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Műegyetem rkp. 3., H-1111 Budapest, Hungary

3 BME-MTA Statistical Field Theory ‘Lendület’ Research Group,
Budapest University of Technology and Economics,
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Abstract

We consider non-equilibrium dynamics after quantum quenches in the mixed-field three-
state Potts quantum chain in the ferromagnetic regime. Compared to the analogous set-
ting for the Ising spin chain, the Potts model has a much richer phenomenology, which
originates partly from baryonic excitations in the spectrum and partly from the various
possible relative alignments of the initial magnetisation and the longitudinal field. We
obtain the excitation spectrum by combining semiclassical approximation and exact di-
agonalisation, and we use the results to explain the various dynamical behaviours we
observe. Besides recovering dynamical confinement, as well as Wannier-Stark locali-
sation due to Bloch oscillations similar to the Ising chain, a novel feature is the pres-
ence of baryonic excitations in the quench spectroscopy. In addition, when the initial
magnetisation and the longitudinal field are misaligned, both confinement and Bloch
oscillations only result in partial localisation, with some correlations retaining an un-
suppressed light-cone behaviour together with a corresponding growth of entanglement
entropy.
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1 Introduction

Confinement is a central concept in the theory of strong interactions, a.k.a. quantum chro-
modynamics, which leads to the absence of quarks (and gluons) from the spectrum of exper-
imentally observed particles [1]. The underlying mechanism is based on a linear potential,
which can also be realised in condensed matter systems, as shown first for the scaling limit
two-dimensional Ising model in [2], with a general picture in 2D quantum field theories given
in [3].

Confinement also strongly affects non-equilibrium dynamics. For the ferromagnetic quan-
tum Ising spin chain [4], it suppresses entropy growth and quasiparticle propagation. Dy-
namical confinement and its effects have recently been studied and confirmed in numerous
systems [5–18]. Besides dynamical confinement, another effect that leads to the suppression
of quasiparticle propagation is Wannier-Stark localisation, as demonstrated for the Ising spin
chain in [6,10]. Wannier-Stark localisation occurs when particles in a periodic potential (e.g.
in a lattice) move under the influence of a uniform external field, whereas the periodicity of
the dispersion relation over the Brillouin zone leads to spatial localisation, restricting particle
motion and significantly altering transport properties. In contrast to the usual confinement,
which is also present in the scaling field theory limit, Wannier-Stark localisation results from
Bloch oscillations specific to condensed matter systems defined on a lattice [19]. Bloch oscilla-
tions were also shown to suppress the decay of the false vacuum under the standard scenario
of bubble nucleation [20,21] by preventing the expansion of the nucleated bubbles of the true
vacuum [22]. Transport properties were also found to be strongly suppressed both by confine-
ment and Wannier-Stark localisation [6, 10], albeit recently it was pointed out that escaping
fronts of significant magnitude appear for local quantum quenches [23].

The quantum Ising spin chain, considered in most previous studies, is a paradigmatic model
of quantum many-body systems. However, its simplicity also severely restricts its dynamics;
the analogy to confinement in QCD is restricted by the Z2 valued order parameter, which
corresponds to setting the number of colours to two. As a result, the ‘hadron’ spectrum is
restricted to mesonic excitations, and there are no analogues of the baryons. Motivated by
this, here we consider the mixed-field 3-state Potts quantum spin chain, corresponding to
three colours, where the ‘hadron’ spectrum contains both mesonic and baryonic excitations,
which have already been studied in the scaling limit [24–27].

We approach non-equilibrium dynamics by considering quantum quenches, i.e., a sudden
change in the Hamiltonian [28, 29], which is a paradigmatic protocol that is routinely en-
gineered in experiments on closed quantum systems [30–37]. We restrict our consideration
here to the translationally invariant case, a.k.a. a global quantum quench, following the spirit
of [4]. Compared to the Ising model, it turns out that the Potts chain displays a much more
diversified phenomenology due to the larger number of colours.

While global quenches in the paramagnetic phase of the Potts chain have already been
investigated [38, 39], in this work, we study quantum quenches in the ferromagnetic phase,
where the presence of both transverse and longitudinal fields is expected to result in dynamical
confinement and/or Wannier-Stark localisation. However, it turns out that the phenomenology
is much richer due to the possibility of misalignment between the initial magnetisation and
the longitudinal field, leading to what we call ‘oblique’ quenches. In this case, confinement or
Wannier-Stark localisation only results in partial localisation, with some correlations retaining
an unsuppressed light-cone behaviour together with a corresponding growth of entanglement
entropy.

The outline of the work is as follows. In Section 2, after introducing the model and review-
ing its main features, we describe the quench protocols and summarise their phenomenology.
We then give a semiclassical description of the excitation spectrum in Section 3, the results of
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which are used in Section 4 to interpret and explain the phenomenology of global quantum
quenches in the confining case of the Potts quantum spin chain. We summarise our conclu-
sions in Section 5. To keep the main line of the argument uninterrupted, details regarding
exact diagonalisation computations and the iTEBD simulations are relegated to the Appendix.

2 Quench phenomenology

2.1 The mixed-field three-state Potts quantum spin chain

The mixed-field 3-state Potts quantum spin chain is defined on the Hilbert space

H =
L
⊗

i=1

[C3]i , (1)

where i denotes the site index along a chain of length L. The local Hilbert space C3 at each
site i has a basis |µ〉 with µ = 1,2, 3 representing the spin states. The system’s dynamics is
governed by the Hamiltonian, assuming periodic boundary conditions PµL+1 ≡ Pµ1 ,

H = −J
L
∑

i=1

3
∑

µ=1

(Pµi Pµi+1 + hµPµi )− J g
L
∑

i=1

P̃i , (2)

where the traceless operators Pµi = |µ〉ii〈µ| − 1/3 tend to project the spin at site i along
the ‘direction’ µ. The first term in (2) promotes a ferromagnetic ground state, with all
spins polarised in one of the three directions. When present, the longitudinal fields hµ
break the degeneracy between the three possible spin orientations. In contrast the trace-
less operator P̃i = |µ0〉ii〈µ0| − 1/3 couples to a ‘transverse field’ g, and favours the direction
|µ0〉i ≡
∑

µ |µ〉i/
p

3. The relative strength of the first and third terms is regulated by the
coupling g. These terms compete with each other, and in the absence of the ‘longitudinal’
magnetic fields hµ, their competition leads to a phase transition with a critical point at g = 1.
This critical point signifies a phase transition from a paramagnetic (PM) phase for g > 1 to a
ferromagnetic (FM) phase for g < 1. In the PM phase, there is a unique S3-symmetric vacuum,
whereas, in the FM phase, there are three vacua that become degenerate in the thermodynamic
limit L→∞. The order parameter for this transition is the magnetisation Mµ = 〈P

µ
i 〉, and the

quantum critical point separating these phases can be described by a conformal field theory
(CFT) with a central charge c = 4/5. Away from the critical point g = 1, hµ = 0, the q = 3 Potts
quantum spin chain is non-integrable, unlike the Ising model, where integrability is preserved
unless a longitudinal field is introduced.

From now on, we set the constant J = 1 together with ħh= 1, corresponding to a choice of
energy and time units.

The spectrum of the purely transverse chain (hµ = 0) can be constructed perturbatively in
both the extreme paramagnetic g ≫ 1 and extreme ferromagnetic g ≪ 1 limits [40]. In the
paramagnetic phase, the ground state is non-degenerate, and the quasiparticle spectrum con-
sists of doubly degenerate magnons. In contrast, in the ferromagnetic phase, there are three
degenerate ground states (vacua) and the elementary excitations are kinks Kµν(k) interpolat-
ing between two vacua of different colours µ ̸= ν, as shown in Fig. 1. Similarly to the Ising
model, the Potts model possesses a Kramers-Wannier duality g ↔ 1/g connecting the two
phases and their respective excitations [40–42].

When all the longitudinal fields hµ are set to zero, the 3-state Potts model exhibits a global
S3 permutation symmetry. The group has two independent generators C and T , satisfying

T 3 = I , C2 = I , CT C−1 = T −1 . (3)
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Figure 1: Vacuum configuration of the purely transverse 3-state Potts model in the
broken phase (g < 1). The three colours (red, green and blue) are interpolated by
kinks Kµν with ν = µ+ 1 mod 3 (counterclockwise) and anti-kinks Kνµ (clockwise)
indicated by black and grey arrows respectively.

In the paramagnetic phase, one can introduce a basis in the magnonic space with one-particle
states at fixed momentum given by |A(k)〉 and |Ā(k)〉, transforming under the two-dimensional
irreducible representation of S3 defined by the relations:

T |A(k)〉= e
2πi
3 |A(k)〉 , T |Ā(k)〉= e−

2πi
3 |Ā(k)〉 , C|A(k)〉= |Ā(k)〉 , (4)

and one can introduce the quasiparticle basis corresponding to the eigenstates of C

|A±(k)〉=
1
p

2

�

|A(k)〉 ±
�

�Ā(k)
� �

, (5)

which are degenerate when all longitudinal fields are zero, but for a non-zero hµ the degen-
eracy is lifted.

In the ferromagnetic phase, the action of the cyclic generator T corresponds to the permu-
tation of the vacua µ→ µ+ 1 mod 3 with the appropriate permutation of the kink excitation:

T = T1T2 · · · TL , (6)

where Ti acts on site i as

Ti =





0 1 0
0 0 1
1 0 0



 . (7)

In contrast, C can be chosen as any of the three non-cyclic permutations, corresponding to
swapping two of the vacua.

Switching on one or more longitudinal magnetic fields hµ leads to explicitly breaking the
symmetry group S3. Switching on only one of them, say h1, partially breaks the symmetry,
leaving an unbroken Z2 subgroup generated by the transformation swapping the spin direc-
tions 2 and 3, leaving 1 intact. One can choose the generator C to correspond to the unbroken
subgroup given by

C = C1C2 · · ·CL , (8)
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where Ci acts at site i as

Ci =





1 0 0
0 0 1
0 1 0



 . (9)

The consequences of the explicit breaking of the symmetry on the dynamics in the paramag-
netic phase were studied in [38]. In contrast, the present work considers the implications of
introducing a longitudinal field in the ferromagnetic phase.

2.2 Quench protocols

The following quench protocols define the non-equilibrium time evolution we study. The initial
state is the pure ferromagnetic state along direction 1:

|ψ0〉=
L
⊗

i=1

|1〉i . (10)

We distinguish four different types of quenches. The first two correspond to time evolution
with finite transverse and longitudinal magnetic fields along the direction of the initial mag-
netisation:

|ψ(t)〉= e−iH(h1,g)t |ψ0〉 , (11)

where H(h1, g) is the the Hamiltonian (2) with 0 < g < 1, h1 ̸= 0, and h2 = h3 = 0. These
cases are directly analogous to those studied in the Ising model [4,22,23]. Depending on the
sign of the magnetic field h1, there are two cases:

◦ Positively aligned: h1 > 0
The positive longitudinal field h1 disfavours the magnetisation directions 2 and 3, cor-
responding to a pair of degenerate meta-stable (false) vacua with the true vacuum cor-
responding to direction 1 as shown in Fig. 2a.

◦ Negatively aligned: h1 < 0
Now magnetisation directions 2 and 3 are favoured over 1, leading to a pair of degen-
erate true vacua, while direction 1 corresponds to a meta-stable (false) vacuum state as
shown in Fig. 2b.

Note that the kinks and antikinks interpolating between the false vacua if h1 > 0 (K and
K̄ in Fig. 2a), alternatively between the true vacua if h1 < 0 (K and K̄ in Fig. 2b) realise an
effective Ising subsystem, and can be well approximated by free fermions.

Unlike the Ising model, the Potts model allows quenching with a longitudinal field that is
neither parallel nor anti-parallel to the initial state. We call this case an ‘oblique’ quench which
determines the other two protocols by the following time evolution:

|ψ(t)〉= e−iH(h2,g)t |ψ0〉 , (12)

where H(h2, g) is the the Hamiltonian (2) with 0< g < 1, h2 ̸= 0, and h1 = h3 = 0.

◦ Positive oblique: h2 > 0
The initial state is in the direction of the first of the two degenerate false vacua 1 and 3,
while direction 2 corresponds to the true vacuum of the theory as shown in Fig. 3a.

◦ Negative oblique: h2 < 0
The initial state is in the direction of the first of the two degenerate true vacua 1 and 3,
while direction 2 corresponds to the false vacuum as shown in Fig. 3b.
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+|h1|

2

3
K

K̄

|ψ0〉= |11 . . . 1〉

(a) h1 > 0.

−|h1|
2

3
K

K̄

|ψ0〉= |11 . . . 1〉

(b) h1 < 0.

Figure 2: Vacuum configuration with a longitudinal field h1. Vacua 2 and 3 with
colours green and blue remain degenerate. Depending on the sign of h1, they are
either metastable or stable, with kink K and antikink K̄ excitations interpolating be-
tween the two. The initial state |ψ0〉 is polarised along the red direction.

These protocols explore different ways to break explicitly the S3 permutation symmetry
while leaving a subgroupZ2 unbroken. We emphasise once again that the spectra of the Hamil-
tonian governing the positively aligned and the positive oblique quenches and the Hamiltonian
determining the time evolution of the negatively aligned and the negative oblique quenches
are the same, respectively. However, the aligned and oblique cases differ markedly due to the
orientation of the polarisation of the initial state relative to the longitudinal field. In the aligned
cases, it is parallel/anti-parallel compared to the longitudinal field, while in the oblique cases,
it points in a different direction.

2.3 Quench phenomenology

We study the time evolution of the spin chain in the thermodynamic limit L = ∞, which
is computed using the infinite Time Evolving Block Decimation (iTEBD) algorithm [43] with
second-order Trotterisation. In this section, we include numerical results that were produced
with maximal bond dimension χmax = 300 and time step δ = 0.005. We give further details on
our numerical simulations in Appendix C. Due to translational invariance, expectation values
of local operators are position-independent, while correlation functions only depend on the
relative position.

The phenomenology of the quenches can be studied via the following observables:

• Magnetisation: there are three different magnetisations defined as

Mµ(t) = 〈ψ(t)| Pµ |ψ(t)〉 . (13)

However, they are not independent as they sum to zero:

3
∑

µ=1

Mµ(t) = 0 . (14)
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1

+|h2|

3

K K̄

|ψ0〉= |11 . . . 1〉

(a) h2 > 0.

1

−|h2|

3

K K̄

|ψ0〉= |11 . . . 1〉

(b) h2 < 0.

Figure 3: Vacuum configuration with a longitudinal field h2. Vacua 1 and 3 corre-
sponding to colours red and blue remain degenerate. Depending on the sign of h2,
they are either metastable or stable, with kink K and antikink K̄ excitations interpo-
lating between the two. As in Fig. 2, the initial state |ψ0〉 is polarised along the red
direction.

We choose M1 and M2 as independent magnetisations, while M3 can be computed from
(14) as

M3 = −M1 −M2 . (15)

If the Z2 subgroup generated by C of (8) is preserved, we have the further constraint
M2 = M3 and they can be computed from the only independent magnetisation M1 as

M2 = M3 = −
M1

2
. (16)

• Correlation functions (connected):

Cµν(l, t) = 〈ψ(t)| Pµl Pν0 |ψ(t)〉 −Mµ(t)Mν(t) . (17)

Since [Pµi , Pνi ] = 0 they are symmetric (Cµν = Cνµ) and satisfy further constraints similar
to (14):

3
∑

µ=1

Cµν = 0 . (18)

Without further symmetries, there are then three independent correlators. We choose
C11, C22 and C23 as such, while the others can be computed from (18) as

C12 = −C22 − C23 , C13 = −C11 + C22 + C23 , C33 = C11 − C22 − 2C23 . (19)

With the further constraint C22 = C33 imposed by the Z2 symmetry, we choose C11 and
C23 as independent and

C12 = −
C11

2
, C13 = C12 = −

C11

2
, C22 = C33 =

C11

2
− C23 . (20)
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(a) Magnetisation M1(t) and (insert) M2(t).
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(b) Entanglement entropy S(t).

Figure 4: Time evolution of magnetisations M1 and M2 (left) and the linearly growing
entanglement entropy (right) in the pure transverse field quench with transverse field
g = 0.2.

• Entanglement entropy: the von Neumann entropy of a subsystem A is defined as

SA(t) = −TrρA(t) lnρA(t) , (21)

where the reduced density matrix is the partial trace over the complement Ā of the
subsystem A:

ρA(t) = TrĀ |ψ(t)〉 〈ψ(t)| . (22)

Here, we consider the case when A is one (semi-infinite) half of the system.

We now consider quenches in the Potts model, choosing the transverse field of the post-quench
Hamiltonian deep in the ferromagnetic phase g < 1 and a suitably small longitudinal field. We
start with the pure transverse quench as a warm-up and then turn to the four quench protocols
introduced in Subsection 2.2.

2.3.1 Pure transverse quench in the ferromagnetic phase

For quenches with pure transverse field, the initial magnetisation is expected to decay to zero
exponentially, following the same behaviour observed in the Ising spin chain [44, 45]. The
reason is that the quench results in a state of finite energy density, which is later expected to
equilibrate to a finite temperature. However, a discrete symmetry cannot be spontaneously
broken at nonzero temperatures in a one-dimensional system with short-range interactions.
The initial state (10) leaves unbroken the permutation symmetry Z2 between magnetisation
directions 2 (green) and 3 (blue), therefore there is a single independent magnetisation M1,
and only two independent correlation functions.

The evolution of magnetisation M1 is shown in Fig. 4a, which covers the initial part of
the relaxation and is indeed very similar to the behaviour observed in the Ising spin chain
[44, 45]; the evolution of M2 shown in the inset is not independent. The linear growth of
the entanglement entropy is also fully analogous to the behaviour in the quantum Ising spin
chain [46], which is explained by the semiclassical quasiparticle picture of post-quench time
evolution.

The correlation functions show simple light-cone behaviour, which is again explained by
the semiclassical quasiparticle picture [28,29]. The slope of the displayed lines is determined
by the Lieb-Robinson velocity of the kinks vLR given by (A.5), which can be computed from
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Figure 5: The light-cone behaviour of correlation functions in the pure transverse
field quench with g = 0.2. Solid black lines are drawn at ±2vLR t, with vLR being the
maximum velocity of kinks given by (A.5).
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(b) Entanglement entropy S(t).

Figure 6: The time evolution of magnetisation M1 (left) shows persistent oscillations
and the entanglement entropy (right) saturates after a short initial period of time
in the positively aligned regime with transverse field g = 0.2 and longitudinal field
h1 = 0.10.

the dispersion relation determined using exact diagonalisation as discussed in Appendix A. Al-
though only two of them are independent, we display C11, C22 and C23 to facilitate comparison
with quenches in the presence of longitudinal fields.

2.3.2 Positively aligned

In this protocol, we start with the state (10), which is polarised along the red direction 1
and introduce a post-quench longitudinal field h1 > 0. The remaining Z2 symmetry between
directions 2 and 3 imposes M2(t) = M3(t), therefore (14) implies

M1(t) = −2M2(t) = −2M3(t) , (23)

so only one magnetisation is independent. Fig. 6 shows the evolution of magnetisation, as
well as the entanglement entropy, which is generated by the Hamiltonian (2) with longitudinal
fields h1 ̸= 0 and h2 = h3 = 0.
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Figure 7: Time evolution of correlation functions in the positively aligned regime
with transverse field g = 0.2 and longitudinal field h1 = 0.10. C11(l, t) red-red
correlations are confined (left). Here, solid black lines mark the light cone in the
pure transverse quench shown in Fig. 5. In contrast, the green-blue (cyan) correlator
C23(l, t) shows escaping fronts, with dotted black lines showing the corresponding
light cone (right).

Clearly, switching on a longitudinal field radically alters the dynamics compared to the pure
transverse case. As demonstrated in Fig. 6a, the magnetisation shows persistent oscillations in-
stead of exponential relaxation, while Fig. 6b shows that the growth of entanglement entropy
saturates after a short initial period and it also starts oscillating. This is fully analogous to the
behaviour observed in the Ising case [4] and has the same explanation by dynamical confine-
ment. As we discuss in detail later, the frequencies of the observed oscillations correspond to
the ‘hadron’ spectrum resulting from confinement. The dominant effect comes from mesons,
which are bound states of two kinks formed under the effect of the attractive linear potential
due to the presence of the longitudinal field [25], in full analogy with the Ising case [47].
However, the three states of magnetisation of the Potts model, which are analogous to the
three different ‘colours’ of quantum chromodynamics, allow for the formation of baryons as
well [27]. They appear in the oscillation spectrum as demonstrated in Subsection 4.1.1.

Another characteristic signature of dynamical confinement is the suppression of the spread-
ing of correlation. For the quench considered here, only two of the correlation functions are
independent, as stated at the beginning of the section. Their time evolution is displayed in Fig.
7. The C11(l, t) correlator shows the characteristic suppression of the light-cone propagation
of correlations resulting from dynamical confinement [4]. This is demonstrated clearly by the
deviation from the behaviour of the pure transverse quench, which is due to the localisation
of kink excitation by the confining force.

However, C23(l, t) shows the presence of residual light-cone structure indicated by the dot-
ted black lines in Fig. 7b. Due to the polarisation of the initial state, the degrees of freedom
localised in the directions 2 and 3 are strongly suppressed, which is reflected in the 23 corre-
lations being two orders of magnitude smaller than 11 correlations. Nevertheless, the residual
spreading of correlations is also reflected in the entanglement entropy, which shows a drift
over long time scales (cf. Fig. 39a). We return to a further discussion of this phenomenon in
Subsection 4.2.1.

2.3.3 Negatively aligned

When reversing the sign of h1 compared to the previous case, the initial state now corre-
sponds to the false vacuum, while the system has two true vacua as shown in Fig. 2a. This
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Figure 8: The time evolution of magnetisation M1 (left) shows persistent oscillations
and the entanglement entropy (right) saturates after a short initial period of time in
the negatively aligned regime with transverse field g = 0.2 and longitudinal field
h1 = −0.10.

is the classical set-up of the decay of the false vacuum [20,21], apart from the degeneracy of
the true vacuum (similar to some scenarios considered recently in [48]). However, contrary
to the case of continuum quantum field theory, the vacuum decay is suppressed by Bloch os-
cillations [22], i.e., the expansion of nucleated bubbles of the true vacuum is prevented by
Stark localisation [10]. This results in features similar to dynamical confinement, such as per-
sistent oscillation of the magnetisation M1(t) shown in Fig. 8 (left), early termination of the
growth of entanglement entropy (Fig. 8 - right) and suppression of the light-cone spreading
of correlations (Fig. 9).

However, despite the qualitative similarity of the time evolution to the positively aligned
(confining) case, the different underlying mechanism leads to quantitative differences. As
shown later in Subsection 4.1.2, the spectrum of oscillations is now dominated by different
excitations corresponding to bubbles of true vacuum nucleated in the initial false vacuum state,
as observed previously in the Ising case [22,23,49].

As in the previous case, C23(l, t) shows that even though directions 2 and 3 now correspond
to true vacua, correlations in this channel are two orders of magnitude smaller due to the
initial polarisation pointing in direction 1. Nevertheless, just like in the positively aligned
(confining) quench, there is still a residual light cone indicated by dotted lines, discussed
further in Subsection 4.2.1. In addition, the entanglement entropy again shows a drift over
long time scales, as demonstrated in Fig. 39b.

2.3.4 Positive oblique

Now we consider time evolution with a longitudinal magnetisation pointing in a direction dif-
ferent from the polarisation of the initial state (10), as specified in (12). First, we discuss this
oblique quench scenario for the case when h2 is positive. The Hamiltonian (2) with longitu-
dinal fields h2 ̸= 0 and h1 = h3 = 0 is invariant under the unbroken subgroup Z2 between
colours 1 and 3, but the initial state breaks this symmetry, resulting in two independent mag-
netisations M2 and M3. Their time evolution is shown in Fig. 10 along with the entanglement
entropy one. While M2 shows persistent oscillations, M3 shows an increasing trend similar to
the pure transverse quench (c.f. Fig. 4a). This behaviour, as well as the unsuppressed growth
of entanglement entropy, strongly suggests that the corresponding degrees of freedom relax.

This spreading of correlations is also observed in the correlation function C11(l, t), where
the standard light cone structure is restored. In contrast, light-cone spreading in C22(l, t)
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Figure 9: Time evolution of correlation functions in the negatively aligned regime
with transverse field g = 0.2 and longitudinal field h1 = −0.10. C11(l, t) (left) shows
localised red-red correlations, with solid black lines marking the light cone in the
pure transverse quench shown in Fig. 5. Escaping fronts in the green-blue (cyan)
correlator C23(l, t) are present, with dotted black lines showing the corresponding
light cone (right).

remains suppressed (Fig. 11). As a result, the phenomenology of this quench is mixed: while
in direction 2 (green), a behaviour similar to confinement or anticonfinement is observed due
to the initial polarisation in direction 1 (red), other degrees of freedom excited in the quench
show relaxation and light-cone spreading of correlations, leading to unsuppressed growth of
entanglement entropy. Finally, correlation C23(l, t) is suppressed altogether, although it does
display a clear light cone structure. We discuss this behaviour further in Subsection 4.2.2.

2.3.5 Negative oblique

In this case, h2 is negative, and we observe qualitatively the same features as for h2 > 0.
However, the relaxation in M3 as well as the growth of entanglement entropy both appear
faster than in the h2 > 0 case, as demonstrated in Fig. 12.

Fig. 13 shows the time evolution of correlation functions. We note that the light-cone
spreading, as well as the magnitude of the correlation C22(l, t), is more suppressed spatially
compared to the case h2 > 0. In contrast, the spreading of correlations shown by C11(l, t)
appears to be slightly enhanced. We discuss these features further in Subsection 4.2.2.

3 Semiclassical description of the spectrum

Here we construct the semiclassical particle content of the theory. Switching on a longitudinal
field hµ induces a linear potential between kinks, which enclose a domain of length d with
magnetisation different from µ, with the magnetisation outside the enclosed domain polarised
in the µ direction. For small values of the field, the potential can be well approximated as

V (d) = ±χd , (24)

where χ = |hµ|(Mµ − Mν̸=µ) is the string tension, the sign is chosen to reflect the sign of hµ,
and the spontaneous magnetisations Mα are computed for the pure transverse case with all
hα = 0 and a ground state polarised in the µ direction (cf. Appendix C). Using the results of
Appendix A.4 we have

χ =
�

�hµ
�

� (1− g2)α , (25)

with α≈ 0.102.
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Figure 10: Magnetisations M2(t), exhibiting persistent oscillations, and M3(t), show-
ing an increasing trend (left), and the time evolution of the entanglement entropy
(right) displaying unsuppressed growth in the positive oblique regime with trans-
verse field g = 0.2 and longitudinal field h2 = 0.10.

In contrast with the Ising chain, where the kinks are non-interacting when the longitudinal
field vanishes, the Potts kinks have a short-range interaction resulting in non-trivial scatter-
ing [40]. We first treat the problem by neglecting this interaction and derive a semiclassical
description of the spectrum of two-kink states by only considering the linear potential (24).
We label this case ‘non-interacting kinks’ despite the presence of the linear potential; strictly
speaking, it is only non-interacting when the longitudinal field is also switched off. The cases
of positive (hµ > 0) and negative (hµ < 0) longitudinal fields are considered in Subsections 3.1
and 3.2. The effect of the short-range interaction is taken into account at a later stage in Sub-
section 3.3. The semiclassical results are validated by comparing them to exact diagonalisation
results, which we summarise in Appendix B.

We note that the semiclassical approach considered below assumes that the kinks can be
treated as point-like, which requires the transverse magnetic field g not to be too close to the
quantum phase transition point gc = 1. Additionally, the typical distance between the kinks
must be large, corresponding to weak confinement with χ less than order one [4,50].

3.1 Non-interacting kinks over a true vacuum: Mesons

For hµ > 0, the linear potential (24) has a positive sign; therefore, it is attractive and induces
kink confinement.

3.1.1 Classical trajectories

Consider two kinks moving classically in one dimension with the potential (24):

H = ε(k1) + ε(k2) +χ|x2 − x1| , (26)

where (k1, k2) are the momenta of the single kinks, (x1, x2) are their positions and ε(k) is
given by the kink dispersion relation for the pure transverse Potts chain ({hµ = 0}) that can
be computed by exact diagonalisation as discussed in Appendix A. After the canonical trans-
formation

X =
x1 + x2

2
, x = x2 − x1 , K = k1 + k2 , k =

k2 − k1

2
, (27)
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Figure 11: Time evolution of correlation functions in the positive oblique regime
with transverse field g = 0.2 and longitudinal field h2 = 0.10. The red-red correla-
tors C11(l, t) (left) and the cyan correlator C23(l, t) (right) show well-defined light
cones delimited by dashed black lines, although the magnitude of C23 is strongly sup-
pressed. In contrast, the green-green correlator C22(l, t) is confined (middle). Here,
the solid black lines mark the light cone in the corresponding pure transverse quench
shown in Fig. 5.

the Hamiltonian becomes

H =ω(k; K) +χ|x | , where ω(k; K) = ε(K/2+ k) + ε(K/2− k) , (28)

resulting in the canonical equations of motion

Ẋ (t) =
∂ω(k; K)
∂ K

, K̇(t) = 0 , ẋ(t) =
∂ω(k; K)
∂ k

, k̇(t) = −χsign(x(t)) . (29)

For a given value of the total momentum K , these equations describe the relative motion of
two particles, which strongly depends on the values of the conserved total momentum K and
total energy E =ω(k; K)+χ|x |. Our analysis below follows closely the one presented in [51]
for the XXZ spin chain.

◦ Regime (I)

For K < Kc , with

Kc = 2arccos

�

−A+
p

A2 − B2

B

�

, (30)

ω(k; K) is a single-well potential and equation ω(k; K) = E has two solutions k = ±ka
when ω(0; K) < E < ω(π; K), bounding the kinematically allowed region (see Fig. 14,
left). Choosing the initial conditions as x(0) = 0 and k(0) = ka > 0, the momentum k
linearly decreases in time k = ka − χ t until t1 = 2ka/χ. In turn, the spatial coordinate
x increases up to its maximal value

xmax =
E −ω(0; K)

χ
, (31)

taken at t = t1/2 and then decreases until reaching its initial zero value at t = t1 when
the kinks collide. After the collision we have k(t) = −ka+χ t, until k returns to its initial
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Figure 12: Magnetisations M2(t), exhibiting persistent oscillations, and M3(t), show-
ing an increasing trend (left), and the time evolution of the entanglement entropy
displaying unsuppressed growth (right) in the negative oblique regime with trans-
verse field g = 0.2 and longitudinal field h2 = −0.10.

value k(2t1) = ka. The resulting motion shown in Fig. 14 (right) has a period 2t1. The
bound state drifts with an average velocity of




Ẋ
�

=
1

2t1

2t1
∫

0

d tẊ (t) =
ε(k2a)− ε(k1a)

k2a − k1a
, where k1a =

K
2
− ka , k2a =

K
2
+ ka . (32)

◦ Regime (II)

At higher energies E > ω(π; K), the kinematically allowed regions for momentum
k is the whole real axis and, assuming x(0) positive, k linearly decreases in time
k(t) = k(0)−χ t, while the coordinate x oscillates between xmax given by (31) and

xmin =
E −ω(π; K)

χ
. (33)

Since both xmin and xmax are positive, the two kinks never meet and undergo Bloch
oscillations resulting in collisionless mesons. The period of oscillation is t2 = 2π/χ, and
the kinks do not drift along the chain since




Ẋ
�

= 0. Their spatial coordinates can be
evaluated as

x1(t) = x10+
1
χ
[ε(k10+χ t)−ε(k10)] , x2(t) = x20−

1
χ
[ε(k20−χ t)−ε(k20)] , (34)

with ki0 = ki(0), x i0 = x i(0). Fig. 15 shows the Bloch oscillations of the two particles
in real space.

◦ Regime (III)

The last dynamical regime is when the potential ω(k; K) develops a double well with a
local maximum at k = 0 as shown in Fig. 16 (left). This happens for K > Kc , and

min
k
ω(k; K)< E <ω(0; K) . (35)
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Figure 13: Time evolution of correlation functions in the negative oblique regime
with transverse field g = 0.2 and longitudinal field h2 = −0.10. The red-red corre-
lator C11(l, t) (left) and the cyan correlator C23(l, t) (right) show unsuppressed light
cones delimited by dashed black lines, although the magnitude of C23 is strongly sup-
pressed. In contrast, the green-green correlator C22(l, t) is confined (middle). Here
the solid black lines mark the light cone in the corresponding pure transverse quench
shown in Fig. 5.
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Figure 14: Potential and kink trajectories in the first dynamical regime.

In this case, the kinematically allowed region consists of two disconnected pieces, since
the equation E =ω(k; K) has four solutions {±kb,±ka} with 0< kb < ka. Starting from
k(0) = ka and x(0) = 0, the motion is restricted to one of the wells, and the solution is
given by

k(t) = ka −χ t , for 0< t < t3 =
ka − kb

χ
, (36)

where k(t3) = kb and x(t3) = 0. After the collision k(t) = kb + χ t, until k returns to
its initial value k(2t3) = ka, therefore the momentum k(t) and the spatial coordinate
x(t) are periodic functions of period 2t3. Finally, the bound state drifts with the average
velocity




Ẋ
�

=
ε(k2a)− ε(k1a)− ε(k1a) + ε(k1b)

2(k1b − k1a)
, where k1b =

K
2
− kb , k2a =

K
2
+ kb . (37)

The kink trajectories in this dynamical regime are shown in Fig. 16 (right).
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Figure 16: Potential and kink trajectories in the third dynamical regime.

3.1.2 Semiclassical quantisation of mesons

The meson configurations described above can be quantised using Bohr-Sommerfeld quanti-
sation. For the first dynamical regime (I) the appropriate condition takes the form

∮

d x k(x) = 2π(ν+ 1/2) , (38)

where the 1/2 results from the presence of the turning points, and the quantum number
ν = 0,1, 2, . . . is the number of wave function nodes. As shown in [47], Eq. (38) leads to
the quantisation condition

4 Eν(K) ka − 2

ka
∫

−ka

dkω(k; K) = 2πχ
�

ν+
1
2

�

, (39)

where the turning point ka is determined by

En(K) =ω(ka; K) , (40)

and Eν(K) is the energy of the meson state. The quantum number ν can be parameterised for
odd wave functions as ν= 2n− 1, while for even wave functions ν= 2n− 2 with n= 1,2, . . .
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Therefore the semiclassical quantisation can be rewritten as

2 E(κ)n (K) ka −

ka
∫

−ka

dkω(k; K) = 2πχ
�

n−
1
2
+
(−1)κ

4

�

, (41)

where κ = 0 (1) corresponds to spatially odd (even) states. We remark that in the Ising case
considered in [47] only the odd wave functions are physical due to the fermionic nature of
kink excitations. However, in the Potts case, both even and odd wave functions correspond to
physical states due to the presence of colours since the internal structure of a neutral two-kink
state allows both singlet and triplet as discussed in Appendix A.3.1; c.f. also Subsection 3.3.
The same happens in the scaling limit considered in [25].

In the dynamical regime (II) there are no turning points for the momentum k(t), and the
periodicity of the wave function in the Brillouin zone −π≤ k < π results in the condition

2π En(K)−

π
∫

−π

dkω(k; K) = 2πχn . (42)

Using the periodicity of ε(k) gives energy levels independent of the total momentum K:

En = nχ +
1
π

π
∫

−π

dk ε(k) , (43)

with their spacing given by the angular frequency χ of the Bloch oscillations.
In the dynamical regime (III), the semiclassical motion occurs in one of two separated wells

with turning points ±ka and ±kb with ka > kb. Since this interval is not invariant under the
reflection k → −k, we do not distinguish between odd and even cases hence we obtain the
single expression

En(K) (ka − kb)−

ka
∫

kb

dkω(k; K) = πχ (n− 1/2) . (44)

In our subsequent calculations, we do not encounter this case, so we omit it in the sequel.

3.2 Non-interacting kinks over a false vacuum: Bubbles

Choosing hµ < 0, the µ-polarised ground state becomes a false vacuum. The low energy
spectrum built upon this state corresponds to bubbles of the true vacuum [23, 49, 52]. The
nucleation of these bubbles is an essential step in the standard scenario of vacuum decay [20].
However, contrary to the field theory case, in the lattice model, the subsequent expansion of
the bubbles is prevented by Bloch oscillations [22] resulting in the localisation observed in the
negatively aligned quenches discussed in Subsection 2.3.3. We note that the persistent oscilla-
tions induced by these bubbles provide useful signatures to detect and characterise metastable
vacuum states [53,54].

3.2.1 Classical trajectories

The effective two-kink Hamiltonian differs from (26) by the sign of the string tension:

H =ω(k; K)−χ|x | , (45)
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Figure 17: Potential and orbit (in blue) for bubbles in the first dynamical regime.

corresponding to a repulsive force between the kinks. Following [22], we call this the anti-
confining case or simply refer to it as anticonfinement.

The canonical equations of motion are the same as in (29), but flipping the sign χ →−χ
in the equation for k. Apart from that, the argument proceeds as before. For example in the
Regime (I), by choosing

x(0) = 0 , k(0) = ka > 0 , (46)

due to (29), the momentum k linearly increases in time k = ka +χ t until

t =
t̃1

2
=
π− ka

χ
, (47)

where k = π. The classical orbit, shown in Fig. 17, is now below the k-space ‘potential’ function
ω(k, K) and connects the turning point k = ka to the edge of the Brillouin zone k = π, crossing
to k = −π and then increasing again until k = −ka. Then the kinks collide and the motion of
the momentum is reversed until t = 2 t̃1 when it returns to its original value. Then, the cycle
repeats again, describing the relative motion of two particles with a period 2 t̃1.

In the dynamical regime (II), one can proceed in the same way as for the mesons: the
kinematically allowed regions for momentum k are the whole real axis. The two kinks never
meet; instead, they undergo Bloch oscillations, resulting in collisionless bubbles with a time
period t2 = 2π/χ.

3.2.2 Semiclassical quantisation of bubbles

Semiclassical quantisation of bubbles follows the procedure for the mesons, with the difference
that the dynamical phase must be computed by integrating along the classical orbit connecting
the turning points ka and −ka through π and that the sign of χ is flipped.

Performing these changes in Eq. (41) and dividing by 2 leads to the following quantisation
relation for bubbles in dynamical regime (I)

En(K)(π− ka)−

π
∫

ka

dkω(k; K) = −πχ
�

n−
1
2
+
(−1)κ

4

�

, (48)

together with the relation ω(ka; K) = En(K), and κ = 0 (1) corresponding to spatially odd
(even) states as before. The notation En, as opposed to En, is used to distinguish bubble
excitations from the mesonic ones considered earlier.

A similar argument can be applied to the dynamical regime (III), but we omit the result
since it is not needed in the sequel.
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Figure 18: Pictorial representation of kink-antikink configurations forming neutral
mesons (or bubbles) at rest (K = 0).

In the dynamical regime (II), the bubbles are collisionless, and the relevant equation can
simply be obtained by changing the sign of χ in (43):

En = −nχ +
1
π

π
∫

−π

dk ε(k) . (49)

The energy difference between adjacent levels is again given by the Bloch angular frequency χ.
Note that while the meson spectrum is bounded from below, the bubble spectrum is

bounded from above, which corresponds to the metastable nature of the false vacuum state.

3.3 Including short-range interactions

Our calculations so far ignored that the kinks in the Potts quantum spin chain are interacting
even when in the absence of longitudinal fields, i.e., in the pure transverse case (A.1). The
relevant interaction is short-range, and the scattering theory was studied in detail in [40].
The field theory resulting in the scaling limit is integrable, and its scattering matrix is exactly
known [55, 56]. However, the lattice case is not integrable therefore the scattering ampli-
tudes must be determined numerically. In [40], it was found that the lattice phase shifts show
some significant deviations from the exact field theory S-matrix, which were later found to
be explained by contributions from irrelevant operators [57]. As a result, we determined the
scattering amplitudes needed for our computations numerically using exact diagonalisation in
finite volume, with the details given in Appendix A.3.

The effect of short-range interaction can be accounted for by adding the scattering phase
shift to the integrated phase of the wave function

∮

d x k(x) , (50)

computed over a period of the motion. This is essentially the same procedure that was followed
in the scaling limit [25], and the inclusion of this correction was found to be essential for an
accurate description of the spectrum [26].

For neutral mesons in the dynamical regime (I), a pictorial representation of the relevant
kink configurations is shown in Fig. 18, where the red domain is the true vacuum, and the
internal domain can be either one of the false vacua (blue/green in the figure). The scattering
process of the kinks must be diagonalised in the green/blue subspace, resulting in odd (‘sin-
glet’) and even (‘triplet’) channels, which have different amplitudes that are determined in
Appendix A.3.1. These internal configurations must be combined with a specific spatial parity,
as reflected in the resulting modification of (41):

2En(K)ka −

ka
∫

−ka

ω(k; K) = χ
�

2π(n− 1/2+ (−1)κ/4)−δ(κ)(K/2− ka, K/2+ ka)
�

, (51)
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Figure 19: Pictorial representation of kink-kink configurations forming charged
mesons (or bubbles) at rest (K = 0).

where
δ(0)(k1, k2) = δs(k1, k2) and δ(1)(k1, k2) = δt(k1, k2) , (52)

specify the matching between spatial and internal parities, which is shown to agree with the
exact diagonalisation spectrum in Subsection B. As before, the turning point ka is determined
from the condition ω(ka; K) = E(K). For the neutral bubbles, the picture of configurations
looks the same as in Fig. 18, but now the red domain is the false vacuum and the internal
green/blue are the true vacua, and similar reasoning leads to the following modification of
(48):

2En(K)(π−ka)−2

π
∫

ka

dkω(k; K) = −χ
�

2π(n−1/2+(−1)κ/4)−δ(κ)(K/2+ka, K/2−ka)
�

. (53)

Here, there is a slight difference in the order of momenta inside the phase shift compared to
Eq. (51), which corresponds to the middle point of the motion being k = π instead of k = 0,
and which is further justified by the agreement with the numerically determined spectrum as
shown in Subsection B. This results in effectively swapping the sign in front of the phase shift
since unitarity implies

δ(κ)(K/2+ ka, K/2− ka) = −δ(κ)(K/2− ka, K/2+ ka) . (54)

Turning now to the dynamical regime (II), which corresponds to collisionless states for mesons
and bubbles, no short-range correction is needed due to the absence of scattering, so quanti-
sation conditions (43) and (49) survive unmodified.

3.4 Charged mesons and charged bubbles

When the true vacuum is doubly degenerate, it is possible to have charged mesons for which
the internal part is the false vacuum, while the left/right external true vacuum domains are
different. This is depicted in Fig. 19, where the internal green part is the false vacuum and
the true vacua are red and blue. This is different from the kinks associated with the doubly
degenerate true vacuum states since the latter directly interpolate between the true vacua. In
contrast, the charged meson configurations travel through the false vacuum, as shown in Fig.
19. The scattering is diagonal in this case, with the corresponding kink-kink phase shift deter-
mined in A.3.2. Using the same arguments as for the neutral mesons, the relevant quantisation
relation is

2 En(K) ka −

ka
∫

−ka

dkω(k; K) = χ[2π(n− 1/4)− δ̂(K/2− ka, K/2+ ka)] . (55)
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In the case of doubly degenerate false vacua, Fig. 19 can be reinterpreted as the depiction of a
charged bubble, where the internal green part is the true vacuum and the false vacua are red
and blue. The relevant quantisation relation then takes the form

2En(K) (π− ka)− 2

π
∫

ka

dkω(k; K) = −χ[2π(n− 1/4) + δ̂(K/2− ka, K/2+ ka)] . (56)

4 Theory vs. phenomenology

In this Section, we show how our understanding of the spectrum can be applied to explain the
phenomenology of the different quenches described in Section 2.

4.1 Quench spectroscopy

The spectral analysis of the time evolution of the magnetisation provides detailed information
about the excitation spectrum of the system. This quench spectroscopy proved to be very useful
in analysing the dynamics of real-time confinement [4], as well as anticonfinement in the Ising
chain [22]. Following these works, we analyse the Fourier spectrum of the time evolution of
the magnetisation(s) Mµ after the corresponding quenches.

The time evolution is simulated using the iTEBD method with second-order Trotterisation.
The time step was set to δt = 0.005, and we performed simulations with maximal bond
dimensions χmax = 300 and χmax = 800; however, we only include the results with χmax = 300
in the main text. The results with χmax = 800, together with the other details of the numerics,
can be found in Appendix C. The definition of the Fourier transform we apply is given by

M(ω)≡ M
�

2πk
Nδt

�

:=
1
p

N

N−1
∑

n=0

e−2πi kn
N M(nδt) , (57)

where N is the total number of the discrete time steps of the simulation, and k is an integer
such that k ∈ [0, . . . , N − 1].

The resulting Fourier spectra are compared to quasiparticle mass gaps calculated by exact
diagonalisation (ED) with periodic boundary conditions, typically with chains of length L = 10.
To disentangle 2 and 3-kink bound states in the ED spectrum, we used the operator (A.6) as
discussed in Appendix A.2. The identification of the different species of mesons and bubbles, as
well as the kink-antikink states of effective Ising subsystems, was based upon the matching with
the semiclassical predictions obtained in Section 3. Details of this identification are discussed
in Section B where we also calculate the energy levels of the effective Ising subsystems.

4.1.1 Positively aligned: Standard confinement

In the presence of a positive h1 field, there is a single true vacuum and doubly degenerate
false vacuum states. The initial state (10) is favoured by the longitudinal field. Therefore, this
quench is dominated by real-time confinement, and the contributing excitations are expected
to be quasiparticles built upon the true vacuum, predominantly mesons, analogously to the
Ising case considered in [4]. These mesonic states form a sequence indexed by a species num-
ber n, and their overlaps with the initial state are expected to decrease with n. Additionally,
since the initial state (10) is even under the unbroken charge conjugation C exchanging the
colours 2 and 3, only C-even mesons are expected to contribute. Furthermore, the translation
invariance of the initial state dictates that the contributing states all have zero total momentum
K = 0.
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Figure 20: The Fourier spectrum of M1 in terms of eω=ω/mk in the standard confin-
ing case for the parameters g = 0.2, h1 = 0.1 (left) and h1 = 0.2 (right). The dashed
red lines correspond to the respective low energy C-even meson masses, while the
dashed blue lines denote the low energy C-even baryon masses. The masses were
calculated via ED with L = 10 and PBC as shown in Fig. 34 and they match very
well with the position of the peaks. The background is coloured grey in the interval
(ω̃min, ω̃max) = (2,2.663); collisional/collisionless mesons lie inside/outside this in-
terval, respectively.

In this case, there is only a single independent magnetisation, which can be chosen as
M1(t), for which the typical Fourier spectrum is illustrated by the cases shown in Fig. 20. The
frequency variable is normalised by the pure transverse kink mass as eω =ω/mk where mk is
given by (A.4). The first few C-even meson masses

mn = En(K = 0) , (58)

calculated via ED with L = 10 and PBC as shown in Fig. 34, are shown by red dashed
lines in Fig. 20, scaled by the kink mass mk, and they match the dominant peaks with high
precision. Within the semiclassical framework, the energies of the collisional mesons (de-
scribed by regime (I) in Subsection 3.1) in mk units lie in the interval (ω̃min, ω̃max) given by
the two-kink continuum spectrum in the pure transverse chain (A.1) in the thermodynamic
limit L →∞. From the pure transverse kink dispersion relation (A.3) we get ω̃min = 2 and
ω̃max = 2

p
A− B/

p
A+ B, which can be computed from the data in Table 1. In Fig. 20, we indi-

cate the interval (ω̃min, ω̃max) by colouring the background grey to help the readers distinguish
collisional and collisionless mesons which lie inside and outside this interval respectively.

Interestingly, we also observe peaks of higher energy in the Fourier spectrum. These peaks
can be explained by C-even baryon excitations, which can be identified as the lowest energy
states in the 3-kink part of the spectrum, that can be separated from the 2-kink spectrum using
the operator (A.6). The C-even baryon masses calculated via ED are shown by blue dashed
lines in Fig. 20, and they indeed match the position of these higher peaks very well.

We finally comment that depending on the volume, there can be meson states that are
mixed among the baryon levels in the ED spectrum. However, the position of these highly
excited meson levels depends on the volume, while that of the lowest-lying baryon levels is
essentially independent of the volume, which makes their identification unambiguous. Addi-
tionally, while in infinite volume the meson spectrum is unbounded from above, their overlaps
with the initial state decrease strongly with their energy (which is also apparent from Fig. 20),
and those in the energy range of the baryon peaks are expected to have too small overlaps to
show up in the quench spectrum.
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Figure 21: The Fourier spectrum of M1 in terms of eω = ω/mk in the standard anti-
confining case for the parameters g = 0.2, h1 = −0.1 (left) and h1 = −0.2 (right).
The dashed red lines correspond to the respective first few C-even bubble masses,
while the dashed blue lines denote the first few C-even baryonic bubble masses. The
masses were calculated via ED with PBC and L = 10 and L = 8 respectively, rel-
ative to the energy of the false vacuum as shown in Fig. 38 and they match very
well with the position of the peaks. The background is coloured grey in the interval
(ω̃min, ω̃max) = (2, 2.663); collisional/collisionless bubbles lie inside/outside this in-
terval, respectively.

4.1.2 Negatively aligned: Standard anticonfinement

Turning on a negative h1 results in a doubly degenerate true and in a single false vacuum state.
The initial state (10) is then disfavoured by the longitudinal field, leading to an anticonfining
quench whose Ising analogue was examined in [22]. Since the initial state is aligned with
the false vacuum, the relevant excitations are expected to be bubbles built upon the false
vacuum. Once again, the contributing states must be C-even with total momentum K = 0. The
bubble spectrum is unbounded from below, and the energy decreases with increasing bubble
size, i.e., with their species label. The spectrum is expected to be dominated by the highest
energy bubbles since their overlap with the false vacuum decreases steeply with their size
(corresponding to the volume of true vacuum nucleated inside the initial false vacuum state)
[23]. Note that while meson overlaps decrease with energy, the bubble overlaps show the
opposite behaviour, which can be used to distinguish a false from a true vacuum as suggested
in [49].

Two typical examples for the Fourier spectrum of M1(t) are shown in Fig. 21 with bubble
energies (computed relative to the false vacuum) indicated by dashed red lines. The bubble
masses were calculated via ED with PBC and L = 10 and L = 8 respectively, relative to the en-
ergy of the false vacuum as shown in Fig. 38. Again, the first few most dominant peaks match
the ED bubble masses with high precision, and the overlaps indeed depend on energy the
opposite way compared to the case of mesons in confining quenches. As in the case of the pos-
itively aligned quench, the background of Fig. 21 is coloured grey in the interval (ω̃min, ω̃max),
and the collisional/collisionless bubbles lie inside/outside this interval, respectively.

We also find peaks at 3-kink states built on top of the false vacuum, which we call baryonic
bubbles, with their ED masses shown by blue dashed lines in Fig. 21. Like in the (two-kink)
bubble case, we expect the baryonic bubbles with the highest energy to contribute the most,
which is indeed the case.
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Figure 22: The Fourier spectrum of M1 (left) and M2 (right) in terms of eω=ω/mk in
the partial anticonfining case for the parameters g = 0.2, h2 = 0.1 (top) and h2 = 0.2
(bottom). The dashed lines denote the high-energy (both C-even and C-odd) 2-kink
masses. The green lines correspond to the hybridised Ising KK̄ and collisional bubble
states, while the red ones to the collisionless bubbles. The red lines match very well
with the sharp peaks, while the top edge of the two-kink continuum (the highest
energy green line) corresponds to a small cusp in the quench spectrum. The positions
of the wide resonant peaks are indeed in the vicinity of the semiclassical collisional
bubble masses denoted by solid orange lines. The background is coloured grey in the
interval (ω̃min, ω̃max) = (2,2.663) where the collisional bubbles lie. All masses were
calculated via ED with PBC and L = 10 relative to the energy of the false vacuum as
shown in Fig. 34.

4.1.3 Positive oblique: Partial anticonfinement

Turning on a positive h2, the initial state (10) is polarised in the direction of one of the two
false vacua. As a result, the quench is anticonfining, and the dominant contribution is expected
to come from bubble states built on top of the false vacua.

The initial state (10) can be written as

|ψ0〉= |111 · · ·1〉=
1
p

2
{|C-even 〉+ |C-odd 〉} , (59)

where

|C-even 〉=
1
p

2
{|111 · · ·1〉+ |333 · · ·3〉} , |C-odd 〉=

1
p

2
{|111 · · ·1〉 − |333 · · ·3〉} , (60)

are C-even and C-odd states respectively under C exchanging 1 and 3. As a result, both even
and odd quasiparticles can contribute. To match the peaks of the Fourier spectrum, the exci-
tation energies must be computed relative to the false vacuum state.
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We show typical Fourier spectra of M1(t) and M2(t) for these quenches in Fig. 22. Note
that in addition to the bubble states, we expect a contribution from the effective Ising subsys-
tem of kinks interpolating between the two false vacua. In the ED spectrum (Fig. 34), these
excitations can be found in the top part of the 2-kink levels. However, in infinite volume,
the two-particle states form a continuum. Therefore, we do not expect peaks at the discrete
locations of the corresponding zero-momentum ED eigenstates calculated in finite volume L.
Rather, a threshold in the Fourier spectrum must appear where the effective Ising two-kink
continuum ends. Indeed, such a threshold is visible at the top edge of the two-kink levels,
manifested as a small cusp in the spectrum (see also in Fig. 34).

The presence of these kink excitations is responsible for the partial nature of anticonfine-
ment (a.k.a. Wannier-Stark localisation), manifested in the growth of entanglement entropy
shown in Fig. 10b, as well as in the presence of unsuppressed light-cone behaviour in certain
two-point correlations (Fig. 11), which is discussed in detail in Subsection 4.2 below.

In Fig. 22 we represent high-energy 2-kink masses by dashed lines. The masses were
calculated via ED with PBC and L = 10 relative to the energy of the false vacuum as shown
in Fig. 34. Since the matrix element s2(k1, k2) of the S-matrix given by equation (A.10)
is non-zero, the collisional bubbles lying in the effective Ising two-kink continuum cannot
exist in the infinite chain as stable excitations. Instead, they hybridise with the continuum
of effective Ising two-kink states. As explained in the standard quench scenarios, the interval
(ω̃min, ω̃max) = (2, 2.663) containing the collisional bubbles is again coloured grey. It turns
out that all the ED masses that lie inside the interval (ω̃min, ω̃max) also fall into the energy
band determined by the effective Ising two-kink states that can be calculated using (B.4). As
a result, all the collisional bubbles are hybridised with the effective Ising two-kink states. We
denote all the ED masses that lie inside the interval of the effective Ising two-kinks by green
dashed lines representing the hybridised states.

However, collisional bubbles can still exist as unstable particles (resonances) on the infinite
chain. In the Fourier spectra of the post-quench oscillations, shown in Fig. 22, these unstable
collisional bubbles result in wide resonant peaks expected to be in the vicinity of semiclassically
calculated masses of the collisional bubbles, which are shown by orange solid lines in the
figure. In contrast, at the position of the masses of the collisionless bubbles (represented by
red dashed lines), we expect sharp peaks. Fig. 22 confirms a good agreement between the
theoretical expectations and the quench spectroscopy results. We also note that at the present
resolution, we could not identify any baryonic (i.e. 3-kink) excitations in the spectrum.

4.1.4 Negative oblique: Partial confinement

In the presence of a negative h2, the initial state (10) which can be again written as a combi-
nation of C-even and C-odd states as (59), is favoured by the longitudinal field and it has finite
overlaps with one of the true vacua leading to a (partially) confining quench. Therefore, the
dominant contribution to quench spectroscopy is expected to come from mesonic excitations,
both C-even and C-odd. The presence of the Ising subsystem built upon the doubly degenerate
true vacua leads to effective Ising kink-antikink states, which now occupy the bottom part of
the low-energy spectrum as visible in Fig. 38. They are responsible for the partial nature of
confinement, manifested in the growth of entanglement entropy shown in Fig. 12b, as well as
in the presence of unsuppressed light-cone behaviour in certain two-point correlations (Fig.
13), which is discussed in detail in Subsection 4.2 below.
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Figure 23: The Fourier spectrum of M1 (left) and M2 (right) in terms of eω=ω/mk in
the partial confining case for the parameters g = 0.2, h2 = −0.1 (top) and h2 = −0.2
(bottom). The dashed lines denote the low-energy (both C-even and C-odd) 2-kink
masses. The green lines correspond to the hybridised Ising KK̄ and collisional meson
levels, while the red ones show the collisionless mesons. The red lines match very
well with the sharp peaks, while the threshold of the two-kink continuum (the lowest
energy green line) corresponds to a small cusp in the quench spectrum. The positions
of the wide resonant peaks are indeed in the vicinity of the semiclassical collisional
meson masses denoted by solid orange lines. The background is coloured grey in the
interval (ω̃min, ω̃max) = (2,2.663) where the collisional mesons lie. All masses were
calculated via ED with PBC and with L = 10 as shown in Fig. 38.

Typical Fourier spectra of M1(t) and M2(t) for these quenches can be seen in Fig. 23.
The dashed lines in Fig. 23 correspond to low-energy 2-kink ED masses that were calculated
via ED with PBC and with L = 10 as shown in Fig. 38. The presence of the effective Ising
two-kink continuum again leads to a cusp signalling the threshold of the corresponding two-
particle continuum in the infinite volume system. The collisional meson masses lie in the
interval (ω̃min, ω̃max), as explained in Subsection 4.1.1, which is indicated by the background
coloured grey. Similarly to the previous case, the collisional mesons hybridise with the effective
Ising two-kink states. The ED masses corresponding to the hybridised states are denoted by
dashed green lines. Once again, the collisional mesons lead to wide resonant peaks which are
located in the vicinity of the semiclassical collisional meson masses (shown by orange solid
lines). The red dashed lines denote the collisionless meson masses obtained from ED.

The agreement between the ED spectrum and quench spectroscopy is again convincing.
Furthermore, similar to the previous case, there is no sign of 3-kink bound states (i.e., baryons)
at the present resolution.
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Figure 24: Connected correlators C11 (left) and C23 (right) in the positively aligned
(confining) quench scenario. The colour scale was changed relative to Fig. 7 to em-
phasize the escaping fronts present despite their suppression by the confining force.
The black solid lines are drawn at ±2vLR t with vLR being the maximum velocity of
the kinks in the pure transverse model given by (A.5). In contrast, the dotted black
lines are determined by the maximum meson velocity computed from the semiclas-
sical dispersion relations.

4.2 Localisation and light-cone spreading in two-point correlations

4.2.1 Aligned quenches

For positively aligned quenches, the dynamics is determined by real-time confinement of the
kink excitations. As in [4], this leads to a strong suppression of the light-cone structure of
the connected correlation functions as shown in Fig. 7. Nevertheless, as already observed
in the case of the Ising model [4], subleading effects lead to the presence of a light cone
traced out by two-meson states, which is suppressed by several orders of magnitude, as shown
in Fig. 24, with its slope determined by the maximum velocity of mesonic excitations. The
largest maximum velocity is obtained for the lightest meson corresponding to n = 1 in (51),
and can be computed as

vM =max
K

dE1(K)
dK

. (61)

In Figs. 7 and 24, the black dotted lines are drawn at ±2vM t.
For negatively aligned (anticonfining) quenches, the spreading of correlations is sup-

pressed by Bloch oscillations [22], giving rise to Wannier-Stark localisation [6,10]. This again
leads to a strong suppression of the light-cone structure of the connected correlation functions,
as shown in Fig. 9. Nevertheless, similarly to the positively aligned case, subleading effects
corresponding to the emission of bubble pairs lead to the presence of a light cone, which is
suppressed by several orders of magnitude, as shown in Fig. 25. The main difference from the
confining case is that the slope of this light cone is determined by the maximum velocity of
bubble excitations. In this case, the fastest excitation is the heaviest bubble corresponding to
species number 1 in the semiclassical quantisation (53). Since the initial state is aligned with
the false vacuum, this is the state which dominates the dynamics, as also evident from the
quench spectroscopy results shown in Fig. 21. Therefore, in Figs. 9 and 25, the black dotted
lines are drawn at ±2vB t with

vB =max
K

dE1(K)
dK

. (62)

We remark that in both Figs. 24 and 25, some residual correlations can be observed outside
the light cone indicated by the lines. The reason is that the light cone lines are drawn from a
single point, while initial state correlations have a non-zero, albeit very short, range.
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Figure 25: Connected correlators C11 (left) and C23 (right) in the negatively aligned
(anticonfining) quench scenario. The colour scale was changed relative to Fig. 9
to emphasize the escaping fronts present despite their suppression by the confining
force. The black solid lines are drawn at±2vLR t with vLR being the maximum velocity
of the kinks in the pure transverse model given by (A.5). In contrast, the black
dotted lines are determined by the maximum bubble velocity computed from the
semiclassical dispersion relations.

4.2.2 Oblique quenches

In the oblique quenches, the longitudinal field points in direction 2, which results in the de-
generacy of the vacua 1 and 3, leading to an effective Ising subsystem that is excited by the
initial state polarised along direction 1. As a result, connected correlations C11 propagate
unsuppressed, with the kink velocity determined from (B.2) as

vI =max
k

dεIsing(k)

dk
= heff =

2g
3

. (63)

The corresponding light cones appear in both positive and negative oblique quenches, shown
in Figs. 11a and 13a, respectively, where the dashed lines correspond to ±2vI t.

The correlation C22 shows the full effect of anticonfinement/confinement (depending on
the specific case), as discussed for negatively/positively aligned quenches. In the positive
oblique case shown in Fig. 11, the spreading of these correlations is suppressed by Wannier-
Stark localisation, while in the negative oblique case in Fig. 13, the relevant mechanism is
real-time confinement. This is also confirmed by the appearance of bubble/meson excitations
in their quench spectroscopy as discussed in Subsections 4.1.3 and 4.1.4. Additionally, the
excitation of the effective Ising kink system results in light-cone propagation in the (partially
suppressed) C23 correlator. This is demonstrated in Figs. 11c and 13c, where the dashed lines
correspond to the effective Ising kink velocity (63).

To sum up, in oblique quenches, the light-cone spreading of correlations is only partially
suppressed, further justifying the terminology of partial (anti)confinement used above.

5 Conclusions

In the present work, we investigate non-equilibrium dynamics after quantum quenches on the
mixed-field three-state Potts quantum chain in the ferromagnetic regime. The 3-state Potts
model is a natural generalisation of the Ising model, where the local degrees of freedom have
three possible orientations instead of two. As a result, the phenomenology of the Potts model
is much richer. In both cases, switching on a (weak) longitudinal field in the ferromagnetic
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phase leads to confinement, which can be considered an analogue model of quantum chromo-
dynamics. However, in the Ising model, the confined excitations can only be two-kink bound
states analogous to mesons, while the Potts model also allows for three-kink bound states,
which are the analogues of baryons. In this connection, we note that the realisation of bary-
onic excitations in condensed matter systems has attracted recent interest [58–60].

Beyond the spectrum, the non-equilibrium dynamics of the Potts model in the ferromag-
netic phase is also more varied than that of the Ising case. In the latter, there are essentially
two scenarios. The case when the longitudinal field is parallel to the initial magnetisation leads
to dynamical confinement [4], while in the antiparallel (anticonfining) case the time evolu-
tion corresponds to the decay of the false vacuum [18, 52], which however differs from the
usual scenario [20] since the nucleated true vacuum bubbles are prevented from expanding
by Bloch oscillations [22]. As a result, both cases show suppression of both the growth of en-
tanglement entropy and the spreading of correlations, which are qualitatively similar despite
the difference between the underlying mechanisms.

In the Potts model, quenches with the longitudinal field aligned with the initial magneti-
sation are essentially analogous to the Ising case. Nevertheless, there are some interesting
modifications. For the positively aligned case, we found dynamical confinement as in the Ising
case [4], with two alterations: firstly, the presence of baryonic excitations, which was verified
using the quench spectroscopy. Secondly, although the time evolution of the entanglement
entropy is dominated by oscillations, as in the Ising case, there is an additional long-time drift,
which can be attributed to the presence of (albeit suppressed) escaping fronts. In the nega-
tively aligned case, we found Wannier-Stark localisation caused by Bloch oscillations; however,
due to the degeneracy of the true vacuum states, the nucleated bubbles can now also be three-
kink states, i.e., of a baryonic nature. In addition, the entanglement entropy again shows a
slow drift for the same reason as in the confining case.

For the oblique quenches, when the longitudinal field is not aligned with the initial mag-
netisation, there is no parallel with the Ising case. In such cases, both confinement and
Wannier-Stark localisation are only partially effective, leading to the unsuppressed growth
of entanglement entropy and the presence of substantial light-cone spreading of certain corre-
lations. The reason is that the presence of three ground states leads to degeneracies for either
the true or the false vacuum states depending on the sign of the longitudinal field, resulting in
an unconfined effective Ising kink subsystem. This implies that in the case of oblique quenches,
where the longitudinal field is not parallel to the initial magnetisation, the localisation effects
can only be partial, while certain correlations spread unsuppressed. This also results together
in an unsuppressed growth of entanglement entropy.

There are several interesting open problems. First, developing a description for the baryon
spectrum similar to that of the mesons and bubbles. This requires a quantum mechanical
description of the three-body problem, which generalises the existing field-theoretic approach
[27] to the lattice model. Second, it seems interesting to explore transport properties and
local quench protocols, following similar work done for Ising quenches [6, 23]. Finally, it
would be interesting to see whether the various phenomena explored here can be realised in
experimental settings, based e.g. on recent proposals to implement the Potts universality class
in Rydberg atom systems [61–63].
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A Spectrum and scattering in the pure transverse chain

A.1 Dispersion relation

In the ferromagnetic phase of the pure transverse Potts chain

H = −
L
∑

i=1

3
∑

µ=1

(Pµi Pµi+1)− g
L
∑

i=1

P̃i , (A.1)

the quasiparticles are kinks/antikinks. In finite volume, single-kink states obey twisted bound-
ary conditions

PµL+1 = Pµ±1
L+1 , (A.2)

where µ±1 is understood mod 3, and the upper/lower signs correspond to the kink/anti-kink
excitations. Using exact diagonalisation with a finite L, the energy of a single-kink excitation
of a given momentum k can be determined. Note that the momentum k is quantised in units of
2π/3L due to the twisted boundary conditions being only periodic under a shift of length 3L.
The dispersion relation can then be obtained by subtracting the ground state of the chain with
the same length L and periodic boundary conditions, with the results illustrated in Fig. 26.
Following the Ising case, it can be fitted with a function of the form (see Fig. 26)

ε(k) =
p

A+ B cos k . (A.3)
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0.90

0.95

1.00

1.05

1.10

1.15

ε(
k
)

A = 1.0117, B = -0.2820

Figure 26: Dispersion relation for the kink excitation obtained with exact diagonal-
isation of a chain of length L = 8 with twisted boundary conditions and transverse
field g = 0.2. The dots represent numerical data, while the solid line is the fit with
the function

p
A+ B cos k.
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Table 1: Values of A and B of the dispersion relation ε(k) =
p

A+ B cos k for different
values of the transverse field g.

g = 0.2 g = 0.3 g = 0.4 g = 0.5 g = 0.6

A 1.0117 1.0291 1.0565 1.0955 1.1479

B −0.2820 −0.4321 −0.5863 −0.7434 −0.9023

Values of A and B are presented in Table 1 for different coupling values g. Furthermore, we
define the kink mass as

mk = ε(0) =
p

A+ B , (A.4)

and the Lieb-Robinson velocity of kinks as

vLR =max
k

dε(k)
dk

. (A.5)

A.2 Identifying kink-antikink states

In the neutral sector, selecting kink-antikink states is often difficult, as they overlap with three-
kink states of zero total charge. We note that these are effectively the same states that become
baryonic excitations once a confining longitudinal field is switched on, making their identi-
fication important as well. To accomplish this selection, it is necessary to have an operator
whose expectation values correspond to the total number of kinks and antikinks (counted
while neglecting their charge).

The following operator

OPOTTS =
∑

i

�

P1
i P2

i+1 + P2
i P1

i+1 + P2
i P3

i+1 + P3
i P2

i+1 + P3
i P1

i+1 + P1
i P3

i+1 +
2
3

�

, (A.6)

counts the number of pairs of adjacent sites that correspond to different colours. As a result,
the expectation value of this operator returns approximately the number of kinks forming the
state. However, it must be assumed that the typical extension of domain walls is very short
(less than two sites), which is only valid for suitably small transverse fields when the kinks are
sufficiently localised. Additionally, the longitudinal field must also be small enough so that the
typical distance between confined kinks is more than two lattice sites. For the parameters we
use in our exact diagonalisation studies, we found that these conditions are suitably satisfied,
so the expectation value of operator (A.6) could reliably distinguish two-kink states from three-
kink states.

A.3 Kink scattering amplitudes

The scattering of two quasiparticles on each other can be characterised by the two-particle
S-matrix, which relates the amplitude of an incoming asymptotic wave function

ψk1σ1,k2σ2
(x1≪ x2)∼ Ain

σ1,σ2
(k1, k2)e

i(k1 x1+k2 x2) , (A.7)

with momenta k1 > k2, to that of the outgoing wave function

ψk1σ1,k2σ2
(x1≫ x2)∼ Bout

σ1,σ2
(k1, k2)e

i(k1 x1+k2 x2) , (A.8)
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as
Bout = S(k1, k2)A

in . (A.9)

Imposing the S3 symmetry of the Potts model, the structure of the two-body S-matrix is further
restricted to the form [40]:

S(k1, k2) =







s3(k1, k2) 0 0 0
0 s1(k1, k2) s2(k1, k2) 0
0 s2(k1, k2) s1(k1, k2) 0
0 0 0 s3(k1, k2)






. (A.10)

Here s3(k1, k2) describes the interaction in the charged sector consisting of kink-kink and
antikink-antikink states:

Kαγ(k1)Kγβ(k2) = s3(k1, k2)Kαγ(k2)Kγβ(k1) , α ̸= β , (A.11)

while s1(k1, k2) and s2(k1, k2) describe interactions in the neutral sector of kink-antikink states:

Kαγ(k1)Kγα(k2) = s1(k1, k2)Kαγ(k2)Kγα(k1) + s2(k1, k2)Kαβ(k2)Kβα(k1) , β ̸= γ . (A.12)

A.3.1 Kink-antikink scattering

In the kink-antikink sector, the eigenvalues of the S-matrix read

st(k1, k2) = eiδt (k1,k2) = s1(k1, k2) + s2(k1, k2) ,

ss(k1, k2) = eiδs(k1,k2) = s1(k1, k2)− s2(k1, k2) ,
(A.13)

where we introduced the “triplet” and “singlet” eigenvalues st(k1, k2) and ss(k1, k2) and the
corresponding phase shifts δt(k1, k2) and δs(k1, k2). The two sectors correspond to the even
and the odd sector respectively according to the parity of the Z2 charge conjugation symmetry
generated by C introduced in (3). We compute the phase shifts from exact diagonalisation
data on a finite chain of length L. For the kink-antikink we can both use periodic boundary
conditions and partial twisted boundary conditions for which the end of the chain is twisted
by the operator

T̃L = I1I2 · · · T̃L , (A.14)

with the operator T̃L being

T̃L =





1 0 0
0 0 1
0 1 0



 , (A.15)

acting on site L exchanging colours 2 and 3.
The spectrum of kink-antikink states, selected by the operator (A.6), in a finite chain with

partially twisted boundary conditions is reported in Fig. 27, where odd and even sectors of the
restricted Z2 symmetry under the exchange of colours 2 and 3 are represented as blue circles
and green crosses respectively.

Such states have a total momentum K(κ) = k1 + k2 which is quantised, since T̃ 2
L = I,

according to

K(κ) =
2π

L̃

�

n(κ)1 + n(κ)2

�

, L̃ = 2L , (A.16)

where κ= 0 corresponds to the odd sector and κ= 1 to the even sector. Furthermore:

k1 L̃ +δ(κ)(k1, k2) = 2πn(κ)1 ,

k2 L̃ +δ(κ)(k2, k1) = 2πn(κ)2 ,
(A.17)
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Figure 27: Two particle spectra in the partially twisted sector for L = 10 and trans-
verse field g = 0.2. Green crosses indicate even states with respect to the Z2 symme-
try under the swap 2↔ 3 while blue circles indicate odd states.
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Figure 28: Left: Phase shift δs(k1, k2) in the odd channel (singlet). Right: Phase
shift δt(k1, k2) in the even channel (triplet). The surfaces interpolate the solutions
to (A.17) with ED data for different chain lengths (L = 8, . . . , 14).

with
δ(0)(k1, k2) = δs(k1, k2) ,

δ(1)(k1, k2) = δt(k1, k2) .
(A.18)

We can solve (A.17) by considering the energy E(κ) of the state and finding the relative mo-
mentum k by inverting

E = ε(K/2+ k) + ε(K/2− k) . (A.19)

Going from (K , k) variables to (k1, k2) we finally find the phase shifts δ(κ)(k1, k2).
In Fig. 28 we present an interpolation of the phase shift surfaces in both sectors.

A.3.2 Kink-kink scattering

In the partially twisted sector there exist states with non-zero topological charge. This cor-
responds to configurations of charged mesons and bubbles shown in Fig. 19 where we have
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Figure 29: The energy spectrum (left) of a chain of length L = 10 and with transverse
field g = 0.2 with twisted boundary conditions and phase-shift (right) δ̂(k1, k2) for
kink-kink interaction. The surface of the phase-shift interpolates the solutions to
(A.23) with ED data for different chain lengths (L = 8, . . . , 14).

kink-kink scattering with phase shift δ̂(k1, k2) determined by

s3(k1, k2) = eiδ̂(k1,k2) , (A.20)

introduced with (A.10).
We compute δ̂(k1, k2) from exact diagonalisation data on a finite chain of length L as in

Section A.3.1. For the kink-kink channel we use twisted boundary conditions acting with the
operator

TL = I1I2 · · · TL , (A.21)

with TL given by (7) performing the cyclic permutation 1→ 2, 2→ 3 and 3→ 1 on site L.
We select two-particle states with operator (A.6). Such states have a total momentum

K = k1 + k2 which is quantised, since T 3
L = I, according to

K =
2π

L̂
(n1 + n2) , L̂ = 3L . (A.22)

Furthermore the individual momenta satisfy

k1 L̂ + δ̂(k1, k2) = 2πn1 ,

k2 L̂ + δ̂(k2, k1) = 2πn2 ,
(A.23)

and we can proceed to the computation of the phase shift as in Section A.3.1. In Fig. 29
we show the ED spectrum for L = 10 in the left panel and the interpolated surface for the
kink-kink phase shift on the right panel.

A.4 Spontaneous magnetisation

The spontaneous magnetisation can be determined directly in the infinite volume limit using
iTEBD, as explained in Appendix C. We consider the ground state polarised in the 1 direction,
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Figure 30: Spontaneous magnetisation M1 for the pure transverse Potts model
({hµ = 0}) as a function of the coupling g. The red dots correspond to the iTEBD
data, while the solid black line is the fitted function 2

3(1− g2)α.

for which the expectation value of M1 is reported in Fig. 30 as a function of g, where the data
are fitted with the function

M1 =
2
3
(1− g2)α , (A.24)

resulting in α ≈ 0.102. While this is merely a fitting function that describes the data well in
the ferromagnetic regime away from the vicinity of the critical point gc = 1, the numerically
obtained exponent α can be compared to conformal field theory. Using the fact that the tem-
perature perturbation has scaling dimension ∆ε = 4/5, while for the magnetisation operator
∆σ = 2/15 [64], conformal field theory predicts that the spontaneous magnetisation scales
with the exponent

∆σ
2−∆ε

=
1
9
= 0.111 . . . (A.25)

for |g − gc| ≪ 1. This matches very well with α, especially when taking into account that the
latter was extracted using data away from g = gc .

The other two magnetisations are simply given by M2 = M3 = −M1/2.

B Matching the semiclassical spectrum with exact diagonalisation
results

Here we compare exact diagonalisation results for the spectrum of the mixed-field Potts model
(2) to semiclassical results obtained in Section 3, for the parameter values applied in the
quantum quenches of the main text. We demonstrate that the semiclassical approximation
matches the exact diagonalisation results for a periodic chain of length L = 10 well, allowing
for an unambiguous interpretation of the energy spectrum.

We choose the longitudinal field to align with direction 1 (red):

H(h1, g) = −
L
∑

i=1

3
∑

µ=1

Pµi Pµi+1 −
L
∑

i=1

h1P1
i − g

L
∑

i=1

P̃i , (B.1)

and consider both the case of positive and negative longitudinal field h1. For both signs the
Hamiltonian preserves the Z2 subgroup generated by the charge conjugation C exchanging
colours 2 and 3, which allows for two distinct boundary conditions:
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Figure 31: Two-kink configurations with pTBC and a positive longitudinal field h1
along the red direction. The twist operator T̃L swaps colours blue and green at the
end of the chain, but leaves red unchanged.

◦ Partially twisted boundary conditions (pTBC)
This corresponds to inserting the twist operator T̃L (A.14) swapping colours 2 and 3:

Pµi+L = T̃L Pµi , P̃i+L = T̃L P̃i .

◦ Periodic boundary conditions (PBC)

Pµi+L = Pµi , P̃i+L = P̃i .

All states can be classified according to their eigenvalue (parity) with respect to the unbroken
Z2 symmetry.

B.1 Positive longitudinal field

The possible two-kink configurations with pTBC are depicted in Fig. 31: the lowest states in
energy are even and odd mesons built upon the true vacuum state, while the spectrum built
over the two false vacua is instead given by charged bubbles due to the twist at the edges of
the chain. The semiclassical meson spectrum is hence described by equation (51), where the
energy of the meson is computed with respect to the energy of the true vacuum state, which can
be computed from exact diagonalisation with periodic boundary conditions. For the bubbles,
the relevant quantisation condition is given by (56), and since they are built over the false
vacua, the energies given by (56) have to be shifted by the energy difference between the true
vacuum and the false vacua. In finite volume, the two spectra are separated by a crossover
regime, where the energy levels can be described as collisionless mesons (or bubbles) given
by (43), similarly to what was found for the Ising chain [23].

In Fig. 32 we report ED data for the energy spectrum with pTBC for different values of
the longitudinal field h1, along with semiclassical energy levels of neutral mesons and charged
bubbles. We note that the semiclassical quantisation conditions cease to have solutions for
large K > K∗, where K∗ is the value when the turning point reaches the edge of the Brillouin
zone. Its value depends on the quasiparticle excitation considered. To get the spectrum for all
values of K , a full quantum mechanical description must be considered (c.f. Ref. [23] for the
corresponding analysis in the Ising case).

For PBC, the relevant configurations shown in Fig. 33 include neutral even and odd mesons
described by Eqs. (51), and neutral even and odd bubbles described by (53). In Fig. 34 we
report ED data for the energy spectrum with PBC for two different values of the longitudinal
field h1, along with semiclassical energy levels of neutral mesons and bubbles.

In addition to the bound states, the two-kink sector contains further levels corresponding
to kink-antikink states interpolating between the metastable vacua 2 and 3 (see Fig. 2). This
subsystem can be treated as an effective Ising model, and the kinks can be considered as free
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Figure 32: The semiclassical energy spectrum (solid, dashed and dotted lines) com-
pared to exact diagonalisation results (green crosses and blue circles) with partially
twisted boundary conditions (pTBC) for different positive values of the longitudinal
field h1 = 0.05 and h1 = 0.1 and for a fixed transverse field g = 0.2. The length of
the chain used in the exact diagonalisation procedure was chosen to be L = 10. The
green crosses (and the blue circles) indicate C-even (and C-odd) states according to
the unbroken Z2 subgroup generated by C in (8). The bottom part of the spectrum is
described by even and odd neutral mesons (solid and dashed lines, respectively). In
contrast, the top part of the spectrum is composed of charged bubbles (dotted lines).
The crossover between the two regimes is given by the collisionless mesons/bubbles,
which can be described either by (43) or (49). We note that the even/odd lines meet
exactly when the turning point reaches π, where the dispersion relation cannot be
followed semiclassically anymore.

fermions with the dispersion relation

εIsing(k) =
Ç

1+ h2
eff − 2heff cos k , (B.2)

where

heff =
2g
3

, (B.3)

with g being the transverse field of the Potts model [65]. Then the free kink-antikink states of
total momentum K and relative momentum k have total energy given by

EIsing = εIsing(K/2+ k) + εIsing(K/2− k) + εFV
0 , (B.4)

where k = {π/L, 2π/L, . . . ,π}, and εFV
0 is the energy of the false vacuum states relative to

the true vacuum. As shown in Fig. 34, the spectrum (B.4) (depicted by dashed grey lines)
matches the appropriate energy levels. In the thermodynamic limit, these states give rise to
a two-particle continuum. As explained in the main text in Subsection 4.1.3, the collisional
bubbles lying in the energy range of the effective Ising two-kink levels hybridise with the
effective Ising two-kink states and form a continuum.

B.2 Negative longitudinal field

Reversing the sign of the longitudinal field h1, the two-kink configurations allowed for twisted
boundary conditions are changed. Now the lowest energy states are charged mesons over the
degenerate true vacua described by Eq. (55), while from the unique false vacuum, odd and
even bubbles described by Eq. (53) can form. These configurations are illustrated in Fig. 35.
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Figure 33: Neutral meson/bubble configurations with PBC and a positive longitudi-
nal field h1 along the red direction.

As in the previous case, the crossover regime is given by collisionless mesons (or bubbles)
described by Eq. (43). In Fig. 36 we report ED data for the energy spectrum together with
the semiclassical energy levels of charged mesons and neutral bubbles.

When considering periodic boundary conditions, the semiclassical spectrum is identical to
the h1 > 0 case, with the allowed configurations depicted in Fig. 37, corresponding to neutral
mesons (51) and neutral bubbles (53) shown by dashed black lines.

The corresponding ED data for the energy spectrum are reported in Fig. 38, together with
the semiclassical energy levels of neutral mesons and neutral bubbles.

Furthermore, there are now effective Ising kink-antikink states corresponding to the two
degenerate true vacua, with their energy levels for total momentum K given by

EIsing = εIsing(K/2+ k) + εIsing(K/2− k) , (B.5)

where k = {π/L, 2π/L, . . . ,π}. The corresponding energy levels are shown by dashed grey
lines in Fig. 33. Again, these states form a two-particle continuum in the thermodynamic
limit. Similarly to the case of the positive longitudinal field, the collisional mesons lying in the
energy range of the effective Ising two-kink levels hybridise with the effective Ising two-kink
states and form a continuum.

C Details of the iTEBD calculations

For the computation of the spontaneous magnetisation in Fig. 30 an imaginary time evolution
with the infinite Time Evolving Block Decimation (iTEBD) algorithm was performed. The
system is initially prepared in the state

|ψ0〉=
L
⊗

i=1

|1〉i . (C.1)

We then apply the non unitary operator

U(T ) = e−H(0,g)T |ψ0〉 , (C.2)

for different values of g, with H being the pure transverse Potts Hamiltonian (A.1). After a
sufficiently long period of time T , the system relaxes to its ground state polarised in direction
1 [66], and the expectation value of the operator P1 can be computed.
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Figure 34: The semiclassical energy spectrum (solid, dashed and dotted lines) com-
pared to exact diagonalisation results (green crosses and blue circles) with peri-
odic boundary conditions (PBC) for different positive values of the longitudinal field
h1 = 0.05 and h1 = 0.1 and for a fixed transverse field g = 0.2. The length of the
chain used in the exact diagonalisation procedure was chosen to be L = 10. The
green crosses (and the blue circles) indicate C-even (and C-odd) states according to
the unbroken Z2 subgroup generated by C of (8). The bottom part of the spectrum is
described by odd and even neutral mesons (solid and dashed black lines respectively)
of (51) while the top part of the spectrum is described by even and odd neutral bub-
bles (solid and dashed black lines respectively) given by (53). The crossover of the
two regimes is described by the collisionless mesons (or bubbles) of (43) or (49). Ad-
ditionally, the grey lines on the top part of the spectrum correspond to the two-kink
states above the two degenerate false vacua described by effective Ising kink-antikink
states as in (B.4).

The imaginary time evolution is performed by a second-order Trotter-Suzuki approxima-
tion with Trotter steps δt = 0.01, while the total time of evolution T is chosen by computing
the energy eigenvalue ϵ(t) of the state at each time step t and the time evolution stops when
the difference between two subsequent energy measurements is less than 10−14, that is:

|ϵ(T )− ϵ(T −δt)|< 10−14 . (C.3)

The maximum bond dimension was set to χmax = 81, a value never reached by the actual bond
dimension used in the simulations.
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(a) Charged meson.

1
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L
T

(b) Neutral C-even and C-odd bubbles.

Figure 35: Two-kink configurations with pTBC and a negative longitudinal field h1
along the red direction.
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Figure 36: The semiclassical energy spectrum (solid, dashed and dotted lines) com-
pared to exact diagonalisation results (green crosses and blue circles) with partially
twisted boundary (pTBC) conditions for different negative values of the longitudinal
field h1 = −0.05 and h1 = −0.1 and for a fixed transverse field g = 0.2. The length of
the chain used in the exact diagonalisation procedure was chosen to be L = 10. The
green crosses (and the blue circles) indicate C-even (and C-odd) states according to
the unbroken Z2 subgroup generated by C of (8). The bottom part of the spectrum is
described by charged mesons of (55) (dotted lines) while the top part of the spectrum
is described by even and odd neutral bubbles (solid and dashed lines respectively)
given by (53). The crossover between the two regimes is given by the collisionless
mesons (or bubbles) of (43) or (49).

1

2

L
±

1

2

L

(a) Neutral C-even and C-odd mesons.

1

2

L
±

1

2

L
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Figure 37: Neutral meson/bubble configurations with PBC and a negative longitudi-
nal field h1 along the red direction.

To perform the quantum quenches and obtain the numerical results discussed in Section
2.2, 2.3 and 4.1, we used again the iTEBD method, this time for real-time evolution with
second-order Trotterisation. As previously discussed, the initial state was always chosen as

|ψ0〉=
L
⊗

i=1

|1〉i , (C.4)

and we time evolved this state by applying the corresponding Hamiltonian (2) with a time
step δt = 0.005. We performed simulations with χmax = 800 up to shorter times (approxi-
mately t ≈ 200) and with χmax = 300 up to longer times (t = 1000). The larger maximum
bond dimension ensures higher precision, but it significantly reduces the speed of the simu-
lations, preventing long-time runs. However, longer-time simulations prove essential as they
show that even for the standard confining/anticonfining quenches, the entanglement entropy
S does not saturate completely, displaying a slow drift instead. In contrast, for partial con-
fining and anticonfining quenches the entanglement entropy does not saturate at all. For the
four different quench types, S is shown in Figs. 39, 40 where simulation results with bond
dimension χmax = 800 are shown in blue, while those with χmax = 300 are shown in orange.
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Figure 38: The semiclassical energy spectrum (solid, dashed and dotted lines) com-
pared to exact diagonalisation results (green crosses and blue circles) with periodic
boundary conditions (PBC) for different negative values of the longitudinal field
h1 = −0.05 and h1 = −0.1 and for a fixed transverse field g = 0.2. The length
of the chain used in the exact diagonalisation procedure was chosen to be L = 10.
The green crosses (and the blue circles) indicate C-even (and C-odd) states according
to the unbroken Z2 subgroup generated by C of (8). The bottom part of the spectrum
is described by odd and even neutral mesons (solid and dashed black lines respec-
tively) of (51) while the top part of the spectrum is described by even and odd neutral
bubbles (solid and dashed black lines respectively) given by (53). The crossover of
the two regimes is described by the collisionless mesons (or bubbles) of (43) or (49).
Additionally, the grey lines on the bottom part of the spectrum are in correspondence
with the two-kink states above the two degenerate true vacua that constitute non-
localised states and are described by effective Ising kink-antikink states of (B.5).

Additionally, long-time simulations are needed to obtain sufficient frequency resolution for
quench spectroscopy. Here, we compare the results obtained with the choice of χmax = 300
to those with larger bond dimension χmax = 800 to verify their agreement. In the initial time
period for which both results are available, the difference between the time evolution of the
magnetisation and the entropy is negligible, and the Fourier spectra qualitatively show the
same features. We present an example of the Fourier spectrum of M1(t) for each of our four
quench scenarios performed with bond dimension χmax = 800 in Figs. 41-44, shown side-by-
side with the χmax = 300 results for easier comparison. The data demonstrate that the two
sets of results are consistent, with the longer simulation time increasing frequency resolution,
which is also essential for detecting the presence of baryonic excitations. In the main text, we
only include the results of the simulations with χmax = 300.
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Figure 39: Long-term time evolution of the entanglement entropy in the standard
confining case for the parameters g = 0.2 and h1 = 0.1 (left) and in the standard
anticonfining case for g = 0.2 and h1 = −0.1 (right). The orange curves denote the
results of the simulations with the choice of χmax = 300, and the blue curves the
results with χmax = 800. In both cases, the time evolution of the entropy exhibits a
slow drift on long time scales.

0 200 400 600 800 1000

t

0.0

0.5

1.0

1.5

2.0

S

g = 0.2, h2 = 0.1

χmax = 300

χmax = 800

(a) Partial anticonfinement

0 200 400 600 800 1000

t

0.0

0.5

1.0

1.5

2.0

2.5

S

g = 0.2, h2 = −0.1

χmax = 300

χmax = 800

(b) Partial confinement

Figure 40: Time evolution of the entanglement entropy in the partial anticonfining
case (positive oblique) for the parameters g = 0.2 and h2 = 0.1 (left) and in the
partial confining case (negative oblique) for g = 0.2 and h2 = −0.1 (right). The
orange curves denote the results of the simulations with the choice of χmax = 300,
and the blue curves the results with χmax = 800. In both cases, the time evolution of
the entropy shows unsuppressed growth on long time scales.
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Figure 41: The Fourier spectrum of M1 in terms of eω = ω/mk in the standard con-
fining case for the parameters g = 0.2, h1 = 0.1, χmax = 800 (left) and χmax = 300
(right). The dashed red lines correspond to the respective low energy C-even meson
masses, while the dashed blue lines denote the low energy C-even baryon masses.
The masses were calculated via ED with L = 10 and PBC as shown in Fig. 34, and
they match very well with the position of the peaks. The background is coloured
grey in the interval (ω̃min, ω̃max) = (2,2.663); collisional/collisionless mesons lie in-
side/outside this interval, respectively.
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Figure 42: The Fourier spectrum of M1 in terms of eω=ω/mk in the standard anticon-
fining case for the parameters g = 0.2, h1 = −0.1, χmax = 800 (left) and χmax = 300
(right). The dashed red lines correspond to the respective first few C-even bubble
masses, while the dashed blue lines denote the first few C-even baryonic bubble
masses. The masses were calculated via ED with PBC and with L = 10 as shown
in Fig. 38, and the energy of the false vacuum is subtracted from the ED masses.
The ED masses match very well with the position of the peaks. The background is
coloured grey in the interval (ω̃min, ω̃max) = (2,2.663); collisional/collisionless bub-
bles lie inside/outside this interval, respectively.
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Figure 43: The Fourier spectrum of M1 in terms of eω=ω/mk in the partial anticon-
fining case for the parameters g = 0.2, h2 = 0.1, χmax = 800 (left) and χmax = 300
(right). The dashed lines denote the high-energy (both C-even and C-odd) 2-kink
masses. The green lines correspond to the hybridised Ising KK̄ and collisional bub-
ble states, while the red ones to the collisionless bubbles. The red lines match very
well with the sharp peaks, while the top edge of the two-kink continuum (the highest
energy green line) corresponds to a small cusp in the quench spectrum. The positions
of the wide resonant peaks are indeed in the vicinity of the semiclassical collisional
bubble masses denoted by solid orange lines. The background is coloured grey in the
interval (ω̃min, ω̃max) = (2,2.663) where the collisional bubbles lie. All masses were
calculated via ED with PBC and L = 10 relative to the energy of the false vacuum as
shown in Fig. 34.
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Figure 44: The Fourier spectrum of M1 in terms of eω=ω/mk in the partial confining
case for the parameters g = 0.2, h2 = −0.1, χmax = 800 (left) andχmax = 300 (right).
The dashed lines denote the low-energy (both C-even and C-odd) 2-kink masses. The
green lines correspond to the hybridised Ising KK̄ and collisional meson levels, while
the red ones show the collisionless mesons. The red lines match very well with the
sharp peaks, while the bottom edge of the two-kink continuum (the lowest energy
green line) corresponds to a small cusp in the quench spectrum. The positions of
the wide resonant peaks are indeed in the vicinity of the semiclassical collisional
meson masses denoted by solid orange lines. The background is coloured grey in the
interval (ω̃min, ω̃max) = (2,2.663) where the collisional mesons lie. All masses were
calculated via ED with PBC and with L = 10 as shown in Fig. 38.
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