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Abstract

Detector simulations are an exciting application of modern generative networks. Their
sparse high-dimensional data combined with the required precision poses a serious chal-
lenge. We show how combining Conditional Flow Matching with transformer elements
allows us to simulate the detector phase space reliably. Namely, we use an autoregres-
sive transformer to simulate the energy of each layer, and a vision transformer for the
high-dimensional voxel distributions. We show how dimension reduction via latent dif-
fusion allows us to train more efficiently and how diffusion networks can be evaluated
faster with bespoke solvers. We showcase our framework, CaloDREAM, on datasets 2
and 3 of the CaloChallenge.
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1 Introduction

Simulations are the way we compare theory predictions to LHC data, allowing us to draw
conclusions about fundamental theory from complex scattering data [1,2]. The modular sim-
ulation chain starts from the hard interaction and progresses through particle decays, QCD
radiation, hadronization, hadron decays, to the interaction of all particles with the detec-
tor. Currently, the last step is turning into a bottleneck in speed and precision. Generating
calorimeter showers with GEANT4 [3–5], based on first principles, requires a large fraction of
the computing budget. Without significant progress, this simulation step will be the limiting
factor for all analyses at the HL-LHC [6,7].

Modern machine learning is transforming the way we simulate LHC data [8]. In the
past few years we have seen successful applications to all steps in the simulation chain [2],
phase space integration [9–19]; parton showers [20–27]; hadronization [28–31]; detector
simulations [32–65], and end-to-end event generation [66–73], including inverse simula-
tions [74–84] and simulation-based inference [85–87]. While these new concepts and tools
have the potential to transform LHC simulations, we need to ensure that these networks and
their technical strengths can be understood. This is the only way that we can systematically
improve the LHC simulation chain [71, 88–91], without endangering the key role it plays in,
essentially, every LHC analysis. Most notably, we must avoid the case where effects of interest
are absorbed into LHC simulations as a result of data-driven modelling. This means that for
now we always assume that networks used in LHC simulations are trained on simulations and
controlled by comparing to simulations.

In this paper, we will apply cutting-edge generative networks to calorimeter shower sim-
ulations. The high-dimensional phase spaces of calorimeter showers are a challenge to the
established normalizing flows or INNs [92], and different variants of diffusion networks ap-
pear to be the better-suited architecture [58]. This is in spite of the fact that diffusion networks
are, typically, slower in the forward generation and do not allow for an efficient likelihood ex-
traction. In addition to showing that these networks are able to simulate sparse phase space
signals like calorimeter showers, we will explore which phase space dimensionalities we can
describe with full-dimensional latent spaces and how a dimension-reduced latent representa-
tion affects the network performance.

Given the GEANT4 benchmark presented in Sec. 2, we will see that a factorized approach
is most promising. In Sec. 3 we first introduce a Conditional Flow Matching (CFM) network
combined with an autoregressive transformer to learn the layer energies. Next, we combine it
with a 3-dimensional vision transformer to learn the shower shapes. This combination can
be trained on datasets 2 and 3 of the CaloChallenge to generate high-fidelity calorimeter
showers. In this application the step from dataset 2 to dataset 3 motivates a switch from
full-dimensional voxel representations to a dimension-reduced latent space [50]. In Sec. 4
we study, in some detail, how the full-dimension generative network encodes the calorime-
ter shower information for both datasets. To alleviate the computational challenges, we also
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show how a lower-dimensional latent representation helps us describe high-dimensional data
like the Calo Challenge dataset 3 and how the CFM networks can sample more efficiently. For
quantitative benchmarking of the learned phase space distribution we employ a learned clas-
sifier test, indicating that the network precision for both datasets is at the per-cent level and
the loss in precision from a reduced latent space is controlled, including its only failure mode,
which are the sparsity distributions.

2 Data and preprocessing

To benchmark our new network architectures, we use dataset 2 (DS2) [93] and dataset 3
(DS3) [94] of the CaloChallenge 2022 [95]. Each set consists of 200k GEANT4 [3] electron
showers: 100k for training/validation and 100k for testing. Showers are simulated over a
log-uniform incident energy range

Einc = 103 ... 106 MeV . (1)

The physical detector has a cylindrical geometry with alternating layers of absorber and active
material, altogether 90 layers. The voxelization following Ref. [96] combines an active layer
and an absorber layer resulting in 45 concentric cylindrical layers.

The particle originating the shower always enters at the (0,0,0) location and defines the
z-axis of the coordinate system. The number of readout cells per layer is defined in a polar
coordinate system and it is different for DS2 and DS3. DS2 has a total of 6480 voxels: 144
voxels per layer, each divided into 16 angular and 9 radial bins. DS3 has a much higher
granularity with 40500 total voxels, where the number of layers is unchanged but the angular
and radial binning is 50×18. Both datasets have a threshold of 15.15 keV. While this is an
unrealistic cut for practical applications, it provides a useful challenge to high-dimensional
generative networks covering a wide energy range.

Preprocessing

We improve our training by including a series of preprocessing steps, similar to previous stud-
ies [49,51,57,58,92]. We split information on the deposited energy from its distribution over
voxels by introducing energy ratios [41]

u0 =

∑

i Ei

f Einc
, and ui =

Ei
∑

j≥i E j
, i = 1, . . . , 44 , (2)

where Ei refers to the total energy deposited in layer i, and f ∈ R is a scale factor. The
number of u-variables matches the number of layers. With these variables extracted from a
given shower, we are free to normalize the voxel values by the energy of their corresponding
layer without losing any information. This definition is analytically invertible, imposes energy
conservation, and ensures that the normalized voxels and each ui>0 are always in the range
[0,1]. However, due to the calibration of the detector response caused by the inactive material,
u0 can have values larger than 1. We set f = 2.85 in Eq.(2), to rescale u0 ∈ [0,1]. All networks
are conditioned on Einc. This quantity is passed to the network after a log transformation and
a rescaling into the unit interval.
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To train the autoencoders used for dimensionality reduction we do not use any additional
preprocessing steps. For the setup using the full input space, we apply a logit transformation
regularized by the parameter α which rescales each input voxel x ,

xα = (1− 2α)x +α ∈ [α, 1−α] , with α= 10−6 ,

x ′ = log
xα

1− xα
. (3)

Finally, we calculate the mean and the standard deviation of the training dataset and stan-
dardize each feature. The postprocessing includes an additional step that rescales the sum of
the generated voxels to ensure the correct normalization in each layer.

3 CaloDREAM

In CaloDREAM,1 we employ two generative networks, one energy network and one shape
network [41]. The energy network learns the energy-ratio features conditioned on the inci-
dent energy, p(ui| Einc). The shape network learns the conditional distribution for the voxels,
p(x | Einc, u). The two networks are trained independently, but are linked in the generative
process. Specifically, to sample showers given an incident energy, we follow the chain

ui ∼ pφ(ui|Einc) ,

x ∼ pθ (x |Einc, u) . (4)

In this notation φ stands for the weights in the energy network and θ for the weights in
the shape network. Although the number of calorimeter layers is consistent across DS2 and
DS3 and the underlying showers are the same, we train separate energy networks for each
dataset. The incident energy is always sampled from the known distribution in the datasets,
as in Eq.(1).

3.1 Energy network — Transfusion

Both of our generative networks use the Conditional Flow Matching architecture [97]. It starts
with the ordinary differential equation (ODE)

d x(t)
d t

= v(x(t), t) , with x ∈ Rd , (5)

and a velocity field v(x(t), t) ∈ Rd . This time evolution can be related to the underlying
density through the continuity equation

∂ p(x , t)
∂ t

+∇x [p(x , t)v(x , t)] = 0 . (6)

The velocity field transforms the density p(x , t) such that

p(x , t)→

¨

N (x; 0, 1) , t → 0 ,

pdata(x) , t → 1 .
(7)

We can estimate the velocity field with vφ(x(t), t). In this case we can sample the data distri-
bution from Gaussian random numbers, tracing the trajectory using any ODE solver. Defining
the training trajectories to be linear, the velocity network is optimized using a simple MSE loss

LCFM =


�

vφ((1− t)ε+ t x , t)− (x − ε)
�2
·

t∼U(0,1),ε∼N , x∼pdata

. (8)

1The code used for this paper is publicly available at https://github.com/heidelberg-hepml/calo_dreamer.
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Figure 1: Schematic diagram of the autoregressive Transfusion network [87] used in
our energy network.

Conditional probability distributions can be learned by allowing vφ to depend on additional
inputs.

For the energy network, we exploit the causal nature of the energy deposition in layers
using an autoregressive transfusion architecture [87], as visualized in Fig 1. We start by em-
bedding Einc as our one-dimensional condition and the u-vector. For the u, this is done by
concatenating a one-hot encoded position vector and zero-padding. These embeddings are
passed to the encoder and decoder of a transformer, respectively. For the one-dimensional
condition the encoder’s self-attention reduces to a trivial 1 × 1 matrix. For the decoder we
mask our self-attention with an upper triangle matrix, to keep the autoregressive condition-
ing. Afterward, we apply a cross-attention between the encoder and decoder outputs. The
transformer outputs the vectors c0, . . . , c44, encoding the incident energy and previous energy
ratios,

ci =

¨

ci(u0, . . . , ui−1, Einc) , i > 0 ,

ci(Einc) , i = 0 .
(9)

For generation, we use a single dense CFM network vφ , with the inputs time t, embedding ci ,
and the point on the diffusion trajectory ui(t). This network is evaluated 45 times to predict
each component of the velocity field individually,

vfull(u(t), t, Einc) =
�

vφ(u0(t), c0, t), . . . , vφ(u44(t), c44, t)
�

. (10)

During training, we can evaluate the contribution of each ui to the loss in parallel, whereas
sampling requires us to iteratively predict the ui layer by layer. The hyperparameters of the
transfusion network are given in Tab. 1.
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Figure 2: Schematic diagram of the vision transformer (ViT) [98] used in our shape
network.

3.2 Shape network — Vision transformer

For the shape network, we use a 3-dimensional vision transformer (ViT) to learn the condi-
tional velocity field vθ (x(t), t, Einc, u). The architecture is inspired by Ref [98] and illustrated
in Fig. 2. It divides the calorimeter into non-overlapping groups of voxels, so-called patches,
which are embedded using a shared linear layer and passed to a sequence of transformer
blocks. Each block consists of a multi-headed self-attention and a dense network that trans-
forms the patch features. To break the permutation symmetry among patches, we add a learn-
able position encoding to the patch embeddings prior to the first attention block. After the last
block, a linear layer projects the processed patch features into the original patch dimensions,
where each entry represents a diffusion velocity. Finally, the patches are reassembled into the
calorimeter shape.

The network uses a joint embedding for the conditional inputs, t, Einc and u. The time and
energy coordinates are embedded with separate dense networks, then summed into a single
condition vector. The attention blocks incorporate this condition via affine transformations
with shift and scale a, b ∈ R and an additional rescaling factor γ ∈ R learned by dense layers.
These are applied within each block, and also to the final projection layer. Concretely, the
operation inside the ViT block is summarized by

xh = x + γh gh(ah x + bh) ,

xl = xh + γl gl(al xh + bl) , (11)

where gh is the multi-head self-attention step and gl is the fully connected transformation.
The hyperparameters of our transformer are given in Tab. 2.

The scalability of this architecture is closely tied to the choice of patching. On the one
hand, small patches result in high-dimensional attention matrices. While this gives a more ex-
pressive network, the large number of operations can become a limitation for highly-granular
calorimeters. Conversely, a large patch size compresses many voxels into one object, implying
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a faster forward pass but at the expense of sample quality. In this case, an expanded embed-
ding dimension is needed to keep the network flexibility fixed. We decide on specific patch
sizes for DS2 and DS3 through manual exploration.

Usually, we train Bayesian versions [99] of all our generative networks, including calorime-
ter showers [92]. In this study, the networks learning DS2 and DS3 are so heavy in terms of
operations, that an increase by a factor two, to learn an uncertainty map over phase space,
surpasses our typical training cost of 40 hours on a cutting-edge NVIDIA H100 GPU. In prin-
ciple, Bayesian versions of all networks used in this study can be built and used to quantify
limitations, for instance related to a lack of training data.

3.3 Latent diffusion

As the calorimeter granularity is increased from DS2 to DS3, the computational requirements
to train a network on the full voxel space also increase considerably due to the larger num-
ber of patches. This motivates a study of how the naive scaling may be avoided by a lower-
dimensional latent representation. Starting from the detector geometry, a voxel-based repre-
sentation of a shower defines a grid with fixed size and stores the deposited energy in each
voxel. This means a highly granular voxelization will produce a large fraction of zero voxels,
but the showers should define a lower-dimensional manifold of the original phase space. Such
a manifold can then be learned by an autoencoder [50,92,100].

We train a variational autoencoder with learnable parameters ψ. The encoder outputs a
latent parameter pair (µ,σ), which defines the latent variable r = µ+ z ·σ with z ∼N (0,1).
The encoder distribution represents the phase space distributions over x through pψ(r|x , u).
For simplicity, in the following we drop the energy dependence in the encoder and decoder
distributions. After sampling the latent variable, we minimize the learned likelihood of a
Bernoulli decoder pψ(x |r) represented by the reconstruction loss

LVAE =



− log pψ(x |r)
�

x∼pdata,r∼pψ(r|x)
+ β



DKL[pψ(r|x),N (0, 1)]
�

x∼pdata
. (12)

training

Einc, u

x

Encoder
µ

σ
rψ

z ∼N (0, 1)

r(t) CFM

ε∼N (0, 1)
t ∼ U(0,1)

vθ

sampling

Einc, uφ

ε∼N (0, 1)

ε+
∫ 1

0 d t CFM rθ Decoder xψ

Figure 3: Training (upper) and sampling (lower) with the latent diffusion network,
using a variational autoencoder.
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This choice of likelihood is possible since our preprocessing normalizes voxels into the range
[0,1]. The reconstruction quality achieved in the autoencoder training places an upper bound
on the quality of a generative model trained in the corresponding latent space.

The KL-divergence term, with unit-Gaussian prior and a small weight β = 10−6, is a reg-
ularization rather than a condition for a tractable latent space. It encourages a smooth latent
space, over which we train the generative network. Especially for DS3, an autoencoder trained
without KL-regularization produces a sparse latent space with features mapped over several
orders of magnitude.

The VAE consists of a series of convolutions, the last of which downsamples the data. This
structure is mirrored in the decoder using ConvTranspose operations. As always, the energy
conditions are encoded in a separate network and passed to the encoder and decoder. For a
compressed latent space the ratio between the dimensionality of x and r defines the reduction
factor F . Rather than estimating the dimensionality of the datasets, we use a moderate, fixed
reduction factor F ≃ 2.5 and a bottleneck with two channels. We do not expect the same
reduction factor F to be optimal for both datasets. We provide more details on the autoencoder
training in App. A.2.

The trained autoencoder is used as a pre- and postprocessing step for the CFM as illustrated
in Fig. 3. Given the trained encoder distribution pψ(r|x) the velocity field v(r(t), t) imposes
the boundary conditions

p(r, t)→

¨

N (r; 0, 1) , t → 0 ,

pψ(r|x) , t → 1, x ∼ pdata .
(13)

The expensive sampling then uses the lower-dimensional latent space and yields samples r
from the learned manifold. Finally, the phase space configurations are provided by the deter-
ministic decoder Dψ(r). Here we summarize the sampling procedure, including the energy
dependence, as three sequential steps:

u∼ pφ(u|Einc) ,

r ∼ pθ (r, 1|u, Einc) , (14)

x = Dψ(r, u, Einc) .

All network hyperparameters and the main training parameters are given in App. A.1.

3.4 Bespoke samplers

A potential drawback of CFM networks is their slower sampling than, for instance, normalizing
flows with coupling layers [92]. This stems from the numerical integration of the ODE in
Eq.(5). Depending on the complexity of the target distribution, a standard ODE solver requires
O(100) steps to achieve high-fidelity samples, each consisting of at least one forward pass of
the neural network.

One method to overcome this slow inference is distillation [57,63,101,102], which aims to
predict the sampling trajectory at only a handful of intermediate points, or even at the terminus
in a single step. This requires fine-tuning the network weights using additional training time,
in some cases even additional training data. Further, since the weights of the network itself are
updated, consistency is not strictly guaranteed and we can end up sampling from a different
distribution than was originally learned.

An alternative approach is to keep the network fixed and consider alternative structures
for the ODE solver. Reference [103] provides a comparison of various training-free solvers
in the context of calorimeter simulations. While training-free approaches are the least costly,
they are not task-specific and therefore unlikely to be optimal. However, there exists a train-
able family of ODE solvers that can be optimized to a given vector field vθ without excessive
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additional training [104,105]. Such Bespoke Non-Stationary (BNS) solvers parameterize the
steps along the flow trajectory. Starting from an initial state x0, and a time discretization
0= t0 < t i < tN = 1, the ith integration step is

x i+1 = ai x0 + bi · Vi , with ai ∈ R ,

bi ∈ Ri+1 ,

Vi = [vθ (x0, t0), · · · , vθ (x i , t i)] ∈ R(i+1)×d , (15)

where we again suppress the energy dependence of vθ . By appropriately caching the veloci-
ties, each step requires just one evaluation of the network. In total, an N -step BNS solver has
N(N + 5)/2+ 1 learnable parameters: ai , bi and the t i not fixed by the boundary conditions.
Since this is typically orders of magnitude fewer than the network vθ , optimizing the solver re-
quires a fraction of the computation time needed to train the vector field itself. Non-stationary
solvers encompass a large family of ODE solvers, including the Runge-Kutta (RK) methods.
Euler’s method, i.e. first order RK, corresponds to taking ai = 1,bi j = 1/N and evenly-spaced
t i .

Bespoke solvers can be trained by comparing the bespoke trajectory to a precisely-
computed reference xref(t), given an initial state x0 sampled from the CFM latent distribution.
Here we define two options. First, the global truncation error measures the deviation between
the final states of the solvers

LGTE =
¬

[xref(1)− xN ]
2
¶

x0∼N
, (16)

where xN is computed by iterating Eq.(15) starting from x0. The local truncation error instead
measures the discrepancy at each step,

LLTE =
¬

N−1
∑

i=0

�

xref(t i+1)− (ai x0 + bi · Vref,i)
�2¶

x0∼N
, (17)

where Vref,i is defined as in Eq.(15), but with velocities evaluated on the reference trajectory.
Although we use CFM for both our shape and energy networks, we only study BNS solvers

for the shape network. For training a BNS solver, we initialize it to the Euler method. At
each iteration, we sample an x0 batch from the unit Gaussian and a batch of conditions from
the energy network. A precise solver is then used to generate the reference trajectory xref(t)
which enters the loss. Note that the shape model parameters θ are frozen during training.
The complete list of hyperparameters are given in App. A.1.

4 Results

4.1 Layer energies

In Fig. 4 we compare samples generated from the energy network with the truth for a selec-
tion of normalized layer energies ui . The transfusion network indeed generates high-quality
distributions, with errors comparable to the statistical uncertainties in the test data. The dis-
tributions for ui>40 are the most difficult to model, since the majority of showers lie in the
sharp peaks at zero or one. These are zero-width peaks corresponding to showers that end at
the given layer, leading to a one, or end before or skip the layer, leading to a zero.

We find that our autoregressive setup is particularly effective in faithfully mapping regions
close to these peaks. As a quantitative performance measure, we train a classifier to distinguish
the u’s defined by our energy network from the GEANT4 truth, obtaining AUC scores around
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Figure 4: Distributions of selected u-features in DS2 from the CaloDREAM energy
network (blue) compared to truth (grey). The error bars in all feature distributions
in this paper show the statistics of the respective datasets.

0.51 on an independent test set. The comparison in terms of layer energy is shown in Fig. 5.
The factorization procedure allows us to use the same energy network for the ViT and the
laViT, effectively generating statistically-identical layer energy distributions.

4.2 DS2 showers

Given the learned layer energies, we use the shape networks described in Sec. 3.2 to generate
the actual calorimeter showers over the voxels. First, we evaluate the distribution of energy
depositions per layer by looking at shape observables, like the center of energy of the shower
and its width in the φ and η directions,

〈ξ〉=
ξ · x
∑

i x i
,

σ〈ξ〉 =

√

√

√
ξ2 · x
∑

i x i
− 〈ξ〉2 , for ξ ∈ {η,φ} . (18)

Here x i is the energy deposition in a single voxel and the sum runs over the voxels in a layer.
In the first row of Fig. 5 we compare a set of layer-wise distributions from the networks

trained in the full space and in the latent representation to the test data truth. We start with the
energy deposited in layer 20, where for E20 > 10 MeV the full-dimensional vision transformer
(ViT) as well as the latent-diffusion counterpart (laViT) agree with the truth at the level of a
few per-cent, as expected. Towards smaller energies we see a missing feature in both networks.
Also in the two other shown distributions the ViT and laViT agree with each other and deviate
from GEANT4 only in regions with statistically limited training data.

The second row of Fig. 5 shows example distributions probing the combination of layers.
In addition to the layer-wise shower shapes, we calculate the mean shower depth weighted by
the energy deposition in each of the N layers for slices in the radial direction,

dr j
=

∑N
i ki Ei,r j

Etot, j
, r j ∈ {0, . . . , |r|} . (19)

Here Ei,r j
is the average energy deposition in slice r j , and Etot, j is the total energy deposition

in the selected slice. Slices in the angular direction are less interesting to calculate due to
the rotational invariance of the showers. This observable highlights a small deviation for both
networks from the reference for showers with maximum depth of five layers not captured by
the layer-wise high-level features.

Also combining layer-wise information, we show the total energy deposited in the calorime-
ter Etot normalized by the incident energy and the full voxel distribution across the entire
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Figure 5: Selection of high-level features for DS2. The first row shows features for
individual layers, the second row the combination of layers.

calorimeter Evoxel. The total shower energy relative to the incident energy is reproduced very
well by both networks since this information is coming from the energy network. However for
the voxel energies only the full-dimensional network captures the low-energy regime, whereas
the latent model overestimates this regime and in turn shifts down the prediction for larger
energies because of the normalization of the curve. This is the only noteworthy shortcoming
of the laViT compared to the ViT that we find.

Following up on the problem raised by the last panel in Fig. 5, we focus on the (latent)
description with low-energy voxels. In Fig. 6 we again compare the two network predictions
with the truth, but applying an additional threshold cut of

Evoxel > 1 MeV . (20)

After this cut, the agreement of the laViT prediction with the full ViT and the truth improves
significantly. We checked that this cut has only a limited impact on the total energy deposition
Etot. Slight deviations are limited to the threshold region Evoxel ≲ 5 GeV. The reason can be
seen in the sparsity distributions for instance of layer 10, λ10. The laViT network generates
a sizable number of showers with energy depositions everywhere, leading to a peak at zero
sparsity. This failure mode is already present in the autoencoder reconstruction as described
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Figure 6: Effect of an additional threshold E > 1 MeV on DS2; we show the shower
energy and the sparsities without and with threshold cut.
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Figure 7: Selection of high-level features for DS3. The first row shows features for
individual layers, the second row the combination of layers. All features correspond
to the DS2 results shown in Fig. 5.
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Figure 8: Effect of an additional threshold E > 1 MeV on DS3; we show the shower
energy and the sparsities without and with threshold cut. All features correspond to
the DS2 results shown in Fig. 6.

in App. A.2. Because of their low energy, these contributions do not affect the other high-level
observables or the learned physics patterns of the showers.

4.3 DS3 showers

The same analysis done for DS2 in Sec. 4.3 we now repeat for DS3. This means we study
the same shower energies and shower shapes, but from 40500 instead of 6480 voxels. A
target phase space of such large dimension is atypical for most LHC applications, and the
key question is whether the precision-generative architectures that have been successful on
lower-dimensional phase spaces also give the necessary precision for high-dimensional phase
spaces. As a matter of fact, we know that this is not the case for standard normalizing flows
or INNs [92], where the architectures have to be modified significantly to cope with higher
resolution.

In Fig. 7 we again show a set of layer-wise features in the first row, observing extremely
mild differences to the DS2 results. Only the shower shapes from the laViT suffer slightly in
regions with too little training data. For the multi-layer features in the second row, we also find
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the same results as for DS2, including the challenge in describing voxels with Evoxel ≲ 3 GeV.
Understanding and targeting this challenge, we again show the voxel energy distribution

and the sparsity after the threshold cut Evoxel > 1 MeV in Fig. 8. For DS3 it turns out that after
applying this cut the description of DS3 through the laViT network is excellent. The reason for
this is two-fold. Given the low energy bound we can reproduce with the latent model, a cut
larger than this threshold completely adjusts the sparsity up to a specific value by removing
the additional energy deposition of the latent model and the noisy components of GEANT4. For
both DS2 and DS3 the cut fixes the sparsity in λ10 down to λ10 ≳ 0.7. However, for DS3 this
is done by moving the peak at zero, while for DS2 the mass is moved from the intermediate
sparsity. This second difference comes from the dimensionalities of the two datasets, where
the fixed reduction factor has a stronger impact on DS2 due to the larger information loss in
the bottleneck.

4.4 Sampling efficiency

To demonstrate the performance of bespoke samplers, we compare the quality of showers pro-
duced by various solvers in terms of classifier tests. Classifiers trained to distinguish generated
and true samples are an effective diagnostic tool since they capture failure modes in high-order
correlations that are hidden in simple high-level distributions. As we will see in the following
section, the phase space distribution of classifier scores can be used to search for and identify
such failure modes. In this section, we only use the AUC as a simple, one-dimensional quality
measure. The high-level classifier uses the layer-wise features but since we want sensitivity
also to voxel-level correlations, we train a classifier on the low-level phase space as defined by
the original voxels.

For our comparison, we include three standard fixed-steps solvers: the Euler, Midpoint,
and Runge-Kutta 4 methods. We also consider bespoke non-stationary solvers using either
the global, Eq.(16), or local, Eq.(17) truncation error as described in Sec. 3.4. Using each
solver, we generate 100k showers from the DS2 ViT shape network. We train classifiers to
distinguish these samples from the GEANT4 reference set using the standard CaloChallenge
pipeline. In Fig. 9, we plot the high-level (left) and low-level (right) AUC scores against the
number of function evaluations neval for each solver. Note that the Midpoint and RK4 methods
respectively use 2 and 4 function evaluations per integration step. See App. A.3 for function
evaluation timings of each network.

In both panels of the figure, we see that the Euler solver has a notably poor efficiency
in terms of function evaluations. This indicates that the velocity field learned by the shape
network has non-trivial curvature. Considering the remaining solvers, the sample quality es-
sentially saturates by neval = 64 and all non-Euler methods appear to have statistically-equal
performance at this point. The bespoke samplers demonstrate the best retention in quality
when looking toward smaller neval. In particular, the local BNS solver keeps an AUC below
0.6 for both classifiers even at 8 function evaluations. The global BNS solver achieves a large
margin of improvement at neval = 4 for the high-level classifier. The local bespoke solver also
shows an advantage in the high-quality regime. Specifically, its AUC is already saturated for
both solvers at 32 function evaluations. As such, in a resource-limited scenario the efficiency
gains offered by bespoke solvers can be translated into improved sample quality.

It is interesting to note that the performance of a given solver can be significantly different
between high- and low-level classifiers. This is evident in the reversed rankings of, for example,
the two bespoke solvers in each panel. The global BNS solver favors performance on the high-
level classifier, while the local BNS solver is best on the low-level classifier. A similar exchange
can be seen among the Midpoint and RK4 solvers, with the former being close to optimal at low
level. This distinction is only apparent away from the optimal number of function evaluations.
For instance, at neval = 8 we observe a high-level classifier AUC score of ∼ 0.55 for the global
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Figure 9: High-level (left) and low-level (right) classifier AUC scores on DS2 as a
function of the number of function evaluations neval for various ODE solvers. Samples
of 100k reference and generated showers are used to train the classifier. Errors bands
are taken as the standard deviation over 10 runs.

BNS and ∼ 0.6 for the local BNS. The ranking, at the same point, is indeed reversed for the
low-level classifier with an AUC of 0.7 for the global BNS and 0.6 for the local one.

4.5 Performance

It is not trivial to test the overall performance of generative networks for calorimeter showers.
In the previous sections we evaluated the networks using simple one-dimensional histograms,
as in Figs. 5 and 7, or classifier AUC scores. A systematic approach to assess the quality of
our generative networks, and a way to identify failure modes, is to examine the distribution
of classifier predictions over the phase space or feature space x [91]. A properly trained and
calibrated classifier C(x) learns the likelihood-ratio between the data and the generated dis-
tributions which, according to the Neyman-Pearson lemma, is the most powerful test statistic
to discriminate between the two samples. This allows us to extract a correction weight over
phase space

w(x) =
C(x)

1− C(x)
≈

pdata

pmodel
(x) , (21)

and to use the corresponding weight distributions as an evaluation metric. The weights have
to be evaluated on the training data and on the generated data, because failure modes appear
as tails in one of the two distributions [91]. For example, if we only look at the weights of
generated samples, we may not identify cases where the generator suffers from mode collapse.
To further analyze failure cases, we can study showers with small or large weights as a function
of phase space, using the interpretable nature of phase spaces in particle physics.

In Fig. 10 we show the classifier weights from the low-level classifier for DS2 and for
DS3. We explicitly distinguish the weights for generated samples (solid lines) and GEANT4
samples (dotted lines) obtained from the trained classifier. We also include a table with the
AUC scores of the high-level classifier trained on layer-wise features and the low-level classifier,
where the ViT shows state-of-the-art results on DS2 and the high-level DS3. The peaks of the
weight distributions are nicely centered around w = 1, symmetric towards small and large
(logarithmic) classifiers, and show no significant difference between generated and training
data. The weights for the networks encoding the full phase space and the latent diffusion
are different, with a typical broadening of the distribution by a factor two around the peak
and larger and less smooth tails. We still observe that the classifier misses the low-energetic
noise affecting the sparsity and the voxel energy distributions. Despite the simple nature of the
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Figure 10: Learned low-level (LL) classifier weight distributions for DS2 (left) and
DS3 (right). We compare the full-dimensional ViT and the latent laViT results and, for
each of them, show weights for the generated sample and for a GEANT4 test sample.
The table shows the AUC values for both high-level (HL) and low-level classifiers in
each case.

neural network, a sequence of fully connected layers, the main result from this performance
test is that the classifier identifies additional failure modes related to the step from DS2 to
DS3 and to the reduced latent space. We expect these failure modes correspond to cross-layer
features, since we observe a correlation between the classifier weights and the shower depth
introduced in Sec. 4.2, and the high-level AUC is similar across the two datasets. Details of
the neural network classifier are listed in App. A.1.

5 Outlook

Calorimeter showers are one of the most exciting applications of modern generative networks
in fundamental physics. Their specific challenge is the high dimensionality of the voxelized
phase space, combined with extremely sparse data and an LHC-level precision requirement.
In our case, the CaloChallenge datasets 2 and 3 include up to 40k dimensions for the target
phase space.

In this situation, diffusion networks allow us to go a step beyond standard normalizing
flows. Our CaloDREAM architecture first factorizes the generation of detector showers into
an energy network and a shape network. Both networks are trained using Conditional Flow
Matching. The former generates the layer energies using a transformer backbone with self-
attention and cross-attention blocks. For the latter, we use a 3-dimensional vision transformer,
operating on patches of the target phase space.

For DS2 this combination of networks is a safe architecture choice, in the sense that it can
be trained without problems and reproduces all features, within layers and across layers, with
high precision. We can use a VAE to reduce the dimensionality using latent diffusion. We find
essentially no loss in performance, except for the reproduction of low-energy voxels and, with
it, sparsity, which can be improved by introducing an MeV-level energy threshold. Because
diffusion networks are slower than alternative generative networks, we use bespoke samplers
to enhance their generation speed, at no cost of the precision and improving the fidelity in
case of limited resources.

For DS3 the performance of the CaloDREAM generators remains qualitatively the same,
but the shape network reaches the limit in terms of available computation time. This is a
motivation to again employ latent diffusion. We find excellent performance of the latent dif-
fusion architecture; with the right choice of energy thresholds even the sparsity distribution is
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reproduced correctly. However, irrespective of the dataset, further studies are needed to un-
derstand the effects of mapping the distributions into real detectors with irregular geometries,
more complex distributions from different incident particles, e.g. hadrons, and varying angle
of impact.

Our study shows that modern generative networks can be used to describe calorimeter
showers in highly granular calorimeters. When the number of phase space dimensions be-
comes very large and the data becomes sparse, a latent diffusion network combined with an
(autoregressive) transformer and bespoke sampling provides excellent benchmarks in speed
and in precision. We publish the generated samples together with the full set of high-level
features in the Zenodo repository 10.5281/zenodo.14413046.

Note added A potentially similar approach, CaloDiT, also using a diffusion transformer to
tackle calorimeter showers has been shown at ACAT 2024.
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A Further details

A.1 Hyperparameters

Table 1: Parameters for the autoregressive energy network in Sec. 3.1.

Parameter DS2 & DS3

Epochs 500
LR sched. cosine
Max LR 10−3

Batch size 4096
ODE solver Runge-Kutta 4 (50 steps)

Network transformer
Dim embedding 64
Intermediate dim 1024
Num heads 4
Num layers 4

Network dense feed-forward
Intermediate dim 256
Num layers 8
Activation SiLU
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Table 2: Parameters for the shape networks in Sec. 3.2, for the full and the latent
space.

ViT laViT

Parameter DS2 DS3 DS2 DS3

Patch size (3, 16, 1) (3, 5, 2) (3, 1, 1) (3, 2, 2)
Embedding dimension 480 240 240 240
Attention heads 6 6 6 6
MLP hidden dimension 1920 720 960 960
Blocks 6 6 10 10

epochs 800 600 800 400
batch size 64 64 128 128
LR sched. cosine
Max LR 10−3

ODE solver Runge-Kutta 4 (20 steps)

Table 3: Parameters for HL and LL classifiers network used to calculate the weights of
Fig. 10. The other classifiers use the same hyperparameters but without any dropout.

Parameter Value

Optimizer Adam
Learning rate 2 · 10−4

Batch size 1000
Epochs 200
Number of layers 3
Hidden nodes 512
Dropout 20%
Activation function leaky ReLU
Training samples 70k
Validation samples 10k
Testing samples 20k

A.2 Autoencoder

The VAE introduced in Sec. 3.3 is trained separately, using the BCE reconstruction loss

LVAE = −



x log(xψ) + (1− x) log(1− xψ)
�

pψ(r|x)
+ βDKL[pψ(r|x),N (0, 1)] . (A.1)

This loss provides notably better reconstruction quality than the standard MSE loss, both in
terms of high-level features and a neural network classifier trained to distinguish reconstructed
showers from an independent test set. A detailed description of the network architecture is
provided in Tab. 4. Each block consists of three Conv2d operations that preserve the number of
channels of which the final one downsamples according to the stride and padding parameters.
In addition, we break the translation equivariance by adding the coordinates of each input to
the activation map as new channels [58].

In Fig. 11 we provide a set of kinematic distributions similar to Fig. 7 for DS3, to illustrate
the VAE reconstruction. We find that the only missing feature in the learned manifold is the
distribution of the low-energetic voxels, also reflected in the sparsity. We also train a classifier
using the hyperparameters of Tab. 3 on the low-level features which gives an AUC score of
0.512(5) consistently for both, DS2 and DS3.
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Table 4: Parameters of the autoencoder for DS2 and DS3 used for the laViT network
in Sec. 3.3.

Parameter Value

DS2 DS3

Loss BCE + βKL
β 10−6

Epochs 200
Out activation sigmoid
Lr sched. OneCycle
Max lr 10−3

# of blocks 2 (+ bottleneck)
Channels (64, 64, 2)
Dim. bottleneck (2, 15, 9, 9) (2, 9, 26, 16)
Kernels [(3,2,1), (1,1,1)] [(5,2,3), (1,1,1)]
Strides [(3,2,1), (1,1,1)] [(2,2,1), (1,1,1)]
Paddings [(0,1,0), (0,0,0)] [(0,1,0), (0,0,0)]
Normalized cut 1 · 10−6

Table 5: Parameters used to train BNS solvers, described in Sec. 3.4.

Parameter Value

Reference solver midpoint (100 steps)
Initialization Euler
Optimizer Adam
Learning rate 1 · 10−3

Batch size 100
Max iterations 5000
Stopping patience (iterations) 200
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Figure 11: Selection of high-level features sensitive to the reconstruction of the au-
toencoder for DS3.
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Table 6: Timings for one network forward pass using batch size 100 on an NVIDIA
H100.

Network Time (ms) on GPU

DS2 DS3

Energy 0.37±0.01 0.37±0.01
Shape (ViT) 17±1 84±8

Shape (LaViT) 31±1 63±6

A.3 Timing

In Sec. 4.4, we study the sampling cost of networks in terms of the number of function eval-
uations neval. Here we provide timing measurements for a single forward pass of each of our
CFM networks, using a batch size 100. We ran tests using a single NVIDIA H100 GPU and
summarize the results in Tab. 6. The times for the energy network are identical across the two
datasets since there is no change in the network architecture. Also note that since the energy
model is autoregressive, sampling with an N -step solver uses N×L function evaluations, where
L is the number of calorimeter layers. As we did not perform an extensive hyperparameter
search, we expect there to be room for improvements for all listed models.
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