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Abstract

The braiding of the worldlines of particles restricted to move on a network (graph) is
governed by the graph braid group, which can be strikingly different from the standard
braid group known from two-dimensional physics. It has been recently shown that im-
posing the compatibility of graph braiding with anyon fusion for anyons exchanging at a
single wire junction leads to new types of anyon models with the braiding exchange op-
erators stemming from solutions of certain generalised hexagon equations. In this work,
we establish these graph-braided anyon fusion models for general wire networks. We
show that the character of braiding strongly depends on the graph-theoretic connectivity
of the given network. In particular, we prove that triconnected networks yield the same
braiding exchange operators as the planar anyon models. In contrast, modular bicon-
nected networks support independent braiding exchange operators in different modules.
Consequently, such modular networks may lead to more efficient topological quantum
computer circuits. Finally, we conjecture that the graph-braided anyon fusion models
will possess the (generalised) coherence property where certain polygon equations de-
termine the braiding exchange operators for an arbitrary number of anyons. We also ex-
tensively study solutions to these polygon equations for chosen low-rank multiplicity-free
fusion rings, including the Ising theory, quantum double of Z2, and Tambara-Yamagami
models. We find numerous solutions that do not appear in the planar theory of anyons.
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1 Introduction

A topological quantum computer performs its computations using anyons, quantum quasi-
particles that obey exotic types of quantum statistics which make the topological quantum
computer intrinsically robust against errors arising from decoherence [1–3]. Crucially, per-
forming computations on such a computer requires the ability to move the anyons around and
exchange them. This is a great technological challenge which is currently being addressed by
considering architectures for quantum computers that have the structure of a network, where
anyons are moved along the edges of the network and exchanged at the junctions [4–6]. Of
particular importance in this context is Kitaev’s superconducting quantum wire model that sup-
ports Majorana edge modes [6]. Such a system can be realised in semiconductor nanowires
coupled to a superconductor [4, 7], as well as other solid state [8–12], and photonic sys-
tems [13]. However, there also exist numerous proposals for realising other types of anyonic
excitations on networks. This includes Parafermionic excitations [5, 14–17], and Fibonacci
excitations [18], although topological protection may be a problem [19]. Such network-based
proposals have been recognised as some of the most robust candidates for an architecture of a
topological quantum computer. However, anyon braiding, a crucial ingredient, is still in early
development. There have been proposals for braiding Majorana modes [4, 7, 20], accompa-
nied by studies of the resulting errors and qubit fidelity e.g. [21,22]. There has also been work
addressing the scalability of network-based topological quantum computers [5, 23]. Finally,
we mention recent experimental evidence of Majorana measurement [24].

Notably, the above mentioned substantial body of literature also shows that, in contrast
to anyon theory in two dimensions (2D), there is no uniform theory describing anyons on
quantum wire networks. In other words, for every type of anyons which is known from 2D
physics (Ising/Majorana, Fibonacci, etc.) a new microscopic model for a quantum wire has to
be proposed and the existence of well-defined topological anyonic exchange operators has to be
proved. In this work, we aim to establish a universal anyon theory for quantum wire networks
which is analogous to the braided fusion theory of anyons in 2D [3, 25]. Braiding describes
all the possible ways the anyons can be exchanged (up to continuous deformations of anyons’
worldlines). This information is encoded in a mathematical object called the fundamental
group of the appropriate configuration space, also called the braid group (see the seminal
work [26] for more details). For 2D anyon theory the relevant mathematical object is Artin’s
well-known braid group [27]. However, according to the general theory laid out in [26], Artin’s
braid group does not describe anyon exchange on a network. The correct mathematical object
describing anyon braiding on a network (graph) is its graph braid group [28,29]. This crucial
observation has led to the necessity of developing new physical and mathematical models for
anyons constrained to exchange on a network [29–31].

Intuitively, a full description of braiding of many anyons on arbitrary networks can be con-
siderably complicated and requires using advanced mathematical tools [32–34]. However,
recently a tractable and physically intuitive description of graph braid groups has been accom-
plished [35, 36]. Importantly, it shows that graph braids have strikingly different properties
than planar braids. One such property is the lack of the standard Yang-Baxter relation be-
tween the graph braids. Moreover, a fixed pair of anyons can typically be exchanged in several
topologically independent ways on a given graph. Since graph braid groups govern the anyon
exchange on networks, this raises the importance of understanding what exchange statistics
are possible. This question can be answered only when one takes into account anyon fusion,
i.e. processes where anyons are not only braided with each other, but also where a group of
anyons behaves as one composite anyon. Importantly, braiding and fusion of anyons must
be compatible with each other, a fact which for planar anyon theories is guaranteed by the
hexagon equations [3,25]. Only recently, the compatibility of braiding and fusion on a single
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junction (i.e. a network that consists of multiple edges incident to a single vertex) has been
considered in [37], by two of the authors of this paper. The results show numerous important
differences between 2D anyon models and anyon models defined on a network. In particular,
the planar hexagon equations are replaced by the more general P- and Q-hexagon equations
that lead to Abelian and non-Abelian quantum exchange statistics which do not appear in the
planar theory. In this work, we follow the programme set out in [37], and work towards a
complete anyon fusion theory where anyon fusion and braiding are compatible on arbitrary
networks (composed of multiple junctions and also containing loops) and for arbitrary num-
bers of anyons. These compatibility conditions are encoded in a finite set of certain polygon
equations. By solving the polygon equations, we show numerous possibilities for the existence
of quantum exchange statistics which are not present in 2D anyon theories. Besides empha-
sising the fundamental importance of this fact, we also show that the new possibilities can be
utilised in topological quantum computers to build more efficient quantum circuits.

Summary of main results

In this manuscript we study the exchange of anyon-like excitations on networks of quantum
wires. We generalise the work of Ref. [37] in several notable directions. We construct graph-
braiding consistency equations, the equivalent to the hexagon equations, on a variety of quan-
tum wire network architectures and study solutions of these equations for many physically
interesting anyon models. We find that, on networks containing loops, there are discrete sets
of solutions to the consistency equations. While this is similar to the planar theory of anyons,
we do find solutions to the consistency equations for models that do not admit planar braid-
ing. Another difference with planar braiding is that, for graphs without loops, some solutions
contain U(1)-parameter(s). Probably the most significant difference we observe is that by
considering greater numbers of particles on certain graphs introduces additional consistency
equations beyond the graph hexagon equations. We notice that on a trijunction, including con-
sistency equations for N > 4 anyons introduces no new constraints on the solutions, implying
there is some N ∗, for which constructing consistency equations for N > N ∗ adds no con-
straints. We tabulate properties of solutions on several architectures for Ising anyons, certain
Abelian anyons, Fibonacci anyons, the quantum double of Z2, Tambara-Yamagami anyons with
G = Z3. Moreover we provide all exact solutions for the Ising, D(Z2), and TY(Z3) models. We
also show implications for quantum computation using the exchange of anyon-like excitations
on quantum wire networks. We show that a lower quantum circuit depth is achievable on cer-
tain wire network architectures compared to the plane, further and crucially, this is achieved
using exclusively topologically protected gates. Since this paper focuses on developing the
physical model of the abstract theory of anyons on graphs, mathematical technicalities, such
as the construction of graph braid groups and analysing categorical coherence, are explained
in the appendices.

Outline of the paper

We aim for the presented material to be self-contained. Thus, we include an introduction
to the relevant notions from the planar multiplicity-free anyon fusion theory in Section 2 as
well as a recap of the key features of the graph braid groups in Appendix A. Because our
work builds on the results of Ref. [37] concerning the trijunction, we review the main points
of this work at the beginning of Section 3. In Section 3.1 we take the first steps towards
generalising the results of [37] and build anyon models for greater numbers of particles on a
trijunction. This is subsequently generalised to anyons constrained to move on tree graphs in
Section 3.3. Our general methodology is to build multiplicity-free unitary anyon models for
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certain small canonical graphs which are the building blocks of larger networks. Consequently,
in Sections 4 and 5 we study anyon models on a circle and on a lollipop graph respectively.
Section 6 contains a discussion about the solutions to the graph-braid equations for several
fusion rings. In Section 7 we study anyon models on a Θ-graph in order to show that the
exchange operators in our anyon models on any triconnected network are identical to the
exchange operators from the corresponding planar anyon model. In other words, sufficiently
highly connected networks can host only planar exchange statistics. Thus, the new exchange
statistics may appear only on one-connected (also known as separable) networks (e.g. star
graphs or trees) or biconnected networks, a possibility which may be useful for generating
larger sets of topological quantum gates (Section 8). We also extensively study solutions to
our graph braiding consistency equations (encoding the compatibility of fusion and braiding
on a given network) for chosen low-rank multiplicity-free unitary anyon models such as the
Ising model (Appendix G), Tabmara-Yamagami models (Appendices F and I) and D(Z2), the
quantum double of Z2 (Appendix H). Some key general features of the solutions are also
collected in tables which are distributed throughout the main body of the paper. Finally, we
conjecture that our anyon models will possess a generalised coherence property. Our reasoning
is outlined in Appendix C.

2 Planar braiding of anyons

In this section, we will provide a brief overview of planar braiding of anyons. For further detail,
we refer the reader to [25,38], as well as recent papers such as [39]. By an anyon model we
mean the following data; a fusion algebra, labelling the topological charges and their fusion
rules, the F - symbols, giving consistent recoupling rules, and the R− symbols, which give the
exchange statistics of the anyons in the model. We shall review each of these in order.

A fusion algebra consists of a finite set of particles, labelled by their topological charge
with fusion rules written as,

a× b =
∑

c

N ab
c c . (1)

The coefficients N ab
c ∈ Z≥0 are the dimension of the fusion space V ab

c of ground states with
two particles of charges a and b and with overall charge c. There is a unique anyon, 1 called
the vacuum, such that a × 1 = 1 × a = a. Each anyon has a unique antiparticle such that,
a× ā = 1+ . . .. Anyon a is called Abelian if there is only the vacuum charge on the right-hand
side, i.e. a × ā = 1. In this paper we will focus on multiplicity-free fusion algebras which
means the coefficients N ab

c are either 0 or 1 and consider only commutative fusion products
which means that a × b = b × a. Considering non-commutative products would be a natural
extension of the work presented in this paper. Intuitively, it would be a very suitable extension,
as placing anyons on an edge of a network naturally imposes a linear ordering. For example
one could envision defects on the wire network, whose topological charges are labelled by the
Haagerup fusion category [40].

We choose an orthonormal basis for each nontrivial fusion space V ab
c . This choice intro-

duces a gauge freedom uab
c , a unitary matrix of dimension N ab

c . In the multiplicity-free case,
uab

c ∈ U(1). The two isomorphic ways to fuse three anyons to get a total topological charge d
are related by a change of basis given by the matrix elements of the F -symbols,

�

F abc
d

�

:
⊕

e
V ab

e ⊗ V ec
d →
⊕

f

V a f
d ⊗ V bc

f . (2)
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The action of the F -symbols are graphically represented as,

a b c

e

d

a b c

f

d

=
∑

f

�

F abc
d

�

e f

a b c

e

d

a b c

f

d

=
∑

e

�

�

F abc
d

�−1�

f e
,

The F -symbols are required to satisfy the pentagon equations,

�

F f cd
e

�

gl

�

F abl
e

�

f k =
∑

h

�

F abc
g

�

f h

�

F ahd
e

�

gk

�

F bcd
k

�

hl . (3)

A solution of the pentagon equations gives a set of F symbols which can be used to rearrange
the compositional order of fusion locally [41, 42]. In the following sections of the paper we
will always consider unitary solutions of the pentagon equation.

The other important ingredient for anyon models is the braiding operators and the resulting
exchange statistics. The exchange statistics in planar anyon models are governed by the R-
symbols which, for multiplicity-free fusion rules, are U(1)matrices acting on the fusion space;

Rba
c : V ba

c → V ab
c . (4)

The action of the R-symbols is graphically represented as

ba

c

= Rba
c

a b

c

,

ba

c

=
�

Rab
c

�−1

a b

c

This action allows one to resolve a simple braid in spacetime diagrams by introducing an R-
symbol acting on the states in the fusion space. We will frequently use graphical depictions
later in this work when we discuss graph braiding of anyons. A change of basis of V ab

c intro-
duces a gauge transformation of the R- symbols and F - symbols, which is discussed in Section
E. The compatibility of fusion and braiding is implemented by enforcing that we can slide a
fusion vertex through a braid in spacetime history;

d

a b c

f

d

a b c

f
=

This is implemented by the hexagon equations which come from hexagonal commutative dia-
grams [25,41,43,44]. There are four hexagon equations corresponding to four topologically
inequivalent ways that fusion can commute with braiding. However, only two of them are
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independent. Here we show one of them:

d

g

a b c

d

a b c

f

d

e

a b c d

cba
d

b ca

f

f

d

g

a b c
�

F acb
d

�

g f

Rca
g Rcb

f

�

F abc
d

�

e f

Rc f
d

�

F cab
d

�

g f

The other independent diagram is obtained when the worldlines of anyons a and b braid over
the worldline of anyon c. The resulting hexagon equations read as follows;

Rca
g

�

F acb
d

�

g f Rcb
f =
∑

e

�

F cab
d

�

ge Rce
d

�

F abc
d

�

e f ,

Rca
g

�

(F bac
d )−1
�

ge Rba
e =
∑

f

�

(F bca
d )−1
�

g f R f a
d

�

(F abc
d )−1
�

f e .
(5)

Satisfying the above consistency relations describing the compatibility of fusion and braiding
of N = 3 anyons implies the compatibility of fusion and braiding for any number of anyons,
a result known as the braided coherence theorem [45]. Furthermore, there are only a finite
number of solutions to the planar hexagon equations up to gauge equivalence. This property
is known as Oceanu rigidity [25,46]. One particular gauge invariant quantity we will discuss
on the circle graph in Section 4 is the topological twist. In the planar case, this is represented
by the following spacetime diagram;

a

a

a

a

= =

a

a

θa ,

a

a

a

a

==

a

a

θ ∗a .

The twist factors θa can be expressed in terms of the R-symbols as,

θa = θā =
∑

c

dc

da
Raa

c , (6)

where da is the quantum dimension of anyon a. By Vafa’s theorem [47], the twist factors are
constrained to be roots of unity. The twist factors are related to changing an anyon’s so-called
“framing” [48]. Another relation between the twist factors and the R-symbols is the ribbon
property,

Rab
c Rba

c =
θc

θaθb
. (7)
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The ribbon property comes from considering the worldlines of anyons as world-ribbons which
get twisted when an anyon’s worldline is wrapped around itself. In other words, the twist
factors represent full twists of the world-ribbons. Similarly to the full twists, one can also
consider half-twists (also called the π-twists). Interestingly, the full and the half-twists come
up naturally in the graph setting (see Appendix D), and are necessary for proofs of our results
in the later sections. Note that we do not demand modularity in our definition of an anyon
model. We only demand that an anyon model is given by a ribbon fusion category (i.e. unitary
and braided). One of the reasons is because the definition of an S-matrix uses planar R-
symbols. In a future manuscript we aim to address the analogue of modularity on a graph.
The word anyon is in some sense, used in a more general sense.

Recall that any planar braid is a composition of simple braids exchanging pairs of neigh-
bouring anyons. Thus, using the R-symbols which satisfy the hexagon equations, one can con-
struct a representation of the planar braid group. In particular, for N = 3 identical anyons of
topological charge a and the total charge of the system c, we get the following representation
of B3→ U(d), [44,49,50],

ρ (σ1) = diag
�

Raa
b1

, . . . , Raa
bk

�

, ρ (σ2) =
�

F aaa
c

�−1
ρ (σ1) F

aaa
c , (8)

where are the bk fusion outcomes of a×a = b1+. . .+bk. The k×k unitary matrices ρ (σ1) and
ρ (σ2) are called the braiding exchange operators. Crucially, the braiding exchange operators
satisfy the Yang-Baxter relation, i.e.

ρ (σ1)ρ (σ2)ρ (σ1) = ρ (σ2)ρ (σ1)ρ (σ2) .

In other words, the braiding exchange operators form a representation of Artin’s braid
group [27]. In the quantum computing context, the braiding exchange operators have the
interpretation of topological quantum gates acting on a single qudit. In Section 8 we consider
similar topological quantum gates coming from graph-braided anyon models. We also ad-
dress computational universality and the circuit depth of a graph-based topological quantum
computer. In particular, we show that the graph-based architecture may allow one to build
quantum circuits of a lower depth.

To end this review section, we will collect results for a few concrete anyon models we intend
to reference later in the paper. For any finite Abelian group, H, one can construct a fusion
algebra where the group multiplication gives the fusion rules. There is always guaranteed at
least one solution to the pentagon equation given by the trivial F - symbols. However, often
more solutions exist. One interesting family of models is provided by H = ZN . The anyons
are labelled by [a]N , the least residue of a modulo N and the F -symbols are given by U(1)
valued three-cocycles in the group cohomology of H [51]. Here the family splits into two
cases depending on whether N is even or odd. The situation becomes interesting if one tries
to introduce a non-trivial cocycle for the F - symbols. Then, there is only a solution to the
hexagon equations if N is even [38,41,52].

Another family of interest is the Tambara-Yamagami models (TY(G)) [53], which are con-
structed over a finite Abelian group, G with the addition of a non-Abelian anyon; σ. The fusion
rules are given by

σ×σ =
∑

i

gi , gi ×σ = σ× gi = σ , gi × g j = gi g j . (9)

The corresponding non-trivial F -symbols are,
�

F
giσg j
σ

�

σσ
=
�

Fσgiσ
g j

�

σσ
= χ(gi , g j) ,

�

Fσσσσ

�

gi g j
= κτ−1χ(gi , g j) , (10)
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where χ is a symmetric non degenerate bicharacter, κ is the Frobenius Schur indicator and
τ = |G|−1/2. It has been proven that unless G is a direct product of Z2 factors, there are no
solution to the hexagon equations [54]. For graph braided particles with Tambara-Yamagami
fusion rules this result remains the same for graphs with junctions. We provide a proof of
this result in Appendix F. For the circle graph, however, there are solutions to the graph-braid
hexagon equations. Specific solutions can be found in Appendix I. In the case G = Z2, the
anyons are usually denoted (1,ψ,σ), where ψ is associated with the non-trivial element of
Z2. There are then two solutions to the pentagon equations, which are related by the choice
of the Frobenius-Schur indicator κ= ±1 [25,43]. The solutions to the hexagon equations are,

Rψψ1 = −1 , Rσψσ = Rψσσ = ±i , Rσσ1 = e±i(2k+1)π/8 , Rσσψ = ±iRσσ1 , (11)

where k ∈ {0, 1,2, 3}. The particular values of k = 0 and k = 3 are for the choice of κ= 1 and
the other values of k are for the choice κ= −1. The choice of κ= +1 is often called the Ising
model, [25]. The topological twists for the Ising solutions to the hexagon equations are,

θψ = −1 , θσ = e
iκπ
8 . (12)

There are many other notable anyon models such as; the Fibonacci anyon model, [55], quan-
tum groups with a truncated tensor product [56, 57], Rep(G), the representation ring of G
any finite group [41, 58], and a quantum double of a finite-dimensional semisimple Hopf al-
gebra [2]. Recently there have been experimental measurements of the exchange statistics for
the case D(Z2) [59–61].

3 Anyon models on star graphs and tree graphs

Let us briefly recall the fundamental differences between graph braided anyon models and the
planar braided anyon models. For a detailed exposition on graph braid groups we refer the
reader to Ref. [35], in addition in Appendix A we include a brief review of how graph braid
groups are defined. Following the formalism introduced in [37], we associate V ab

c with the
fusion space of anyons, where fusion takes place on the edges of the graph Γ . The n-strand
braid group [28,35] of the graph Γ will be denoted by Bn(Γ ). For most of this section we will
focus on the graph braid group of four particles on a trijunction graph, denoted B4(Γ3). The
four-strand graph braid group B4(Γ3) is generated by the algebraic presentation

σ
(1,2)
1 , σ

(1,1,2)
2 , σ

(2,1,2)
2 , σ

(1,1,1,2)
3 , σ

(1,2,1,2)
3 , σ

(2,1,1,2)
3 , σ

(2,2,1,2)
3 , (13)

subject to the following relation, known as a pseudocommutative relation

σ
(1,1,1,2)
3 σ

(1,2)
1 = σ(1,2)

1 σ
(2,2,1,2)
3 . (14)

The notation for the simple braid: σ(1,2)
1 , means the particle closest to the junction is sent to

edge (1), which we identify with the back plane and the second particle is sent to edge (2),
which we identify with the front plane. Consequently, σ(2,1)

1 is the inverse of the braid σ(1,2)
1 .

We can view the action of a σ1 graph braid as a spacetime process where particles initially
placed on an edge of the graph are transported through a junction point to other edges and
then returned to the initial edge in a different order. The braiding exchange operators cor-
responding to the exchange of the two particles closest to the junction are associated with
R-symbols1 as shown in Figure 1. The general strategy is to assign different braiding exchange

1Not to be confused with the solutions of the planar hexagon equations.
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Figure 1: The simple braid σ(1,2)
1 and the associated R-symbol. The superscript in

σ
(1,2)
1 refers to the edge assignment the particles are sent to under the graph braid.

Figure 2: The P- and Q-symbols associated with the simple braids σ(1,1,2)
2 and σ(2,1,2)

2
on a trijunction.

operators (acting on the states of the fusion space) to different (i.e. topologically inequiva-
lent) elements of the graph braid group. In particular, on a trijunction, we can represent the
exchange of the two particles closest to the junction by a U(1) matrix, analogous to planar
anyon models. To incorporate the commutation of fusion and braiding processes, we need
to consider at least three anyons. Here we find the first clear differences between braiding
in the plane and braiding on a graph. Firstly, there are two topologically inequivalent ways
of realising the simple braid σ2 on a trijunction [35, 36]. Namely, the two realisations are
distinguished by the edge visited by the anyon closest to the junction. These simple braids
are denoted by σ(1,1,2)

2 and σ(2,1,2)
2 (see Appendix A for more explanation). Despite these

differences, it is possible to construct a graph anyon model on a trijunction which reflects
the properties of the respective graph braid group in the sense that different unitary opera-
tors represent inequivalent simple braids on the Hilbert space, [37]. The key idea relies on
introducing P-symbols and Q-symbols associated with the simple braids σ(1,1,2)

2 and σ(2,1,2)
2

respectively, We display the action of these in Figure 2. he gauge transformations of the R-, P-
and Q- graph braid symbols have the same structure as the gauge transformations of the planar
R-symbols, since the topological charge e is conserved. We discuss the gauge equivalence of
solutions in Appendix E. However, so defined simple braids do not satisfy the Yang-Baxter rela-
tion, i.e. the composite braid σ(1,2)

1 σ
(1,1,2)
2 σ

(1,2)
1 is topologically inequivalent to the composite

braid σ(1,1,2)
2 σ

(1,2)
1 σ

(1,1,2)
2 . In fact, the three-strand braid group of a trijunction is a free group

generated by the above-defined three simple braids [35]. In other words, the corresponding
braiding exchange operators determine some particular unitary representations of the graph
braid group.

Next, let us revisit the derivation of the generalised hexagons containing the P- and Q-
symbols as it contains ideas which are key for the remaining parts of this paper. We will study
only the Q-hexagon in detail. The derivation of the P-hexagon is completely analogous and has
been done in detail in [37]. The key idea is to incorporate the commutation of fusion and graph
braiding of anyons into the spacetime histories. This is done by considering compositions of
the simple braids where the spacetime configuration of worldlines of two anyons is such that
the two worldlines stay next to each other throughout the process, and their fusion vertex
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Figure 3: The fusion vertex of anyons b and c can be pulled through the entire braid
σ
(1a ,2c)
1 σ

(2c ,1a ,2b)
2 so that the resulting process is just a simple braid of an anyon f

in the fusion channel of b and c with anyon a, i.e. σ(1a ,2b×c)
1 . The diagram on the

furthest right expresses the σ(1a ,2b×c)
1 graph braid.

can be pulled through the entire exchange. An example of such a braid is σ(1,2)
1 σ

(2,1,2)
2 whose

relevant deformations are shown in Figure 3. We can observe that the diagrams on the far
left and far right of Figure 3 can be related by sequences of F symbols and resolving the
graph braids analogous to the derivation of the planar hexagon equations. This leads to the
Q-hexagon diagram shown in Figure 4. Equating the upper and lower path in Figure 4 leads
to the Q-hexagon equations,

Rca
g

�

�

F bac
d

�−1�

ge
Qbac

ed =
∑

f

�

�

F bca
d

�−1�

g f
R f a

d

�

�

F abc
d

�−1�

f e
. (15)

There are three more hexagon diagrams coming from the braids σ(1,1,2)
2 σ

(1,2)
1 , σ(2,2,1)

2 σ
(2,1)
1

and σ(2,1)
1 σ

(1,2,1)
2 , but only two of the four lead to independent hexagon equations. The other

independent set of hexagon equations is the following,

P cab
gd

�

F acb
d

�

g f Rcb
f =
∑

e

�

F cab
d

�

ge Rce
d

�

F abc
d

�

e f . (16)

In [37], it is shown that solving the graph hexagon equations for N = 3 particles with TY(Z2)
fusion rules and F -symbols, i.e. the Ising theory, on a trijunction leads to a two parameter
family of solutions for the R-symbols;

Rσσ1 = ±iRσσψ , Rσψσ = Rψσσ = ±i , Rψψ1 , Rσσ1 ∈ U(1) . (17)

The only constraints on Rψψ1 and Rσσ1 is that they are elements of U(1). As we explain in
Appendix G, further consistency equations for N = 4 Ising anyons on a trijunction will fix
Rψψ1 = −1 and only Rσσ1 will remain the free parameter of the theory. The corresponding
expressions for P and Q symbols are contained in Section 2 of the Supplementary Material
of [37]. Analogous to the planar braiding of anyons, there is no solution to the graph braiding
hexagon equations for TY(G) on a trijunction, unless G = Z2 to some power, we provide a
proof of this in Section F.

Although we have focused on a trijunction, the analysis generalises to junctions of arbitrary
order. See, for instance, the Supplementary Material of [37]where the tetrajunction is studied.
Although increasing the valence introduces additional topologically inequivalent ways to ex-
change particles at the junction, in particular, a valence d star graph will have (d−1)(d−2)/2
inequivalent σ1 generators and (d − 1)2(d − 2)/2 inequivalent σ2 generators. The introduc-
tion of fusion commuting with braiding effectively “splits” the star graph into a collection of
trijunctions. On each trijunction, one has two independent sets of hexagon equations, while
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Figure 4: The hexagon diagram which we call the Q-hexagon. It is derived from the
identityσ(1a ,2c)

1 σ
(2c ,1a ,2b)
2 = σ(1a ,2b×c)

1 shown in Figure 3 and applied in the bottom-left
corner of the hexagon. The hexagon diagram provides a set of hexagon Equations
(15) which allow one to express the Q-symbols via the R- and F -symbols.

on a valence d star graph, one has (d − 1)(d − 2) independent hexagon equations. However,
there are no consistency relations mixing exchanges on different trijunctions (see [37] for
more explanation).

3.1 Greater particle number

In this section, we will discuss graph braided anyon models with four or more particles. For
planar braided anyon models, this situation is covered by MacLane coherence theorem [42]
and the braided coherence theorem, [45]. The implication of these theorems is that the solu-
tions of the pentagon and hexagon equations are sufficient for the description of any number
of anyons. Explicitly, if one constructed some braiding polygon for N > 3 particles, one could
use the pentagon and hexagon equations iteratively to satisfy this polygon and find no new
constraint equations on the R and F symbols of the theory. However on a graph, since there
are multiple topologically inequivalent choices for σ j with j > 1 (as we discussed earlier),
satisfying the 3-particle P- and Q-hexagons does not guarantee that we have a full description
for any number of particles. In this section we will focus on a trijunction, the simplest graph
permitting particle exchange and discuss later how the analysis translates to higher valence
graphs.

The new generators of the graph braid group for N = 4 (see Appendix A for an exhaustive
definition of the generators) and their corresponding symbols are

ρ(σ(1,1,1,2)
3 ) = X , ρ(σ(2,2,1,2)

3 ) = Y , ρ(σ(2,1,1,2)
3 ) = B , ρ(σ(1,2,1,2)

3 ) = A . (18)
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The gauge transformation of the four particle graph braid symbols is given in Appendix E where
we discuss removing the gauge symmetry from the obtained solutions. There, we also list our
convention for the four particle anyon labels in Equation (E.3). We will use this convention in
the present section.

The first step is to resolve how the σ3-graph braids from (18) act in the fusion space
of four anyons V abcd

e . For the σ2-braids represented on a three-particle fusion space this is
unambiguous – the two particles being exchanged are joined by a fusion vertex (as we can see
in Figure 2). Thus, the respective braiding exchange operators are necessarily diagonal in the
left-fused basis where the second and third particle away from the junction point are joined
by a common fusion channel. However, for the σ3-braids acting on the fusion space of four
anyons, the choice of the appropriate fusion tree is not clear at the first sight. Clearly, the two
particles being exchanged must be joined by a common fusion vertex. This leaves two choices
for the fusion tree structure of the other two particles – the fully left associated (left-fused)
basis or the pairwise associated basis. Crucially, it is important for the anyon theory to respect
the no transmutation principle [62] which says that charge is locally conserved in space. In
other words, the total charge of a set of anyons is conserved if one can bound this set of anyons
by a disk which remains sufficiently separated from the anyons outside the disk throughout the
entire exchange process (no particles leave and no particles enter the disk). It turns out that
this no transmutation principle for graph braids is most convenient to express mathematically
only in certain fusion bases. Such fusion bases are the bases in which the braiding exchange
operators are diagonal. This is because the relevant disks are associated with certain choices
of the fusion tree. Namely, if the fusion tree is such that all the anyons inside a given disk have
a common fusion channel, then the corresponding braiding exchange operator is diagonal in
this basis. For instance, the fusion tree with anyons a, b, c, d being fused pairwise implies two
separate disks containing the pairs a, b and c, d respectively and one disk containing all the
anyons a, b, c, d (note that the disks cannot leave the graph as this is the actual space where
the anyons move) – see the top image in Figure 5b. Importantly, the pairwise-associated fusion
tree is not a correct basis for representing the braid σ(1d ,2c ,1b ,2a)

3 diagonally as anyons b and a
will necessarily enter the disk containing anyons d and c during the exchange, hence the total
charge of c and d may not be conserved. This is shown in Figure 5b. Figure 5 also explains
that the left-fused basis is a good basis for representing diagonally any σ3-braid. However, the
braids σ(1d ,1c ,1b ,2a)

3 and σ(2d ,2c ,1b ,2a)
3 must be represented diagonally both in the left-fused basis

and the pairwise-fused basis. This is because anyons d and c visit the same edge during the
exchange and thus can also be bounded by a well-separated disk (see Figure 5c-d). The braid
σ
(1,1,1,2)
3 is represented in the left-fused basis by the X -symbols as shown in Figure 6. The σ3

generators can of course be expressed in the pairwise associated basis, given by conjugation
by the appropriate F -symbols;
�

W̃ bacd
f e

�

l,l ′
=
∑

g

�

(F f cd
e )−1
�

l g W bacd
f ge

�

F f cd
e

�

gl ′ , W ∈ {X , Y, A, B} , (19)

where f is the total charge of a and b, g is the total charge of a, b, c and l, l ′ are the total
charges of c, d. It is generally not guaranteed that a graph braiding exchange operator which
is diagonal in the left associated basis is diagonal in the pairwise associated basis (the total
charge of the anyons c and d may change), hence we use the matrix notation for the W̃ symbols
acting in the pairwise associated basis.

Let us next proceed with an analysis of the equations involving the four-particle symbols.
The σ(1,1,1,2)

3 sends the two particles closest to the junction to the back plane as displayed
in Figure 6. Using the F -moves to join the two particles c and d closest to the junction by
a fusion vertex, we can slide the c × d = l fusion vertex through the graph braid. Thus,
in the pairwise associated basis the braiding exchange operator corresponding to σ(1,1,1,2)

3 is
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!

Figure 5: a) The disks associated with the left-fused basis during the first steps of
the σ(2,1,1,2)

3 -exchange. b) The disks associated with the pairwise-fused basis during

the first steps of the σ(2,1,1,2)
3 -exchange. Note that the disk bounding anyons c and d

is intersected by anyons a and b during the exchange. Consequently, the charge of
c×d may not be conserved during the exchange. c) The disks associated with the left-
fused basis during the first steps of the σ(1,1,1,2)

3 -exchange. d) The disks associated

with the pairwise-fused basis during the first steps of the σ(1,1,1,2)
3 -exchange. In the

panels c) and d) there are no disk intersections, so the appropriate charges must
always be conserved in both bases. This results with the consistency equation from
Figure 7.

effectively represented via ρ(σ(1l ,1a ,2b)
2 ) = P bal

ed , i.e. a P-symbol. We display the corresponding
commutative square for X and P in Figure 7. This leads to the following equations,

X bacd
f ge δg g ′ =
∑

l

�

F f cd
e

�

gl P bal
f d

�

(F f cd
e )−1
�

l g ′ , (20)

where we are explicitly imposing the diagonality of the relevant braiding exchange operator
in the left fused basis. We can apply analogous reasoning to the second generator in Equation
(18) and express any Y -symbol as a combination of F -and Q- symbols,

Y bacd
f ge δg g ′ =

r
∑

l

�

F f cd
e

�

gl Qbal
f e

�

(F f cd
e )−1
�

l g ′ . (21)

Hence, even though these are two new four particle generators in the graph braid group, the
introduction of fusion and naturality of graph braiding allows us to express them via three
particle generators. As such, in any equation utilising an X− or Y− symbol, we can express
these symbols in terms of an equation for the P− and Q−symbols respectively.
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Figure 6: Here we display the symbol X bacd
f ge resolving the graph braid σ(1,1,1,2)

3 .

Figure 7: Here we display the polygon diagram which reduces an X -symbol to a P-
symbol using fusion commuting with graph braiding. One can make an analogous
figure for the Y− symbol to reduce it to a Q− symbol. The relevant diagram is essen-
tially the same, except the first two particles go to edge 2 (the front plane) instead
of edge 1.

Consider next the two rightmost generators in Equation (18), σ(1,2,1,2)
3 and σ(2,1,1,2)

3 . Note
that the particles not being exchanged (the two closest to the junction) go to different edges.
Thus, the reasoning presented in Figure 7 cannot be applied to the A- and B-symbols in order
to reduce them to the P- or Q- symbols. However, one can make one further simplification.
Namely, the two generators are related by the pseudocommutative relation [35], in the graph
braid group,

σ
(1,2,1,2)
3 σ

(1,2)
1 = σ(1,2)

1 σ
(2,1,1,2)
3 . (22)

We can adapt this relation to our graph braiding anyon models to get the following equation
which comes from an octagon diagram,

Abadc
f je

�

F f dc
e

�

jl Rdc
l =
∑

g,l ′

�

F f dc
e

�

jl ′ R
dc
l ′
�

(F f cd
e )−1
�

l ′g Bbacd
f ge

�

F f cd
e

�

gl ′ . (23)

This allows us to express the A-symbols via the B-symbols (or vice versa). To summarise, there
are a total of 7 generators in the four-strand braid group of the trijunction, however, any anyon
model can be described with only four independent sets of symbols: R-, P-, Q- and B-symbols.
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Now that we have defined the action of the generators in different bases and discussed
relations amongst them, we next proceed with constructing further N = 4 equations expressing
the compatibility of graph braiding with anyon fusion. As a premise, we would like to adapt
the three-particle diagram in Figure 3 where fusion commutes with graph braiding, to four
particles. Recall that for N = 3 the relevant relations which led to the P- and Q-hexagons read

σ
(1a ,2c)
1 σ

(2c ,1a ,2b)
2 = σ(1a ,2b×c)

1 , σ
(1b ,1a ,2c)
2 σ

(1b ,2c)
1 = σ(1a×b ,2c)

1 . (24)

We can raise the above relations to N = 4 by conjugating both sides of the equation by a move
taking anyon d (closest to the junction) to edge x with x = 1,2. This leads to the relations

σ
(xd ,1a ,2c)
2 σ

(xd ,2c ,1a ,2b)
3 = σ(xd ,1a ,2b×c)

2 , σ
(xd ,1b ,1a ,2c)
3 σ

(xd ,1b ,2c)
2 = σ(xd ,1a×b ,2c)

2 . (25)

Note that in Equations (25) we used the convention for anyon labels given in (E.3). By choos-
ing x = 1 we obtain two relations that allow us to express the A-symbols via P-symbols (the left
relation) and the X -symbols via P-symbols (right relation). Similarly, by putting x = 2 we ob-
tain two relations that allow us to express the Y -symbols via Q-symbols (the left relation) and
the B-symbols via Q-symbols (right relation). One can show by a straightforward but tedious
calculation that the resulting equations lead to only one independent consistency equation
involving B- and Q-symbols (see also Appendix E), which comes from putting x = 2 in the left
equation of (25) and considering the resulting octagon diagram. The resulting consistency
relation reads as follows.

δnn′δg g ′B
cabd
nge =

r
∑

f ,h,k

�

F cab
g

�

nf
Qc f d

ge

�

F abc
g

�

f h

�

F ahd
e

�

gk (Q
cbd
hk )
−1
�

(F ahd
e )−1
�

kg ′

�

(F acb
g ′ )
−1
�

hn′
.

(26)
There is another way of realising the property of fusion commuting with braiding, namely,

one can consider a σ1-braid exchanging two anyons in the fusion channel of each of the pair-
wise fused anyons. For N = 4 anyons, the possible options for braiding one or two anyons in
the fusion channels of the N = 4 anyons via the simple braid σ(1,2)

1 are as follows;

σ
(1a×b×c ,2d )
1 , σ

(1a×b ,2c×d )
1 , σ

(1a ,2b×c×d )
1 . (27)

Starting from each of these braided states we can pull back the fusion vertices, similar to going
from the rightmost state to the leftmost state in Figure 3. We can then resolve the resulting
graph braids (i.e. expand them to obtain a concatenation of simple braids which involves
the constituent factors of the fused anyons), in different ways, analogous to the planar, and
graph hexagon equations. For instance, the braid in the rightmost panel from Figure 8 is the
concatenation of the simple braids

σ
(1a×b ,2d×c)
1 = σ(1b ,1a ,2d )

2 σ
(1b ,2d )
1 σ

(2d ,1b ,1a ,2c)
3 σ

(2d ,1b ,2c)
2 . (28)

The relation (28) can be derived by iteratively applying the relations (25) and (24). What
is more, the polygon equations obtained this way do not yield any new constraints for the
relevant symbols as they readily follow from the equations obtained from the relations (25),
(24) and the squares (20) and (21). We have checked that the same fact holds for all the rela-
tions stemming from braiding composite anyons usingσ1- andσ2- graph braids. This suggests
that the polygon equations (20), (21), (23) and (26) are all the consistency relations which
are needed for the compatibility of fusion and graph braiding of four anyons on a trijunction.
However, we do not have a rigorous proof of this fact.

Another important property of the graph braided anyon models is that any symbol repre-
senting a σ j graph braid, with j > 1 can be expressed an appropriate of products of F -symbols
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Figure 8: The fusion vertices of anyons a, b and c, d can be pulled through the simple
braid σ(1a×b ,2d×c)

1 involving the braiding of an anyon in the fusion channel of a×b and
an anyon in the fusion channel of c × d. The diagram on the furthest left expresses
the composition; σ(1b ,1a ,2d )

2 σ
(1b ,2d )
1 σ

(2d ,1b ,1a ,2c)
3 σ

(2d ,1b ,2c)
2 of graph braids. This is in

analogy to the relation from Figure 3 which allowed us to derive the Q-hexagon
equations.

and R-symbols. This is because one can reduce any σ3-braid to a product of σ2-braids (in-
volving an anyon in the fusion channel of the two particles not being exchanged) by using
the relations (25). The resulting σ2-braids can be in turn reduced to products of σ1-braids
involving composite anyons by applying relations (24). As the final result, we obtain that any
σ3-braid is a product of σ1-braids which involve appropriate exchanges of anyons in the fu-
sion channels of the anyons the σ3-braid is acting on. Thus, translating this relation to the
braiding exchange operators acting on the left-fused basis we are able to express the A-, B-,
X - and Y - symbols as sums of products of R-symbols and F - symbols. This fact generalises in
a straightforward way to N > 4, see Appendix C.

In Section 6 we have applied the N = 4 polygon equations (20), (21), (23) and (26) to
chosen anyon models of low rank. Importantly, we have found numerous examples of Abelian
and non-Abelian anyon models that satisfy all the above polygon equations and are different
from planar braiding models. Examples include the Abelian Zn anyons, the Ising anyons,
Tambara-Yamagami anyons with G = Z2 ×Z2 and the D(Z2) model.

A natural question follows: does this procedure ever end? Namely, do we have to consider
higher and higher particle numbers leading to more complicated fusion diagrams which may
further constrain our anyon model? By considering the pseudocommutative relations and
using the commutativity of fusion and braiding for N > 4 [35], one can see that any graph
braid of the type σ j can be expressed by F -, R-, P-, Q- and B-symbols (see Appendix C for
more explanation). Thus, no new symbols are introduced for N > 4. However, there still
may be some new relations appearing in N > 4 systems. In Appendix C we take steps toward
resolving this issue by conjecturing that it is enough to consider the polygon equations derived
from braiding diagrams of N = 5 particles on a trijunction. In other words, we conjecture that
the graph-braided anyon models will be coherent for N > 5 particles. Moreover, we conjecture
that on top of the N = 4 polygon consistency relations introduced in this section, the only new
relations appearing for N = 5 systems come from imposing diagonality of certain braiding
exchange operators in appropriate bases (relations analogous to the square equations (20),
(21)). In Appendix C we provide evidence for the existence of above generalised coherence
property and sketch a possible pathway for proving it.

3.2 Anyon models with simplified symbols

In general, it is a computationally complex problem to determine the braiding exchange op-
erator that corresponds to an arbitrary σ j graph braid. However, there exists an important
simplification which resolves this issue and still leads to graph-braided anyon models that are
not planar and which (conjecturally) become coherent already for N > 4. These are the mod-
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els where the braiding exchange symbols depend only on at most four labels, namely on i) the
charges of the exchanging anyons – a and b, ii) the total charge of a and b – c, iii) the total
charge of a, b and all the anyons standing between b and the junction point – d. In other
words, if we have N anyons exchanging on a trijunction and the anyon types are given by the
sequence aN , . . . , aN− j−1, a, b, a j−1, . . . , a1 (where a and b are the anyons that exchange), then
c = a× b and d = a j−1 × · · · × a1. We define the simplified symbols of the theory by dropping
certain labels as follows

Rba
c , P ba

cd , Qba
cd , Aba

cd .

See Appendix C for more explanation. The models with such simplified symbols have the prop-
erty that all the σ j graph braids are described by the same symbol, regardless of the edges
that are visited by the anyons a1, . . . , a j−1 and independently of the fusion tree of the anyons

a1, . . . , a j−1. In particular, if the anyons a1, . . . , a j−1 visit edge 1, then the braid σ(1,...,1,1,2)
j is al-

ways resolved by a P-symbol. Similarly, the braid σ(2,...,2,1,2)
j is always resolved by a Q-symbol.

If at least two of the anyons a1, . . . , a j−1 visit two different edges, then the corresponding σ j
graph braid is always resolved by a B-symbol. Importantly, both the Ising anyon model and the
Tambara-Yamagami Z2 × Z2 anyon model which for N = 4 particles have solutions different
than planar, turn out to realise such a graph braided model with the simplified symbols. We
further conjecture that for the simplified anyon models the coherence is attained already for
N = 5, i.e. no new constraints appear for N > 4. This conjecture implies in particular that the
graph-braided Ising anyon model has the free parameter Rσσ1 for any N .

3.3 The H-graph and general tree graphs

Let us next move on to consider a simple network consisting of two trijunctions joined along
one edge. The resulting graph is the H graph, denoted ΓH . The features of anyon braiding
models, which we describe in this section, also extend naturally to any tree graph. The H-
graph is displayed in Figure 9. The two junction points are denoted by v and w, with v being
the junction closest to anyons’ initial position. The three-strand graph braid group B3(ΓH) is
freely generated by the following simple braids [32, 35, 63] (see also Appendix A for more
explanation)

σ
v;(1,2)
1 , σ

v;(2,1,2)
2 , σ

v;(1,1,2)
2 , σ

w;(1,2)
1 , σ

w;(2,1,2)
2 , σ

w;(1,1,2)
2 . (29)

In other words, each junction point permits an exchange of particles and exchanges at different
junctions are topologically inequivalent. Consequently, the exchanges at v will be represented
by different symbols than the exchanges at w. Namely,

ρ
�

σ
v;(1,2)
1

�

= R , ρ
�

σ
v;(1,1,2)
1

�

= P , ρ
�

σ
v;(2,1,2)
1

�

=Q ,

ρ
�

σ
w;(1,2)
1

�

= R̃ , ρ
�

σ
w;(1,1,2)
1

�

= P̃ , ρ
�

σ
w;(2,1,2)
1

�

= Q̃ .

Moreover, we have two different sets of hexagon equations, with each set of hexagons com-
ing from embedding a trijunction at v or w, respectively. There is one P-hexagon (see (16))
involving P-symbols and R-symbols and one P-hexagon involving P̃-symbols and R̃-symbols.
Similarly, we have one Q-hexagon (see (15)) involving Q-symbols and R-symbols and one Q-
hexagon involving Q̃-symbols and R̃-symbols. We can observe that the graph braid group of
ΓH for N = 3 particles is essentially two copies (formally speaking, the free product) of the
trijunction graph braid group, generated by exchanges at the junctions v and w. A natural
question presents itself: Could one construct a new independent consistency equation involv-
ing fusion commuting with braids at v and w simultaneously? The answer is no, which we
will now explain.
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Figure 9: a) The H-graph. It contains two junction points denoted by v and w. The
branches of each junction are enumerated by (1) and (2) relative to the orientation
of the junction with respect to the initial configuration of the anyons (black dots).
b) A schematic picture showing that the exchanges at junction v are topologically
independent of the exchanges at junction w.

As discussed at the beginning of this section and in [37], to introduce consistency equations
from fusion commuting with graph braiding, two of the three particles must go to the same
edge, and they must be joined by a fusion vertex throughout the entire exchange, so that we
can “slide” the fusion vertex through the graph braid diagram. We can see an example of this
in Figure 3. Consider next similar reasoning for the H-graph. Assume that the labels of the
anyons in Figure 9 are a, b, c with anyon c being the closest to the junction and anyon a
being the furthest from the junction. In order to look for possible new relations, we need to
consider all the possible exchange processes where a pair of anyons stays joined by a common
fusion channel so that the fusion vertex can be pulled through the worldline diagram of the
entire process. If this is the case, one obtains a new relation by comparing the effective two-
particle exchange process (where the two anyons stay joined by a common fusion channel)
with the original three-particle exchange process. Two possible options exist for joining the
neighbouring anyons by a common fusion channel. Namely, anyons b and c are joined together
into anyon f or anyons a and b are joined together into anyon e. Suppose we slide the fusion
vertex throughout the worldline diagram of a three-particle exchange process. In that case,
we are left with an effective two-particle exchange process involving anyons a and f or e and
c, respectively. However, all two-particle exchange processes are generated by the σv

1 and σw
1

with appropriate superscripts. Thus, it is enough to consider the consistency diagrams where
fusion commutes with braiding only for these types of generators. In the case when a and
b are joined into anyon e, this leaves us only with the following four options for exchanges
taking place at v or w: σv;(1c ,2e)

1 , σv;(2c ,1e)
1 , σw;(1c ,2e)

1 , σw;(2c ,1e)
1 . These can only lead to separate

P- and Q-hexagons for R and P/Q or R̃ and P̃/Q̃ respectively. Similarly, we reproduce the same
set of hexagon equations when considering exchanges of f = b× c with a.

Consider next N = 4. Using the orientation of the junctions shown in Figure 9a), we
have that B4(ΓH) is generated by the simple braids listed in Equation (29) together with the
following six σ3-braids

σ
u;(1,1,1,2)
3 , σ

u;(2,1,1,2)
3 , σ

u;(2,2,1,2)
3 , u= v, w .

Consequently, the simple exchanges at v are represented by one set of symbols R, P,Q, B (as
explained in Section 3.1) and the simple exchanges at w are represented by another set of
symbols R̃, P̃, Q̃, B̃. However, in contrast to the three-strand braid group, the four-strand braid
group B4(ΓH) is no longer freely generated, as we have the following commutative relation [35]

σ
v;(1,1,1,2)
3 σ

w;(1,2)
1 = σw;(1,2)

1 σ
v;(1,1,1,2)
3 . (30)
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Figure 10: The δ-move.

Intuitively, relation (30) means that two disjoint pairs of anyons can be exchanged at differ-
ent junctions independently. Interestingly, this relation does not impose any constraints on
the corresponding symbols in the anyon model. This is due to the fact that the simple ex-
change σv;(1,1,1,2)

3 can be effectively represented by a P-symbol using the pairwise-fused basis
(explained in Section 3.1) describing a spacetime process where the two anyons closest to
the junction remain fused at all times. In such a pairwise-fused basis relation (30) is satisfied
automatically provided that the square diagram (20) is satisfied.

To reiterate, all the possible exchanges with two out of the three anyons fused together
only lead to hexagon equations which concern exchanges that are fully localised on one of the
junctions. This implies that one can treat the solutions at different trijunctions of the H-graph
as independent. For instance, if we chose an anyon model on a trijunction whose solutions
to the polygon equations (20), (21), (23) and (26) have free parameters (e.g. Ising fusion
rules where the R-symbol Rσσ1 is a free parameter), then these parameters remain free on the
H-graph. Moreover, there will be two independent sets of free parameters since braids at v
and w are topologically inequivalent. If we joined more and more trijunctions forming a tree
architecture, then we could make further independent choices for the free parameters at each
junction point. In Section 8 we argue that this property of graph-braided anyon models may
be useful for designing more efficient topological quantum computing circuits.

4 Braiding and fusion on the circle

Having revisited the graph anyon models on the simplest building block of networks, i.e. the
trijunction, we proceed to define an analogous construction for another simple building block
which is the circle. Following this, we will study the interplay between both of these situations
by moving to a lollipop graph which consists of a single trijunction and a single loop. On a
circle, we first arrange particles next to each other at a particular place on the circle (which is
equivalent to fixing the basepoint for the generator of the braid group BN (S1)). We can then
change the ordering by cycling particles around the loop, this is given by the move δ. In other
words, the braid group of the circle is a free group on one generator which we denote by δ. It
is uniquely defined by picking an orientation of the circle. Here, we assume the orientation to
be counterclockwise. The action of δ moves one of the outermost particles around the circle
according to the circle’s orientation as shown in Figure 10.

With the δ- move we associate the D-symbols that depend on three anyon labels as shown
in Figure 11. The gauge transformations of the D-symbols have the same structure as the gauge
transformations of the planar R-symbols as explained in Appendix E. Requiring the fusion to
commute with the δ-braid leads to two families of hexagon equations shown in Figure 12 and
Figure 13. The second set of hexagon equations comes from demanding the δ−1-move to be
compatible with fusion

Dg b
d

�

(F bca
d )−1
�

g f D f a
d =
∑

e

�

F cab
d

�

ge Dce
d

�

F abc
d

�

e f , (31)

Dg b
d

�

F cab
d

�

ge Dec
d =
∑

f

�

�

F bca
d

�−1�

g f
Da f

d

�

�

F abc
d

�−1�

f e
. (32)
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Figure 11: The braiding exchange operator associated with the δ-braid is described
via D-symbols. The definition extends in a natural way to the δ-move involving N > 2
anyons by fusing together the N−1 anyons which do not travel around the circle and
by sliding their fusion vertex effectively obtaining the δ-move acting on two anyons
only. Note that with the above convention we necessarily have Db1

b = 1 and Da1
a = 1

(the trivial anyon going around the circle), but D1a
a and D1b

b are generally different
from one.

In fact, hexagons (32) follow from the hexagons (31). To see that, put c = 1 in (31) to obtain

Dab
e Dba

e = D1e
e . (33)

Then, apply the above identity to the RHS of (32) as Da f
d = D f a

d D1d
d and insert 1= Dg b

d Dg b
d to

obtain
∑

f

�

�

F bca
d

�−1�

g f
Da f

d

�

�

F abc
d

�−1�

f e
= Dg b

d

∑

f

Dg b
d

�

�

F bca
d

�−1�

g f
D f a

d D1d
d

�

�

F abc
d

�−1�

f e
.

Next, under the above sum, we recognise the LHS of (31), thus we can rewrite it as the double
sum which we subsequently sum over f

Dg b
d D1d

d

∑

f ,e′

�

F cab
d

�

ge′ D
ce′
d

�

F abc
d

�

e′ f

�

�

F abc
d

�−1�

f e
= Dg b

d D1d
d

∑

e′
δee′
�

F cab
d

�

ge′ D
ce′
d

= Dg b
d

�

F cab
d

�

ge Dce
d D1d

d .

Finally, we use (33) again to obtain Dce
d D1d

d = Dec
d and the above expression becomes the LHS

of (32).
As a final comment to this section, we note the connection of the D-symbols D1a

a to the twist
factors. The symbol D1a

a is associated with the δ-move taking just a single anyon a around the
circle. This is exactly the move which in the 2D anyon theory corresponds to the topological
twist. Indeed, for every anyon model, the solutions to the D-hexagons (31) always contain the
topological twist θa expressed in terms of the planar R-symbols in Equation (6) as a special
case. However, for our graph anyon models we do not have the relation (6) and thus we define
the generalised topological twist as

θa := D1a
a . (34)

So-defined topological twists typically can have more possible values than their counterparts
known from the 2D theory. For example, anyons with Z3 fusion have only third roots of unity
as conventional twists, while the solutions to equations (31) also allow for ninth roots of unity
as topological twists. Another example is the TY(Z3) fusion category which admits no planar
braiding or braiding on a trijunction at all, yet has solutions to equations (31). These solutions
can be found in Appendix I.2.
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Figure 12: The naturality condition for δ showing that fusion commutes with the
δ-braid for N = 3. Equating the upper and lower path leads to Eq. (31).

Importantly, the above defined anyon theory on the circle is readily coherent, i.e. the
D-hexagon (31) implies the compatibility of anyon fusion with the δ-braid for any N > 3
(see Appendix B for the proof). We present solutions of the D-hexagons for low-rank anyon
models in Section 6 and Sections G.4.2, H.3.2 and I.2. We have found that all the tested
models are rigid, i.e. have a finite number of solutions with no free parameters left. We note
that our anyons on a circle graph bears a striking resemblance to the tube category, see for
example [64], however, this connection is outside the scope of this work.

5 The lollipop graph

The next key step is to incorporate loops and junctions into a single graph. The simplest
possible configuration is the lollipop graph, ΓL , shown in Figure 14. The lollipop graph
contains one loop, with which we associate a δ-move and one essential vertex v, with which
we associate the simple graph braids via the embedding of the trijunction graph shown in
Figure 14a (and presented in more detail in Section A). In other words, the graph braid group
B3(ΓL) is generated by

δ , σ
(1,2)
1 , σ

(1,1,2)
2 , σ

(2,1,2)
2 .

The above generators are subject to one relation which connects the δ-braid with the simple
graph braids. Namely, we have (see also Figure 15)

δσ
(1,2)
1 = σ(1,1,2)

2 δ . (35)

This leads to the square diagram shown in Figure 16.
The resulting equation reads

D f a
d P cba

f d = Rcb
f D f a

d ,
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Figure 13: The naturality condition for δ−1 showing that fusion commutes with the
δ−1-braid for N = 3. This leads to another set of hexagon equations given in Equation
(32).

Notably, the diagram 16 does not use any F -symbols. Using the fact that the D-symbols
D f a

d ∈ U(1), the above equation boils down to

P cba
f d = Rcb

f . (36)

On top of the condition (36) the P- and Q- hexagons (16) and (15) are also valid equations for
the lollipop as they describe the simple graph braids at the junction of the lollipop. Note that
putting P = R in the P-hexagons readily reproduces one set of the hexagon equations from
the planar anyon theory (5). In other words, creating a lollipop from a trijunction by creating
a single loop makes the graph braided anyon model more similar to the planar braided anyon
model. As we will see in Section 7, one can continue this line of thought to make a complete
transition to the planar anyon theory by considering the graph braided anyon theory on the
theta-graph and more generally, on the family of triconnected graphs.

Figure 14: The lollipop graph. a) Our choice of the rooted spanning tree (solid
lines) with the root ∗ which determines an embedding of the trijunction graph into
the lollipop. The resulting deleted edge is marked by the dashed line. b) The base
configuration of anyons corresponding to our choice of the rooted spanning tree and
the δ-move coming from embedding the circle-subgraph into the lollipop.
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Figure 15: A pictorial proof of the lollipop relation (35).

5.1 The ∆-move

There is an auxiliary braid on the lollipop which we will extensively use in Section 7. It is the
braid ∆ defined in Figure 17 which takes into account the possibility of an anyon occupying
the lollipop’s stick while the remaining two anyons do a δ-like-move. It is expressed by the
standard generators as

∆= σ(2,1)
1 δ , (37)

where σ(2,1)
1 is the inverse of the simple braid σ(1,2)

1 . The braid ∆ will be represented by the
G-symbols as shown in Figure 18.

We use matrix notation for the [G]- symbols as the topological charge corresponding to
e = a× b is not necessarily preserved under the action of this braid on the anyon vector space.
We illustrate this in Figure 19. We can see in the final stage of the braid bringing the anyon c
back onto the loop of the lollipop enters the red disk corresponding to a× b.
The relation (37) leads to the hexagon diagram from Figure 20 which connects G-, D- and
R-symbols.

�

Gbac
d

�

ee′ =
∑

g, f

�

F bac
d

�

eg Rca
g

�

�

F bca
d

�−1�

g f
D f a

d

�

�

F abc
d

�−1�

f e′
. (38)

In particular, if b = 1 we obtain the relation
�

G1ac
ag

�

aa′
= Dca

g Rca
g δaa′ . (39)

Furthermore,
Gb1c

b f = 1 , Gba1
ee = Dba

e .

Just as in the case of the D-symbols there is a completely analogous naturality for the
G-symbols, which follows from the hexagon in Figure 20.

Note that the planar anyon theory is retrieved from the graph braided anyon theory on
the lollipop by imposing that Gbac

d -symbols are independent of c in which case the G-hexagons
imply

�

Gbac
d

�

ee′ = Dba
e δee′ , (40)

and become equivalent to the condition Q = R. This is because substituting in the hexagon
equations (38) i) the G-symbols with the D-symbols according to Equation (40) and ii) D-
symbols Dca

g with Rca
g θa (recall θa := D1a

a ) according to Equation (39) makes the hexagon
equations (38) equivalent to the Q-hexagons with Q = R. Thus, we have that Q = P = R,
so under these assumptions, the simple braids on the lollipop are represented by the same
R-symbols as the ones coming from the planar anyon theory. What is more, the symbols G1ac

g
then acquire the interpretation as the twist factors, i.e.

G1ac
g = θa = D1a

a .

Interestingly, the so-defined twist factors (by satisfying the extra condition (40)) can still differ
from the planar twist factor (defined in equation (6)).
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Figure 16: The square diagram corresponding to (35). The homotopy relation from
Figure 15 has been used in the top panel of the diagram. The two rightmost arrows
represent the braiding exchange operators corresponding to the δ-move followed by
the simple braid σ(1,2)

1 . The two leftmost arrows represent the braiding exchange

operators corresponding to the simple braid σ(1,1,2)
2 followed by the δ-move.

6 Solutions to the graph braiding equations

We solved the graph braiding equations for the circle, the trijunction (with three and four par-
ticles), and the lollipop graph for the following anyon models: Z2, Fibonacci, Ising, Rep(D3),
PSU(2)5, Z3, Z2 ×Z2, SU(2)3, Z4, TY(Z3), Rep(D4), and SU(2)4.

Some of these anyon models have different properties when braiding is confined to a graph
rather than the plane. There exist, in particular, several fusion categories that never admit
planar braiding, despite having solutions for the graph-braid equations. For the anyon models
we studied, we observed the following:

• The equations (31) for anyons on a circle, like the planar hexagon equations, lead to dis-
crete sets of solutions. There are always at least as many solutions as the planar hexagons
allow. Interestingly, the equations for a circle sometimes admit solutions, whereas the

Figure 17: The braid ∆. Note that if c = 1 (the trivial anyon), then ∆ reduces to δ.
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Figure 18: The definition of the G-symbols. The anyon c moves out of the way of
anyon a so that a can exchange with b utilising the circle of the lollipop.

Figure 19: Top down view of the stages of a [G]- symbol. We can see the [G]-symbols
do not preserve the topological charge of the fusion of a × b, indicated by the red
ellipse. In the final stage of the braid, the c anyon when brought back to the loop of
the lollipop will puncture to the red ellipse corresponding to a× b.

planar hexagon equations don’t. The TY(Z3) fusion model (see I.2 for the solutions) is
such an example.

• As was pointed out in [37], solutions to the trijunction equations for three particles
sometimes contain free U(1)-parameters. If we add the equations for four particles,
then, depending on the model, this freedom either remains unaltered (e.g. for Abelian
anyons), gets partially restricted (e.g. Ising anyons), or disappears completely (e.g.
Rep(D3) anyons). For the models we investigated, we found that if a model has solutions
for the three particle equations, it also has solutions for the four particle equations.
Specific results on the number of free variables and solutions to the trijunction equations
can be found in table 1.

• The equations for the lollipop graph consist of (a) the trijunction equations (16) and
(15), (b) equations demanding equality between the P and R symbols (36), and (c) equa-
tions for anyons on a circle (31). We will call the combined set of (a) and (b) the lollipop
trijunction equations. The lollipop trijunction equations are sufficient to fix all degrees
of freedom in the standard trijunction solutions. Since the equations on a circle give rise
to a discrete set of solutions, all investigated models have a discrete set of solutions to
the full lollipop equations. Let nc , nt , nl denote the number of gauge-inequivalent solu-
tions to the circle equations, lollipop trijunction equations, and full lollipop equations,
respectively. Although the equations for a circle graph are independent of the lollipop
trijunction equations, nl need not be equal to ncnt . This happens when there is still some
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Figure 20: The hexagon following from the relation (37).

gauge freedom left after fixing the values of the F -symbols. In this case, the number of
solutions to each set of equations gets reduced by the same factor. This implies that the
number of gauge-independent solutions to the combined set of equations will be greater
than the product of the number of solutions of the individual equations. For the cases
studied only the Z2 × Z2 model has remaining gauge symmetry. More information on
the number of solutions to the planar hexagon equations, the circle equations, lollipop
trijunction equations, and full lollipop equations can be found in tables 2 and 3.

If all the anyons are Abelian (i.e. the fusion algebra is a group algebra), then:

• The trijunction equations are trivially fulfilled for 3 and 4 particles. All non-trivial R-
symbols are thus free variables for trijunction. In particular, each set of trijunction equa-
tions admits an infinite set of solutions. This is not the case for the planar hexagon
equations. For, e.g., Z3 anyons only the trivial F -symbols admit a braided structure and
for Z2 and Z2 ×Z2 only half of the sets of F -symbols admit a braided structure.

• For the circle, Lollipop trijunction, and full lollipop equations, we find that, for a fixed
anyon model, each set of F -symbols gives rise to the same number of solutions. If the
F -symbols allow solutions to the planar hexagon equations, then some of the solutions
to the lollipop equations are also planar. The number of planar solutions to the lol-
lipop equations is always greater than the number of solutions to the hexagon equations.
For more information on the number of solutions to the lollipop equations for Abelian
anyons, see table 3.

If some of the anyons are not Abelian then:

• The solutions to the trijunction equations without free variables are always planar, and
the solutions with free variables are planar for a discrete set of values of the free vari-
ables.

• All solutions to the lollipop equations are planar. The number of planar solutions to
the lollipop equations is always greater than the number of solutions to the hexagon
equations.

For more information on how we solved these equations, see Appendix E.
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Table 1: Generic properties of solutions to the trijunction equations for three and four
particles for various non-Abelian anyon models. Here UCC means that under certain
conditions on the free R-symbols the solutions are planar. All solutions listed are
gauge-inequivalent. Note that the number of solutions corresponds to the number
of gauge-inequivalent families of solutions, possibly parametrized by some free vari-
ables. *For these models we only obtained solutions for 1 set of unitary F -symbols
per model. See Appendix E for more info. **For Rep(D3) it looks like there are more
solutions to the equations for N = 4, but this is only due to the fact that for N = 4
all free parameters are fixed and thus instead of 2 continous families of solutions we
find 3 solutions without freedom.

Fusion
Algebra

Solutions to the trijunction hexagon equations per set of unitary F -symbols
N = 3 N = 4

# Solutions # Free Variables # Solutions # Free Variables Planar?
Fibonacci 2 None 2 None Always
Ising 2 2 2 1 UCC
PSU(2)5 2∗ None 2 None Always
SU(2)3 2∗ 2 2 1 UCC
SU(2)4 2∗ 2 2 1 UCC
TY(Z3) 0
Rep(D4) 4 10 4 1 UCC

Figure 21: a) The Θ-graph ΓΘ together with the underlying choice of the rooted
spanning tree (solid lines) with the root ∗ and the initial position of anyons. b) and
c) The choice of the spanning tree uniquely defines the circular moves δ and δ̄ of
Bn(ΓΘ).

7 Θ-graph yields effective planar anyon models

The Θ-graph shown in Figure 21a) has two independent loops and two essential vertices of
degree three. Using the universal generators of graph braid groups from [35] (which are also
described in Appendix A), we have that B3(ΓΘ) is generated by the respective simple braids at
vertices v and w

σ
v;(1,2)
1 , σ

v;(1,1,2)
2 , σ

v;(2,1,2)
2 , σ

w;(1,2)
1 , σ

w;(1,1,2)
2 , σ

w;(2,1,2)
2 ,

and the two circular moves δ and δ̄. As explained in Appendix A, all the above generators
are defined relative to a choice of the spanning tree of the graph Θ which is shown in Figure
21. However, there are many relations between these generators which allow one to present
the group B3(ΓΘ) using only three independent generators σv;(1,2)

1 , δ and δ̄ (in fact, the same
holds for Bn(ΓΘ) with any n ≥ 2 [35]). What is more, by taking the quotient of Bn(ΓΘ) which
identifies all the circular moves with each other, the graph braid group Bn(ΓΘ) becomes the
standard Artin braid group describing anyons in the plane. In the following, we will look
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Table 2: Number of gauge inequivalent solutions to the consistency equations for
various non-Abelian anyon models. Except for the planar hexagon equations all
equations were constructed for systems with only three anyons. All of the solutions
to the lollipop trijunction equations in this table are planar, i.e. P = Q = R. For
Rep(D3) a different amount of solutions was found for the different solutions to the
pentagon equations and so we used a notation where the i th number in each column
corresponds to data regarding the i th solution to the pentagon equations. *For these
models we only obtained solutions for 1 set of unitary F -symbols per case. See ap-
pendix E for more info.

Fusion
Algebra

Amount of solutions per type of equations
(3 particles) per set of unitary F -symbols

Planar Hexagon Circle Lollipop Trijunction Full Lollipop
Fibonacci 2 2 2 22

Ising 22 24 22 26

PSU(2)5 2∗ 22 2 23

Rep(D3) 3,0, 0 3,3, 3 3,0, 0 32, 0, 0
SU(2)3 2∗ 26 2 27

TY(Z3) 0 3 0 0
SU(2)4 2∗ 28 2 29

Rep(D4) 23 27 23 210

Figure 22: The relevant three different embeddings of the lollipop graph into the
Θ-graph.

into these relations in detail and study their consequences for the graph anyon model on the
Θ-graph. In particular, we will show that by assuming that the circular moves δ and δ̄ on
the Θ-graph are represented by the same D-symbols, the relations between the generators of
B3(ΓΘ) imply

P bac
ed =Qbac

ed = Rba
e , (41)

P̃ bac
ed = Q̃bac

ed = R̃ba
e , (42)

and
Rba

e = R̃ba
e , (43)

where the symbols in (41) refer to the simple exchanges at the vertex v and the symbols in
(42) refer to the simple exchanges at the vertex w. By Theorem 1 in [35] (and Proposition
5 therein), our results apply not only to the Θ- graph, but also to the more general family of
triconnected graphs.

Let us start with Equalities (41). These equalities follow immediately from the lollipop
relations for the lollipop subgraphs ΓL,v and ΓL,v from Figure 22a) and c).
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Table 3: Number of gauge inequivalent solutions to the consistency equations for
various Abelian anyon models. Here we say two sets of F -symbols are equivalent
if they both have solvable planar hexagon equations or not. We chose to do this
because, within each equivalence class, all members give rise to identical rows.

Fusion
Algebra

Number of solutions per type of equations (3 particles)
per set of equivalent F -symbols

Planar Hexagon Circle Lollipop Trijunction Full Lollipop
Lollipop but
non-planar

Z2 2 22 2 23 0

Z3
3 33 32 35

�2
3

�

35

0 33 32 35 35

Z2 ×Z2
23 27 25 213

�3
4

�

213

0 27 25 213 213

Z4
22 28 26 214

�15
4

�

214

0 28 26 214 214

To see this, apply the diagram from Figure 16 to the respective lollipop relations

σ
v;(1,1,2)
2 δ = δσv;(1,2)

1 , σ
v;(2,1,2)
2 δ = δσv;(1,2)

1 .

The first diagram yields P bac
ed = Rba

e and the second diagram yields Qbac
ed = Rba

e , exactly as we
derived Equation (36). Similarly, the lollipop relation for the subgraph ΓL,w from Figure 22b)
gives

σ
w;(1,1,2)
2 δ = δσw;(1,2)

1 ,

thus P̃ bac
ed = R̃ba

e .
The derivation of the remaining equalities Rba

e = R̃ba
e and Q̃bac

ed = R̃ba
e is considerably more

complicated and technical. Importantly, it requires considering the anyon worldlines as world-
ribbons and introducing ribbon half-twists. Due to the technical and complicated nature of the
proof, we postpone it to Appendix D where we also describe the world-ribbon half-twists on
graphs in more detail.

To summarise, we have shown that on the Θ-graph, any graph-braided anyon model is
equivalent to the planar anyon model if all the circular moves δ are represented by the same D-
symbol. This can be viewed as a mathematical justification for translating results known from
the anyon theory in 2D to the network-based setting. For instance, it is known that the Ma-
jorana zero modes which were initially proposed in two-dimensional FQHE systems [65,66],
and later proposed in one-dimensional networks [9,12], can host the same exchange statistics
in both settings (see [4, 7, 20] for explicit models for the Majorana zero mode exchange on
the trijunction). However, our approach here is different from the previous work, because it
is independent of the microscopic model.

8 Consequences for the quantum circuit depth using topological
quantum gates

In the standard paradigm of topological quantum computing schemes, the quantum gates act-
ing on a finite set of qudits come from the unitary matrices ρ(σi) ∈ U(d). The representation
ρ depends on the anyon model at hand and on the chosen topological Hilbert space Htop
which is also associated with the particular way of encoding qudits in Htop. It is well-known
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Figure 23: A schematic representation of a modular biconnected network composed
of three triconnected modules (represented by grey boxes). According to the general
prescription presented in Appendix A, the base configuration of anyons is on an exter-
nal edge of the leftmost module. The simple graph braids realised in different mod-
ules are topologically independent. By the results of Section 7, the braiding within
each module is effectively governed by an independent set of R-symbols which con-
stitute a solution to the hexagon equations from the corresponding 2D anyon theory.
Thus, such a network architecture allows for simultaneous coexistence and mixing
of different sets of R-symbols.

that a minimal requirement to realise a universal quantum computer is to have i) a set of
universal single-qudit gates and ii) at least one entangling two-qudit gate. More formally, for
a finite set of single qudit gates S ⊂ U(d) we denote the group generated by the matrices
from S by 〈S〉. The elements of the group 〈S〉 are all the possible unitary matrices obtained
by sequentially composing gates from S. The set of gates S is universal if and only if all the
unitary matrices from 〈S〉 fill in the group U(d) densely. In other words, any matrix U ∈ U(d)
can be approximated by a sequence of gates from a universal set S with arbitrary precision
ε. However, the circuit depth, i.e. the length of the sequence of gates necessary to approx-
imate (compile) a given U increases when the required precision grows, see the celebrated
Solovay-Kitaev algorithm [67, 68]. In this section, we argue that topological quantum gates
coming from the graph braided anyon models can reduce the circuit depth when compared to
quantum gates coming from the 2D braided anyon models.

In short, the reason why graph braided anyon models can lead to lower-depth quantum
circuits is that the simple braids realised at different junctions of the graph can be topologically
inequivalent, i.e. cannot be transformed one into another via isotopies of their correspond-
ing world-lines. This allows us to associate different sets of the R-, P- Q-symbols (and their
higher-particle number counterparts) with the junctions which yield topologically inequiva-
lent braids. Such a phenomenon occurs, for instance, in the H-graph as discussed in Section
3.3. Another example of a network architecture where this phenomenon occurs is the stadium
graph or, more generally, a biconnected modular network that consists of a chain of tricon-
nected modules that are connected by bridges consisting of two edges [35,36], see Figure 23.
This has also been pointed out in the case of Abelian quantum statistics on graphs in [30]. For
concreteness, let us focus on the stadium graph. As shown in Figure 24, there are two ways
of embedding a Θ-graph into the stadium graph where the embedded Θ-graph contains either
the opposite pairs of essential vertices v and v′ or w and w′. Thus, by the results of Section
7 any graph braided anyon model on the stadium graph will admit two independent sets of
the planar R-symbols. Namely, the simple braids at v or v′ will be represented by one set of
R-symbols coming from the 2D braided anyon model and the simple braids at w or w′ will be
represented by another, a priori different, set of R-symbols coming from the 2D braided anyon
model. Let us reiterate the crucial fact that, the simple braids at w and w′ are topologically
independent from the simple braids at v or v′, thus it is a priori possible to represent them by
different sets of R-symbols. This in turn can increase the number of the available topological
single-qudit quantum gates which constitute the set S. Having access to a larger set of topo-
logical gates S gives one more flexibility when compiling the target quantum algorithm and
thus increases the efficiency of the given quantum circuit by lowering the circuit depth.
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Figure 24: a) The Θ-graph together with the choice of the rooted spanning tree. b)
and c) Two different embeddings of the Θ-graph into the stadium graph (marked
by red and blue) which by the results of Section 7 imply that the simple braids at v
and v′ are equivalent to the braiding in 2D and are represented by the same set of
R-symbols. Similarly, the simple braids at w and w′ are represented by another set of
R-symbols coming from the 2D anyon theory.

The potential advantage of using the stadium graph architecture and its generalisations is
also evident when considering certain non-universal anyon models. For instance, consider the
Tambara-Yamagami model over Z2 ×Z2 [53]. Denote by σ the anyon with the property

σ×σ =
⊕

g∈G
g , G = Z2 ×Z2 .

The topological Hilbert space of the three σ-anyons of the total charge σ is given by

Htop = Span {|σ,σ→ g〉 |g,σ→ σ〉 : g ∈ G} ∼= C4 .

In such a setting, the braiding operators are single-ququart topological quantum gates. In the
stadium-graph geometry, the simple braids σv;(2,1)

1 and σv′;(2,1)
1 are represented by the same

braiding exchange operator R which is a diagonal 4×4 matrix whose diagonal entries are the
R-symbols Rσσg , g ∈ G, which are solutions to the hexagon equations for the anyon model in

2D. The simple braids σw;(2,1)
1 and σw′;(2,1)

1 are represented by the matrix R̃ constructed from
another set of solutions to the hexagon equations for the anyon model in 2D. For concreteness,
let us choose the following solutions to the planar hexagon equations

R=









eiπ/4 0 0 0
0 ei3π/4 0 0
0 0 ei3π/4 0
0 0 0 e−i3π/4









, R̃=







−i 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −i






.

The relevant σ2-braids σv;(112)
2 , σv;(212)

2 , σv′;(212)
2 and σv′;(212)

2 are represented by the matrix

B =
�

Fσσσσ

�†
R Fσσσσ while σw;(112)

2 , σw;(212)
2 , σw′;(212)

2 and σw′;(212)
2 are represented by the

matrix B̃ =
�

Fσσσσ

�†
R̃ Fσσσσ . Here, the relevant F -matrix reads

Fσσσσ =
1
2







−1 −1 −1 −1
−1 1 −1 1
−1 −1 1 1
−1 1 1 −1






.

Let us next consider the (finite) groups generated by the sets S := {R, B} and S̃ := {R̃, B̃}. We
will focus on how the resulting quantum gates act on a single ququart which means that we
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neglect the global phase factors. In other words, we look at the resulting groups projectively
by projecting every element to the group PSU(4). It can be verified in a straightforward way
that the groups 〈S〉 ⊂ PSU(4) and 〈S̃〉 ⊂ PSU(4) are different and both are isomorphic to S4,
the permutation group of four elements

〈S〉 ̸= 〈S̃〉 , 〈S〉 ∼= 〈S̃〉 ∼= S4 ⊂ PSU(4) .

Furthermore, by considering combinations of exchanges on the two Θ-subgraphs of the sta-
dium graph we can generate the group 〈S∪S̃〉 ⊂ PSU(4)which is a finite group of rank 96 and
strictly contains the groups 〈S〉 and 〈S̃〉. Thus, by combining braids at different junctions of
the stadium graph we are able to generate a bigger (although still finite) subgroup of PSU(4)
which means that we have increased the computational power when compared to the standard
2D setting.

The crucial feature of the above calculation was that the subgroups of PSU(d) generated
by the braiding exchange operators R, B and R̃, B̃ were different. A necessary condition for this
to happen is that the (unitary) braiding exchange operator R is different than eiφR̃ for every
φ ∈ [0,2π]. Finding such operators R and R̃ is not possible for every model. For instance,
in the Ising model (Tambara-Yamagami with G = Z2) all the braiding exchange operators
corresponding to different hexagon solutions are related via multiplication by such a global
phase factor. The Tambara-Yamagami model over Z2 × Z2 is the simplest model which we
could find where some of the braiding exchange operators R are not related by a global phase
factor.

9 Conclusions

In this work, we have developed a universal framework for studying topological quantum sys-
tems hosting anyonic excitations on quantum wire networks. Using the results of this work,
any 2D anyon theory (understood as a fixed set of fusion rules and F -symbols) can be readily
translated to a network setting. Our framework assumes the same basis of fusion states as on
the plane (described in Section 2). It is not obvious that this is a full description of the states
on a graph. For instance, even on a 2D torus, a description of the topological Hilbert space
requires labels associated with the nontrivial loops around the torus. One may expect such
extra labels to appear also for graphs with loops of perhaps even for graphs without loops.
However, we have decided to work with our choice of the fusion basis as a starting point. This
has already lead to interesting classes of solutions – we have found nontrivial solutions for
models that do not exist in the 2D anyon theory as well as new classes of solutions for other
models. We have also shown that the character of Abelian and non-Abelian exchange depends
strongly on the structure of the given network. In particular, the possible braiding exchange
operators that arise from our framework applied to simple junctions or tree graphs are less
constrained than the ones that arise in more complex networks. At the far end of this spec-
trum of possibilities are triconnected networks, for which the resulting exchange operators are
equivalent to the 2D anyon theory. Hence, for triconnected networks we recover coherence
as well as rigidity (number of solutions modulo gauge is finite). At the other end, we have
the trijunction, where we find most freedom in the braiding exchange operators as there exist
continuous families of solutions to our polygon equations. Coherence remains an open ques-
tion. However, we conjecture that on a trijunction the theory is coherent for N ≥ 4 particles
and we discuss evidence for this. For biconnected and one-connected networks we have found
numerous examples of new Abelian and non-Abelian exchange statistics that do not exist in
2D. We have argued that physically realising some of these possibilities could lead to propos-
als for topological quantum computers where quantum algorithms would be compiled more
efficiently.
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A natural next step would be to look for physical models which could host the Abelian or
non-Abelian quantum statistics that do not exist in 2D anyon models. One notable direction
would be studying parafermionic zero modes. In contrast to Majorana zero modes, there are
no solutions to the planar hexagon equations for the braiding of parafermions. This can be
seen by the obstruction to a solution to TY(ZN ), N ̸= 2p for some p. However, it is known
that such zero modes can exist on boundaries of non trivial topological order. A number of
other candidate systems would be excitations on boundaries of a 2D topological order (see,
e.g. [69]). Our formalism naturally applies to situations where the boundaries are arranged
to form a network allowing the anyons to exchange. Another possible way of finding systems
that host the new exchange statistics on networks would be through certain generalisations of
the discrete gauge theories. This approach has been employed in [70].
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A Generators of graph braid groups for general graphs

In this section we will discuss some necessary facts about the generators of graph braid groups.
In particular, we recap the systematic construction of the generating set of graphs braids which
works for any planar graph [35]. We subsequently use this general procedure to study some
small canonical graphs from the main text of the paper. The simple braids are specific gener-
ators of the graph braid group of a rooted star graph. In general, graph braids are created via
sequences of moves transporting particles to certain edges of the graph and returning them to
their original configuration. It will be convenient to introduce a separate notation for a move
where a single particle is transported from one location to another. The relevant moves are
called the β-moves – they transport particles from the base configuration on the edge con-
taining the root to another leaf of the star graph. A β-move, βx , is decorated by a subscript
1 ≤ x ≤ E (E + 1 is the number of legs of the star graph) which denotes the index of the leaf
of the star graph where the particle which is the closest to the junction is transported from
the base configuration. Consequently, β−1

x transports an particle from leaf a back to the base
configuration (see Figure 25).

Thus, an exchange of two particles which involves leaves x and y with 1 ≤ x < y ≤ E is
given by the commutator of the corresponding β-moves

�

βx ,βy

�

:= βxβyβ
−1
x β
−1
y .

We will call this a simple exchange and denote by σ(x ,y)
1 , see Figure 26. In order to realise a

simple exchange of particles i and i + 1 one needs to first distribute the particles 1 through
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Figure 25: The auxiliary move βx and it’s inverse. The root is decorated by ∗.

Figure 26: The simple exchange σ(x ,y)
1 =
�

βx ,βy

�

. The root is decorated by ∗.

i−1 on the leaves of the star graph and move them back in the same order after the exchange.
This is realised by the following sequence of β-moves

σ
(x(1),...,x(i+1))
i = βx(1) · · ·βx(i−1)

�

βx(i),βx(i+1)
�

β−1
x(i−1) · · ·β

−1
x(1) , (A.1)

where x(k) is the leaf visited by kth particle (with particle 1 being the closest to the junction).
Analogous β-moves can be realised on a rooted tree graph (T,∗). Namely, let v ∈ T be an
essential vertex (i.e. a vertex of degree d(v) ≥ 2). One can embed a rooted star graph of the
order d(v), (S,∗S), into a neighbourhood of v in T

ιv : (S,∗S)→ (T,∗) ,

so that the essential vertices are mapped onto each other and ιv(∗S) lies on the unique path
connecting v with ∗ ∈ T , as shown in Figure 27a. Then, the move βv,x is defined as the
composition βv,x := β0βx , where β0 transports a particle from the base configuration on the
edge containing the root ∗ ∈ T to ιv(∗S) and βx transports the same particle from ιv(∗S) to the
leaf a of the embedded star graph, see Figure 27b. Thus, we analogously define the simple
braids associated with the vertex v as

σ
v;(x(1),...,x(i),x(i+1))
i = βv,x(1) · · ·βv,x(i−1)

�

βv,x(i),βv,x(i+1)
�

β−1
v,x(i−1) · · ·β

−1
v,x(1) .

Figure 27: a) Embedding a star graph into a neighbourhood of the essential vertex v
of a tree graph. b) The resulting βv,3-move.
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Figure 28: a) A graph with a spanning tree marked by solid lines and the deleted
edges marked by dashed lines. The loop le is a simple loop corresponding to the
deleted edge e. b) The planar embedding of Γ and its resulting decomposition of
the plane into four connected components: the bounded discs D1, D2, D3 and the
unbounded component C0. A possible choice for the external deleted edge e0 and
the root ∗ is shown. c) The linear ordering of the graph’s vertices implied by the
planar embedding and the choice of the root.

Note that any simple graph braid in Bn(Γ ) can be embedded into Bn+1(Γ ) via conjugation by a
βu,y -move where u is an essential vertex of Γ and 1≤ y ≤ d(v)− 1.

Bn(Γ ) ∋ σ
v;(x(1),...,x(i+1))
i 7→ βu,y σ

v;(x(1),...,x(i+1))
i β−1

u,y ∈ Bn+1(Γ ) .

In particular, if u= v, then we have

βv,y σ
v;(x(1),...,x(i),x(i+1))
i β−1

v,y = σ
v;(y,x(1),...,x(i),x(i+1))
i+1 .

We use this fact several times throughout the paper, see for instance Equation (25).
For a planar graph Γ which is not a tree graph, i.e. Γ which contains loops, some new

generators appear. The new generators correspond to different ways of embedding the circle
graph and its corresponding δ-move which has been introduced in Section 4. Let us next
review a systematic way of counting the relevant embeddings of the circle graph into any
planar graph Γ which is not a tree. We first fix the planar embedding of Γ , ιΓ : Γ → R2.
Next, we choose a spanning tree T ⊂ Γ (a tree which contains all the vertices of Γ ) such that
every essential vertex of Γ is contained in T together with its star-shaped neighbourhood in
Γ (formally, this may require adding some dummy vertices of order two in the interiors of
certain edges of Γ , a procedure called edge subdivision, for details see [35]). Using such a
choice of the spanning tree we build a basis of loops of Γ in the following way. The number
of loops of Γ is equal to the first Betti number of Γ , B1(Γ ) = |E(Γ )| − |V (Γ )|+ 1, where E(Γ )
and V (Γ ) are the sets of edges and vertices of Γ respectively. Edges from E(Γ ) which do not
belong to T are called the deleted edges. The number of deleted edges is equal to B1(Γ ) and
each e ∈ E(Γ )− E(T ) defines a loop in Γ in the following way. Let v and w be the end-vertices
of e. We necessarily have that v, w ∈ T , thus there is a unique path P(v, w) ⊂ T that connects
v with w in T . Thus, the union le := e ∪ P(v, w) is a loop in Γ (see Figure 28a). The set
LΓ := {le| e ∈ E(Γ )− E(T )} forms a generating set of simple loops of Γ .

The set R2−ι(Γ ) is topologically a disjoint union of a number of connected components. In
particular, among the connected components there are disks D1, . . . , DB1(Γ ) which are enclosed
by the loops from LΓ and one unbounded component which we denote by C0 (see Figure 28b).
Let us next choose a deleted edge e0 which is external relative to the embedding ιΓ , i.e. it
belongs to the boundary of C0. We define the root ∗ ∈ T as one of the endpoints of e0.
We give the edge e0 an orientation directed from its other endpoint to the root as shown in
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Figure 29: Examples of δ-moves for a graph with multiple loops. a) The δ-move
associated with the edge e0 which is incident to the root ∗. b) The δe-move when
ι(e)< ι(e0). c) The δe-move when ι(e)> ι(e0).

Figure 28b. Then, le0
is the oriented loop which supports the circular move δ from Section

4 whose orientation is induced by the orientation of e0. To every other deleted edge e we
associate an independent circular move δe in the following way. We order the vertices of Γ
by drawing a ribbon around T in a clockwise direction, starting at the root and labelling all
the visited edges by consecutive integers as shown in Figure 28c. This way, each edge e ∈ Γ
acquires an orientation which points from the vertex labelled by the higher number (called the
initial vertex ι(e)) to the vertex labelled by the lower number (called the terminal vertex τ(e)),
ι(e)> τ(e)). In particular, this holds for every deleted edge e and induces an orientation of the
associated loop le. We are now ready to define the circular move δe associated with a deleted
edge e. There are two cases (see Figure 29 for examples).

1. If ι(e) < ι(e0), then δe i) takes a particle from the base configuration at the edge of T
containing the root ∗ and moves it to the vertexτ(e) along the unique path P(∗, ι(e)) ⊂ T ,
ii) moves the particle from τ(e) to ι(e) along e, iii) moves the particle from ι(e) to ι(e0)
along the unique path P(ι(e), ι(e0)) ⊂ T , iv) moves the particle from ι(e0) to τ(e0) = ∗
along e0.

2. ι(e) > ι(e0), then δe i) takes a particle from the base configuration at the edge of T
containing the root ∗ and moves it to the vertex ι(e) along the unique path P(∗, ι(e)) ⊂ T ,
ii) moves the particle from ι(e) to τ(e) along e, iii) moves the particle from τ(e) to ι(e0)
along the unique path P(τ(e), ι(e0)) ⊂ T , iv) moves the particle from ι(e0) to τ(e0) = ∗
along e0.

Summing up, the graph braid group of Γ is generated by the simple braids

σ
v;(x(1),...,x(i),x(i+1))
i , 1≤ x( j)≤ d(v) , x(i)< x(i + 1) , d(v)> 2 ,

and the circular moves
δ , δe , e ∈ E(Γ )− E(T ) .

In general, finding the relators in presentations of graph braid groups is more difficult than
finding the generators. As we have described above, there exists a universal set of geometric
generators for graph braid groups (derived in the paper [35]. In order to find the complete
set of relators for a given graph and a given number of particles, one needs to run the gen-
eral algorithm from the paper [32] which relies on discrete Morse theory. The computational
complexity of this algorithm grows very fast with the size of the graph and the number of
particles. Fortunately, in order to derive the results presented in our paper, it suffices to use
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Figure 30: In this figure we show a four-particle consistency diagram for particles
cycling around the circle graph. In the bottom left we display the fusion commuting
with graph braiding states, which are related by sliding a fusion vertex through a
δ-braid. The middle diagonal path is what informs us this is will not lead to new
constraints on the D- symbols, as it can already be tessellated by the hexagon dia-
grams.

a sub-complete set of relators. Such relators are analysed case-by-case in our paper and are
proved pictorially. This way, we hope to keep the results more accessible to people who are
not familiar with the mathematical subtleties of graph braid group theory. In the case of the
H-graph, we have listed all the n= 3 and n= 4 relators in Section 3.3. The complete set of re-
lations for the T -junction has been listed in Appendix C (these are just the pseudocommutative
relations). The compete set of relations for higher-order junctions (having more than three
legs) can be found in Proposition 2 of the paper [35]. Notably, the n-strand graph braid group
of a junction (also known as a star graph) is a free group. In other words, there exist relations
between the geometric generators, but all of these relations can be completely reduced via
appropriate Tietze transformations.

B Coherence for graph anyon models on the circle

In this section we will discuss the graph anyon model on a circle for N > 3 particles. In
particular, we show that such a model has the coherence property mentioned in Section 2.
Our aim is to show that the consistency equations for four particles are already guaranteed
by the solution of the circle hexagon equation for three particles given in Equation (31). In
other words, no new constraints for the D symbols appear for N > 3. This is in contrast to the
simple braids at junctions, in which, the addition of new particles introduces new, topologically
inequivalent generators (up to when the number of particles is at least one greater than the
valence of the junction), as discussed in Section 3.1 and Appendix C.

We start by considering the action of the D- symbols given in Equation (11). The D- sym-
bol depends on the topological charge of the particle cycling around the circle and the total
topological charge of the remaining particles. See, for instance the action of D f a

d in the upper
path of Figure 12. Similarly, if there are N particles on the circle, then anyon f is the total
charge of a set of N − 1 anyons and the action of the D f a

d - symbol only depends on the total
topological charge of the N − 1 particle group and a.
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To construct a consistency equation, we consider a diagram where fusion commutes with
braiding of four particles and then look at all the possible ways to resolve the braids. This
strategy has been employed to derive the D-hexagons in Figure 12 (see Figure 3 for a similar
treatment of the trijunction). Equivalently, we can view this methodology as expressing a braid
involving a composite anyon in terms of the composition of simple braids of its constituents.
So, explicitly for four particles, we would like to impose the following relations on our anyon
model (we use the labelling convention from Equation (E.3));

δ(k, a)δ(r, b)δ( j, c) = δ(l, f )δ( j, c) = δ(d, g) , (B.1)

where the right entry of δ labels the topological charge of the particle cycling around the graph
and the left entry labels the total topological charge of the remaining particles. This is analo-
gous to Equation (24) for a junction. The resulting diagram is shown in Figure 30. Note that
in the bottom left of Figure 30 we have equated three states using the fact that fusion com-
mutes with braiding several times. From these states, we can construct consistency equations,
stemming from applying appropriate D-moves and F -moves to make the diagram commuta-
tive. In other words, every loop in the diagram in Figure 30 represents a consistency relation.
However, the crucial observation is that the large outer loop (decagon diagram) is a composi-
tion of two smaller loops, each containing six states (hexagon diagrams). Thus, satisfying the
consistency equations corresponding to the two inner hexagonal diagrams will imply that the
consistency equations corresponding to the outer decagonal diagram will be satisfied as well.
Let us next take a closer look at the leftmost hexagon diagram. Note first that in the resulting
equations the constituents of the anyon f in the fusion channel of a × b, i.e. f = a × b will
not appear, as the particles a and b are always connected by a common fusion channel. Thus,
this diagram is effectively a three-particle diagram involving particles f , c and d. Comparing
the two paths starting from the leftmost state and ending at the pairwise associated state at
the bottom of the diagonal path we obtain the following consistency equation

∑

g

�

(F d f c
e )
�

j g Dd g
e

�

F f cd
e

�

gl = D jc
e

�

(F cd f
e )−1
�

Dl f
e . (B.2)

Importantly, Equation (B.2) becomes identical to the D-hexagon from Equation (31) after
appropriate relabelling of anyons. Similarly, the rightmost sub-hexagon diagram leads to ef-
fective three-particle equations involving anyons a, b and l, an anyon in the fusion channel of
c × d, i.e. l = c × d.

∑

f

�

F lab
e

�

r f Dl f
e

�

F abl
�

f k = Dr b
e

�

(F bla
e )−1
�

rk Dka
e , (B.3)

which can also be identified as D-hexagon equations after relabelling.
To summarise, we started with the four-particle fusion commuting with graph braiding

states which could have led to new constraints on the D- symbols, however, we were able to
recognise that this diagram was readily satisfied just by the three particle hexagon diagrams.
Therefore, when solving these equations for a given fusion model this will add no new con-
straints (see Section E for details on solving these equations). Inducting over the number of
particles, one can see that similar reasoning shows that we can always do this on a circle, and
as we add more and more particles this will lead to no new constraints.

C Towards coherence for anyon models on general graphs

In this section, we will discuss how our graph anyon models change when increasing particle
number. In particular, we will look into the coherence property of these anyon models – is
there a particle number N0 above which no new consistency relations appear?
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Firstly, let us discuss what coherence is and why it is a priori not clear that our anyon
models have this property. The coherence of anyon theory in the plane has been discussed
e.g. in [25]. In order to formulate coherence for N anyons, one considers a diagram whose
nodes are all the possible N -anyon fusion trees and the edges are the F -moves between the
fusion trees. The coherence theorem for F -moves (fusion coherence) states that any sequence
of F -moves between a fixed pair of nodes of such a diagram results in the same morphism
of the corresponding topological Hilbert spaces, provided that the pentagon equations are
satisfied (together with some trivially satisfied square diagrams). In other words, solving the
consistency equations for the F -moves in the case of N = 4 anyons implies that the entire
theory is consistent for any N > 4. Similarly, the braided coherence theorem states that any
sequence of morphisms which involves F - and R-moves between two fixed states results with
the same morphism of the corresponding topological Hilbert spaces provided that the pentagon
and hexagon equations are satisfied. The proof of this theorem relies on more abstract results
in category theory, known as the Mac Lane monoidal (fusion) coherence theorem [42], and
the braided coherence theorem [45].

One of the first things to observe is that we do have the fusion coherence, since, as dis-
cussed in [37] and in Section 3, we do not modify the fusion rules and we use the same
F -symbols as the planar anyon models. However, the braiding structure on networks is differ-
ent. When considering higher numbers of anyons, more and more topologically inequivalent
generators of the graph braid group are introduced (see Section 3.1, further details of which
can be found in [35]). In order to faithfully represent the new generators of the graph braid
group, we introduce new symbols, when increasing the number of particles from three to four,
see Equation (18). Additionally, new consistency equations (expressing the compatibility of
fusion and braiding) are introduced, e.g. for N = 4 anyons on the trijunction there are four
new equations (20), (21), (23) and (26). As we explain in Section 7, if the graph is suffi-
ciently highly connected, we recover planar braiding, and therefore all the aforementioned
coherence theorems known from the planar anyon theory. However, all the biconnected and
one-connected graphs require separate treatment. For concreteness, we will next focus again
on a trijunction. The entire following discussion extends mutatis mutandis to arbitrary graphs.

As we explained in Section 3, our aim is to build an anyon theory which faithfully represents
topologically inequivalent graph braid group generators. This is done by assigning different
symbols to topologically inequivalent generators. If we solve all of the N -particle consistency
equations, increasing the number of particles to N + 1 introduces new generators and, in
principle, new relations, which may not be satisfied by solutions to the consistency equations
for N particles. As we conjecture below, for every graph Γ there exists a certain number N0(Γ )
such all the consistency relations for any N > N0(Γ ) are readily satisfied by the solutions
to the N = N0(Γ ) consistency relations. This is what we call the graph braided coherence
conjecture. For the trijunction, Γ = ΓT , we conjecture that N0(ΓT ) = 5. For the simplified anyon
models defined in Section 3.2 (all the symbols having at most four labels), we conjecture that
N0(ΓT ) = 4.

What is more, we conjecture what the complete set of consistency relations looks like for
any N . We distinguish three types of consistency relations for anyon models on the trijunction
that form the complete set of relations: the pseudocommutative relations (Equation (C.2)),
the analogues of the N = 3 hexagon relations (Equation (C.5)) and the topological charge
conservation relations.

1. The pseudocommutative relations. As we explain in Appendix A, a simple graph braid
on the trijunction has the form

σ
(x(1),...,x(i−1),x(i),x(i+1))
i , (C.1)

where x(k) ∈ {1, 2} and x(i) < x(i + 1). However, such simple braids form an over-
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complete generating set of the corresponding graph braid group as they are subject to
the following pseudocommutative relations [35,36], for j − i ≥ 2 and j > i

σ
(x(1),...,x( j+1))
j σ

(x(1),...,x(i+1))
i = σ(x(1),...,x(i+1))

i σ
(x(1),...,x(i−1),x(i+1),x(i),x(i+2),...,x( j+1))
j . (C.2)

An example of such a relation has been considered in Section 3.1 in Equation (22).
The pseudocommutative relations allow us to find a minimal generating set of the braid
group for a junction of any valence (for junctions other than just trijunctions, one needs
to also consider certain pseudobraiding relations), ultimately showing that graph braid
groups for particles moving on a single junction are free groups [35]. In the case of the
trijunction, the minimal generators have the form

σ
(2,...,2,1,...,1,1,2)
j , (C.3)

where the first string of twos has length K and the second string of ones has length L,
so that K + L + 1 = j. In other words, any simple braid σ(x(1),...,x(i−1),x(i),x(i+1))

i can be
expressed as a product of the minimal generators of the form (C.3) with j ≤ i. Thus,
the braiding exchange operator corresponding to any simple braid can be determined
from the braiding exchange operators representing the minimal generators (C.3) via the
corresponding polygon diagrams. Therefore, it is sufficient to assign different symbols
to different minimal generators. For N = 4, the relevant symbols are R, P, Q and B (see
Section 3.1).

Importantly, any generator of the form (C.3) is effectively a four-particle exchange pro-
cess (at most) and as such can be expressed in terms of the R-, P-, Q- or B-symbols. To
see this, consider the corresponding exchange operator representing the simple braid

σ

�

2d1
,...,2dK ,1c1 ,...,1cL ,1a ,2b

�

j ,

where the anyons d1 × · · · × dK = f and the anyons c1 × · · · × cK = e are joined by a
common fusion channel and the total charge of the entire system is i. In such a basis,
the fusion vertices e and f can be pulled through the entire spacetime diagram of the
exchange process, so that such a process effectively becomes a four-particle process.
Thus, the above simple braid can be represented by Bbae f

ghi , where by g we denote an
anyon g in the fusion channel of a× b, similarly for h in the fusion channel of g × e. If
K = 0 or L = 0 this reduces to P bae

gi or Qba f
gi respectively. Therefore, by the preceding

discussion, we conclude that any simple braid (C.1) can be expressed by the R-, P-, Q-
and B-symbols. However, the resulting expressions can be quite involved as they require
using pseudocommutative relations repeatedly.

2. Analogues of the hexagons for higher particle number. Recall that the P- and Q-
hexagons which were derived from the following relations expressing the fact that fusion
commutes with graph braiding for N = 3 anyons on a trijunction [37],

σ
(1a ,2c)
1 σ

(2c ,1a ,2b)
2 = σ(1a ,2b×c)

1 , σ
(1b ,1a ,2c)
2 σ

(1b ,2c)
1 = σ(1a×b ,2c)

1 . (C.4)

One can lift the above relation in order to impose the commutativity of fusion and braid-
ing for any N > 3 by adding a string of particles from the side of the junction. This has
been done for N = 4 in Equation (25). In general, if the added particles have the charges
d1, . . . , dM , we obtain the analogous relations for N = M + 3 by appending a sequence
x =
�

x(1)d1
, . . . , x(M)dM

�

to each superscript in Equations (C.4). Here, x(k) ∈ {1, 2}
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denotes the branch of the trijunction visited by the kth anyon (of the charge dk with
anyon d1 being the closest one to the junction). The resulting lifted relations read

σ
( x , 1a , 2c)
M+1 σ

( x , 2c , 1a , 2b)
M+2 = σ( x , 1a , 2b×c)

M+1 , σ
( x , 1b , 1a , 2c)
M+2 σ

( x , 1b , 2c)
M+1 = σ( x , 1a×b , 2c)

M+1 . (C.5)

As explained in Section 3.1 for N = 4, the relations (C.5) show a key property of the
graph-braided anyon models. Namely, the graph braiding exchange operator represent-
ing a simple braid σ(x ,y,1,2)

i can be expressed in terms of the graph braiding exchange

operators representing the simple braid σ(x ,1,2)
i−1 . By repeating this argument (i − 1)

times, we obtain that the graph braiding exchange operator representing a simple braid
σ
(x ,y,1,2)
i can be expressed in terms of F - and R-symbols only.

Crucially, we have observed that the consistency relations (C.5) for M > 1 are readily
implied by the (four-particle) consistency relations for M = 1 (a statement which we will
prove elsewhere). The four-particle consistency relations are also presented in Section
3.1 in Equation (25) where we also explain that they lead to the octagon Equations (26).

3. Charge conservation relations. As we explained in Section 3.1, the total charge of a
given subset of particles is conserved throughout an exchange process if this subset of
particles can be enclosed by a disk such that no particle enters or leaves the disk during
the exchange. This implies certain diagonality conditions for the braiding exchange
operators in appropriate bases. Namely, whenever the total charge of a subset of particles
is conserved during an exchange, the corresponding braiding exchange operator must
be diagonal in the basis where this subset of particles is joined by a common fusion
channel. In particular, the exchange operator representing a simple graph braid (C.1)
has to be diagonal in the left-fused basis (see the top panel of Figure 5). What is more,
whenever x(k) = x(k+ 1) in (C.1) for some k, the corresponding exchange operator is
diagonal in another basis where particles k and k + 1 are joined by a common fusion
channel. This observation has been used to derive the N = 4 square diagrams for the X -
and Y -symbols in Figure 7 and Equations (20) and (21). For N > 4 this leads to fully
analogous, but more complicated diagonality conditions. On the other hand, anyon
models with simplified symbols introduced in Section 3.2 avoid these complications as
the charge conservation relations are automatically satisfied for these models. However,
for the general (non-simplified) models we conjecture that it is enough to satisfy the
charge conservation relations only for N ≤ 5.

D Half-twist of the world-ribbons on junctions

In this section, we view the anyon “world-ribbons” as ribbon braiding diagrams embedded in
R3, see the related work by Turaev [71]. The concept of half twist has been discussed in the
categorical context in Refs. [72–74].

By considering anyons’ world-lines as world-ribbons, we need to introduce some extra
moves which induce a half-twist (sometimes called a π-twist) of the world-ribbon at hand.
Such a half-twist can be realised in the planar theory in the way shown in Figure 31 and
will be denoted by τ. In order to incorporate the half-twists as morphisms of the topological
Hilbert spaces, we denote the two sides of the world-ribbon of anyon a by a (white ribbon) and
A (blue ribbon) respectively. Let us start with the simplest situation of a single world-ribbon.
The resulting quantum states form the following Hilbert spaces

• two one-dimensional spaces Va and VA for the non-twisted ribbon,
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Figure 31: Half-twists of world-ribbons in the plane. For clarity, we colour the two
sides of the ribbon by white and blue. a) A world-ribbon half-twist in the plane, τ.
b) Three consecutive half-twists are equivalent to the simple exchange σ1. Note the
orientations of the twists.

Figure 32: The morphisms τ̂ and ˆ̄τ representing the anti-clockwise and clockwise
half-twists respectively.

• two one-dimensional spaces for the anti-clockwise twisted ribbon denoted by V a
A and

V A
a ,

• two one-dimensional spaces for the clockwise twisted ribbon denoted by Ṽ a
A and Ṽ A

a .

Note that the ribbon half-twists are not local operations, as they change the boundary condi-
tions at the endpoints of the world-ribbon. As such, they do not have

corresponding gauge-invariant symbols. However, because a twist is a morphism be-
tween two one-dimensional Hilbert spaces, we can represent it as a complex number. Con-
sequently, an anti-clockwise half-twist of a world-ribbon induces a morphism τ̂ between the
one-dimensional Hilbert spaces VA and V A

a or Va and V a
A . By picking bases of the relevant one-

dimensional spaces we can represent the morphism τ̂ by (gauge dependent) complex numbers
TA

a and T a
A . Similarly, by τ̄ we will denote the morphism between the vector spaces VA and Ṽ A

a
or Va and Ṽ a

A with the clockwise twist. The morphism ˆ̄τ will be represented by the complex
number T̃A

a and T̃ a
A – see Figure 32. Clearly, composing an anti-clockwise half-twist with a

clockwise half-twist results in a trivial move, thus we have the relations

TA
a T̃ a

A = 1 , T a
A T̃A

a = 1 .

What is more, two half-twists amount to a full twist represented by the twist factors. This gives
rise to the relation

TA
a T a

A = θA = θa .

In other words, there is a canonical isomorphism between the spaces V a
A and Ṽ a

A or V A
a and

Ṽ A
a induced the full twist and represented by the (gauge-invariant) twist factors θA = θa.
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Figure 33: Three independent world-ribbon half-twists for N = 2 anyons on a tri-
junction. For clarity, we colour the two sides of the ribbon by white and blue. a) The
move τ(1,2) where the world-ribbon of the anyon located closest to the junction gets
the half-twist. b) and c) The moves τ(112) and τ(212) where the world-ribbon of the
anyon located furthest from the junction gets the half-twist.

Moreover, by the homotopy relation from Figure 31b we can connect the T -symbols with the
R-symbols via

T C
c

T a
A T b

B

= Rba
c .

A half-twist can be realised on a trijunction in the way where the ribbon visits edge (1)
of the junction, moves to edge (2) and goes back to its original position. Such a move will
be denoted by τ(1,2) – see Figure 33a. Similarly, for N = 2 world-ribbons we can define half-
twists of the world-ribbon of the anyon which is further from the junction. Then, the first
anyon needs to make space for the half-twist by first moving either to edge (1) or edge (2)
of the junction. This leads to two independent ways of twisting the second anyon’s world-
ribbon which we denote by τ(112) and τ(212) respectively – see Figure 33b and Figure 33c.
The trijunction half-twists are represented by analogous morphisms of the topological Hilbert
spaces as it was in the case of the half-twists in the plane. There also exists a trijunction
counterpart of the relation from Figure 31b which reads (see also Figure 34)

τ(1c ,2C )τ(2B ,2A,1a)τ(2B ,1b) = τ(1a ,1b ,2B)σ
(1a ,2B)
1 τ(2B ,1b) .

The moves τ(1,2), τ(1,1,2) and τ(2,1,2) generalise to respective half-twists τ(1,2)
v , τ(1,1,2)

v and
τ(2,1,2)

v on any tree graph in a natural way by embedding them on a local trijunction at an
essential vertex v.

There is an important difference between the half-twists in the planar anyon theory and the
above introduced half-twists in the anyon theory on networks. Namely, in 2D any spacetime
diagram which involves fusion, braiding and half-twists can be resolved using local R-moves
and full twists provided that all the world-ribbons that enter the diagram and leave the diagram
are of the same colour (e.g. all white) [71]. An example of that is shown in Figure 31b)
where three half-twists are resolved by a single R-move. However, this is no longer true for
spacetime diagrams on a network. For instance, consider an analogous diagram involving
three half-twists of the world-ribbons which is shown on the leftmost panel in Figure 34. It
is not possible to continuously pull the bottom half-twist in the rightmost panel in Figure 34
through the σ(1,2)

1 graph braid to cancel the top half-twist. Thus, it is not possible to resolve
the spacetime diagram from the rightmost panel in Figure 34 using an R-move.
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Figure 34: A relation between half-twists on the trijunction which is a counterpart of
the relation between the corresponding moves in the plane from Figure 31b.

Figure 35: The homotopy equivalence σv;(1,2)
1 ∆v = δ. The same reasoning holds for

the relation σw;(1,2)
1 ∆w = δ associated with the lollipop subgraph ΓL,w.

D.1 Anyon models on the Θ-graph: Proving Rba
e = R̃ba

e and Q̃bac
ed
= R̃ba

e

In this section, we continue the proof from Section 7. Recall that the aim is to prove that any
anyon model on the Θ-graph yields a planar anyon model provided that the circular moves δ
and δ̄ are represented by the same D-symbols. Let us start with deriving the equality Rba

e = R̃ba
e ,

which means that the braiding exchange operators at v and w are equal (in contrast to the
H graph in Section 3.3 where these braiding exchange operators were independent of each
other).

Consider the lollipop embeddings ΓL,v and ΓL,w from Figure 22 and their corresponding
three-anyon∆v- and∆w-moves (introduced in Section 5.1). We have the relations connecting
the respective ∆v- and ∆w-moves with the simple braids σv;(1,2)

1 and σw;(1,2)
1 via the δ-move

(shown in Figure 35)
δ = σv;(1,2)

1 ∆v = σ
w;(1,2)
1 ∆w ,

which imply
σ

v;(1,2)
1 ∆v = σ

w;(1,2)
1 ∆w . (D.1)

Relation (D.1) translates to the following hexagon, where ∆v and ∆w are represented by
the symbols G and G̃ respectively.

Rca
g = R̃ca

g

∑

e,e′,e′′

�

�

F bac
d

�−1�

ge

�

G̃bac
d

�

ee′

�

�

Gbac
d

�−1�

e′e′′

�

F bac
d

�

e′′g . (D.2)
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Figure 36: The hexagon following from the relation (D.1). Note that all the states
should be treated as states on the Θ-graph. For the sake of the clarity of the presen-
tation, the upper and lower paths of the diagram only show the relevant embedded
lollipops ΓL,v and ΓL,w from Figure 22.

Next, we argue that the moves ∆v and ∆w are in fact represented by the same G-symbols.
If this is the case, then Equation (D.2) simplifies to the desired relation Rca

g = R̃ca
g . To prove

the equality of the G-symbols, consider an auxiliary move γ which takes an anyon around the
top loop of the Θ-graph in an anti-clockwise fashion (see the right panel in Figure 37). The
move γ can be expressed via the δ-moves and a half-twist as

γ= δ̄δ−1τ(1,2)
w , (D.3)

where τ(1,2)
w is the world-ribbon half-twist at vertex w as defined at the beginning of Appendix

D (Figure 33a). This relation is proved in Figure 37. The assumption that both δ and δ̄ moves
are represented by the same set of D-symbols implies that γ induces the same morphisms of
the topological Hilbert spaces as the half-twist τ(1,2)

w . In the remaining part of this section,
we assume that the half-twist τ(1,2)

w of the world-ribbon of anyon a is a morphism of one-
dimensional Hilbert spaces only (i.e. it does not depend on the spacetime histories of the
remaining anyons in the fusion tree). Under such an assumption, the morphism representing
the half-twist τ(1,2)

w can be represented as a complex number Ta. We have the relation

γ−1∆vγ=∆w . (D.4)

The relation (D.4) implies that ∆v = ∆w (G = G̃ in terms of the G-symbols) – see Figure 39.
Hence, using the fact that Gbac

d = G̃bac
d in (D.2), we obtain

Rca
g = R̃ca

g

∑

e,e′′

�

�

F bac
d

�−1�

ge
δee′′
�

F bac
d

�

e′′g = R̃ca
g .

Finally, let us show that Q̃bac
ed = R̃ba

e . To this end, we use another relation involving the
γ-move which reads

γσ
w;(2,1,2)
2 γ−1 =
�

βv,2,
�

βv,1

�2�
σ

w;(1,2)
1

�

�

βv,1

�2
,βv,2

�

, (D.5)
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Figure 37: A pictorial proof of the homotopy equivalence of world-ribbons
γ= δ̄δ−1τ(12)

w .

Figure 38: The homotopy equivalence γ−1∆vγ=∆w. The left diagram includes two
nontrivial half-twists of the world ribbons implicitly included in the γ-moves via the
relation (D.3). For the sake of simplicity, the ribbon structure is not shown and only
particles’ world lines are presented.

where we use the notation involving the β-moves described in Appendix A. In order to prove
relation (D.5), we first note that the LHS is homotopy equivalent to

γσ
w;(2,1,2)
2 γ−1 = βv,2σ

w;(1,2)
1 β−1

v,2 .

Next, we expand the RHS and LHS completely in terms of the corresponding β-moves as
follows

βv,2σ
w;(1,2)
1 β−1

v,2 =
�

βv,2βw,1βw,2

�

�

β−1
w,1β

−1
w,2β

−1
v,2

�

,
�

βv,2,
�

βv,1

�2�
σ

w;(1,2)
1

�

�

βv,1

�2
,βv,2

�

=
��

βv,2,
�

βv,1

�2�
βw,1βw,2βv,2

��

β−1
v,2β
−1
w,1β

−1
w,2

�

�

βv,1

�2
,βv,2

��

.

Note that in the last equality we have not only expanded the braids in terms of β-moves, but
also inserted an extra expression βv,2β

−1
v,2 which is homotopy equivalent to the trivial move. In

Figure 40 we prove the first “half” of the relation (D.5), i.e.

βv,2βw,1βw,2
∼=
�

βv,2,
�

βv,1

�2�
βw,1βw,2βv,2 . (D.6)
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Figure 39: The diagram following from the relation (D.4). Assuming that both cir-
cular moves δ and δ̄ are represented by the same D-symbols, the polygon implies
T−1

c

�

Gbac
d

�

ee′ Tc =
�

G̃bac
d

�

ee′ , i.e.
�

G̃bac
d

�

ee′ =
�

Gbac
d

�

ee′ . For the sake of simplicity, the
ribbon structure is not shown and only particles’ world lines are presented.

Figure 40: A pictorial proof of the homotopy equivalence (D.6).

The homotopy equivalence of the other pair of the relevant terms follows in an analogous way.
Let us next consider the polygon which corresponds to the relation (D.5). In the leftmost and
rightmost pictures of the Figure 40 we can see that most of the relevant moves do not split the
worldlines of anyons a and b which start as the furthest ones from the vertex v. Thus, we can
fuse the two anyons in the common channel e = a× b to simplify the corresponding polygon
equation so that no F -moves are used (see Figure 41). The polygon from Figure 41 yields

Tc Q̃bac
ed T−1

c = Rce
d R̃ba

e Rce
d ,

which implies Q̃bac
ed = R̃ba

e .

E Solving the graph braid polygon equations

Solving the graph braid equations for a graph Γ and a set of anyons, whose fusion theory is
described by a given set of F -symbols, comes down to solving a system of polynomial equations.
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Figure 41: The polygon following from the relation (D.5).

These are determined by the various commuting diagrams, in particular

(a) if Γ is the lollipop graph, equations (15), (16), (36), and (31) must be satisfied, while

(b) if Γ is the trijunction, equations (15) and (16) must be satisfied (for three particles)
together with some extra equations for four particles: (E.6), (E.4), (E.5), and (E.7).

In what follows we will assume that the F -symbols are given a priori. To solve the graph braid
equations we implemented algorithms in the Wolfram Language that can be broken down into
the following routines.

1. Setting up the relevant equations.

2. Solving all (monomial) equations of the form m1 = m2, where mi are monomials.

3. Substituting solutions from the previous step in the remaining equations. If some equa-
tions become monomial equations, return to the previous step and repeat. If there are no
new monomial equations the remaining system is solved using the built-in Solve function
of the Wolfram Language.

Since for both the lollipop and trijunction graphs, equations (15) and (16) need to be
satisfied, it is beneficial to start by searching for admissible sets of P,Q, and R-symbols for each
given set of F -symbols. By inverting some of the arrows and going around the whole hexagon,
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these equations can be re-expressed in terms of P and Q as follows

P cab
ed δee′ =

r
∑

f ,g

�

(F acb
d )−1
�

ge′
�

F cab
d

�

e f Rc f
d

�

F abc
d

�

f g (R
cb
g )
−1 , (E.1)

Qbac
ed δee′ =

r
∑

f ,g

�

F bac
d

�

e′g (R
ca
g )
−1
�

(F bca
d )−1
�

g f R f a
d

�

(F abc
d )−1
�

f e . (E.2)

Here the δee′ appears as a consequence of the fact that we demand P and Q to preserve the
charge e. For e ̸= e′ we get a consistency equation on the R-symbols which can be solved in
terms of R. When e = e′ we get a definition for the P and Q symbols in terms of the R-symbols
we solved for.

For the trijunction with three particles, no extra equations need to be added. For systems
with four particles, there are four new simple braid generators σ(1,2,1,2)

3 ,σ(2,1,1,2)
3 ,σ(1,1,1,2)

3 ,

and σ(2,2,1,2)
3 for which we use the symbols A, B, X , Y respectively.

In the following, we will work with the following convention for fusion labels for four
particles

a× b = f , a× c = n , a× d = m , a× b× c = g , a× b× d = j ,

b× c = h , b× d = y , c × d = l , a× c × d = r , b× c × d = k .
(E.3)

First of all, we need to take into account the fact that both X and Y can be expressed in
terms of P and Q after a change of basis. Equation (20), together with its counterpart for Y ,
can be rewritten as

X bacd
f ge δg g ′ =

r
∑

l

�

F f cd
e

�

gl P bal
f e

�

(F f cd
e )−1
�

l g ′ , (E.4)

Y bacd
f ge δg g ′ =

r
∑

l

�

F f cd
e

�

gl Qbal
f e

�

(F f cd
e )−1
�

l g ′ . (E.5)

Second, there is the pseudocommutative relation (23) which can be rewritten as the fol-
lowing demand

Abadc
f je δ j j′ =
∑

l,g,l ′

�

F f dc
e

�

jl Rdc
l

�

(F f cd
e )−1
�

l g Bbacd
f ge

�

F f cd
e

�

gl ′ (R
dc
l ′ )
−1
�

(F f dc
e )−1
�

l ′ j′ . (E.6)

Last, we need to take account of equations (25). Although there are four equations in
total, three of these are satisfied once we demand that equations (E.4), (E.5), (E.6) together
with the N = 3 P- and Q-hexagons hold. The only independent equation that remains is then

δnn′δg g ′B
cabd
nge =

r
∑

f ,h,k

�

F cab
g

�

nf
Qc f d

ge

�

F abc
g

�

f h

�

F ahd
e

�

gk (Q
cbd
hk )
−1
�

(F ahd
e )−1
�

kg ′

�

(F acb
g ′ )
−1
�

hn′
.

(E.7)
Just like for the P and Q symbols some of these equations can be used as defining equations

and others as consistency requirements. Interestingly, once the R, P, and Q symbols are known,
no equations need to be solved since all the new equations have a right-hand side that is
completely determined by the values of R, P, and Q. Since there are now multiple equations
that define the same symbols one should also check that the definitions are consistent with
one another.

For the lollipop graph, extra constraints on the P and R-symbols (36) together with equa-
tions (31) for the D-symbols, need to be added. The equations for the D-symbols can be solved
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separately. If there is no gauge freedom left after fixing the F -symbols then the solutions to
the lollipop equations consist of all possible combinations of solutions to the circle equations
(31) with solutions to equations (15), (16), and (36). Of all the anyon models we investigated
there is only one model which has gauge freedom left after fixing the F -symbols: Z2×Z2. The
method with which we constructed solutions to the lollipop equations for Z2×Z2 is described
in H.3. Once the lollipop equations were solved we checked the planarity of the solutions by
checking whether Rab

e ≡ Pabc
ed ≡Qabc

ed and Dab
e ≡ Rab

e D1b
b .

Normally, before solving the equations, it is beneficial to break gauge symmetry. As ex-
plained in Section (2), given a solution for the graph braid equations one can create an infinite
set of other solutions by acting with a gauge transformation. Breaking such symmetry greatly
reduces computation time as the number of variables, equations, and solutions decreases.

The action of gauge transformations on the F -symbols is

[F abc
d ]

′

e f =
ua f

d ubc
f

uab
e uec

d

[F abc
d ]e f , (E.8)

while all symbols corresponding to anyon exchanges transform according to

S′ =
uab

x

uba
x

S . (E.9)

Since when solving all the consistency relations algorithmically, we treat the F -symbols as fixed
a priori, we need to restrict the gauge transformations only to those that leave the chosen F -
symbols unchanged, i.e.

ua f
d ubc

f

uab
e uec

d

= 1 , whenever [F abc
d ]e f ̸= 0 .

Interestingly, for all sets of F -symbols we considered with the exception of Z2 × Z2, de-
manding the above gauge invariance of the F -symbols results in removing all gauge freedom
in the remaining symbols. For Z2 ×Z2 the remaining gauge transforms form a Z2 group and
we removed this symmetry after solving the graph braiding consistency equations.

Solving systems of monomial equations can be done using linear algebra. Indeed, because
none of the variables appearing in the graph braid equations are allowed to be 0, one can take
a logarithm of the monomial equations to convert them to a set of linear equations with integer
coefficients. Each equation only holds modulo an integer times 2πi due to the multivaluedness
of the logarithm. Solving a system of linear equations modulo a discrete subspace can be done
by computing a Smith normal form [75]. Once the linear system has been solved one can
exponentiate the solutions, which typically contain some continuous freedom, and substitute
them back in the original equations. The system of equations then reduces to a smaller system
which might contain new monomial equations. If so, one only needs to repeat the above
procedure until no monomial equations are left. To solve the remaining equations the built-in
Solve command from Mathematica was used.

For the rings of type SU(2)k and PSU(2)k, we did not have access to all solutions to the
pentagon equations and made do with a single solution, obtained using the methods in [56].
Moreover, the specific form of the solutions for k an odd number were too complicated to
derive the solutions symbolically. Eventually, we did find symbolic solutions by solving the
systems numerically and reverting the numeric solutions to roots of polynomial equations. All
solutions obtained this way were found to be correct with an accuracy of 1000 decimal digits,
and an infinite precision (meaning the computer used as many internal extra digits as needed
to ensure all 1000 digits are correct).

51

https://scipost.org
https://scipost.org/SciPostPhys.18.2.074


SciPost Phys. 18, 074 (2025)

F Tambara Yamagami star graph obstruction

In this section we will describe the obstruction to a solution of the d valent star graph braiding
hexagon equations for Tambara Yamagami over G, unless G is Z2 to some power. We will focus
on d = 3, a trijunction, however, the analysis in [37], shows that this is true for any valence.
We will examine the expressions for Pσσσgσ to deduce that χ(g1, g2) = χ(g1, g2). This then

implies that χ(g2
1 , g2) = 1 for all g1, g2 ∈ G and since χ is a non-degenerate bi-character we

must have that g2
1 is the group unit for all g1. We begin with (16) and a = b = c = d = σ

Pσσσgσ κτ−1χ(g, f )Rσσf = κ2τ−2
∑

e

χ(g, e)Rσe
σ χ(e, f ) . (F.1)

The values for g, f and e are group elements since they come from the multiplication of two σ
particles, we denote them as g1, g2 and g3 respectively. Additionally, the only label that will
matter for Pσσσg1σ

is g1 so we will write Pσσσg1σ
:= P(g1). The equation for P using this notation

and configuration of anyons is given by

P(g1) = κτ
−1χ(g1, g2) Rσσg2

∑

g3

χ(g1 g2, g3) Rσg3
σ , ∀g2 ∈ G . (F.2)

Now substitute g1h for g1 and h−1 g2 for g2, where h is an arbitrary element of G. Then we
get that,

P(g1h) = κτ−1χ(g1h, h−1 g2)Rσσh−1 g2

∑

g3

χ(g1 g2, g3) Rσg3
σ , ∀h, g2 ∈ G . (F.3)

All of the left-hand-sides and right-hand-sides of expressions (F.2) and (F.3) are non zero com-
plex numbers so we can perform the quotient. Since both have the same terms in the sum over
g3, we get the following expression,

P(g1)
P(g1h)

=
χ(g1, g2)Rσσg2

χ(g1h, h−1 g2)Rσσh−1 g2

(F.4)

=
χ(g1, g2)Rσσg2

χ(g1, g2)χ(g, h−1)χ(h, h−1)χ(h, g2)Rσσh−1 g2

(F.5)

= Rσσh−1 g2
Rσσg2

χ(g1hg−1
2 , h−1) , ∀h, g2 ∈ G , (F.6)

where we have used the fact that χ is a symmetric bicharacter to expand, and then simplify,
the denominator.

Furthermore, since h is arbitrary, we can fix h= g−1
1 to get

P(g1)
P(1)

= Rσσg1 g2
Rσσg2

χ(g−1
2 , g1) , ∀g2 ∈ G . (F.7)

In particular for g2 = 1, the vacuum charge, this expression simplifies to,

P(g1)
P(1)

= Rσσg1
Rσσ1 . (F.8)

We can combine equation (F.7) with (F.8) to get the following equation

Rσσg1 g2
Rσσg2

χ(g−1
2 , g1) = Rσσg1

Rσσ1 , ∀g2 ∈ G . (F.9)
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Using the fact that χ is a symmetric bicharacter, we can rearrange this equation to get

Rσσg1 g2
=

Rσσg1
Rσσg2

Rσσ1 χ(g1, g2)
. (F.10)

Since the expressions for Qσσσg1σ
in equation (15) have inverse F - symbols, if we follow the

same steps we get,

Rσσg1 g2
=

Rσσg1
Rσσg2

Rσσ1 χ(g1, g2)
. (F.11)

But both of these expressions must be simultaneously true so we can equate them to deduce;

χ(g1, g2) = χ(g1, g2) . (F.12)

Therefore there are only solutions for the graph braiding hexagon equations on a trijunction
for the Tambara-Yamagami fusion category if G is Z2 to some power.

G Solutions for the Ising model

The Ising fusion ring has 3 particles, 1,ψ,σ subject to the multiplication rules

1× a = a× 1= a , ∀ a ∈ {1,ψ,σ} , (G.1)

ψ×ψ= 1 , σ×ψ=ψ×σ = σ , σ×σ = 1+ψ . (G.2)

In the following section we will list the solutions to various equations for the Ising model. To
save space we omit any well-defined symbol equal to 1. By well-defined we mean that the
fusion tree corresponding to the symbol exists.

G.1 Solutions to the pentagon equations

There are two solutions to the pentagon equations for the Ising fusion ring. Both solutions
share the same values for the following F symbols

[Fψσψσ ]σσ = [F
σψσ
1 ]σσ = [F

σσψ
1 ]ψσ = [F

σσψ

ψ
]1σ = −1 , (G.3)

but have a different sign for the F -matrix

�

Fσσσσ

�

= ±
1
p

2

�

1 −1
1 1

�

. (G.4)

We will denote these solutions by Fκ where κ = ±1. Note that some of the F -symbols in
these solutions are gauge dependent and so they may differ from those in other works. In,
e.g. [38,43] and [76], a gauge is used such that

�

Fσσσσ

�

= ±
1
p

2

�

1 1
1 −1

�

. (G.5)

G.2 Solutions to the planar hexagon equations

Each set of F -symbols allows four solutions to the planar hexagon equations. They can be
parameterized as follows:

Rψψ1 = −1 , Rψσσ = Rσψσ = ϵ1i ,

Rσσ1 =
�κϵ1

i

�
1+κ

2
iϵ2+1e−ϵ1

iπ
8 , Rσσ1 =
�κϵ1

i

�
1−κ

2
iϵ2+1e−ϵ1

iπ
8 ,

where ϵi ∈ {−1,1}.
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G.3 Solutions to the trijunction equations

G.3.1 Three particles

For three particles each solution to the pentagon equation gives rise to two classes of solutions
to the trijunction equations. Each class of solutions are parameterized by two complex phases
z1, z2. To save space we will not denote the symbols Pab1

ed ≡ Qab1
ed since these are equal to the

R-symbols Rab
e . The four combinations of F -and R-symbols have the following form

Pψψψ1ψ =
1
z1

, Pψψσ1σ = −1 , Pψσψσσ =
−ϵi
z1

, Pψσσσ1 = −ϵiz1 , Pψσσ
σψ

= ϵi , Pσψψσσ = ϵi ,

Pσψσσ1 = ϵi , Pσψσ
σψ

= ϵi , Pσσψ1ψ = z2 , Pσσψ
ψ1 = ϵiz2 , Pσσσ1σ =

κ

z2
e−

ϵiπ
4 , Pσσσψσ =

κ

z2
e
ϵiπ
4 ,

Qψψψ1ψ =
1
z1

, Qψψσ1σ = −1 ,Qψσψσσ = ϵi , Qψσσσ1 = ϵi , Qψσσ
σψ

= ϵi , Qσψψσσ =
−ϵi
z1

,

Qσψσσ1 = −ϵiz1 ,Qσψσ
σψ

= ϵi , Qσσψ1ψ = z2 , Qσσψ
ψ1 = ϵiz2 , Qσσσ1σ =

κ

z2
e−

ϵiπ
4 ,Qσσσψσ =

κ

z2
e
ϵiπ
4 ,

Rψψ1 = z1 , Rψσσ = ϵi , Rσψσ = ϵi , Rσσ1 = z2 , Rσσψ = ϵiz2 ,

where ϵ ∈ {−1,1}. We will label each solution by T (3)κ,ϵ .

G.3.2 Four particles

For four particles, the trijunction equations can only be satisfied if z1 = −1 (which implies
Rψψ1 = −1) and therefore the solutions have the property that P ≡ Q. Note that this does
not necessarily imply that P ≡ R, i.e. that the solutions are planar. The solutions are then
described by adding to the T (3)κ,ϵ the respective values of the A, B, X , and Y symbols which we
will describe here. All symbols with a 1 as the third or fourth top label are P, Q, or R symbols
and will therefore not be listed.

For the Ising model, it turns out that all symbols with the same labels are equal to each
other. We can thus write the solutions in terms of the symbol M , where M could be any of
A, B, X , Y . The solutions then read

Mψψcd
f ge ≡ −1 , (G.6)

Mσψcd
f ge ≡ Mψσcd

f ge ≡ ϵi , (G.7)

Mσσcd
f ge =



















z2 , if c = d and f = 1 ,

ϵiz2 , if c = d and f =ψ ,
κ
z2

exp
�−ϵiπ

4

�

, if c ̸= d and f = 1 ,
κ
z2

exp
�

ϵiπ
4

�

, if c ̸= d and f =ψ ,

(G.8)

where c, d ∈ {ψ,σ}, f , g, e ∈ {1,ψ,σ}, and the value of κ and ϵ are fixed by the choice of
T (3)κ,ϵ .

G.4 Solutions to the lollipop equations

G.4.1 Lollipop trijunction

For the Ising model on the trijunction, on the lollipop, the demand that Pabc
ed ≡ Rab

e implies that
the solutions must be planar. In particular, the solutions are the four solutions for the planar
hexagon equations with the addition of the P-and Q symbols, which obey Pabc

ed ≡Qabc
ed ≡ Rab

e .
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G.4.2 Circle solutions

There are sixteen solutions to the circle equations for each set of F -symbols. They can be
written as

D1ψ
ψ
= −1 , D1σ

σ = exp
�

iπ
−2− ν1 + 4ν2 − 2κ

8

�

, Dψσσ = −ν1 exp
�

iπ
2− ν1 + 4ν2 − 2κ

8

�

,

Dσψσ = ν1i, Dσσ1 = ν3 , Dσσψ = ν4i ,

where the νi ∈ {−1,1} and κ is fixed by the choice of F -symbols. In particular we find that, per
set of F -symbols, there are four possible values for the generalized topological spins. These
coincide with the values of the topological spins for planar Ising anyons.

G.4.3 Full lollipop solutions

There are 32 solutions to the full lollipop equations per set of F -symbols. Because there is no
gauge freedom left after fixing a set of F -symbols, for a given set of F -symbols any solution
can be found by combining a solution to the lollipop trijunction equations with matching label
κ with a solution to the circle equations with matching label κ.

H Solutions for the quantum double of Z2

The quantum double of Z2 is a model with four anyons 1, e, m,ϵ that follow the fusion rules of
Z2 ×Z2 (via, e.g., the identification 1 = (0, 0), e = (1,0), m = (0,1),ϵ = (1,1)) and for which
[F abc

d ]e f ≡ 1 for each well-defined F -symbol. This model arises as the excitations in the Toric
code model with gauge group Z2 [2].

H.1 Solutions to the planar hexagon equations

There are eight gauge-independent planar hexagon solutions:

Rϵϵ1 = ν1 , Rϵem = ν2 , Rϵme = ν1ν2 ,

Ree
1 = ν3 , Rem

ϵ = ν3 , Rmϵ
e = ν1 , Rme

ϵ = ν2ν3 , Rmm
1 = ν1ν2ν3 ,

where νi ∈ {−1,1}.

H.2 Solutions to the trijunction equations

The trijunction equations that impose constraints on any of the R-symbols are trivially satisfied.
Therefore, we find that all non-trivial R-symbols are free parameters

Rϵϵ1 = z1 , Rϵem = z2 , Rϵme = z3 , Reϵ
m = z4 , Ree

1 = z5 ,

Rem
ϵ = z6 , Rmϵ

e = z7 , Rme
ϵ = z8 , Rmm

1 = z9 ,

and all other symbols can be expressed in terms of these free parameters. To save space we
will omit the symbols Pab1

ed ≡ Qab1
ed since these are equal to the R-symbols Rab

e . The P-and Q
symbols are the following

Pϵϵϵ1ϵ =
1
z1

, P eϵϵ
me =

1
z4

, Pmϵϵ
em =

1
z7

, Qϵϵϵ1ϵ =
1
z1

, Qeϵϵ
me =

z7

z1
, Qmϵϵ

em =
z4

z1
,

Pϵϵe1e =
z3

z2
, P eϵe

mϵ =
z6

z5
, Pmϵe

e1 =
z9

z8
, Qϵϵe1e =

z7

z4
, Qeϵe

mϵ =
1
z4

, Qmϵe
e1 =

z1

z4
,

Pϵϵm1m =
z2

z3
, P eϵm

m1 =
z5

z6
, Pmϵm

eϵ =
z8

z9
, Qϵϵm1m =

z4

z7
, Qeϵm

m1 =
z1

z7
, Qmϵm

eϵ =
1
z7

,

Pϵeϵme =
z3

z1
, P eeϵ

1ϵ =
z6

z4
, Pmeϵ

ϵ1 =
z9

z7
, Qϵeϵme =

1
z2

, Qeeϵ
1ϵ =

z8

z2
, Qmeϵ

ϵ1 =
z5

z2
,
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Pϵee
mϵ =

1
z2

, P eee
1e =

1
z5

, Pmee
ϵm =

1
z8

, Qϵee
mϵ =

z8

z5
, Qeee

1e =
1
z5

, Qmee
ϵm =

z2

z5
,

Pϵem
m1 =

z1

z3
, P eem

1m =
z4

z6
, Pmem

ϵe =
z7

z9
, Qϵem

m1 =
z5

z8
, Qeem

1m =
z2

z8
, Qmem

ϵe =
1
z8

,

Pϵmϵem =
z2

z1
, P emϵ

ϵ1 =
z5

z4
, Pmmϵ

1ϵ =
z8

z7
, Qϵmϵem =

1
z3

, Qemϵ
ϵ1 =

z9

z3
, Qmmϵ

1ϵ =
z6

z3
,

Pϵme
e1 =

z1

z2
, P eme

ϵm =
z4

z5
, Pmme

1e =
z7

z8
, Qϵme

e1 =
z9

z6
, Qeme

ϵm =
1
z6

, Qmme
1e =

z3

z6
,

Pϵmm
eϵ =

1
z3

, P emm
ϵe =

1
z6

, Pmmm
1m =

1
z9

, Qϵmm
eϵ =

z6

z9
, Qemm

ϵe =
z3

z9
, Qmmm

1m =
1
z9

.

We can observe some interesting features in this table, namely when all of the particles are of
the same type we find Paaa =Qaaa.

H.2.1 Four particles

For four particles we have the following solutions.

Value of M Value of M Value of M
A B X Y A B X Y A B X Y

Mϵϵϵϵ
1ϵ1 z1 z1 z1 z1 M eϵϵϵ

mem
z1
z7

z1
z7

z4 z4 M mϵϵϵ
eme

z1
z4

z1
z4

z7 z7

Mϵϵϵe
1ϵm

z2
z3

z4
z7

z2
z3

z4
z7

M eϵϵe
me1

z2z9
z3z8

z4
z5
z6

z1
z7

M mϵϵe
emϵ

z2z6
z3z5

z4
z1

z8
z9

1
z7

Mϵϵϵm
1ϵe

z3
z2

z7
z4

z3
z2

z7
z4

M eϵϵm
meϵ

z3z8
z2z9

z7
z1

z6
z5

1
z4

M mϵϵm
em1

z3z5
z2z6

z7
z9
z8

z1
z4

Mϵϵeϵ
1em

z4
z7

z2
z3

z2
z3

z4
z7

M eϵeϵ
mϵ1 z4

z2z9
z3z8

z5
z6

z1
z7

M mϵeϵ
e1ϵ

z4
z1

z2z6
z3z5

z8
z9

1
z7

Mϵϵee
1e1

z5z9
z6z8

z5z9
z6z8

z1 z1 M eϵee
mϵm

z5
z6

z5
z6
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We can notice here again, when all of the particles are the same type the graph braid symbols
are equal, i.e. X aaaa = Y aaaa = Aaaaa = Baaaa.

H.3 Solutions to the lollipop equations

H.3.1 Lollipop trijunction solutions

In contrast to the Ising model, demanding that Pabc
ed ≡ Rab

e does not necessarily imply that the
solutions must be planar. There are 32 solutions in total which can be presented as follows:

R22
1 = ν1 , R23

4 = ν2 , R24
3 = ν1ν2 , R32

4 = ν3 , R33
1 = ν4 ,

R34
2 = ν3ν4 , R42

3 = −1 , R43
2 = ν5 , R44

1 = −ν5 ,

and

Value of M Value of M Value of M
P Q P Q P Q

Mϵϵϵ
1ϵ ν1 ν1 M eϵϵ

me ν3 −ν1 M mϵϵ
em −1 ν1ν3

Mϵϵe
1e ν1 −ν3 M eϵe

mϵ ν3 ν3 M mϵe
e1 −1 ν1ν3

Mϵϵm
1m ν1 −ν3 M eϵm

m1 ν3 −ν1 M mϵm
eϵ −1 −1

Mϵeϵ
me ν2 ν2 M eeϵ

1ϵ ν4 ν2ν5 M meϵ
ϵ1 ν5 ν2ν4

Mϵee
mϵ ν2 ν4ν5 M eee

1e ν4 ν4 M mee
ϵm ν5 ν2ν4

Mϵem
m1 ν2 ν4ν5 M eem

1m ν4 ν2ν5 M mem
ϵe ν5 ν5

Mϵmϵ
em ν1ν2 ν1ν2 M emϵ

ϵ1 ν3ν4 −ν1ν2ν5 M mmϵ
1ϵ −ν5 ν1ν2ν3ν4

Mϵme
e1 ν1ν2 −ν3ν4ν5 M eme

ϵm ν3ν4 ν3ν4 M mme
1e −ν5 ν1ν2ν3ν4

Mϵmm
eϵ ν1ν2 −ν3ν4ν5 M emm

ϵe ν3ν4 −ν1ν2ν5 M mmm
1m −ν5 −ν5

(H.1)

where νi ∈ {−1, 1}. Demanding planarity then comes down to demanding that ν1 = −ν3 and
ν2 = ν4ν5. The loss of two binary degrees of freedom thus implies that only one out of four
solutions are planar. We find here again Paaa =Qaaa.

H.3.2 Circle solutions

There are 128 solutions to the circle equations. They can be presented as follows:

D1ϵ
ϵ = µ1 , D1e

e = µ2 , D1m
m = µ3 , Dϵϵ1 = µ4 , Dϵem = µ5 , Dϵme = µ6 ,

Deϵ
m = µ3µ5 , Dee

1 = µ7 , Dem
ϵ = −µ1 , Dmϵ

e = µ2µ6 , Dme
ϵ = −1 , Dmm

1 = µ4µ7 , (H.2)

where µi ∈ {−1, 1}. The twist factors are the same as in the planar case.

H.3.3 Full lollipop solutions

In contrast to the Ising model, after fixing the F -symbols, there is a discrete Z2 gauge symmetry
left that has the following form:

Mϵe
m 7→ −Mϵe

m , Mϵm
e 7→ −Mϵm

e , M eϵ
m 7→ −M eϵ

m ,

M em
ϵ 7→ −M em

ϵ , M mϵ
e 7→ −M mϵ

e , M me
ϵ 7→ −M me

ϵ ,

for M = R and M = D, and

Mϵec
md 7→ −Mϵec

md , Mϵmc
ed 7→ −Mϵmc

ed , M eϵc
md 7→ −M eϵc

md ,

M emc
ϵd 7→ −M emc

ϵd , M mϵc
ed 7→ −M mϵc

ed , M mec
ϵd 7→ −M mec

ϵd ,
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for M = P and M = Q. For the solutions to the lollipop trijunction equations and the circle
equations, described in sections H.3.1 and H.3.2, this gauge symmetry has been removed. To
construct the full solution set to the lollipop equations one should therefore re-introduce these
gauge equivalent solutions, construct all products between solutions to the trijunction lollipop
equations and circle equations, and finally remove this gauge symmetry again. This set has
twice the size of the product set of gauge-inequivalent solutions. It can easily be constructed
by taking the product of the lollipop trijunction solutions and the following set of non-reduced
solutions to the circle equations

D1ϵ
ϵ = µ1 , D1e

e = µ2 , D1m
m = µ3 , Dϵϵ1 = µ4 , Dϵem = σµ5 , Dϵme = σµ6 ,

Deϵ
m = σµ3µ5 , Dee

1 = µ7 , Dem
ϵ = −σµ1 , Dmϵ

e = σµ2µ6 , Dme
ϵ = −σ , Dmm

1 = µ4µ7 ,
(H.3)

where σ ∈ {−1,1} reintroduces the Z2 gauge freedom.

I Solutions for the TY(Z3) model

The TY(Z3) fusion ring has 4 particles, 1,ψ1,ψ2,σ, where {1,ψ1,ψ2} form a Z3 subgroup,
and

1× a = a× 1= a , ∀a ∈ {1,ψ1,ψ2,σ} , (I.1)

σ× b = b×σ = σ , ∀a ∈ {1,ψ1,ψ2} , (I.2)

σ×σ = 1+ψ1 +ψ2 . (I.3)

In the following sections we will list the solutions to the pentagon equations as well as the
circle equations. All other equations admit no solutions. We omit any well-defined symbol
equal to 1.

I.1 Solutions to the pentagon equations

There are four solutions to the pentagon equations which can be presented as follows:

[Fσσψ1
ψ1

]1σ = κ1 , [Fσσψ2
ψ2

]1σ = κ1 , [Fσψ1σ

ψ1
]σσ = e−

2
3 iπκ1κ2 , [Fσψ1σ

ψ2
]σσ = e

2
3 iπκ1κ2 ,

[Fσψ1ψ2
σ ]σ1 = κ1 , [Fσψ2σ

ψ1
]σσ = e

2
3 iπκ1κ2 , [Fσψ2σ

ψ2
]σσ = e−

2
3 iπκ1κ2 , [Fσψ2ψ1

σ ]σ1 = κ1 ,

[Fψ1σσ

ψ1
]σ1 = κ1 , [Fψ1σψ1

σ ]σσ = e−
2
3 iπκ1κ2 , [Fψ1σψ2

σ ]σσ = e
2
3 iπκ1κ2 , [Fψ1ψ1ψ2

ψ1
]ψ21 = κ1 ,

[Fψ1ψ2σ
σ ]1σ = κ1 , [Fψ1ψ2ψ2

ψ2
]1ψ1
= κ1 , [Fψ2σσ

ψ2
]σ1 = κ1 , [Fψ2σψ1

σ ]σσ = e
2
3 iπκ1κ2 ,

[Fψ2σψ2
σ ]σσ = e−

2
3 iπκ1κ2 , [Fψ2ψ1σ

σ ]1σ = κ1 , [Fψ2ψ1ψ1
ψ1

]1ψ2
= κ1 , [Fψ2ψ2ψ1

ψ2
]ψ11 = κ1 ,

�

Fσσσσ

�

=
1
p

3





κ1 1 1

1 eiπ( κ1
6 +

1
2)κ2 e−iπ( κ1

6 +
1
2)κ2

1 e−iπ( κ1
6 +

1
2)κ2 eiπ( κ1

6 +
1
2)κ2



 ,

where κ1,κ2 ∈ {−1,1} and the matrix indices of
�

Fσσσσ

�

range over (1,ψ1,ψ2).

I.2 Solutions to the circle equations

In contrast to the planar hexagon equations, we now find there are 48 solutions, per set of F -
symbols, to the circle equations. Let ϵi ∈ {−1,1} and ν ∈ {0, 1,2}, then they can be presented
as follows.
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If (κ1,κ2) = (−1,−1) then

D1σ
σ = ϵ1e

iπ
12 (7−2ν(ν+1)) , D1ψ1

ψ1
= e−

2iπ
3 , D1ψ2

ψ2
= e−

2iπ
3 ,

Dσσ1 = ϵ2 , Dσσψ1
= eiπ( ϵ32 + 1

6 ) , Dσσψ2
= eiπ( ϵ42 + 1

6 ) ,

Dσψ1
σ = e

2iπ
3 ((ν−1)2ϵ1−1) , Dσψ2

σ = e−
2iπ
3 ((ν−1)2ϵ1+1) , Dψ1σ

σ = e−
iπ
12 (2ν2+2ν−9+2ϵ1(4ν2−8ν+1)) ,

Dψ1ψ1

ψ2
= e

2iπ
3 , Dψ2σ

σ = e−
iπ
12 (2ν2−10ν+3+ϵ1(4ν2−8ν−2)) , Dψ2ψ2

ψ1
= e

2iπ
3 .

If (κ1,κ2) = (−1,1) then

D1σ
σ = ϵ1e

iπ
12 (5+2ν(ν+1)) , D1ψ1

ψ1
= e

2iπ
3 , D1ψ2

ψ2
= e

2iπ
3 ,

Dσσ1 = ϵ2 , Dσσψ1
= e−iπ( 1

6−
ϵ3
2 ) , Dσσψ2

= e−iπ( 1
6−

ϵ4
2 ) ,

Dσψ1
σ = e

2iπ
3 (3−2ν) , Dσψ2

σ = e
2iπ
3 (2ν−1) , Dψ1σ

σ = e
iπ
12 (2ν2−6ν−1+6ϵ1) ,

Dψ1ψ1

ψ2
= e−

2iπ
3 , Dψ2σ

σ = e
iπ
12 (2ν2−2ν−5−6ϵ1(2ν2−4ν+1)) , Dψ2ψ2

ψ1
= e−

2iπ
3 .

If (κ1,κ2) = (1,−1) then

D1σ
σ = ϵ1e−

iπ
12 (−1+2ν(ν+1)) , D1ψ1

ψ1
= e−

2iπ
3 , D1ψ2

ψ2
= e−

2iπ
3 ,

Dσσ1 = ϵ2 , Dσσψ1
= eiπ( ϵ32 + 1

6 ) , Dσσψ2
= eiπ( ϵ42 + 1

6 ) ,

Dσψ1
σ = e

2iπ
3 ((ν−1)2ϵ1−1) , Dσψ2

σ = e
2iπ
3 ((ν−1)2(−ϵ1)−1) , Dψ1σ

σ = e−
iπ
12 (2ν2−10ν−3−ϵ1(4ν2−8ν−2)) ,

Dψ1ψ1

ψ2
= e

2iπ
3 , Dψ2σ

σ = e−
iπ
12 (2ν2+2ν−15−2ϵ1(4ν2−8ν+1)) , Dψ2ψ2

ψ1
= e

2iπ
3 .

If (κ1,κ2) = (1, 1) then

D1σ
σ = ϵ1e

iπ
12 (−1+2ν(ν+1)) , D1ψ1

ψ1
= e

2iπ
3 , D1ψ2

ψ2
= e

2iπ
3 ,

Dσσ1 = ϵ2 , Dσσψ1
= e−iπ( 1

6−
ϵ3
2 ) , Dσσψ2

= e−iπ( 1
6−

ϵ4
2 ) ,

Dσψ1
σ = e

2iπ
3 (3−2ν) , Dσψ2

σ = e
2iπ
3 (2ν−1) , Dψ1σ

σ = e
iπ
12 (2ν2−6ν+5−6ϵ1) ,

Dψ1ψ1

ψ2
= e−

2iπ
3 , Dψ2σ

σ = e
iπ
12 (2ν2−2ν+1+6ϵ1(2ν2−4ν+1)) , Dψ2ψ2

ψ1
= e−

2iπ
3 .
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