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Abstract

Generalised hydrodynamics (GHD) is a recent and powerful framework to study many-
body integrable systems, quantum or classical, out of equilibrium. It has been applied
to several models, from the delta Bose gas to the XXZ spin chain, the KdV soliton gas
and many more. Yet it has only been applied to (1+1)-dimensional systems and gener-
alisation to higher dimensions of space is non-trivial. We study the Boussinesq equation
which, while generally considered to be less physically relevant than the KdV equation, is
interesting as a stationary reduction of the (boosted) Kadomtsev-Petviashvili (KP) equa-
tion, a prototypical and universal example of a nonlinear integrable PDE in (2+1) di-
mensions. We follow a heuristic approach inspired by the Thermodynamic Bethe Ansatz
in order to construct the GHD of the Boussinesq soliton gas. Such approach allows for
a statistical mechanics interpretation of the Boussinesq soliton gas that comes naturally
with the GHD picture. This is to be seen as a first step in the construction of the KP soli-
ton gas, yielding insight on some classes of solutions from which we may be able to build
an intuition on how to devise a more general theory. This also offers another perspec-
tive on the construction of anisotropic bidirectional soliton gases previously introduced
phenomenologically by Congy et al (2021).
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1 Introduction

The theory of soliton gases, first introduced twenty years ago by Gennady El [1,2], has been the
subject of rapidly growing interest in the past few years. This is in part due to the development
of the notion of “integrable turbulence” coined and popularised by Zakharov [3], and to that of
generalised hydrodynamics (GHD) independently introduced in both [4] and [5]. Those two
approaches, though formally different, have a common aim which consists in investigating
the statistical and emergent, hydrodynamical properties of large-scale, many-body, integrable
systems out of equilibrium. As it happens, soliton gases are physically relevant mathemati-
cal objects that can be naturally interpreted both in terms of a soliton-dominated integrable
turbulence and in terms of GHD.

The prime motivation behind the study of integrable turbulence and GHD lies in the fact
that integrable systems are universal, arising from the asymptotic expansion of large classes of
models, and are known to capture essential properties of several physical systems [6]. More-
over, a key aspect of integrable systems is that they feature an infinite number of conserved
quantities (mass, momentum, energy, and their higher-spin versions) that constrain the dy-
namics and allow for exact solutions. Many techniques have been developed to that end, the
most notable of which are perhaps the inverse scattering transform (IST) for classical field the-
ories [7–9], and the Bethe Ansatz for quantum systems [10–12]. But the inherent complexity of
many natural or experimentally observed phenomena, for instance due to initial or boundary
conditions [13–15], often requires a statistical description which is beyond well-established
mathematical techniques from the theory of integrable systems.

In particular strongly nonlinear random waves described by one-dimensional integrable
systems, such as the Korteweg–de Vries (KdV) and the nonlinear Schrödinger (NLS) equations,
have recently attracted significant attention from theoreticians [16–20] and experimentalists
[21–27] alike. The theory of integrable turbulence then concerns itself with the statistical
properties of the random wave field, for example in terms of probability density function,
power spectrum and correlations, as discussed in Zakharov’s seminal paper [3].
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But those equations notably also feature solutions involving solitary waves called solitons
that exhibit particle-like properties, such as elastic, pairwise interactions which only result
in a simple position shift. Interacting solitons can then form large, complex and irregular
statistical ensembles, first considered, again, by Zakharov [28]. This provides an alternative
interpretation for the integrable turbulence of a soliton-dominated wave field in terms of a
soliton gas. The focus is then put on the collective dynamics and kinetics of solitons, which
are treated as interacting (quasi)particles characterised by their velocity (and/or amplitude)
and the associated distribution function.

It is highly non-trivial that such a simple picture of a gas of solitons as a gas of particles
should always hold, particularly for dense gases, as each soliton continuously overlaps and
interacts with many others. But the structure of the kinetic equations for KdV and NLS soliton
gases, rigorously derived in [1] and [17] from a thermodynamic-type limit of spectral finite
gap solutions and their modulations [29], strongly supports this interpretation. This in turn
allowed for some phenomenological constructions, notably in the case of bidirectionnal soliton
gases [30], based on the so-called collision rate Ansatz. We refer the interested reader to the
recent review [31] for an in depths discussion of soliton gas theory.

Given the aforementioned quasiparticle picture, the soliton gas approach is in many ways
closer in spirit to GHD than it is to integrable turbulence. This correspondence was noted
early [32, 33] and discussed at length in [34] in the context of the KdV equation. GHD was
initially developed to tackle out-of-equilibrium, integrable, quantum, many-body systems by
combining the (generalised) thermodynamic Bethe Ansatz (TBA) [35–37] and the hydrody-
namic principles [38] to account for the local relaxation of fluid cells to generalised Gibbs
ensembles (GGE) [39]. The need for such extensions comes from the fact that, in the case of
integrable systems, the infinite number of conserved quantities is known to impede the process
of “thermalisation” or, at least, it does in the traditional sense (e.g. there is no equipartition
of energy). As it happens, integrable systems do thermalise, yet this notion needs to be gen-
eralised: entropy maximisation occurs, only it does with respect to all the infinitely many
conserved quantities. This recent theory has quickly been applied to quantum gases, chains
and field theories [40–42], providing exact results regarding their correlations and fluctua-
tions [43–46]. It was then extended to describe classical integrable systems [47–55], to include
higher order terms in the hydrodynamic expansion like diffusion [56–58] or dispersion [59],
and to probe integrability breaking [60–64]. Notably, GHD and some of its extensions have
been confirmed in experiments on cold atomic gases [65–67]. GHD is a recent but very active
field of research and we refer the interested reader to the lecture notes and reviews [68–72].

This paper aims to investigate the soliton gas associated to the integrable Boussinesq equa-
tion

ut t − ux x = −α
�

6
�

u2
�

x x + ux x x x

�

, (1)

where α= ±1. The α= 1 case is typically referred to as the “good” Boussinesq equation, while
α= −1 corresponds to the “bad” one, a terminology that can be traced back to McKean [73].

It is important to stress that this equation is generally considered to be less physically
relevant than the KdV equation [7]. Although it was historically derived as a model for prop-
agation of waves in shallow water, it has since been noted that it is in fact not a valid model
for shallow water hydrodynamics [74]. Moreover it has been argued that the only correct
long shallow water wave model is the decoupled left and right running KdV equations [75],
to which the Boussinesq equation reduces in the (relevant) small amplitude, weakly nonlinear
regime [76,77].

However, there are several meaningful incentives that motivate our study of the Boussi-
nesq equation. From the point of view of physics, it arises naturally (for appropriate initial
conditions) as the continuum limit of the Fermi-Pasta-Ulam-Tsingou chain [77,78], and char-
acterises stratified fluids at near (non-semisimple) double criticality [79]. It is arguably more
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significant from the point of view of biology, as a simple generalisation of the Boussinesq equa-
tion – seemingly close to integrability, and still featuring stable solitons that interact almost
elastically – has been proposed as a model for neural activity [80–82].

But perhaps the biggest incentive, going back to physics, comes from the fact that it can
be seen as a stationary reduction of the (boosted) KP equation [7,83]

�

ut + 6(u2)x + ux x x

�

x +αuy y = 0 . (2)

The case α= 1 is known as the KP2 equation, associated with the “good” Boussinesq equation,
while α = −1 corresponds to KP1 equation, associate to the “bad” one. The KP equation, in
either version, has been used to model several physical phenomena such as the propagation of
ion-acoustic waves in plasmas [84,85], of shallow water waves [86,87], or of a beam of light in
nonlinear media [88,89]. It is a prototypical and universal example of a nonlinear integrable
PDE in (2+1) dimensions and can be seen as a natural extension of the KdV equation to
two spatial dimensions. As such, constructing the soliton gas or the GHD of the KP equation
would be significant, as both theories have up to now been developed to deal with, and only
applied to, (1+ 1)-dimensional systems, and generalisation to higher dimensions of space is
non-trivial. We will undertake this endeavour in another paper [90]. The present discussion
on the Boussinesq equation is then to be seen as a first step in the construction of the KP
soliton gas, yielding insight on some classes of solutions from which we may be able to build
an intuition on how to devise a more general theory.

In order to tackle the integrable Boussinesq equation, rather than the historical and more
rigorous approach to soliton gas developed by El [1], we adopt here a more heuristic approach
inspired by [34,48] and based on the TBA. This allows for a statistical mechanics interpretation
of the Boussinesq soliton gas that comes naturally with the GHD picture, and thermodynamic
quantities are then defined and evaluated (e.g. free energy, entropy, temperature). This also
offers another perspective on the construction of anisotropic bidirectional soliton gases intro-
duced phenomenologically in [30].

The paper is organised as follows. In Section 2 we review the Boussinesq equation and
its main properties. In Section 3 we construct its thermodynamics: we write down integral
equations for the exact free energy in generalised Gibbs ensembles, which take the form of the
classical TBA. In Section 4 we phenomenologically construct its hydrodynamics: we derive its
kinetic equation. Finally, we conclude in Section 5.

2 The integrable Boussinesq equation

The Boussinesq equation (1) describes the propagation of waves in (1+1) dimensional, weakly
nonlinear, weakly dispersive systems, an example of which is shallow water [91, 92]. This is
a bidirectional model: contrary to waves described by the KdV equation, those described by
the Boussinesq equation can move in either direction. This last point will have important
consequences on the GHD of the Boussinesq soliton gas as we shall see in Section 3. Finally, as
mentioned in the previous section, depending on the sign of the parameter α, the Boussinesq
equation is referred to as “good” or “bad”. We shall start our discussion by addressing this
dichotomy.

2.1 The “good”, the “bad” and the ill-posed

The “bad” Boussinesq equation is sometimes also called the ill-posed Boussinesq equation,
because of its severe short-wave instability [93]. This can be made clear by linearising the
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equation (1) about a constant background u0 > 0, yielding the linear PDE

ut t − ux x = −α [12u0ux x + ux x x x] . (3)

This equation admits solutions in the form exp[i(kx −ωt)] with dispersion relation

ω2 = k2
�

αk2 − 2Ωα
�

, (4)

where 2Ωα = 12αu0 − 1. In the case of the “good” Boussinesq equation α = +1, and one can
see that perturbations of the constant solution are stable for k2 > max[2Ω+, 0] and unstable
otherwise, with, for Ω+ > 0, a maximal growth rate iω= Ω+ attained for k =

p

Ω+. However,
if α = −1, perturbations are unstable to all modes k2 > 2|Ω−|, with unbounded growth rate,
since k is unbounded andω grows monotonically with k. That means that the slightest pertur-
bation of the initial data would instantly and utterly change the behaviour of the solution up
to the smallest scales, and, as such, solutions of the “bad” Boussinesq equation with arbitrary
initial conditions generically do not exist for positive time.

Fortunately, both for the “good” and “bad” Boussinesq equations, certain classes of solu-
tions remain stable at all time. In particular, that is the case of the soliton solutions we will
be considering in the remainder of this paper. For the sake of simplicity and legibility we will
now drop the parameter α and focus exclusively on the “good” Boussinesq equation. All the
upcoming results can be straightforwardly extended to the “bad” Boussinesq equation as is
discussed in Appendix A.

2.2 Integrability and conserved quantities

In 1973, Zakharov showed that the Boussinesq equation (1) was integrable, and solvable via
IST [94], by introducing the Lax pair



















L̂ = i

�

d3

dx3
+ u

d
dx
+

d
dx

u

�

−

√

√4
3

wx ,

Â=

√

√3
4

d2

dx2
+

√

√4
3

u ,

(5)

where the function w(x , t) is defined by ut = wx x . Indeed, one can see by direct substitution
that the Lax equation L̂t = i[ L̂, Â] is equivalent to the original equation (1) under the so-called
isospectrality condition, i.e. provided the spectrum of the operator L̂ is invariant.

In the same paper, Zakharov also devised a recurrence formula to write an infinite set
of integrals of motion in involution. We shall not discuss this recurrence of formula or how
it came to be, however, as an illustration, we provide here the expressions of the first four
conserved charges (densities):

Q1 =

∫

R
dx u ,

Q2 =

∫

R
dx wx ,

Q3 =

∫

R
dx uwx ,

Q4 =

∫

R
dx

�

u2

2
+
(wx)2

2
− 2u3 +

(ux)2

2

�

,

(6)
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which all commute with respect to the canonical Poisson bracket defined as the bilinear map

{F ; G}=
∫

R
dx
�

δF
δu(x)

δG
δw(x)

−
δF
δw(x)

δG
δu(x)

�

, (7)

for real-analytic functionals in the sense of [9]. In particular, the fourth charge Q4 plays the
role of a Hamiltonian, and one can alternatively write the Boussinesq equation (1) in the
Hamiltonian form











ut = wx x = {Q4; u(x)}= −
δQ4

δw
,

wt = u− 6u2 − ux x = {Q4; w(x)}=
δQ4

δu
.

(8)

Finally, given the definition of w, the current associated to the conserved density u (for Q1)
is −wx , but we see that wx is also the conserved density for Q2. Thus wx is a self-conserved
current, in particular by defining

J1 ≡
∫

R
dt wx , (9)

one has
∂x J1 = ∂t J1 = 0 , (10)

if we assume that u, w and their derivatives vanish as |t| → ∞ and/or |x | → ∞, which we
will be doing since we are only interested in reflectionless (i.e., pure soliton) solutions [76].
The presence of a self-conserved current justifies the use of the collision rate Ansatz further
down the line [50,95].

2.3 Soliton solutions

Although very powerful, the IST formalism is not best suited for what we aim to do here. It
will instead be more convenient to use Hirota’s bilinear method [76] to construct the soliton
solutions and extract their 2-body scattering shift. Indeed, Hirota showed in 1973 that

u(x , t) = log [τ(x , t)]x x , (11)

is a solution of the Boussinesq equation (1) provided the τ−function solves
�

(∂t − ∂t ′)
2 − (∂x − ∂x ′)

2 − (∂x − ∂x ′)
4�τ(x , t)τ(x ′, t ′) = 0 . (12)

Notably, N−soliton solutions are obtained from τ−functions of the form

τ(x , t) = 1+
N
∑

n=1

∑

N Cn

a(i1, i2, · · · , in)exp(θi1(x , t) + θi2(x , t) + · · ·+ θin(x , t)) , (13)

where N Cn indicates summation over all combinations of n elements taken from N . Both the
weights a(i1, i2, · · · , in) and the arguments of the exponential θi in (13) need to be discussed:
they can be made explicit by simply plugging the Ansatz (13) in Eq. (12) and can be interpreted
in terms of the properties of the solitons.

An N−soliton solution is parameterised by three sets of N parameters: 0< ηi < 1, εi = ±1
and x0

i ∈ R, for i = 1, . . . , N . The function θi(x , t) can be seen as the “phase” associated with
a soliton indexed by the spectral doublet1 (ηi ,εi) and an “initial position” x0

i

θi(x , t) = ηi

�

x − εi t
q

1−η2
i − x0

i

�

, (14)

1The names “spectral doublet” or “spectral parameters” come from the fact those parameters can directly be
linked to the discrete eigenvalues of the Lax operator L̂ defined in Eq. (5).
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where εi = +1,−1 distinguishes between right- and left-moving solitons, respectively, which
have speeds vi =

q

1−η2
i and velocities (that is, including the direction) vi = εivi . Addition-

ally, the coefficient a(i1, i2, · · · , in), in front of the exponential in Eq. (13), can be expressed in
terms of the 2-body phase shifts ϕi j

a(i1, i2, · · · , in) =
n
∏

k<l

expϕik il , (15)

where

ϕi j = log

�

εi

q

1−η2
i − ε j

Ç

1−η2
j

�2
− 3(ηi −η j)2

�

εi

q

1−η2
i − ε j

Ç

1−η2
j

�2
− 3(ηi +η j)2

. (16)

Note that for small values of ηi and η j , we recover the KdV phase shift in the case of overtaking
collisions

ϕKdV
i j = 2 log

�

�

�

�

ηi −η j

ηi +η j

�

�

�

�

, (17)

and we shall discuss the link between KdV and Boussinesq in more details at the end of Section
4.2.

2.4 Illustration: One- and two-soliton solutions

To ensure these interpretations are correct, let us first look at the 1-soliton solution

u1(x , t) = log
�

1+ eθ1
�

x x

=
�η1

2

�2
sech2

hη1

2

�

x − ε1 t
q

1−η2
1 − x0

1

�
i

,
(18)

which confirms θ1 can be seen as a phase. Note how, contrary to the phenomenology of the KdV
equation, the speed of the soliton vi =

q

1−η2
i decreases as its amplitude grows. Given the 1-

soliton solution (18), we can define the set of {hn}’s, namely the amount of charge Qn carried
by a single soliton of spectral doublet (η,ε). Here are the first four, up to a multiplicative
constant (which will be irrelevant for us), given definitions (6)

h1(η,ε)∝ η ,

h2(η,ε)∝ εη
Æ

1−η2 ,

h3(η,ε)∝ εη3
Æ

1−η2 ,

h4(η,ε)∝ 5η3 − 4η5 .

(19)

Now, let us focus on the 2-soliton solution

u2(x , t) = log
�

1+ eθ1 + eθ2 + a12eθ1+θ2
�

x x . (20)

As an example assuming that η1 < η2, ε1 = +1 and ε2 = ±1, so that v1 > v2, let us look in
the vicinity of x ≈ v1 t. If we take the limit t →−∞, so that θ1 stays finite but θ2→−∞, we
directly recover the one soliton solution (18)

u2(x , t)≈ u1(x , t) . (21)

However, still looking in the vicinity of x ≈ v1 t, if this time we take the limit t →∞, then
θ2→∞ and we obtain

u2(x , t)≈ log
�

eθ2(1+ a12eθ1)
�

x x

=
�η1

2

�2
sech2

hη1

2

�

x − ε1 t
q

1−η2
1 − x0

1

�

+
ϕ12

2

i

,
(22)
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showing that ϕi j/ηi indeed plays the role of the phase shift of soliton 1 as it crosses soliton 2.
Here, soliton 1 is right-moving, ε1 = +, and we have considered simultaneously the overtaking,
ε2 = +, and the head-on, ε2 = −, collisions.

2.5 Regularity conditions for the N−soliton solution

In full generality, given a τ−function of form (13), we may asymptotically write the N−soliton
solution as

uN (x , t)≈
N
∑

i=1

�ηi

2

�2
sech2

hηi

2

�

x − εi t
q

1−η2
i − x±i

�
i

, as t →±∞ , (23)

where x−i and x+i are respectively called the “in” and “out” impact parameters, and are related
by

x+i − x−i =
1
ηi

∑

j ̸=i

ϕi j . (24)

In effect, N−soliton solutions are entirely characterised by the set of triplets {ηi; x−i ; εi}Ni=1.
Let us now consider a N−soliton solution, M of which are left-moving and (N − M) of

which are right-moving. By convention, we shall order the spectral parameters according to
the velocities of the solitons vi = εi

q

1−η2
i , such that

v1 < · · ·< vM < 0< vM+1 < · · ·< vN , (25)

or, equivalently
η1 < · · ·< ηM , and ηN < · · ·< ηM+1 . (26)

Without loss of generality, because of Galilean invariance, we can assume that the slowest
(largest) soliton is right-moving, ηM+1 > ηM .

Noting that the expression of the 2-body phase shift (16), in terms of the spectral pa-
rameters of the interacting solitons, only depends on the product εiε j = ±1, and not on the
direction in which they are moving, we define the overtaking position shift

∆O(ηi ,η j)≡ sgn(v j − vi)
ϕO(ηi ,η j)

ηi
=

sgn(v j − vi)

ηi
log

�q

1−η2
i −

Ç

1−η2
j

�2
− 3(ηi −η j)2

�q

1−η2
i −

Ç

1−η2
j

�2
− 3(ηi +η j)2

, (27)

and the head-on position shift

∆H(ηi ,η j)≡ −
ϕH(ηi ,η j)

εiηi
=
−1
εiηi

log

�q

1−η2
i +

Ç

1−η2
j

�2
− 3(ηi −η j)2

�q

1−η2
i +

Ç

1−η2
j

�2
− 3(ηi +η j)2

. (28)

An important aspect of the system we are considering is that the argument of the log in the
position shifts (27) and (28) is not always positive for any couple (ηi ,η j). This means the
N−soliton solution does not necessarily remain regular for all time. Given the ordering (26),
the N−soliton solution is always regular for either [96]











ηM+1 <

p
3

2
,

ηM <
1
2

�

�

�ηM+1 −
Ç

3
�

1−η2
M+1

�

�

�

� ,
or























p
3

2
< ηM+1 < 1 ,

ηM+2 <
1
2

h

ηM+1 +
Ç

3
�

1−η2
M+1

�

i

,

ηM <
1
2

h

ηM+1 −
Ç

3
�

1−η2
M+1

�

i

,

(29)
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if ηM+2 > ηM , or










ηM+1 <

p
3

2
,

ηM+2 <
1
2

�

�

�ηM+1 −
Ç

3
�

1−η2
M+1

�

�

�

� ,
or











p
3

2
< ηM+1 < 1 ,

ηM <
1
2

h

ηM+1 −
Ç

3
�

1−η2
M+1

�

i

,
(30)

if ηM > ηM+2. Recall that, because of ordering (25) and (26), the highest value of the spectral
parameters is ηM+1 followed either by ηM or ηM+2.2 Note that allowing for complex phases
θi , a complex phase shift would result in a soliton transforming into an antisoliton and vice-
versa [97], however this is not something we will be considering here.

From the expressions of the position shifts (27) and (28), one may see that solitons with
greater velocity receive positive overtaking shifts,3 while solitons with smaller velocities re-
ceive negative shifts. In other words, smaller solitons are shifted forward with respect to their
direction of propagation, and larger solitons are shifted backward as a result of overtaking in-
teractions. In case of head-on collisions, solitons are shifted in the same direction, regardless
of their amplitude: if ϕH > 0 right-moving solitons are shifted to the left and left-moving to
the right; if ϕH < 0 right-movers are shifted to the right and left-movers to the left. While the
position shift induced by overtaking collisions can always be interpreted as solitons repelling
each other, ϕO < 0, head-on interactions can be seen as attractive for ϕH > 0 and bound states
may appear.

2.6 Bound states

On top of all this, in [96] Lambert et al. identified what they call degenerate and resonant
soliton solutions of the Boussinesq equation (1), which are related to the Miles resonant solu-
tions of the KP equation [98–100]. Those correspond to regular solutions for which the phase
shift between two solitons may become infinite, ϕi j →−∞ or ϕi j →∞ respectively for what
they call degenerate or resonant solutions. Those can only occur under specific conditions
and, given the ordering (25) and (26), one can identify three cases:

- Overtaking degeneracy for


























p
3

2
< ηM+1 < 1 ,

ηM+2 =
1
2

�

ηM+1 +
q

3(1−η2
M+1)

�

,

ηM <
1
2

�

ηM+1 −
q

3(1−η2
M+1)

�

.

(31)

- Head-on degeneracy for


























p
3

2
< ηM+1 < 1 ,

ηM =
1
2

�

ηM+1 −
q

3(1−η2
M+1)

�

,

ηM+2 <
1
2

�

ηM+1 +
q

3(1−η2
M+1)

�

.

(32)

- Head-on resonance for










1
2
< ηM+1 <

p
3

2
,

ηM−1 =
1
2

�

ηM+1 −
q

3(1−η2
M+1)

�

.
(33)

2Note that this is slightly different from the description in [96].
3Note that ϕO(ηi ,η j)< 0 ∀ (i, j) given the constraint (29).
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Phenomenologically those three cases are similar and, in fact, any one can be made into
another through time and/or space reversal symmetry. They correspond to inelastic pro-
cesses: a soliton of large amplitude ηM+1 decays in two smaller ones, of amplitudes ηM
and (ηM+1 − ηM ), moving in opposite direction (head-on degeneracy); a right-moving soli-
ton of large amplitude (ηM+1 + ηM ) decays in two smaller ones, ηM+1 and ηM (head-on
resonance); two smaller solitons, ηM+2 and (ηM+1 − ηM+2), moving in opposite direction
merge into a larger one ηM+1 (overtaking degeneracy). Those degenerate/resonant solu-
tions asymptotically appear either as (N − 1)−soliton solutions (at t → −∞ for head-on
degeneracy or resonance, at t → ∞ for overtaking degeneracy) or as N−soliton solutions
(at t → ∞ for head-on degeneracy or resonance, at t → −∞ for overtaking degeneracy),
while the other (N − 2) “spectator” solitons remain unaffected. Lastly, one may consider a
combination of the two degenerate cases in which ηM+2 =

1
2

�

ηM+1 +
q

3(1−η2
M+1)

�

and

ηM =
1
2

�

ηM+1 −
q

3(1−η2
M+1)

�

(which implies ηM+1 = ηM+2 + ηM ) appearing as a degen-
erate (N − 1)−soliton solution with (N − 3) spectator solitons.

Because resonances happen at the boundaries of the regularity region, only the cases dis-
cussed in this section should remain regular at all times, which has been confirmed in [101],
and no four soliton processes are possible (contrary to KP which feature resonant tetrads [96]).
As such this is not an effect that we expect to be thermodynamically relevant.

3 Thermodynamics

As we have seen in the previous section, N−soliton solutions of the Boussinesq equation (1)
are entirely specified by the triplets {ηi; x−i ; εi}Ni=1 characterising each individual soliton.
This, along with the asymptotic form (23), naturally suggests an interpretation of solitons in
terms of quasi-particles, and of a soliton gas as a literal gas of solitons. Naturally, this inter-
pretation is only to be taken as a useful tool for reasoning but not as a rigorous description:
solitons are completely unrecognisable once in the gas and constantly overlap with one an-
other. Nevertheless, one expects that it be possible to determine the soliton content of any
large enough region of space by a “time-of-flight” thought experiment: one extracts the Bous-
sisnesq field from this region and puts it in the vacuum (i.e. the field is to zero away from the
chosen region), and then lets the full, new field configuration on the line evolve in time until
separate solitons are seen. In this way, one may determine the approximate spatially resolved
soliton content on the line, and, it turns out, a heuristic argument taking its root in the “gas of
solitons” interpretation is rather accurate to predict both its dynamics and fluctuations. In this
section, from such an heuristic argument, we shall develop the thermodynamics of the Boussi-
nesq soliton gas characterised by the associated Generalised Gibbs Ensemble (GGE). Not only
will we derive the bidirectional kinetic equations phenomenologically proposed in [30], but
we will also describe the gas in the language of statistical mechanics, introducing an entropy,
free energy, temperature, etc.

3.1 Classical TBA

Following the heuristic procedure previously applied to the classical Toda system in [48] and
to the KdV equation in [34], we may construct the classical TBA of the Boussinesq soliton
gas, given either condition (29) or (30) are satisfied. To that end, we shall consider solitons
as quasi-particles indexed by i, of position x t

i at time t, of positive or negative velocity, and
spectral parameter ηi . We will assume that, at all times, the only effect of the interactions
between solitons is the shift in position introduced in Section 2.5. This is motivated by the fact
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that solitons asymptotically behave as free particles

x t
i = x±i + vi t , for t →±∞ , (34)

that are spatially ordered according to their velocity.
Now, let us consider a N−soliton solution initially supported on a finite interval [0, L] in

the sense that uN (x , t = 0) decays exponentially fast if x /∈ [0, L] or, in terms of the quasi-
particle picture {x0

i ∈ [0, L], ∀i = 1,2 · · · , N}. Recall that we take the labelling ordered as per
velocities, (25). If we assume that the right-moving quasi-particle i is initially the left-most
particle, x0

i = 0, then, between t →−∞ and t = 0, it almost surely only incurred shifts from
faster right-moving solitons, such that we can evaluate its (in) impact parameter x left

i as

0= x left
i +

1
ηi

N
∑

j=i+1

log

�q

1−η2
i −

Ç

1−η2
j

�2
− 3(ηi −η j)2

�q

1−η2
i −

Ç

1−η2
j

�2
− 3(ηi +η j)2

. (35)

Similarly, if we assume that the right-moving quasi-particle i is initially the right-most particle,
x0

i = L, then, between t → −∞ and t = 0, it almost surely only incurred shifts from slower

right-moving solitons and from all left-moving ones, and its impact parameter x right
i takes the

form

L = x right
i −

1
ηi





i−1
∑

j=M+1

log

�q

1−η2
i −

Ç

1−η2
j

�2
− 3(ηi −η j)2

�q

1−η2
i −

Ç

1−η2
j

�2
− 3(ηi +η j)2

+
M
∑

j=1

log

�q

1−η2
i +

Ç

1−η2
j

�2
− 3(ηi −η j)2

�q

1−η2
i +

Ç

1−η2
j

�2
− 3(ηi +η j)2



 .

(36)

In other words, if a quasiparticle i is initially located in a box [0, L], its impact parameter must
satisfy x−i ∈ [x

left
i , x right

i ]. By subtracting Eq (35) to Eq (36) we may compute the length of the

asymptotic space for right-movers Lr
i = x right

i − x left
i

Lr
i = L +

1
ηi





N
∑

j=M+1, j ̸=i

log

�q

1−η2
i −

Ç

1−η2
j

�2
− 3(ηi −η j)2

�q

1−η2
i −

Ç

1−η2
j

�2
− 3(ηi +η j)2

+
M
∑

j=1

log

�q

1−η2
i +

Ç

1−η2
j

�2
− 3(ηi −η j)2

�q

1−η2
i +

Ç

1−η2
j

�2
− 3(ηi +η j)2



 .

(37)

A similar reasoning can be carried out for left-moving solitons and one may find that

Ll
i = L +

1
ηi





M
∑

j=1, j ̸=i

ϕO(ηi ,η j) +
N
∑

j=M+1

ϕH(ηi ,η j)



 . (38)

Introducing two functions Kr
N ,M (η) and Kl

N ,M (η) that respectively interpolate between the

(Lr
i/L)’s and the (Ll

i/L)’s for fixed couples of (N , M), we may then define the right- and left-
asymptotic space densities, Kr(η) and Kl(η), by taking the thermodynamic limit: L → ∞,
N → ∞, M → ∞, while keeping the ratios N/L = c and M/N = γ finite. Then, from
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Eqs (37) and (38) one may write


















Kr(η) = 1+
1
η

�

∫

Γr

dµ ϕO(η,µ)ρr(µ) +

∫

Γl

dµ ϕH(η,µ)ρl(µ)

�

,

Kl(η) = 1+
1
η

�

∫

Γl

dµ ϕO(η,µ)ρl(µ) +

∫

Γr

dµ ϕH(η,µ)ρr(µ)

�

,

(39)

where Γr ⊂ [0, 1] and Γl ⊂ [0,1] represent the spectral support of right- and left-moving soli-
tons, respectively, and where























ρr(η) =
c(1− γ)
N −M

N
∑

i=M+1

δ(η−ηi) ,

ρl(η) =
cγ
M

M
∑

i=1

δ(η−ηi) ,

(40)

are the right- and left-densities of states (DOS) expressed in terms of the empirical densities of
spectral points and of the spatial densities of solitons. Equations (39) are akin to the nonlinear
dispersion relations (NDR’s) of soliton gases (see [31] for a comprehensive review on the
topic), this time for two types of quasi-particles, in which

σl(η)≡
ηKl(η)
ρl(η)

, and σr(η)≡
ηKr(η)
ρr(η)

, (41)

would play the role of the left- and right- spectral scaling functions [31].
Before we continue, some remarks are in order. First, one should note that, in effect,

left- and right- moving solitons are to be considered as two different particle types with their
distinct DOS’s. That is because the shifts for head-on and overtaking collision are different and
one must keep track of each type of collisions. Second, echoing the discussion carried out in
Section 4.5 of [34] regarding the ambiguity associated with the choice of the GHD momentum
function, we should clarify which convention we shall adopt in the rest of the paper.

3.2 Conventional choice of the momentum function

As argued in [34] the parametrisation of solitons as quasi-particles in terms of the spectral and
directional parameters η and ε is somewhat arbitrary. When defining the momentum function
P(η,ε) of the quasi-particles associated with solitons in our GHD construction, there are, a
priori, two natural choices: the physical momentum of the soliton

Pphys(η,ε)≡ h2(η,ε) = εη
Æ

1−η2 , (42)

or its velocity
Pvel(η,ε)≡ v(η,ε) = ε

Æ

1−η2 . (43)

For the purpose of constructing the GHD of the Boussinesq soliton gas, we could use the same
convention as [34] and express all the upcoming results in terms of the momentum of the
quasi-particle v, and not in terms of the “physical” momentum of the soliton h2. However
there is a third alternative which is less physically meaningful but formally more practical.

This comes from the fact that GHD was originally developed to study quantum integrable
systems, in which the momentum function Pquant is unambiguous. In these systems the scat-
tering phase ϕquant is related to the scattering shift ∆quant by the relation

ϕquant(η) = P ′quant(η)∆quant(η) , (44)

12

https://scipost.org
https://scipost.org/SciPostPhys.18.2.075


SciPost Phys. 18, 075 (2025)

and comparing with Eqs. (27)-(28), we construct

P(η,ε)≡ PGHD(η,ε) = ε
η2

2
. (45)

In the upcoming sections, this parametrisation is the one that will yield the most compact
and easiest to handle expressions. In effect, when it comes to the KdV equation discussed
in [34], the conventions (43) and (45) are equivalent up to a multiplication by 8. The fact
that the Boussinesq equation actually differentiates between these two conventions extends
the previous discussion of [34] and provides a better way of selecting the arbitrary momentum
function through Eq (44).

3.3 Partition function

In this section we will build up on the previous TBA-inspired approach to construct the ther-
modynamics of our soliton gas and the associated GGE. This can be done by writing the gener-
alised Gibbs measure for an ensemble of N−soliton solutions and the corresponding partition
function which, on a formal level, takes the form

ZN =

∫

D[uN ]exp
�

S[uN ]−W [uN ]
�

, (46)

where S is the entropy of the gas to be defined, and W a Lagrange parameter, the Gibbs weight,
to account for the infinite set of conservation laws

W =
∞
∑

n=1

βnQn , (47)

associated with the infinite set of inverse temperatures {βn}∞n=1. At this point, expression
(46) is admittedly rather unwieldy. However, since the N−soliton solution is entirely spec-
ified by the triplets {ηi; x−i ; εi}Ni=1 (with εi = −1 for i = 1,2, . . . M , and εi = 1 for
i = M+1, M+2, . . . N), one may instead write its partition function in terms of the asymptotic
coordinates

ZN =
N−1
∑

M=0

M !(N −M)!
(N !)2

∫

ΓM
l ×Γ

N−M
r ×RN

N
∏

i=1

dP(ηi)
2π

dx−i

× exp

�

−
N
∑

i=1

w(ηi ,εi)

�

χ (uN (x , t = 0)< ϵx , x /∈ [0, L]) ,

(48)

where ϵx → 0 fast enough as max(−x , x − L)→∞ and

dP(ηi) = ηidηi . (49)

This amounts to counting all possible realisations of a N -soliton solution uN , with solitonic
Gibbs weights w, and given the constraint that, at t = 0, it is supported on a finite interval
[0, L], represented by the indicator function χ. Note that, in summing/integrating over the
full spectral space of each solitons (ηi ,εi), we only explicitly integrate over the ηi ’s, as the sum
over the εi ’s is already taking into account by the combinatoric factor. The solitonic weights
w(η,ε) are defined as the individual contribution of a single soliton to the weight W so that

w(η,ε)≡
∞
∑

n

βnhn(η,ε) , W =
N
∑

i=1

w(ηi ,εi) . (50)
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An important point is that there is in fact no need to write w(η,ε) as an expansion in the
functions hn(η,ε) – any function w(η,ε) which is bounded from below will do. Of course, it
is not clear that an arbitrary function of η,ε can be written as an expansion of the hn(η,ε)’s,
whose first few are written in (19). In view of Eq. (47), we assume that there should exist
a possibly wider family of conserved charges, including the Qn’s whose first few members
are written in (6), such that the corresponding one-soliton values hn(η,ε) form a complete
basis for the space of functions of η,ε. Then, an arbitrary choice of the corresponding Lagrange
parameters gives rise to an arbitrary choice of w(η,ε) as a function of both arguments. In order
to make this statement precise, one would have to specify the space of functions of η and ε
more accurately, and possibly to construct explicitly the required, extra conserved quantities;
these may be expected to be quasi-local, following the notion developed in quantum many-
body systems [102]. We leave this for future research, and simply assume w(η,ε) to be an
arbitrary function of both arguments.

For large values of N , the constraint can be expressed as bounds for the integration of the
impact parameters x−i through the TBA approach discussed in the previous section4

∫

RN

N
∏

i=1

dx−i χ (uN (x , t = 0)< ϵx , x /∈ [0, L])≈
N
∏

i=1

 

∫ x right
i

x left
i

dx−
!

=
N
∏

i=M+1

Lr
i

M
∏

i=1

Ll
i

= LN
N
∏

i=M+1

Kr
N ,M (ηi)

M
∏

i=1

Kl
N ,M (ηi) .

(51)

In a way, the TBA provides the Jacobian of the transformation from expression (46), in terms
of the field, to expression (48), in terms of (asymptotically) free quasi-particles. Noting that
we can estimate the prefactor through Sterling’s formula for large values of N and M

LN M !(N −M)!
(N !)2

≈ exp
�

N + N log
�

γγ(1− γ)1−γ
�

− N logc
	

, (52)

we may write the partition function (48) as

ZN =
N−1
∑

M=0

∫

ΓM
l ×Γ

N−M
r

N
∏

i=1

dηi

× exp

¨

−
M
∑

i=1

h

wl(ηi)− 1+ logc− log
�

γγ(1− γ)1−γ
�

− log
ηi

2π
− logKl

N ,M (ηi)
i

−
N
∑

i=M+1

h

wr(ηi)− 1+ logc− log
�

γγ(1− γ)1−γ
�

− log
ηi

2π
− logKr

N ,M (ηi)
i

«

,

(53)

where we decomposed the Gibbs weight into left- and right-contributions wl(η) = w(η,−1),
wr(η) = w(η,+1).

3.4 Large deviation principle and Yang-Yang equation

In the thermodynamic limit N →∞, we can evaluate the partition function through the large
deviation principle

ZN ≍ exp
�

−NFMF[ρ∗l (η),ρ
∗
r (η)]

�

, (54)

4This essentially amounts to assuming that varying the impact parameter of a single soliton has only negligible
effects on the overall gas.
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where ρ∗l and ρ∗r is the (assumed unique) couple of minimizers of the mean-field free energy
functional

FMF[ρl(η),ρr(η)] =

∫

Γl

dηρl(η)
�

wl(η)− 1+ ν− log
ηKl(η)

2π
+ logρl(η)

�

+

∫

Γr

dηρr(η)
�

wr(η)− 1+ ν− log
ηKr(η)

2π
+ logρr(η)

�

.

(55)

This amounts to applying Laplace method (or the saddle-point approximation) on Eq. (53),
in which we introduced ν = log

�

γγ(1− γ)1−γ
�

, and where the configuration entropy term
logρ comes from Sanov’s theorem in regards to the empirical density [103]. Recalling that
v(η) = ±

p

1−η2 is the momentum of the quasi-particle and introducing the right/left-
occupation functions

nr(η) =
2π
η

ρr(η)
Kr(η)

, nl(η) =
2π
η

ρl(η)
Kl(η)

, (56)

as well as the pseudo-energies

ϵr = − log nr , ϵl = − log nl , (57)

minimising the mean-field free energy functional (55) amounts to solving the system














0=
δFMF[ρl,ρr]

δρl
,

0=
δFMF[ρl,ρr]

δρr
,

(58)

or, more explicitly, one must solve a system of Yang-Yang type equations


















ϵl(η) = wl(η) + ν−
∫

Γl

dµ
2π
ϕO(η,µ)e−ϵl(µ) −

∫

Γr

dµ
2π
ϕH(η,µ)e−ϵr(µ) ,

ϵr(η) = wr(η) + ν−
∫

Γr

dµ
2π
ϕO(η,µ)e−ϵr(µ) −

∫

Γl

dµ
2π
ϕH(η,µ)e−ϵl(µ) .

(59)

This generalises to bidirectional equations (involving two different soliton types) the Yang-
Yang type equation introduced in [34] for the KdV soliton gas. These equations define a one to
one map between the set of inverse temperatures {βn}∞n=1 defining the GGE and the occupation
functions, nl and nr , which can then be related to the DOS’s, ρl and ρr, through the NDR’s
(39) and the definitions (56).

3.5 Thermodynamic quantities

Using the previous relations (59) in Eq. (55), along with the dispersion relations (39), we may
define the free energy density F as the minimised mean-field free energy functional

F = −
∫

Γl

dP(µ)
2π

nl(µ)−
∫

Γr

dP(µ)
2π

nr(µ) , (60)

or, using the equivalence (41)

F = −
∫

Γl

dP(µ)
σl(µ)

−
∫

Γr

dP(µ)
σr(µ)

, (61)
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which is a straightforward generalisation to two quasi-particle types of the KdV free energy
found in [34]. This then provides a straightforward way to compute the gas’ entropy density
S using the usual definition from statistical mechanics

F =W −S , (62)

where W =
∫

Γl
dη wl(η)ρl(η) +

∫

Γr
dη wr(η)ρl(η). Using both the Yang-Yang system (59) to

eliminate both wl and wr, and again the dispersion relations (39) to simplify the expression,
we end up with

S =
∫

Γl

dη ρl(η) [1− log nl(η)− ν] +
∫

Γr

dη ρr(η) [1− log nr(η)− ν] . (63)

Note that at condensation Kr = Kl = 0, so that nr → ∞ and nl → ∞, meaning that S is
indeed minimal.

4 Generalised hydrodynamics

4.1 Dressing operation

Going back to the Gibbs weights (50), we can be more specific and define it in terms of the
conserved quantities carried by a single soliton (19) and some Lagrange parameters {βn}∞n=1

w(η) =
∞
∑

n=1

βnhn(η,ε) , (64)

where hn(η,−1) = hl
n(η) if the soliton is left-moving and hn(η,+1) = hr

n(η) if it is right-
moving. With this definition we can now ask ourselves how the pseudo-energies vary with
respect to one of those Lagrange parameters. Given Yang-Yang equations (59) we expect


















∂βn
ϵl(η) = hl

n(η) +

∫

Γl

dµ
2π
ϕO(η,µ)∂βn

ϵl(µ)nl(µ) +

∫

Γr

dµ
2π
ϕH(η,µ)∂βn

ϵr(µ)nr(µ) ,

∂βn
ϵr(η) = hr

n(η) +

∫

Γr

dµ
2π
ϕO(η,µ)∂βn

ϵr(µ)nr(µ) +

∫

Γl

dµ
2π
ϕH(η,µ)∂βn

ϵl(µ)nl(µ) ,
(65)

recalling that nl = e−ϵl and nr = e−ϵr . By writing ∂βn
ϵl(η) ≡ (hl

n)l,dr(η) and
∂βn
ϵr(η)≡ (hr

n)r,dr(η) we define the left- and right- dressing operation


















hl,dr(η) = hl(η) +

∫

Γl

dµ
2π
ϕO(η,µ)nl(µ)h

l,dr(µ) +

∫

Γr

dµ
2π
ϕH(η,µ)nr(µ)h

r,dr(µ) ,

hr,dr(η) = hr(η) +

∫

Γr

dµ
2π
ϕO(η,µ)nr(µ)h

r,dr(µ) +

∫

Γl

dµ
2π
ϕH(η,µ)nl(µ)h

l,dr(µ) ,
(66)

so that the NDR’s (39) can be reinterpreted as a dressing relation. Indeed we may define
(

ρs,l(η)≡ ηKl(η) = σl(η)ρl(η) =
�

�P ′(η,−1)
�

�

l,dr
(η) = (η)l,dr(η) ,

ρs,r(η)≡ ηKr(η) = σr(η)ρr(η) =
�

�P ′(η, 1)
�

�

r,dr
(η) = (η)r,dr(η) ,

(67)

by recalling the relations (56).
In view of the remark made after Eq. (50), we note how we assume here that hn(η,ε)may

be chosen as an arbitrary function of η,ε: as is usual in many-body integrability and especially
in GHD [68], the general form of the dressing operation is obtained by perturbing the “source
term” w(η,ε) by an arbitrary function, thus assuming that we have access to this large space.
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4.2 Effective velocity

Recall the nonlinear dispersion relation (67) characterising the DOS in terms of the dressing
operation. Similarly it is possible to define a left- and right- flux density f·(η). In GHD, this
flux density is generally defined in terms of the dressing of the energy function E(η)

(

σl(η) fl(η)≡ −
�

E′(η)
�l,dr
(η) ,

σr(η) fr(η)≡
�

E′(η)
�r,dr
(η) .

(68)

Given our chosen convention (45) regarding the momentum function, the corresponding en-
ergy function is defined in terms of the bare velocity of the quasi-particle

v(η,ε) =
E′(η)

P ′(η,ε)
⇒ E = −

1
3

�

1−η2
�3/2

, (69)

the usual expression of the group velocity.5 This identification of the flux density with a dressed
quantity provides the second set of NDR’s for our soliton gas



















σl(η) fl(η) = −η
Æ

1−η2 +

∫

Γl

dµ ϕO(η,µ) fl(µ) +

∫

Γr

dµ ϕH(η,µ) fr(µ) ,

σr(η) fr(η) = η
Æ

1−η2 +

∫

Γr

dµ ϕO(η,µ) fr(µ) +

∫

Γl

dµ ϕH(η,µ) fl(µ) ,
(70)

using the definition of the dressing operation (66) along with the fact that, from Eqs. (41) and
(56), σl = 2π/nl and σr = 2π/nr. From this we may introduce the left- and right- effective
velocity,

veff
l ≡

fl
ρl

, and veff
r ≡

fr
ρr

, (71)

of solitons moving through the gas. These effective velocities can be computed by multiplying
the left- and right- NDR equations (39) respectively by veff

l and veff
r , then subtracting the second

NDR relations (70), identifying both fl = ρlv
eff
l and fr = ρrv

eff
r and, ultimately, dividing by η.

This yields














veff
l (η) = v(η,−1)−

1
η

�

∫

Γl

dµ ϕO(η,µ)ρl(µ)[v
eff
l (η)− veff

l (µ)] +

∫

Γr

dµ ϕH(η,µ)ρr(µ)[v
eff
l (η)− veff

r (µ)]

�

,

veff
r (η) = v(η,+1)−

1
η

�

∫

Γr

dµ ϕO(η,µ)ρr(µ)[v
eff
r (η)− veff

r (µ)] +

∫

Γl

dµ ϕH(η,µ)ρl(µ)[v
eff
r (η)− veff

l (µ)]

�

,

(72)
recovering the results presented in [30] in which the authors phenomenologically proposed a
general expression for the effective velocity of a bidrectional soliton gas.

On top of that, it is well-known that the Boussinesq equation can be reduced to the KdV
equation in the long-wave (or equivalently small η) limit. As an additional check, Eqs. (72)
should be consistent with the effective velocity of the KdV soliton gas. Indeed, in the small η
limit the head-on an overtaking phase shifts simplify in such fashion

ϕH ≈ 0 , ϕO ≈ 2 log

�

�

�

�

η−µ
η+µ

�

�

�

�

. (73)

5Note that the energy function is bounded from above and below, −1/3 < E < 0. Since the relevant physical
quantities only depend on the derivative of the energy function, it can be offset by 1/3, to make the interpretation
in terms of the energy of a quasi-particle excitation, which is expected to be positive, easier.
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Left- and right-moving solitons essentially decouple, while the overtaking phase shift reduces
to the KdV phase shift. Similarly the velocity of solitons simplifies to

v(η,ε)≈ ε
�

1−
η2

2

�

. (74)

Because of Galilean invariance, the constant part of the velocity can be absorbed through
a boost and, similarly, time-reversal takes care of the factor ε. Finally, choosing a different
normalisation for the amplitude of the wave field and for the space and time variables

u → 8u , x →
p

2x , t →
p

2t , (75)

yields
η2

2
→ 4η2 , and ∆(η,µ) →

1
η

log

�

�

�

�

η−µ
η+µ

�

�

�

�

. (76)

Putting all of this together, equations (72) eventually reduce to the single equation

veff(η) = 4η2 −
1
η

∫

Γ

dµ log

�

�

�

�

η−µ
η+µ

�

�

�

�

ρ(µ)
�

veff(η)− veff(µ)
�

, (77)

which is precisely the one satisfied by the KdV effective velocity first derived in [1].

4.3 Thermodynamic averages and correlation functions

Putting together the statistical mechanics picture we developed in section 3 with the notion of
dressing introduced in section 4.1, we can now borrow general results from [43,45] pertaining
to thermodynamic quantities in GHD.

What we present in this section can be seen as a straightforward generalisation of usual
results from statistical mechanics. Provided our soliton gas is accurately described by the GGE
defined by (48), associated with the free energy density (60), we can conjecture expressions
of thermodynamic averages and correlations in our soliton gas. Indeed, given time-conserved
Poisson commuting charges of type (e.g. Eqs. (6) )

Qn =

∫

R
dx qn(x) , (78)

and the associated space conserved currents

Jn =

∫

R
dx jn(x) , (79)

we can easily write the ensemble averages of the densities qn and jn. As per standard statistical
mechanics we have

〈qi〉=
∂F
∂ βn

=

∫

Γl

dP(µ)
2π

nl(µ)h
l,dr(µ) +

∫

Γr

dP(µ)
2π

nr(µ)h
r,dr(µ)

=

∫

Γl

dµ ρl(µ)h
l(µ) +

∫

Γr

dµ ρr(µ)h
r(µ) ,

(80)
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where the relation between the first and second lines comes from using the definition the
dressing operation (65)-(66), along identity (57), in the definition of the free energy den-
sity (60). The third line, which is more natural, is obtained thanks to the symmetry of the
dressing operation [68]

∑

a=l,r

∫

Γa

dµ ga(µ)na(µ)h
a,dr(µ) =

∑

a=l,r

∫

Γa

dµ ga,dr(µ)na(µ)h
a(µ) , (81)

while recalling the NDR’s (67) and definitions (56). Similarly, space-integrated connected
correlations are obtained as

Cab ≡
∫

dx (〈qa(x)qb(0)〉 − 〈qa(x)〉 〈qb(0)〉) = −
∂ 2F
∂ βa∂ βb

=

∫

Γl

dηρl(η)h
l,dr
a (η)h

l,dr
b (η) +

∫

Γr

dηρr(η)h
r,dr
a (η)h

r,dr
b (η) .

(82)

The averages of currents can then be obtained by differentiating the free energy flux introduced
in [4]

G = −
∫

Γl

dE(µ)
2π

nl(µ)−
∫

Γr

dE(µ)
2π

nr(µ) . (83)

This expression is similar to that of the free energy density (60) in which the momentum
measure has been replaced by the energy measure. It yields fairly natural results regarding
the average of the currents

〈 ji〉=
∂ G
∂ βn

=

∫

Γl

dE(µ)
2π

nl(µ)h
l,dr(µ) +

∫

Γr

dE(µ)
2π

nr(µ)h
r,dr(µ)

=

∫

Γl

dµ veff
l (µ)ρl(µ)h

l(µ) +

∫

Γr

dµ veff
r (µ)ρr(µ)h

r(µ) ,

(84)

and the field-current correlator

Bab ≡
∫

dx (〈qa(x) jb(0)〉 − 〈qa(x)〉 〈 jb(0)〉) = −
∂ 2G
∂ βa∂ βb

=

∫

Γl

dη veff
l (η)ρl(η)h

l,dr
a (η)h

l,dr
b (η) +

∫

Γr

dη veff
r (η)ρr(η)h

r,dr
a (η)h

r,dr
b (η) .

(85)

Finally, the Drude weight characterising ballistic transport can be written, via the Kubo for-
mula, in terms of a time integral of correlations

Dab ≡ lim
t→∞

1
2t

∫ t

−t
dτ

∫

dx (〈 ja(x ,τ) jb(0,0)〉 − 〈 ja(x ,τ)〉 〈 jb(0, 0)〉)

=

∫

Γl

dη
�

veff
l (η)

�2
ρl(η)h

l,dr
a (η)h

l,dr
b (η) +

∫

Γr

dη
�

veff
r (η)

�2
ρr(η)h

r,dr
a (η)h

r,dr
b (η) .

(86)

4.4 Euler hydrodynamics

We shall now consider a weakly non-homogeneous, out of equilibrium gas in which space-
time variations of the DOS’s and of the effective velocities occur over macroscopic scales that
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are much larger than the typical width of a soliton. In that case we may, as is standard in
hydrodynamic theories [38], assume local entropy maximisation and propagation of such local
equilibria.

The main ingredient in our hydrodynamic construction is the infinite set of local conser-
vation laws

∂tqn + ∂x jn = 0 , (87)

induced by the integrability structure of the Boussinesq equation. As an illustration, recalling
equations (6), we present here the first three charge and current densities

q1 = u , j1 = wx ,

q2 = wx , j2 = −u+ 6u2 + ux x ,

q3 = uwx , j3 =
(wx)2 + (ux)2

2
−

u2

2
− 4u3 − uux x .

(88)

We then assume our system can be divided into mesoscopic, thermodynamically large fluid
cells, that are still small compared to the scales associated with the variations of the statistical
properties of the soliton gas. In other words, we work under the hydrodynamic approximation:
we assume that the averages of local observables can be well approximated, at large times, by
averages evaluated in local GGEs

〈o(x , t)〉 ≈ 〈o〉w(η,ε;x ,t) ≡ ōn(x , t) . (89)

We may now write mesoscopic conservation equations by averaging the microscopic laws (87)
over such a fluid cell6

∂t q̄n(x , t) + ∂x j̄n(x , t) = 0 . (90)

Since q̄n(x , t) and j̄n(x , t) are related to the DOS’s and effective velocities through equations
(80)-(84), provided the set of {hn}’s is complete (which should be the case since the scattering
of solitons is 2-body reducible [3]) one eventually obtains the fundamental equation of (Euler
scale) GHD

∂tρ·(η; x , t) + ∂x

�

veff
· (η; x , t)ρ·(η; x , t)

�

= 0 . (91)

Most of the interesting phenomenology of the GHD of the Boussinesq equation comes from
the fact that the scattering shift can be either positive or negative, leading to what can be
interpreted as positive or negative “refraction” of solitons, as well as complicated interfer-
ence patterns. Examples of this are discussed in more details in [90], in which simulations
of so-called “polychromatic” gases (generated from exact N−soliton solutions with randomly
distributed spectral and impact parameters) are presented and compared to exact solutions of
Eqs. (91)-(72).

5 Conclusion

In this paper, we have constructed the generalised hydrodynamics of the soliton gas associ-
ated with the Boussinesq integrable PDE, a theory for a field lying in one dimension of space
and one of time. We have constructed its hydrodynamics – the kinetic equation – and ther-
modynamics – the free energy. We have done this by simply following the general intuitive
rules from soliton gases [2] and generalised hydrodynamics [4,5] according to which both the

6Formally we integrate equations (87) over a contour [0, X ] × [0, T], make the substitutions 1
T

∫ T

0
qndt ≈ q̄n

and 1
X

∫ X

0
qndt ≈ q̄n according to the law of large numbers, and end up with equations (90) provided q̄n and j̄n are

differentiable.
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hydrodynamics and thermodynamics can be obtained from the known two-soliton scattering
shifts. This follows, and in some sense generalises, the analysis done for the soliton gas of
the KdV equation in [34] to bidirectional models. In particular, it was important to correctly
account for the choice of the “momentum function” in order to construct the thermodynamics.
By contrast to the KdV case, in the Boussinesq case the most natural momentum function, with
respect to the known soliton constructions, is not the physical momentum.

We note that the soliton phenomenology of the Boussinesq equation is significantly more
complex than that of the KdV equation. But in some regimes of parameters, on which we have
concentrated, it is nevertheless well understood, and, interestingly, includes both head-on and
overtaking interactions. In certain cases, non-soliton-conserving, yet integrable, interactions
can occur, but, in the chosen regime of parameters, they cannot occur in macroscopic number,
hence to not affect the hydrodynamics or thermodynamics. A natural extension of the present
work would be to analyse other regimes of parameters, where it may be possible to include a
macroscopic number of non-soliton-conserving interactions. However, under different regimes
of parameters, the N−soliton solution is known to develop singularities in finite time [101] that
may only remain for a finite duration. One would then need to develop a better understanding
of the physical meaning of such singularities, as well as carefully study their impact on the
thermodynamics of the gas. Alternatively, one may have to work with non-zero background,
which seems to make the phenomenology even richer as observed in [104], a priori allowing
for more than two resonances while keeping the solution regular at all time. Going beyond the
simple Boussinesq equation, this could prove significant for GHD in general as a prototypical
example of an integrable model in which the quasi-particles are unstable and in which their
number is not conserved.

Traditionally, in the IST description of the Boussinesq equation [105–107], solitons may
live on top of a radiation background, associated with the continuous part of the Lax spec-
trum, which we have not considered here. In the hydrodynamic limit, it is natural to expect
this radiation background to be present in a generic fashion and, as such, our construction
could be interpreted as a toy model. However there are several reasons to think that a soliton
gas description might be “complete”, notably the fact that, in the N →∞ limit, N−soliton
solutions can provide a good approximation of a general solution involving radiations as well
(see Chapter 3, Section 8 of [9]). And indeed, recently, soliton gas solutions with non-zero
reflection coefficient (indicating the presence of radiations) were constructed rigorously as
the N →∞ limit of N−soliton solutions for the KdV and modified KdV equations [19, 108].
Moreover, error estimates for the approximation of a general solution by N−soliton solutions
on a compact (x , t) domain were given in [109] for the NLS hierarchy. We expect those results,
at least on the qualitative level, should translate to the Boussinesq equation as well.

On top of all that, it should be possible to extend the construction presented in this paper by
straightforwardly adapting known GHD results. GHD, just like conventional hydrodynamics, is
fundamentally a derivative expansion. While the equation (91) generalises the Euler equations
to account for integrable systems, it is possible to compute an additional diffusion operator [56,
57] (or even dispersion [59]), which would transform equation (91) into the GHD equivalent
of the Navier-Stokes equation. It is also possible to probe integrability breaking, either by
adding an external potential [110] or through space-time inhomogeneous interactions [47],
which would result in the addition of an “effective acceleration” term in equation (91). This
suggests it should be possible to ultimately adapt the soliton gas approach developed in this
paper to study the generalisation of the Boussinesq equation introduced in [80] as a model for
neural activity.

Beyond that the primary interest of developing the soliton gas theory for the Boussinesq
equation is its eventual application to the KP equation, a PDE for a field in two dimensions of
space. Indeed, it is known, as we have recalled, that certain “essentially stationary” solutions
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of the KP equation (stationary in Galilean frames with non-zero velocities) in fact are simply
space-time solutions of the Boussinesq equation, where the Boussinesq time is identified with
one of the KP space directions. This relation, which we study in more details in [90], will lay
the ground for developing the soliton gas theory for the KP equation, and will help reveal the
structure of the theory beyond models in one dimension of space.

A GHD of the “bad” Boussinesq soliton gas

Generalisation of the previous construction to the bad Boussinesq equation is fairly straightfor-
ward once the main building blocks – namely the scattering shifts, the momentum and energy
functions, and the dressing operations – have been provided.

First of all, the bad Boussinesq equation admits N−soliton τ−functions in the form (13)
except, this time, the phase is given by

θi(x , t) = ηi

�

x − εi t
q

1+η2
i − x0

i

�

, (A.1)

and the phase shift by

ϕi j = log

�

εi

q

1+η2
i − ε j

Ç

1+η2
j

�2
+ 3(ηi −η j)2

�

εi

q

1+η2
i − ε j

Ç

1+η2
j

�2
+ 3(ηi +η j)2

. (A.2)

The main difference here is that the argument of the square root, in both the expression of the
soliton velocity and of the phase shift, has changed from (1−η2) to (1+η2). This, along the
fact that the argument of the log, in the expression of the phase shift, is now a ratio of sums of
squares, and not of differences, means that the N−soliton solution remains regular at all time
for any set of real spectral parameters. Despite the bad Boussinesq being ill-posed for generic
arbitrary initial data, conditions for the regularity of its N−soliton solution are less restrictive
than they are for the good Boussinesq equation. Additionally, the phenomenology is not as
rich, the phase shift is always negative and there are no bound states.

Then, by convention we choose the same momentum function we did earlier for the good
Boussinesq equation which, given the velocity of solitons, also fixes the energy function

P(η,ε) = ε
η2

2
, E(η) =

1
3

�

1+η2
�3/2

. (A.3)

The dressing operation takes again the form (66), changing the phase shift accordingly, for
which infer the NDR’s

¨

σl(η)ρl(η) = (η)
l,dr(η) ,

σr(η)ρr(η) = (η)
r,dr(η) ,

and







σl(η) fl(η) = −
�

η
Æ

1+η2
�l,dr
(η) ,

σr(η) fr(η) =
�

η
Æ

1+η2
�r,dr
(η) ,

(A.4)

which yields again an effective velocity of form (72) by taking the ratio veff
· ≡ f·/ρ·. General-

isation of any other identity constructed for the good Boussinesq equation is then immediate.
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