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Abstract

We investigate the conformal algebra on the fuzzy sphere, and in particular the genera-
tors of translations and special conformal transformations which are emergent symme-
tries in the infinite IR but are broken along the RG flow. We show how to extract these
generators using the energy momentum tensor, which is complicated by the fact that one
does not have a priori access to the energy momentum tensor of the CFT limit but rather
must construct it numerically. We discuss and quantitatively analyze the main sources
of corrections to the conformal generators due to the breaking of scale-invariance at fi-
nite energy, and develop efficient methods for removing these corrections. The resulting
generators have matrix elements that match CFT predictions with accuracy varying from
sub-percent level for the lowest-lying states up to several percent accuracy for states with
dimension ∼ 5 with N = 16 fermions. We show that the generators can be used to ac-
curately identify primary operators vs descendant operators in energy ranges where the
spectrum is too dense to do the identification solely based on the approximate integer
spacing within conformal multiplets.

Copyright G. Fardelli et al.
This work is licensed under the Creative Commons
Attribution 4.0 International License.
Published by the SciPost Foundation.

Received
Accepted
Published

2024-11-07
2025-02-27
2025-03-10

Check for
updates

doi:10.21468/SciPostPhys.18.3.086

Contents

1 Introduction and summary 2

2 Lightning fuzzy sphere review 4

3 Constructing the conformal algebra generators 5
3.1 Generators from Tµν 5
3.2 Conformal generators from H 6

3.2.1 H vs T0
0 6

3.2.2 Recipe for constructing generators 7

4 Matching and tuning the generators 8
4.1 Conformal perturbation theory for K + P 8
4.2 Matching and tuning the spectrum 11
4.3 Tuning the generators 13

1

https://scipost.org
https://scipost.org/SciPostPhys.18.3.086
mailto:fardelli@bu.edu
mailto:fitzpatr@bu.edu
mailto:amikatz@bu.edu
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhys.18.3.086&amp;domain=pdf&amp;date_stamp=2025-03-10
https://doi.org/10.21468/SciPostPhys.18.3.086


SciPost Phys. 18, 086 (2025)

5 Numeric results 15
5.1 Matrix elements 15
5.2 Commutator 20
5.3 Identifying primaries 21
5.4 Conformal Casimir 23

A Conformal generators on S2 from Tµν 25

B Rotation Noether current Va 26

C Formulae for H and ΛA 28

D Corrections to (P + K) matrix elements from primaries 32

E Matrix elements of PA in CFT limit 35

F Useful OPE data 38

G Estimates for primary conformal dimensions 39

References 39

1 Introduction and summary
High-energy states of Quantum Field Theory (QFT) and their various properties remain a
largely unexplored terrain. Such states are very interesting, however, as they are believed to
offer important insights into chaos, thermalization, and the emergence of nontrivial phases of
matter including hydrodynamics and superfluids among others [1–4]. In the case of conformal
field theories (CFTs), one at least has the advantage that high-energy data is intrinsically dis-
crete and thus, perhaps, the connection between chaos and CFTs can more easily be studied.
In addition, high energy CFT data is useful in order to study more general QFTs, which can
be thought of as relevant deformations of CFTs. Specifically, in the Hamiltonian Truncation
framework for describing such QFTs, the more high-energy CFT data is available, the more
accurately one can capture generic QFT observables [5]. Yet despite the need for such high-
energy data, until recently, it has been very challenging to access high-energy CFT states using
existing methods. The fuzzy sphere approach to CFT data offers a new tool that can obtain
such states [6–15]. Indeed, these high-energy states can be computed numerically by diago-
nalizing the Hamiltonian of a dynamical system of a large number of interacting fermions in
the lowest Landau level (LLL), living on a sphere in a monopole background. As the number
of fermions is enlarged, with their interactions tuned appropriately to quantum criticality, one
realizes an increasing number of approximate CFT states near the ground-state of the system.

A natural question which then arises is how to test that these numerically computed states
approximate CFT physics rather than simply a set of interacting non-relativistic fermions. For
example - how does one determine the effective UV-cutoff for the emergent IR CFT states?
One way to do this is to examine the conformal structure by constructing the special conformal
generators using the operators of the microscopic fermionic theory and then employ these to
directly test conformality.1 In this paper, we will take a step in this direction, by focusing on the
fuzzy sphere realization of the 3d Ising CFT. Our goal will be to build approximate conformal

1A similar approach has been taken in 2d lattice models with a CFT fixed point [16,17], where one constructs
all the generators of the conformal algebra in terms of the underlying lattice operators. See also [18] for a different
construction of the 2d conformal algebra.
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generators and check aspects of conformality, including the conformal algebra, numerically,
for the IR CFT states. We will also use the algebra as a way of extracting a rough CFT UV-cutoff
from the numerical data. The hope is then that quantifying the range of emergent conformality
will aid in identifying reliable high-energy CFT states for future work.

The fuzzy sphere framework has two important advantages which allow for a systematic
improvement of CFT measurements: The first, is that it preserves rotational invariance per-
fectly, allowing one to more easily classify states and to relate microscopic fermionic operators
to emergent IR CFT operators. The second, is that the interactions on the sphere are local
and there is a large energy gap for single particle excitations above the LLL. Consequently,
all corrections to CFT observables are also local. In other words, at criticality all CFT viola-
tions come from local irrelevant operators generated along the RG-flow to the Ising CFT. We
can then significantly improve the results through the use of effective theory and conformal
perturbation theory [19].

In particular, it is important to emphasize that our goal will not be to use the fuzzy sphere
to independently verify the precise results of the conformal bootstrap. Rather, as we are ul-
timately interested in higher-energy CFT states, we are going to use the most accurate low-
energy data of the conformal bootstrap in order to tune to the critical point. As we describe in
detail in section 4.2, we will choose microscopic couplings in order to set both the coefficients
of ε and ε′ approximately to zero. However, we will find that this tuning is insufficient to
obtain accurate special conformal generators. The generators are naturally constructed from
the fuzzy sphere energy density local operator, but this operator near the IR CFT fixed point
contains corrections from both irrelevant primary operators as well as irrelevant descendant
operators. The irrelevant descendant operators do not contribute to the spectrum, but do mod-
ify the conformal generators. Therefore, we will require additional tuning in order to obtain
improved generators. Our procedure for tuning is described in section 4.

Armed with these improved special conformal generators (whose matrix elements agree
with CFT expectations at the few percent level for low-energy states), we will report on vari-
ous detailed checks of the conformal structure. These include numerical tests of the conformal
algebra, the existence of primary states (as states annihilated by the special conformal gener-
ator), as well as the spectrum of the conformal Casimir. The results are presented in sections
5.1, 5.3, and 5.4. Very roughly, we find that for N = 16, the conformal structure appears to
break down at energies of ∼ 6. Beyond that scale, for example, it is difficult to reliably iden-
tify primaries. The results presented here can be used to improve the fuzzy sphere program
in various directions: perhaps of utmost importance is the need to push numerically to higher
values of N so that the cutoff is increased. This would be highly desirable for both the study of
chaos as well as for Hamiltonian truncation applications, and studies of large charge EFTs of
CFT states. How high exactly one must push in dimensions for these applications is difficult to
predict in advance, but there are at least some examples where even ∆ ∼ 6 is sufficient, such
as the large charge EFT of the 3d O(2) model which appears to apply already to some states
with conformal dimensions slightly larger than one [20, 21]. Relatedly, it would be useful to
improve the accuracy of CFT measurements. This can be done by considering a larger space
of couplings in the UV Hamiltonian. Using the larger parameter space should then allow for
better tuning to criticality, for example by considering more of the λn terms (defined in section
2) to set several irrelevant operator coefficients to zero. The generators can similarly be im-
proved systematically. The result should be sensible conformal structure stretching to higher
energies, indicating many more healthy states. Finally, for the above mentioned applications,
it would also be advantageous to use the same tuning approach to improve any local opera-
tors, by constructing combinations of UV operators, which come closer to representing IR CFT
operators. Such combinations can then be used to extract more accurate CFT OPE coefficients
for excited states, starting from the results in [7].
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Comment on notation: capital letters (A, B) denote indices for the embedding space description
of S2, lower-case letters (a, b) denote intrinsic S2 indices (θ ,φ), and Greek letters (µ,ν) denote
R× S2 indices (t,θ ,φ).

2 Lightning fuzzy sphere review

The system of the lowest Landau level (LLL) at half-filling on a fuzzy sphere has been covered
in many places (see e.g. [22]), and the following review will be extremely brief and is mainly
to establish conventions. We restrict to the case where the action is a sum of terms that are
quadratic or quartic in nonrelativistic fermion fields ψ:

S = S2 + S4 ,

S2 =

∫

d td2 x
p

g

�

ψ†(iDt −
D2

2M
+ hσx)ψ

�

,

S4 = −
∫

d td2 x
p

g
∑

n

�

λn(ψ
†ψ)∇⃗2n(ψ†ψ)−λn,z(ψ

†σzψ)∇⃗2n(ψ†σzψ)
�

.

(1)

The covariant derivative is Da =∇a + iAa, where Aa is a background gauge field.
We then take space to be a sphere S2 with radius R, ds2= gabd xad x b=R2(dθ2+sin2 θdφ2),

and the background gauge field to be that of a magnetic monopole,

A= s cosθdφ , (2)

with flux through the surface of the sphere given by
∫

dA= 4πs.2 Because of the background
flux, the lowest energy states are the LLL states. Restricting to the LLL contains 2s+ 1 degen-
erate orbitals for each spin, in which the fermions can be expanded as

ψi(Ω) =
1
R

s
∑

m=−s

Φm(Ω)cm,i (i =↑,↓) , (3)

with

Φm(Ω) = Nmeimφ coss+m
�

θ

2

�

sins−m
�

θ

2

�

, N2
m =

(2s+ 1)!
4π(s+m)!(s−m)!

. (4)

Each state at half-filling has N = 2s+ 1 fermions.
The restriction to the LLL is a UV regulator, which implements a rotationally invariant

UV cutoff on length scales shorter than Λ−1
UV ∼ |B|

−1/2, where |B| is the background magnetic
field. One way to see this is to look at how the completeness relation for the sum over modes
is modified by discarding the higher LLs:

{ψ†
i (Ω),ψi(Ω

′)}=
1
R2

s
∑

m=−s

Φ∗m(Ω)Φm(Ω
′) =

2s+ 1
4πR2

cos2s δθ

2
, (5)

where Ω · Ω′ ≡ cosδθ . At large s, (5) approaches a δ function smeared out over angles,
δθ ∼ 1/

p
s, or equivalently over lengths δx = Rδθ ∼ |B|−1/2. It is convenient to use units set

by this UV scale, and in particular we will take |B| ≡ 1/2 so that R2 = N − 1.

2We have used differential forms on S2 to express A, but one also commonly sees these formulas for the
monopole in vector calculus notation in R3, as follows. The unit vector beφ ≡ (− cosθ , sinθ , 0) is related to
dφ by dφ ∼=

p

gφφbeφ =
1

R sinθ beφ , and then the vector A can be written A⃗ = −beφ
s
R cotθ . The magnetic field is

B⃗ =∇× A⃗= s
R2 br, and the flux is R2

∫

d2Ωbr · B⃗ =
∫

dA.
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Finally, the Hamiltonian restricted to the LLL states follows from the action and is the
integral H = R2

∫

d2ΩH over the Hamiltonian density H:

H =
∑

n



λn(ψ
†ψ)
∇2n

S2
1

R2n
(ψ†ψ)−λn,z(ψ

†σzψ)
∇2n

S2
1

R2n
(ψ†σzψ)



− hψ†σxψ , (6)

plus an implicit vacuum energy. The operators are not normal ordered. The factors of R2n

in the denominator come from writing the Laplacian in terms of the Laplacian ∇2
S2

1
on the

unit sphere, ∇⃗2 = ∇2
S2

1
/R2. From now on, we will work only with ∇2

S2
1

and so will drop the

subscript. We will also follow [6] and restrict to the case λn,z = λn.3

3 Constructing the conformal algebra generators

3.1 Generators from Tµν

In a conformal theory, all the Noether currents jµε for the conformal symmetries
xµ→ xµ + εµ(x) can be written in terms of the energy-momentum tensor,

jµε (x) = ε
ν(x)Tµν(x) , (7)

and so the corresponding generators Qε of the transformations are all spatial integrals over
T00 and T0a of the form Qε =

∫

dd−1 x
p

g j0ε (x).
4 We review how to derive the conformal gen-

erators on R×S2 in terms of Tµν in appendix A. The Dilatation generator is just (proportional
to) the Hamiltonian and depends only on T0

0:

D =

∫

d2Ω T0
0 . (8)

The rotation generators Jz , J± are given by the following integrals of T0
a:

Jz ∝
∫

d2ΩT0
φ , J±∝±i

∫

d2Ωe±iφ(T0
θ ± i cotθT0

φ) , (9)

and can be written in embedding space notation (see appendix A) for S2 ⊂ R3 as

JB ∝
∫

d2ΩεABC
bxC T0A . (10)

The generators PA of translations and KA of special conformal transformations (SCTs) can be
written in embedding space notation as

PA =

∫

d2Ω(bxAT0
0 + iT0A) , KA =

∫

d2Ω(bxAT0
0 − iT0A) . (11)

Note that P + K depends only on T0
0 and P − K depends only on T0A, and P†

A = KA.

3The combination (ψ†ψ)2 + (ψ†σzψ)2 is proportional to the identity on the LLL, so changing
λ0→ λ0 + c,λ0,z → λ0,z − c has no effect on the theory, and one can set λ0 = λ0,z without loss of generality.

4In the 3d Ising model, there is no ambiguity about which operator is the correct energy-momentum tensor,
because it is the unique dimension-3 spin-2 operator; in a sense, this is the ‘generic’ case, since the presence of
multiple such operators requires additional symmetries.
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3.2 Conformal generators from H

3.2.1 H vs T0
0

If we had direct access to the energy momentum tensor of the CFT, the above expressions would
be all we would need to construct the conformal generators. In practice, however, the fuzzy
sphere construction is only conformal in the infrared (IR), and the emergent stress tensor in
the CFT does not correspond to a simple local operator in the microscopic description. Instead,
there is a nontrivial mapping between UV and IR operators, and a local operator in the UV will
generically be represented as an infinite sum over all local operators in the CFT allowed by
symmetry. Consequently, a conceptually straightforward strategy for obtaining the CFT stress
tensor is to take the microscopic Hamiltonian density H and analyze its expansion in a basis
of CFT operators, e.g.

H = γT0
0 +

∑

O
gOO . (12)

By symmetry, the operators O in this expansion should be scalars under SO(3) rotations, in-
cluding for instance scalar components of spinning operators such as T00.

Aside from being a fairly natural choice, starting the construction of T0
0 with the Hamil-

tonian density H has some practical advantages. The first is that the dilatation operator is
(proportional to) the Hamiltonian on R× S2, and so

H = R2

∫

d2Ω H , (13)

is the exact generator (by definition) of time translations, even away from the critical point.
A second, related, advantage of using H is that it is straightforward to show that at linear
order, any operators with time derivatives in the expansion above can be removed by a basis
rotation.5

Moreover, because the Hamiltonian is the integral over H, the same expansion of H above
shows up for the expansion of the Hamiltonian around the CFT limit:

H = γHCFT +
∑

O primary

gO

∫

d2Ω O(Ω) . (14)

Any descendant operators in the expansion are total spatial derivatives and vanish by inte-
gration by parts, so only primaries survive. The fact that these coefficients gO for primary
operators in the Hamiltonian are the same as in the expansion of H is useful for two practical
reasons. First, it means that slightly away from the critical point, the values of the gOs can
be inferred by inspection of the spectrum of eigenvalues of H and comparison with conformal
perturbation theory. Second, it means that we can actually set a finite number of the gOs to
zero simply by tuning the parameters in the microscopic theory to bring us closer to the crit-
ical point.6 Consequently, the main new feature that arises in the expansion of H is that one
must also consider the effect of descendant operators, which have no effect on the spectrum
of energies but do affect the conformal generators.

As reviewed in section 2, at the critical point there are two intrinsic physical energy scales
in the system we study, which we can call the UV scale or “lattice” scale ΛUV (though the fuzzy

5The argument is essentially the one given in [19] for time derivatives in the Hamiltonian it-
self. For any operator O, consider the basis rotation U ≡ eiλ

∫

d2
byO(by). Under this basis change,

H(bx)→ UH(bx)U† =H(bx) + iλ
∫

d2
by[O(by),H(bx)] +O(λ2) =H(bx) +λ d

d t O(bx) +O(λ2).
6The details of this tuning will be described in detail in subsequent sections, but the idea is that at any finite

size of the fuzzy sphere, there are an infinite number of irrelevant operators in the expansion of H around HCFT,
and their presence can be detected by comparing the spectrum of H to the spectrum of HCFT when the latter is
known.
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Figure 1: Dependence of γ2 ∝ Λ2
UV/Λ

2
IR on N ; to good approximation,

Λ2
UV/Λ

2
IR∝ N − 0.25.

sphere does not have a lattice, it is still convenient to use the language of lattice regulariza-
tions) and the IR scale ΛIR, which we define as the size of the energy gap in the spectrum and
which is inversely proportional to the radius R of the sphere. Restoring units of ΛUV,

H =
∑

O
bgOΛ

3−∆O
UV O , (15)

where bgO is dimensionless and set by the microscopic theory, and therefore independent of
the size of N . However, as N increases, the sphere increases in size, and consequently the gap
(at the critical coupling) ΛIR ∼ 1/R will decrease, so that

Λ2
IR/Λ

2
UV ∼ 1/N . (16)

At each value of N , one rescales energies to get dimensions by fixing the dimension of the
stress tensor to be ∆T = γET ≡ 3, so γ = 3/ET ∼ 1/ΛIR and γ2 is proportional to Λ2

UV/Λ
2
IR.

In Fig. 1, we show the numerical dependence of γ2 on N , where one sees that to very good
approximation Λ2

UV/Λ
2
IR ≈ N − 0.25.7 After rescaling all dimensional quantities by γ, the

expansion of H takes the form

H =
∑

O
bgO

�

ΛUV

ΛIR

�3−∆O
O ∼

∑

O
bgON

3−∆O
2 O . (17)

3.2.2 Recipe for constructing generators

From the expressions (11), it might seem most natural to construct PA and KA separately by
constructing T00 and T0A. However, we will take a different approach and first construct the
combination

ΛA ≡ PA+ KA = 2

∫

d2ΩbxAT0
0 , (18)

since this combination depends only on T0
0. Because Lorentz invariance is broken along the RG

flow, a priori we do not have any simple relation between the representation of T00 and T0A in
terms of microscopic operators. One might hope that since rotations are exactly preserved by
the fuzzy sphere regulator, that might provide a useful handle on T0A as a local operator built
from the Noether charge density VA for rotations. Unfortunately, as we discuss in appendix B,
VA does not appear to be useful for constructing PA− KA.

7See also [6] Fig. 7 for an equivalent result.
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However, there is a more practical approach that we can take for obtaining PA and KA once
we have the combinationΛA ≡ PA+KA. One way to see that it is not necessary to independently
construct P −K is that the entire conformal algebra is generated by D, JA and Pz +Kz . So, one
could obtain P − K from the relation

P − K = [D, P + K] . (19)

In fact, the approach we will follow is even easier in practice. The key point is that in
the CFT, P acting on a state raises its dimension by 1 and K acting on a state lowers it by 1.
Since we are numerically diagonalizing D, the dimension of all states is known, and so one
can separate out the contributions to P + K coming from P versus those coming from K by
looking at the difference in dimension between the bra and ket state. In Fig. 2, we plot the
size of |(Pz + Kz)i j| against the difference in dimension ∆i j ≡ ∆i −∆ j for all eigenstates up
to dimension 5.5. There are clearly two large spikes, around ∆i j = ±1, with the size of the
matrix elements decreasing away from these points. In fact, the extent to which acting with
P or K on a state mostly produces only states with ∆→ ∆± 1 provides a useful quantitative
measure of the validity of the CFT generators being constructed. The construction we will use
in this paper is that PA includes all the matrix elements of ΛA that raise the dimension and
KA includes all the matrix elements of ΛA that lower the dimension.8 One could easily use a
different construction by imposing different restrictions on the change in dimensions for the
PA and KA components, but this definition seems natural to us in that it preserves the fact that
PA+ KA = ΛA.

In appendix C, we provide expressions for constructing ΛA from the fuzzy sphere Hamilto-
nian density. In practice, we will only ever compute the matrix elements of Λz , and moreover
we will only compute them in the jz = 0 and jz = 1 sectors. By the Wigner-Eckart theorem,
we can obtain all other matrix elements of ΛA between all other states from this subset alone.

4 Matching and tuning the generators

4.1 Conformal perturbation theory for K + P

Our main goal in this section will be to see how to remove as much as possible the corrections
to the generators for (P + K)A in order to obtain their values in the conformal limit. Because
corrections to T0

0 coming from primary operators affect the Hamiltonian whereas corrections
from descendant operators do not, the role of primaries and descendants will be qualitatively
different. Primary operators contribute both directly to the matrix elements of (P+K) through
their explicit presence in the operator, as well as through the fact that they modify the Hamilto-
nian and therefore affect the eigenstates. Our strategy will be to try tuning them away directly
at the level of the microscopic Lagrangian as much as possible by analyzing the spectrum of
eigenvalues. Then the dominant corrections to the matrix elements of (P + K) will all come
from descendant operators, making the analysis cleaner and simpler.

In the CFT limit, the matrix elements of Pz and Kz are nonzero only between states within
a single representation, by definition. Given a primary operator O, with a corresponding
primary state |O〉, the ‘level-n’ descendants are all states obtained from |O〉 by acting with n
factors of PA.

Consider first for simplicity the case where the primary O is a scalar operator. Then in 3d,
at each level n there is a unique state with spin ℓ for allowed values of spin, 0≤ ℓ≤ n, n−ℓ= 0
(mod 2). Let (n,ℓ) denote the descendant at level n with spin ℓ. The matrix elements of Pz are

8Since the operator ΛA carries spin 1, its diagonal matrix elements vanish by rotational invariance.
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Figure 2: Plot of the size of |(Pz + Kz)i j| versus the difference in dimension
∆i j ≡ ∆i − ∆ j for all eigenstates up to dimension 5.75, using N = 16, and set-
ting jz = 0 but otherwise including all symmetry sectors. Matrix elements less than
10−2 are not shown. There are clearly two large features centered around ∆i j = ±1,
indicating that for the vast majority of nonnegligible matrix elements looking at ∆i j
provides a simple way to separate out the contributions of P vs K to the sum P + K .
Parameters were V0 = 4.825, h = 3.158, and we have used three parameters to tune
away derivative contributions inside T0

0 as described in section 4.

nonzero only between (n,ℓ) and (n+1,ℓ+1) or between (n,ℓ) and (n+1,ℓ−1); in appendix E
we show that

〈n+ 1,ℓ′|Pz|n,ℓ〉2CFT =

(

ℓ2(n−ℓ+2)(2∆+n−ℓ−1)
(2ℓ+1)(2ℓ−1) (ℓ′ = ℓ− 1) ,

(ℓ+1)2(n+ℓ+3)(2∆+n+ℓ)
(2ℓ+1)(2ℓ+3) (ℓ′ = ℓ+ 1) ,

(20)

where ∆ is the dimension of the scalar primary state of the representation. For the case of
primaries with general spin, appendix E additionally contains an efficient recursion relation
for obtaining the matrix elements of PA. The results for several low-lying states are depicted
in Fig. 3.

In practice, it is not generally possible to tune away all deviations from the conformal limit.
Even at the critical coupling, there will be irrelevant interactions that scale to zero only in the
infinite IR, which is not possible to access numerically. Instead, as in (12),

H = γT0
0 +

∑

O
gOO ,

H = γHCFT + V , V ≡
∑

O
gO

∫

d2ΩO ,

(21)

where H and H are the Hamiltonian density and Hamiltonian in the deformed theory. When
we diagonalize H, if V is sufficiently small, then each eigenstate | eOn〉 can be identified as a
CFT state |On〉 plus corrections. At linear order in the deformation V ,

| eOn〉= |On〉+
∑

m

〈Om|V |On〉
∆n −∆m

|Om〉 . (22)
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Figure 3: CFT predictions for the matrix elements of Λz for some low-lying states, for
a spin-0 primary (top) and spin-ℓ0 primary (bottom) of dimension ∆0. Parity-even
(odd) states are depicted with circles (squares). When ℓ0 > 0, there are two states
at dimension ∆=∆0 + 2 and spin ℓ= ℓ0.

The sum over m here is over all states, including descendants.
The matrix elements of H differ from those of T0

0 in the CFT because of two types of effects.
The first comes directly from the difference H− T0

0 as an operator. The second difference is
indirect, due to the difference | eOn〉 − |On〉 between the eigenstates in the CFT and in the
deformed theory. We can separate out these two effects as follows:

eFOr TOn
(x)≡ 〈 eOr |H(x)| eOn〉= eF

(op)
Or TOn

(x) + eF (state)
Or TOn

(x) ,

eF (op)
Or TOn

(x)≡ γ〈Or |T00(x)|On〉+
∑

O
gO〈Or |O(x)|On〉 , (23)

eF (state)
Or TOn

(x)≡
∑

O primary

gO
∑

m

�

〈Or |T00(x)|Om〉〈Om|
∫

d2 y
p

gO(y)|On〉
∆n −∆m

+
〈Or |

∫

d2 y
p

gO(y)|Om〉〈Om|T00(x)|On〉
∆r −∆m

�

.

By inspection, these sums can be rewritten in the form of integrals over time-ordered corre-
lators. The sum over m is just a sum over states with an energy denominator, which can be
written as a sum over states with an integral over time, with time-ordered operators. Assuming
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that ∆m >∆n,∆r ,
9 the integrals converge and one finds

eF (state)
Or TOn

(x) =
∑

O primary

gO

∫ ∞(1−iε)

−∞(1−iε)
(−i)d t

∫

d2 y
p

g〈Or |T{O(t, y)T00(0, x)}|On〉

= −
∑

O primary

gO

∫ ∞

−∞
d tE

∫

d2 y
p

g〈Or |O(−i tE , y)T00(0, x)|On〉 ,

(24)

where in the second line we have Wick rotated to obtain an integral over Euclidean time
tE = i t. In general, evaluating eF (state)

Or TOn
(x) requires knowledge of the four-point function that

appears above. However, we will usually restrict to the main case of interest where |On〉 and
|Or〉 have spins ℓn and ℓr that differ by 1 (|ℓn− ℓr |= 1). In this case, by rotational invariance
the only part of T00(0, x) that contributes is its integral against bx , which therefore reduces it
to Λz = Kz + Pz , and the correlator reduces to a three-point function. If |Or〉 or |On〉 is the
vacuum, then the correlator reduces even further, to a two-point function.

In appendix D, we work out FOr TOn
in detail for the case where Or = 1 is the identity and

On =O1,1 is a level-1, spin-1 descendant of a scalar primary O. In this case, the result is

eF1TO1,1
(bx) = cosθ

�

gO

√

√ 2
3∆
∆− 3
∆+ 2

+
∞
∑

n=1

(−2)n g∇2nO

√

√2∆
3

�

, (25)

where ∆ = ∆O. If O is allowed by symmetry to appear in H, then so are all of its scalar
descendants, and generically one would expect all of them to be present. By inspection of this
formula, their contributions cannot be distinguished from each other based on their bx depen-
dence (which is also clear from the symmetries of the bra and ket states). On the other hand,
the coefficients g∇2nO all have different scaling dimensions, and they can be distinguished from
each other based on their dependence on the size of the fuzzy sphere, i.e. on ΛUV/ΛIR.

4.2 Matching and tuning the spectrum

As discussed in Sec. 3.2.1, we can think about the UV Hamiltonian as an expansion around
the CFT one plus contributions from Z2-even primaries. To define our critical point we can
therefore think of tuning the λn and h parameters in H to minimize the corrections to the
spectrum coming from relevant and slightly irrelevant operators. At first order in perturbation
theory

H = γHCFT +
∑

O
gO

∫

d2ΩO(Ω) , H |Oi〉= Ei |Oi〉 ,

Ei = γ∆i +δE(O)i , δE(O)i =
〈Oi|

∑

O gO
∫

d2ΩO(Ω) |Oi〉
〈Oi|Oi〉

.

(26)

The expression for δEi depends on both the spin of the external state and whether it is a
primary or a descendant. If we focus on cases where Oi is either scalar primary or its first
descendant state, the corresponding expressions for δEi [19] are:

δE(O)i =

(

gO f
eOiO eOi

, Oi = eOi primary,

gO f
eOiO eOi

�

1+ ∆O(∆O−3)
6∆

fOi

�

, Oi = ∂ eOi ,
(27)

with f
eOiO eOi

the OPE coefficient.

9More generally, a finite number of terms with∆m <∆n,∆r may be separated out and dealt with independently.
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Figure 4: Plot of extracted values for the Wilson coefficients gε (dashed) and gε′
(solid) of the operators ε and ε′ in the Hamiltonian, as a function of V0 and h in the
microscopic theory at N = 12. One can see that both gε and gε′ vanish at approxi-
mately V0 = 4.825, h= 3.158.

In practice, in our analysis we consider corrections coming from ε and ε′, the lowest di-
mension Z2-even scalar primary.10 Focusing on a subset of operators, Oi = ε, σ, ε′, ∂ ε∂ σ,
we determine gε, gε′ , γ by minimizing

min
γ,gε,gε′

∑

Oi

�

Ei − γ∆i −δE(ε)i −δE(ε
′)

i

�2
. (28)

In Fig. 4 we show the Wilson coefficients gε and gε′ , extracted at N = 12, as a function of h
and the Haldane pseudopotentials V0, V1 = 1, which are related to the microscopic parameters
λn as (see appendix C for more details)

λ0

R2
=

2π
(2s+ 1)2

((4s+ 1)V0 + (4s− 1)V1) ,

λ1

R4
=

2π
(2s+ 1)2

·
(4s− 1)V1

s
.

(29)

We then define the critical point as the values of V0 and h such that

gε = 0= gε′ ⇐⇒ V0 = 4.825 , h= 3.158 (and V1 = 1) . (30)

In Fig. 5, we compare this point to the original choice of parameters in [6] and the one
minimizing the errors between the dimensions obtained and known conformal bootstrap re-
sults for some low dimensional operators. Notice how both our choice of parameters and the
one in [6] lie inside the regions minimizing the errors and therefore they are equivalently good
at the level of the spectrum. The reason why we opted to define the critical point as (30) is
that this method is a more direct attempt to isolate and remove the most relevant deforma-
tions to the Hamiltonian, which is what one would want to do in order to obtain the fastest
convergence with N .

10See appendix F for all the necessary OPE data.
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Figure 5: Plot of the χ2 for the comparison of fuzzy sphere dimensions versus boot-
strap data, where χ2 ≡ 100

Nops

∑Nops

i=1 (∆i −∆
(CB)
i )2/∆(CB)

i . Various choices are depicted

for the states included in the χ2; in all cases, the contours are χ2 = 0.01. Also shown
is the point where gε = gε′ = 0 from Fig. 4.

4.3 Tuning the generators

Next, we will turn to the issue of tuning away descendant operators in H− T0
0. In Fig. 6, we

show the result for the matrix element 〈vac|eΛz|∂ ε〉 of eΛz between the vacuum and the spin-
1, level-1 descendant state |∂ ε〉, and the analogous plot for 〈vac|eΛz|∂ ε′〉, computed in the
fuzzy sphere at V0 = 4.825, h = 3.158 for N = 6,8, . . . , 16. We use a tilde on Λ to denote the
matrix elements computed at finite N , which will be contaminated by deviations from the CFT
limit. The expected CFT result is that these particular matrix elements should vanish in the
IR, at N =∞. Interestingly, up to N = 16, the highest we consider, the result for 〈vac|eΛz|∂ ε〉
appears to be getting worse as N increases. However, if one fits all the data as a function of N
to a power series with the expected powers based on the dimension of ε, the fit is fairly stable
and correctly predicts that the result at N =∞ should vanish (to within numeric error). The
coefficients in the fit for the ∂ ε′ case are larger than those for ∂ ε, which is expected based
on the higher dimension ∆∂ ε′/∆∂ ε ≈ 1.9, so the IR scale ΛIR is correspondingly higher and

therefore the expansion parameter
�

ΛIR
ΛUV

�2
∝ Λ2

IR
N is roughly a factor of 4 larger.

The main takeaway from Fig. 6 is that convergence with N is extremely slow even if one
tunes to the critical coupling for V0 and h. This slow convergence is due to the descendant
operator ∇2ε, which has dimension ∼ 3.41 and therefore converges with N like N−0.206. In
the fits, this contribution shows up as a ‘nosedive’ to the correct value at 1/N = 0, and to
suppress it by taking large N would require taking impractically large values of N . Instead, it
will be vastly more efficient to correct eΛA by adding additional local microscopic operators to
H and tuning their coefficients to remove the contamination from ∇2ε. Fortunately, we can
easily do better than removing ∇2ε. At a fixed N , the contributions to eΛ from descendant
operators of the same primary are indistinguishable from each other, and can be removed in
one fell swoop. To make this explicit, write out the expansion of

∫

d2Ω xAH in terms of CFT
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Figure 6: Matrix element of eΛz between the vacuum and the spin-1, level-1 de-
scendant state |∂ ε〉 (top) and |∂ ε′〉 (bottom), computed in the fuzzy sphere at
V0 = 4.825, h = 3.158 for N = 6, 8, . . . , 16. We also show fits to the data, where
the powers in the Taylor series are those expected based on the dimensions of ε,ε′

and its descendants. The expected result in the CFT is 0, shown as a red dot, which
is not included as an input to the fit but rather is an output used to test the reliability
of the fit.

operators, and focus on operators in the O representation:

eΛA ≡ 2

∫

d2Ω xAH ⊃ 2

∫

d2Ω xA

∞
∑

n=0

g∇2nO∇2nO = 2

�∞
∑

n=0

(−2)n g∇2nO

�

∫

d2Ω xAO , (31)

where we have integrated by parts and used the fact that ∇2 xA = −2xA.
When we construct ΛA in the microscopic description, we will add terms that are total

derivatives of operators made from the LLL fermion fields in order to try to remove some num-
ber of leading deformation terms ∼ g∇2nO∇2nO. Any total derivative will have no effect on
the Hamiltonian, but in terms of the effect on eΛ it will be equivalent to shifting the coefficient
gO of the primary operator. This means that for all practical purposes, when we construct ΛA,
without loss of generality we can treat all couplings in H as additional independent parameters
compared to their values in the Hamiltonian!11

11Note however that the values of the coefficients g∇2nO all scale like different powers of N , so although their con-
tribution to eΛ collapses to the combination

�∑∞
n=0(−2)n g∇2nO

�

, one should keep in mind the implicit N -dependence
of this expression when comparing different values of N .
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To implement the procedure just outlined, we will compute the contributions to eΛA from
the terms proportional to V0, V1, and h independently, and then we will fix these coefficients
in order to try to remove total derivatives from H− T0

0. We expect that the largest corrections
come from derivatives of the lowest dimension operators, so we set one condition to be that
the following matrix element should vanish:

〈vac|eΛz|∂Aε〉= 0 , (32)

where the state |∂Aε〉 is the spin-1 state with dimension closest to ∆ε + 1 = 2.41. For the
second condition, one could impose

〈vac|eΛz|∂A∂
2ε〉= 0 , or 〈vac|eΛz|∂Aε

′〉= 0 , (33)

where the state |∂A∂
2ε〉 is the spin-1 state with dimension closest to ∆ε + 3 = 4.41, and

|∂Aε
′〉 is the spin-1 state with dimension closest to ∆ε′ + 1 = 4.83. We will choose the former

condition, though in practice we have found that the difference between them is very small
(about 1% in the value of V0 and 0.01% in the value of h). Alternatively, one one could
consider tuning V0 and h by minimizing the norm ∥eΛz |vac〉∥2;12 applying this prescription
would adjust the optimal value of V0 by approximately 8% and h by ∼ 0.03%, and would have
only a minor impact on the results presented in section 5.1, the main difference being a slight
improvement in matrix elements of eΛz between higher-energy states and a slight increase in
error for lower-energy ones. It would be interesting to explore whether different conditions
can lead to parametric improvements.

Finally, using only V0, V1, and h, we still have one more free parameter, which is equivalent
to setting the overall scale of eΛz; the reason the overall rescaling of eΛA differs from that of the
Hamiltonian H is that H in general will contain descendants of the energy-momentum tensor,
e.g. ∇2T0

0. We fix this overall scale by demanding

〈ε|eΛz|∂Aε〉=
p

2∆ε , (34)

as predicted by the conformal algebra.

5 Numeric results

5.1 Matrix elements

The most direct test of our construction of the conformal generators is to compare their matrix
elements between energy eigenstates with the predictions from conformal symmetry, given
in (20) for scalar primaries and in appendix E for spinning primaries (see also Fig. 3). For
simplicity, we will compare only the matrix elements of Λz in the jz = 0 sector (for scalar
primaries, these are sufficient to determine all other matrix elements of ΛA). The first compar-
ison is shown in Fig. 7, for four scalar primaries (σ,σ′,ε and ε′) and their descendants. One
matrix element, connecting ε to ∂ ε, is exact by construction since it was used to fix the linear
combination of microscopic operators for T0

0, but all the other matrix elements are predic-
tions. Black dots/squares indicate respectively parity-even/-odd energy eigenstates, and are
labelled by their dimension from the fuzzy sphere numerics. We depict the matrix elements
of Λz between these eigenstates as arrows labelled by the fuzzy sphere and CFT results for
the matrix elements, as well as the relative error between the two. We show similar plots for
spinning primaries in Fig. 8 and Fig. 9.

12We thank Yin-Chen He for suggesting this approach.
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Figure 7: Quality of matrix elements of Λz for various scalar primaries and their
descendants. Energy eigenstates are shown as black dots (parity even) and squares
(parity odd) and labelled by their dimension from the fuzzy sphere numerics. Matrix
elements of Λz between eigenstates are shown as arrows and labelled by the fuzzy
sphere and CFT results, (Λz,FS,Λz,CFT), for the matrix elements, as well as the relative
error between the two. The color of the arrows is intended to be a graphical depiction
of the relative error, and varies from red to purple for small to large errors. For the
CFT ‘prediction’, we use the formulas in appendix E and substitute the dimension
of the primary from the conformal bootstrap. For descendant states, we choose the
states that have the largest overlap with the state predicted by acting with Λz on the
eigenstates at lower levels.
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Figure 8: Quality of matrix elements of Λz for various spinning primaries and their
descendants. The format is the same as in Fig. 7. Parity-even (top-left) and parity-
odd (top-right) descendants of T are shown separately for clarity.
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Figure 9: Quality of matrix elements of Λz for the spin-2 primary operator T ′ and
some of its descendants (top), and the spin-4 primary operator Cµνρσ and some of its
descendants (bottom). The format is the same as in Fig. 7. (Left:) The states are all
chosen to be energy eigenstates. (Right:) The states are chosen by first identifying the
primaries T ′ and C by looking for states that are nearly annihilated by KA, and then by
building up the descendants by acting on these primaries with PA. The primary states
T ′ and C chosen in the latter case are linear combinations with large overlaps with
multiple eigenstates, and so identifying the primaries by using K leads to a significant
improvement in the matrix elements.
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Figure 10: Quality of the commutation relation [Kz , Pz] = 2D at N = 10, for all
5476 jz = 0 states. For each eigenstate |∆〉, we show 〈∆|[Kz , Pz]|∆〉/2 evaluated on
the state on the y-axis, and its dimension ∆ on the x-axis, so that if the conformal
algebra is exact then states should fall on the dashed diagonal line. A vertical line
indicates roughly where the cutoff appears to be by eye.

In general, one can see that the error begins small for the low energy states, typically
around 1%, and increases as one moves to descendants at higher energies. Note, however,
that there are some outliers in this respect, where the errors are noticeably larger than similar
matrix elements at the same dimension. In the case of the σ multiplet, these all appear to be
cases where the matrix elements themselves are unusually small, because the dimension of σ
is very close to 1/2, the dimension of a free scalar field in d = 3. Consequently, ∂ 2σ is very
close to being a null state, and the CFT prediction for the matrix elements is that they should
be suppressed by a power of ∆σ−1/2. We suspect that this suppression is what increases the
sensitivity of these matrix elements to small deviations from conformality.

Another potential source of error is that conformal symmetry breaking leads to mixing
among the different primaries. As a result, it is not guaranteed that descendant states will be
dominantly given by any one single energy eigenstate, but instead can be a linear combina-
tion of eigenstates. In fact, we emphasize that purely looking at the energies of the states, and
looking for shifts by +1 between descendants, does not always uniquely pick out a ‘best’ eigen-
state at each level. Instead, the way we chose the eigenstates in these tables was by looking
at the states with the largest overlap with Pz acting on descendants at one level below. One of
the more striking examples of this effect is shown in Fig. 9, where we consider the T ′ (spin-2,
dimension ≈ 5.6) and C (spin-4, dimension ≈ 5.0) primaries. In both of these cases, we find
that even the matrix elements ofΛz between the primary and its level-1 descendants has rather
large errors. As we will discuss in section 5.3, the main source of error here appears to be the
fact that at N = 16, the primary state itself is not dominantly an energy eigenstate, but rather
is much more accurately described as a linear combination of multiple energy eigenstates.
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5.2 Commutator

Another fairly direct test of our construction of the conformal generators is how accurately they
satisfy the conformal algebra. Such a test is similar to the direct test of the matrix elements
in the previous subsection, but has a conceptual advantage that it is relies less heavily on the
specific choice of basis. In other words, one can consider an operator equation such as

[Kz , Pz] = 2D , (35)

and evaluate it between any bra and ket states one chooses.
Because acting with Pz raises the energy of states, to obtain an accurate calculation of the

commutator (35) in a given state |ψ〉, one needs to obtain eigenstates |n〉 with energies ∼ +1
larger than that of |ψ〉:

〈ψ|[Kz , Pz]|ψ〉=
∑

n

|〈n|Pz|ψ〉|2 −
∑

n

|〈n|Kz|ψ〉|2 . (36)

When the energy of |ψ〉 is small, obtaining such eigenstates is not an issue. But when the
energy of |ψ〉 is large ∼ O(7), numerically finding all eigenstates with energies up to ∆ψ + 1
can be significantly more computationally expensive than finding all eigenstates with energies
up to ∆ψ. Therefore, our numeric results for the commutator are affected by an unphysical
‘eigenvalue cutoff’ which arises purely from the fact that we only find a subset of all eigenvalues
of the (finite dimensional) fuzzy sphere Hilbert space. At N = 10, the total dimension of the
fuzzy sphere Hilbert space in the jz = 0 sector is dim = 5476, which is small enough to fully
diagonalize the Hamiltonian and so avoid having to introduce an eigenvalue cutoff. In this
case, we show in Fig. 10 the expectation value of the commutator [Kz , Pz]/2 for all Z2-even
eigenstates, versus their dimension∆. At low dimensions, one sees that [Kz , Pz]/2 is very close
to ∆, as predicted by the conformal algebra. However, as the dimension grows, the errors
become large, and most of the values of [Kz , Pz] are far from the CFT prediction starting at
∆∼ 5.25, as indicated by a vertical line in the figure. We take this to be an optimistic estimate
of the UV cutoff of the CFT description, above which the fuzzy sphere regulator becomes
significant and leads to large corrections to the CFT description.

Another qualitative feature of Fig. 10 that can be readily understood is that once the devia-
tions from the CFT algebra become large, there are many negative values of [Kz , Pz]. Because
the size of the Hilbert space is finite, the trace of the commutator must vanish, which means
that the sum over the y-values of all the dots in the figure must identically add up to zero.
Since by unitarity, [Kz , Pz] must be positive in the regime where the CFT algebra holds, this
low energy regime creates a deficit of positive values that must be compensated for at high
energies by negative values.

More generally, we can look at the quality of the commutator at various values of N . In
Fig. 11, we show the same commutator plot for N = 6, 8,10,12, 14 and 16. Up to N ≤ 10, we
obtain all eigenstates of the fuzzy sphere Hamiltonian, so there is no effect from an eigenvalue
cutoff (though x-axis of the plots themselves only go up to ∆ = 7, all intermediate states are
included when evaluating the commutator). For N = 12, 14 and 16, we obtain all eigenstates
up to ∆= 9.06, 9.03,7.44, respectively. We also show a vertical line on each plot indicating a
rough estimate of the cutoff. To obtain this estimate, we take our estimate ΛUV ≈ 5.25 from
N = 10 and in each plot we rescale it proportionally to

p
N :

ΛUV ≈ 1.66
p

N . (37)

The cutoff obtained this way lines up by eye with where one sees the corrections to the com-
mutators become large at the various values of N .
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** ** **

** ** **

Figure 11: Quality of the commutation relation [Kz , Pz] = 2D, as in Fig. 10, for
N = 6, 8,10, 12,14, 16. In computing the commutator, we keep all states on the
fuzzy sphere for N = 6, 8,10, but only up to ∆ = 9.06,9.03, 7.44 respectively for
N = 12,14, 16. The magenta asterisk represents the point fixed by the condition (34).
The vertical line in each plot is the cutoff chosen at N = 10 from Fig. 10, but scaled
by
p

N ; note that this scaling lines up reasonably well with where the accuracy of
the commutator starts to fail by eye at different values of N .

5.3 Identifying primaries

One of the motivations for constructing the conformal generators is that we would like to use
them to identify primary states with a more precise method than looking at integer shifts in
the dimensions of operators, since the latter method becomes intractable when the spectrum
is very dense. Moreover, when the spectrum is dense, even small deviations from the critical
point will lead to large operator mixing, and one might hope that states can still be divided
into primaries and descendants if one looks at general linear combinations of eigenstates. In
this subsection, we will see that indeed this is possible. In particular, we will try to identify
primary operators based on the condition that they are approximately annihilated by K± and
Kz , or equivalently that

〈ψ||K2||ψ〉 ≡
3
∑

A=1

〈ψ|K†
AKA|ψ〉 ≪ 1 . (38)

Crucially, |ψ〉 here does not need to be an energy eigenstate. Rather, the way we will find
primaries is by diagonalizing the matrix |K2| and looking for small eigenvalues.

An important consideration when interpreting these eigenstates of |K2| is that we have
already seen the matrix elements of K start to deviate significantly from the CFT predictions
at high energies. Consequently, for each potential primary state that we find among the small
eigenvalues of |K2|, we also test whether or not the conformal commutator [Kz , Pz] = 2D is
still accurately reproduced on that state. We present these results in Fig. 12 at N = 16, where
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Figure 12: Eigenstates of |K2|, for Z2-even (top) and Z2-odd (bottom). Each dot rep-
resents an eigenstate labelled by its (∆,ℓ), and its location indicates its |K2| eigen-
value as well as the error in the [Kz , Pz] commutator evaluated on the state. Primaries
should have |K2| ≪ 1, and moreover we demand that there is a small error in the
commutator in order to test that the value of |K2| is reliable. The lower-left region
which contains such primaries is shown magnified. As discussed in the body of the
text, the (∆,ℓ) = (6.05, 3) ‘almost primary state’ in the upper plot is a spin-3 descen-
dant ∼ ∂µCµνρσ of C that is almost null because C is almost a conserved higher-spin
current; similarly, the (∆,ℓ) = (2.5, 0) state in the bottom plot is ∂ 2σ, which is al-
most null because ∆σ ≈ 1/2. See Appendix G for more precise values of conformal
dimensions.
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all eigenstates of |K2| are shown as dots labeled by their dimension13 and spin (∆,ℓ) and
located according to their eigenvalue under |K2| and their error in the [Kz , Pz] commutator;
reliable primaries should have both small values for |K2| and for the error in the commutator,
and therefore appear in the lower left-hand corner. We have magnified this lower left-hand
corner, so that one can see there are a subset of states identified as primaries by this method.

Interestingly, this approach is still too naive in one important respect, which one can see
by inspection of the figure. The problem is that the magnified region, both in the Z2-even and
Z2-odd sectors, contains one interloper that is actually a descendant. In the Z2-even sector,
this interloper is the (∆,ℓ) = (6.05,3) descendant of Cµνρσ, and in the Z2-odd sector, it is
the (∆,ℓ) = (2.5,0) descendant of σ. In both cases, note that the interloper still has a sig-
nificantly larger value of |K |2 than the true primaries, and so could potentially be identified
as a descendant just by comparison with the other states. However, there is a much more
robust signal that these states are actually descendants. The key point is that the reason these
states have small values of |K |2 is not numeric or truncation errors, but rather because |K |2

for these states actually is small in the CFT! In the case of the spin-3 descendant of Cµνρσ,
the reason is that Cµνρσ has dimension ∆ = 5.02 and therefore is very nearly a higher-spin
conserved current, which would imply that its level-1 spin-3 descendant ∂µCµνρσ is null. Re-
ferring to Fig. 3, one can check that with ∆0 = 5.0226 and ℓ0 = 4, the size of |Kz|2 should be
2ℓ0(∆0−ℓ0−1)

2ℓ0+1 = 0.02, and therefore |K2| should be 2ℓ0+1
ℓ0
|Kz|2 = 0.045, roughly the size of |K2|

from the figure. Similarly, for the level-2 spin-0 descendant ∂ 2σ, the size of |K2| should be
3|Kz|2 = 2(∆0 − 1) = 0.072 for ∆0 = 0.518, again close to the value in the figure. Therefore,
since the action of KA on these states tells us which states they would be descendants of if they
were descendants, it is it straightforward to see that |K2| is not small when compared to the
CFT prediction.

Finally, we can now return to an issue we noted in section (5.1), namely that the quality
of the matrix elements of Λz in the plots on the left of Fig. 9 are worse than is typical for states
at the corresponding dimension. The resolution is that when we look at small eigenvalues
of |K2| to identify the primary states C and T ′, we find that they are not dominantly made
out of any single energy eigenstate, but rather are linear combinations of multiple eigenstates.
When we recompute the matrix elements using primaries identified with |K2|, and descendants
constructed by acting on them with PA, we obtain the plots on the right, where the quality of
the matrix elements is noticeably improved.

5.4 Conformal Casimir

In principle, a simple way to immediately group all states into conformal representations is to
compute the quadratic casimir C2 for the conformal algebra,

C2 = D2 + L2 −
1
2
{KA, PA}= D2 + ℓ(ℓ+ 1)−

1
2
{KA, PA} (39)

= D(D− 3) + ℓ(ℓ+ 1)− PAKA .

In the first line, we set L2→ ℓ(ℓ+ 1) because we work with eigenstates of L2. By contrast, PA
and KA change the state, and the expression we get in the second line uses their commutator
and so is equivalent to the first line only in the CFT limit. Nevertheless, this last expression is
more convenient to use, because for a given eigenstate, computing PA on that state requires
computing eigenstates with higher dimension whereas computing KA only requires computing
eigenstates with lower dimensions, and obtaining more eigenstates with higher energies is
computationally expensive.

13For a general state |ψ〉, we define its dimension to be ∆≡ 〈ψ|D|ψ〉.
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Figure 13: Conformal Casimir C2 and dimension ∆ of Z2-even states, up to ∆ ≲ 6,
evaluated using (39). Solid horizontal lines indicate the Casimir C2 of a primary,
and dashed vertical lines indicate the dimensions ∆ + N of the primary and its de-
scendants. (Left:) Black dots indicate individual energy eigenstates. (Right:) Dots
indicate states built up using PA, starting with primaries identified by acting with
PAKA, and then subsequently building up the descendants by acting with PA. In this
case, the color of the dot indicates the primary it was built from.

In Fig. 13, we show the Casimir for all Z2 even eigenstates with dimensions up to ∆ < 6,
versus their dimension. For comparison with the expected results in the conformal limit, for
each Z2-even primary state (as identified in the previous subsection by looking for states an-
nihilated by KA) we also show a solid horizontal line at the corresponding value of the Casimir
C2 as well as a series of vertical lines at the corresponding dimensions of the primary and its
descendants. Note that at low dimensions, where the matrix elements of PA are still accurate
and the primary states are still well-aligned with energy eigenstates, we see a collapse of many
states in the same conformal multiplet onto the same value of the conformal Casimir.

As one goes higher up in the spectrum, energy eigenstates tend to be linear combina-
tions from multiple different conformal representations which causes their Casimir value to
lie between the Casimirs of the primaries. For instance, in the exact conformal theory, the T ′

operator has spin 2 and dimension 5.51, so C2 = 19.8, yet in Fig. 13 there are no states on the
corresponding horizontal line. Instead, there are two nearby eigenstates with ∆ = 5.54 and
5.58 which are strongly mixed between T ′ and ∂ ∂ ε (spin 2). One can mitigate this effect by
working with states selected by using PA and KA rather than with energy eigenstates. Specifi-
cally, we can start with linear combinations identified as primaries in the previous section as
states that are (nearly) annihilated by KA. Then, we can successively build up all the other
states in the conformal representation by raising with PA. In Fig. 13, we also show the Casimir
evaluated on states, but now for states built up this way. Because every state is constructed
by repeated actions of PA on a specific primary, we also color-code the states to indicate which
primary they were built from. Mostly, the difference between the two plots is minor, but in a
few cases such as the T ′ state there is a significant improvement in the value of the Casimir;
indeed, it is remarkable that despite the large mixing effects on the T ′ operator as an energy
eigenstate, there still exists to very high accuracy a well-defined primary state as defined by
the action of KA.
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A Conformal generators on S2 from Tµν

Here we briefly review how to derive the conformal generators on R× S2 as integrals of the
CFT energy-momentum tensor Tµν. We begin with the theory on the Euclidean plane R3,
where all conformal transformation can be written in terms of a vector εi(x) (i = 1, 2,3) that
is a quadratic polynomial in x i (where x ∈ R3), and then transform to radial coordinates. In
Euclidean signature, the time coordinate is set by the magnitude of x i:

x i = etE
bx i ,

3
∑

i=1

(bx i)2 = 1 . (A.1)

Denote theR×S2 coordinates by {ξµ}µ=0,1,2, where ξ0 = tE is time and {ξa}a=1,2 parameterize
the unit sphere S2. Denote the Jacobian for the transformation to R× S2 by

d x i

dξµ
, Vµ ≡

d x i

dξµ
V i . (A.2)

In general, the generator of a transformation parameterized by εi(x) is given by the following
integral of the energy-momentum tensor:

Qε =

∫

d2ξ
p

gεi(x)T
0i =

∫

d2ξ
p

gεi(ξ)
d x i

dξµ
T0µ(ξ) , (A.3)

where d2ξ= dξ1dξ2 and gab is the metric on S2.
For dilatations,

Dilatations: εi(x) = x i ⇒ εi(x)
d x i

dξµ
T0µ =

1
2

de2tE

dξµ
T0µ = e2tE T00 = T0

0 , (A.4)

and so the Dilatation operator is just the Hamiltonian on the sphere.
For an SO(3) rotation Ji around the vector ωi , εi(x) = εi jkω

j xk:

Rotations: εi(x) = εi jkω
j xk⇒ εi(x)

d x i

dξµ
T0µ = 2εi jkω

j
bxk ∂ bx

i

∂ ξa
gabT0

b , (A.5)

where the sum on a is over a = 1,2, and the dependence on T00 drops out.
For a translation in the ai direction, εi(x) = ai:

Translations: εi(x) = ai ⇒ εi(x)
d x i

dξµ
T0µ = e−tE

�

a · bx T0
0 + ai

∂ bx i

∂ ξa
gabT0

b

�

. (A.6)

Finally, special conformal transformations (SCTs) can be parameterized by a vector bi ,
with εi(x) = 2(x · b)x i − bi x2:

SCTs: εi(x) = 2(x · b)x i − bi x2⇒ εi(x)
d x i

dξµ
T0µ = etE

�

b · bx T0
0 − bi

∂ bx i

∂ ξa
gabT0

b

�

, (A.7)

where we have used ∂ x i/∂ ξ0 = x i and x i∂ x i/∂ ξa = 0.
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The structure of these expressions are perhaps more transparent if we write them in terms
of embedding space coordinates {bxA}A=1,2,3 for the sphere,

∑

A(bx
A)2 = 1. Then, the Jacobian

∂ bxA

∂ ξa is just the factor for the uplift of a vector from S2 to R3:

PA
a ≡

dbxA

dξa
, T0A ≡ PA

a gabT0
b . (A.8)

One can define a projector UAB that projects tensors onto the tangent space of S2:

UAB ≡ δAB − bxA
bxB . (A.9)

With this notation, the generators are integrals of the following forms:

Qε =

∫

d2ΩIε ,

Dilatations: Iε = T0
0 ,

Rotations ωA : Iε = 2εABCω
B
bxC T0A ,

Translation aA : Iε = e−tE aA(bx
AT0

0 + T0A) ,

SCTs bA : Iε = etE bA(bx
AT0

0 − T0A) .

(A.10)

Ultimately, we want to use formulas for the generators in Lorentzian signature rather than
Euclidean signature, so we have to Wick rotate tE = i tL under which T0

0→ T0
0 and T0

A→ iT0
A.

Finally, we will generally take our intrinsic coordinates on the sphere to be spherical co-
ordinates θ ,φ, with d2Ω ≡ dφdcosθ , and we will group the generators into combinations
with definite values of J3. For rotations, these are the standard combinations Jz = J3 and
J± = J1 ± iJ2:

Jz =

∫

d2ΩT0
φ , J± = ±i

∫

d2Ωe±iφ(T0
θ ± i cotθT0

φ) . (A.11)

For translations and SCTs, we can take Pz , P± = P1 ± iP2 and Kz , K± = K1 ± iK2. Setting
tL = 0 for simplicity,

Pz =

∫

d2Ω(cosθT0
0 − i sinθT0

θ ) , P± =

∫

d2Ωe±iφ sinθ (T0
0 + i(cotθT0

θ ± i csc2 θT0
φ)) ,

Kz =

∫

d2Ω(cosθT0
0 + i sinθT0

θ ) , K± =

∫

d2Ωe±iφ sinθ (T0
0 − i(cotθT0

θ ± i csc2 θT0
φ)) .

(A.12)

B Rotation Noether current Va

The microscopic fermionic theory has time-translation invariance and rotational invariance,
with the following corresponding Noether charge densities, respectively:

H =
�

∑

n

gn(ψ
†ψ)∇2n(ψ†ψ)− gn,z(ψ

†σzψ)∇2n(ψ†σzψ)

�

− hψ†σxψ ,

Va∝ψ†iDaψ .

(B.1)

26

https://scipost.org
https://scipost.org/SciPostPhys.18.3.086


SciPost Phys. 18, 086 (2025)

In this work, we do not use VA as part of the construction of the conformal generators, and in
this appendix we will make some comments about why. To an extent, the reason is simply that
it was not necessary to use it. However, there is also an interesting effect that its contribution
to PA and KA, through

∫

d2ΩVA, turns out to vanish. Consequently it is not useful to construct
the CFT stress tensor T0

A components by starting with VA and adding small corrections.
To see this, first expand out the definition of VA:

VA ≡ PA
a gabVb∝

∂ bxA

∂ ξa
gab

�

ψ†(
↔
∂ b + 2isAb)ψ

�

. (B.2)

When the fermions are restricted to the LLL, VA simplifies due to the following identity:

∂ bxA

∂ ξa
gab i

�

Φ∗m(
←
∂ b −

→
∂ b + 2isAb)Φm′

�

= iζ(A)a∂a(Φ
∗
mΦm′) , (B.3)

where ζ(A) are the Killing vectors for the rotations on the sphere:

ζ(1)a∂a = sinφ∂θ + cotθ cosφ∂φ ,

ζ(2)a∂a = − cosφ∂θ + cotθ sinφ∂φ ,

ζ(3)a∂a = −∂φ .

(B.4)

Consequently, restricted to the LLL states

V A∝ ζ(A)a∂an0 , n0 ≡ψ†ψ . (B.5)

When we consider the generators of rotations, we manifestly get quantities that simply com-
pute the sum of the corresponding quantities for the individual fermions, as we would expect
since rotations are exactly preserved on the fuzzy sphere:

JA =
s+ 1

2
εABC

∫

d2ΩbxCζ(B)a∇an0 = −
s+ 1

2
εABC

∫

d2Ωn0ζ(B)a∇abx
C

= (s+ 1)

∫

d2ΩbxAn0 ,

(B.6)

where we have used ζ(B)a∇a = εBDE
bx D∂E and εABCε

BDC = −2δD
A .

Now we come to the generators PA− KA. In this case one finds that if we try to build the
generator by taking T0A ∼ V A, then the integrand is a total derivative and therefore the result
vanishes:

(PA− KA)
?
≈
∫

d2ΩVA∝
∫

d2Ωζ(B)a∇an0 = 0 . (B.7)

One puzzling aspect of this relation is that it seems to violate the standard commutation
relations for the rotation Noether current. More precisely, the anticommutation relations

{ψ†(t, bx),ψ(t, by)}= iδ(2)(bx , by) , (B.8)

where δ(2)(x , y) is the δ function on the sphere, imply that Va has the following commutator,
�

Va(x), (ψ
†ψ)(y)

�

∝−2(ψ†ψ)(x)∂aδ(x , y) . (B.9)

Inserting a factor of bx and integrating, this should imply that PA − KA built from Va cannot
vanish.
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In fact, this issue was noted as early as [23] in the context of the LLL on the plane, and it was
traced back to the modification of the fermion anticommutation relations due to the projection
onto the LLL. After this projection, the fermion anticommutation relations are nonlocal:

{ψ†(bx),ψ(by)} →
s
∑

m=−s

Φ∗m(bx)Φm(by) ̸= iδS2(x − y) . (B.10)

In [23], a prescription was given for constructing a modified Va, essentially by integrating out
the higher Landau levels using the equations of motion, in order to restore the conservation
equation for translations in flat space. In practice, this procedure essentially constructs the
Va components of the CFT stress tensor as an infinite sum over local operators designed to
reproduce the correct Ward identities for the IR CFT, similarly to how we build T0

0.

C Formulae for H and ΛA

In this section we briefly summarize how to write the Hamiltonian in second quantized form
as done in [6] and how to extend this formalism to the other conformal generators. Recall
that fermions defined on the LLL can be expanded as the product of creation/annihilation
operators and monopole harmonics

ψ(θ ,φ) =
s
∑

m=−s

Φm(θ ,φ)cm , ψ†(θ ,φ) =
s
∑

m=−s

Φ∗m(θ ,φ)c†
m , (C.1)

with c†
m ≡ (c

†
m↑, c†

m↓). To express this observable in terms of cs, it is helpful to recall certain
properties of monopole and spherical harmonics. Both functions are special cases of the more
general spin-weighted spherical harmonics Y (s)

ℓ,m (ℓ= s, s+ 1, · · · )

Y (s)
ℓ,m = (−1)ℓ+m−s

√

√(ℓ+m)!(ℓ−m)!(2ℓ+ 1)
4π(ℓ+ s)!(ℓ− s)!

eimφ sin2ℓ
�

θ

2

�

×
ℓ−s
∑

r=0

(−1)r
�

ℓ− s
r

��

ℓ+ s
r + s−m

�

cot2r+s−m
�

θ

2

�

,

(C.2)

from which the usual spherical harmonic Yℓ,m and the monopole harmonics Φm are recovered
as

Yℓ,m = Y (0)
ℓ,m , Y ∗ℓ,m = (−1)mY (0)

ℓ,−m ,

Φm = eiπ(s−2m)Y (−s)
s,m , Φ∗m = eiπmY (s)s,−m .

(C.3)

Spin-weighted harmonics satisfy the following useful properties
∫

S2

Y (s)
ℓ,mY (s)∗

ℓ′,m′ = δℓ,ℓ′δm,m′ , (C.4a)

∑

ℓ,m

Y (s)
ℓ,m(Ω1)Y

(s)∗
ℓ,m (Ω2) = δ

(2)(Ω1 −Ω2) , (C.4b)

∫

S2

Y (s1)
ℓ1,m1

Y (s2)
ℓ2,m2

Y (s3)
ℓ3,m3

=

√

√

√

∏3
i=1(2ℓi + 1)

4π

�

ℓ1 ℓ2 ℓ3
m1 m2 m3

��

ℓ1 ℓ2 ℓ3
−s1 −s2 −s3

�

. (C.4c)

28

https://scipost.org
https://scipost.org/SciPostPhys.18.3.086


SciPost Phys. 18, 086 (2025)

Let us define
ni(Ω)≡ψ†(Ω)niψ(Ω) , (C.5)

with n0 = 1 and nx ,y,z = σx ,y,z the usual Pauli matrices, then we can write the Hamiltonian

H =

∫

dΩ1H , (C.6)

H =
�∫

dΩ2U(Ω12) (n0(Ω1)n0(Ω2)− nz(Ω1)nz(Ω2))

�

− hnx(Ω1) , (C.7)

U(Ω12) =
λ0

R2
δ(Ω1 −Ω2) +

λ1

R4
∇2δ(Ω1 −Ω2) . (C.8)

Now we can plug in the decomposition (C.1), then the part proportional to h is straightforward
to compute using the orthonormality of monopole harmonics

∫

ψ†σxψ=
∑

m1,m2

c†
m1
σxcm2

∫

Φ∗m1
Φm2

︸ ︷︷ ︸

δm1,m2

=
∑

m

c†
mσxcm . (C.9)

For the remaining parts, let us define σα, α= 0, z, and let us rewrite

∑

mi

(c†
m1
σαcm4

)(c†
m2
σαcm3

)

∫

dΩ1dΩ2U(Ω12)Φ
∗
m1
(Ω1)Φm4

(Ω1)Φ
∗
m2
(Ω2)Φm3

(Ω2) , (C.10)

U(Ω12) =
∞
∑

ℓ=0

ℓ
∑

m=−ℓ

βi(ℓ)Yℓ,m(Ω1)Y
∗
ℓ,m(Ω2) , βi(ℓ) =

¨

β0 =
λ0
R2 ,

β1 = −ℓ(ℓ+ 1)λ1
R4 ,

(C.11)

where we have rewritten δ(Ω1−Ω2) as in (C.4b) and used the fact that∇2Yℓ,m = −ℓ(ℓ+1)Yℓ,m.
Focusing on the integral, we can use the definition in terms of spin-weighted harmonics in (C.3)
together with the expression in (C.4c)

I(i) ≡
∑

ℓ,m

βi(ℓ)

�∫

dΩ1Φ
∗
m1
Φm4

Yℓ,m

��∫

dΩ2Φ
∗
m2
Φm3

Y ∗ℓ,m

�

(C.12)

=
∑

ℓ,m

βi(ℓ)
eiπ(2s+m−2m4−2m3+m1+m2)

4π
(2ℓ+ 1)(2s+ 1)2

�

ℓ s s
0 s −s

�2

×
�

ℓ s s
m m4 −m1

��

ℓ s s
−m m3 −m2

�

,

where

�

j1 j2 j3
m1 m2 m3

�

is the 3 j-symbol.14 Because of the properties of the 3 j-symbol the

expression vanishes unless

0≤ ℓ≤ 2s , (C.13a)

m= m4 −m1 , m= m2 −m3 ⇒ m1 +m2 = m3 +m4 . (C.13b)

14Note that here and in the following, to simplify expressions, we will always assume 2s ∈ N.
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Including these conditions, the integral reduces to

I(i) =
2s
∑

ℓ=0

βi(ℓ)
4π
(−1)2s−m4−m2(2ℓ+ 1)(2s+ 1)2

�

ℓ s s
0 s −s

�2

×
�

ℓ s s
m1 −m4 m4 −m1

��

ℓ s s
m2 −m3 m3 −m2

�

δmi
,

(C.14)

with δmi
≡ δm1+m2,m3+m4

. This expression can be further simplified using the identity

�

s1 k s4
−m1 m1 −m4 m4

��

s2 k s3
−m2 m2 −m3 m3

�

δmi
=

2s
∑

y=0

(2y + 1)(−1)m3−m1−2m4

×
�

y s1 s2
k s3 s4

��

s1 s2 y
m1 m2 −m1 −m2

��

s3 s4 y
m3 m4 −m3 −m4

�

δmi
,

(C.15)

such that

I(i) = 1
2

2s
∑

y=0

V2s−y(2y + 1)

�

s s y
m1 m2 −m1 −m2

��

s s y
m4 m3 −m3 −m4

�

δmi
,

V2s−y ≡
2s
∑

ℓ=0

(−1)2s+y βi(ℓ)
2π
(2ℓ+ 1)(2s+ 1)2

�

y s s
ℓ s s

��

ℓ s s
0 s −s

�2

,

(C.16)

with {· · · } the Wigner 6 j-symbol. Writing the expression in terms of V2s−y , known as the
Haldane pseudopotential [24], has the advantage that, for a fixed βi , only few values of y
give a non vanishing contribution. In the cases of interest

β0(ℓ) ←→ V2s−y =

¨

λ0
R2
(2s+1)2

2π(4s+1) , y = 2s ,

0 , else,
(C.17a)

β1(ℓ) ←→ V2s−y =











λ1
R4

s(2s+1)2

2π(4s+1) , y = 2s ,
λ1
R4

s(2s+1)2

2π(4s−1) , y = 2s− 1 ,

0 , else.

(C.17b)

From these expressions we can easily derive the relation between the Vi pseudopotentials and
the interaction parameters

λ0

R2
=

2π
(2s+ 1)2

((4s+ 1)V0 + (4s− 1)V1) ,

λ1

R4
=

2π
(2s+ 1)2

·
(4s− 1)V1

s
.

(C.18)

Passing to the rotation generators defined in (B.6)

Jz = (s+ 1)
∑

m1,m2

c†
m1

cm2

∫

dΩ cosθΦ∗m1
Φm2

,

J± = (s+ 1)
∑

m1,m2

c†
m1

cm2

∫

dΩe±iφ sinθΦ∗m1
Φm2

.

(C.19)
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Using the fact that

cosθ = 2
s

π

3
Y1,0 , e±iφ sinθ = ∓2

s

2
π

3
Y1,±1 , (C.20)

together with the properties in (C.4), it is straightforward to get

Jz =
s
∑

m=−s

mc†
mcm , (C.21a)

J+ =
s−1
∑

m=−s

Æ

(s−m)(s+m+ 1)c†
m+1cm , (C.21b)

J− =
s
∑

m=−s+1

Æ

(s+m)(s−m+ 1)c†
m−1cm . (C.21c)

So defined, the generators satisfy the SO(3) algebra

[Jz , J±] = ±J± , [J+, J−] = 2Jz . (C.22)

As we have explained before, we don’t need to define the generators of translations and
special conformal transformations separately. But rather, it is sufficient to construct their sum

Λz ≡ Pz + Kz = 2 · 2
s

π

3

∫

S2

Y1,0T0
0 ,

Λ± ≡ (P1 + K1)± i(P2 + K2) = ±2 · 2

√

√2π
3

∫

S2

Y1,±1T0
0 .

(C.23)

Using T0
0→H in (C.6)

Λ j =
∑

mi

eI(i)j

�

c†
m1

cm4
c†

m2
cm3
− c†

m1
σzcm4

c†
m2
σzcm3

�

− hΛ(h)j =

¨

Λz , j = 0 ,

Λ± , j = ±1 ,

eI(i)j = 4
s

π

3
α j

∑

ℓ,m

β (i)(ℓ)

�∫

dΩ1Φ
∗
m1
Φm4

Y1, jYℓ,m

��∫

dΩ2Φ
∗
m2
Φm3

Y ∗ℓ,m

�

,

Λ
(h)
j = 4

s

π

3
α j

∑

m1,m2

∫

dΩY1, jΦ
∗
m1
Φm2

c†
m1
σxcm2

=

√

√4s(2s+ 1)
(s+ 1)

α j

∑

m

(−1) j−m+s

�

1 s s
j m − j −m

�

c†
m+ jσxcm ,

(C.24)

where we have used the same conventions in (C.11) and we have introduced

α j =

¨

∓
p

2 , j = ±1 ,

1 , j = 0 .
(C.25)

To solve for eI(i)j we can use the properties in (C.4), together with the identity for the product
of spherical harmonics

Yℓ1,m1
Yℓ2,m2

=

√

√(2ℓ1 + 1)(2ℓ2 + 2)
4π

ℓ1+ℓ2
∑

kmin

p

2k+ 1(−1)m1+m2 Yk,m1+m2 (C.26)

×
�

ℓ1 ℓ2 k
0 0 0

��

ℓ1 ℓ2 k
m1 m2 −m1 −m2

�

.
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with kmin =max(|ℓ1 − ℓ2|, |m1 +m2|). Then

eI(i)j =
α j

2π
δm1+m2,m3+m4+ j(−1) j+m12

2s
∑

ℓ=0

ℓ+1
∑

k=kmin

βi (2s+ 1)2(2k+ 1)(2ℓ+ 1)

�

1 ℓ k
0 0 0

�

(C.27)

×
�

k s s
0 s −s

��

ℓ s s
0 s −s

��

k s s
m14 m4 −m1

��

ℓ s s
m23 m3 −m2

��

1 ℓ k
j m32 m23 − j

�

,

where mi j ≡ mi − m j and kmin = max(|m14|, |ℓ − 1|). Similarly as we have done for the
pseudopotential, we can rewrite this expression in an easier form by using twice the identity
in (C.15)

eI(i)j = α j(−1)−m1

∑

x ,y

Vy,x(2y + 1)(2x + 1)

�

y s x
m1 − j m2 j −m1 −m2

�

×
�

s s x
m3 m4 −m3 −m4

��

s 1 y
−m1 j m1 − j

�

δm1+m2,m3+m4+ j ,

Vy,x ≡
2s
∑

ℓ=0

ℓ+1
∑

k=ℓ−1

βi

2π
(−1)k−ℓ+y(2k+ 1)(2ℓ+ 1)(2s+ 1)2

×
�

x y s
ℓ s s

��

y ℓ s
k s 1

��

1 ℓ k
0 0 0

��

k s s
0 s −s

��

ℓ s s
0 s −s

�

.

(C.28)

For a fixed βi(ℓ) only few Vy,x are non vanishing

β0(ℓ) ←→ Vy,x=2s =
λ0

2πR2















(−1)s

(4s+1)

Ç

s(2s+1)3
s+1 , y = s ,

− (−1)s

(4s+1)

r

s(2s+1)3
(s+1)(2s+3) , y = s+ 1 ,

0 , else,

(C.29a)

β1(ℓ) ←→ Vy,x =
λ1

2πR4



































− (−1)s

(4s+1)

Ç

s3(2s+1)3
s+1 , y = s, x = 2s ,

(−1)s

(4s+1)

r

s(2s+1)5
(s+1)(2s+3) , y = s+ 1, x = 2s ,

− (−1)s
4s−1

Ç

s3(2s+1)3
s+1 , y = s, x = 2s− 1 ,

(−1)s
4s−1

r

s(2s+1)5(2s−1)
(s+1)(3+2s)(4s+1) , y = s+ 1, x = 2s− 1 ,

0 , else.

(C.29b)

The Λs satisfy the algebra

[Jz ,Λz] = 0 , [Jz ,Λ+] = Λ+ , [Jz ,Λ−] = −Λ− , (C.30a)

[J+,Λz] = −Λ+ , [J+,Λ+] = 0 , [J+,Λ−] = 2Λz , (C.30b)

[J−,Λz] = Λ− , [J−,Λ+] = −2Λz , [J−,Λ−] = 0 . (C.30c)

D Corrections to (P + K) matrix elements from primaries

Our goal in this appendix is to obtain formulae from conformal perturbation theory for the
matrix elements of H(x)− T0

0, specifically for the matrix elements of the form

eF (state)
Or TOn

(x)≡
∑

O
gO eF

(state)
Or TOn;O(x) , (D.1)
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which are the contributions from a single operator to the quantities as defined in (24).
Consider the case where Or is the identity operator and On is in the conformal multiplet

of some primary operator we will call O. In this case, the correlator that we need is the
three-point function 〈OOT 〉 on Sd−1×R, which is fixed by conformal invariance and the Ward
identity to be [25]

〈T00(t1, bx1)O(t2, bx2)O(t3, bx3)〉Sd−1×R

=
d∆

(d − 1)Sd

1

dd
12d2∆−d

23 dd
31

 

( d13
d12
(bx1 · bx2 − et1−t2)− d12

d13
(bx1 · bx3 − et1−t3)2

d2
23

−
1
d

!

,
(D.2)

where Sd = vol(Sd−1) = 2πd/2

Γ (d/2) , and

d2
i j ≡ 2(cosh(t i − t j)− ui j) , ui j ≡ bx i · bx j . (D.3)

We will just look at the cases where On is at most a level 2 descendant, which means we can
expand in powers of x3 up to x2

3 – equivalently, we expand in powers of et3 and keep up to
e(∆+2)t3 = r∆+2

3 (where r ≡ et). To warm up, begin with just the leading power e∆t3 = r∆3 ,
which corresponds to taking On =O. Taking d = 3,

〈T00(t1, bx1)O(t2, bx2)O(t3, bx3)〉S2×R ⊃
3∆
2S3

r∆3

�

r3−∆
2

�

r2
1

�

3u2
12 − 1

�

− 4r2r1u12 + 2r2
2

�

3
�

−2r2r1u12 + r2
1 + r2

2

�

5/2

�

. (D.4)

First, do the bx2 integral, to find

〈T00(0, bx1)

∫

d2Ω2O(t2, bx2)|O〉S2 =
3∆
2S3

�

1
r2

�∆
�

8π
3 , r2 > 1 ,
0 , r2 < 1 .

(D.5)

Finally, integrate
∫∞
−∞ d tE

∼=
∫∞

0
dr2
r2

:

eF (state)
1TO;O(x) = −gO

∫ ∞

1

dr2

r2

3∆
2S3

�

1
r2

�∆ 8π
3
= −gO . (D.6)

Putting it all together,

eF1TO;O(x) = 〈vac|T00(x)|On〉+ gO〈vac|O(x)|O〉+ eF (state)
1TO;O(x)

= 0+ gO − gO = 0 ,
(D.7)

as it should be since 〈Ývac|H(x)| eO〉 is rotationally invariant (both external states are scalars)
and so it is equal to its average over the sphere, which is therefore just the matrix element of
the Hamiltonian eH between two different energy eigenstates.

Now, we can easily systematize this calculation. We can take x⃗ = bz without loss of gener-
ality, since its dependence can be restored by considering the symmetries of the external state.
We will also restrict to states |On〉 with jz = 0 without loss of generality. Then, at levels 0,1
and 2, all descendant states can be labeled by their J value. Let On,J denote the level n spin J
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state. We find

eF (state)
1TO0,0;O = −1 ,

eF (state)
1TO1,1;O = −

p
2(3+∆+∆2)

(2+∆)
p

3∆
,

eF (state)
1TO2,0;O = −

p

∆(2∆− 1)
p

3
,

eF (state)
1TO2,2;O = −

√

√ 1
15

2
�

∆5 + 3∆4 + 10∆3 + 12∆2 + 4∆− 36
�

(∆− 1)(∆+ 2)(∆+ 4)
p

∆(∆+ 1)
.

(D.8)

We also find by similar manipulations starting with the two-point function 〈OO〉 that the
contributions from the shifts in the operators are, for a primary operator O,

eF (op)
1TO0,0;O(bΩ) = 1 ,

eF (op)
1TO1,1;O(bΩ) = −

√

√2∆
3

cosθ ,

eF (op)
1TO2,0;O(bΩ) =

p

∆(2∆− 1)
p

3
,

eF (op)
1TO2,2;O(bΩ) = −2

√

√∆(∆+ 1)
15

3cos2 θ − 1
2

,

(D.9)

where we have reintroduced the Ω dependence based on the spin of the ket state (this just
amounts to multiplying by Pℓ(cosθ )

Pℓ(1)
where ℓ is the spin of the ket; there is no φ dependence

since by definition the ket state has jz = 0 state). Therefore the combined contribution for a
primary operator O is

eF1TO0,0;O(bΩ) = 0 ,

eF1TO1,1;O(bΩ) =

√

√ 2
3∆
∆− 3
∆+ 2

cosθ ,

eF1TO2,0;O(bΩ) = 0 ,

eF1TO2,2;O(bΩ) =
2
q

3
5(∆− 3)(∆3 + 2∆2 − 4)

p

∆(∆+ 1)(∆− 1)(∆+ 2)(∆+ 4)

3 cos2 θ − 1
2

.

(D.10)

We can also easily read off the contribution to eF1T,On,ℓ;O from scalar descendant states by taking
derivatives. We mainly are interested in the descendant operator ∇2

S2O, where

∇2
S2 f (u) = −2uf ′(u) + (1− u2) f ′′(u) , u= cosθ . (D.11)
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Since∇2
S2 Pℓ(u) = −ℓ(ℓ+1)Pℓ(u), taking∇2

S2 just amounts to multiplication by −ℓ(ℓ+1)where
ℓ is the spin of the ket state. So

eF (op)
1TO0,0;∇2

S2O
(bΩ) = 0 ,

eF (op)
1TO1,1;∇2

S2O
(bΩ) = −2

√

√2∆
3

cosθ ,

eF (op)
1TO2,0;∇2

S2O
(bΩ) = 0 ,

eF (op)
1TO2,2;∇2

S2O
(bΩ) = 12

√

√∆(∆+ 1)
15

3 cos2 θ − 1
2

.

(D.12)

The main quantity of interest is
∫

d2Ω cosθ eF1TO1,1
(bx) =

4π
3
eF1T,O1,1

(bz)

= gO

√

√ 2
3∆
∆− 3
∆+ 2

4π
3
+
∞
∑

n=1

(−2)n g∇2n
S2O

4π
3

√

√2∆
3

,

(D.13)

where ∆ = ∆O. No operators outside of the O conformal representation contribute, due
to the fact that 〈vac|O′|O〉 = 0 when O and O′ are not in the same representation, and
〈vac|T{

∫

d2ΩO′(x)T00(bz)}|O,ℓ = 1〉 ∼ 〈vac|T{
∫

d2ΩO′(x)(K + P)}|O,ℓ = 1〉 = 0, since
T00 turns into Λ by conservation of angular momentum, and then again the result vanishes if
O′ and O are not in the same conformal representation.

E Matrix elements of PA in CFT limit

Conceptually, computing the matrix elements of PA between states in the CFT limit is a straight-
forward application of the conformal algebra, though in practice the amount of effort involved
in performing the necessary algebraic manipulations can be greatly reduced by organizing it
effectively. It is typically easier to work with the algebra using an index-free notation, where
it can be written as follows:

�

D, J(y, y ′)
�

= 0 , [K(z), P(y)] = 2z · yD+ 2J(z, y) ,

[D, P(z)] = P(z) , [D, K(z)] = −K(z) ,

[J(y, y ′), P(z)] = z · yP(y ′)− z · y ′P(y) , [J(y, y ′), K(z)] = z · yK(y ′)− z · y ′K(y) ,

[J(y, y ′), J(z, z′)] = (z′ · yJ(z, y ′) + z · y ′J(z′, y)− z′ · y ′J(z, y)− z · yJ(z′, y ′)) . (E.1)

The indices are all contracted with auxiliary vectors, so K(z) ≡ zAKA, P(z) ≡ zAPA, and
J(y, y ′) ≡ yA y ′BJAB. We use a convention where D is Hermitian, and acting on primaries
D|prim〉=∆|prim〉.

For scalar primaries, we can obtain a closed-form expression for the matrix elements of PA
by taking explicit simple integrals of CFT two-point functions. The basic idea is to start with
the CFT two-point function

〈(ROR)(z)O(y)〉= (1− 2z · y + z2 y2)−∆ , (E.2)
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where ROR is the conformal inversion of O. Since conformal inversions exchange P and K ,
we can act with K on the bra state 〈O| by taking derivatives with respect to x of the equation
above. All descendant states of O can be obtained by repeatedly acting with PA, so any matrix
element of P between any two descendant states can be written in terms of

〈O|Kn′(z)P(x)Pn(y)|O〉= 1
n+ 1

xA ∂

∂ yA
〈O|Kn′(z)Pn+1(y)|O〉 . (E.3)

But because P and K implement translations on O and ROR respectively,

〈(ROR)(z)O(y)〉=
∞
∑

n=0

1
(n!)2

〈O|Kn(z)Pn(y)|O〉 , (E.4)

so by the standard generating function expression for Gegenbauer polynomials C (∆)n , we have

〈O|Kn(z)Pn(y)|O〉= (n!)2(y2z2)n/2C (∆)n

�

y · z
p

y2z2

�

. (E.5)

To create states of a definite level n and spin ℓ, we can fix n in this expression and integrate
against spherical harmonics of y , z to pick out the spin of the in and out state, respectively. In
radial quantization, the spatial surfaces correspond to fixed radius in flat space coordinates,
so we can set y2 = z2 = 1. However, we also want to include a factor of P(x) as in (E.3), in
which case we differentiate with respect to y before setting y2 = 1:

〈O|Kn(bz)Pn(by)|O〉= (n!)2C (∆)n (by · bz) ,

〈O|Kn+1(bz)P(x)Pn(by)|O〉= (n+ 1)!n!xA
�

(2∆)(bzA− byA
by · bz)C (∆+1)

n (by · bz)

+ (n+ 1)byAC (∆)n+1(by · bz)
�

.

(E.6)

At level n, we can project onto the state with jz = 0 and spin ℓ by integrating
against the spherical harmonic Yℓ0(by) ∝ Pℓ(cosθy) (where the coordinate system is
by = (sinθy cosφy , sinθy sinφy , cosθy)). Integrating against 〈O|Kn(bz)Pn(by)|O〉 gives us the
norm of the state:

|n,ℓ〉=
1

Nn,ℓ

∫

d2ΩPℓ(cosθ )O(by)|vac〉 ,

N2
n,ℓ =

∫

d2Ωy d2Ωz Pℓ(cosθy)Pℓ(cosθz)〈O|Kn(bz)Pn(by)|O〉

=
22∆−1Γ (n+ 1)2Γ

�1
2(n− ℓ− 1) +∆

�

Γ
�

ℓ+n
2 +∆

�

(2ℓ+ 1)Γ (2∆− 1)Γ
�1

2(n− ℓ+ 2)
�

Γ
�1

2(ℓ+ n+ 3)
� ,

(E.7)

and then integrating against 〈O|Kn+1(bz)P(bez)Pn(by)|O〉 with bez = (0, 0,1) gives us the matrix
element:

〈n+ 1,ℓ′|Pz|n,ℓ〉=

∫

d2Ωy d2Ωz Pℓ′(cosθz)Pℓ(cosθy)〈O|Kn+1(bz)P(bez)Pn(by)|O〉
Nn+1,ℓ′Nn,ℓ

=















r

ℓ2(n−ℓ+2)(2∆+n−ℓ−1)
(2ℓ+1)(2ℓ−1) (ℓ′ = ℓ− 1) ,

r

(ℓ+1)2(n+ℓ+3)(2∆+n+ℓ)
(2ℓ+1)(2ℓ+3) (ℓ′ = ℓ+ 1) ,

0 , else.

(E.8)
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As a check, one can verify that
�

∑

ℓ′=ℓ±1

|〈n+ 1,ℓ′|Pz|n,ℓ〉|2
�

−

�

∑

ℓ′=ℓ±1

|〈n,ℓ|Pz|n− 1,ℓ′〉|2
�

= 2(∆+ n) , (E.9)

as required by the commutator [Kz , Pz] = 2D. For a more complicated check, one can evaluate
the Casimir, C = D2+ J2− 1

2{KA, PA}. We can relate matrix elements of KAPA and PAKA to those
of Kz Pz and PzKz respectively using the Wigner-Eckart theorem, so in terms of the matrix
elements for Pz the Casimir acting on a state of level n and spin ℓ evaluates to

〈n,ℓ|C|n,ℓ〉= (∆+ n)2 + ℓ(ℓ+ 1)

−
1
2

�2ℓ+ 3
ℓ+ 1

|〈n+ 1,ℓ+ 1|Pz|n,ℓ〉|2 +
2ℓ− 1
ℓ
|〈n+ 1,ℓ− 1|Pz|n,ℓ〉|2

+
2ℓ+ 3
ℓ+ 1

|〈n,ℓ|Pz|n− 1,ℓ+ 1〉|2 +
2ℓ− 1
ℓ
|〈n,ℓ|Pz|n− 1,ℓ− 1〉|2

�

=∆(∆− 3) ,

(E.10)

as expected. In fact, because for each state there are only two nonzero matrix elements of Pz
connecting the state to states at lower levels and two connecting it to states at higher levels,
one can reverse the logic and with only these two consistency relations one has a recursion
relation between matrix elements at neighboring levels that one can solve to find all the values
of 〈n+ 1,ℓ′|Pz|n,ℓ〉, providing an independent proof of (E.8).

For the case of spinning primaries, it is easier to use such recursion relations to determine
the matrix elements of P. Consider a primary with dimension ∆ and spin ℓ0, and introduce
the shorthand

Z±n,ℓ ≡ |〈n+ 1,ℓ± 1|Pz|n,ℓ〉|2 , (E.11)

for the sum over matrix-element-squareds of Pz between level n spin ℓ descendants and level
n+1 spin ℓ±1 descendants, still in the jz = 0 sector. The commutator [Kz , Pz] = 2D evaluated
in the jz = 0 component at level n and spin ℓ implies

Z+n,ℓ + Z−n,ℓ − Z+n−1,ℓ−1 − Z−n−1,ℓ+1 = 2(∆+ n)N(n,ℓ) , (E.12)

where N(n,ℓ) is the number of descendants at level n and spin ℓ, which for generic∆ (i.e. for

∆ ̸= ℓ0 + 1) can be written N(n,ℓ) =
∑⌊ n

2 ⌋
j=0Θ(ℓ+ ℓ0 ≥ n− 2 j ≥ |ℓ− ℓ0|). The matrix elements

of Pz vanish between descendants with the same spin ℓ in the jz = 0 sector, but they arise in
other jz sectors. If we evaluate the same commutator in the jz = 1 sector,

ℓ(ℓ+ 2)
(ℓ+ 1)2

(Z+n,ℓ − Z−n−1,ℓ+1) +
(ℓ+ 1)(ℓ− 1)

ℓ2
(Z−n,ℓ − Z+n−1,ℓ−1) + Z01

n,ℓ − Z01
n−1,ℓ = 2(∆+ n)N(n,ℓ) ,

(E.13)
where

Z01
n,ℓ ≡ |〈n+ 1,ℓ; jz = 1|Pz|n,ℓ; jz = 1〉|2 , (E.14)

again implicitly summed over all descendants with the indicated quantum numbers. To obtain
another recursion formula, we can look at the commutator [K−, P+] = 2(D + Jz), now in the
highest-weight ( jz = ℓ) component at level n and spin ℓ:

Z+n,ℓ
2ℓ+ 1
ℓ+ 1

− ℓZ01
n−1,ℓ − Z+n−1,ℓ−1

2ℓ− 1
ℓ
− Z−n−1,ℓ+1

1
(ℓ+ 1)2

= 2(∆+ n+ ℓ)N(n,ℓ) , (E.15)
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where we have used the Wigner-Eckart theorem to relate matrix elements of P+ in the highest-
weight components to the matrix elements of Pz in the jz = 0 component. Solving these three
equations, we obtain the following recursion relation:

Z+n,ℓ =
2(ℓ+ 1)(∆+ ℓ+ n)

2ℓ+ 1
N(n,ℓ) +

1
(ℓ+ 1)(2ℓ+ 1)

Z−n−1,ℓ+1 +
(ℓ+ 1)(2ℓ− 1)
ℓ(2ℓ+ 1)

Z+n−1,ℓ−1

+
ℓ(ℓ+ 1)
2ℓ+ 1

Z01
n−1,ℓ ,

Z−n,ℓ =
2ℓ(∆+ n− ℓ− 1)

2ℓ+ 1
N(n,ℓ) +

ℓ(2ℓ+ 3)
(ℓ+ 1)(2ℓ+ 1)

Z−n−1,ℓ+1 +
1

ℓ(2ℓ+ 1)
Z+n−1,ℓ−1 (E.16)

−
ℓ(ℓ+ 1)
2ℓ+ 1

Z01
n−1,ℓ ,

Z01
nℓ = 2(∆+ n)N(n,ℓ)−

(ℓ+ 1)(ℓ− 1)
ℓ2

(Z−n,ℓ − Z+n−1,ℓ−1) +
ℓ(ℓ+ 2)
(ℓ+ 1)2

(Z−n−1,ℓ+1 − Z+n,ℓ)

+ Z01
n−1,ℓ .

Combined with the boundary conditions that

Zn,ℓ = 0 , if n< 0 , or ℓ < 0 , or |ℓ− ℓ0|> n , (E.17)

this completely determines the values of the Zn,ℓs.

F Useful OPE data

Table 1: Z2-even operators with conformal dimension ∆ < 7. Unless stated other-
wise, the data are taken from [26], which extended previous results in [27].

O ∆ ℓ fεεO fε′ε′O
ε 1.412625(10) 0 1.532435(19) 2.3956 [19,28]

Tµν 3 2 0.8891471(40)
ε′ 3.82951(61) [29] 0 1.5362(12) [29] 7.6771

Cµνρσ 5.022665(28) 4 0.24792(20)
T ′µν 5.50915(44) 2 0.69023(49)

C ′µνρσ 6.42065(64) 4 −0.110247(54)
ε′′ 6.8956(43) 0 0.1279(17)

Table 2: Z2-odd operators with conformal dimension∆< 7. Unless stated otherwise,
the data are taken from [26], which extended previous results in [27].

O ∆ ℓ

σ 0.5181489(10) 0
σµν 4.180305(18) 2
σµνρ 4.63804(88) 3
σ′ 5.262(89) [29] 0

σµνρσ 6.112674(19) 4
σµνρσδ 6.709778(27) 5
σ′µν 6.9873(53) 2
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G Estimates for primary conformal dimensions

In this appendix, we report the estimate of conformal dimensions computed at N = 16 for
the primary operators identified using the procedure in Sec. 5.3 in the Z2-even and Z2-odd
sectors. The errors can be inferred from comparison with the bootstrap results in Appendix F,
which are know to very high accuracy.

Table 3: Conformal dimensions for Z2-even primary operators at N = 16.

O ∆ ℓ

ε 1.402623 0
Tµν 3.005017 2
ε′ 3.80967 0

Cµνρσ 5.121876 4
T ′µν 5.550384 2

Table 4: Conformal dimensions for Z2-odd primary operators at N = 16.

O ∆ ℓ

σ 0.5188153 0
σµν 4.212098 2
σµνρ 4.613442 3
σ′ 5.265805 0

σµνρσ 6.209049 4
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