
heterostructure whose Fermi level lies at the VBs of the shell and close to the VB maximum,
see Fig. 1(b). In addition, the core must be insulating at these energies, which depopulates the
nanowire center and concentrates the wave function at the outer part of the NW. In this regard,
only type-I and type-II SM heterostructures are suitable, whereas type-III heterostructures are
not since in these ones the VBs and CBs in different layers overlap. There are several material
combinations that could be analyzed, being the lattice mismatch between the two materials a
key factor that determines whether the heterostructure is viable.

For the sake of concreteness, we propose to use type-II heterostructures based on Sb com-
pounds because they have hole carriers at the Fermi level more commonly [28]. Particu-
larly, for our numerical simulations we will consider InP/GaSb core-shell NWs. To the best
of our knowledge, these NWs have not yet been grown and analyzed experimentally. How-
ever, high quality and relaxed GaSb layers grown directly on InP(001) substrates using solid
source molecular beam epitaxy have been reported [29, 30]. Furthermore, InAs/InP/GaAsSb
core-dual-shell NWs have been recently grown using catalyst-free chemical beam epitaxy [31].

Let us mention that, apart from InP/GaSb, other heterostructures could be contemplated.2

Related ones, such as GaSb/GaAsSb, should in principle display similar properties. A different
option would be to consider group IV SM heterostructures, such as Ge/Si, which is a more pop-
ular platform to exploit the SM hole-bands [33]. Ge/Si heterostructures are well-established
and widely adopted in SM qubit platforms [34–37] as their VBs exhibit strong SOC [38–41]
and electrically tunable g-factors [42–44]. However, Ge-based heterostructures face some dis-
advantages compared to III-V SM compounds. Ge is more prone to dislocations and disorder
due to its chemical properties and common growth methods.3 They also offer less versatility in
tailoring band alignment, as III-V materials enable the use of ternary compounds to precisely
engineer the electronic properties [61]. In addition, growing a sharp, clean superconducting
layer on Ge/Si is also more challenging [45–50]; its surface oxidizes quickly, requiring etching
and preparation steps, and exhibits poorer chemical adhesion to SCs. These factors lead to
higher disorder in Ge-based heterostructures. And, while this may be less critical for quantum
dot physics (in the context where Ge is typically studied), it is crucial for quasi-1D systems
like the one analyzed here. Consequently, III-V SM compounds have become more popular for
studying SM-SC heterostructures in 1D systems, and particularly in the context of topological
superconductivity [62]. Note that several theoretical works have analyzed nanodevices based
on these heterostructures for the creation and manipulation of MZMs [63–66], but they have
not yet been considered in the context of the full-shell hybrid geometry that we propose here.

Coming back to our proposal, InP/GaSb heterostructures exhibit a type-II band alignment
with a wide gap of ∼ 0.5 eV. Specifically, the VB maximum of GaSb lies within the energy gap
of InP, as schematically illustrated in Fig. 2(a). We assume that the Fermi level is placed close
to the VB edge of GaSb as reported in Ref. [29]. However, different growing and fabrication

2A recently published work [32] proposes to use a topological insulator made of BiTe/Se in the place of the SM
core in a full-shell hybrid geometry.

3For creating Ge/Si-based heterostructures, various epitaxial growing techniques have been employed, includ-
ing molecular beam epitaxy [53], hybrid epitaxy [54], and low-energy plasma-enhanced chemical vapor deposi-
tion [55, 56]. Nonetheless, these methods often require the growth of several microns of material to minimize
defect nucleation, leading to elevated surface roughness and a high residual threading dislocation density. An
alternative approach using reverse-graded buffers grown via chemical vapor deposition [57] has shown promise
for producing smoother, thinner heterostructures with improved mobility [58,59]. This method however is not yet
optimized to consistently yield good quality samples [60], resulting in lower overall electron mobilities compared
to III-V compounds.
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methods, and particularly the ultimate incorporation of the SC outer shell in the hybrid NW,
may change the position of this Fermi level. In this respect, we note that partial control over
the wire’s overall doping could be achieved through the incorporation of chemical impurities
within the InP core during the growth process [29, 67, 68]. Given that the InP core primarily
acts as an insulator in this context, it is reasonable to assume that these dopants would exert
a minimal influence on the electronic properties of the wire, aside from their impact on the
Fermi level position. Note also that other strategies to engineer the band alignment of hy-
brid quantum devices are currently being investigated. For example, in a recent experimental
work [69], argon milling is used to modify the SC-SM interface while maintaining its high
quality.

To describe our SM NWs we employ the 8-band k·p Hamiltonian, which accurately repro-
duces the band structure of III-V compound SMs around the Γ point [70,71] and thus provides
reliable estimations of the SOC [72]. This model is suitable for heterostructures as well, under
the assumption that the parameters display an abrupt change at the interface between the SM
materials. This is the case of shells epitaxially grown on top of the core when the overall NW
doping is low, so that the Fermi wavelength is much larger that the dimensions of the core
and shell. We determine the energy spectrum of the core-shell NW through a self-consistent
solution of the Schrödinger-Poisson equation (see Appendix A for further details). To achieve
this, we employ the finite element method (FEM) on an inhomogeneous grid and implement
a Broyden mixing iterative approach [73] using nwkpy, a Python library recently developed
in-house [74]. Our analysis assumes a hexagonal cross-section, consistent with the majority
of vapor-liquid-solid III-V compound SM NWs, and considers it is translational invariant along
the longitudinal axis (z-direction). In this way, we access to the quasi-1D bulk properties of
the NW. We make sure that our inhomogeneous FEM grid preserves the D6 symmetry of the
hexagonal cross-section, which otherwise could introduce spurious solutions.

3 Results

3.1 Energy spectrum

A typical energy spectrum of the investigated core-shell NWs is presented in Fig. 2(b), display-
ing several traverse subbands that arise due to the confinement imposed by the finite wire’s
cross section. The VB edge is denoted by E0 and it represents the zero-point energy due to the
finite size confinement and the mean-field effective potential φ(r). The color bar shows the
light hole (LH) and heavy hole (HH) character of each state. Several noteworthy observations
can be made from this spectrum. First, the subband dispersion is negative, as expected for the
VBs. Second, all subbands have a hybrid LH and HH character that depends on kz . Notably,
the LH character predominates in the higher-energy subbands, i.e. those closer to the Fermi
level. Conversely, lower energy subbands have a stronger HH character because they have
lower effective mass in the confinement plane. As we shall demonstrate, the hybrid LH and
HH character is essential to provide a strong SOC to the different subbands and it is ultimately
regulated by the strength of the charge density confinement.

In Fig. 2(c) we present an example of the charge density distribution corresponding to the
spectrum computed in Fig. 2(b). It shows the hole concentration throughout the cross sec-
tion (solid black lines represent the interfaces). The charge density has a ring-like distribution
centered approximately at the GaSb shell average radius, with negligible localization within
the InP core. The nearly perfect cylindrical symmetry of this charge distribution arises from
the finite thickness w of the SM shell and the occupation of the lowest angular momentum
states. The z-component of the total angular momentum Fz is the sum of the orbital angu-
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Figure 2: InP/GaSb core-shell NWs. (a) Schematic representation of the band align-
ment of an InP/GaSb heterostructure. This type-II SM heterostructure features the
GaSb valence band (VB) maximum positioned within the energy gap of InP. We as-
sume that the Fermi level (black dashed line) lies close to the GaSb VB maximum.
(b) Typical energy spectrum of InP/GaSb NWs near the Γ point as a function of axial
wave vector kz . The colorbar denotes the weight of each state on the light-hole (LH)
and heavy-hole (HH) bulk bands. Due to confinement effects, the highest energy
subbands exhibit primarily a LH character, albeit with a degree of hybridization be-
tween LH and HH states. The projection onto the eigenstates with quantum number
|mF|=

1
2 of the total angular momentum is represented by the size of dots at discrete

values of kz . µ is the chemical potential and E0 is the VB edge energy (black dashed-
dotted line). (c) Charge density distribution of holes within the core-shell nanowire,
corresponding to the spectrum presented in (b). The wire geometry is defined by its
radius R and shell thickness w. (d) Electrostatic potential energy profile for the same
simulation. For these simulations R= 30 nm and w= 15 nm.
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lar momentum Lz , with quantum numbers mL ∈ Z, and the pseudo-spin Sz , with quantum
numbers mS =

�

±1
2 ,±3

2

	

. More details can be found in Appendix A. In a NW with cylindrical
symmetry and within the axial approximation, Fz commutes with the Hamiltonian and thus
mF = mL +mS is a good quantum number, which takes the values mF ∈ (Z+ 1/2). Subbands
in this limit come in pairs separated by a finite energy gap and with the same mF. These sub-
bands consist of nearly opposite spin states with dominant orbital angular momentum mL and
mL+1. At zero magnetic field the states corresponding to mF and −mF are doubly degenerate.
For simplicity, we focus on those with mF > 0.

In Fig. 2(b) we calculate the projection of the different states onto the mF =
1
2 value, repre-

sented by the size of the dots at discrete values of kz . The subbands with mF =
1
2 (or mF = −

1
2)

are of importance as they can give rise to MZMs in full-shell hybrid geometries [19]. It is note-
worthy that the two higher energy subbands in Fig. 2(b) predominantly correspond to the
mF =

1
2 sector, meaning that a cylindrical approximation is justified for them. The cylindri-

cal approximation remains valid in general to treat the eigenstates of the hexagonal wire at
low dopings. Only when the shell thickness w is rather small, the charge distribution tends to
develop an hexagonal shape due to the hybridization with higher angular harmonics mF + 6n
for integer n. Notice that the rest of the visible subbands in Fig. 2(b) have essentially zero
projection onto mF =

1
2 since they correspond predominantly to other, larger mF values. To

find another couple of predominantly mF =
1
2 subbands, one would need to populate the

higher radial subbands. Here, nevertheless, we are considering core-shell wires with a small
shell thickness w, meaning that there is a large energy splitting between radial subbands and
thus one would need to strongly increase the chemical potential or doping of the core-shell
wire to populate them. Since we are interested in tubular-core wires with the smallest pos-
sible number of CdGM analog states, we concentrate only on the first mF =

1
2 subband pair

corresponding to the lowest-energy radial subband. In addition, this will allow us to provide
analytical approximations for the SOC and other parameters.

To complement this discussion, we present the electrostatic potential energy profile−eφ(r)
for the same parameters in Fig. 2(d). It is computed self-consistently taking into account the
potential generated by the hole charges within the nanowire. We set the boundary condition
as φb = 0 at the wire facets, assuming that there is a surrounding metal that is grounded.
Consequently, the potential energy is zero in proximity to the interface and becomes progres-
sively negative towards the core. This implies that holes tend to feel attracted towards the
outer interface. Note, however, that the hole wave function average radius is slightly shifted
towards the core in Fig. 2(c). The reason is the different boundary conditions between the
outer and inner interfaces.4 It is important to note that if the metallic shell is superconduct-
ing, φb ̸= 0 even if it is grounded. This is due to the Ohmic SC-SM contact that produces
a SM band bending at the interface as a result of the work-function difference between both
materials. The precise magnitude and shape of this band-bending depends on chemical details
that have not yet been studied for this heterostructure. In general, it is reasonable to assume
that it will create a negative potential energy at the outer interface, pushing holes away from
it and towards the inner interface. This might be very convenient for our full-shell hybrid NW
proposal, as this might decrease metallization effects from the SC [75,76]while still preserving
the necessary proximity effect due to the finite thickness of the SM layer.

4The envelope-function equations are solved considering an infinite barrier for the outer surface of the NW (so
that the wave function is set to zero there), while the inner barrier is penetrable corresponding to a SM-insulator
interface. In Fig. 2(c) the inner barrier has a height of around 0.9 eV [see Fig. 2(a)], whereas the electrostatic
energy is of the order of a few meV [see Fig. 2(c)], not enough to counteract the confinement energy.

7

https://scipost.org
https://scipost.org/SciPostPhys.18.2.069


SciPost Phys. 18, 069 (2025)

3.2 Spin-orbit coupling

We now proceed to study the SOC in the considered core-shell SM NWs. Using the energy
spectrum and wave functions, we calculate numerically both the SOC α and the effective
mass by fitting each subband pair close to kz = 0 with a standard dispersion relation (see
Appendix A for the rather elaborate method). We anticipate that in Sec. 3.3 we will derive an
analytical Hamiltonian with the same dispersion. Generically, the SOC refers to the strength of
the coupling between the momentum of a quasiparticle to its pseudo-spin. While the pseudo-
spin in traditional cases refers to the electron’s pure spin (e.g., the conduction-band spin), in
our work, it refers to a more complex band combination of spin-like degrees of freedom (see
Appendix B for the specific band-combination involved).

In Fig. 3(a), we present α of the highest-energy subband pair, i.e., the one closest to the
band edge, as a function of the SM shell thickness w for different NW radii R, each represented
by a different color. We extract the SOC when the chemical potential is located halfway be-
tween the two mF =

1
2 subbands [see Fig. 2(b)]. We consider realistic values for R and w,

ranging from R = 15 nm to R = 40 nm, and from w = 5 nm to w = R − 10 nm.5 Larger
radii are certainly possible experimentally, but the methodology that we employ to extract α
ceases to be valid for R ≳ 50 nm. For these core-shell NWs, we obtain SOCs in the range of
15 to 30 meV·nm. These numbers are roughly a factor of ∼ 4 larger than the SOCs found in
Ref. [19] for solid-core NWs based on CB electrons and equivalent radius R. As in the case
of Ref. [19], we find that α increases as R decreases. In our case of a tubular core, the SOC
moreover increases with w for a fixed R.

Concerning the SOC axis, the dominant component must be radial in a NW with a (nearly)
cylindrical symmetry as ours, since it is the only direction with a broken inversion symmetry.
One could naively think that the SOC should vanish due to the centrosymmetry of the cylin-
drical geometry. However, notice that α⃗= αr̂ itself is not an observable, and we should rather
consider the spin-orbit field Ω⃗ ∼ α⃗× σ⃗. While the expectation value 〈α⃗〉 is strictly zero in a
problem with cylindrical symmetry,




Ω⃗
�

is not since σ⃗ depends on position for the eigenstates.
Intuitively, this can be understood by realizing that both the SOC and the spin change sign at
opposite cross section points, so that they contribute constructively to the average.

In Fig. 3(b) we show the behavior of the SOC with the doping level of the wire, considering
different shell thicknesses w for a fixed radius R= 30 nm. Notably, α remains almost constant
with µ, what suggests that the hole bands are essentially insensitive to the electric field inside
the wire. This is in sharp contrast to what happens to the CB of these materials, where the
sole contribution to the (Rashba) SOC arises from the electric field [70].

Both observations that, for a fixed R, α increases with w and is essentially independent
of the electric field, point to an intrinsic nature of the hole-band SOC of III-V compound SM
NWs. To further understand this behavior and unravel the underlying origin of the SOC, in
Fig. 3(d) we conduct a comparative analysis by selectively omitting certain contributions in
the multiband Hamiltonian. In blue we present the results derived from the complete 8-band
model, which are the same as the blue curve in Fig. 3(a). First, we test whether the interaction
between the HH-LH bands of GaSb and either the split-off bands or the CBs of both GaSb or InP,
do influence the SOC. To explore this, we set either the split-off gaps ∆β to exceedingly large
values or the coupling with the CBs Pβ to zero. We recompute the energy spectrum and the
SOC under each assumption, and depict the results in Fig. 3(d) with different colors. Notice
that none of these couplings contribute significantly to α as all the curves lie almost on top of
each other.

5Regarding the values of w that we consider, the minimum thickness of 5 nm ensures that the SM shell can be
grown with sufficient homogeneity, while we take w = R− 10 nm for the maximum thickness since the minimum
core radius that is typically grown nowadays is approximately 10 nm.
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Figure 3: SOC of InP/GaSb core-shell NWs. (a) SOC α of the highest-energy sub-
band pair as a function of GaSb shell thickness w for different wire radii R, each
represented by a different color. Solid lines correspond to 8-band model numerical
results while dashed lines to results obtained analytically with Eq. (3). α decreases
with R and increases with w. (b) α vs chemical potential of the wire (−µ) with re-
spect to the VB edge E0, for R= 30 nm and various w. The negative sign of −µ stems
from the occupation of the VB. Notably, there is a weak dependence on doping and,
consequently, on the electric field inside the nanostructure. (c) Harmonic mean ef-
fective mass m̄ [see Eq. (B.20)] of the same subband pair as in (a) normalized to the
light-hole bulk effective mass of GaSb mLHGaSb

= 0.0439m0, being m0 the free electron
mass. m̄ does not change substantially with w. (d) α vs w for R= 30 nm, considering
various scenarios: infinite split-off gaps for GaSb (solid green) or InP (dashed green),
zero coupling between CBs and VBs for GaSb (solid red) or InP (dashed red), and
identical Kane parameters (except for the gaps) for InP and for GaSb (grey). Results
computed with the full 8-band model (blue) are also shown for comparison. The
different curves lie almost on top of each other. All these results suggest an intrinsic
origin of the SOC of the GaSb hole bands.
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Next, we consider whether the SOC arises from the inversion asymmetry generated by the
core-shell interface [77]. Specifically, we investigate whether the non-commutativity of the
Kane parameters with momentum at the interface plays an important role. To test this, we
set all Kane parameters (excluding the gaps) of InP to be identical to those of GaSb. Remark-
ably, the results depicted in grey in Fig. 3(d) reveal that the interfacial effects do not have a
significant influence on the SOC of the GaSb hole bands.

These results lead us to conclude that the origin of the SOC is an inherent property of the
GaSb shell. Specifically, it is due to the radial confinement imposed by the nanostructure which
breaks the translation symmetry of the crystal structure of this tetravalent SM. Furthermore,
as InP plays a negligible role, we can assume that the core serves as a generic wide band-
gap insulator in our simulations, and that could be replaced by other insulating material.
Nevertheless, the particular chemical properties of the core are still relevant to determine the
Fermi level within the hole bands of GaSb.

3.3 Effective Hamiltonian and analytical results

Given the previous observations, it is justified to describe the NW through a Luttinger-Kohn
(LK) Hamiltonian that only involves the two spinful hole bands (the LH and the HH) of GaSb.
In Appendix B we show that, starting from the LK Hamiltonian, it is possible to derive a 2× 2
effective Hamiltonian that describes the two highest-energy mF =

1
2 subbands, given by

Heff =

�

Emean +
ħh2k2

z

2m̄

�

σ0 +

�

δE
2
+
ħh2k2

z

2mδ

�

σz +αeffkzσy . (1)

Here, σi are Pauli matrices for the effective ±1/2 spin degree of freedom, Emean is the mean
energy of the two subbands and δE the subband splitting (and thus E0 = Emean + δE/2), m̄
and mδ are the harmonic mean of the effective mass and its dispersion, respectively, and αeff
is the effective SOC. The derivation of this Hamiltonian and the analytical expressions of the
different parameters are shown in the Appendix B. Particularly, for the effective mass and the
SOC we have

m̄=
2m1m2

m1 +m2
, (2)

αeff =
γs

m0
ħh2
p

3χ
�

1
R
+

w
2R2

�

, (3)

where m1,2 is the effective mass of each subband [see Eq. (B.21)]. In Eq. (3), χ is an overlap
factor that depends on the degree of LH-HH hybridization of the two subbands, γs = (γ2+γ3)/2
with γi the Luttinger parameters of GaSb, and m0 is the free electron mass.

To asses the validity of the effective Hamiltonian of Eq. (1), we evaluate αeff using the
analytical expression of Eq. (3) and the tabulated values for γs and χ [78] (see Table 1). We
show the results in Fig. 3(a) with dashed lines for comparison with the numerical results. Even
though the agreement is not perfect, it is fairly good. This is specially remarkable in light of
the various approximations made to derive Eq. (1). This attests to the overall validity of the
analytical approach.

The analytical derivation of this effective Hamiltonian helps to clarify the origin of the
effective SOC, which turns out to be the same as the one predicted in Refs. [26, 27] for Ge-
based heterostructures. Although the bulk SM possesses intrinsic spin-orbit interaction, this
interaction does not cause spin-splitting within the HH or LH bands themselves (i.e., no split-
ting between spin-up and spin-down states within a single band). Instead, it manifests as a
splitting of the valence bands into HH and LH bands due to their different pseudo-spin quan-
tum numbers (mS = ±

3
2 for HH and mS = ±

1
2 for LH). But in a nanostructure, confinement
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breaks the translational symmetry of the bulk crystal, leading to a quantization of momentum
in the confined directions (r and ϕ). This quantization causes mixing between the HH and LH
bands, making them no longer distinguishable by their pseudo-spin projections mS. Instead,
only the total angular momentum mF is conserved. As a result, the subbands, which are now
hybridized mixtures of HH and LH states, can exhibit a k-dependent spin splitting, similar to
a conventional spin-orbit interaction.

Notice that, in accordance with our numerical 8-band model simulations, the effective
SOC of Eq. (3) is independent of the electric field, decreases with R, and increases with w.
Moreover, αeff also increases with the degree of LH-HH hybridization χ, which is ultimately
regulated by the degree of wave function confinement. This supports again that the origin of
the SOC is not an electric field, as it happens for the CB, but rather an orbital effect imposed
by the wave function confinement. In a cylinder, αeff thus points in the radial direction,6

along which the spatial symmetry is broken. We emphasize that a strong radial component
of the SOC, perpendicular to an applied axial magnetic field, is crucial to obtain a topological
superconducting phase with sizeable topological minigaps [8,16].

3.4 Topological chemical-potential window

To further characterize the probability of hosting a topological superconducting phase in a
full-shell geometry, it is convenient to study the energy splitting of the subband pair with total
angular momentum mF =

1
2 . As mentioned before, these are the only ones capable of hosting a

topological phase (in the absence of mode mixing perturbations [16]). The mF =
1
2 subbands

appear in pairs, with one pair corresponding to each radial subband. To find a topological
phase, the chemical potentialµmust be placed between two topological subbands (with an odd
number of filled topological subbands due to the even-odd effect [15]). For sufficiently small R
and/or w, the different mF =

1
2 subband pairs do not overlap and hence the topological phase

diagram is composed of non-overlapping topological regions for each radial mode [16]. The
separation between consecutive subbands within a pair thus defines the parameter window
for which a topological superconducting phase is possible and, consequently, the likelihood of
encountering MZMs at a given chemical potential or doping.

In Fig. 4(a) we depict the value −µ for which the chemical potential crosses the highest-
energy mF =

1
2 subband pair vs the shell width w for different wire radii R. Solid lines indicate

the crossing with the first subband of the pair, while dashed lines indicate the crossing with the
second one. In Fig. 4(b) we explicitly display the topological window∆ETS, which is the energy
spacing between solid and dashed lines of Fig. 4(a). For all the cases analyzed in Fig. 4(a), the
topological windows are larger than typical superconducting gaps, e.g., ∼ 0.2 meV for Al or
∼ 0.5 meV for Sn. Notably, the topological window increases with decreasing R and increasing
w, just as happened with the SOC magnitude [see Fig. 3(a)]. This can be readily understood
by examining the analytical equations governing these pairs. For a fixed R, thicker shells result
in smaller values of the average wave function radius, Rav, that lead to a greater level spacing
in turn. This agrees with the analytical expression for δE in Eq. (B.13), which is proportional
to R−2

av = (R−
w
2 )
−2, as shown in Ref. [27].

Our analysis demonstrates that thicker shells yield stronger SOC and wider topological
windows. Conversely, smaller diameters also result in enhanced SOC and increased spacing
between radial subbands. We clarify that the ultimate topological window is also determined
by the induced superconducting gap when the outer SC shell is included in the nanostructure.
If the superconducting gap is smaller than the chemical potential window ∆ETS, then it pro-

6Note that the Hamiltonian of Eq. (1) is written in a rotated basis independent of the angleϕ. When the rotation
is unfolded, the spin-orbit interaction term becomes αeffkzσϕ (along with other terms), which clearly indicates that
αeff must be radial. This is because the vectors α⃗, k⃗ and σ⃗ must all be mutually perpendicular.
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Figure 4: Topological chemical-potential window. (a) Crossing points of the chem-
ical potential −µ with the first (solid lines) and the second (dashed lines) highest-
energy |mF| =

1
2 subbands vs shell thickness w for different NW radii R (in different

colors). The spacing between the two lines defines the energy window ∆ETS for
which a topological SC phase is possible, which is plotted in panel (b).

vides a cutoff for the topological window size. Hence, the larger the parent superconducting
gap is (and the stronger the SC-SM coupling), the larger the topological window up to the
value fixed by ∆ETS.

4 Discussion and conclusions

In this work we have made a proposal to enhance the performance of full-shell hybrid NWs.
In the device configurations studied so far [8], the NWs should suffer from tiny SOCs [19],
which weaken the topological protection, and should be plagued with CdGM subgap analog
states [16, 23] that spoil the potential MZMs, at least in the absence of fairly specific mode-
mixing perturbations [8,15,16]. We have suggested to use a tubular-shaped SM core made of
a core-shell III-V compound SM [see Fig. 1(a)], being the SM core an insulator and the SM shell
a p-doped layer. On the one hand, the tubular shape reduces the spread of the wave function
across the NW section, confining it to the region close to the SC-SM interface. According to
what happens in electron-based full-shell hybrid NWs, this should dramatically reduce the
number of CdGM analogs coexisting with the MZMs [16]. On the other hand, the p-doped SM
shell allows to harness the intrinsic nature of the SOC of hole bands.

Specifically, we have considered core-shell InP/GaSb NWs, whose Fermi level lies at the
VB edge of the GaSb shell. Our investigations unveiled that core-shell InP/GaSb NWs exhibit a
robust SOC, with values of ∼ 20 meV·nm for NW radius of ∼ 30 nm, that does not depend on
electric fields or strain at the interface with the SC or the insulating core. Instead, it depends
on the degree of HH and LH hybridization, ultimately regulated by the confinement strength
provided by the NW radius. The intrinsic nature of the SOC thus eliminates additional device
constrains to enhance the SOC, like tuning an electric field inside the NW or using ultrathin
NWs.

Using microscopic self-consistent numerical simulations based on the 8-band model, we
observed that the SOC in our core-shell NWs increases with decreasing NW radius R, just as
happens with CB NWs, meaning that smaller cross-section wires will potentially develop larger
topological minigaps. This behavior could be explained by the reduction of the confinement,
responsible of the intrinsic SOC, as R increases [70]. Nonetheless, smaller radii require larger
magnetic fields to achieve the topological phase, which may be detrimental to the parent su-
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perconductor. Therefore, a trade-off R must be chosen based on the SC material.7 Additionally,
the SOC increases with shell thickness w. The reason is that increasing w reduces the energy
separation between LH and HH bands. Consequently the LH-HH coupling increases and thus
the SOC. We found a similar trend with R and w for the topological window of the core-shell
NW with chemical potential in the absence of other subgap states. However, since increas-
ing w too much should also increase the number of CdGM analogs in the presence of the SC
shell [16], a sweet spot for w must also be found for optimal topological protection.

The core-shell NW behavior with R and w was corroborated with analytical calculations
derived from the LK Hamiltonian. We derived a simple and practical expression for the effec-
tive SOC in Eq. (3), which produced remarkably similar results to the numerical calculations.
Analytical approximations for other NW parameters, such as effective masses and subband
energy splittings, were also derived in Appendix B.

The insulating core in our core-shell wires, apart from decreasing the presence of trivial
states within the gap, could additionally mitigate the impact of disorder stemming from im-
purities introduced during the NW growth process. This is simply because the wave function
is constrained to be located within the reduced cross-section of the active SM tube, instead of
spreading throughout the whole NW area, thereby reducing the exposure to impurities. This
argument is valid both for electron-based and hole-based tubular-core NWs. Apart from this,
we expect disorder along the NW’s axis to be as detrimental for MZM physics as it is in con-
ventional Majorana NWs, although it has been recently shown [66] that disorder effects have
a smaller impact in the hole bands.

Finally, let us mention that in this work we have explored the potential of hole-based
core-shell NWs for the topological performance of full-shell hybrid NWs based on previous
conclusions derived with CB SMs [8, 16, 19, 23], but we have not conducted simulations in
the presence of an actual SC and a magnetic flux. Concerning the later, it is known that in
full-shell hybrid NWs, the orbital effect of the magnetic field is crucial for the development
of the topological phase [8, 16]. In these geometries, subgap states cannot be tuned through
gate potentials, because the SC encapsulation shields external electric fields inside the SM
core; and barely tuned by the Zeeman effect, because Zeeman splittings are typically weak for
small magnetic fields. Instead, subgap states are strongly tuned by an effective Zeeman field
given in terms of the the magnetic flux [8]. Importantly, if the superconducting shell is smaller
than the London penetration length, the magnetic flux in the SM evolves continuously with
the applied field, leading to a topological phase whose flux extension is determined by the
effective radius of the SM, among other parameters [16]. This is an advantage compared to
other systems with a thick SC shell [81], which experience a quantization of the magnetic flux
inside the SM, imposing stricter conditions for a topological phase. While orbital effects are
critical for Majorana physics, a detailed analysis of their impact in our nanostructure is beyond
the scope of this work, particularly given the complex spin and orbital structure of hole bands.
Nonetheless, confinement-induced splitting between LH and HH bands suggests that orbital
effects in the higher-energy subbands should behave similarly to those in conventional CB SMs.

Regarding the inclusion of the SC shell, we would like to point out that the specific details of
the superconducting proximity effect on a VB SM remain unclear and are the subject of current
research. Some initial works [82, 83] suggest that there could be important differences with
respect to the CB counterpart, although a strong enough superconducting proximity effect
should be possible [47, 48, 50]. This aspect nevertheless demands a thorough analysis that
necessarily needs the experimental input and is also beyond the scope of this work.

7Notice that the magnetic field required to drive the full-shell hybrid system into the topological phase depends
on the choice of the SC material, as the Little-Parks effect [79, 80] depends on the SC’s critical temperature and
diffusive coherence length. For instance, with Al as the SC shell, we estimate that a magnetic field of approximately
0.2 T would be sufficient to reach the first possible topological region for a NW with R = 40 nm, whereas a field
of 1.7 T would be required for a NW with R= 15 nm.
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Concerning specific materials for the SC, the most common in conventional full-shell NWs
is Al. Admittedly, achieving epitaxial growth of Al on GaSb may pose challenges due to the
significant lattice mismatch between the two materials. Alternatively, one could explore SCs
like Sn [84,85] or Nb [86,87], which have been grown on other III-V compound SMs and posses
similar lattice constants as GaSb. The epitaxial growth ensures a clean, sharp SM-SC interface,
which ultimately provides a hard induced gap. However, despite the epitaxial growth, the
SC can exhibit cross hatched patterns or spatially dependent interfaces, which is detrimental
for Majorana physics, not only for full-shell but for partial-shell hybrid nanowires as well.
Remarkably, some degree of disorder, either in the SC or at the SM/SC interface, is actually
beneficial as it breaks parallel momentum conservation, allowing for a better hybridization
between the SC and the SM [88].

Metallization effects from the SC into the SM can be important in hybrid nanowires.8 Since
metallization effects could be specially important in tubular-core NWs (due to the enhanced
proximity of the SM wave function to the SC-SM interface), a convenient strategy could be de-
positing a thin layer of an insulating material between the SC and the SM [91]. This approach
helps to control the coupling between the SC and the SM, reducing the effects of metalliza-
tion and, additionally, opening the possibility to tune the hybrid structure into the topological
phase [16]. In particular, the insulating layer could be ternary SM, such as InGaSb, between
GaSb and the SC, which could further assimilate the potentially different lattice constants
and, thus, expand the range of possible SCs. We believe that the main conclusions of our work
should not be affected by the particular SC as long as these arguments are taken into account.

On a final note, we should mention that we do not expect full-shell hybrid NWs based on
our SM core-shell nanostructures to behave better against disorder than conventional solid-
core full-shell hybrid NWs, except perhaps due to the finite wave function spread across the
NW section thanks to the insulating core. Regarding smooth parameter inhomogeneities at
the end of the hybrid NW and the formation of quasi-Majoranas with which true MZMs could
be mistaken, again, we do not expect advantages in our design (the tubular core), since those
effects depend on variations along the length of the wire (not across its section). Also, we
do not anticipate new experimental signatures specific to the core-shell structure of the NW.
All the well-established methods from previous studies, such as detecting zero-bias peaks [8]
and Coulomb blockade spacing [92] in conductance experiments, remain applicable to our
nanodevices. The true advantages of full-shell hybrid NWs (as compared to partial-shell ones)
are their shielding from external electrostatic disorder thanks to the all-around SC shell, the
need for much smaller magnetic fields to achieve the topological phase, and the expectation of
MZMs at specific (and thus recognizable) flux intervals in certain regions of parameter space.
The potential advantages of the type of SM core-shell NWs we propose and charactarize here
are the enhancement of the SOC, and the concentration of the SM wave function in a tubular
region close to the SC-SM interface. We have argued that, under certain conditions, both
properties will facilitate the formation of MZMs and increase their topological minigaps once
the SC and orbital effects are included.

8If the coupling between the SM and SC is too strong, the SC can metallize the SM, diminishing the SOC of the
heterostructure among other NW parameters [75, 89, 90]. This is a known problem of hybrid NWs in general. In
addition, in full-shell NWs the coupling to the SC may modify the average radius of the wavefunction inside the
SM, effectively increasing the NW radius R. This in turn would decrease the effective SOC in our core-shell NWs
according to Eq. (3). Nonetheless, since the SC shell is typically very thin (below 10 nm), we assume that this
would be a small correction.
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A 8-band model for the core-shell nanowire

We consider a semiconductor (SM) hexagonal core-shell nanowire (NW) with its axis along
the z-coordinate and its section across the (x , y) plane. To obtain its band structure we use
the 8-band k·p model [93]with the envelope-function approximation [94]. This is the approx-
imation used to extend the bulk k·p theory to nanostructures by writing the wave function as
a linear combination of (lattice periodic) Bloch basis functions, so-called Kane basis functions,
with spatially varying coefficients, i.e., the envelope functions. The wave function at axial
wave vector kz is then written as |Ψ(r, kz)〉 =

∑8
ν=1 eikzzψν(x , y) |ν〉, being |ν〉 = |S, Sz〉 an

eigenstate of the Bloch total pseudo-spin angular momentum S, and Sz the Bloch pseudo-spin
angular momentum about the z-axis. We choose this axis along the (111) crystallographic di-
rection, which coincides with the growth axis of the NW. In particular, the Kane basis functions
are given by

|ν〉 ∈
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, (A.1)

where the label EL refers to the s-like conduction band (CB) Bloch orbitals, while the labels
HH, LH and SO correspond to the p-like valence band (VB) Bloch orbitals, also referred to
as heavy, light and split-off holes, respectively. The energy subbands E(kz) and the in-plane
envelope-function components ψν(x , y) are obtained by a self-consistent numerical solution
of the coupled envelope-function equations, (H8B)µνψν = Eψµ, and the two-dimensional
Poisson equation ∇⃗·

�

ε(x , y)∇⃗φ(x , y)
�

= −ρ(x , y), whereφ(x , y) is the electrostatic potential
inside the NW, ρ(x , y) is the charge density corresponding to the occupied VB states, and
ε(x , y) = εr(x , y)ε0 is the dielectric constant.

Details about the specific form of the 8-band Hamiltonian H8B and the self-consistent pro-
cedure employed to derive it can be found in Ref. [74]. The parameters of the 8-band model we
use for the simulations of the main text are reported in Table 1. Here, the modified Luttinger
parameters are calculated as [95]

γ̃1 = γ1 −
EP

3∆g
, γ̃2 = γ2 −

EP

6∆g
, γ̃3 = γ3 −

EP

6∆g
, (A.2)

where γi are material-dependent parameters parameterizing the mixture of HHs and LHs at
the top of the VB of cubic SMs, EP is the Kane energy and∆g is the SM bulk gap. As suggested
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Table 1: Material parameters used in the 8-band k·p model at temperature T = 0 K.
The bulk energy gap ∆g, the CB and VB offsets ∆Ec and ∆Ev at the InP/GaSb in-
terface, the split-off energy ∆so, the Kane energy EP, the conduction-band effective
mass me and the bare Luttinger parameters γi are taken from Ref. [78]. Emod

P is the
modified Kane energy Eq. (A.3) and γ̃i are the modified values Eq. (A.2). εr refers
to the relative dielectric constant of each material.

InP Interface GaSb

∆g [eV] 1.4236 0.812
∆Ec [eV] 0.514
∆Ev [eV] 0.91
∆so [eV] 0.108 0.76
EP / Emod

P [eV] 20.7 / 18.3 27 / 24.8
me [m0] 0.0795 0.039
γ1 / γ̃1 5.08 / 0.79 13.4 / 3.2
γ2 / γ̃2 1.60 / −0.55 4.7 / −0.39
γ3 / γ̃3 2.10 / −0.047 6.0 / 0.9
εr 11.77 15.7

by Foreman in Ref. [96], in order to avoid spurious solutions in the 8-band k·p theory, we take
a modified definition for the Kane energy parameter, i.e.,

Emod
P =

∆g(∆g +∆so)

∆g +
2
3∆so

�

m0

me

�

, (A.3)

where m0 is the free electron mass, me is the CB effective electron mass and ∆so is the split-
off gap of the bulk SM. Note that the modified Luttinger parameters eγi are calculated from
Eqs. (A.2) with EP=Emod

P .
We solve the envelope-function equations using the finite element method (FEM). The real

space representation of the Hamiltonian H8B is done on a two-dimensional hexagonal domain,
partitioned in a D6 symmetry-compliant mesh of triangular elements. The use of a discretiza-
tion that is compliant with the symmetry of the confinement potential is fundamental in order
to reproduce the expected degeneracies without the use of an an extremely high number of
grid points. To reduce the computational burden of the numerical diagonalization, we map
the envelope-function equations on inhomogeneous domain partitions, with higher density of
points in the conductive GaSb shell with respect to the insulating InP core region. In addition,
to avoid the emergence of discretization-related spurious solutions, we solve the envelope-
function equations using a mixed polynomial basis, where third-order Hermite polynomials
are used for the s-like CB components and second-order Lagrange polynomials are used for
for the p-like VB components [97].

We now define the total angular momentum operator as Fz = Lz + Sz , where Lz is the
z-component of the orbital angular momentum. As explained in Sec. 2 of the main text, mF
are good quantum numbers of Fz for a NW with cylindrical symmetry. It thus characterizes
the different traverse subbands in such a limit. The mF =

1
2 (mF = −

1
2) subband is special

because, in the presence of superconductivity in a full-shell hybrid geometry, it can give rise to
MZMs in the n = −1 (n = 1) Little-Parks lobe [8]. We focus for simplicity in mF =

1
2 because

in the absence of magnetic field, both mF = ±
1
2 subbands are degenerate. Coming back to the

hexagonal NW, we now want to obtain the projections of the different 8-band-model states
onto the value mF =

1
2 , since we want to understand which NW subbands are susceptible of

becoming topological in the presence of superconductivity. We employ the following procedure
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to that end. First, we consider the following eigenvalue equation

Fz |Φ〉= m∗F |Φ〉 , (A.4)

where |Φ(r, kz)〉=
∑8
ν=1 fν(x , y) |S, Sz〉 eikzz and m∗F are hexagonal-NW eigenstates and eigen-

values of the total angular momentum, respectively. Note that in the position representation,
Lz = −iħh(x∂y − y∂x). We then solve Eq. (A.4) using the FEM on the hexagonal domain and
obtain a set of ndof × 8 eigenvalues end eigenvectors, being ndof the total number of vertices
in the mesh. Since the equation is solved on an hexagonal domain, thus breaking cylindrical
symmetry, we expect a continuous distribution of the eigenvalues of Fz along the real axis.
However, we find that the density of eigenvalues is tightly peaked around half-integer values
Z+ 1/2. This indicates that the wave function distributes with a quasi-cylindrical symmetry.
To quantify the projections of each NW state onto a single mF target sector, we evaluate the
following quantity for each value of the wave-vector kz ,

CmF
=

1
N

∑

±|m∗F|∈ImF

�

�

�

¬

Φm∗F

�

�

�Ψ
¶

�

�

�

2
, (A.5)

where the sum is performed considering the set of eigenvalues m∗F that fall within a given in-

terval ImF
centered around mF. Notice N =

∑

m∗F

�

�

�

¬

Φm∗F

�

�

�Ψ
¶

�

�

�

2
is a normalization factor required

as the two set of eigenstates are not necessarily orthonormal to each other. In particular, in
Fig. 2(b) of the main text we have used this procedure for the target mF =

1
2 .

We now describe how we extract the values of the phenomenological spin-orbit coupling
(SOC) coefficient α and effective mass of the highest-energy subband pair of the hexagonal
NW, see Fig. 3. We employ a method that is similar to the one used in Ref. [19]. We assume
that these subbands are well described by the following 2× 2 fitting Hamiltonian

Hfit (kz) =

�

Emean +
ħh2k2

z

2m̄

�

σo +

�

δE
2
+
ħh2k2

z

2mδ

�

σz +αkzσy , (A.6)

where Emean is the mean energy of the two subbands at kz = 0, δE is the energy splitting at
kz = 0 due to the difference in orbital angular momentum between the two states, and m̄ is
the harmonic mean of the effective masses m1 and m2 of the two subbands, i.e.,

m̄=
2m1m2

m1 +m2
, (A.7)

and its dispersion is
1

mδ
=

m2 −m1

2m1m2
. (A.8)

Here, σi are Pauli matrices for an effective spin-1/2 degree of freedom. Note that, in contrast
to the case of spin-1/2 electrons in SM nanowires, the highest-energy hole-subband pair has
contributions from both states with spin projection±3/2 (HHs) and±1/2 (LHs). We will show
this explicitly, and how Eq. (A.6) can be derived from the Luttinger-Kohn Hamiltonian, in the
next Appendix. The energy spectrum of Hfit is

Efit
± (kz) =

�

Emean +
ħh2k2

z

2m̄

�

±
�

δeE(kz)
2

�

√

√

√

1+
4α2k2

z

δeE(kz)2
, (A.9)

where

δeE(kz) = δE +
ħh2k2

z

mδ
. (A.10)
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In principle, one could use this equation to fit the results of the 8-band model and extract the
coefficients α, m̄ and mδ. But the effect of the SOC is dominated by the energy splitting δE
and thus a fitting cannot resolve it. To overcome this issue we follow the procedure proposed
in Ref. [19]. First, we diagonalize the 8-band k·p Hamiltonian H8B at kz = 0 and find the
q lowest-energy eigenvectors Xndof×q. The matrix X diagonalizes the Hamiltonian H8B, such
that X †H8BX = Λ, where Λ is a q × q matrix containing the eigenvalues λi (i = 1, ..., q) on
the diagonal, and X †OX = 1q×q, being O a ndof × ndof real and symmetric matrix which is
present due to the non-orthogonal basis set used in the FEM. Now we construct the q × q
matrix D = diag(−δE

2 ,+δE
2 , 0, ..., 0) for each Kramers pair. The matrix D is then used to shift

the two subbands of the first subband pair (for each Kramers pair) so that the two states
have the same energy at kz = 0. To implement the energy shifting technique, we compute the
matrix δH8B = OX DX †O† and we diagonalize the Hamiltonian Hshift

8B (kz) = H8B(kz)+δH8B as a
function of kz . In the perturbed spectrum δE ≃ 0 and the spin-orbit effect is now pronounced.
Although we included the parameter mδ in the fitting procedure, to keep into account that
the two subbands can have different effective masses, in Fig. 3 of the main text we show
results taking into account only the harmonic mean effective mass m̄ of the subband pair (as
in Ref. [19]). The reason is that 1/mδ is in general very small and the extracted values or α
are essentially independent of mδ.

B Analytical approximations for the core-shell nanowire

The low-energy physics of hole-based nanostructures can be accurately described through a
four-band Luttinger-Kohn (LK) Hamiltonian [70]. The isotropic LK Hamiltonian in 3D can be
written as

HLK =
�

γ1 +
5
2
γs

�

ħh2k2

2m0
−
ħh2γs

m0
(k · S)2 , (B.1)

where m0 is the free electron mass, γi are the Luttinger parameters specified in Appendix A,
γs ≡ (γ2 + γ3)/2, ħhk = −iħh∇ is the vector of momentum operators (with k2 = −∇2), and
S is the vector of Bloch pseudospin-3/2 operators. This Hamiltonian is written in the basis
��

�Sz = +
3
2

�

,
�

�Sz = +
1
2

�

,
�

�Sz = −
1
2

�

,
�

�Sz = −
3
2

�	

, which is the LH-HH subspace of the 8-band
model basis of Eq. (A.1). Since (γ3 − γ2)/γ1 ≪ 1 in GaSb, anisotropic corrections to the LK
Hamiltonian are small and the isotropic approximation is well justified.

As we justify in the main text, the physics of an InP/GaSb core-shell is generally well de-
scribed with a cylindrical approximation. Hence, we use cylindrical coordinates (r,ϕ, z) for
the Hamiltonian, with k = (kr , kϕ, kz) transforming as k →

�

−i (∂r + 1/2r) ,−i 1
r ∂ϕ,−i∂z

�

.
Notice that with this definition of the radial momentum we ensure the hermiticity of the oper-
ator [98]. Also, since we assume that the NW is translationally invariant along the NW’s axis,
kz is a good quantum number and there is no need to replace it by its derivative. Moreover,
as the total angular momentum Fz = ħhkϕ + ħhSz commutes with the Hamiltonian, one can re-
move the angular dependence by rotating the LK Hamiltonian through the unitary operator
U = ei(mF−Sz)ϕ, being mF ∈ Z+

1
2 the quantum numbers of Fz . This rotation acts on the relevant

operators as

U†kU = k− eϕ(Sz −mF) , (B.2)

U†SU = erSx + eϕSy + ezSz , (B.3)

U†k2U = k2
r −

1
4r2
+
(Sz −mF)2

r2
+ k2

z . (B.4)
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In these expressions, we have used the commutation relations
�

kr , r−1
�

= ir−2,
�

kϕ,eϕ
�

= ier

and
�

kϕ,er

�

= − i
r eϕ.9 We can now write down the rotated Hamiltonian H̃LK = U†HLKU using

the standard representation of the 4×4 angular momentum matrices S for spin-3/2 operators.
The matrix elements of this Hamiltonian are [99]

�

H̃LK

�

11 =
ħh2

2m0

�

(γ1 + γs)

�

k2
r −

1
4r2
+

1
r2

�

mF −
3
2

�2
�

+ (γ1 − 2γs)k
2
z

�

,

�

H̃LK

�

22 =
ħh2

2m0

�

(γ1 − γs)

�

k2
r −

1
4r2
+

1
r2

�

mF −
1
2

�2
�

+ (γ1 + 2γs)k
2
z

�

,

�

H̃LK

�

33 =
ħh2

2m0

�

(γ1 − γs)

�

k2
r −

1
4r2
+

1
r2

�

mF +
1
2

�2
�

+ (γ1 + 2γs)k
2
z

�

,

�

H̃LK

�

44 =
ħh2

2m0

�

(γ1 + γs)

�

k2
r −

1
4r2
+

1
r2

�

mF +
3
2

�2
�

+ (γ1 − 2γs)k
2
z

�

,

�

H̃LK

�

12 = −
γs

m0
ħh2
p

3 kz

�

kr +
i

2r
−

i
r

�

mF −
1
2

��

, (B.5)

�

H̃LK

�

13 = −
γs

m0

p
3

2
ħh2
�

k2
r −

1
4r2
−

2i
r

�

mF −
1
2

��

kr +
i

2r

�

−
1
r2

�

mF +
1
2

��

mF −
3
2

��

,
�

H̃LK

�

14 =
�

H̃LK

�

23 = 0 ,

�

H̃LK

�

24 = −
γs

m0

p
3

2
ħh2
�

k2
r −

1
4r2
−

2i
r

�

mF +
1
2

��

kr +
i

2r

�

−
1
r2

�

mF −
1
2

��

mF +
3
2

��

,

�

H̃LK

�

34 =
γs

m0
ħh2
p

3 kz

�

kr +
i

2r
−

i
r

�

mF +
3
2

��

.

The rest of the elements can be derived taking into account that H̃LK must be hermitian.
Most of the topological properties of the hybrid NW are set from the properties of this

Hamiltonian close to kz = 0. Hence, we will use perturbation theory to obtain a manageable
analytical expression that applies for small kz . To this end, we split the Hamiltonian in two
parts

eHLK = H0 +H ′ , (B.6)

where H0 ≡ eHLK(kz=0) is treated as the zeroth-order Hamiltonian, and H ′ ≡ eHLK(kz) − H0
as the perturbative term. The zeroth-order eigenstates |i, mF〉 of H0 with energy Ei,mF

are in
general a linear combination

|i, mF〉=
∑

β

fmF,i,β(r) |β〉 |mF〉 , (B.7)

where i = {1,2, 3,4} labels the four possible bands and fmF,i,β are (envelope-function) coef-
ficients that mix the four bulk bands β =

�

HH↑, LH↑, LH↓, HH↓
	

for each mF. Notice that the
LK Hamiltonian H0 is separated in two disconnected blocks at kz = 0: one couples the states
|Sz = +3/2〉 with |Sz = −1/2〉, and the other couples the states |Sz = −3/2〉 with |Sz = +1/2〉.
As a result, one can explicitly write the linear combinations that provide the four eigensates

|1, mF〉=
�

fmF,1,HH↑(r)
�

�HH↑
�

+ fmF,1,LH↓(r)
�

�LH↓
�

�

|mF〉 ,

|2, mF〉=
�

fmF,2,LH↑(r)
�

�LH↑
�

+ fmF,2,HH↓(r)
�

�HH↓
�

�

|mF〉 ,

|3, mF〉=
�

fmF,3,HH↑(r)
�

�HH↑
�

+ fmF,3,LH↓(r)
�

�LH↓
�

�

|mF〉 ,

|4, mF〉=
�

fmF,4,LH↑(r)
�

�LH↑
�

+ fmF,4,HH↓(r)
�

�HH↓
�

�

|mF〉 .

(B.8)

9We recall that in cylindrical coordinates ∂ϕeϕ = −er and ∂ϕer = eϕ .
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The corresponding Kramers partners |i,−mF〉 can be obtained by applying the time reversal
operator Θ = e−iπSy/ħhK on the eigenstates in Eq. (B.8), being Sy a standard spin-3/2 matrix
and K the complex conjugate operator.

The radial confinement present in our core-shell NW allows us to make further sim-
plifications. First of all, we can write the envelope functions fmF,i,β(r) as a linear com-
bination of orthonormal wave functions ψmr

(r) that represent radial subbands mr , i.e.,

fmF,i,β(r) =
∑

mr
c(mr )

mF,i,βψmr
(r). For strong confinement, different mr are (roughly) decoupled

(i.e., they are not mixed at finite kz) and we can focus on the lowest-energy radial subband
mr = 1. Thus, we write

fmF,i,β(r) = cmF,i,βψ1(r) , (B.9)

with the normalization condition
∑

β

�

�cmF,i,β

�

�

2
= 1, ∀mF, i . (B.10)

Notice that we have removed the label mr = 1 from the expressions for simplicity. Secondly,
the confinement will make those bands with larger weight on the LH sector to remain higher
in energy as they posses a lower kinetic energy [see kinetic terms in Eq. (B.5)]. Moreover, due
to the orthonormalization conditions of the eigenstates 〈i, mF| j, mF〉= δi j , we have

�

�

�cmF,3,HH↑

�

�

�=
�

�

�cmF,1,LH↓

�

�

� , and
�

�

�cmF,3,LH↓

�

�

�=
�

�

�cmF,1,HH↑

�

�

� . (B.11)

This means that the weights on the HH and LH sectors of i = 3 are exchanged with respect
to the ones of i = 1 (up to a phase). The same happens for i = 2 and i = 4. Hence, with-
out loss of generality we choose |1, mF〉 and |2, mF〉 as the states with the largest weights
on the LH bands, and disregard |3, mF〉 and |4, mF〉 since the LH-HH splitting for mr = 1 is
larger than than the splitting between mr and mr+1. Particularly, the LH-HH energy split-

ting is of the order of 2γsħh2π2

m0w2 ∼ 80×
�10nm

w

�2
meV, while the radial subband splitting goes as

3ħh2π2γ1
2m0w2

�

1− 2γs
γ1

�

∼ 30×
�10nm

w

�2
meV [27], where w is the SM shell thickness.

We thus obtain a 2×2 effective Hamiltonian by performing first-order perturbation theory
onto the subspace spanned by the two states {|1, mF〉 , |2, mF〉} for the first radial subband. The
matrix elements 〈i, mF|H0 | j, mF〉 in this basis yield the eigenenergies EmF,1 and EmF,2 of the
two subbands at the Γ point. The matrix elements of H ′ have to be computed as

〈i, mF|H ′| j, mF〉=
∫ R

0

dr
4
∑

β ,β ′
f ∗mF,i,βH ′ββ ′ fmF, j,β ′ . (B.12)

After some algebra, the effective Hamiltonian can be written in a compact form as

Heff,mF
≃
�

Emean,mF
+
ħh2k2

z

2m̄mF

�

σ0 +

�

δEmF

2
+
ħh2k2

z

2mδ,mF

�

σz +αeff,mF
σy kz , (B.13)

with Pauli matrices for the subband degree of freedom. Note that Eq. (B.13) is analogous
to the Hamiltonian in Eq. (A.6) for mF =

1
2 , but we now can find functional expressions for

the parameters. Particularly, Emean,mF
and δEmF

correspond to the mean energy and energy
splitting at kz = 0 between the two subbands of the mF pair, respectively, and they are given
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by

Emean,mF
=

EmF,1 + EmF,2

2

=
ħh2

2m0

(γ1 + γs)
2

�

χ
mF,1,1
HH↑,HH↑

+χmF,2,2
HH↓,HH↓

�

I1

+
ħh2

2m0

(γ1 + γs)
2

��

�

mF −
3
2

�2

−
1
4

�

χ
mF,1,1
HH↑,HH↑

+

�

�

mF +
3
2

�2

−
1
4

�

χ
mF,2,2
HH↓,HH↓

�

I2

+
ħh2

2m0

(γ1 − γs)
2

�

χ
mF,1,1
LH↓,LH↓

+χmF,2,2
LH↑,LH↑

�

I1

+
ħh2

2m0

(γ1 − γs)
2

��

�

mF +
1
2

�2

−
1
4

�

χ
mF,1,1
LH↓,LH↓

+

�

�

mF −
1
2

�2

−
1
4

�

χ
mF,2,2
LH↑,LH↑

�

I2

−
γs

m0

p
3

2
ħh2 1

2

�

2 Re
¦

χ
mF,1,1
HH↑,LH↓

©

+ 2 Re
¦

χ
mF,2,2
LH↑,HH↓

©�

I1

+
γs

m0

p
3

2
ħh2 1

2

��

mF +
1
2

��

mF −
3
2

�

+
1
4

�

2 Re
¦

χ
mF,1,1
HH↑,LH↓

©

I2

+
γs

m0

p
3

2
ħh2 1

2

��

mF −
1
2

��

mF +
3
2

�

+
1
4

�

2 Re
¦

χ
mF,2,2
LH↑,HH↓

©

I2

+
γs

m0

p
3

2
ħh2 1

2
2i
�

mF −
1
2

�

2 Im
¦

χ
mF,1,1
HH↑,LH↓

©

I3

+
γs

m0

p
3

2
ħh2 1

2
2i
�

mF +
1
2

�

2 Im
¦

χ
mF,2,2
LH↑,HH↓

©

I3 , (B.14)

δEmF

2
=

EmF,1 − EmF,2

2

=
ħh2

2m0

(γ1 + γs)
2

�

χ
mF,1,1
HH↑,HH↑

−χmF,2,2
HH↓,HH↓

�

I1

+
ħh2

2m0

(γ1 + γs)
2

��

�

mF −
3
2

�2

−
1
4

�

χ
mF,1,1
HH↑,HH↑

−
�

�

mF +
3
2

�2

−
1
4

�

χ
mF,2,2
HH↓,HH↓

�

I2

+
ħh2

2m0

(γ1 − γs)
2

�

χ
mF,1,1
LH↓,LH↓

−χmF,2,2
LH↑,LH↑

�

I1

+
ħh2

2m0

(γ1 − γs)
2

��

�

mF +
1
2

�2

−
1
4

�

χ
mF,1,1
LH↓,LH↓

−
�

�

mF −
1
2

�2

−
1
4

�

χ
mF,2,2
LH↑,LH↑

�

I2

−
γs

m0

p
3

2
ħh2 1

2

�

2 Re
¦

χ
mF,1,1
HH↑,LH↓

©

− 2 Re
¦

χ
mF,2,2
LH↑,HH↓

©�

I1

+
γs

m0

p
3

2
ħh2 1

2

��

mF +
1
2

��

mF −
3
2

�

+
1
4

�

2 Re
¦

χ
mF,1,1
HH↑,LH↓

©

I2

−
γs

m0

p
3

2
ħh2 1

2

��

mF −
1
2

��

mF +
3
2

�

+
1
4

�

2 Re
¦

χ
mF,2,2
LH↑,HH↓

©

I2

+
γs

m0

p
3

2
ħh2 1

2
2i
�

mF −
1
2

�

2 Im
¦

χ
mF,1,1
HH↑,LH↓

©

I3

−
γs

m0

p
3

2
ħh2 1

2
2i
�

mF +
1
2

�

2 Im
¦

χ
mF,2,2
LH↑,HH↓

©

I3 , (B.15)

where we have defined the overlaps

χ
mF,i, j
β ,β ′ ≡ c∗mF,i,β cmF, j,β ′ , (B.16)
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and the radial integrals

I1 ≡
∫ R

0

dr rψ∗1(r)k
2
rψ1(r) , (B.17)

I2 ≡
∫ R

0

dr rψ∗1(r)
1
r2
ψ1(r) , (B.18)

I3 ≡
∫ R

0

dr rψ∗1(r)
�

−
i
r
∂

∂ r

�

ψ1(r) , (B.19)

where R is the NW radius.
The parameter m̄mF

in Eq. (B.13), resulting from the matrix elements 〈i, mF|H ′|i, mF〉, is
the harmonic mean of the subband pair between the effective masses mmF,1 and mmF,2, i.e.,

m̄mF
=

2mmF,1mmF,2

mmF,1 +mmF,2
, (B.20)

with
mmF,1 =

m0

γ1 + 2γs(|cmF,1,LH↓ |2 − |cmF,1,HH↑ |2)
, (B.21)

and
mmF,2 =

m0

γ1 + 2γs(|cmF,2,LH↑ |2 − |cmF,2,HH↓ |2)
. (B.22)

The parameter
1

mδ,mF

=
mmF,2 −mmF,1

2mmF,1mmF,2
, (B.23)

accounts for the dispersion of this mean and it is typically negligibly small.
Lastly, the effective SOC in Eq. (B.13) is given by

αeff,mF
= i 〈1, mF|H ′|2, mF〉

=
γs

m0
ħh2
p

3χmF,1,2
HH↑,LH↑

∫ R

0

dr rψ∗1(r)
�

−ikr +
1
2r
−

1
r

�

mF −
1
2

��

ψ1(r)

+
γs

m0
ħh2
p

3χmF,1,2
LH↓,HH↓

∫ R

0

dr rψ∗1(r)
�

ikr −
1
2r
+

1
r

�

mF +
3
2

��

ψ1(r) . (B.24)

Notice that, since the Hamiltonian H0 is real and symmetric, we can chose the envelope func-
tions fmF,i,β(r) to be real, ψ∗1 =ψ1, and thus αeff is real too.

These expressions are lengthy and depend on the functional form of the radial wave func-
tion ψ1(r) through the integrals I1, I2 and I3 as well as the envelope functions fmF,i,β . In
principle, they can be found through numerical diagonalization of the Hamiltonian H0 or, as
an alternative, we can assume a reasonable functional form for ψ1(r) and integrate out the
radial degrees of freedom to keep the analytical approach. The results of the 8-band k·p calcu-
lations in the main text show that the charge density of the NW is almost completely confined
in the GaSb shell. Thus, it is reasonable to consider the radial wave function [27],

ψ1(r) =

�q

2
w r sin

�

π
w

�

r − Rav +
w
2

��

, R− w
2 ≤ r ≤ R ,

0 , otherwise,
(B.25)

which satisfies hard-wall boundary conditions at Rav ± w/2, being Rav ≡ R − w/2 the aver-
age effective radius. We note that this ansatz for the radial wavefunction is only valid for a

22

https://scipost.org
https://scipost.org/SciPostPhys.18.2.069


SciPost Phys. 18, 069 (2025)

core-shell NW with a thin w compared to R. By plugging Eq. (B.25) in Eqs. (B.17), (B.18)
and (B.19), we obtain

I1 =
�π

w

�2
, I2 =

2π
w2

∫ π

0

sin(x)2

(x − a)2
, I3 =

i
2
I2 −

2πi
w2

∫ π

0

sin(x) cos(x)
(x − a)

, (B.26)

with a = (R/w)π. Furthermore, using Eq. (B.25) in Eq. (B.24) we obtain

αeff =
γs

m0
ħh2
p

3
�

χ
mF,1,2
HH↑,LH↑

(1−mF) +χ
mF,1,2
LH↓,HH↓

(1+mF)
�

�

−2
w

�

∫ π

0

sin2(x)
(x − a)

dx . (B.27)

We take mF =
1
2 , as we are interested in the fate of the subband pair that can give rise to

Majorana zero modes (MZMs). Plugging this equation into Eq. (B.27), we obtain

αeff,mF=
1
2
= −

γs

m0
ħh2
p

3
�

χ↑ + 3χ↓
� 1

w

∫ π

0

sin2(x)
(x − a)

dx , (B.28)

where

χ↑ = χ
mF=

1
2 ,1,2

HH↑,LH↑
,

χ↓ = χ
mF=

1
2 ,1,2

LH↓,HH↓
.

(B.29)

Taking a Taylor expansion of 1
x−a up to first order in |x/a| ≪ 1, the integral in Eq. (B.28) can

be approximated by
∫ π

0

sin2(x)
(x − a)

dx ∼ −
π

2a
−
π2

4a2
+ . . . , (B.30)

which gives

αeff,mF=
1
2
=
ħh2γs

m0

p
3χ

�

1
R
+

w
2R2

�

, (B.31)

where we define χ = (χ↑ + 3χ↓)/2. This is Eq. (3) of the main text.
In Fig. 3(a) we show the values of αeff,mF=

1
2

obtained from Eq. (B.31) with dashed lines,
together with the numerical results extracted following the procedure of Appendix A (solid
lines). We assume the fixed values χ↑=χ↓=0.3, corresponding to c1,HH↑=c2,HH↓=

p
0.1 and

c1,LH↓=c2,LH↑=
p

0.9, for every value of R and w, which we extract from our numerical simula-
tions [see Fig. 2(b)]. This gives χ = 1.2.

C Effects of strain in the core-shell nanowire

In the previous calculations we have disregarded the effect of the strain that can be present at
the core-shell interface of our InP/GaSb NWs. The reason is that strain typically relaxes sharply
(in less than 5 atomic layers) at the interface between III-V compound SMs in NWs. Still, we
want to quantify how much it could affect the values of SOC we have obtained. Given the
similarities between both systems, we can make use of previous analytical results [27] derived
for Si/Ge NWs to try to get an estimation in our case.

In the derivations we carried out in Appendix B, we neglected the effect of other subbands
that could be close in energy to the first subband pair at finite kz . This was possible for us
because we were interested only in the SOC, a property that depends on the vicinity of kz = 0,
and our first-order calculations were indeed exact at kz = 0. In Ref. [27], however, a more
involved derivation was performed, centered around Ge/Si NWs, including the effect of strain
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through the Bir-Pikus Hamiltonian [100]. In their derivation, the authors obtained an effective
two-band Hamiltonian that describes the highest-energy hole states of the system through a
Schrieffer-Wolff transformation including the effect of the second radial LH subbands as well
as the first radial HH subband. Their results are not exact at kz = 0, but they use perturbation
theory up to second order (whereas we used first-order perturbation theory). Once this two-
band Hamiltonian is projected onto the highest-energy states |1〉 and |2〉, and projected onto
the radial basis states of Eq. (B.25), they obtain for the mF =

1
2 subband pair

H(s)eff ≃
ħh2k2

z

2ms
σ0 +αsσy kz +O , (C.1)

where the effective mass and SOC in the presence of strain are

1
ms
=

1
m0
[γ1 + γs(1+ 3ε̃z)− 3γ̃] , (C.2)

αs =
3
2
ħh2

m0R
[(γs − γ̃)− (γ1 + γs)ε̃z] . (C.3)

Above, O includes all the terms that provide the mean energy and the splitting (see Refs. [26,
27]), which we ignore here for simplicity as they play no role in the present discussion. The
renormalized parameters, γ̃ and ε̃z , defined as

γ̃=
256
9π2

γs

10+ γ1(3εc + 4εr + 2εz)/γsεc
, ε̃z =

εz

εz + 2εr + 2γsεc/γ1
, (C.4)

are expressed as a function of the Luttinger parameters γ1 and γs, the radial confinement
energy εc, and the strain energies along each direction

εz = |b|ϵ, εr =
w
2

 

R+ w
4

�

R+ w
2

�2

!

|b|ϵ , (C.5)

being ϵ the strain coefficient and b the uniaxial deformation potential.
In the absence of strain ϵ = 0, ε̃z = 0 and then this Hamiltonian has the same form as the

one in Eq. (A.6) and Eq. (B.13). Actually, it provides an estimation for

χ↑ + 3χ↓ ≃
p

3
�

1−
256
9π2

1
10+ 3γ1/γs

�

= 1.45 , (C.6)

that applies to the highest-energy mode. Remarkably, this number agrees quantitatively with
our numerics, that provided χ↑+3χ↓ = 1.2 (see the discussion at the end of Appendix B). This
agreement supports the use of Eq. (A.6) to fit the hole SOC α, at least in the absence of strain.

In the presence of strain, it is then reasonable to use the results of Eq. (C.3) to estimate its
effect on the SOC of our core-shell NWs. As mentioned above, the GaSb shell is not relaxed
close to the interface with the InP insulator, but it is instead strained due to the lattice mismatch
between both materials, ϵ = (aGaSb−aInP)/aGaSb ≃ 3.93%. This provides ε̃z = 0.07, and a SOC
decrease of ∼ 20% very close the interface. This has thus a minor impact in the conclusions
of our work.

References

[1] R. M. Lutchyn, E. P. A. M. Bakkers, L. P. Kouwenhoven, P. Krogstrup, C. M. Marcus and Y.
Oreg, Majorana zero modes in superconductor-semiconductor heterostructures, Nat. Rev.
Mater. 3, 52 (2018), doi:10.1038/s41578-018-0003-1.

24

https://scipost.org
https://scipost.org/SciPostPhys.18.2.069
https://doi.org/10.1038/s41578-018-0003-1


SciPost Phys. 18, 069 (2025)

[2] J. D. Sau, R. M. Lutchyn, S. Tewari and S. Das Sarma, Generic new platform for topo-
logical quantum computation using semiconductor heterostructures, Phys. Rev. Lett. 104,
040502 (2010), doi:10.1103/PhysRevLett.104.040502.

[3] Y. Oreg, G. Refael and F. von Oppen, Helical liquids and Majorana bound states in quan-
tum wires, Phys. Rev. Lett. 105, 177002 (2010), doi:10.1103/PhysRevLett.105.177002.

[4] A. Y. Kitaev, Unpaired Majorana fermions in quantum wires, Phys.-Uspekhi 44, 131
(2001), doi:10.1070/1063-7869/44/10S/S29.

[5] R. Aguado, Majorana quasiparticles in condensed matter, Riv. Nuovo Cim. 040, 523
(2017), doi:10.1393/ncr/i2017-10141-9.

[6] S. Das Sarma, M. Freedman and C. Nayak, Majorana zero modes and topological quan-
tum computation, npj Quantum Inf. 1, 15001 (2015), doi:10.1038/npjqi.2015.1.

[7] D. Aasen et al., Milestones toward Majorana-based quantum computing, Phys. Rev. X 6,
031016 (2016), doi:10.1103/PhysRevX.6.031016.
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